WO2003000951A1 - Kornorientiertes elektroblech mit einer elektrisch isolierenden beschichtung - Google Patents

Kornorientiertes elektroblech mit einer elektrisch isolierenden beschichtung Download PDF

Info

Publication number
WO2003000951A1
WO2003000951A1 PCT/EP2002/006869 EP0206869W WO03000951A1 WO 2003000951 A1 WO2003000951 A1 WO 2003000951A1 EP 0206869 W EP0206869 W EP 0206869W WO 03000951 A1 WO03000951 A1 WO 03000951A1
Authority
WO
WIPO (PCT)
Prior art keywords
grain
oriented electrical
electrically insulating
coating
electrical sheet
Prior art date
Application number
PCT/EP2002/006869
Other languages
English (en)
French (fr)
Inventor
Bernd Schuhmacher
Klaus Günther
Hermann Hingmann
Klaus Bewilogua
Claus-Peter Klages
Heinz Dimigen
Thomas Jung
Original Assignee
Thyssenkrupp Electrical Steel Ebg Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thyssenkrupp Electrical Steel Ebg Gmbh filed Critical Thyssenkrupp Electrical Steel Ebg Gmbh
Priority to KR1020037016778A priority Critical patent/KR100884352B1/ko
Priority to US10/481,526 priority patent/US7169479B2/en
Priority to JP2003507331A priority patent/JP2005500435A/ja
Priority to BR0210576-4A priority patent/BR0210576A/pt
Priority to EP20020753070 priority patent/EP1397527B1/de
Priority to DE50201414T priority patent/DE50201414D1/de
Priority to SI200230066T priority patent/SI1397527T1/xx
Publication of WO2003000951A1 publication Critical patent/WO2003000951A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1288Application of a tension-inducing coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • C23C16/0281Deposition of sub-layers, e.g. to promote the adhesion of the main coating of metallic sub-layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • C23C16/545Apparatus specially adapted for continuous coating for coating elongated substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • H01F1/18Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets with insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12625Free carbon containing component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/30Self-sustaining carbon mass or layer with impregnant or other layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal

Definitions

  • the invention relates to a new grain-oriented electrical sheet with an electrically insulating coating, which is applied after the final annealing in order to use the grain-oriented electrical sheet, for. B. in transformers to ensure the electrical insulation of the individual sheet layers.
  • the invention further relates to a method for producing the grain-oriented electrical sheet with an electrically insulating coating.
  • Hysteresis loss A common measure for this is the alloying of silicon, which increases the specific electrical resistance and thus reduces the eddy current losses.
  • the crystal orientation ⁇ ll ⁇ ⁇ 001> is adjusted and tightened by modifications of the chemical composition and the cold rolling and annealing processes. The loss is further improved by reducing the sheet thickness.
  • the improvement in the purity of the steel avoids particles in the finished product which, as disruptive adhesion points, hinder the movement of the Bloch wall when it is remagnetized.
  • a disadvantage of this manufacturing method for particularly low-loss electrical sheet types is the costly combination of measures for forming an insulation layer and further refining the domain.
  • a further disadvantage is that the insulation layer is usually built up in a sequence of complicated, carefully coordinated process steps, as a result of which the scope is extremely narrowed in order to be able to carry out further parameter variations for economic and qualitative process optimization.
  • the tension-exerting layer which has been customary to date, is built up by subjecting the strip, which has been cold-rolled to its final thickness, to annealing for primary recrystallization and decarburization, the surface being oxidized in a targeted manner, then coated with MgO and suitable additives as an adhesive protection and dried, and then coiled and re-annealed for the purpose of secondary recrystallization and subsequent cleaning of the steel from precipitate-forming elements.
  • the anti-adhesive coating reacts with the oxides on the strip surface and forms a forsterite layer (Mg 2 Si0 4 ), which is also referred to as a "glass film".
  • This film merges with the roots in the base material, which is favorable for its adhesion in a further process step, as is known, for example, from DE 22 47 269 C3, solutions based on magnesium phosphate or aluminum phosphate or mixtures of the two are applied with various additives, for example chromium compounds and Si oxide, and baked at temperatures above 350.degree
  • the tensile stress transferred to the base material by the finished insulation layer can be up to about 5 MPa, and the improvements in the loss of magnetic reversal achieved in this way are of the order of magnitude of about 5%.
  • the magnetostriction decreases.
  • the achievable loss improvement is limited by the fact that oxidation processes are indispensable for the build-up of the layer, in which non-ferromagnetic particles and inhomogeneities form on the surface or in the surface zones, which impair the mobility of the Bloch walls during magnetization and thus cause increased energy losses.
  • the invention has for its object to produce a highly permeable grain-oriented electrical sheet, which is suitable as a core material for particularly low-noise and low-loss transformers.
  • the object is achieved by a grain-oriented electrical sheet according to claim 1 with an electrically insulating coating made of an amorphous carbon-hydrogen network.
  • Grain-oriented electrical sheet according to the invention is provided with a coating which exerts such a high tensile stress on the sheet and improves the magnetic loss to such an extent that additional measures for refining the magnetic domain structure become superfluous.
  • the coating formed according to the invention from an amorphous carbon-hydrogen network adheres securely to the strip surface and has a high surface insulation resistance.
  • Amorphous carbon-hydrogen networks also known as a: C-H or diamond-like carbon (DLC) are known to be very hard, chemically inert and adhere well to steel alloys, as described, for example, in EP 0 600 533 B1. These properties are so far, such. B. described in DE 198 34 968 AI or WO 99/47346 AI, used for coatings on tools that have to meet special requirements with regard to their adhesive effect. The same suitability is in the foreground in the prior art known from DE 198 25 860 AI in the coating of piston rings.
  • an electrical sheet provided with a coating of an amorphous carbon-hydrogen network in accordance with the invention has significantly improved magnetic properties, such as reduced magnetic loss and higher magnetic polarization. This is probably due to the observed refinement of the magnetic domain structure, which makes additional treatment of the electrical sheet for domain refinement unnecessary.
  • the magnetic properties are insensitive to compressive stresses, such as can occur in transformer cores. Another advantage is the reduced magnetostriction, which allows the construction of low-noise transformers.
  • the layer system according to the invention is thinner than conventional layer systems, which allows a higher stacking factor in the transformer core.
  • the electrically insulating coating of the grain-oriented electrical sheet can be doped with one or more of the elements Si, O, N, B or F, preferably in each case in the amount of 1 to 20 atomic percent.
  • the electrically insulating coating exerts a tensile stress of at least 8 MPa on the sheet metal substrate.
  • adhesion-improving intermediate layer can consist, for example, of an Si-C-O-H network or an Si-C-H network.
  • Titanium or titanium-containing compounds in particular titanium nitride, can be considered as further adhesion-improving intermediate layers, as a result of which the tensile stress on the sheet metal substrate can be further increased.
  • the coating of an electrical sheet according to the invention preferably has a surface insulation resistance of at least 10 ohm * cm 2 , which ensures the required insulation effect.
  • Grain-oriented electrical sheet according to the invention has a loss of magnetization (with a frequency of 50 Hertz and a polarization of 1.7 Tesla) of P 1/7 ⁇ 0.90 W / kg, with a sheet thickness of 0.30 mm, with a sheet thickness of 0.27 mm from P if7 ⁇ 0.80 W / kg and with a sheet thickness of 0.23 mm from P ⁇ , 7 ⁇ 0.70 W / kg.
