WO2002100917A1 - Open-ring copolymer, hydrogenated open-ring copolymer, processes for production of both, and compositions - Google Patents

Open-ring copolymer, hydrogenated open-ring copolymer, processes for production of both, and compositions Download PDF

Info

Publication number
WO2002100917A1
WO2002100917A1 PCT/JP2002/005531 JP0205531W WO02100917A1 WO 2002100917 A1 WO2002100917 A1 WO 2002100917A1 JP 0205531 W JP0205531 W JP 0205531W WO 02100917 A1 WO02100917 A1 WO 02100917A1
Authority
WO
WIPO (PCT)
Prior art keywords
ring
general formula
repeating unit
copolymer
opening metathesis
Prior art date
Application number
PCT/JP2002/005531
Other languages
English (en)
French (fr)
Inventor
Kazunori Taguchi
Yasuo Tsunogae
Hitomi Takeuchi
Yasuhiro Wakisaka
Kei Sakamoto
Original Assignee
Zeon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zeon Corporation filed Critical Zeon Corporation
Priority to US10/480,002 priority Critical patent/US6995226B2/en
Priority to KR1020037016051A priority patent/KR100883765B1/ko
Priority to DE60227956T priority patent/DE60227956D1/de
Priority to EP02738616A priority patent/EP1408064B1/en
Publication of WO2002100917A1 publication Critical patent/WO2002100917A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • C08G61/04Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms
    • C08G61/06Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds

Definitions

  • the present invention relates to a novel norbornene-based ring-opening metathesis copolymer (hereinafter referred to as “ring-opening metathesis copolymer” or “copolymer”) and a hydride of the copolymer. More specifically, the present invention relates to a ring-opening metathesis copolymer excellent in balance between low water absorption and electrical properties, metal adhesion and compatibility with other materials, and excellent in heat resistance, and a hydride thereof. . Background art
  • Ring-opening metathesis polymers of norbornene monomers containing no polar group and their hydrides are widely used for electrical insulation because of their excellent heat resistance, electrical properties, and low water absorption. It has low adhesion to metals such as copper and silicon or other materials such as glass, and has low compatibility with other compounds such as curing agents and epoxy resins.
  • a polymer obtained by polymerizing a norbornene-based monomer containing a polar group has been proposed.
  • a norbornene-based monomer having an ester group or a hydroxyl group such as acetate of 5,6-dihydroxymethyl-bicyclo- [2.2.1] 1-hepto-2-ene is used as a tungsten-based monomer.
  • Polymer having a large number of polar groups such as hydroxy groups obtained by homogenous ring-opening polymerization and hydrogenation in the presence of a catalyst Japanese Unexamined Patent Publication (Kokai) No.
  • An object of the present invention is to provide a ring-opening metathesis having excellent electrical properties, low water absorption, excellent adhesion to other materials such as metals, excellent compatibility with other compounds such as a curing agent, and high heat resistance.
  • An object of the present invention is to provide a polymer and a hydride thereof.
  • the present inventors have, as disclosed in JP-A-1 1 5 2 5 7 4 JP-8 main butoxycarbonyl tetracyclo [4.4. 0.1 2 '5.1 7.1 1 0 ] -3-dodecene and a norbornene-based monomer having three or more rings that give a high T g were attempted to be copolymerized using a tungsten-based catalyst, but a side reaction occurred and the desired molecular weight was obtained. And a ring-opening copolymer having a repeating unit ratio could not be obtained.
  • the present inventors As a result of further research to achieve the above-mentioned object, the use of a specific ruthenium-based catalyst makes it possible to obtain a repeating unit having only a non-polar group and a repeating unit having a hydroxyl group or a hydroxycarbonyl group.
  • a high molecular weight norbornene-based ring-opening metathesis copolymer and its hydride can be obtained, and the copolymer and its hydride can be used for adhesion to other materials such as metal and glass, and for other materials such as a curing agent.
  • the present inventors have found that they have excellent compatibility with compounds, and that they have a good balance of heat resistance, electrical properties, and low water absorption properties, and have completed the present invention.
  • the present invention comprises a repeating unit represented by the general formula (1) and a repeating unit represented by the general formula (2) or a repeating unit represented by the general formula (3).
  • the ratio of the number of hydroxy groups to the number of repeating units is 5 to 100%, and the weight average molecular weight in terms of polystyrene measured by gel permeation chromatography is 1,000 to 500,000.
  • a ring-opening metathesis copolymer which is
  • At least one of! ⁇ 1 to! ⁇ 4 is a substituent having a hydroxyl group (excluding a hydroxycarbonyl group), and the others are a hydrogen atom, a hydrocarbon having 1 to 20 carbon atoms.
  • R 5 , R 6 , R 7 and R 8 each independently represent a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms, and R 5 or R 6 is R 7 or R 8 May be combined with to form a ring.
  • N represents an integer of 1 to 2.
  • R 9 , R 1Q , R 11 and R 12 are each independently a hydrogen atom or a carbon atom Represents a hydrocarbon group of the numbers 1 to 20, wherein R 9 or R 1Q is bonded to R 11 or R 12 to form a ring. ) as well as .
  • the repeating unit represented by the general formula (4) and the repeating unit represented by the general formula (2) or (3) consist of a force and the ratio of the number of hydroxycarbonyl groups to the number of all repeating units.
  • R 13 to R 16 is a substituent having a hydroxycarbonyl group, and others are a hydrogen atom, a hydrocarbon group having 1 to 20 carbon atoms or a halogen atom, a silicon atom, Represents a group containing an atom, an oxygen atom or a nitrogen atom (excluding a hydroxycarbonyl group; p represents an integer of 0 to 2)
  • a repeating unit represented by the general formula (1) a repeating unit represented by the general formula (2) or (3), a repeating unit represented by the general formula (5), It consists of the repeating unit represented by the formula (6) or (7), and the total of the repeating units represented by the general formulas (1), (2) and (3) is 50 to 0% of all the repeating units.
  • General formula (5) a repeating unit represented by the general formula (1), a repeating unit represented by the general formula (2) or (3), a repeating unit represented by the general formula (5), It consists of the repeating unit represented by the formula (6) or (7), and the total of the repeating units represented by the general formulas (1), (2) and (3) is 50 to 0% of all the repeating units.
  • the sum of the repeating units represented by (6) and (7) is 50 to 100% of the total repeating units, the ratio of the number of hydroxy groups to all the repeating units is 5 to 100%, and gel permeation.
  • R 9 R 1Q R 11 and R 12 have the same meanings as described above.
  • R 9 R 1Q R 11 and R 12 have the same meanings as described above.
  • the repeating unit represented by the general formula (4) and the repeating unit represented by the general formula (2) or (3) A repeating unit represented by the general formula (8) and a repeating unit represented by the general formula (6) or (7), and represented by the general formulas (4) and (2)
  • the total of the repeating units represented by (3) and (3) is 500% of the total repeating units, and the total of the repeating units represented by the general formulas (8), (6) and (7) is 50% of the total repeating units.
  • a curable resin composition containing a curing agent and at least one copolymer selected from the above-mentioned ring-opening metathesis copolymers and hydrogenated ring-opening metathesis copolymers. Is done.
  • a monomer represented by the general formula (9) and a monomer represented by the general formula (10) or a monomer represented by the general formula (11) are Method for producing ring-opening metathesis copolymer including ring-opening and copolymerization in the presence of a catalyst mainly composed of an organic ruthenium compound to which a neutral electron-donating ligand is coordinated ,
  • the ring-opening metathesis copolymer of the present invention comprises a repeating unit represented by the general formula (1) and a repeating unit represented by the general formula (2) or (3), and
  • Some are composed of a repeating unit represented by the general formula (4) and a repeating unit represented by the general formula (2) or (3).
  • the hydride of the ring-opening metathesis copolymer of the present invention comprises a repeating unit represented by the general formula (1), a repeating unit represented by the general formula (2) or (3), and a compound represented by the general formula (5): A repeating unit represented by the general formula (6) or (7), and
  • the preferred ring-opening metathesis copolymer and hydrogenated ring-opening metathesis copolymer of the present invention are substantially free of repeating units other than the above-mentioned repeating units.
  • the repeating unit represented by the general formulas (1), (4), (5) and (8) constituting the ring-opening metathesis copolymer and the ring-opening metathesis copolymer hydride of the present invention is a hydroxyl group or A group containing a hydroxycarboxy group bonded as a substituent.
  • the repeating units represented by the general formulas (2), (3), (6) and (7) are those in which an unsubstituted force or a hydrocarbon group is bonded as a substituent.
  • the number of hydroxyl groups (excluding the hydroxyl groups in the hydroxycarbonyl group) is 5 to 100% of the number of repeating units constituting the ring-opening metathesis copolymer or the hydrogenated ring-opening metathesis copolymer. Preferably, it is 8 to 90%, more preferably 10 to 80%.
  • the proportion of the number of the hydroxycarbonyl groups is 5 to 50%, preferably 7 to 45%, based on the number of the repeating units constituting the ring-opening metathesis copolymer or the hydrogenated ring-opening metathesis copolymer. %, More preferably 8 to 40%.
  • the ratio of the number of hydroxyl groups in the copolymer to the number of hydroxyl groups in the above range By setting the ratio of the number of hydroxyl groups in the copolymer to the number of hydroxyl groups in the above range, the adhesion to other materials and the compatibility with other compounds are excellent, and the heat resistance is further improved. The balance between electrical properties and low water absorption properties.
  • the group containing a hydroxyl group or a hydroxycarbon group may be one which has already been bonded to the monomer used at the time of copolymerization, or may be subjected to a hydrolysis reaction after copolymerization or hydrogenation. It may be introduced.
  • the hydride of the ring-opening metathesis copolymer of the present invention has a total number of repeating units represented by the general formulas (1), (2) and (3) of 50 to 0%, preferably 30 to 0%, It is preferably 20 to 0%, particularly preferably 10 to 0%, and the total number of repeating units represented by the general formulas (5), (6) and (7) is 50 to 100%, preferably It is 70 to 100%, more preferably 80 to 100%, particularly preferably 90 to 100%.
  • the total number of repeating units represented by the general formulas (4), (2) and (3) is 50 to 0%, preferably 30 to 0%. %, More preferably 20 to 0%, particularly preferably 10 to 0%, and the total number of repeating units represented by the general formulas (8), (6) and (7) is 50 to 100%. %, Preferably 70 to 100%, more preferably 80 to 100%, particularly preferably 90 to 100%.
  • the repeating units represented by the general formulas (1) to (4) are units derived from a norbornene-based monomer, and the norbornene-based monomer is subjected to ring-opening metathesis copolymerization in the presence of a catalyst described below. Obtained by
  • the repeating units represented by the general formulas (5) to (8) are also units derived from a norbornene-based monomer, and the norbornene-based monomer is subjected to ring-opening metathesis copolymerization in the presence of a catalyst described below. Later, it is obtained by hydrogenating unsaturated bonds in the main chain.
  • the norbornoleneene-based monomer includes a bicycloheptene derivative where m, n or p is 0, a tetracyclododecene derivative where m, n or p is 1 and a hexahedral heptadecene where m, n or p is 2 Derivatives and the like are included. In addition, those in which a ring is further formed by a substituent are also included.
  • Examples of the substituent for forming a ring include a vinylene group, a methylene group, a dimethylene group, a trimethylene group, a tetramethylene group, a pentamethylene group, a hexamethylene group, and a heptamethylene group.
  • the repeating unit represented by the general formulas (2), (3), (6) and (7) is a norbornene group having three or more rings having no substituent or a hydrocarbon group bonded as a substituent. Derived from monomer.
  • I 7 ' 10 Dodeca 3-ene, 8-cyclohexenyltetracyclo [4. 4. 0. I 2 ' 5.
  • I 7 ' 10 Dode force 3 I-en, 8-cyclopentenyl tetracyclo [4. 4. 0. I 2 ' 5.
  • I 7 ' 10 Dode force 3-en, 8-phenyltetracyclo [4. 4. 0. I 2 '. 5
  • I 7' 10 dodecane force one 3-E emissions such tetracyclododecene cell down derivative or;. to Kisashikuro [6. 6. 1. I 3 '.
  • an unsubstituted or hydrocarbon group-substituted norbornene monomers can be used alone or in combination of two or more.
  • Pentade force one 3, 8, 10, 1 2-Tetoraen; tetracyclo [4. 4. 0. I 2' 5 I 7 '10] - 3- dodecene, 8- Echiriden tetracyclo [4. 4. 0. 1 2 '5 1 7 ⁇ 1 °.] - 3 - dodecene are preferred.
  • Bicyclic norbornene-based monomers include bicyclo [2.2.1] hept-2-ene, 5-methylbicyclo [2.2.1] hept-2-ene, 5-ethynolebicyclo [2.2] 1] Hept-1-ene, 5-propylbicyclo [2.2.1] Hept-12-ene, 5-butylbicyclo [2.2.1] Hept-2-ene, 5_pentylbicyclo [ 2.2.1] hept_2_en, 5_hexylbicyclo [2.2.1] hept-12-, 5-heptylbicyclo [2.2.1] heptone 5-en, 5- Octylbicyclo [2.2.1] hept-2-ene, 5-nonylbicyclo [2.2.1] heptose 2-ene, 5-decinolevisic mouth [2.2.1] hept-12-ene, 5 —Vinylbisic mouth [2.2.1] hept-12-ene, 5-ethylidenebicyclo [
  • the repeating unit represented by the general formulas (1), (4), (5) and (8) is a norbornene monomer to which a substituent containing a hydroxyl group or a hydroxycarbonyl group is bonded, A norbornene-based monomer to which a group that can be chemically changed to a hydroxyl group or a hydroxycarbonyl group by decomposition or the like is bonded, preferably a unit represented by the general formula (9) or (12) Derived from the monomer.
  • a substituent containing a hydroxyl group or a hydroxycarbonyl group contains a hydroxyl group or a hydroxycarbonyl group, a halogen atom, a silicon atom, an oxygen atom, or a nitrogen atom other than these two substituents is used. It may have a hydrocarbon group having 1 to 20 carbon atoms which may contain an atom as a substituent.
  • Examples of the norbornene monomer having a hydroxyl group include 5-hydroxybicyclo. [2.2.1] Hept-2-ene, 5-hydroxymethylbicyclo [2.2.1] Hepto-2-ene, 5,6-dihydroxymethylbicyclo [2.2.1] 1-hept-2-ene, 5-hydroxyethoxycarboninolecyclo [2.2.1] hept-12-, 5-methyl-5-hydroxyethoxycarbonylbicyclo [2.2.1] heptoto 2-, 5-hydroxybutoxycarbonylbicyclo [2.2.1] hept-12-ene, 5-hydroxypropoxycanoleboninolebicyclo [2.2.1] hept-2-ene, 5-Methyl-1-hydroxypropoxycarbonylbicyclo [2.2.1] bicycloheptene derivatives such as hept-12-ene; 8-hydroxytetracyclo [4. 4. 0. 12. 5. 1 7, 10] Dodeca- 31 , 8-hydroxymethyltetracyclo [4.4.
