EP1453990A2 - Verfahren zur elektrolyse einer wässrigen lösung von alkalimetallchlorid - Google Patents

Verfahren zur elektrolyse einer wässrigen lösung von alkalimetallchlorid

Info

Publication number
EP1453990A2
EP1453990A2 EP02798315A EP02798315A EP1453990A2 EP 1453990 A2 EP1453990 A2 EP 1453990A2 EP 02798315 A EP02798315 A EP 02798315A EP 02798315 A EP02798315 A EP 02798315A EP 1453990 A2 EP1453990 A2 EP 1453990A2
Authority
EP
European Patent Office
Prior art keywords
alkali metal
temperature
solution
hydroxide solution
metal chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP02798315A
Other languages
English (en)
French (fr)
Other versions
EP1453990B1 (de
Inventor
Andreas Bulan
Fritz Gestermann
Hans-Dieter Pinter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer Intellectual Property GmbH
Original Assignee
Bayer MaterialScience AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer MaterialScience AG filed Critical Bayer MaterialScience AG
Publication of EP1453990A2 publication Critical patent/EP1453990A2/de
Application granted granted Critical
Publication of EP1453990B1 publication Critical patent/EP1453990B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/34Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis
    • C25B1/46Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis in diaphragm cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation
    • C25B15/021Process control or regulation of heating or cooling
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms

Definitions

  • the invention relates to a process for the electrolysis of an aqueous alkali metal chloride solution.
  • the production of chlorine and aqueous alkali metal hydroxide solution for example sodium hydroxide solution (hereinafter also referred to as sodium hydroxide solution), by electrolysis of an alkali metal chloride solution, for example sodium chloride solution, by means of gas diffusion electrodes as oxygen consumption cathodes is known.
  • the electrolytic cell consists of an anode and a cathode half-element, which are separated by a cation exchange membrane.
  • the cathode half-element consists of an electrolyte space, which is separated from a gas space by a gas diffusion electrode.
  • the electrolyte compartment is filled with an alkali metal hydroxide solution.
  • the gas space is fed with oxygen, air or with oxygen-enriched air.
  • EP-A 1 067 215 describes a process for the electrolysis of an aqueous solution of .
  • Alkali metal chloride using a gas diffusion electrode is known as the oxygen consumable cathode, in which the flow rate of the alkali metal hydroxide solution in the electrolyte space of the cathode half cell is at least. Is 1 cm / s.
  • the high flow rate of the alkali metal hydroxide solution causes thorough mixing and thus homogenization of the alkali metal hydroxide concentration in the electrolyte compartment.
  • the invention accordingly relates to a process for the electrolysis of an aqueous solution of alkali metal chloride, in particular sodium chloride, by the membrane process with an aqueous solution of alkali metal hydroxide, in particular sodium hydroxide, as the catholyte, the temperature of the alkali metal chloride solution in the anode half-element and / or the volume flow of the alkali metal chloride solution in the anode half-element so that the difference between the temperature of the alkali metal hydroxide solution at the entry into the cathode half-element and the temperature of the alkali metal hydroxide solution at the exit from the cathode half-element is not greater than 15 ° C.
  • the process according to the invention succeeds in regulating the temperature of the alkali metal hydroxide solution in the cathode half-element with the aid of the temperature of the alkali metal chloride solution in the anode half-element and, if an anolyte circuit, ie a circulation of the alkali metal chloride solution, is present using the volume flow of the alkali metal chloride solution.
  • One of the two measures or both measures together allow one To counteract heating of the alkali metal hydroxide solution, in particular even at low flow rates of the alkali metal hydroxide solution of less than 1 cm / s.
  • a temperature difference greater than 15 ° C, preferably greater than 10 ° C, between the entry and exit of the alkali metal hydroxide solution is not desirable, among other things, because a strong temperature gradient between the entry and exit would be associated with a strong gradient in the conductivity of the alkali metal hydroxide solution.
  • the alkali metal hydroxide solution in the cathode half-element thus succeeds during the electrolysis process either at a given volume flow and given
  • the volume flow of the alkali metal chloride solution is regulated by means of the pumped-over amount of the alkali metal chloride solution.
  • Alkali metal hydroxide solution does not have to be regulated by a high flow rate of at least 1 cm / s in the cathode half element. Since the current yield decreases with higher flow velocities, it is particularly advantageous to work at low flow velocities of less than 1 cm / s.
  • the temperature of the alkali metal hydroxide solution could also be regulated with the aid of a heat exchanger upstream of the cathode half element.
  • this is not necessary in the method according to the invention and therefore saves the additional outlay on equipment that would be caused by the installation of a heat exchanger.
  • the temperature of the alkali metal chloride solution when it emerges from the anode half-element and the temperature of the alkali metal hydroxide solution when it emerges from the cathode half-element is 80 ° C. to 100 ° C., preferably 85 ° C. to 95 ° C.
  • the flow rate of the alkali metal hydroxide solution in the cathode half-element is less than 1 cm / s.