  • the sheet metal substrate contains 2.5% by weight to 4.0% by weight of silicon, up to 0.20% by weight of manganese, up to 0.50% by weight of copper, up to 0.065% by weight. -% aluminum, up to 0.0150% by weight nitrogen and at least 90% by weight iron.
  • one or more of the elements Cr, Ni, Mo, P, As, Sn, Sb, Se, Te, B or Bi with mass contents of up to 0.2% by weight can also be contained.
  • the sheet metal substrate is produced from a molten steel, as is typically used for the production of grain-oriented electrical sheets, which contains 2.5% by weight to 4.0% by weight of Si, up to 0.100% by weight of C, up to 0%. 20% by weight Mn, up to 0.50% by weight Cu, up to 0.035% by weight S, up to 0.065% by weight Al, up to 0.0150% by weight N, balance mainly Fe and usual impurities as well as the aforementioned additional alloying elements Cr, Ni, Mo, P, As, Sn, Sb, Se, Te, B or Bi with mass contents each up to 0.2% by weight, by strip casting or by continuous casting of slabs from 20 to 300 mm thick.
  • Another preferred variant of the production of the sheet metal substrate is annealing
  • the annealing for cleaning the steel is preferably carried out as a continuous annealing in the continuous belt furnace with a maximum duration of 15 minutes.
  • These process steps achieve the best result in terms of process optimization if the surface coatings according to the invention are carried out directly in line with the continuous annealing furnace.
  • the sheet metal substrate used can also be favorably influenced by being exposed to annealing conditions that emit nitrogen between the first cold rolling and the secondary recrystallization. This can be done by adding NH 3 to the annealing gas.
  • the tape can be embroidered on using suitable nitrogen-donating additives for protection against sticking.
  • a suitable method for producing grain-oriented electrical sheet according to the invention with an electrically insulating coating from an amorphous carbon-hydrogen network is that the strip-shaped sheet metal substrate is coated with the electrically insulating coating in a continuous strip pass process.
  • the adhesion-improving intermediate layers are also applied in a continuous belt pass process which is preferably connected upstream of the pass coating with the amorphous carbon-hydrogen network.
  • CVD chemical vapor deposition
  • PVD physical vapor deposition
  • coating processes either CVD (chemical vapor deposition) processes or PVD (physical vapor deposition) processes are suitable both for coating with an amorphous carbon-hydrogen network and for applying the adhesion-promoting intermediate layers.
  • CVD chemical vapor deposition
  • PVD physical vapor deposition
  • thermal activation or plasma activation and particularly preferably hollow cathode glow discharge processes come into consideration.
  • Thermal evaporation, sputtering, or laser, electron beam or arc (ARC) evaporation are suitable as PVD processes.
  • a particularly preferred embodiment of the PVD method is in the plasma-activated high-rate To see electron beam evaporation.
  • the individual coating steps can also be carried out using different methods.
  • the surface of the steel substrate before the coating should have a roughness Ra of at most 0.5 ⁇ , since this contributes to a significant improvement in the magnetic properties.
  • Fig. 2 shows a device for the two-sided coating of grain-oriented electrical sheets with an adhesion-improving intermediate layer and a subsequent electrically insulating coating of an amorphous carbon-hydrogen network in a continuous strip pass experienced in a schematic representation.
  • Table 1 shows the respective coating state for samples 1 to 4, the respective tensile stress, the respective sheet thickness, calculated from the curvature of a sample coated on one side (coated on one side with DLC, subsequently removed from insulation on one side with conventional insulation) Magnetic reversal loss P lf7 (determined at a frequency of 50 Hz and a polarization of 1.7 Tesla) and the magnetic polarization given a magnetic field strength of 800 A / m.
  • the sheet metal substrates were taken from the operational production of highly permeable grain-oriented electrical steel with conventional glass film and phosphate layer (sample 1).
  • the phosphate layer was removed with 25% by weight NaOH at 60 ° C.
  • the glass film underneath was removed with a HCl / HF mixture.
  • the surface was then smoothed by a chemical polish in H 2 0 2 / HF mixture.
  • the coatings for samples 2 were produced as follows: By means of an intensive glow discharge in an argon-acetylene mixture generated by a hollow cathode discharge, a plasma is generated, from which an amorphous carbon-hydrogen layer with high hardness and high compressive residual stresses is deposited on both sides of the electrical sheet. Before this layer is applied, an approx. 0.5 ⁇ m thick adhesion-promoting amorphous layer consisting of silicon, carbon and hydrogen (Si-C: H) is deposited using the same hollow cathode-based glow discharge. To deposit this layer, TMS (tetramethyl silane) is used as the starting substance instead of acetylene.
  • TMS tetramethyl silane
  • the amorphous carbon-hydrogen layer produced in this way abbreviated as DLC layer in Table 1, of sample 2 has a thickness of 1 ⁇ m.
  • a residual compressive stress of 3 GPa is determined for the layer from the deflection of a reference sample coated only on one side. This creates a tensile stress of approx. 12 MPa in the electrical sheet 0.25 mm thick.
  • a value of> 20 ⁇ cm is determined using a Franklin tester.
  • a high-frequency glow discharge in an argon-acetylene mixture generates a plasma, from which an amorphous carbon-hydrogen layer with high hardness and high compressive residual stresses is deposited on both sides of the electrical sheet.
  • an approximately 0.5 ⁇ m thick adhesion-promoting titanium layer is deposited using cathode sputtering. The transition from the titanium coating to the amorphous carbon-hydrogen layer takes place without interrupting the vacuum.
  • the amorphous carbon-hydrogen layer of samples 3 and 4 has a thickness of 2 ⁇ m.
  • a residual compressive stress of 3 GPa is determined for the layer from the deflection of a reference sample coated only on one side. This creates a tensile stress of approx. 25 MPa in the electrical sheet 0.25 mm thick.
  • a value of> 20 ⁇ cm is determined using a Franklin tester.
  • mapping of the domain structure at one and the same place of a sample before and after the coating according to the invention with an amorphous carbon-hydrogen network shows a slight domain-refining effect of a 1 ⁇ m thick, amorphous carbon-hydrogen layer and a strong domain-refining effect of a 2 ⁇ m thick, amorphous Carbon-hydrogen layer.
  • FIG. 2 schematically shows an example of a plant for the two-sided coating of grain-oriented electrical sheets with an adhesion-improving intermediate layer and a subsequent electrically insulating layer made of an amorphous carbon-hydrogen network in a continuous strip process.
  • an electrical steel strip B After uncoiling and transfer into a high-vacuum area sealed off by locks 1, an electrical steel strip B first passes through a device 2 for plasma fine cleaning, in which e.g. A fine cleaning is carried out using a magnetic field-enhanced glow discharge in an Ar atmosphere.
  • the adhesion-improving intermediate layer is applied in a vapor deposition device 3 which is subsequently passed through by the tape B by high-rate electron beam vapor deposition.
  • These adhesion-improving layers consist e.g. made of Ti or TiN.
  • a reactive variant of electron beam vapor deposition can advantageously be used, in which nitrogen is specifically introduced as a reactive gas into the vacuum recipient.
  • the use of plasma activation during vapor deposition can also be advantageous.
  • the deposition of the electrically insulating layer, consisting of an amorphous carbon-hydrogen network, is then carried out without interruption while the vacuum is maintained in a hollow cathode glow discharge device 4.
  • the use of a hollow strip cathode is particularly advantageous here.
  • the coated strip B is then removed from the vacuum region via a lock 5 and rewound.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Soft Magnetic Materials (AREA)
  • Chemical Vapour Deposition (AREA)
  • Physical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Laminated Bodies (AREA)