  • norbornene-based monomers having a hydroxycarbonyl group examples include 5-hydroxycarbonorebicyclo [2.2.1] hept-12-ene, and 5-hydroxycarbonolemethylbicyclo [2.2. 1] Hept-1-ene, 5, 6-dihydroxycarbonylinolecyclo [2.2.1] Hept-12-ene, 5-methyl-1-5-hydroxycarberobicyclo [2.2.1] 2.1.
  • Heptot-2-ene, 5-methyl-5,6-dihydroxycarbodirubicyclo [2.2.1] Heptot-2-ene, 5-hydroxycaslevonyl-5-hydroxycarbonylmethyl bicyclo [2.2.1] bicyclo heptene derivatives such hept one 2-E emissions; 5-arsenide Dorokishikarubo two Rutetorashikuro [. 4. 4. 0. I 2 ' 5 1 7 ⁇ 10] Dodeka 3 E down, 5 -. arsenide Dorokishikarubo two methyl tetracyclo [4. 4. 0. I 2 '5 1 7 1.
  • I 7' 10 dodeca one 3-E emissions; 8 arsenide Dorokishi carbonylation Rutetorashikuro [4. 4. 0. I 2 '. 5 I 7' 10] Dodeka 3 E down, 8- heat Dorokishikarubo - methyl tetracyclo [4. 4.0 . I 2 '5. I 7 ' 10] Dodeka three to E down, 8, 9 dihydric mud carboxymethyl Kano levo sulfonyl tetracyclo [4. 4. 0. I 2 '5 . 1 7' 10] dodecane force one 3 —Ene, 8-methyl-18-hydroxycarbonyltetracyclo [ 4. 4. 0. I 2 '5.
  • I 7' 10 Dodeka 3 E down, 8-methyl one 8, 9 dihydric Dorokishika Rubo sulfonyl tetracyclo [4. 4. 0. I 2 '5 . I 7' 10 ] Dode force 3-ene, 8-hydroxycarbo-loo 8-hydroxycarbylmethyltetracyclo [4. 4. 0. 1 2 ' 5. I 7 ' 10 ] Dode force 3- tetracyclo dodecene derivatives such as E emissions; Kisashikuro to 1 l hydroxycarboxylic carbonyl [.. 6. 6. 1. I 3 '. 6 I 10' 13 0 2 ⁇ 1 0 9 '14] - heptadecyl force one 4 one 1-hydroxycarbonylmethylhexacyclo [6.6.
  • the group that can be chemically changed to a hydroxyl group or a hydroxycarbonyl group may be any group that can be converted to a hydroxyl group or a hydroxycarbonyl group by decomposition or reduction.
  • R may be any of a linear, branched or cyclic saturated or unsaturated hydrocarbon group, and a group containing a halogen atom, a silicon atom, an oxygen atom or a nitrogen atom ( (Excluding a hydroxyl group and a hydroxycarbonyl group).
  • Examples of the norbornene-based monomer to which OCOR is bound include the above-mentioned forms such as bicycloheptene derivative, tetracyclododecene derivative, hexacic heptadecene derivative, acetate, propionate, butyrate, valate and benzoate. I can do it.
  • Examples of the norbornene-based monomer to which COOR is bonded include methyl ester, ethyl ester, isopropyl ester, n-butyl ester, t-butyl ester, and phenyl ester such as the aforementioned bicycloheptene derivative, tetracyclododecene derivative, and hexacycloheptacene derivative.
  • -Esters and benzyl esters examples include methyl ester, ethyl ester, isopropyl ester, n-butyl ester, t-butyl ester, and phenyl ester such as the aforementioned bicycloheptene derivative, tetracyclododecene derivative, and hexacycloheptacene derivative.
  • norbornene monomers to which dicarboxylic anhydride groups are bonded include bicyclo [2.2.1] hept-2-ene-5,6-dicarboxylic anhydride, 5-methylbicyclo [2.2.1] Heputo 2 _ En 5, bicycloheptene derivative conductor such as 6-dicarboxylic anhydride, tetracyclo [4. 4. 0. I 2 '5 . I 7' 10] dodecane force one 3-E down one 8, 9-1-di carboxylic acid anhydrides, 8-methyl tetracyclo [4. 4. 0. I 2 '5 .
  • the norbornene-based monomers having the above substituents can be used alone or in combination of two or more.
  • a bicyclic to tetracyclic norbornene-based monomer is preferable.
  • the general formula (9) or the general formula (9) In (12) a bicycloheptane derivative wherein m or p is 0, or a tetracyclododecene derivative wherein m or p is 1 is preferred.
  • the ring-opening metathesis copolymer and the hydrogenated ring-opening metathesis copolymer of the present invention have a weight average molecular weight of from 1,000 to 500,000, preferably from 2,000 to 400,000, more preferably from 4,000. 000-200,000. If the molecular weight is small, the mechanical strength is insufficient, and if it is large, the hydrogenation reaction after copolymerization may be difficult.
  • the ratio (MwZMn) between the weight average molecular weight (Mw) and the number average molecular weight (Mn) is usually 1 to 4, preferably 1.5 to 3.
  • the weight average molecular weight and the number average molecular weight are values in terms of polystyrene measured by gel permeation chromatography.
  • Preferred ring-opening metathesis copolymers and hydrides of the ring-opening metathesis copolymers of the present invention are amorphous resins.
  • the ring-opening metathesis copolymer and the hydrogenated ring-opening metathesis copolymer of the present invention have a glass transition temperature of preferably 100 ° C or higher, more preferably 120 ° C or higher.
  • the preferred ring-opening metathesis copolymer and hydride of the ring-opening metathesis copolymer of the present invention have a melt index at 280 ° C. (according to ASTM D1238) of about 1 to about 200, preferably about 5 to about 200. ⁇ 100.
  • the preferred ring-opening metathesis copolymer and ring-opening metathesis copolymer hydride of the present invention have relative permittivity and dielectric loss tangent of 3.2 or less and 0.015 or less, respectively, measured at 1 MHz according to JISC 2330. , Preferably not more than 3. ⁇ and not more than 0.01, respectively.
  • Copolymers and copolymer hydrogenation product of the present invention that the relative dielectric constant and dielectric loss tangent in the above range, even in the high-frequency signal of 1 GH Z, signal delay without and signal noise is that low.
  • the method for producing a ring-opening metathesis copolymer of the present invention comprises the above-mentioned norbornene-based monomer in the presence of a catalyst mainly composed of an organic ruthenium compound having a neutral electron-donating ligand. Is subjected to ring-opening metathesis copolymerization, and if necessary, hydrolysis or the like is performed to modify the substituent.
  • the method for producing a hydride of the ring-opening metathesis copolymer of the present invention comprises the above-mentioned norbornene-based monomer in the presence of a catalyst mainly composed of an organic ruthenium compound having a neutral electron-donating ligand.
  • the copolymer is subjected to ring-opening metathesis copolymerization, and then the main-chain double bond of the obtained copolymer is hydrogenated, and if necessary, the substituent is modified by hydrolysis or the like.
  • the catalyst used in the present invention is a catalyst mainly composed of an organic ruthenium compound to which a neutral electron donating ligand is coordinated.
  • the neutral electron donating ligand constituting the organic ruthenium compound is a ligand having a neutral charge when separated from the central metal (that is, ruthenium) force.
  • an anionic ligand is coordinated to a suitable organic ruthenium compound used in the present invention.
  • Anionic ligands are ligands that have a negative charge when separated from ruthenium. Further, there may be an anti-ayon.
  • the pair anion refers to an anion that forms an ion pair with the ruthenium cation, and is not particularly limited as long as it can form such a pair.
  • Suitable organic ruthenium compounds used in the present invention include those represented by general formulas (13) to (15).
  • Y 1 represents any Anion ligand independently
  • L 1 is independently represent a neutral electron donor ligand.
  • Y 1 and or L 1 respectively it Two, three or four may combine with each other to form a polydentate chelating ligand, a and b each independently represent an integer from 1 to 4, and X represents an integer from 1 to 6. is there.
  • L 2 each independently represents a neutral electron donating ligand
  • Y 2 each independently represents an anionic ligand.
  • Q represents hydrogen or carbon independently.
  • c, d, and y each independently represent 1 to 4 Represents the integer of e represents 0 or 1.
  • L 3 independently represents a neutral electron donating ligand
  • Y 3 each independently represents an aeon ligand.
  • X represents ayon.
  • F and g represent Each independently represents an integer of 1 to 4, and z is 1 or 2.
  • Neutral electron donating ligands include oxygen, water, carbonyls, amines, pyridines, ethers, nitriles, esters, phosphines, phosphinates, phosphites, and stibines , Sulfoxides, thioethers, amides, aromatics, diolefins (which may be cyclic), olefins (which may be cyclic), isocyanides, thiosyanates, heterocyclic carbene And the like.
  • pyridines such as viviridine; phosphines such as triphenylphosphine and tricyclohexylphosphine; aromatics such as p-cymene; cyclic diolephines such as cyclopentene; and 1,3-dimesityl Coordination of heterocyclic carbene compounds such as imidazoline-1-ylidene and 1,3-dimesitylimidazolidin-2-ylidene may increase the copolymerization activity.
  • phosphines such as triphenylphosphine and tricyclohexylphosphine
  • aromatics such as p-cymene
  • cyclic diolephines such as cyclopentene
  • 1,3-dimesityl Coordination of heterocyclic carbene compounds such as imidazoline-1-ylidene and 1,3-dimesitylimidazolidin-2-ylidene may increase the copolymerization activity.
  • anionic rooster ligands include halogens such as F, Br, C1, and I, diketonates such as hydride, acetylacetonate, cyclopentagenenyl, aryl, alkaryl, and alkyl groups. , Aryl, alkoxy, aryloxy, alkoxycarbonyl, arylcarboxyl, carboxyl, alkyl or arylsulfonate, alkylthio, alkylthio, arylthio, alkylsulfonyl, alkylsulfinyl And the like.
  • halogens such as F, Br, C1, and I
  • diketonates such as hydride, acetylacetonate
  • cyclopentagenenyl aryl, alkaryl, and alkyl groups.
  • Aryl alkoxy, aryloxy, alkoxycarbonyl, arylcarboxyl, carboxyl, alkyl or aryls
  • Q in the general formula (14) include hydrogen, an alkenyl group, an alkynyl group, an alkyl group, an alkylidene group, an aryl group, a carboxyl group, an alkoxy group, an alkenyloxy group, an alkynyloxy group, and an aryloxy group.
  • Examples of the polymerization catalyst represented by the general formula (13) include bis (cyclopentadenyl) norethenium, clos (cyclopentadenyl), bis (tripheninolephosphine) zoletem, and dichloro (dichloro). 1,5-cyclooctadiene) ruthenium, dichlorotris (trifininolephosphine) noretem, cis-dichlorobis (2,2'-bipyridinole) ruthenium 'dihydrate, dichlorobis [(p-cymene) ]], Dichloro mouth (2,7-dimethylocta-1,6-diene-1,8-diyl) ruthenium.
  • Examples of the polymerization catalyst represented by the general formula (14) include bis (tricyclohexylphosphine) benzylidene ruthenium dichloride, bis (triphenylphosphine) -1,3,3-diphenylpropenylidene ruthenium dichloride, Bis (tricyclohexylphosphine) phenylvinylidene ruthenium dichloride, bis (tricyclohexylphosphine) t-butylvinylideneruthenium dichloride, bis (1,3-diisopropylpropylimidazoline 1-2-ylidene) benzylidene ruthenium Dichloride, bis (1,3-dicyclohexylimidazoline-1-2 T-lidene) benzylidene ruthenium dichloride, (1,3-dimesitylimidazoline-1-2-ylidene) (tricyclohexylphosphine)
  • Examples of the polymerization catalyst represented by the general formula (15) include [(p-cymene) (CH 3 CN) 3 Ru] (BF 4 ) 2 and [(C 6 H 6 ) (CH 3 CN) 2 (CI) Ru] (BF 4 ), [(C 6 H 6) (CH 3 CN) 3 R u] (PF 6) 2, [(CH 3 CN) 2 (CI) (2, 7- Jimechinoreokuta one 2, 6—Gen 1, 8—Jil) Ru] (BF 4 ), [(CH 3 CN) 3 (2,7—Dimethyl 1, 2,6—Gen _1,8—Jil) Ru] (BF 4 ) 2 and the like.
  • pyridines As a method for increasing the copolymerization activity of the above-mentioned polymerization catalyst, pyridines; phosphines; a complex such as 1,3-diisopropylimidazoline-12-ylidene and 1,3-dimesitylimidazolidine_2-ylidene described above.
  • a neutral electron-donating compound such as a cyclic carbene compound may be added at a weight ratio of 1 to 100 times the weight of ruthenium metal.
  • the polymerization catalysts represented by the general formulas (13), (14) and (15) are used, in order to increase the copolymerization activity, for example, a diazo compound such as N 2 CHCOOEt is used.
  • acetylene compounds such as phenylalanine acetylene or E t 2 S i H
  • a silyl compound such as P h 2 Me S i H, relative to ruthenium metal
  • Et is an ethyl group
  • Ph is a phenyl group
  • Me is a methyl group.
  • the polymerization catalyst represented by the general formula (14) is preferred because it exhibits high copolymerization activity.
  • the ring-opening metathesis copolymerization reaction may be performed in a solvent or without a solvent, but after the copolymerization reaction, the hydrogenation reaction can be performed without isolating the polymer. Is more preferred.
  • the polymerization solvent is not particularly limited as long as it dissolves the copolymer and does not inhibit the copolymerization reaction.
  • polymerization solvent examples include aliphatic hydrocarbons such as pentane, hexane, and heptane; cyclopentane, cyclohexane, methylcyclohexane, dimethylcyclohexane, trimethylcyclohexane, ethylcyclohexane, dethiocyclohexane, and decahydro.
  • Alicyclic hydrocarbons such as naphthalene, bicycloheptane, tricyclodecane, hexahydroindenecyclohexane, and cyclooctane; aromatic hydrocarbons such as benzene, toluene, xylene, and mesitylene; nitromethane, benzene, and acetonitrile , Propio-tolyl, benzonitrile and other nitrogen-containing hydrocarbons; ethers such as diethyl ether, tetrahydrofuran, and dioxane; chlorophonorem, dichloromethane, 1,2-dichloroethane, and chlorobenzene.