  • the method according to the invention is preferably carried out using a gas diffusion electrode as the cathode.
  • the alkali metal chloride solution as anolyte and the alkali metal hydroxide solution as catholyte are derived from the same alkali metal, e.g. Sodium or potassium.
  • the alkali metal chloride solution is preferably a sodium chloride solution and the alkali metal hydroxide solution is a sodium hydroxide solution.
  • the volume flow of the alkali metal chloride solution in the anode half-element depends on the current density with which the electrolyzer is operated. At a current density of 2.5 kA / m 2 , the volume flow per element should be from 0.02 to 0.1 m 3 / h. At a current density of 4 kA m 2 from 0.11 to 0.25 m 3 / h.
  • the method according to the invention can be operated with current densities in the range from 2 to 8 kA / m 2 .
  • electrolysis of an aqueous alkali metal chloride solution in accordance with the examples described below was carried out using an electrolyzer consisting of 15 electrolysis cells. As cathodes were used in the respective
  • Electrolysis cells used gas diffusion electrodes, the distance from the gas diffusion electrode to the ion exchange membrane being 3 mm and the length of the gap between the ion exchange membrane and the gas diffusion electrode being 206 cm. Titanium anodes which were coated with ruthenium-iridium oxides were used as anodes. The area of the anodes was 2.5 m 2 . As
  • a Nafion® NX 981 from DuPont was used for the ion exchange membrane.
  • the concentration of the sodium chloride solution (NaCl) was 210 g / 1 when it emerged from the anode half-element.
  • the concentration of the sodium hydroxide solution (NaOH) in the cathode half-element was between 30 and 33% by weight. If not explicitly stated in the following examples, the current density was 2.45 kA / m 2 and the volume flow of the sodium hydroxide solution was 3 m 3 / h. The latter corresponds to a speed of the sodium hydroxide solution in the gap between the ion exchange membrane and the gas diffusion electrode of 0.85 cm / s.
  • a volume flow of the sodium chloride solution in the anode half element of 1.0 m 3 / h was selected under the above-mentioned conditions.
  • the temperature of the sodium chloride solution in the anode half element was selected under the above-mentioned conditions.
  • Example 2 Sodium chloride solution was 50 ° C at the inlet and 85 ° C at the outlet. The temperature difference between the inlet and outlet of an anode half-element was thus 35 ° C. The sodium hydroxide solution was fed to the cathode half-element at a temperature of 80 ° C. and removed again at 85 ° C. The current yield was determined to be 96.20%.
  • Example 2 Sodium chloride solution was 50 ° C at the inlet and 85 ° C at the outlet. The temperature difference between the inlet and outlet of an anode half-element was thus 35 ° C. The sodium hydroxide solution was fed to the cathode half-element at a temperature of 80 ° C. and removed again at 85 ° C. The current yield was determined to be 96.20%.
  • Example 2
  • a volume flow of the sodium chloride solution in the anode half element of 1.1 m 3 / h was selected under the above-mentioned conditions.
  • the temperature of the sodium chloride solution at the inlet was 50 ° C and 86 ° C at the outlet.
  • the temperature difference between the inlet and outlet of an anode half-element was thus 36 ° C.
  • the sodium hydroxide solution was fed to the cathode half-element at a temperature of 79 ° C. and removed again at 85 ° C.
  • the current yield was determined to be 96.09%.
  • a volume flow of the sodium chloride solution in the anode half element of 1.2 m 3 / h was selected under the above-mentioned conditions.
  • the temperature of the sodium chloride solution at the inlet was 51 ° C and 85 ° C at the outlet.
  • the temperature difference between the inlet and outlet of an anode half element was thus 34 ° C.
  • the sodium hydroxide solution was fed to the cathode half-element at a temperature of 76 ° C. and removed again at 83 ° C.
  • the current yield was determined to be 96.11%.
  • a volume flow of the sodium chloride solution in the anode half element of 1.3 m 3 / h was selected under the above-mentioned conditions.
  • the temperature of the sodium chloride solution at the inlet was 55 ° C and 86 ° C at the outlet.
  • the temperature difference between the inlet and outlet of an anode half-element was thus 31 ° C.
  • the sodium hydroxide solution was fed to the cathode half-element at a temperature of 77 ° C. and removed again at 83 ° C.
  • the current yield was determined to be 95.63%.
  • Example 5 comparativative example
  • a volume flow of the sodium chloride solution in the anode half element of 1.3 m 3 / h was selected under the above-mentioned conditions.
  • the current density was 2.5 kA / m 2 .
  • the temperature of the sodium chloride solution at the inlet was 85 ° C
  • the current density here was 4 kA / m 2 .
  • a volume flow of the sodium chloride solution of an anode half element of 2.08 m 3 / h was selected.
  • the temperature of the sodium chloride solution at the inlet was 77 ° C, at the outlet 86 ° C.
  • the temperature difference between the inlet and outlet of an anode half element was 9 ° C.
  • the volume flow of the sodium hydroxide solution in the cathode half-element was 3 m 3 / h, corresponding to a speed of the sodium hydroxide solution in the gap between the ion exchange membrane and the gas diffusion electrode of 0.85 cm / s.
  • the sodium hydroxide solution was fed to the cathode half element at a temperature of 82 ° C. and removed again at 87 ° C.
  • the current yield was determined to be 96.1%. This shows that the method according to the invention has good results even at higher current densities