Abstract

Die Erfindung betrifft ein kornorientiertes Elektroblech mit einer elektrisch isolierenden Beschichtung aus einem amorphen Kohlenstoff-Wasserstoff-Netzwerk, welche nach der Schlussglühung aufgetragen wird, um für die Verwendung des kornorientierten Elektroblechs, z. B. in Transformatoren, die elektrische Isolierung der einzelnen Blechschichten zu gewährleisten. Die Erfindung betrifft ferner ein Verfahren zur Herstellung des kornorientierten Elektroblechs mit einer elektrisch isolierenden Beschichtung aus einem amorphen Kohlenstoff-Wasserstoff-Netzwerk, welches darin besteht, dass die Beschichtung des bandförmigen Blechsubstrats mit der elektrisch isolierenden Beschichtung in einem kontinuierlichen Banddurchlaufverfahren erfolgt.

Description

Kornorientiertes Elektroblech mit einer elektrisch isolierenden Beschichtung
Die Erfindung betrifft ein neues kornorientiertes Elektroblech mit einer elektrisch isolierenden Beschichtung, welche nach der Schlussglühung aufgetragen wird, um für die Verwendung des kornorientierten Elektroblechs, z. B. in Transformatoren, die elektrische Isolierung der einzelnen Blechschichten zu gewährleisten. Die Erfindung betrifft ferner ein Verfahren zur Herstellung des kornorientierten Elektroblechs mit einer elektrisch isolierenden Beschichtung.
Wichtig für die weitere Verwendung, z. B. in Transformatoren, ist die Absenkung des
Ummagnetisierungsverlustes. Eine gängige Maßnahme hierfür stellt das Zulegieren von Silizium dar, wodurch der spezifische elektrische Widerstand erhöht wird und damit die Wirbelstromverluste vermindert werden. Durch Modifikationen der chemischen Zusammensetzung und der Kaltwalz- und Glühprozesse wird die Kristallorientierung {llθ}<001> eingestellt und verschärft. Durch Verminderung der Blechdicke wird der Verlust weiter verbessert. Außerdem werden durch die Verbesserung der Reinheit des Stahls ausgeschiedene Partikel im Fertigprodukt vermieden, die als störende Haftstellen die Blochwandbewegung beim Ummagnetisieren behindern.
Elektroblechsorten mit besonders scharfer Orientierung und deshalb hoher Permeabilität können im Ummagnetisierungsverlust noch weiter verbessert werden, indem das Herstellungsverfahren so gesteuert wird, dass für eine Begrenzung der Größe der sekundärrekristallisierten Körner bzw. ein großes Verhältnis von Korngrenzenlänge zur Kornfläche gesorgt ist, und damit der Blochwandabstand vermindert wird. Zum Stand der Technik gehört auch, dass man die Domänenstruktur zusätzlich verbessert durch das Aufbringen einer Isolationsschicht, die auf das Blechsubstrat eine permanente Zugspannung ausübt, und zusätzlich durch Behandlungen, die Linien lokaler Spannungen quer oder schräg zur Walzrichtung erzeugen. Dieses können u.a. lokale mechanische Deformationen (EP 0 409 389 A2) , Laser- oder Elektronenstrahlbehandlungen (EP 0 008 385 Bl; EP 0 100 638 Bl; EP 0 571 705 A2) oder das Einätzen von Gräben sein (EP 0 539 236 Bl) .
Ein Nachteil dieses Herstellweges für besonders verlustarme Elektroblechsorten ist die kostenaufwendige Kombination von Maßnahmen zur Isolationsschichtbildung und weiteren Domänenverfeinerung. Ein weiterer Nachteil ist, dass die Isolationsschicht üblicherweise in einer Folge von komplizierten, sorgsam aufeinander abgestimmten Verfahrensschritten aufgebaut wird, wodurch der Spielraum äußerst eingeengt wird, um noch weitere Parametervariationen für ökonomische und qualitative Verfahrensoptimierungen vornehmen zu können.
Der Aufbau der bisher üblichen spannungsausübenden Schicht geschieht, indem das auf Enddicke kaltgewalzte Band einer Glühung zur Primärrekristallisation und Entkohlung ausgesetzt wird, wobei die Oberfläche gezielt oxidiert wird, dann mit MgO und geeigneten Additiven als Klebschutz beschichtet und getrocknet wird, anschließend zum Coil aufgewickelt und zum Zweck der Sekundärrekristallisation und anschließenden Reinigung des Stahls von ausscheidungsbildenden Elementen erneut geglüht wird. Während dieses Glühschrittes reagiert die Klebschutzbeschichtung mit den Oxiden auf der Bandoberfläche und bildet eine Forsteritschicht (Mg2Si04) , die auch als „Glasfilm" bezeichnet wird. Dieser Film geht mit Verwurzelungen in das Grundmaterial über, was für seine Haftung günstig ist. Auf ihn werden in einem weiteren Verfahrenschritt, wie beispielsweise aus der DE 22 47 269 C3 bekannt ist, Lösungen auf der Basis von Magnesiumphosphat oder Aluminiumphosphat oder Mischungen von beiden mit verschiedenen Zusätzen wie beispielsweise Chromverbindungen und Si-Oxid aufgebracht und bei Temperaturen oberhalb 350°C eingebrannt. Die durch die fertige Isolationsschicht auf das Grundmaterial übertragene Zugspannung kann bis zu etwa 5 MPa betragen. Die damit erzielten Verbesserungen des Ummagnetisierungsverlustes liegen in der Größenordnung von rd. 5%. Außerdem sinkt die Magnetostriktion.
Begrenzt wird die erzielbare Verlustverbesserung durch den Umstand, dass für den Aufbau der Schicht Oxidationsprozesse unerlässlich sind, bei denen sich an der Oberfläche bzw. in den Oberflächenzonen nichtferromagnetische Partikel und Inhomogenitäten bilden, welche die Beweglichkeit der Blochwände beim Ummagnetisieren beeinträchtigen und damit erhöhte Energieverluste bewirken.
In neueren Entwicklungen ist deshalb versucht worden, Elektrobleche ohne Glasfilm und mit möglichst glatter Oberfläche zu erzeugen, und nachträglich spannungsausübende Isolationsschichten aufzubringen, die keine Oberflächenoxidation als Grundlage benötigen. Erprobt wurden beispielsweise Sol-Gel-Verfahren für Beschichtungen mit oxidischen Substanzen, wie sie in EP 0 555 867 A2 beschrieben werden, wobei die Schichtspannungen aufgrund der Unterschiede in den thermischen Ausdehnungskoeffizienten zwischen Stahl und Schicht und der hohen Temperatur von 800°C bis 1000°C bei der Schichtbildung erzeugt worden sind. Weitere bekannte Verfahren sind das Aufbringen dünner Schichten auf Blechsubstraten aus Elektroblech mit extrem glatter Oberfläche mittels CVD- oder PVD-Verfahren wie die Elektronenstrahlverdampfung, Magnetronsputtern oder Vakuumlichtbogenverdampfung, wobei Schichten bzw. Mehrlagenschichten aus Metallnitriden oder -carbiden (z.B. TiN, BN, ZrN, AlN, Ti (CN) , Cr2N, TiC, ZrC, WC) hergestellt werden, wie in EP 0 193 324 Bl oder EP 0 910 101 AI beschrieben ist.
Mit derartigen Schichten sind Zugspannungen im Elektroblech von beispielsweise 8 MPa erzeugbar, jedoch ist ihre unzureichende elektrische Isolationswirkung nachteilig, so dass sie noch mit einer zusätzlichen isolierenden Schicht überdeckt werden müssen, wie in der EP 0 215 134 Bl beschrieben ist.
Der Erfindung liegt die Aufgabe zugrunde, ein hochpermeables kornorientiertes Elektroblech zu erzeugen, das als Kernwerkstoff für besonders geräusch- und verlustarme Transformatoren geeignet ist.
Die Aufgabe wird gelöst durch ein kornorientiertes Elektroblech nach Anspruch 1 mit einer elektrisch isolierenden Beschichtung aus einem amorphen Kohlenstoff- Wasserstoff-Netzwerk. Erfindungsgemäßes kornorientiertes Elektroblech ist mit einer Beschichtung versehen ist, die eine so hohe Zugspannung auf das Blech ausübt und den Ummagnetisierungsverlust so weit verbessert, dass zusätzliche Maßnahmen zur Verfeinerung der magnetischen Domänenstruktur überflüssig werden. Die erfindungsgemäß aus einem amorphen Kohlenstoff-Wasserstoff-Netzwerk gebildete Beschichtung haftet sicher auf der Bandoberfläche und besitzt einen hohen Oberflächenisolationswiderstand.