  • halogen-containing hydrocarbons such as benzene, dichlorobenzene, and trichlorobenzene.
  • solvents a solvent having a relative dielectric constant of 2 to 5, preferably 2.1 to 4.5, or a mixture of two or more solvents is included in the above range of the relative dielectric constant.
  • Mixed solvent Is preferred.
  • the relative permittivity of the solvent is disclosed in "Organic Solvent", 2nd edition, John A. Riddick and Emorry E. Tops Jr., 1955.
  • the concentration of the norbornene monomer is preferably 1 to 50% by weight, more preferably 2 to 45% by weight, and 5 to 40% by weight. Is particularly preferred. If the concentration of the norbornene-based monomer is less than 1% by weight, the productivity of the copolymer may deteriorate. If the concentration exceeds 50% by weight, the viscosity after copolymerization is too high, and it is difficult to perform subsequent hydrogenation. May be.
  • the amount of the polymerization catalyst is the molar ratio of the norbornene-based monomer to the metal ruthenium in the polymerization catalyst.
  • Metal ruthenium: monomer 1: 100 to 1: 2,000,000, preferably 1 : 500 to 1: 1,000,000, more preferably 1: 1,000 to 1: 500,000. If the amount of catalyst is more than 1: 100, it may be difficult to remove the catalyst. If the ratio is less than 1: 2,000,000, sufficient copolymerization activity may not be obtained.
  • the polymerization temperature is not particularly limited, it is usually from 100 to 200 ° C, preferably from 50 to 180 ° C, more preferably from 30 to 160 ° C, and most preferably from 0 to 140 ° C. ° C.
  • the polymerization time is usually from 1 minute to 100 hours, and can be appropriately adjusted depending on the progress of the copolymerization.
  • a molecular weight modifier can be used to adjust the molecular weight of the copolymer and its hydride.
  • the molecular weight regulator include ⁇ -olefins such as 1-butene, 1-pentene, 1-hexene, and 1-octene; styrenes such as styrene and vinyl / retonolene; ethylvinyl ether and i-butyl vinyl ether Ethers such as glyceryl glycidyl ether; halogen-containing vinyl compounds such as aryl chloride; oxygen-containing compounds such as aryl acetate, aryl alcohol, and glycidyl methacrylate; and nitrogen-containing vinyl compounds such as acrylamide.
  • the molecular weight modifier in an amount in the range of 0.1 to 100 mol% based on the norbornene-based monomer, a ring-opening metathesis copolymer having a desired molecular weight and a hydride thereof can be obtained. Obtainable.
  • the hydrogenation reaction is a reaction in which hydrogen is usually introduced in the presence of a hydrogenation catalyst to convert an unsaturated double bond in the main chain of the ring-opening metathesis copolymer into a saturated single bond.
  • the hydrogenation catalyst used in the hydrogenation reaction may be any one that is generally used in hydrogenating an olefin compound.
  • hydrogenation catalysts examples include cobalt acetate and triethylanorenium, nickel acetyl acetonate and triisobutylaluminum, titanocene dichloride and n-butyllithium, zirconocene dichloride and sec-butynolelithium, and tetrabutoxy.
  • Ziegler catalysts comprising a combination of a transition metal compound such as titania and dimethylmagnesium and an alkali metal compound; organic ruthenium compounds represented by the above general formulas (13), (14) and (15) Noble metal complex catalysts such as rhodium, chlorotris (triphenylphosphine) rhodium, dichlorotris (triphenylphosphine) norethenium, boninole (dihydrido) tris (triphenylphosphine) ruthenium, etc .; nickel, palladium , Platinum, Heterogeneous catalyst in which metals such as indium and ruthenium are supported on carriers such as carbon, silica, diatomaceous earth, alumina, and titanium oxide; specifically, nickel silica, nickel diatomaceous earth, nickel // alumina, palladium Examples include carbon, palladium / silica, palladium / diatomaceous earth, and palladium alumina.
  • precious metal complex catalysts such as rhodium and ruthenium can be used because they do not cause side reactions such as denaturation of functional groups and can selectively hydrogenate carbon-carbon unsaturated bonds in the copolymer.
  • the organic ruthenium compounds represented by the above general formulas (13), (14) and (15) are more preferable, and a heterocyclic carbene compound having high electron donating property or ruthenium coordinated with a phosphine is preferable. Compounds are particularly preferred.
  • the organic ruthenium compounds represented by the general formulas (13), (14), and (15) are also polymerization catalysts as described above, after completion of the copolymerization reaction, the compounds can be directly used as a hydrogenation catalyst, or A compound such as ethyl butyl ether or a catalyst modifier such as ⁇ -olefin is added to activate the compound, and then the compound can be directly used for the hydrogenation reaction.
  • the hydrogenation reaction is usually performed in an organic solvent.
  • the organic solvent can be appropriately selected depending on the solubility of the hydride to be generated, and the same organic solvent as the polymerization solvent can be used. Therefore, after the copolymerization reaction, the reaction can be carried out by adding the hydrogenation catalyst without changing the solvent.
  • Suitable conditions for the hydrogenation reaction vary depending on the hydrogenation catalyst used, but the hydrogenation temperature is usually from 120 to 250 ° C, preferably from 110 to 220 ° C, more preferably from 0 to 200 ° C. C, and the hydrogen pressure is usually 0.01 to 1 MPa, preferably 0.05 to 8 MPa, more preferably 0.1 to 5 MPa. If the hydrogenation temperature is lower than 120 ° C, the reaction rate will be slow.
  • the hydrogenation reaction time is appropriately selected to control the hydrogenation rate.
  • the hydrogenation reaction time is in the range of 0.1 to 50 hours, 50% or more, preferably 70% or more, more preferably 80% or more, most preferably, of the carbon-carbon double bonds of the main chain in the copolymer. Preferably 90% or more can be hydrogenated.
  • the functional group is modified by hydrolysis or the like, if necessary.
  • one OCOR, —COOR, or a carboxylic anhydride group can be modified to one OH or —C ⁇ OH by hydrolysis or the like.
  • This modification reaction can be carried out in the same manner as the generally known method of decomposing an ester or a carboxylic anhydride to give an alcohol or a carboxylic acid.
  • Examples of the modification reaction method include a method by hydrolysis, a method by thermal decomposition, a method by hydrogenation reduction, and the like.
  • the method for hydrolyzing the ester or carboxylic anhydride include: (a) a method of directly reacting with water, (b) a method of reacting with an aqueous alkali solution such as sodium hydroxide, potassium hydroxide, or aqueous ammonia, ( c) a method of reacting with an aqueous acid solution such as hydrochloric acid, sulfuric acid, phosphoric acid, or organic sulfonic acid; and (d) a method of transesterification with a lower alcohol having 1 to 6 carbon atoms or a lower carboxylic acid having 1 to 6 carbon atoms. And so on.
  • an alkaline compound such as sodium hydroxide, potassium hydroxide, ammonia, or an amine compound may be used.
  • the hydrolysis reaction can be performed in the absence of a solvent or in the presence of a solvent.
  • the solvent those similar to those used in the polymerization solvent and the hydrogenation reaction solvent can be used, and in addition, water, alcohol, ester, and the like can be used.
  • Pyrolysis is usually performed with — OCOR, COOR, or carboxylic anhydride groups. This is carried out by heating the ring metathesis copolymer or the hydrogenated ring-opening metathesis copolymer to 100 ° C. or more and 400 ° C. or less for 1 second or more.
  • R is a secondary or tertiary alkyl group such as an isopropyl group, a 2-ethylhexyl group, a 2-phenylethyl group, a t-butyl group, because the thermal decomposition reaction is accelerated.
  • the heating temperature is preferably 150 ° C or higher.
  • the method by hydrogenation reduction is performed by — hydrogenating OCOR or one COOR or by hydrogenating carboxylic anhydride groups.
  • the hydrogenation catalyst used in this hydrogenation reduction method the same catalyst as that used for hydrogenating the main chain double bond of the ring-opening copolymer is used. It can be formed almost in the same way as when hydrogenating the main chain double bond. Therefore, when the main chain double bond of the ring-opening copolymer is hydrogenated, one OCOR, one COOR or carboxylic anhydride group may be hydrogenated and reduced simultaneously; or the main chain double bond may be hydrogenated. After that, —OCOR, —COOR or carboxylic anhydride groups may be hydrogenated; or after one OCOR, COOR or carboxylic anhydride groups are hydrogenated, the main chain double bond is removed. It may be hydrogenated.
  • the ring-opening metathesis copolymer or the hydride of the ring-opening metathesis copolymer is one of OCOR, _COOR, or —OCOR in a ring-opening metathesis copolymer or a ring-opening metathesis copolymer hydride having a carboxylic acid anhydride group. It is preferable that 50% or more, preferably 70% or more, more preferably 80% or more, and most preferably 90% or more of one COOR or carboxylic acid anhydride group be obtained by conversion to one OH or one COOH.
  • the ring-opening metathesis copolymer or hydride of the ring-opening metathesis copolymer of the present invention is excellent in electrical insulation, electrical properties, and low water absorption.
  • the water absorption is 2% or less, preferably 1.5% or less, as measured by JIS K 7209.
  • the adhesion is such that the peeling from the intersection of the X-cut portion with the copper, silicon or glass substrate by the X-cut tape method specified in JIS K5400 is 1.5 mm or less, preferably 1 mm or less.
  • the ring-opening metathesis copolymer or hydride of the ring-opening metathesis copolymer of the present invention is excellent in electric properties, low water absorption, and excellent in adhesion to other materials such as metals. Furthermore, compatibility with a compound having a functional group such as a curing agent is also good.
  • the curable resin composition of the present invention contains a copolymer selected from the above-mentioned ring-opening metathesis copolymer and hydrogenated ring-opening metathesis copolymer, and a curing agent.
  • a curing agent for example, an ionic curing agent, a radical curing agent, or a curing agent having both ionic and radioactive properties is used.
  • ionic curing agent examples include aliphatic polyamine compounds such as hexamethylene diamine, triethylene tetraamine, diethylene triamine, and tetraethylene pentamine;
  • 1,3-butanediole, 1,4-butanediole, diol compounds such as hydroquinone dihydroxyxyl ether, tricyclodecanedimethanol; triols such as 1,1,1-trimethylolpropane; phenol novolak, cresol novolak, etc.
  • Polyamide compounds such as polyamide, polyhexamethylene diamine terephthalamide, polyhexamethylene disophthalamide; hexamethylene diisocyanate, tolile Diisocyanate compounds such as didisocyanate and triglycidyl isocyanurate; phenol novolak type epoxy compounds, cresol novolac type epoxy compounds, tarezole type epoxy compounds, bisphenol A type epoxy compounds, bisphenol F type epoxy compounds Glycidyl ether type epoxy compounds such as brominated bisphenol A type epoxy compound, brominated bisphenol F type epoxy compound; alicyclic epoxy compound, glycidyl ester type epoxy compound, glycidylamine type epoxy compound, isocyanurate type Polyvalent epoxy compounds such as epoxy compounds; and the like.
  • radical curing agent examples include methyl ethyl ketone peroxide, cyclohexanone peroxide, 1,1_ (t-butylperoxy) -1,3,5, trimethyl phenol, 2,2 —Bis (t-butyl-peroxy) butane, t-butylhydride peroxide, 2,5-dimethylhexane 1,2,5-dihydride peroxide, ditamylperoxide, 2,5-dimethiso I 2,5-di (T-butylperoxy) hexine 3, a, a'-bis (t-butylperoxy-1m-isopropyl) benzene, otatanylperoxide, isobutyrylperoxide, peroxydicarbonate, etc.
  • Organic peroxides and the like can be mentioned.
  • curing agent having both ionic and radioactive properties examples include, for example, cyanurate such as triallyl cyanurate; 1-aryl isocyanurate, 1,3-diallyl isocyanurate, 1,3-diallyl-15-benzyl isocyanurate; Triallyl isocyanurate, 1-aryl-1,3,5-dibenzyl isocyanurate, 1-aryl-1,3,5-diglycidyl isocyanurate, 1,3-diallyl-5-glycidylyl isocyanurate, etc. Isocyanurate.
  • cyanurate such as triallyl cyanurate
  • 1-aryl isocyanurate 1,3-diallyl isocyanurate, 1,3-diallyl-15-benzyl isocyanurate
  • Triallyl isocyanurate 1-aryl-1,3,5-dibenzyl isocyanurate, 1-aryl-1,3,5-diglycidyl isocyanurate, 1,3-diallyl-5
  • curing agents can be used alone or in combination of two or more.
  • an isocyanurate curing agent is preferable because a cured product having excellent flame retardancy can be obtained.
  • the amount of the curing agent is appropriately selected depending on the purpose of use, but is usually 0.1 to 200 parts by weight based on 100 parts by weight of the ring-opening metathesis copolymer or 100% by weight of the hydrogenated ring-opening metathesis copolymer. Parts by weight, preferably 1 to 150 parts by weight, more preferably 10 to 100 parts by weight.
  • the preferred curable resin composition of the present invention is one in which a ring-opening metathesis copolymer or a hydrogenated ring-opening metathesis copolymer is uniformly mixed with a curing agent. When in a compatible state, the composition does not separate into two layers and the composition itself does not become opaque.
  • the composition of the present invention includes, in addition to the above components, rubber, other resins, flame retardants, fillers, heat stabilizers, aging inhibitors, weather stabilizers, ultraviolet absorbers, leveling agents, antistatic agents.
  • Agents slip agents, anti-blocking agents, anti-fogging agents, lubricants, dyes, pigments, natural oils, synthetic oils, waxes, emulsifiers, etc., the amount of which does not impair the object of the present invention. It is appropriately selected within the range.
  • the curable composition of the present invention has excellent electrical properties when it is cured, so that it can be used as an insulating material for multi-layer substrates, electronic components, IC chips, wiring, etc .; pre-predader; solder mask; It is also suitable for protective films and inter-layer insulating films for substrates, electronic components, IC chips, display elements, etc .; materials for display devices such as EL devices and liquid crystal devices; and also for element-containing multilayer circuit boards.
  • the molecular weight was measured as a polystyrene equivalent value by gel permeation 'chromatography (GPC) using tetrahydrofuran as a solvent.
  • the glass transition temperature (Tg) was measured with a differential scanning calorimeter at a rate of 10 ° C / min.
  • the copolymerization reaction solution was poured into a large amount of isopropanol to precipitate a solid. After filtration and washing, the mixture was dried under reduced pressure at 40 ° C for 18 hours to obtain a ring-opening metathesis copolymer.