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

Die Erfindung beschreibt ein Verfahren zur Elektrolyse einer wässrigen Lösung von Alkalimetallchlorid, insbesondere Natriumchlorid, nach dem Membranverfahren mit einer wässrigen Lösung von Alkalimetallhydroxid, insbesondere Natriumhydroxid, als Katholyt, wobei die Temperatur der Alkalimetallchloridlösung in dem Anodenhalbelement und/oder der Volumenstrom der Alkalimetallchloridlösung in dem Anodenhalbelement so eingestellt werden, dass die Differenz zwischen der Temperatur der Alkalimetallhydroxidlösung am Eintritt in das Kathodenhalbelement und der Temperatur der Alkalimetallhydroxidlösung am Austritt aus dem Kathodenhalbelement nicht größer als 15 °C beträgt.

Description

Verfahren zur Elektrolyse einer wassrigen Lösung von Alkalimetallchlorid
Die Erfindung betrifft ein Verfahren zur Elektrolyse einer wassrigen Alkalimetall- chloridlösung.
Die Herstellung von Chlor und wässriger Alkalimetallhydroxidlösung, beispielsweise Natriumhydroxidlösung (nachfolgend auch als Natronlauge bezeichnet), durch Elektrolyse einer Alkalimetallchloridlösung, beispielsweise Natriumchloridlösung, mittels Gasdiffusionselektroden als Sauerstoffverzehrkathoden ist bekannt. Dabei setzt sich die Elektrolysezelle aus einem Anoden- und einem Kathodenhalbelement zusammen, die durch eine Kationenaustauschermembran getrennt sind. Das Kathodenhalbelement besteht aus einem Elektrolytraum, welcher von einem Gasraum durch eine Gasdiffusionselektrode getrennt ist. Der Elektrolytraum ist mit Alkali- metallhydroxidlösung gefüllt. Der Gasraum wird mit Sauerstoff, Luft oder mit sauerstoffangereicherter Luft bespeist. Im Anodenhalbelement befindet sich eine alkalimetallchloridhaltige Lösung.
Aus EP-A 1 067 215 ist ein Verfahren zur Elektrolyse einer wassrigen Lösung von . Alkalimetallchlorid unter Verwendung einer Gasdiffusionselektrode als Sauerstoffverzehrkathode bekannt, bei dem die Strömungsgeschwindigkeit der Alkalimetallhydroxidlösung im Elektrolytraum der Kathodenhalbzelle mindestens. 1 cm/s beträgt. Gemäß EP-A 1 067 215 bewirkt die hohe Strömungsgeschwindigkeit der Alkalimetallhydroxidlösung eine gute Durchmischung und damit eine Homogenisierung der Alkalimetallhydroxidkonzentration im Elektrolytraum. Bei der Alkalimetallchloridelektrolyse ohne Gasdiffusionselektrode als Sauerstoffverzehrkathode kann dagegen auf hohe Strömungsgeschwindigkeiten verzichtet werden, da der kathodisch gebildete Wasserstoff im Elektrolysebetrieb für feine ausreichende Durchmischung der Alkalimetallhydroxidlösung sorgt. Ein Nachteil des aus EP-A 1 067 215 bekannten Verfahrens ist, dass die Stromausbeute mit zunehmenden Strömungsgeschwindigkeiten der Alkalimetallhydroxidlösung abnimmt. Andererseits nimmt die Temperatur der Alkalimetallhydroxidlösung im Kathodenhalbelement mit abnehmender Strömungsgeschwindigkeit stärker zu.
Aufgabe der vorliegenden Erfindung ist es daher, ein einfach zu handhabendes Verfahren zur Elektrolyse wässriger Lösungen von Alkalimetallchlorid bereitzustellen, das mit möglichst niedrigen Strömungsgeschwindigkeiten arbeitet, ohne die Funk- tionsweise der Elektrolysezelle bzw. des Elektrolyseurs, insbesondere durch zu hohe
Temperaturen der Alkalimetallhydroxidlösung im Kathodenhalbelement, nachteilig zu beeinflussen.
Die Aufgabe wird erfindungsgemäß durch die Merkmale des Anspruchs 1 gelöst.
Gegenstand der Erfindung ist demnach ein Verfahren zur Elektrolyse einer wassrigen Lösung von Alkalimetallchlorid, insbesondere Natriumchlorid, nach dem Membranverfahren mit einer wassrigen Lösung von Alkalimetallhydroxid, insbesondere Natriumhydroxid, als Katholyt, wobei die Temperatur der Alkalimetallchloridlösung in dem Anodenhalbelement und/oder der Volumenstrom der Alkalimetallchloridlösung in dem Anodenhalbelement so eingestellt werden, dass die Differenz zwischen der Temperatur der Alkalimetallhydroxidlösung am Eintritt in das Kathodenhalbelement und der Temperatur der Alkalimetallhydroxidlösung am Austritt aus dem Kathodenhalbelement nicht größer als 15°C beträgt.
Überraschenderweise gelingt es nach dem erfindungsgemäßen Verfahren, mit Hilfe der Temperatur der Alkalimetallchloridlösung in dem Anodenhalbelement sowie, sofern ein Anolytkreislauf, d.h. ein Kreislauf der Alkalimetallchloridlösung, vorhanden ist, mit Hilfe des Volumenstromes der Alkalimetallchloridlösung die Tem- peratur der Alkalimetallhydroxidlösung im Kathodenhalbelement zu regeln. Eine der beiden Maßnahmen oder beide Maßnahmen zusammen erlauben es, einer Erwärmung der Alkalimetallhydroxidlösung, insbesondere auch bei geringen Strömungsgeschwindigkeiten der Alkalimetallhydroxidlösung von weniger als 1 cm/s, entgegenzuwirken. Eine Temperaturdifferenz größer als 15°C, vorzugsweise größer als 10°C, zwischen Eintritt und Austritt der Alkalimetallhydroxidlösung ist unter anderem deshalb nicht wünschenswert, da mit einem starken Temperaturgradienten zwischen Eintritt und Austritt ein starker Gradient in der Leitfähigkeit der Alkalimetallhydroxidlösung verbunden wäre.
Es gelingt also, die Alkalimetallhydroxidlösung im Kathodenhalbelement während des Elektrolyseprozesses entweder bei gegebenem Volumenstrom und gegebener
Auslauftemperatur der Alkalimetallchloridlösung im Anodenhalbelement mit Hilfe einer niedrigeren Einlauftemperatur der Alkalimetallchloridlösung oder bei gegebener Einlauftemperatur und gegebener Auslauftemperatur der Alkalimetallchloridlösung mit Hilfe eines höheren Volumenstroms der Alkalimetallchloridlösung so zu kühlen, dass die Alkalimetallhydroxidlösung im Kathodenhalbelement die erforderliche Temperaturdifferenz nicht überschreitet. Beide Maßnahmen können auch miteinander kombiniert werden. Der Volumenstrom der Alkalimetallchloridlösung wird mittels der Umpumpmenge der Alkalimetallchloridlösung geregelt.
Ein Vorteil des erfindungsgemäßen Verfahrens liegt darin, dass die Temperatur der
Alkalimetallhydroxidlösung nicht durch eine hohe Strömungsgeschwindigkeit von mindestens 1 cm/s im Kathodenhalbelement geregelt werden muss. Da mit höheren Strömungsgeschwindigkeiten die Stromausbeute abnimmt, ist es besonders vorteilhaft bei geringen Strömungsgeschwindigkeiten von kleiner als 1 cm/s zu arbeiten.