Amorphe Kohlenstoff-Wasserstoff-Netzwerke, auch bekannt als a:C-H oder diamond-like carbon (DLC) sind bekanntermaßen sehr hart, chemisch inert und haften gut auf Stahllegierungen, wie beispielsweise in der EP 0 600 533 Bl beschrieben ist. Diese Eigenschaften werden bisher, wie z. B. in DE 198 34 968 AI oder WO 99/47346 AI beschrieben, für Beschichtungen von Werkzeugen genutzt, die besonderen Anforderungen hinsichtlich ihrer Adhäsionswirkung genügen müssen. Die gleiche Eignung steht bei dem aus der DE 198 25 860 AI bekannten Stand der Technik bei der Beschichtung von Kolbenringen im Vordergrund.
Überraschenderweise hat sich herausgestellt, dass ein in erfindungsgemäßer Weise mit einer Beschichtung aus einem amorphen Kohlenstoff-Wasserstoff-Netzwerk versehenes Elektroblech erheblich verbesserte magnetische Eigenschaften, wie verringerten Ummagnetisierungsverlust und höhere magnetische Polarisation, aufweist. Dies ist vermutlich auf die beobachtete Verfeinerung der magnetischen Domänenstruktur zurückzuführen, welche eine zusätzliche Behandlung des Elektroblechs zur Domänenfeinung überflüssig macht. Ferner wird für erfindungsgemäße Elektrobleche eine Unempfindlichkeit der magnetische Eigenschaften gegenüber Druckspannungen, wie sie in Transformatorkernen auftreten können, erreicht. Ein weiterer damit verbundener Vorteil liegt in der verringerten Magnetostriktion, die den Bau geräuschärmerer Transformatoren erlaubt. Zudem ist das erfindungsgemäße Schichtsystem dünner als konventionelle SchichtSysteme, was einen höheren Stapelfaktor im Transformatorkern zulässt.
Die elektrisch isolierende Beschichtung des kornorientierten Elektroblechs kann mit einem oder mehreren der Elemente Si, O, N, B oder F, vorzugsweise jeweils in Höhe von 1 bis 20 Atomprozent, dotiert sein.
Besondere gute magnetische Eigenschaften des Elektroblechs werden dadurch erzielt, dass die elektrisch isolierende Beschichtung eine Zugspannung von mindestens 8 MPa auf das Blechsubstrat ausübt .
Zur weiteren Verbesserung der Haftung zwischen Blechsubstrat und dem amorphen Kohlenstoff-Wasserstoff- Netzwerk ist es vorteilhaft, zwischen der elektrisch isolierenden Beschichtung und dem Blechsubstrat mindestens eine haftungsverbessernde Zwischenschicht anzuordnen. Diese haftungsverbessernde Zwischenschicht kann beispielsweise aus einem Si-C-O-H-Netzwerk oder einem Si-C-H-Netzwerk bestehen.
Als weitere haftungsverbessernde Zwischenschichten kommen Titan oder titanhaltigen Verbindungen in Frage, insbesondere Titannitrid, wodurch die Zugspannung auf das Blechsubstrat weiter verstärkt werden kann. Bevorzugt weist die Beschichtung eines erfindungsgemäßen Elektroblechs einen Oberflächenisolationswiderstand von mindestens 10 Ohm*cm2 auf, wodurch die erforderliche Isolationswirkung gewährleistet wird.
Erfindungsgemäßes kornorientiertes Elektroblech weist bei entsprechender Optimierung bei einer Blechdicke von 0,30 mm einen Ummagnetisierungsverlust (bei einer Frequenz von 50 Hertz und eine Polarisation von 1,7 Tesla) von P1/7 < 0,90 W/kg, bei einer Blechdicke von 0,27 mm von Pif7 < 0,80 W/kg und bei einer Blechdicke von 0,23 mm von Pι,7 < 0,70 W/kg auf.
Das Blechsubstrat enthält als typische Zusammensetzung 2,5 Gew.-% bis 4,0 Gew.-% Silizium, bis zu 0,20 Gew.-% Mangan, bis zu 0,50 Gew.-% Kupfer, bis zu 0,065 Gew.-% Aluminium, bis zu 0,0150 Gew.-% Stickstoff und mindestens 90 Gew.-% Eisen. Darüber hinaus können zusätzlich eines oder mehrere der Elemente Cr, Ni, Mo, P, As, Sn, Sb, Se, Te, B oder Bi mit Massengehalten jeweils bis zu 0,2 Gew.-% enthalten sein.
Das Blechsubstrat wird erzeugt aus einer Stahlschmelze, wie sie typischerweise zur Herstellung von kornorientierten Elektroblechen eingesetzt wird, die 2,5 Gew.-% bis 4,0 Gew.-% Si, bis zu 0,100 Gew.-% C, bis zu 0,20 Gew.-% Mn, bis zu 0,50 Gew.-% Cu, bis zu 0,035 Gew.-% S, bis zu 0,065 Gew.-% AI, bis zu 0,0150 Gew.-% N, Rest hauptsächlich Fe und übliche Verunreinigungen sowie die vorgenannten zusätzlichen Legierungselemente Cr, Ni, Mo, P, As, Sn, Sb, Se, Te, B oder Bi mit Massengehalten jeweils bis zu 0,2 Gew. -% enthält, durch Bandgießen oder durch Stranggießen von Brammen von 20 bis 300 mm Dicke. Diese werden anschließend zu Warmband ausgewalzt, wonach ein optionales Glühen des Warmbandes erfolgen kann. Das nachfolgende ein- oder mehrmalige Kaltwalzen erfolgt mit Zwischenglühen auf eine Enddicke von 0,15 bis 0,50 mm. Daran schließen sich eine primär rekristallisierende Glühung mit entkohlenden Bedingungen, solange der Massengehalt an Kohlenstoff im Stahl mehr als 0,005 Gew.-% beträgt, sowie gegebenenfalls ein Aufbringen eines Klebschutzes, gefolgt von einer Glühung zur Sekundärrekristallisation und Goss-Texturbildung (Hochglühung) , einer Glühung zur Reinigung des Stahls von den zur Steuerung der Rekristallisation und Texturbildung nicht mehr benötigten Elementen (Schlussglühung) , gegebenenfalls Entfernung der Klebschutzreste und der bei den vorausgegangenen Glühungen gebildeten Oxide von den Bandoberflächen. Besonders vorteilhaft sind Prozessbedingungen, die eine glasfilmfreie Oberfläche des Blechsubstrats sicherstellen, um ein Entstehen und nach der Hochglühung erforderliches Entfernen des Glasfilms zu vermeiden.
Eine weitere bevorzugte Variante der Herstellung des Blechsubstrats ist die Glühung zur
Sekundärrekristallisation mit Goss-Texturbildung, die als kontinuierliche Glühung im Banddurchlaufofen mit maximal 15 min Dauer ausgeführt wird. Bevorzugt wird in diesem Zusammenhang auch die Glühung zur Reinigung des Stahls als kontinuierliche Glühung im Banddurchlaufofen mit maximal 15 min Dauer ausgeführt. Diese Verfahrensschritte erzielen hinsichtlich der Prozessoptimierung das beste Resultat, wenn die erfindungsgemäßen Oberflächenbeschichtungen direkt in Linie mit der Banddurchlaufofenglühung ausgeführt werden. Günstig beeinflusst kann das verwendete Blechsubstrat auch dadurch werden, dass es zwischen dem ersten Kaltwalzen und der Sekundärrekristallisation aufstickenden Glühbedingungen ausgesetzt wird. Dies kann durch Zusatz von NH3 zum Glühgas erfolgen. Alternativ dazu kann das Band mittels geeigneter Stickstoffspendender Additive zum Klebschutz aufgestickt werden.
Ein geeignetes Verfahren zur Herstellung von erfindungsgemäßem kornorientiertem Elektroblech mit einer elektrisch isolierenden Beschichtung aus einem amorphen Kohlenstoff-Wasserstoff-Netzwerk besteht darin, dass die Beschichtung des bandförmigen Blechsubstrats mit der elektrisch isolierenden Beschichtung in einem kontinuierlichen Banddurchlaufverfahren erfolgt. Zweckmäßigerweise erfolgt auch das Aufbringen von haftungsverbessernden Zwischenschichten in einem kontinuierlichen Banddurchlaufverfahren, das bevorzugt der Durchlaufbeschichtung mit dem amorphen Kohlenstoff- Wasserstoff-Netzwerk in Linie vorgeschaltet ist.