  • the yield of the obtained ring-opening metathesis copolymer was 98 parts, and the glass transition temperature (Tg) was 178 ° C.
  • Monomer ratio in the copolymer was tetracyclo [4. 4. 0. I 2 '5 .
  • Tetracyclo [4.4.1 0.1 2 '5.1 7' 10] Dodeka 3 E down 77.8 parts, and 5-hydroxycarboxylic ethoxy Kano repo two / Rebishikuro [2.2.1] hept-one 2 - the E down 22.2 parts, tetracyclo [4. 4. 0. I 2 '. 5 I 7' 10] dodecane force one 3-E emissions 37 parts of 5-hydroxycarboxylic ethoxy Kano levo Nino Levi cyclo [2 [2. 1] A ring-opening metathesis copolymer was obtained in the same manner as in Example 1, except that 63 parts of heptose 2-ene were used.
  • the yield of the resulting ring-opening metathesis copolymer in 63 parts, Ding 8 was 154 ° C.
  • Tetracyclo [4.4.1 0.1 2 '5.1 7 - 10] de de force one 3-E down 77.8 parts, and 5-hydroxycarboxylic ethoxycarbonyl Nino Levi cyclo [2.2.1] hept-one 2-E down 22. 2 parts, 8 E dust Den tetracyclo [4.4.1 0.1 2 '5-1 7' 10] dodecane force one 3-E down 80.3 parts, and 5- A ring-opening metathesis copolymer was obtained in the same manner as in Example 1 except that hydroxyethoxycarbonylbicyclo [2.2.1] hebut-1-ene was changed to 19.7 parts.
  • the yield of the obtained ring-opening metathesis copolymer was 95.1 parts, and T g was 17 It was 5 ° C.
  • Monomer ratio in the copolymer was 8 E dust Den tetra cyclo [4. 4. 0. I 2 '5 . I 7' 10]
  • Heptoe-2-ene was 82Z18 (mol / mol). The ratio of the number of hydroxyl groups to all the repeating units was 18%.
  • Toluene (relative dielectric constant 2.379) in tetrahydrofuran as a polymerization solvent, 0.91 part of charged amount of 1-hexene in 0.91 part, and (1,3-dimesitylimidazolidine 1-2-ylidene) (tricyclohexane) Hexylphosphine)
  • a ring-opening metathesis copolymer was obtained in the same manner as in Example 3, except that the amount of benzylidene ruthenium dichloride was changed to 0.02 parts.
  • the hydrogenation reaction solution was poured into a large amount of isopropanol to completely precipitate solids, washed by filtration, and dried under reduced pressure at 90 ° C for 18 hours to obtain a hydrogenated ring-opening copolymer.
  • the T g of the obtained hydrogenated ring-opening copolymer was 112 ° C.
  • ring-opening copolymer was dissolved in 65.3 parts of tetrahydrofuran, and then charged into an autoclave equipped with a stirrer. Then, a hydrogenation catalyst solution obtained by dissolving 0.09 parts of bis (tricyclohexynolephosphine) benzylideneyl (IV) dichloride and 0.8 parts of ethyl butyl ether in 16.3 parts of tetrahydrofuran was added thereto. The hydrogenation reaction was performed at 100 ° C. for 4 hours at IMP a.
  • the hydrogenation reaction solution was poured into a large amount of isopropanol to completely precipitate solids, washed by filtration, and dried under reduced pressure at 70 ° C for 18 hours to obtain a hydrogenated ring-opening copolymer.
  • the T g of the obtained hydrogenated ring-opening copolymer was 93 ° C.
  • One part of the obtained ring-opening copolymer was dissolved in 39 parts of cyclohexane, and then charged in an autoclave equipped with a stirrer. Next, a hydrogenation catalyst solution obtained by dissolving 0.05 parts of bis (tricyclohexylphosphine) benzylidene ruthenium (IV) dichloride and 0.98 parts of ethylbutyl ether in 3.9 parts of cyclohexane was added, and hydrogen pressure was added. The hydrogenation reaction was performed at 140 ° C for 6 hours at IMP a.
  • the hydrogenation reaction solution was poured into a large amount of isopropanol to completely precipitate a solid, washed by filtration, and dried under reduced pressure at 40 ° C for 18 hours to obtain a ring-opened copolymer hydride.
  • a solution prepared by dissolving 1 part of the obtained hydrogenated ring-opening copolymer in 200 parts of toluene was charged into a glass reactor equipped with a stirrer. After adding 20 parts of trifluoroacetic acid and heating under reflux for 12 hours, the reaction solution was poured into a large amount of isopropanol to completely precipitate solids, washed by filtration, washed, dried under reduced pressure at 80 ° C for 18 hours, and hydrolyzed. I got something.
  • the T g of the hydrolyzate is 158 ° C, and a wide range of carboxylic acid O around 3000 cm- 1 is determined by IR spectrum measurement. It was confirmed that absorption due to 1 H stretching vibration appeared. Furthermore, since the absorption derived from the ester group c_o stretching vibration near 1150 cm- 1 disappeared completely, it was confirmed that the hydrolysis rate was 100%.
  • the ratio of the number of hydroxycarbonyl groups to all repeating units was 31%.
  • the polymerization reaction solution was poured into a large amount of isopropanol to precipitate a solid, which was separated by filtration, washed, and dried under reduced pressure at 40 ° C for 18 hours to obtain a ring-opened copolymer.
  • One part of the obtained ring-opened copolymer was dissolved in 39 parts of a cycling hexane and then charged in an autoclave equipped with a stirrer. Then, a hydrogenation catalyst solution obtained by dissolving 0.1 part of bis (tricyclohexylphosphine) benzylidene ruthenium (IV) dichloride and 0.88 part of ethyl butyl ether in 7.8 parts of cyclohexane is added. The hydrogenation reaction was performed at 10 MPa and 100 ° C. for 8 hours.
  • the hydrogenation reaction solution was poured into a large amount of isopropanol to completely precipitate a solid, washed by filtration, and dried under reduced pressure at 40 ° C for 18 hours to obtain a ring-opened copolymer hydride.
  • 1H-NMR spectroscopy confirmed that the ester group was completely preserved and that 99% or more of the carbon-carbon double bonds in the main chain had been hydrogenated.
  • Monomer ratio in the copolymer was tetracyclo in [4. 4. 0. 1 2 '5 . I 7' 10]
  • Dodeka 3 E down dicarboxylic acid anhydride 8 OZ 20 (Mo Honoré / Monore) there were.
  • a hydrogenation reaction was performed in the same manner as in Example 4 except that the obtained ring-opened copolymer was used.
  • a glass reactor equipped with a stirrer was charged with 1 part of the obtained hydrogenated ring-opening copolymer and 200 parts of tetrahydrofuran. Thereto was added 20 parts of a methanol solution of sodium methoxide (10%), and the mixture was refluxed for 12 hours. After the reaction was stopped by adding 13.5 parts of 10% hydrochloric acid, the reaction solution was poured into a large amount of isopropanol to completely precipitate a solid, which was separated by filtration, washed, and dried under reduced pressure at 80 ° C for 18 hours.
  • the T g of the reaction product was 110 ° C., and it was confirmed by IR spectrum measurement that the rate of ring opening of the cyclic acid anhydride was 100%. The ratio of the number of hydroxycarbonyl groups to all repeating units was 20%.
  • the monomer 8-methyl-8-main-butoxycarbonyl tetracyclo [4.4.1 0.1 2 '5. [1 7 ⁇ 10 ]-Polymerization reaction was carried out in the same manner as in Example 4 except for using 100 parts of 3-dodecene.
  • a hydrogenation reaction was carried out in the same manner as in Example 4 except that the obtained ring-opened polymer was used.
  • Mn number average molecular weight
  • Mw weight average molecular weight
  • a reactor was charged with 10 parts of the polymer hydride obtained in Comparative Example 1, 10 parts of N-methylpyrrolidone, 50 parts of propylene resin corn, and 8 parts of a hydration-powered rim, and stirred at 190 ° C for 5 hours. Stirred.
  • the obtained reaction solution was poured into a large amount of a mixed solution of water, tetrahydrofuran and hydrochloric acid to coagulate the hydrolyzate.
  • the coagulated polymer was washed with water and dried to obtain a hydrolyzate.
  • the T g of the obtained hydrolyzate was 205 ° C., and the hydrolysis rate was 95%.
  • the number of ester groups was 5% of the total repeating units, and the ratio of the number of hydroxycarbon groups was 95%.
  • a hydrogenation reaction was carried out in the same manner as in Example 4 except that the obtained ring-opened polymer was used.
  • the hydrogenation rate was over 99%.
  • the number of functional groups for all repeating units was 0%.
  • Ring-opening metathesis copolymers or ring-openings obtained in Examples 1 to 9 and Comparative Examples 1 to 3 Two parts of the hydride of the metathesis copolymer were dissolved in 6.5 parts of benzene. Each solution was filtered under pressure, and the filtrate was spin-coated on each of a copper substrate and a silicon substrate. These substrates were heated at 60 ° C for 2 minutes, and then heated and dried at 200 ° C for 2 hours under a nitrogen stream, so that the film thickness (apparently) adhered to the copper and silicon substrates 30 ⁇ 1 A film of a mixed copolymer and a hydrogenated copolymer was obtained.
  • the spin-coating conditions were appropriately adjusted, and the same operation as described above was performed to obtain a film having a thickness of about 5 ⁇ m on the Teflon substrate.
  • the adhesiveness of each film adhered to the copper substrate and the silicon substrate was measured by an X-cut tape test according to JIS K5400, and ⁇ : 1.0 mm or less, 0 to 2.0 mm, X: 2.0 mm or more were used as indices.
  • the film was carefully peeled from the Teflon substrate, and the water absorption, the dielectric constant, and the dielectric loss tangent of the peeled film were measured.
  • the water absorption was measured according to JIS K 7209, and ⁇ : 1% or less, ⁇ : 1-2%, X:
  • the dielectric constant and the dielectric loss tangent were measured at a high frequency of 1 MHz according to JIS C2330, and indicated by the following indices.
  • the signal delay and signal noise were observed by curing a copolymer solution containing a curing agent, forming a conductor layer wiring on the surface by plating, and passing a high frequency signal of 1 GHz.
  • the case where there was substantially no delay was evaluated as ⁇
  • the case where it was present was evaluated as X
  • the case where there was substantially no signal noise was evaluated as
  • the case where it was present was evaluated as X.
  • ring-opening metathesis copolymerization of a norbornene-based monomer having a group such as a hydroxyl group or a hydroxycarbonyl group and a norbornene-based monomer having three or more rings can be performed.
  • the desired monomer * a composition ratio and high molecular weight can be obtained.
  • the ring-opening metathesis copolymer of the present invention and its hydride have low water absorption, low signal delay and signal noise, have excellent adhesion to copper-silicon, and have low compatibility with conventional products. It has excellent compatibility with hardeners.
  • the composition containing the copolymer and hydride of the present invention and a curing agent can be suitably used as an electrical insulating material for electronic components and multilayer circuit boards by curing the composition.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Description

明 細 書 開環共重合体、 開環共重合体水素化物、 それらの製造方法および組成物 発明の属する技術分野
本発明は、 新規なノルボルネン系開環メタセシス共重合体 (以下、 「開環メタセシ ス共重合体」 または 「共重合体」 という) および該共重合体の水素化物に関する。 よ り詳細には、 低吸水性及び電気特性と、 金属密着性および他材料との相溶性とのバラ ンスに優れ、 しかも耐熱性に優れた開環メタセシス共重合体およびその水素化物に関 する。 背景技術
極性基を含まないノルボルネン系単量体の開環メタセシス重合体およびその水素 化物は、 耐熱性、 電気特性、 低吸水性に優れているため、 電気絶縁用途に広く使われ ている。 し力 し、 銅やシリコンなどの金属あるいはガラスなどの他材料に対する密着 性が低く、 硬化剤やエポキシ樹脂などの他の化合物との相溶性も低い。
一方、 極性基を含むノルボルネン系単量体を重合したものが提案されている。 具体 的には、 5, 6—ジヒ ドロキシメチルービシクロ一 [2. 2. 1] 一へプト一 2—ェ ンのアセテートのごときエステル基またはヒ ドロキシル基を有するノルボルネン系 単量体をタングステン系触媒の存在下で単独開環重合し、水素化して得られたヒドロ キシル基等の極性基を多数有する重合体 (特開平 5— 1 55988号公報) ;タンダ ステン系触媒を用いて得られた 8—メ トキシカルボ二ルテトラシクロ [4. 4. 0. 12' 5. 17' 10] -3-ドデセンの単独開環重合体や、 8—メ トキシカルボニルテト ラシクロ [4. 4. 0. I 2' 5. 17' 10] — 3—ドデセンとビシクロ [2. 2. 1] ヘプトー 2 _ェンとの開環共重合体を、 水素化し、 さらに加水分解して得られるヒ ド ロキシカルボ二ル基を有する重合体 (特開平 1 1— 52574号公報) が開示されて いる。 これらの重合体は、 極性基を含まない重合体に比べ密着性が若干改善されてい るけれど、 吸水率が高く、 GHz帯域の高周波信号の伝搬遅延時間が長く、 また信号 ノイズを拾いやすい。 また上記のごとく極性基を有するノルボルネン系単量体と 2環 のノルボルネン系単量体とからなる高分子量の共重合体は、 ガラス転移温度 (T g ) が低く、 耐熱性も不十分であつた。 発明の開示
本発明の目的は、 電気特性に優れ、 吸水性が低く、 且つ金属などの他材料との密着 性および硬化剤など他化合物との相溶性に優れ、 さらに高耐熱性を有する開環メタセ シス共重合体およびその水素化物を提供することにある。
本発明者らは、 特開平 1 1— 5 2 5 7 4号公報などに開示されているように、 8— メ トキシカルボニルテトラシクロ [ 4 . 4 . 0 . 1 2' 5. 1 7· 1 0] - 3 -ドデセンと、 高い T gを与える 3環以上の環を有するノルボルネン系単量体とをタングステン系 触媒を用いて共重合させようとしたが、 副反応が起きて、 所望の分子量及び繰り返し 単位比を有する開環共重合体を得ることができなかった。
そこで、 本発明者らは。 上述の目的を達成するためにさらに研究を行った結果、 特 定のルテニウム系触媒を用いることによって、 ヒ ドロキシル基またはヒ ドロキシカル ボニル基を有する繰り返し単位と無極性基のみからなる繰り返し単位が所望の割合 で結合した高分子量のノルボルネン系開環メタセシス共重合体およびその水素化物 を得ることができ、 さらにその共重合体およびその水素化物が金属やガラスなどの他 材料に対する密着性および硬化剤など他化合物との相溶性に優れ、 さらに耐熱性、 電 気特性および低吸水性の特性をバランスよく有することを見出し、本発明を完成する に至った。
力 くして本発明によれば、 一般式 (1 ) で表される繰り返し単位と、 一般式 (2 ) で表される繰り返し単位または一般式 (3 ) で表される繰り返し単位とからなり、 全 繰り返し単位の数に対するヒ ドロキシル基の数の割合が 5〜 1 0 0 %であり、 かつゲ ルパーミエ一シヨンクロマトグラフィ一で測定したポリスチレン換算の重量平均分 子量が 1, 0 0 0〜5 0 0, 0 0 0である開環メタセシス共重合体、
[化 1 ]
Figure imgf000005_0001
(式 (1) 中、 !^1〜!^4の少なくとも一つがヒドロキシル基を有する置換基 (ヒ ドロ キシカルボ二ル基は除く) であり、 その他は水素原子、 炭素数 1〜20の炭化水素基 又はハロゲン原子、 ケィ素原子、 酸素原子もしくは窒素原子を含有する基 (ヒ ドロキ シル基及びヒドロキシカルボエル基を除く) を示す。 mは 0〜2の整数を表す。)
[化 2]
Figure imgf000005_0002
(式 (2) 中、 R5、 R6、 R 7および R 8は、 それぞれ独立に、 水素原子又は炭素数 1〜20の炭化水素基を示し、 R 5または R 6が R 7または R 8と結合して環を形成し ても構わない。 nは 1〜2の整数を表す。)
[化 3]
Figure imgf000005_0003
(式 (3) 中、 R9、 R1Q、 R 11および R 12は、 それぞれ独立に、 水素原子又は炭素 数 1〜20の炭化水素基を示し、 R 9または R1Qが R 11または R 12と結合して環を形 成している。) 及び .