Alternativ könnte die Regelung der Temperatur der Alkalimetallhydroxidlösung auch mit Hilfe eines dem Kathodenhalbelement vorgeschalteten Wärmetauschers erfolgen. Dies ist jedoch bei dem erfindungsgemäßen Verfahren nicht erforderlich und erspart daher den zusätzlichen apparativen Aufwand, der durch den Einbau eines Wärme- tauschers hervorgerufen würde. In einer bevorzugten Ausfϊihrungsform des erfindungsgemäßen Verfahrens beträgt die Temperatur der Alkalimetallchloridlösung beim Austritt aus dem Anodenhalbelement und die Temperatur der Alkalimetallhydroxidlösung beim Austritt aus dem Kathodenhalbelement 80°C bis 100°C, vorzugsweise 85°C bis 95°C.
Bevorzugt ist weiterhin eine Ausführungsform, bei der die Strömungsgeschwindigkeit der Alkalimetallhydroxidlösung in dem Kathodenhalbelement weniger als 1 cm/s beträgt.
Vorzugsweise wird das erfindungsgemäße Verfahren unter Einsatz einer Gasdiffusionselektrode als Kathode durchgeführt. Die Alkalimetallchloridlösung als Anolyt und die Alkalimetallhydroxidlösung als Katholyt leiten sich von demselben Alkalimetall, z.B. Natrium oder Kalium, ab. Vorzugsweise handelt es sich bei der Alkalimetallchloridlösung um eine Natriumchloridlösung und bei der Alkalimetall- hydroxidlösung um eine Natriumhydroxidlösung.
Der Volumenstrom der Alkalimetallchloridlösung im Anodenhalbelement ist von der Stromdichte abhängig, mit der der Elektrolyseur betrieben wird. Bei einer Stromdichte von 2,5 kA/m2 sollte der Volumenstrom je Element von 0,02 bis 0,1 m3/h betragen. Bei einer Stromdichte von 4 kA m2 von 0,11 bis 0,25 m3/h.
Das erfindungsgemäße Verfahren kann mit Stromdichten im Bereich von 2 bis 8 kA/m2 betrieben werden.
Beispiele
Die Elektrolyse einer wassrigen Alkalimetallchloridlösung entsprechend der nachfolgend beschriebenen Beispiele wurde mit einem Elektrolyseur bestehend aus 15 Elektrolysezellen durchgeführt. Als Kathoden wurden in den jeweiligen
Elektrolysezellen Gasdiffusionselektroden verwendet, wobei der Abstand von der Gasdiffusionselektrode zu der Ionenaustauschermembran 3 mm und die Länge des Spaltes zwischen Ionenaustauschermembran und Gasdiffusionselektrode 206 cm betrug. Als Anoden wurden Titan-Anoden eingesetzt, welche mit Ruthenium- Iridium-Oxiden beschichtet war. Die Fläche der Anoden betrug 2,5 m2. Als
Ionenaustauschermembran wurde eine Nafion® NX 981 der Firma DuPont verwendet. Die Konzentration der Natriumchloridlösung (NaCl) betrug beim Austritt aus dem Anodenhalbelement 210 g/1. Die Konzentration der Natronlauge (NaOH) im Kathodenhalbelement betrug zwischen 30 und 33 Gew.-%. Falls in den nach- folgenden Beispielen nicht explizit angegeben, betrug die Stromdichte 2,45 kA/m2 und der Volumenstrom der Natronlauge 3 m3/h. Letzterer entspricht einer Geschwindigkeit der Natronlauge im Spalt zwischen Ionenaustauschermembran und Gasdiffusionselektrode von 0,85 cm/s.
Die Ergebnisse der Beispiele sind in Tabelle 1, 2 und 3 zusammengefasst.
Beispiel 1
Unter den oben genannten Bedingungen wurde ein Volumenstrom der Natrium- chloridlösung im Anodenhalbelement von 1,0 m3/h gewählt. Die Temperatur der
Natriumchloridlösung am Einlauf betrug 50°C, am Auslauf 85°C. Die Temperaturdifferenz zwischen Einlauf und Auslauf eines Anodenhalbelements betrug damit 35°C. Die Natronlauge wurde dem Kathodenhalbelement mit einer Temperatur von 80°C zugeführt und mit 85°C wieder abgeführt. Die Stromausbeute wurde mit 96,20 % bestimmt. Beispiel 2
Unter den oben genannten Bedingungen wurde ein Volumenstrom der Natriumchloridlösung im Anodenhalbelement von 1,1 m3/h gewählt. Die Temperatur der Natriumchloridlösung am Einlauf betrug 50°C, am Auslauf 86°C. Die Temperaturdifferenz zwischen Einlauf und Auslauf eines Anodenhalbelements betrug damit 36°C. Die Natronlauge wurde dem Kathodenhalbelement mit einer Temperatur von 79°C zugeführt und mit 85 °C wieder abgeführt. Die Stromausbeute wurde mit 96,09 % bestimmt.
Beispiel 3
Unter den oben genannten Bedingungen wurde ein Volumenstrom der Natriumchloridlösung im Anodenhalbelement von 1,2 m3/h gewählt. Die Temperatur der Natriumchloridlösung am Einlauf betrug 51°C, am Auslauf 85°C. Die Temperaturdifferenz zwischen Einlauf und Auslauf eines Anodenhalbelements betrug damit 34°C. Die Natronlauge wurde dem Kathodenhalbelement mit einer Temperatur von 76°C zugeführt und mit 83°C wieder abgeführt. Die Stromausbeute wurde mit 96,11 % bestimmt.
Beispiel 4
Unter den oben genannten Bedingungen wurde ein Volumenstrom der Natriumchloridlösung im Anodenhalbelement von 1,3 m3/h gewählt. Die Temperatur der Natriumchloridlösung am Einlauf betrug 55°C, am Auslauf 86°C. Die Temperaturdifferenz zwischen Einlauf und Auslauf eines Anodenhalbelements betrug damit 31°C. Die Natronlauge wurde dem Kathodenhalbelement mit einer Temperatur von 77°C zugeführt und mit 83°C wieder abgeführt. Die Stromausbeute wurde mit 95,63 % bestimmt. Beispiel 5 (Vergleichsbeispiel)
Unter den oben genannten Bedingungen wurde ein Volumenstrom der Natriumchloridlösung im Anodenhalbelement von 1,3 m3/h gewählt. Die Stromdichte betrug 2,5 kA/m2. Die Temperatur der Natriumchloridlösung am Einlauf betrug 85°C, am
Auslauf 86°C. Die Temperaturdifferenz zwischen Einlauf und Auslauf eines Anodenhalbelements betrug damit 1°C. Der Volumenstrom der Natronlauge im Kathodenhalbelement betrug 10,5 m3/h, entsprechend einer Geschwindigkeit der Natronlauge im Spalt zwischen Ionenaustauschermembran und Gasdiffüsions- elektrode von 2,95 cm/s. Die Natronlauge wurde dem Kathodenhalbelement mit einer Temperatur von 80°C zugeführt und mit 86°C wieder abgeführt. Die Stromausbeute wurde mit 95,4 % bestimmt.
Beispiel 6
Die Stromdichte betrug hier 4 kA/m2. Es wurde ein Volumenstrom der Natriumchloridlösung eines Anodenhalbelements von 2,08 m3/h gewählt. Die Temperatur der Natriumchloridlösung am Einlauf betrug 77°C, am Auslauf 86°C. Die Temperaturdifferenz zwischen Einlauf und Auslauf eines Anodenhalbelements betrug damit 9°C. Der Volumenstrom der Natronlauge im Kathodenhalbelement betrug 3 m3/h, entsprechend einer Geschwindigkeit der Natronlauge im Spalt zwischen Ionenaustauschermembran und Gasdiffusionselektrode von 0,85 cm/s. Die Natronlauge wurde dem Kathodenhalbelement mit einer Temperatur von 82°C zugeführt und mit 87°C wieder abgeführt. Die Stromausbeute wurde mit 96,1 % bestimmt. Dies zeigt, dass das erfindungsgemäße Verfahren auch bei höheren Stromdichten mit guten
Stromausbeuten betrieben werden kann. Tabelle 1: Messwerte im Anodenhalbelement
Tabelle 2: Messwerte im Kathodenhalbelement
Tabelle 3: Stromdichte und Stromausbeute