Als Beschichtungsverfahren kommen sowohl für die Beschichtung mit einem amorphen Kohlenstoff-Wasserstoff- Netzwerk als auch für die Aufbringung der haftungsverbessernden Zwischenschichten entweder CVD (chemical vapour deposition) -Verfahren oder PVD (physical vapour deposition) -Verfahren in Betracht. Bei den CVD- Verfahren kommen Verfahren mit thermischer Aktivierung oder Plasmaaktivierung und besonders bevorzugt Hohlkathoden-Glimmentladungsverfahren in Betracht. Als PVD-Verfahren sind thermisches Verdampfen, Sputtern, bzw. Laser-, Elektronenstrahl- oder Bogen (ARC) -Verdampfung geeignet . Eine besonders bevorzugte Ausgestaltung des PVD-Verfahrens ist in der plasmaaktivierten Hochrate- Elektronenstrahlbedampfung zu sehen. Auch können die einzelnen Beschichtungsschritte mittels unterschiedlicher Verfahren erfolgen.
Vorteilhafterweise sollte die Oberfläche des Stahlsubstrats vor der Beschichtung eine Rauhigkeit Ra von maximal 0,5 μ aufweisen, da dies zu einer deutlichen Verbesserung der magnetischen Eigenschaften beiträgt .
Nachfolgend wird die Erfindung anhand von Ausführungsbeispielen näher erläutert. Es zeigen:
Fig. 1 den über die äußeren Druck-/Zugspannungen aufgetragenen Ummagnetisierungsverlust' für ein mit einer spannungsausübenden Oberflächenschicht beschichtetes Blech, für ein mit einem konventionellen Schichtsystem beschichtetes Blech und für ein erfindungsgemäß beschichtetes Blech,
Fig. 2 eine Vorrichtung zur zweiseitigen Beschichtung von kornorientierten Elektroblechen mit einer haftungsverbessernden Zwischenschicht und einer nachfolgenden elektrisch isolierenden Beschichtung aus einem amorphen Kohlenstoff-Wasserstoff- Netzwerk in einem kontinuierlichen Banddurchlauf erfahren in schematisch Darstellung.
In Tabelle 1 sind für Proben 1 bis 4 der jeweilige Beschichtungszustand, die aus der Krümmung einer einseitig beschichteten Probe (bei DLC einseitig beschichtet, bei konventioneller Isolation nachträglich einseitig von Isolation befreit) berechnete jeweilige Zugspannung, die jeweilige Blechdicke, der Ummagnetisierungsverlust Plf7 (ermittelt bei einer Frequenz von 50 Hz und einer Polarisation von 1,7 Tesla) und die magnetische Polarisation bei einer magnetischen Feldstärke von 800 A/m angegeben.
Tabelle 1
Figure imgf000012_0001
erfindungsgemäße Beispiele,
**' berechnet aus der Krümmung einer einseitig beschichteten Probe (bei DLC einseitig beschichtet, bei konventioneller Isolation nachträglich einseitig von Isolation befreit) .
Die Blechsubstrate wurden aus der betrieblichen Fertigung von hochpermeablem kornorientierten Elektroband mit herkömmlichem Glasfilm und Phosphatschicht entnommen (Probe 1) . Die Entfernung der Phosphatschicht erfolgte mit 25 Gew.-% NaOH bei 60°C, der darunterliegende Glasfilm wurde mit HCl/HF-Gemisch entfernt. Anschließend wurde die Oberfläche geglättet durch eine chemische Politur in H202/HF-Gemisch.
Die Herstellung der Beschichtungen der Proben 2 wurde vorgenommen wie folgt : Mittels einer durch eine Hohlkathodenentladung erzeugten intensiven Glimmentladung in einem Argon-Azetylen-Gemisch wird ein Plasma erzeugt, aus dem auf dem Elektroblech beidseitig eine amorphe Kohlenstoff- Wasserstoff-Schicht mit hoher Härte und hohen Druckeigenspannungen abgeschieden wird. Bevor diese Schicht aufgebracht wird, wird mit Hilfe der gleichen hohlkathoden-basierten Glimmentladung eine ca. 0,5 μm dicke haftvermittelnde amorphe Schicht, die aus Silicium, Kohlenstoff und Wasserstoff (Si-C:H) besteht, abgeschieden. Zur Abscheidung dieser Schicht wird statt Azetylen TMS (Tetramethyl-Silan) als Ausgangssubstanz verwendet.
Die so erzeugte amorphe Kohlenstoff-Wasserstoff-Schicht, in Tabelle 1 als DLC-Schicht abgekürzt, der Probe 2 hat eine Dicke von 1 μm. Aus der Durchbiegung einer nur einseitig beschichteten Referenzprobe wird für die Schicht eine Druckeigenspannung von 3 GPa ermittelt . Dadurch wird in dem Elektroblech von 0,25 mm Dicke eine Zugspannung von ca. 12 MPa erzeugt. Für den Flächenwiderstand dieser Schicht wird mit Hilfe eines Franklin-Testers ein Wert von > 20 Ωcm ermittelt.
Die Herstellung der Beschichtungen der Proben 3 und 4 wurde folgendermaßen vorgenommen:
Mittels Hochfrequenzglimmentladung in einem Argon- Azetylen-Gemisch wird ein Plasma erzeugt, aus dem auf dem Elektroblech beidseitig eine amorphe Kohlenstoff- Wasserstoff-Schicht mit hoher Härte und hohen Druckeigenspannungen abgeschieden wird. Bevor diese Schicht aufgebracht wird, wird mittels Kathodenzerstäubung eine ca. 0,5 μm dicke haftvermittelnde Titan-Schicht abgeschieden. Der Übergang von der Titan-Beschichtung zur amorphen Kohlenstoff- Wasserstoff-Schicht erfolgt ohne Unterbrechung des Vakuums .
Die amorphe Kohlenstoff-Wasserstoff-Schicht der Proben 3 und 4 hat eine Dicke von 2 μm. Aus der Durchbiegung einer nur einseitig beschichteten Referenzprobe wird für die Schicht eine Druckeigenspannung von 3 GPa ermittelt . Dadurch wird in dem Elektroblech von 0,25 mm Dicke eine Zugspannung von ca. 25 MPa erzeugt. Für den Flächenwiderstand dieser Schicht wird mit Hilfe eines Franklin-Testers ein Wert von > 20 Ωcm ermittelt.
Die Abbildung der Domänenstruktur an ein und derselben Stelle einer Probe vor und nach der erfindungsgemäßen Beschichtung mit einem amorphen Kohlenstoff-Wasserstoff- Netzwerk zeigt eine leichte domänenverfeinernde Wirkung einer lμm dicken, amorphen Kohlenstoff-Wasserstoff- Schicht und eine stark domänenverfeinernde Wirkung einer 2μm dicken, amorphen Kohlenstoff-Wasserstoff-Schicht .
Zur Ermittlung der Unempfindlichkeit gegenüber Druckspannungen wurde der Ummagnetisierungsverlust in Abhängigkeit von äußeren Zugspannungen (positive Werte) und Druckspannungen (negative Werte) gemessen. Die Resultate sind in Figur 1 dargestellt . Dabei sind die für ein nicht beschichtete Blech ermittelten Messwerte durch Rauten, die für ein mit einem konventionellen Schichtsystem Glasfilm + Phosphat ermittelten Messwerte durch Dreiecke und die für ein erfindungsgemäßes Blech ermittelten Messwerte durch Quadrate markiert. In Figur 2 ist ein Beispiel einer Anlage zur zweiseitigen Beschichtung von kornorientierten Elektroblechen mit einer haftungsverbessernden Zwischenschicht und einer nachfolgenden darauf aufgebrachten elektrisch isolierenden Schicht aus einem amorphen Kohlenstoff- Wasserstoff-Netzwerk in einem kontinuierlichen Banddurchlaufverfahren schematisch dargestellt.
Nach dem Abhaspeln und Überführung in einen mittels Schleusen 1 abgeschotteten Hochvakuumbereich durchläuft ein Elektroblech-Band B zunächst eine Einrichtung 2 zur Plasmafeinreinigung, in der z.B. mittels magnetfeldverstärkter Glimmentladung in Ar-Atmosphäre eine Feinreinigung erfolgt .
Die haftungsverbessernde Zwischenschicht wird in einer anschließend vom Band B durchlaufenen Bedampfungseinrichtung 3 durch Hochrate- Elektronenstrahlbedampfung aufgebracht . Diese haftungsverbessernden Schichten bestehen z.B. aus Ti oder TiN. Bei letzterem kann vorteilhaft eine reaktive Variante des Elektronenstrahlbedampfens angewandt werden, in dem gezielt Stickstoff als Reaktivgas in den Vakuum- rezipienten eingelassen wird. Vorteilhaft kann auch die Anwendung einer Plasmaaktivierung bei der Bedampfung sein.
Die Abscheidung der elektrisch isolierenden Schicht, bestehend aus einem amorphen Kohlenstoff-Wasserstoff- Netzwerk, erfolgt danach ohne Unterbrechung bei weiterhin aufrechterhaltenem Vakuum in einer Hohlkathoden- Glimmentladungseinrichtung 4. Besonders vorteilhaft ist hierbei die Anwendung einer Bandhohlkathode. Danach wird das beschichtete Band B über eine Schleuse 5 aus dem Vakuumbereich ausgeschleust und wieder aufgehaspelt .