一般式 (4) で表される繰り返し単位と、 一般式 (2) または (3) で表される繰 り返し単位と力、らなり、全繰り返し単位の数に対するヒドロキシカルボニル基の数の 割合が 5〜 50 %であり、かつゲルパーミエーシヨンクロマトグラフィ一で測定した ポリスチレン換算の重量平均分子量が 1, 000〜500, 000である開環メタセ シス共重合体が提供される。
[化 4]
, 、
Figure imgf000006_0001
(4)
(式 (4) 中、 R13〜R 16の少なくとも一つがヒ ドロキシカルボ二ル基を有する置 換基であり、 その他は水素原子、 炭素数 1〜20の炭化水素基又はハロゲン原子、 ケ ィ素原子、 酸素原子もしくは窒素原子を含む基 (ヒ ドロキシカルボ二ル基を除く) を 示す。 pは 0〜2の整数を表す。)
本発明によれば、一般式(1)で表される繰り返し単位と、一般式(2) または(3) で表される繰り返し単位と、 一般式 (5) で表される繰り返し単位と、 一般式 (6) または (7) で表される繰り返し単位とからなり、 一般式 (1)、 (2) 及び (3) で 表される繰り返し単位の合計が全繰り返し単位の 50〜0%であり、 一般式 (5)、
(6) 及び (7) で表される繰り返し単位の合計が全繰り返し単位の 50〜100% であり、 全繰り返し単位に対するヒ ドロキシル基の数の割合が 5〜 100%であり、 かつゲルパーミエーションクロマトグラフィ一で測定したポリスチレン換算の重量 平均分子量が 1, 000~500, 000である開環メタセシス共重合体水素化物、
Figure imgf000007_0001
(式 (5) 中、 1〜!^4および mは前記と同様の意味を表す。)
[化 6]
Figure imgf000007_0002
(式 (6) 中、 R5 R6 R7 R8および nは前記と同様の意味を表す。)
[化 7]
Figure imgf000007_0003
(式 (7) 中、 R9 R1Q R11および R12は前記と同様の意味を表す。) 及び 一般式 (4) で表される繰り返し単位と、 一般式 (2) または (3) で表される繰 り返し単位と、 一般式 (8) で表される繰り返し単位と、 一般式 (6) または (7) で表される繰り返し単位とからなり、 一般式 (4)、 (2) 及び (3) で表される繰り 返し単位の合計が全繰り返し単位の 50 0 %であり、 一般式( 8 ) ( 6 ) 及び ( 7 ) で表される繰り返し単位の合計が全繰り返し単位の 50 100%であり、全繰り返 し単位に対するヒ ドロキシカルボニル基の数の割合が 5〜50%であり、かつゲルパ 一ミエーシヨンクロマトグラフィ一で測定したポリスチレン換算の重量平均分子量 が 1, 000〜 500, 000である開環メタセシス共重合体水素化物が提供される。
[化 8]
Figure imgf000008_0001
(式 (8) 中、 R13~R16および pは前記と同様の意味を表す。)
また本発明によれば、前記開環メタセシス共重合体及び開環メタセシス共重合体水 素化物から選ばれる少なくとも 1種の共重合体と、硬化剤とを含有する硬化性樹脂組 成物が提供される。
さらに本発明によれば、 一般式 (9) で表される単量体と、 一般式 (10) で表さ れる単量体または一般式 (1 1) で表される単量体とを、 中性の電子供与性配位子が 配位している有機ルテ二ゥム化合物を主成分とする触媒の存在下で、 開環 , 共重合することを含む開環メタセシス共重合体の製造方法、
[化 9]
Figure imgf000008_0002
(式 (9) 中、 !^〜 4および mは前記と同様の意味を表す。)
[化 10]
Figure imgf000009_0001
(式 (10) 中、 R5、 R6、 R7. R8、 および nは前記と同様の意味を表す。) [化 1 1 ]
Figure imgf000009_0002
(式 (1 1) 中、 R9、 R1Q、 R11および R12は、 前記と同様の意味を表す。) 及び 一般式 (12) で表される単量体と、 一般式 (10) または (1 1) で表される単 量体とを、 中性の電子供与性配位子が配位している有機ルテユウム化合物を主成分と する触媒の存在下で、 開環メタセシス共重合することを含む開環メタセシス共重合体 の製造方法、
[化 12]
Figure imgf000009_0003
(1 2)
(式 (1 2) 中、 R13〜R16および pは前記と同様の意味を表す。)、 及び これらの製造方法で得られた開環メタセシス共重合体の主鎖二重結合を水素化す ることを含む開環メタセシス共重合体水素化物の製造方法が提供される。 発明を実施するための最良の形態
本発明の開環メタセシス共重合体は、 一般式 (1) で表される繰り返し単位と、 一 般式 (2) または (3) で表される繰り返し単位とからなるもの、 及び
一般式 (4) で表される繰り返し単位と、 一般式 (2) または (3) で表される繰 り返し単位とからなるものがある。
本発明の開環メタセシス共重合体水素化物は、 一般式 (1) で表される繰り返し単 位と、 一般式 (2) または (3) で表される繰り返し単位と、 一般式 (5) で表され る繰り返し単位と、 一般式 (6) または (7) で表される繰り返し単位とからなるも の、 及び
一般式 (4) で表される繰り返し単位と、 一般式 (2) または (3) で表される繰 り返し単位と、 一般式 (8) で表される繰り返し単位と、 一般式 (6) または (7) で表される繰り返し単位とかなるものがある。
なお、本発明の好適な開環メタセシス共重合体及び開環メタセシス共重合体水素化 物は、 上記繰り返し単位以外の繰り返し単位を実質的に含まないものである。
本発明の開環メタセシス共重合体及び開環メタセシス共重合体水素化物を構成す る一般式 (1)、 (4)、 (5) 及び (8) で表される繰り返し単位は、 ヒドロキシル基 またはヒ ドロキシカルボ二ル基を含む基が置換基として結合しているものである。一 方、 一般式 (2)、 (3)、 (6) 及び (7) で表される繰り返し単位は、 置換基が無い 力 \ または炭化水素基が置換基として結合しているものである。
ヒ ドロキシル基 (ヒ ドロキシカルボニル基中のヒ ドロキシル基を除く) の数は、 開 環メタセシス共重合体または開環メタセシス共重合体水素化物を構成する繰り返し 単位の数に対して 5〜 100 %、 好ましくは 8〜 90 %、 より好ましくは 1 0〜 8 0%である。 またヒ ドロキシカルボニル基の数の割合は、 開環メタセシス共重合体ま たは開環メタセシス共重合体水素化物を構成する繰り返し単位の数に対して 5〜 5 0 %、 好ましくは 7〜 45 %、 より好ましくは 8〜 40 %である。 共重合体中のヒド 口キシル基の数の割合またはヒ ドロキシカルボ-ル基の数の割合を上記範囲にする ことによって、 他材料との密着性および他化合物との相溶性に優れ、 さらに耐熱性、 電気特性および低吸水性の特性がバランスする。
一般式 (1)、 (4)、 (5) 及び (8) で表される繰り返し単位中の、 ヒドロキシノレ 基またはヒドロキシカルボ-ル基を含む基は、共重合時に使用する単量体中に既に結 合していたものであってもよいし、 共重合後あるいは水素化後に、 加水分解反応等に よって導入したものであってもよレ、。
本発明の開環メタセシス共重合体水素化物は、 一般式 (1)、 (2) 及び (3) で表 される繰り返し単位の数の合計が 50〜0%、 好ましくは 30〜0%、 より好ましく は 20〜0%、 特に好ましくは 1 0〜0%であり、 一般式 (5)、 (6) 及び (7) で 表される繰り返し単位の数の合計が 50〜1 00%、 好ましくは 70〜1 00%、 よ り好ましくは 80〜 1 00 %、 特に好ましくは 90〜 1 00 %である。
また本発明の別の開環メタセシス共重合体水素化物は、一般式(4)、(2)及び(3) で表される繰り返し単位の数の合計が 50〜 0 %、 好ましくは 30〜 0 %、 より好ま しくは 20〜 0 %、 特に好ましくは 1 0〜 0 %であり、 一般式 ( 8 )、 (6) 及び ( 7 ) で表される繰り返し単位の数の合計が 50〜 1 00 %、 好ましくは 70〜 1 00 %、 より好ましくは 80〜 1 00%、 特に好ましくは 90〜 1 00%である。
一般式 (1) 〜 (4) で表される繰り返し単位は、 ノルボルネン系単量体に由来す る単位であり、 ノルボルネン系単量体を後述の触媒の存在下に開環メタセシス共重合 することによって得られる。
また、 一般式 (5) 〜 (8) で表される繰り返し単位も、 ノルボルネン系単量体に 由来する単位であり、 ノルボルネン系単量体を後述の触媒の存在下に開環メタセシス 共重合した後、 主鎖の不飽和結合を水素化することによって得られる。
ノルボノレネン系単量体には、 m、 n又は pが 0であるビシクロヘプテン誘導体、 m、 n又は pが 1であるテトラシクロドデセン誘導体、 m、 n又は pが 2であるへキサシ ク口へプタデセン誘導体等が含まれる。 また置換基によってさらに環を形成したもの も含まれる。 環形成のための置換基としては、 例えば、 ビニレン基、 メチレン基、 ジ メチレン基、 トリメチレン基、 テトラメチレン基、 ペンタメチレン基、 へキサメチレ ン基、 ヘプタメチレン基などが挙げられる。
一般式(2)、 (3)、 (6)及び(7) で表される繰り返し単位は、置換基が無いか、 または炭化水素基が置換基として結合している 3環体以上のノルボルネン系単量体 に由来する。
無置換あるいは炭化水素基置換の 3環体以上のノルボルネン系単量体の具体例と しては、 テトラシクロ [4. 4. 0. I 2' 5. I 7' 10] ドデカー 3—ェン、 8—メチ ルテトラシクロ [4. 4. 0. I 2' 5. 17 1°] ドデカ一3—ェン、 8—ェチルテト ラシクロ [4. 4. 0. I 2' 5. I 7' 10] ドデ力一 3—ェン、 8—シクロへキシルテ トラシクロ [4. 4. 0. I 2' 5. I 7' 10] ドデ力一 3—ェン、 8—シクロペンチル テトラシクロ [4. 4. 0. 12' 5. 17· 10] ドデ力一 3—ェン、 8—メチリデンテ トラシクロ [4. 4. 0. I 2' 5. I 7' 10] ドデ力一 3—ェン、 8—ェチリデンテト ラシクロ [4. 4. 0. I 2' 5. 17 1。] ドデ力一 3 _ェン、 8—ビニルテトラシク 口 [4. 4. 0. I 2' 5. I 7' 10] ドデ力一 3—ェン、 8—プロぺニルテトラシクロ [4. 4. 0. I 2' 5. I 7' 10] ドデカー 3—ェン、 8—シクロへキセニルテトラシ クロ [4. 4. 0. I 2' 5. I 7' 10] ドデ力一 3—ェン、 8—シクロペンテ二ルテト ラシクロ [4. 4. 0. I 2' 5. I 7' 10] ドデ力一 3—ェン、 8—フエ二ルテトラシ クロ [4. 4. 0. I 2' 5. I 7' 10] ドデ力一 3—ェンのごときテトラシクロドデセ ン誘導体や;へキサシクロ [6. 6. 1. I 3' 6. l 10' 13. 02' 7. 09' 14] ヘプ タデカ一4—ェン、 1 1—メチルへキサシクロ [6. 6. 1. 13' 6. 110' 13. 02' 7. 09' 14] ヘプタデ力一 4一ェン、 1 1一フエエルへキサシクロ [6. 6. 1. 1