Claims

Patentansprüche
1. Verfahren zur Elektrolyse einer wassrigen Lösung von Alkalimetallchlorid, insbesondere Natriumchlorid, nach dem Membranverfahren mit einer wässri- gen Lösung von Alkalimetallhydroxid, insbesondere Natriumhydroxid, als
Katholyt, dadurch gekennzeichnet, dass die Temperatur der Alkalimetallchloridlösung in dem Anodenhalbelement und/oder der Volumenstrom der Alkalimetallchloridlösung in dem Anodenhalbelement so eingestellt werden, dass die Differenz zwischen der Temperatur der Alkalimetallhydroxidlösung am Eintritt in das Kathodenhalbelement und der Temperatur der Alkalimetallhydroxidlösung am Austritt aus dem Kathodenhalbelement nicht größer als 15°C beträgt.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Temperatur der Alkalimetallchloridlösung beim Austritt aus dem Anodenhalbelement und die Temperatur der Alkalimetallhydroxidlösung beim Austritt aus dem Kathodenhalbelement 80°C bis 100°C, vorzugsweise 85°C bis 95°C, beträgt.
3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass die Strömungsgeschwindigkeit der Alkalimetallhydroxidlösung in dem
Kathodenhalbelement weniger als 1 cm/s beträgt.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass . als Kathode eine Gasdiffusionselektrode eingesetzt wird.
EP02798315.4A 2001-12-05 2002-11-22 Verfahren zur elektrolyse einer wässrigen lösung von alkalimetallchlorid Expired - Lifetime EP1453990B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10159708 2001-12-05
DE10159708A DE10159708A1 (de) 2001-12-05 2001-12-05 Alkalichlorid-Elektrolysezelle mit Gasdiffusionselektroden
PCT/EP2002/013119 WO2003048419A2 (de) 2001-12-05 2002-11-22 Verfahren zur elektrolyse einer wässrigen lösung von alkalimetallchlorid

Publications (2)

Publication Number Publication Date
EP1453990A2 true EP1453990A2 (de) 2004-09-08
EP1453990B1 EP1453990B1 (de) 2014-01-01

Family

ID=7708113

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02798315.4A Expired - Lifetime EP1453990B1 (de) 2001-12-05 2002-11-22 Verfahren zur elektrolyse einer wässrigen lösung von alkalimetallchlorid

Country Status (12)

Country Link
US (1) US6890418B2 (de)
EP (1) EP1453990B1 (de)
JP (1) JP4498740B2 (de)
KR (1) KR20050044700A (de)
CN (1) CN1327033C (de)
AR (1) AR037637A1 (de)
AU (1) AU2002363856A1 (de)
DE (1) DE10159708A1 (de)
ES (1) ES2448399T3 (de)
HU (1) HUP0600453A2 (de)
TW (1) TW200304502A (de)
WO (1) WO2003048419A2 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005024068A (ja) * 2003-07-02 2005-01-27 Toyo Tanso Kk ハロゲンガス又はハロゲン含有ガスの供給装置
DE10335184A1 (de) * 2003-07-30 2005-03-03 Bayer Materialscience Ag Elektrochemische Zelle
CN102459708A (zh) * 2009-05-26 2012-05-16 氯工程公司 安装有气体扩散电极的离子交换膜电解槽
US8940139B2 (en) 2009-05-26 2015-01-27 Chlorine Engineers Corp., Ltd. Gas diffusion electrode equipped ion exchange membrane electrolyzer
CN108419139A (zh) * 2018-02-05 2018-08-17 李秀荣 互联网大数据弹幕处理系统
KR20220017587A (ko) 2020-08-05 2022-02-14 한국과학기술연구원 반응물 유체를 재순환할 수 있는 전기화학장치