Claims

P A T E N T AN S P R Ü C H E
Kornorientiertes Elektroblech mit einer elektrisch isolierenden Beschichtung aus einem amorphen Kohlenstoff-Wasserstoff-Netzwerk.
2. Kornorientiertes Elektroblech nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , d a s s die elektrisch isolierende Beschichtung mit mindestens einem der Elemente Si, O, N, B oder F dotiert ist.
Kornorientiertes Elektroblech nach Anspruch 2, d a d u r c h g e k e n n z e i c h n e t , d a s s die Dotierungselemente in der elektrisch isolierenden Beschichtung in Höhe von 1 bis 20 Atomprozent enthalten sind.
Kornorientiertes Elektroblech nach einem der Ansprüche 1 bis 3, d a d u r c h g e k e n n z e i c h n e t , d a s s die elektrisch isolierende Beschichtung eine Zugspannung von mindestens 8 MPa auf das Blechsubstrat ausübt .
Kornorientiertes Elektroblech nach einem der Ansprüche 1 bis 4, d a d u r c h g e k e n n z e i c h n e t , d a s s zwischen der elektrisch isolierenden Beschichtung und dem Blechsubstrat mindestens eine haftungsverbessernde Zwischenschicht angeordnet ist.
6. Kornorientiertes Elektroblech nach Anspruch 5, d a d u r c h g e k e n n z e i c h n e t , d a s s mindestens eine haftungsverbessernde Zwischenschicht aus einem Si-C-O-H-Netzwerk besteht
7. Kornorientiertes Elektroblech nach einem der Ansprüche 5 oder 6 d a d u r c h g e k e n n z e i c h n e t , d a s s mindestens eine haftungsverbessernde Zwischenschicht aus einem Si-C-H-Netzwerk besteht.
8. Kornorientiertes Elektroblech nach einem der Ansprüche 5 bis 7, d a d u r c h g e k e n n z e i c h n e t , d a s s mindestens eine haftungsverbessernde Zwischenschichten aus Titan oder einer titanhaltigen Verbindung besteht.
Kornorientiertes Elektroblech nach Anspruch 8, d a d u r c h g e k e n n z e i c h n e t , d a s s die titanhaltige Verbindung Titannitrid ist .
10. Kornorientiertes Elektroblech nach einem der Ansprüche 1 bis 9, d a d u r c h g e k e n n z e i c h n e t , d a s s die Beschichtung einen Oberflächenisolationswiderstand von mindestens 10 Ohm*cm2 aufweist.
11. Kornorientiertes Elektroblech nach einem der Ansprüche 1 bis 10, d a d u r c h g e k e n n z e i c h n e t , d a s s es bei einer Blechdicke von 0,30 mm einen
Ummagnetisierungsverlust (bei einer Frequenz von 50 Hertz und einer Polarisation von 1,7 Tesla) von Pι,7 < 0,90 W/kg, bei einer Blechdicke von 0,27 mm von Pι/7
< 0,80 W/kg und bei einer Blechdicke von 0,23 mm von Pι,7 < 0,70 W/kg aufweist.
12. Kornorientiertes Elektroblech nach einem der Ansprüche 1 bis 11, d a d u r c h g e k e n n z e i c h n e t, d a s s das Blechsubstrat 2,5 Gew.-% bis 4,0 Gew.-% Silizium, bis zu 0,20 Gew.-% Mangan, bis zu 0,50 Gew.-% Kupfer, bis zu 0,065 Gew.-% Aluminium, bis zu 0,0150 Gew.-% Stickstoff und mindestens 90 Gew.-% Eisen enthält .
13. Kornorientiertes Elektroblech nach Anspruch 12, d a d u r c h g e k e n n z e i c h n e t, d a s s zusätzlich mindestens eines der Elemente Cr, Ni, Mo, P, As, Sn, Sb, Se, Te, B oder Bi mit jeweils bis zu 0,2 Gew.-% enthalten ist.
14. Verfahren zur Herstellung von kornorientiertem Elektroblech mit einer elektrisch isolierenden Beschichtuhg aus einem amorphen Kohlenstoff- Wasserstoff-Netzwerk nach einem der Ansprüche 1 bis 13, d a d u r c h g e k e n n z e i c h n e t, d a s s die Beschichtung des bandförmigen Blechsubstrats mit der elektrisch isolierenden Beschichtung in einem kontinuierlichen Banddurchlauf erfahren erfolgt .
15. Verfahren nach Anspruch 14, d a d u r c h g e k e n n z e i c h n e t, d a s s die Beschichtung des Blechsubstrats mit haftungsverbessernden Zwischenschichten gemäß den Ansprüchen 5 bis 9 in einem kontinuierlichen Banddurchlaufverfahren vor dem Aufbringen der elektrisch isolierenden Beschichtung erfolgt.
16. Verfahren nach einem der Ansprüche 14 oder 15, d a d u r c h g e k e n n z e i c h n e t, d a s s mindestens einer der Beschichtungsschritte mittels eines CVD (chemical vapour deposition) - Verfahrens erfolgt .
17. Verfahren nach einem der Ansprüche 14 bis 16, d a d u r c h g e k e n n z e i c h n e t, d a s s mindestens einer der Beschichtungsschritte mittels eines PVD (physical vapour deposition) - Verfahrens erfolgt .
18. Verfahren nach Anspruch 17, d a d u r c h g e k e n n z e i c h n e t, d a s s mindestens einer der Beschichtungsschritte mittels eines plasmaaktivierten PVD-Verfahrens erfolgt.
19. Verfahren nach Anspruch 17 oder 18, d a d u r c h g e k e n n z e i c h n e t, d a s s mindestens einer der Beschichtungsschritte mittels eines Hohlkathoden-Glimmentladungsverfahrens erfolgt .
20. Verfahren nach einem der Ansprüche 14 bis 19, d a d u r c h g e k e n n z e i c h n e t, d a s s die Oberfläche des Stahlsubstrats vor der Beschichtung eine Rauhigkeit Ra von maximal 0,5 μm aufweist .
PCT/EP2002/006869 2001-06-22 2002-06-21 Kornorientiertes elektroblech mit einer elektrisch isolierenden beschichtung WO2003000951A1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020037016778A KR100884352B1 (ko) 2001-06-22 2002-06-21 전기 절연 피막을 구비한 일방향성 전기 강판
US10/481,526 US7169479B2 (en) 2001-06-22 2002-06-21 Grain-oriented magnetic steel sheet comprising an electrically insulating coating
JP2003507331A JP2005500435A (ja) 2001-06-22 2002-06-21 電気的絶縁被覆を含む方向性電磁鋼板
BR0210576-4A BR0210576A (pt) 2001-06-22 2002-06-21 Chapa elétrica de orientação granular com um revestimento eletricamente isolante
EP20020753070 EP1397527B1 (de) 2001-06-22 2002-06-21 Kornorientiertes elektroblech mit einer elektrisch isolierenden beschichtung
DE50201414T DE50201414D1 (de) 2001-06-22 2002-06-21 Kornorientiertes elektroblech mit einer elektrisch isolierenden beschichtung
SI200230066T SI1397527T1 (en) 2001-06-22 2002-06-21 Grain oriented electric sheet of metal with an electrically insulating coating

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10130308A DE10130308B4 (de) 2001-06-22 2001-06-22 Kornorientiertes Elektroblech mit einer elektrisch isolierenden Beschichtung
DE10130308.4 2001-06-22

Publications (1)

Publication Number Publication Date
WO2003000951A1 true WO2003000951A1 (de) 2003-01-03

Family

ID=7689180

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/006869 WO2003000951A1 (de) 2001-06-22 2002-06-21 Kornorientiertes elektroblech mit einer elektrisch isolierenden beschichtung

Country Status (9)

Country Link
US (1) US7169479B2 (de)
EP (1) EP1397527B1 (de)
JP (2) JP2005500435A (de)
KR (1) KR100884352B1 (de)
BR (1) BR0210576A (de)
DE (2) DE10130308B4 (de)
PL (1) PL201065B1 (de)
RU (1) RU2288297C2 (de)
WO (1) WO2003000951A1 (de)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9192397B2 (en) 2006-12-15 2015-11-24 Gmedelaware 2 Llc Devices and methods for fracture reduction
US9237916B2 (en) 2006-12-15 2016-01-19 Gmedeleware 2 Llc Devices and methods for vertebrostenting
US9480485B2 (en) 2006-12-15 2016-11-01 Globus Medical, Inc. Devices and methods for vertebrostenting
DE102015114358A1 (de) 2015-08-28 2017-03-02 Thyssenkrupp Electrical Steel Gmbh Verfahren zum Herstellen eines kornorientierten Elektrobands und kornorientiertes Elektroband
WO2019096734A1 (de) * 2017-11-20 2019-05-23 Thyssenkrupp Electrical Steel Gmbh Kornorientiertes elektroband und verfahren zur herstellung eines solchen elektrobands
WO2020064632A1 (de) * 2018-09-26 2020-04-02 Thyssenkrupp Electrical Steel Gmbh Verfahren zur herstellung eines mit einer isolationsschicht versehenen kornorientierten elektrobandes und kornorientiertes elektroband
EP4202067A1 (de) 2021-12-21 2023-06-28 Thyssenkrupp Electrical Steel Gmbh Verfahren zum erzeugen eines kornorientierten elektrobands und kornorientiertes elektroband
EP4202068A1 (de) 2021-12-21 2023-06-28 Thyssenkrupp Electrical Steel Gmbh Verfahren zum erzeugen eines kornorientierten elektrobands und kornorientiertes elektroband
EP4202066A1 (de) 2021-12-21 2023-06-28 Thyssenkrupp Electrical Steel Gmbh Verfahren zum erzeugen eines kornorientierten elektrobands, kaltgewalztes stahlband und kornorientiertes elektroband
EP4273280A1 (de) 2022-05-04 2023-11-08 Thyssenkrupp Electrical Steel Gmbh Verfahren zur herstellung eines kornorientierten elektrostahlbandes und kornorientiertes elektrostahlband