3. 6. 1 10, 1 3. Q 2. 7 Q 9, 14] ヘプタデ力— 4_ェンのごときへキサシクロヘプ タデセン誘導体などの一般式 (10) で代表されるような無置換あるいは炭化水素基 置換の単量体と ; トリシクロ [4. 3. 12' 5. 0] - 3—デセン、 トリシクロ [4. 3. I 2' 5. 0] —デカ一 3, 7—ジェン (別名:ジシクロペンタジェン)、 テトラシ クロ [6. 5. I 2' 5. 01' 6. 08 13] テトラデカ一 3, 8, 10, 1 2—テトラ ェン (別名 : 1, 4ーメタノ一 1, 4, 4 a , 9 a—テトラヒ ドロフルオレン)、 テ トラシクロ [6. 6. 12' 5. 0し 6. 08' 13] ペンタデ力一 3, 8, 1 0, 1 2- テトラエン (別名 : 1, 4ーメタノ一 1, 4, 4 a, 5, 10, 10 a—へキサヒ ド 口アントラセン) のごとき一般式 (1 1) で代表されるような無置換あるいは炭化水 素基置換の単量体が挙げられる。
上記無置換または炭化水素基置換のノルボルネン系単量体は、単独であるいは 2種 以上を組み合わせて用いることができる。 耐熱性、 溶媒への溶解性に優れる開環共重 合体を得るために、 一般式 (1 1) で表されるような無置換あるいは炭化水素基置換 の単量体、及びテトラシクロドデセン誘導体が好ましく、具体的には、 トリシクロ [4. 3. I 2' 5. 0] — 3—デセン、 トリシクロ [4. 3. 22' 5. 0] —デカー 3, 7 —ジェン、 テトラシクロ [8. 6. I 2' 5. 01' 6. 08' 13] ペンタデ力一 3 , 8, 10, 1 2—テトラェン;テトラシクロ [4. 4. 0. I 2' 5. I 7' 10] — 3—ドデ セン、 8—ェチリデンテトラシクロ [4. 4. 0. 12' 5. 17· 1 °] - 3 -ドデセン が好ましい。
2環体のノルボルネン系単量体としては、 ビシクロ [2. 2. 1] ヘプトー 2—ェ ン、 5—メチルビシクロ [2. 2. 1]ヘプトー 2—ェン、 5—ェチノレビシクロ [2. 2. 1]ヘプト一 2—ェン、 5—プロピルビシクロ [2. 2. 1]ヘプト一 2—ェン、 5—ブチルビシクロ [2. 2. 1] ヘプトー 2—ェン、 5_ペンチルビシクロ [2. 2. 1]ヘプト _2_ェン、 5 _へキシルビシクロ [2. 2. 1]ヘプト一 2—ェン、 5—へプチルビシクロ [2. 2. 1]ヘプトー 5—ェン、 5—ォクチルビシクロ [2. 2. 1] ヘプトー 2—ェン、 5—ノニルビシクロ [2, 2. 1] ヘプトー 2—ェン、 5一デシノレビシク口 [ 2. 2. 1 ]ヘプト一 2—ェン、 5—ビニルビシク口 [ 2 · 2. 1] ヘプト一2—ェン、 5—ェチリデンビシクロ [2. 2. 1] ヘプト一 2—ェン、 5—シクロへキシルビシクロ [2. 2. 1] ヘプトー 2—ェン、 5—シクロへキセニ ルビシクロ [2· 2. 1] ヘプト一 2—ェン、 5—フエ二ルビシクロ [2. 2. 1 ] ヘプト一 2—ェンのごときビシク口ヘプテン誘導体が挙げられる。 これらは耐熱性が 低くならない範囲において共重合させることができる。 ただし、 高い耐熱性を求める 場合には 2環体のノルポルネン系単量体を共重合させない方がよレ、。
一般式 (1)、 (4)、 (5) 及び (8) で表される繰り返し単位は、 ヒドロキシル基 またはヒ ドロキシカルボ二ル基を含む置換基が結合しているノルボルネン系単量体、 あるいは加水分解等によってヒ ドロキシル基またはヒ ドロキシカルボニル基に化学 変化させることができる基が結合しているノルボルネン系単量体、 好適には、 一般式 (9) または (1 2) で代表される単量体に由来する。 ヒドロキシル基またはヒドロ キシカルボ二ル基を含む置換基は、 ヒ ドロキシル基またはヒ ドロキシカルボニル基が 含まれていれば、 これら 2つの置換基以外にハロゲン原子、 ケィ素原子、 酸素原子も しくは窒素原子を含んでもよい炭素数 1〜 20の炭化水素基を置換基として有して いても構わない。
ヒドロキシル基を有するノルボルネン系単量体としては、 5—ヒ ドロキシビシクロ [2. 2. 1] ヘプトー 2—ェン、 5—ヒ ドロキシメチルビシクロ [2. 2. 1] へ プト一 2—ェン、 5, 6—ジヒ ドロキシメチルビシクロ [2. 2. 1] ヘプト一 2_ ェン、 5—ヒ ドロキシエトキシカルボニノレビシクロ [2. 2. 1]ヘプト一 2—ェン、 5—メチルー 5—ヒ ドロキシエトキシカルボ二ルビシクロ [2. 2. 1] ヘプトー 2 ン、 5—ヒ ドロキシブトキシカルボ二ルビシクロ [2. 2. 1] ヘプト一 2—ェ ン、 5—ヒ ドロキシプロポキシカノレボニノレビシクロ [2. 2. 1]ヘプト一 2—ェン、 5—メチル一 5—ヒ ドロキシプロポキシカルボ二ルビシクロ [2. 2. 1] ヘプト一 2—ェンなどのビシクロヘプテン誘導体; 8—ヒ ドロキシテトラシクロ [4. 4. 0. 12. 5. 1 7, 10] ドデカ— 3一ェン、 8—ヒ ドロキシメチルテトラシクロ [4. 4.
0. I 2' 5. I 7' 10] ドデカー 3—ェン、 8, 9—ジヒ ドロキシメチルテトラシクロ [4. 4. 0. I 2' 5. I 7' 10] ドデ力一 3—ェン、 8—ヒ ドロキシエトキシカノレボ 二ルテトラシクロ [4. 4. 0. I 2' 5. 17 1。] ドデ力一 3—ェン、 8—メチル一 8—ヒ ドロキシエトキシカルボ二ルテトラシクロ [4. 4. 0. I 2' 5. I 7' 10] ド デカ一3—ェン、 8—ヒ ドロキシブトキシカノレボニノレテトラシクロ [4. 4. 0. 1 2' 5. I 7' 10] ドデカー 3_ェン、 8—ヒ ドロキシプロポキシカルボニルテ トラシク 口 [4. 4. 0. I 2' 5. I 7' 10] ドデカー 3—ェン、 8—メチル一 8—ヒ ドロキシ プロポキシカルボ-ルテトラシクロ [4. 4. 0. I 2' 5. l 7' 10] ドデカ _ 3 ンなどのテトラシクロ ドデセン誘導体; 1 1—ヒ ドロキシへキサシクロ [6. 6. 1.
13. 6. χ ΐ θ, 13_ 02. 7_ 0 9. —ヘプタデカー 4—ェン、 1 1—ヒ ドロキシメ チルへキサシクロ [6. 6. 1. I 3' 6. I 10' 13. 02· 1. 09' 14] —ヘプタデカ 一 4_ェン、 1 1 1 2—ジヒ ドロキシメチルへキサシクロ [6. 6. 1. I 3' 6. I 10' 13. O2' 7. 09' 14] —ヘプタデ力一 4一ェン、 1 1ーヒ ドロキシエトキシカ ルボエルへキサシクロ [6. 6. 1. I 3' 6. I 10' 13. 02· 1. 09' 14] —ヘプタ デカ一4—ェン、 1 1—メチル— 1 1—ヒ ドロキシエトキシカルボ二 キサシクロ [6. 6. 1. I 3' 6. I 10 13· 02· 1. 09' 14] —ヘプタデカー 4—ェン、 1 1 —ヒ ドロキシブトキシカルボニルへキサシクロ [6. 6. 1. I 3' 6. l 10' 13. o2' 7. 09' 14] —ヘプタデ力一 4—ェン、 1 1ーヒ ドロキシプロポキシカルボ二ルへキ サシクロ [6. 6. 1. I 3' 6. I 10' 13. 02' 1. 09' 14] —ヘプタデカー 4ーェ ン、 1 1一メチル _ 1 1ーヒ ドロキシプロポキシカルボニルへキサシクロ 「6. 6. 1. 13· 6. 110' 13. 02' 7. O9' 14] —ヘプタデ力一 4ーェンなどのへキサシク 口へプタデセン誘導体等を挙げることができる。
ヒ ドロキシカルボ二ル基を有するノルボルネン系単量体としては、 5—ヒ ドロキシ カルボュノレビシクロ [2. 2. 1] ヘプト一 2_ェン、 5—ヒ ドロキシカルボニノレメ チルビシクロ [2. 2. 1] ヘプト一 2—ェン、 5, 6—ジヒ ドロキシカルボニノレビ シクロ [2. 2. 1] ヘプト一 2—ェン、 5 _メチル一 5—ヒ ドロキシカルボェルビ シクロ [2. 2. 1] ヘプトー 2—ェン、 5—メチルー 5, 6—ジヒ ドロキシカルボ 二ルビシクロ [2. 2. 1] ヘプトー 2—ェン、 5—ヒ ドロキシカスレボニル一 5—ヒ ドロキシカルボ二ルメチルビシクロ [2. 2. 1 ] ヘプト一 2—ェンなどのビシクロ ヘプテン誘導体; 5—ヒ ドロキシカルボ二ルテトラシクロ [4. 4. 0. I 2' 5. 1 7· 10] ドデカー 3—ェン、 5—ヒ ドロキシカルボ二ルメチルテトラシクロ [4. 4. 0. I 2' 5. 17 1。] ドデカー 3—ェン、 5, 6—ジヒ ドロキシカルボ二ルテトラシ クロ [4. 4. 0. 12' 5. 17' 10] ドデ力一 3—ェン、 5—メチルー 5—ヒ ドロキ シカルボ二ルテトラシクロ [4. 4. 0. I 2' 5. 17· 10] ドデカ一3—ェン、 5— メチル一5, 6—ジヒ ドロキシカルボエルテトラシクロ [4. 4. 0. I 2' 5. 17' 10] ドデ力一 3—ェン、 5—ヒ ドロキシカルボニル一 5—ヒ ドロキシカルボ二ルメチ ルテトラシクロ [4. 4. 0. I 2' 5. I 7' 10] ドデカ一3—ェン; 8—ヒ ドロキシ カルボ二ルテトラシクロ [4. 4. 0. I 2' 5. I 7' 10] ドデカー 3—ェン、 8—ヒ ドロキシカルボ-ルメチルテトラシクロ [4. 4. 0. I 2' 5. I 7' 10] ドデカー 3 一ェン、 8, 9—ジヒ ドロキシカノレボニルテトラシクロ [4. 4. 0. I 2' 5. 17' 10] ドデ力一 3—ェン、 8—メチル一8—ヒ ドロキシカルボ二ルテトラシクロ [4. 4. 0. I 2' 5. I 7' 10] ドデカー 3—ェン、 8—メチル一8, 9—ジヒ ドロキシカ ルボニルテトラシクロ [4. 4. 0. I 2' 5. I 7' 10] ドデ力一 3—ェン、 8—ヒ ド ロキシカルボ-ルー 8—ヒ ドロキシカルボ二ルメチルテトラシクロ [4. 4. 0. 1 2' 5. I 7' 10] ドデ力一 3—ェンなどのテトラシクロ ドデセン誘導体; 1 1—ヒ ドロ キシカルボニルへキサシクロ [6. 6. 1. I 3' 6. I 10' 13. 02· 1. 09' 14] — ヘプタデ力一 4一ェン、 1 1—ヒ ドロキシカルボニルメチルへキサシクロ [6. 6.