Family Cites Families (96)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3868956A (en) * 1972-06-05 1975-03-04 Ralph J Alfidi Vessel implantable appliance and method of implanting it
US3890977A (en) * 1974-03-01 1975-06-24 Bruce C Wilson Kinetic memory electrodes, catheters and cannulae
GB1600000A (en) * 1977-01-24 1981-10-14 Raychem Ltd Memory metal member
JPS5393199A (en) * 1977-01-27 1978-08-15 Tokuyama Soda Co Ltd Electrolytic method
JPS5946316B2 (ja) * 1978-12-28 1984-11-12 鐘淵化学工業株式会社 電解法
JPS5641392A (en) * 1979-09-11 1981-04-18 Toyo Soda Mfg Co Ltd Electrolytic method of alkali chloride aqueous solution
SE444640B (sv) * 1980-08-28 1986-04-28 Bergentz Sven Erik I djur eller menniska implanterbar kerlprotes samt sett for dess framstellning
DE3249027C2 (de) * 1981-09-16 1992-02-20 Medinvent Sa Chirurgisches Instrument
US4425908A (en) * 1981-10-22 1984-01-17 Beth Israel Hospital Blood clot filter
US4445896A (en) * 1982-03-18 1984-05-01 Cook, Inc. Catheter plug
SE445884B (sv) * 1982-04-30 1986-07-28 Medinvent Sa Anordning for implantation av en rorformig protes
EP0110425A3 (de) * 1982-12-06 1985-07-31 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Elektrolytisches Verfahren für eine wässrige Alkalimetall-Halogenidlösung und Elektrolysezelle dafür
US4494531A (en) * 1982-12-06 1985-01-22 Cook, Incorporated Expandable blood clot filter
US4512338A (en) * 1983-01-25 1985-04-23 Balko Alexander B Process for restoring patency to body vessels
US4503569A (en) * 1983-03-03 1985-03-12 Dotter Charles T Transluminally placed expandable graft prosthesis
US4719916A (en) * 1983-10-03 1988-01-19 Biagio Ravo Intraintestinal bypass tube
US4572186A (en) * 1983-12-07 1986-02-25 Cordis Corporation Vessel dilation
US4636313A (en) * 1984-02-03 1987-01-13 Vaillancourt Vincent L Flexible filter disposed within flexible conductor
US4657530A (en) * 1984-04-09 1987-04-14 Henry Buchwald Compression pump-catheter
US4687468A (en) * 1984-10-01 1987-08-18 Cook, Incorporated Implantable insulin administration device
US4580568A (en) * 1984-10-01 1986-04-08 Cook, Incorporated Percutaneous endovascular stent and method for insertion thereof
ES8705239A1 (es) * 1984-12-05 1987-05-01 Medinvent Sa Un dispositivo para implantar,mediante insercion en un lugarde dificil acceso, una protesis sustancialmente tubular y radialmente expandible
US4699611A (en) * 1985-04-19 1987-10-13 C. R. Bard, Inc. Biliary stent introducer
DE8513185U1 (de) * 1985-05-04 1985-07-04 Koss, Walter, 6222 Geisenheim Endotubus
US4733665C2 (en) * 1985-11-07 2002-01-29 Expandable Grafts Partnership Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft
DE3640745A1 (de) * 1985-11-30 1987-06-04 Ernst Peter Prof Dr M Strecker Katheter zum herstellen oder erweitern von verbindungen zu oder zwischen koerperhohlraeumen
US4681110A (en) * 1985-12-02 1987-07-21 Wiktor Dominik M Catheter arrangement having a blood vessel liner, and method of using it
US4665918A (en) * 1986-01-06 1987-05-19 Garza Gilbert A Prosthesis system and method
US4649922A (en) * 1986-01-23 1987-03-17 Wiktor Donimik M Catheter arrangement having a variable diameter tip and spring prosthesis
EP0556940A1 (de) * 1986-02-24 1993-08-25 Robert E. Fischell Intravaskulärer Stent
US4878906A (en) * 1986-03-25 1989-11-07 Servetus Partnership Endoprosthesis for repairing a damaged vessel
US4723549A (en) * 1986-09-18 1988-02-09 Wholey Mark H Method and apparatus for dilating blood vessels
SE455834B (sv) * 1986-10-31 1988-08-15 Medinvent Sa Anordning for transluminal implantation av en i huvudsak rorformig, radiellt expanderbar protes
US4762128A (en) * 1986-12-09 1988-08-09 Advanced Surgical Intervention, Inc. Method and apparatus for treating hypertrophy of the prostate gland
US4800882A (en) * 1987-03-13 1989-01-31 Cook Incorporated Endovascular stent and delivery system
US4907336A (en) * 1987-03-13 1990-03-13 Cook Incorporated Method of making an endovascular stent and delivery system
US5041126A (en) * 1987-03-13 1991-08-20 Cook Incorporated Endovascular stent and delivery system
US4794928A (en) * 1987-06-10 1989-01-03 Kletschka Harold D Angioplasty device and method of using the same
US5133732A (en) * 1987-10-19 1992-07-28 Medtronic, Inc. Intravascular stent
US4820298A (en) * 1987-11-20 1989-04-11 Leveen Eric G Internal vascular prosthesis
US4877030A (en) * 1988-02-02 1989-10-31 Andreas Beck Device for the widening of blood vessels
US4830003A (en) * 1988-06-17 1989-05-16 Wolff Rodney G Compressive stent and delivery system
US4921484A (en) * 1988-07-25 1990-05-01 Cordis Corporation Mesh balloon catheter device
US5019090A (en) * 1988-09-01 1991-05-28 Corvita Corporation Radially expandable endoprosthesis and the like
US4913141A (en) * 1988-10-25 1990-04-03 Cordis Corporation Apparatus and method for placement of a stent within a subject vessel
US4856516A (en) * 1989-01-09 1989-08-15 Cordis Corporation Endovascular stent apparatus and method
US4955899A (en) * 1989-05-26 1990-09-11 Impra, Inc. Longitudinally compliant vascular graft