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004204299A (ja) * 2002-12-25 2004-07-22 Ebara Corp ダイヤモンド成膜シリコンおよび電極
KR100864976B1 (ko) * 2007-03-28 2008-10-23 엘지디스플레이 주식회사 액정표시장치
DE102008039326A1 (de) 2008-08-22 2010-02-25 IWT Stiftung Institut für Werkstofftechnik Verfahren zum elektrischen Isolieren von Elektroblech, elektrisch isoliertes Elektroblech, lamellierter magnetischer Kern mit dem Elektroblech und Verfahren zum Herstellen eines lamellierten magnetischen Kerns
EP2462254A1 (de) * 2009-08-07 2012-06-13 Oerlikon Trading AG, Trübbach Tribotechnik in kombination mit korrosionsbeständigkeit: eine neue familie an pvd- und pacvd-beschichtungen
DE102010002686A1 (de) 2010-03-09 2011-09-15 Federal-Mogul Burscheid Gmbh Gleitelement, insbesondere Kolbenring, und Verfahren zur Beschichtung eines Gleitelements
DE102010002688C5 (de) * 2010-03-09 2014-03-06 Federal-Mogul Burscheid Gmbh Schraubendruckfeder für einen Ölabstreifring eines Kolbens in einem Verbrennungsmotor und Verfahren zur Beschichtung einer Schraubendruckfeder
JP5593942B2 (ja) * 2010-08-06 2014-09-24 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法
JP5754097B2 (ja) * 2010-08-06 2015-07-22 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法
BR112013001358B1 (pt) * 2010-08-06 2019-07-02 Jfe Steel Corporation Chapa de aço elétrico de grãos orientados e método para a fabricação da mesma
DE102010038038A1 (de) * 2010-10-07 2012-04-12 Thyssenkrupp Electrical Steel Gmbh Verfahren zum Erzeugen einer Isolationsbeschichtung auf einem kornorientierten Elektro-Stahlflachprodukt und mit einer solchen Isolationsbeschichtung beschichtetes Elektro-Stahlflachprodukt
IN2014CN04062A (de) 2011-11-04 2015-09-04 Tata Steel Uk Ltd
JP5974671B2 (ja) * 2011-11-09 2016-08-23 Jfeスチール株式会社 極薄電磁鋼板
JP5942886B2 (ja) * 2013-02-18 2016-06-29 Jfeスチール株式会社 方向性電磁鋼板の窒化処理設備および窒化処理方法
JP5942884B2 (ja) 2013-02-18 2016-06-29 Jfeスチール株式会社 方向性電磁鋼板の窒化処理設備および窒化処理方法
DE102013208617A1 (de) * 2013-05-10 2014-11-13 Siemens Aktiengesellschaft Elektroblech mit einer die elektrische Isolation verbessernden Schicht und Verfahren zu dessen Herstellung
RU2676372C1 (ru) 2015-02-05 2018-12-28 ДжФЕ СТИЛ КОРПОРЕЙШН Лист электротехнической стали с ориентированной структурой, способ его производства и способ прогнозирования шумовых характеристик трансформатора
DE102015218439A1 (de) 2015-09-25 2017-03-30 Robert Bosch Gmbh In seinen Ummagnetisierungsverlusten reduziertes Teil und Verfahren zu seiner Herstellung
JP6516064B2 (ja) * 2016-10-18 2019-05-22 Jfeスチール株式会社 方向性電磁鋼板および方向性電磁鋼板の製造方法
KR102411857B1 (ko) * 2016-12-21 2022-06-22 제이에프이 스틸 가부시키가이샤 방향성 전자 강판 및 방향성 전자 강판의 제조 방법
JP6828820B2 (ja) * 2017-07-13 2021-02-10 日本製鉄株式会社 方向性電磁鋼板、及び方向性電磁鋼板の製造方法
RU2742291C1 (ru) * 2017-12-12 2021-02-04 ДжФЕ СТИЛ КОРПОРЕЙШН Многослойный лист электротехнической стали
CN111479942A (zh) * 2017-12-12 2020-07-31 杰富意钢铁株式会社 多层型电磁钢板
US11335485B2 (en) * 2017-12-12 2022-05-17 Jfe Steel Corporation Multilayer electrical steel sheet
KR102218446B1 (ko) 2017-12-26 2021-02-22 주식회사 포스코 초저철손 방향성 전기강판 제조방법
KR20190078059A (ko) * 2017-12-26 2019-07-04 주식회사 포스코 초저철손 방향성 전기강판 제조방법
KR102443298B1 (ko) * 2018-03-30 2022-09-14 제이에프이 스틸 가부시키가이샤 표면 처리 설비
DE102018216453A1 (de) * 2018-09-26 2020-03-26 Thyssenkrupp Ag Beschichtung von kornorientiertem Elektroband durch CVD II
DE102018216457A1 (de) * 2018-09-26 2020-03-26 Thyssenkrupp Ag Beschichtung von kornorientiertem Elektroband durch CVD
DE102021213823B4 (de) 2021-12-06 2024-05-08 Lenze Se Verfahren zur Herstellung eines Rotors

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0555867A2 (de) * 1992-02-13 1993-08-18 Nippon Steel Corporation Orientiertes Stahlblech mit geringem Kernverlust und Verfahren zu dessen Herstellung
EP0600533A1 (de) * 1992-12-02 1994-06-08 "VLAAMSE INSTELLING VOOR TECHNOLOGISCH ONDERZOEK", afgekort "V.I.T.O.",onderneming van openbaar nut onder de vorm van een n.v. Verfahren zur Beschichtung von Stahl, Eisen oder ihren Legierungen mit diamant-artigem Kohlenstoff
EP0910101A1 (de) * 1997-04-03 1999-04-21 Kawasaki Steel Corporation Unidirektionale siliziumstahlplatte mit aussergewöhnlichem eisenverlust
WO1999047346A1 (de) * 1998-03-13 1999-09-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung zum verpressen von fliessförmigen feststoffen
DE19825860A1 (de) * 1998-06-10 1999-12-16 Elgan Diamantwerkzeuge Gmbh & Kolbenring und seine Verwendung
DE19834968A1 (de) * 1998-08-03 2000-02-17 Fraunhofer Ges Forschung Beschichtung für Werkzeuge zur Bearbeitung von wärmebehandeltem Glas
WO2000047402A1 (en) * 1998-12-02 2000-08-17 Advanced Refractory Technologies, Inc. Fluorine-doped diamond-like coatings