1. I 3' 6. ]_ 10, 13. 02, 7_ Q 9. 14] —ヘプタデカー 4_ェン、 丄 丄, 1 2—ジ ヒ ドロキシカノレボニルへキサシクロ [6. 6. 1. I 3' 6. l 10' 13. 02' 7. 09' i 4] 一へプタデカー 4一ェン、 1 1ーメチル— 1 1—ヒドロキシカルボニルへキサシ クロ [6. 6. 1. 13' 6. 110' 13. 02' 7. 09· 1 ] —ヘプタデ力一 4—ェン、 1 1—メチル一 1 1, 1 2—ジヒ ドロキシカルボニルへキサシクロ [6. 6. 1. 1 3, 6. ! 1 0, i 3 _ o 2' 7. 09' 14] —ヘプタデカ一4—ェン、 1 1ーヒ ドロキシカノレ ボエル一 1 1ーヒ ドロキシカルボニルメチルへキサシクロ [6. 6. 1. I 3' 6. 1
1 0. 1 3 _ Q 2, Ί ' Q 9, 1 4-] —ヘプタデ力— 4ーェンなどのへキサシクロへプタデセン 誘導体等を挙げることができる。
ヒ ドロキシル基またはヒ ドロキシカルボニル基に化学変化させることができる基 は、分解あるいは還元などによりヒ ドロキシル基またはヒ ドロキシカルボニル基にな り うるものであればよく、 例えば、 一 OCOR、 —COOR、 ジカルボン酸無水物基 などが挙げられる。 ここで Rは、 直鎖状、 分枝鎖状または環状の飽和炭化水素基また は不飽和炭化水素基のいずれでもよく、 ハロゲン原子、 ケィ素原子、 酸素原子もしく は窒素原子を含む基 (ヒドロキシル基及びヒ ドロキシカルボ二ル基を除く) が置換し たものであってもよい。
— OCORが結合したノルボルネン系単量体としては、前述のビシクロヘプテン誘 導体、 テトラシクロドデセン誘導体、 へキサシク口へプタデセン誘導体などのホルメ ート、 アセテート、 プロピオネート、 ブチレート、 バレートやべンゾエートなどが挙 げられる。
— COORが結合したノルボルネン系単量体としては、前述のビシクロヘプテン誘 導体、 テトラシクロドデセン誘導体、 へキサシクロへプタデセン誘導体などのメチル エステル、 ェチルエステル、 イソプロピルエステル、 n_ブチルエステル、 tーブチ ルエステル、 フエ-ルエステル、 ベンジルエステルなどが挙げられる。
ジカルボン酸無水物基が結合したノルボルネン系単量体としては、 ビシクロ [2. 2. 1]ヘプト— 2—ェン _5, 6—ジカルボン酸無水物、 5—メチルビシクロ [2. 2. 1] ヘプトー 2 _ェンー 5, 6—ジカルボン酸無水物などのビシクロヘプテン誘 導体、 テトラシクロ [4. 4. 0. I 2' 5. I 7' 10] ドデ力一 3—ェン一 8, 9ージ カルボン酸無水物、 8—メチルテトラシクロ [4. 4. 0. I 2' 5. I 7' 10] ドデカ —3—ェン一 8, 9ージカルボン酸無水物などのテトラシクロドデセン誘導体、 へキ サシクロ [6. 6. 1. I 3' 6. I 10' 13. 02' 7. 09' 14] —ヘプタデカ一4—ェ ンー 1 1, 1 2—ジカルボン酸無水物、 1 1一メチルへキサシクロ [6. 6. 1. 1 3. 6. ! 10, 13_ 02, 7 o9' 14] —ヘプタデカー 4一ェンー 1 1, 12—ジカルボ ン酸無水物などのへキサシク口ヘプタデセン誘導体を挙げることができる。
上記置換基を有するノルボルネン系単量体は、 それぞれ単独で、 あるいは 2種以上 を組み合わせて用いることができる。 耐熱性、 溶媒への溶解性に優れる開環共重合体 を得るために、 2環体〜 4環体のノルボルネン系単量体が好ましく、 具体的には、 一 般式 (9) または一般式 (1 2) において、 mまたは pが 0であるビシクロヘプタン 誘導体、 あるいは m又は pが 1であるテトラシクロドデセン誘導体が好ましい。 本発明の開環メタセシス共重合体及び開環メタセシス共重合体水素化物は、その重 量平均分子量が 1, 000〜500, 000、 好ましくは 2, 000〜 400, 00 0、 より好ましくは 4, 000〜200, 000である。 分子量が小さいと機械的強 度が不十分であり、 大きいと共重合後の水素化反応が困難になることがある。 また、 重量平均分子量 (Mw) と数平均分子量 (Mn) との比 (MwZMn) は、 通常 1〜 4、 好ましくは 1. 5〜 3である。 重量平均分子量及び数平均分子量はゲルパーミェ ーシヨンクロマトグラフィ一で測定したポリスチレン換算の値である。
本発明の好適な開環メタセシス共重合体及び開環メタセシス共重合体水素化物は、 非晶性樹脂である。本発明の開環メタセシス共重合体及び開環メタセシス共重合体水 素化物は、 そのガラス転移温度が好ましくは 100°C以上、 より好ましくは 1 20°C 以上である。 また、 本発明の好適な開環メタセシス共重合体及び開環メタセシス共重 合体水素化物は、 その 280°Cにおけるメルトインデックス (ASTM D 1 238 に準拠) i 約 1〜約 200、 好ましくは約 5〜 100である。
本発明の好適な開環メタセシス共重合体及び開環メタセシス共重合体水素化物は、 比誘電率及び誘電正接が、 J I S C 2330による 1MHzにおける測定値でそれ ぞれ 3. 2以下、 0. 015以下、 好ましくはそれぞれ 3. ◦以下、 0. 01以下で ある。比誘電率及び誘電正接が上記範囲にある本発明の共重合体及び共重合体水素化 物は、 1 GH Zの高周波信号であっても、 信号遅延が無く、 且つ信号ノイズが低くな る。
本発明の開環メタセシス共重合体の製造方法は、 中性の電子供与性配位子を有する 有機ルテニウム化合物を主成分とする触媒の存在下で、前述のノルボルネン系単量体 を開環メタセシス共重合し、必要に応じてさらに加水分解等を行い置換基を変性する ものである。
また、 本発明の開環メタセシス共重合体水素化物の製造方法は、 中性の電子供与性 配位子を有する有機ルテニゥム化合物を主成分とする触媒の存在下で、前述のノルボ ルネン系単量体を開環メタセシス共重合し、次いで得られた共重合体の主鎖二重結合 を水素化し、 必要に応じてさらに加水分解等を行い置換基を変性するものである。 本発明において使用される触媒は、 中性の電子供与性配位子が配位している有機ル テニゥム化合物を主成分とする触媒である。
該有機ルテニウム化合物を構成する、 中性の電子供与性配位子は、 中心金属 (すな わちルテニウム) 力 ら引き離されたときに中性の電荷を持つ配位子である。
また、 本発明に用いる好適な有機ルテニウム化合物には、 ァニオン性配位子が配位 している。 ァニオン性配位子は、 ルテニウムから引き離されたときに負の電荷を持つ 配位子である。 また、 さらに対ァユオンが存在していてもよい。 対ァニオンは、 ルテ 二ゥム陽イオンとイオン対を形成する陰イオンをいい、 こうした対を形成できる陰ィ オンであれば特に限定されない。
本発明に用いる好適な有機ルテニウム化合物の代表例として一般式 (1 3) 〜 (1 5) で表されるものが挙げられる。
[化 1 3 ]
[(L1) a (Y1) bRu] (1 3)
(式 (1 3) 中、 Y1はそれぞれ独立に任意のァニオン性配位子を示し、 L1はそれぞ れ独立に中性電子供与性配位子を示す。 Y1および または L1の 2個、 3個または 4 個はお互いに結合して多座キレート配位子を形成してもよい。 a及び bはそれぞれ独 立に 1〜4の整数で、 Xは 1〜6の整数である。)
[化 14]
[(L2) c (Y2) dRu= (C=) eCQ2] y (14)
(式 (14) 中、 L 2はそれぞれ独立に中性の電子供与性配位子を表し、 Y2はそれぞ れ独立にァニオン性の配位子を表す。 Qはそれぞれ独立に水素または炭素数 1〜20 個の炭化水素基 (ハロゲン原子、 窒素原子、 酸素原子、 珪素原子、 リン原子、 硫黄原 子を含んでいてもよい)を表す。 c、 d及び yはそれぞれ独立に 1〜4の整数を表し、 eは 0または 1を表す。)
[化 1 5 ]
C( L 3) f (Y 3) g R u ] X z ( 1 5 )
(式 (1 5 ) 中、 L 3はそれぞれ独立に中性電子供与性配位子を表し、 Y 3はそれぞれ 独立にァェオン性配位子を表す。 Xは対ァユオンを表す。 f 及び gはそれぞれ独立に 1〜4の整数を表し、 zは 1または 2である。)
中性電子供与性配位子としては、酸素、水、カルボニル類、アミン類、 ピリジン類、 ェ一テル類、 二トリル類、 エステル類、 ホスフィン類、 ホスフィナイ ト類、 ホスファ ィ ト類、 スチビン類、 スルホキシド類、 チォエーテル類、 アミ ド類、 芳香族類、 ジォ レフイン類 (環状であってもよい)、 ォレフィン類 (環状であってもよい)、 イソシァ ニド類、 チオシァネート類、 複素環式カルベン化合物などが挙げられる。 なかでも、 ビビリジンなどのピリジン類; トリフエニルホスフィン、 トリシクロへキシルホスフ ィンなどのホスフィン類; p—シメンなどの芳香族類;シク口ペンタジェンなどの環 状ジォレフイン類;又は 1, 3—ジメシチルイミダゾリン一 2—イリデン、 1, 3— ジメシチルイミダゾリジン— 2—イリデンなどの複素環式カルベン化合物が配位し ていると共重合活性が高くなる場合がある。
ァニオン性酉己位子としては、 F、 B r、 C 1 、 Iなどのハロゲン、 ヒドリ ド、 ァセ チルァセトナート基などのジケトナート基、 シクロペンタジェニル基、 ァリル基、 ァ ルケ-ル基、 アルキル基、 ァリール基、 アルコキシ基、 ァリールォキシ基、 アルコキ シカルボニル基、 ァリールカルボキシル基、 カルボキシル基、 アルキルまたはァリー ルスルフォネート基、 アルキルチオ基、 ァルケ-ルチオ基、 ァリールチオ基、 アルキ ルスルホニル基、 アルキルスルフィニル基などを挙げることができる。 なかでも、 ハ ロゲン、 シクロペンタジェニル基、 ァリル基、 アルキル基又はァリール基が配位して いると共重合活性の点で優れている。
上記一般式 (1 4 ) における Qの具体例としては、 水素、 アルケニル基、 アルキニ ル基、 アルキル基、 アルキリデン基、 ァリール基、 カルボキシル基、 アルコキシ基、 アルケニルォキシ基、 アルキニルォキシ基、 ァリールォキシ基、 アルコキシカルボ二 ル基、アルキルチオ基、アルケニルチオ基、ァリ一ルチオ基、アルキルスルホニル基、 アルキルスルフィニル基などを挙げることができる。 なかでも、 炭素数 1〜1 0 0の アルキル基、 アルキリデン基、 ァリール基、 アルコキシ基、 ァリールォキシ基、 アル キルチオ基又はァリールチオ基が配位していると触媒の共重合活性が高くなる場合 力 Sある。
対ァニオンの例としては、 BF4—、 B (C6H6) 4—、 B (C6F6) 4—、 PF6一、 S b F6—、 C 104—、 I 04—、 p—トルエンスルホン酸ァニオン、 トリフノレオロメ タンスルホン酸ァニオンなどを挙げることができる。 なかでも、 BF4—、 B (C6H 6) 4一、 B (C6F6) 4—、 PF6_又は S b F6一が対ァニオンとして存在すると触媒 活性が高くなる場合がある。
一般式 (1 3) で表される重合触媒の例としては、 ビス (シクロペンタジェュル) ノレテニゥム、 クロ口 (シクロペンタジェ二ノレ) ビス (トリフエ二ノレホスフィン) ゾレテ 二ゥム、 ジクロロ (1, 5—シクロォクタジェン) ルテニウム、 ジクロロ トリス (ト リフエ二ノレホスフィン) ノレテェゥム、 シス一ジクロロビス (2, 2 ' —ビピリジノレ) ルテニウム '二水和物、 ジクロロビス 〔(p—シメン) クロ口ルテニウム〕〕、 ジクロ 口 (2, 7—ジメチルォクタ一 2, 6—ジェン一 1, 8—ジィル) ルテニウムなどが 挙げられる。
一般式 (14) で表される重合触媒の例としては、 ビス (トリシクロへキシルホス フィン)ベンジリデンルテニウムジク口リ ド、 ビス(トリフエニルホスフィン)一 3, 3—ジフエニルプロべ二リデンルテニウムジクロリ ド、 ビス (トリシクロへキシルホ スフイン) フエ二ルビ二リデンルテニウムジクロリ ド、 ビス (トリシクロへキシルホ スフイン) t—ブチルビ二リデンルテニウムジクロリ ド、 ビス (1, 3—ジイソプロ ピルイミダゾリン一 2—イリデン) ベンジリデンルテニウムジクロリ ド、 ビス (1, 3—ジシク口へキシルイミダゾリン一 2 Tリデン)ベンジリデンルテニウムジク口 リ ド、 (1, 3—ジメシチルイミダゾリン一 2—イリデン) (トリシクロへキシルホス フィン) ベンジリデンルテユウムジクロリ ド、 (1, 3—ジメシチルイミダゾリジン 一 2—イリデン) (トリシクロへキシルホスフィン) ベンジリデンルテニウムジクロ リ ドなどが挙げられる。
一般式 (1 5) で表される重合触媒の例としては、 [(p—シメン) (CH3CN) 3 Ru] (BF4) 2、 [(C6H6) (CH3CN) 2 (C I ) Ru] (BF4)、 [(C6H6) (C H3CN) 3R u] (PF6) 2、 [(CH3CN) 2 (C I ) (2, 7—ジメチノレオクタ一 2, 6—ジェン一 1, 8—ジィル) Ru] (BF4)、 [(CH3CN) 3 (2, 7—ジメ チルォクタ一 2, 6—ジェン _ 1, 8—ジィル) Ru] (BF4) 2などが挙げられる。 また、 上述した重合触媒の共重合活性を高める方法として、 ピリジン類;ホスフィ ン類;前述の 1, 3—ジイソプロピルイミダゾリン一2—イリデン、 1, 3—ジメシ チルイミダゾリジン _ 2 _イリデンなどの複素環式カルベン化合物などの中性の電 子供与性化合物をルテニウム金属に対して、重量比で 1〜 100倍の割合で添加する こともできる。
さらに、 一般式 (1 3)、 (14) および (1 5) で表される重合触媒を使用する場 合には、 共重合活性を高めるために、 例えば、 N2CHCOOE tなどのジァゾ化合 物、 フエニルアセチレンなどのアセチレン化合物または E t 2 S i H、 P h 2Me S i Hなどのシリル化合物を、 ルテニウム金属に対して、 重量比で 1〜100倍の割合で 添加することもできる。 E tはェチル基、 P hはフエニル基、 Meはメチル基である。 上述した触媒のうち、 一般式 (14) で表される重合触媒は高い共重合活性を示す ので、 好ましレ、。
開環メタセシス共重合反応は溶媒中で行っても、 無溶媒中で行ってもよいが、 共重 合反応後、 ポリマーを単離せずにそのまま水素化反応ができるので、 溶媒中で共重合 する方が好ましい。 重合溶媒は、 共重合体を溶解し、 かつ共重合反応を阻害しない溶 媒であれば特に限定されない。 重合溶媒としては、 ペンタン、 へキサン、 ヘプタンな どの脂肪族炭化水素;シクロペンタン、 シクロへキサン、 メチルシクロへキサン、 ジ メチルシクロへキサン、 トリメチルシクロへキサン、 ェチルシクロへキサン、 ジェチ ノレシクロへキサン、 デカヒ ドロナフタレン、 ビシクロヘプタン、 トリシクロデカン、 へキサヒ ドロインデンシクロへキサン、 シクロオクタンなどの脂環族炭化水素;ベン ゼン、 トルエン、 キシレン、 メシチレンなどの芳香族炭化水素;ニトロメタン、 -ト 口ベンゼン、 ァセトニトリル、 プロピオ-トリル、 ベンゾニトリルなどの含窒素系炭 化水素;ジェチルェ一テル、 テトラヒドロフラン、 ジォキサンなどのエーテル類;ク ロロホノレム、 ジクロロメタン、 1, 2—ジクロロェタン、 クロ口ベンゼン、 ジクロロ ベンゼン、 トリクロ口ベンゼンなどの含ハロゲン系炭化水素が挙げられる。 これらの 溶媒の中でも、比誘電率が 2〜5、好ましくは 2. 1〜4. 5の範囲に含まれる溶媒、 又は 2種以上の溶媒を混合して上記比誘電率の範囲に含まれるようにした混合溶媒 が好ましい。 溶媒の比誘電率は "Or g a n i c s o l v e n t" 第 2版、 J o h n A. R i d d i c k a n d Emo r y E . T o p p s J r., 1 9 55に開示されている。