US5015253A (en) * 1989-06-15 1991-05-14 Cordis Corporation Non-woven endoprosthesis
DE9010130U1 (de) * 1989-07-13 1990-09-13 American Medical Systems, Inc., Minnetonka, Minn., Us
US5674278A (en) * 1989-08-24 1997-10-07 Arterial Vascular Engineering, Inc. Endovascular support device
US5035706A (en) * 1989-10-17 1991-07-30 Cook Incorporated Percutaneous stent and method for retrieval thereof
US5089006A (en) * 1989-11-29 1992-02-18 Stiles Frank B Biological duct liner and installation catheter
US5108416A (en) * 1990-02-13 1992-04-28 C. R. Bard, Inc. Stent introducer system
US5057092A (en) * 1990-04-04 1991-10-15 Webster Wilton W Jr Braided catheter with low modulus warp
US5221261A (en) * 1990-04-12 1993-06-22 Schneider (Usa) Inc. Radially expandable fixation member
US5158548A (en) * 1990-04-25 1992-10-27 Advanced Cardiovascular Systems, Inc. Method and system for stent delivery
US5123917A (en) * 1990-04-27 1992-06-23 Lee Peter Y Expandable intraluminal vascular graft
US5078736A (en) * 1990-05-04 1992-01-07 Interventional Thermodynamics, Inc. Method and apparatus for maintaining patency in the body passages
ATE135555T1 (de) * 1990-10-09 1996-04-15 Cook Inc Perkutane stentanordnung
JPH0717314Y2 (ja) * 1990-10-18 1995-04-26 ソン ホーヨン 自己膨張脈管内ステント
US5316543A (en) * 1990-11-27 1994-05-31 Cook Incorporated Medical apparatus and methods for treating sliding hiatal hernias
US5112900A (en) * 1990-11-28 1992-05-12 Tactyl Technologies, Inc. Elastomeric triblock copolymer compositions and articles made therewith
US5135536A (en) * 1991-02-05 1992-08-04 Cordis Corporation Endovascular stent and method
US5316023A (en) * 1992-01-08 1994-05-31 Expandable Grafts Partnership Method for bilateral intra-aortic bypass
US5176626A (en) * 1992-01-15 1993-01-05 Wilson-Cook Medical, Inc. Indwelling stent
US5683448A (en) * 1992-02-21 1997-11-04 Boston Scientific Technology, Inc. Intraluminal stent and graft
US5405377A (en) * 1992-02-21 1995-04-11 Endotech Ltd. Intraluminal stent
FR2688401B1 (fr) * 1992-03-12 1998-02-27 Thierry Richard Endoprothese expansible pour organe tubulaire humain ou animal, et outil de mise en place.
US5282823A (en) * 1992-03-19 1994-02-01 Medtronic, Inc. Intravascular radially expandable stent
CA2134090C (en) * 1992-05-08 1997-03-25 Liann M. Johnson Esophageal stent and delivery tool
US5817102A (en) * 1992-05-08 1998-10-06 Schneider (Usa) Inc. Apparatus for delivering and deploying a stent
US5507771A (en) * 1992-06-15 1996-04-16 Cook Incorporated Stent assembly
CA2132011C (en) * 1993-01-14 1999-08-10 Peter J. Schmitt Radially expandable tubular prosthesis
IT1263899B (it) * 1993-02-12 1996-09-05 Permelec Spa Nora Migliorato processo di elettrolisi cloro-soda a diaframma e relativa cella
US5334210A (en) * 1993-04-09 1994-08-02 Cook Incorporated Vascular occlusion assembly
DE69317548T2 (de) * 1993-04-23 1998-08-13 Schneider Europ Gmbh Stent mit einer Beschichtung aus elastischem Material und Verfahren zum Anbringen der Beschichtung auf dem Stent
KR970004845Y1 (ko) * 1993-09-27 1997-05-21 주식회사 수호메디테크 내강확장용 의료용구
EP0676937B1 (de) * 1993-09-30 2004-03-17 Endogad Research PTY Limited Intraluminales transplantat
DE69419877T2 (de) * 1993-11-04 1999-12-16 Bard Inc C R Ortsfeste Gefässprothese
US5405316A (en) * 1993-11-17 1995-04-11 Magram; Gary Cerebrospinal fluid shunt
DE4418336A1 (de) * 1994-05-26 1995-11-30 Angiomed Ag Stent
AU719980B2 (en) * 1995-02-22 2000-05-18 Menlo Care, Inc. Covered expanding mesh stent
BE1009278A3 (fr) * 1995-04-12 1997-01-07 Corvita Europ Tuteur auto-expansible pour dispositif medical a introduire dans une cavite d'un corps, et dispositif medical muni d'un tel tuteur.
US5667523A (en) * 1995-04-28 1997-09-16 Impra, Inc. Dual supported intraluminal graft
US5746766A (en) * 1995-05-09 1998-05-05 Edoga; John K. Surgical stent
US5647834A (en) * 1995-06-30 1997-07-15 Ron; Samuel Speech-based biofeedback method and system
US5788626A (en) * 1995-11-21 1998-08-04 Schneider (Usa) Inc Method of making a stent-graft covered with expanded polytetrafluoroethylene
EP0775471B1 (de) * 1995-11-27 2002-05-29 Schneider (Europe) GmbH Stent zur Anwendung in einem körperlichen Durchgang
US5824042A (en) * 1996-04-05 1998-10-20 Medtronic, Inc. Endoluminal prostheses having position indicating markers
US6010529A (en) * 1996-12-03 2000-01-04 Atrium Medical Corporation Expandable shielded vessel support
US5733330A (en) * 1997-01-13 1998-03-31 Advanced Cardiovascular Systems, Inc. Balloon-expandable, crush-resistant locking stent
US5876450A (en) * 1997-05-09 1999-03-02 Johlin, Jr.; Frederick C. Stent for draining the pancreatic and biliary ducts and instrumentation for the placement thereof
US6302917B1 (en) * 1998-08-31 2001-10-16 Wilson-Cook Medical Incorporated Anti-reflux esophageal prosthesis
JP3112265B1 (ja) * 1999-06-17 2000-11-27 鐘淵化学工業株式会社 塩化アルカリ電解方法
JP3437127B2 (ja) * 1999-07-07 2003-08-18 東亞合成株式会社 塩化アルカリ電解槽の運転方法
EP1120481B1 (de) * 1999-07-09 2016-03-09 Toagosei Co., Ltd. Elektrolyseverfahren für alkalichloride