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB619375A (en) * 1945-12-15 1949-03-08 Westinghouse Electric Int Co Improvements in or relating to magnetic cores
CA964533A (en) * 1970-09-17 1975-03-18 Motoharu Nakamura Electrical steel sheets and strips having excellent punching and welding characteristics for the use of a laminated iron core
BE789262A (fr) * 1971-09-27 1973-01-15 Nippon Steel Corp Procede de formation d'un film isolant sur un feuillard d'acierau silicium oriente
US3839256A (en) * 1973-05-11 1974-10-01 Steel Corp Silicate-resin coating composition
JPS5518566A (en) * 1978-07-26 1980-02-08 Nippon Steel Corp Improving method for iron loss characteristic of directional electrical steel sheet
US4456812A (en) * 1982-07-30 1984-06-26 Armco Inc. Laser treatment of electrical steel
EP0215134B1 (de) * 1985-02-22 1990-08-08 Kawasaki Steel Corporation Herstellungsverfahren für unidirektionale siliziumstahlplatte mit aussergewöhnlichem eisenverlust
EP0193324B1 (de) * 1985-02-22 1989-10-11 Kawasaki Steel Corporation Kornorientierte Siliciumstahlbleche mit ganz niedrigen Eisenverlusten
JPH06952B2 (ja) * 1985-04-18 1994-01-05 鐘淵化学工業株式会社 硬質カ−ボン膜
US5123977A (en) * 1989-07-19 1992-06-23 Allegheny Ludlum Corporation Method and apparatus for refining the domain structure of electrical steels by local hot deformation and product thereof
JPH03166370A (ja) * 1989-08-29 1991-07-18 Nippon Steel Corp 硬質炭素膜のコーティング方法
JPH03291377A (ja) * 1990-04-10 1991-12-20 Kawasaki Steel Corp 耐摩耗性の極めて優れる被膜を有する鋼板の製造方法
JP2819431B2 (ja) * 1990-09-25 1998-10-30 新日本製鐵株式会社 硬質炭素膜の被覆方法
JP2895670B2 (ja) * 1991-10-24 1999-05-24 川崎製鉄株式会社 鉄損の低い方向性電磁鋼板及びその製造方法
JP3023242B2 (ja) * 1992-05-29 2000-03-21 川崎製鉄株式会社 騒音特性の優れた低鉄損一方向性珪素鋼板の製造方法
JP2698003B2 (ja) * 1992-08-25 1998-01-19 新日本製鐵株式会社 一方向性珪素鋼板の絶縁皮膜形成方法
FR2737338B1 (fr) * 1995-07-26 1997-08-22 Ugine Sa Tole d'acier electrique revetue utilisee dans la fabrication de circuits magnetiques
JPH10203896A (ja) * 1997-01-17 1998-08-04 Mitsubishi Electric Corp ダイヤモンドライクカーボン薄膜が形成された部材およびその形成方法
JP3280898B2 (ja) * 1997-04-03 2002-05-13 川崎製鉄株式会社 超低鉄損一方向性けい素鋼板
JP2962715B2 (ja) 1997-10-14 1999-10-12 新日本製鐵株式会社 電磁鋼板の絶縁皮膜形成方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0555867A2 (de) * 1992-02-13 1993-08-18 Nippon Steel Corporation Orientiertes Stahlblech mit geringem Kernverlust und Verfahren zu dessen Herstellung
EP0600533A1 (de) * 1992-12-02 1994-06-08 "VLAAMSE INSTELLING VOOR TECHNOLOGISCH ONDERZOEK", afgekort "V.I.T.O.",onderneming van openbaar nut onder de vorm van een n.v. Verfahren zur Beschichtung von Stahl, Eisen oder ihren Legierungen mit diamant-artigem Kohlenstoff
EP0910101A1 (de) * 1997-04-03 1999-04-21 Kawasaki Steel Corporation Unidirektionale siliziumstahlplatte mit aussergewöhnlichem eisenverlust
WO1999047346A1 (de) * 1998-03-13 1999-09-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung zum verpressen von fliessförmigen feststoffen
DE19825860A1 (de) * 1998-06-10 1999-12-16 Elgan Diamantwerkzeuge Gmbh & Kolbenring und seine Verwendung
DE19834968A1 (de) * 1998-08-03 2000-02-17 Fraunhofer Ges Forschung Beschichtung für Werkzeuge zur Bearbeitung von wärmebehandeltem Glas
WO2000047402A1 (en) * 1998-12-02 2000-08-17 Advanced Refractory Technologies, Inc. Fluorine-doped diamond-like coatings

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9237916B2 (en) 2006-12-15 2016-01-19 Gmedeleware 2 Llc Devices and methods for vertebrostenting
US9480485B2 (en) 2006-12-15 2016-11-01 Globus Medical, Inc. Devices and methods for vertebrostenting
US9192397B2 (en) 2006-12-15 2015-11-24 Gmedelaware 2 Llc Devices and methods for fracture reduction
US10588646B2 (en) 2008-06-17 2020-03-17 Globus Medical, Inc. Devices and methods for fracture reduction
US9687255B2 (en) 2008-06-17 2017-06-27 Globus Medical, Inc. Device and methods for fracture reduction
DE102015114358A1 (de) 2015-08-28 2017-03-02 Thyssenkrupp Electrical Steel Gmbh Verfahren zum Herstellen eines kornorientierten Elektrobands und kornorientiertes Elektroband
DE102015114358B4 (de) * 2015-08-28 2017-04-13 Thyssenkrupp Electrical Steel Gmbh Verfahren zum Herstellen eines kornorientierten Elektrobands und kornorientiertes Elektroband
WO2019096734A1 (de) * 2017-11-20 2019-05-23 Thyssenkrupp Electrical Steel Gmbh Kornorientiertes elektroband und verfahren zur herstellung eines solchen elektrobands
WO2020064632A1 (de) * 2018-09-26 2020-04-02 Thyssenkrupp Electrical Steel Gmbh Verfahren zur herstellung eines mit einer isolationsschicht versehenen kornorientierten elektrobandes und kornorientiertes elektroband
EP4202067A1 (de) 2021-12-21 2023-06-28 Thyssenkrupp Electrical Steel Gmbh Verfahren zum erzeugen eines kornorientierten elektrobands und kornorientiertes elektroband
EP4202068A1 (de) 2021-12-21 2023-06-28 Thyssenkrupp Electrical Steel Gmbh Verfahren zum erzeugen eines kornorientierten elektrobands und kornorientiertes elektroband
EP4202066A1 (de) 2021-12-21 2023-06-28 Thyssenkrupp Electrical Steel Gmbh Verfahren zum erzeugen eines kornorientierten elektrobands, kaltgewalztes stahlband und kornorientiertes elektroband
EP4273280A1 (de) 2022-05-04 2023-11-08 Thyssenkrupp Electrical Steel Gmbh Verfahren zur herstellung eines kornorientierten elektrostahlbandes und kornorientiertes elektrostahlband

Also Published As

Publication number Publication date
PL366608A1 (en) 2005-02-07
US7169479B2 (en) 2007-01-30
US20050112377A1 (en) 2005-05-26
JP2009018573A (ja) 2009-01-29
BR0210576A (pt) 2004-08-03
DE10130308B4 (de) 2005-05-12
JP2005500435A (ja) 2005-01-06
PL201065B1 (pl) 2009-03-31
EP1397527B1 (de) 2004-10-27
RU2288297C2 (ru) 2006-11-27
KR100884352B1 (ko) 2009-02-18
RU2004101609A (ru) 2005-06-10
EP1397527A1 (de) 2004-03-17
DE50201414D1 (de) 2004-12-02
DE10130308A1 (de) 2003-01-09
KR20040043130A (ko) 2004-05-22

Similar Documents

Publication Publication Date Title
EP1397527B1 (de) Kornorientiertes elektroblech mit einer elektrisch isolierenden beschichtung
DE69218511T2 (de) Kornorientiertes Siliziumstahlblech mit ausgezeichneten primären Glasfilmeigenschaften
US4698272A (en) Extra-low iron loss grain oriented silicon steel sheets
DE69913624T2 (de) Kornorientieres Siliziumstahlblech und Herstellungsverfahren dafür
DE60016149T2 (de) Elektrostahlblech für kompakte Eisenkerne und dessen Herstellungsverfahren
EP2623634B1 (de) Orientierte elektromagnetische stahlplatte
KR102281528B1 (ko) 방향성 전자 강판 및 방향성 전자 강판의 제조 방법
EP3653759A1 (de) Orientiertes elektromagnetisches stahlblech und verfahren zur herstellung davon
EP3950971B1 (de) Orientiertes elektrostahlblech sowie verfahren zur herstellung davon
JP2791812B2 (ja) 鉄心加工性、耐熱性および張力付与性の優れた方向性電磁鋼板の絶縁皮膜形成方法及び方向性電磁鋼板
EP4273277A1 (de) Verfahren zur herstellung eines kornorientierten elektromagnetischen stahlblechs und glühseparator dafür
JP3979004B2 (ja) 方向性電磁鋼板の絶縁被膜形成方法
DE69205320T2 (de) CVD-Verfahren zum Herstellen einer Siliziumdiffusionsschicht und/oder Überzug auf der Oberfläche eines Metallsubstrates.
EP3913086B1 (de) Kornorientiertes elektrostahlblech mit ausgezeichneter isolierbeschichtungshaftung ohne forsteritbeschichtung
JP2006253555A6 (ja) 被膜密着性に優れた超低鉄損方向性電磁鋼板
JP2006253555A (ja) 被膜密着性に優れた超低鉄損方向性電磁鋼板
JP4787613B2 (ja) フェライト被膜付き方向性電磁鋼板
JP3091096B2 (ja) 優れたグラス被膜と磁気特性を得るための方向性電磁鋼板用焼鈍分離剤及びスラリー
EP1698706B1 (de) Verfahren zum glühen von kornorientiertem elektrostahlblech
JP4192818B2 (ja) 方向性電磁鋼板
EP3856938B1 (de) Verfahren zur herstellung eines mit einer isolationsschicht versehenen kornorientierten elektrobandes und kornorientiertes elektroband
RU2771766C1 (ru) Лист электротехнической стали с ориентированной зеренной структурой, имеющий превосходную адгезию изоляционного покрытия без покрытия из форстерита
JP3274409B2 (ja) 被膜密着性に優れ鉄損が極めて低い方向性電磁鋼板およびその製造方法
CA1297070C (en) Extra-low iron loss grain oriented silicon steel sheets
JPH0665644A (ja) 磁気特性の優れた方向性電磁鋼板の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002753070

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1501/KOLNP/2003

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2003507331

Country of ref document: JP

Ref document number: 1020037016778

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2002753070

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWE Wipo information: entry into national phase

Ref document number: 10481526

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2002753070

Country of ref document: EP