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03048419A3 *

Also Published As

Publication number Publication date
CN1599808A (zh) 2005-03-23
TW200304502A (en) 2003-10-01
DE10159708A1 (de) 2003-06-18
JP2005511897A (ja) 2005-04-28
US20030121795A1 (en) 2003-07-03
HUP0600453A2 (en) 2007-05-02
EP1453990B1 (de) 2014-01-01
JP4498740B2 (ja) 2010-07-07
WO2003048419A3 (de) 2003-10-02
AR037637A1 (es) 2004-11-17
ES2448399T3 (es) 2014-03-13
WO2003048419A2 (de) 2003-06-12
AU2002363856A1 (en) 2003-06-17
CN1327033C (zh) 2007-07-18
KR20050044700A (ko) 2005-05-12
US6890418B2 (en) 2005-05-10
AU2002363856A8 (en) 2003-06-17

Similar Documents

Publication Publication Date Title
DE19940069A1 (de) Verfahren zur elektrochemischen Herstellung eines Alkalimetalls aus wäßriger Lösung
EP0532188A2 (de) Elektrochemisches Verfahren
EP0627020B1 (de) Elektrochemisches verfahren zur herstellung von glyoxylsäure
DE10030093C1 (de) Verfahren und Vorrichtung zur Herstellung von Metallhydroxiden oder basischen Metallcarbonaten
DE10101494A1 (de) Tetramethylammoniumhydroxid-Synthese
DE2646825C2 (de)
EP1453990B1 (de) Verfahren zur elektrolyse einer wässrigen lösung von alkalimetallchlorid
EP0146771B1 (de) Verfahren zur Herstellung von Alkalialkoholaten
EP0051764B1 (de) Salzsäure-Elektrolysezelle zur Herstellung von Chlor und Wasserstoff
DE3116391C2 (de)
EP0234256B1 (de) Verfahren zur Durchführung der HCI-Membranelektrolyse
DE2240731A1 (de) Verfahren zur herstellung von glyoxylsaeure
DE2124045C3 (de) Verfahren zur elektrolytischen Her stellung von reinem Chlor, Wasserstoff und reinen konzentrierten Alkaliphosphat lösungen und Elektrolyslerzelle zur Durch führung des Verfahrens
DE2819964C2 (de) Metallisches Diaphragma
EP0008470B1 (de) Verfahren zur Elektrolyse wässriger Alkalihalogenid-Lösungen
DE69838632T2 (de) Vefahren zur Elektrolyse einer Salzlösung
DE2952646A1 (de) Verfahren zur elektrolyse einer waessrigen alkalimetallchloridloesung
DD281095A7 (de) Verfahren zur herstellung von peroxodischwefelsaeure und peroxodisulfaten
US5256261A (en) Membrane cell operation
DE19532784C2 (de) Elektrolyseverfahren zum Regenerieren verbrauchter Eisen-III-chlorid- oder Eisen-III-sulfat-Ätzlösungen
WO2003035938A2 (de) Verfahren zur elektrolyse von wässrigen lösungen von chlorwasserstoff
DE2434921B2 (de) Elektrolysezelle und Verfahren zur Elektrolyse ionisierbarer chemischer Verbindungen
DE19905672C2 (de) Verfahren zur elektrolytischen Herstellung von Amalgam aus Metallsalz
DE2856276C2 (de) Verfahren zur Stromausbeutesteigerung einer Schmelzflußelektrolyse mit anodischer Sauerstoffentwicklung
DE3432684C2 (de)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040705

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17Q First examination report despatched

Effective date: 20130122

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BAYER INTELLECTUAL PROPERTY GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20130930

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50215872

Country of ref document: DE

Owner name: COVESTRO DEUTSCHLAND AG, DE

Free format text: FORMER OWNER: BAYER MATERIALSCIENCE AKTIENGESELLSCHAFT, 51373 LEVERKUSEN, DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 647661

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 50215872

Country of ref document: DE

Effective date: 20140220

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2448399

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20140313

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140502

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140101

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140101

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 50215872

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140101

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140101

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140101

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140101

26N No opposition filed

Effective date: 20141002

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 50215872

Country of ref document: DE

Effective date: 20141002

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20141024

Year of fee payment: 13

Ref country code: SE

Payment date: 20141111

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20141108

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141122

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140101

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141122

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 647661

Country of ref document: AT

Kind code of ref document: T

Effective date: 20141122

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50215872

Country of ref document: DE

Owner name: COVESTRO DEUTSCHLAND AG, DE

Free format text: FORMER OWNER: BAYER INTELLECTUAL PROPERTY GMBH, 40789 MONHEIM, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141122

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20151028

Year of fee payment: 14

Ref country code: FR

Payment date: 20151023

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140402

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20151201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151201

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20160922 AND 20160928

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20161024

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20171122

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161123

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20171130

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20181119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20181122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181122

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20211019

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20211027

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50215872

Country of ref document: DE