共重合を溶媒中で行う場合には、 ノルボルネン系単量体の濃度は、 1〜50重量% とすることが好ましく、 2〜45重量%とすることがより好ましく、 5〜40重量% とすることが特に好ましい。 ノルボルネン系単量体の濃度が 1重量%未満では共重合 体の生産性が悪くなることがあり、 50重量%を超えると共重合後の粘度が高すぎて、 その後の水素化などが困難となることがある。
重合触媒の量は、重合触媒中の金属ルテニウムに対するノルボルネン系単量体のモ ル比で、 (金属ルテニウム :単量体 =) 1 : 100〜: 1 : 2, 000, 000、 好ま しくは 1 : 500~1 : 1, 000, 000、 より好ましくは 1 : 1, 000〜1 : 500, 000である。 触媒量が 1 : 100の比よりも多くなると触媒除去が困難と なることがある。 1 : 2, 000, 000の比よりも少なくなると十分な共重合活性 が得られないことがある。重合温度は特に制限はないが、通常、一 100 :〜 200°C、 好ましくは一 50°C〜 180°C、 より好ましくは一 30°C〜 160°C、 最も好ましく は 0°C〜140°Cである。 重合時間は、 通常 1分〜 100時間であり、 共重合の進行 状況によって適宜調節することができる。
本発明においては、 共重合体及びその水素化物の分子量を調整するために、 分子量 調整剤を用いることができる。 分子量調整剤としては、 1—ブテン、 1—ペンテン、 1 —へキセン、 1—ォクテンなどの α—才レフイン;スチレン、 ビ二/レトノレェンなどの スチレン類;ェチルビ二ルェ一テル、 i—ブチルビニルエーテル、 了リルグリシジル エーテルなどのエーテル類;ァリルクロライドなどのハロゲン含有ビニル化合物;酢 酸ァリル、 ァリルアルコール、 グリシジルメタクリレー卜など酸素含有ビュル化合 物;アクリルアミ ドなどの窒素含有ビニル化合物などを挙げることができる。 分子 量調整剤を、 ノルボルネン系単量体に対して、 0. 1〜 100モル%の範囲の量で任 意に選択することにより、所望の分子量の開環メタセシス共重合体及びその水素化物 を得ることができる。
水素化反応は、 通常、 水素化触媒の存在下に水素を導入し、 開環メタセシス共重合 体の主鎖中の不飽和二重結合を飽和単結合にする反応である。 水素化反応に用いる水素化触媒は、ォレフィン化合物の水素化に際して一般的に使 用されているものであればよい。
水素化触媒としては、 酢酸コバルトと トリェチルァノレミニゥム、 ニッケルァセチル ァセトナートと トリイソブチルアルミニウム、チタノセンジクロリ ドと n—ブチルリ チウム、 ジルコノセンジク口リ ドと s e c—ブチノレリチウム、 テトラブトキシチタネ 一トとジメチルマグネシウムのごとき遷移金属化合物とアルカリ金属化合物の組み 合わせからなるチーグラー系触媒;上記一般式 (1 3 )、 (1 4 )、 及び (1 5 ) で示 される有機ルテニウム化合物や、 クロロ トリス (トリフエニルホスフィン) ロジウム や、 ジクロロ トリス (トリフエニルホスフィン) ノレテニゥム、 力 ボニノレ (ジヒ ドリ ド) トリス (トリフエニルホスフィン) ルテニウムのごとき貴金属錯体触媒などの均 一系触媒;ニッケル、 パラジウム、 白金、 ロジウム、 ルテニウムなどの金属を、 カー ボン、 シリカ、 ケイソゥ土、 アルミナ、 酸化チタンなどの担体に担持させた不均一触 媒;具体的にはニッケル シリカ、 ニッケル ケイソゥ土、 ニッケル //アルミナ、 パ ラジウム Ζカーボン、 パラジウム/シリカ、 パラジウム/ケイソゥ土、 パラジゥム アルミナなどが挙げられる。
これらの水素化触媒のうち、 官能基が変性するなどの副反応が起きず、 共重合体中 の炭素一炭素不飽和結合を選択的に水素化できる点から、 ロジウム、 ルテニウムなど の貴金属錯体触媒が好ましく、 上記一般式 (1 3 )、 (1 4 )、 及び (1 5 ) で示され る有機ルテニウム化合物がより好ましく、電子供与性の高い複素環式カルベン化合物 若しくはホスフィン類が配位したルテニウム化合物が特に好ましい。
一般式 (1 3 )、 ( 1 4 )、 及び (1 5 ) で示される有機ルテニウム化合物は、 前述 のごとく重合触媒でもあるので、 共重合反応終了後、 該化合物をそのまま水素化触媒 として、 あるいはェチルビュルエーテルなどのビュル化合物や α—ォレフィンなどの 触媒改質剤を添加して該化合物を活性化させてから、水素化反応にそのまま供するこ とができる。
水素化反応は、 通常、 有機溶媒中で実施する。 有機溶媒は生成する水素化物の溶解 性により適宜選択することができ、前記重合溶媒と同様の有機溶媒を使用することが できる。 したがって、 共重合反応後、 溶媒を入れ替えることなくそのまま水素添加触 媒を添加して反応させることもできる。 水素化反応の好適な条件は、使用する水素化触媒によつて異なるが、水素化温度は、 通常、一 20〜250°C、好ましくは一 10〜220°C、より好ましくは 0〜 200°C であり、 水素圧力は、 通常 0. 01 ~ 1 OMP a、 好ましくは 0. 05〜8MP a、 より好ましくは 0. l〜5MP aである。 水素化温度が一 20°C未満では反応速度が 遅くなり、 逆に 250°Cを超えると副反応が起こりやすい。 また、 水素圧力が 0. 0 IMP a未満では水素化速度が遅くなり、 1 OMP aを超えると高耐圧反応装置が必 要となる。 水素化反応時間は、 水素化率をコントロールするために適宜選択される。 水素化反応時間が 0. 1〜 50時間の範囲では、 共重合体中の主鎖の炭素一炭素二重 結合のうち、 50 %以上、 好ましくは 70 %以上、 より好ましくは 80 %以上、 最も 好ましくは 90 %以上を水素化することができる。
本発明の開環メタセシス共重合体及び開環メタセシス共重合体水素化物の製法に おいては、 必要に応じて、 加水分解等を行って官能基を変性する。
例えば、 一 OCOR、 -COOR, またはカルボン酸無水物基を加水分解等するこ とによって、 一 OHまたは _C〇OHに変性することができる。
この変性反応は、一般に知られているエステルまたはカルボン酸無水物を分解して アルコールおよびカルボン酸にする方法と同じ方法でできる。 この変性反応方法とし ては、 加水分解による方法、 熱分解による方法、 水素化還元による方法等を挙げるこ とができる。
エステルまたはカルボン酸無水物の加水分解方法の具体例としては、 (a) 水と直 接反応させる方法、 (b) 水酸化ナトリウム、 水酸化カリウム、 アンモニア水などの アルカリ水溶液と反応させる方法、 (c) 塩酸、 硫酸、 リン酸、 有機スルホン酸など の酸水溶液と反応させる方法、 (d) 炭素数 1〜6の低級アルコールなどあるいは炭 素数 1〜6の低級カルボン酸などとエステル交換反応させる方法などを挙げること ができる。 エステル交換反応の触媒として、 水酸化ナトリウム、 水酸化力リウム、 ァ ンモユア、 ァミン化合物などのアルカリ性化合物を用いても良レ、。 加水分解反応は無 溶媒下でも、 溶媒存在下でも行うことができる。 溶媒は、 重合溶媒、 水素化反応溶媒 で用いられるものと同様のものが使用でき、 それ以外に水、 アルコール、 エステルな ども使用することができる。
熱分解は、 通常、 — OCOR、 一 COOR、 またはカルボン酸無水物基を有する開 環メタセシス共重合体または開環メタセシス共重合体水素化物を 100°C以上 40 0°C以下に 1秒間以上加熱することにより行われる。 特に、 Rがイソプロピル基、 2 一ェチルへキシル基、 2 _フエニルェチル基、 t _ブチル基などの二級あるいは三級 アルキル基であるときに熱分解反応が促進するので好ましい。加熱温度は 150°C以 上にするのが好ましい。
水素化還元による方法は、 — OCORまたは一 COORを水素化還元することによ つて、 またはカルボン酸無水物基を水素化することによって行われる。 この水素化還 元方法に用いる水素化触媒は、開環共重合体の主鎖二重結合を水素化するために使用 する触媒と同様のものが用いられ、その手順も開環共重合体の主鎖二重結合を水素化 するときとほぼ同様にできる。 したがって、 開環共重合体の主鎖二重結合を水素化す るときに一 OCOR、 一COORまたはカルボン酸無水物基を同時に水素化還元して もよいし;主鎖二重結合を水素化した後、 — OCOR、 —COORまたはカルボン酸 無水物基の水素化還元をしてもよいし;また一 OCOR、 一COORまたはカルボン 酸無水物基の水素化還元をした後、 主鎖二重結合を水素化してもよい。
開環メタセシス共重合体または開環メタセシス共重合体水素化物は、 一 OCOR、 _ C O O R、またはカルボン酸無水物基を有する開環メタセシス共重合体または開環 メタセシス共重合体水素化物中の— OCOR、 一 COORあるいはカルボン酸無水物 基の 50 %以上、 好ましくは 70 %以上、 より好ましくは 80 %以上、 最も好ましく は 90%以上を一OHまたは一 COOHに変換して得るのが好ましい。
本発明の開環メタセシス共重合体または開環メタセシス共重合体水素化物は電気 絶縁性、 電気特性、 低吸水性に優れている。 例えば、 吸水率は、 J I S K 7209 による測定値で、 2%以下、 好ましくは 1. 5%以下である。 密着性は、 J I S K 5400で定める Xカットテープ法による銅、 シリコン、 ガラス基板に対する Xカツ ト部の交点からのはがれが 1. 5 mm以下、 好ましくは 1 mm以下である。
本発明の開環メタセシス共重合体または開環メタセシス共重合体水素化物は、上記 のように電気特性、 低吸水性に優れ、 しかも金属などの他材料との密着性にも優れて いる。 さらに、 硬化剤などの官能基を有する化合物との相溶性も良好である。
本発明の硬化性樹脂組成物は、前記の開環メタセシス共重合体及び開環メタセシス 共重合体水素化物から選ばれる共重合体と、 硬化剤とを含有するものである。 硬化剤として、 例えば、 イオン性硬化剤、 ラジカル性硬化剤又はイオン性とラジカ ノレ性とを兼ね備えた硬化剤等が用いられる。
イオン性硬化剤としては、 例えば、 へキサメチレンジァミン、 トリエチレンテ トラ ミン、 ジエチレントリァミン、 テトラエチレンペンタミンなどの脂肪族ポリアミン化 合物;
ジアミノシクロへキサン、 3 ( 4 ),8 ( 9 ) —ビス (アミノメチル) トリシクロ [ 5 . 2 . 1 . 0 2 ' 6 ] デカン、 1 , 3— (ジアミノメチル) シクロへキサン、 メンセンジ ァミン、 イソホロンジァミン、 N—アミノエチルピペラジン、 ビス (4—ァミノ一 3 —メチルシクロへキシル) メタン、 ビス (4—アミノシクロへキシノレ) メタン等の脂 環式ポリアミン化合物; 4 , 4, ージアミノジフエ-ルエーテル、 4, 4, —ジアミ ノジフエニルメタン、 ひ, a ' —ビス (4ーァミノフエニル) 一 1, 3—ジイソプロ ピノレベンゼン、 α, a ' —ビス (4—ァミノフエニル) 一 1, 4—ジイソプロピノレべ ンゼン、 4 , 4 ' —ジアミノジフエニルスルホン、 メタフエ二レンジァミン、 メタキ シリレンジァミン等の芳香族ポリアミン化合物; 4, 4 ' -ビスアジドベンザル ( 4 —メチル) シクロへキサノン、 4, 4 ' —ジアジドカルコン、 2, 6—ビス (4 ' - アジドベンザル) シクロへキサノン、 2, 6—ビス (4, 一アジドベンザル) 一4— メチルシクロへキサノン、 4, 4 ' —ジアジドジフエ二/レスノレホン、 4, 4, 一ジァ ジドジフエニルメタン、 2, 2 ' —ジアジドスチルベン等のビスアジド化合物;無水 フタル酸、 無水ピロべリ ット酸、 ベンゾフエノンテトラカルボン酸無水物、 ナジック 酸無水物、 1, 2—シクロへキサンジカルボン酸無水物、 無水マレイン酸変性ポリプ ロピレン等の酸無水物; フマル酸、 フタル酸、 マレイン酸、 トリメ リ ット酸、 ハイミ ック酸等のジカルボン酸化合物;
1, 3—ブタンジォーノレ、 1 , 4一ブタンジォーノレ、 ヒ ドロキノンジヒ ドロキシェ チルエーテル、 トリシクロデカンジメタノール等のジオール化合物; 1 , 1, 1ート リメチロールプロパン等のトリオール; フエノ一ルノボラック、 クレゾールノボラッ ク等の多価フエノール;ナイロン一 6、 ナイロン一 6 6, ナイロン一 6 1 0、 ナイ口 ンー 1 1、 ナイ口ン一 6 1 2、 ナイ口ン一 1 2, ナイ口ンー 4 6、 メ トキシメチノレイ匕 ポリアミ ド、 ポリへキサメチレンジアミンテレフタルアミ ド、 ポリへキサメチレンィ ソフタルアミ ド等のポリアミ ド化合物;へキサメチレンジィソシァネート、 トルィレ ンジィソシァネート、 トリグリシジルイソシァヌレート等のジイソシァネート化合 物;フエノールノボラック型エポキシ化合物、 クレゾ一ルノボラック型エポキシ化合 物、 タレゾール型エポキシ化合物、 ビスフエノール A型エポキシ化合物、 ビスフエノ ール F型エポキシ化合物、 臭素化ビスフヱノール A型エポキシ化合物、 臭素化ビスフ ェノール F型エポキシ化合物等のグリシジルエーテル型エポキシ化合物;脂環式ェポ キシ化合物、 グリシジルエステル型エポキシ化合物、 グリシジルァミン型エポキシ化 合物、ィソシァヌレート型エポキシ化合物等の多価エポキシ化合物;等が挙げられる。 これらの中でも、 ジオール化合物、 多価フエノール化合物及び多価エポキシ化合物が 好ましく、 多価エポキシ化合物が特に好ましい。
ラジカル硬化剤としては、 例えば、 メチルェチルケトンペルォキシド、 シクロへキ サノンペルォキシド、 1, 1 _ ( t—ブチルペルォキシ) 一 3, 3, 5—トリメチノレ シク口へキサン、 2, 2—ビス ( t—ブチルぺノレオキシ) ブタン、 t—ブチルハイド 口ペルォキシド、 2 , 5—ジメチルへキサン一 2, 5—ジハイド口ペルォキシド、 ジ タミルペルォキシド、 2, 5—ジメチゾ I 2, 5—ジ ( t一ブチルペルォキシ) へキ シン一 3、 a , a ' —ビス ( t—ブチルペルォキシ一m—イソプロピル) ベンゼン、 オタタノィルペルォキシド、 イソブチリルペルォキシド、 ペルォキシジカーボネート 等の有機ペルォキシド等が挙げられる。
イオン性とラジカノレ性とを兼ね備えた硬化剤としては、 例えば、 トリアリルシアヌ レート等のシァヌレート ; 1—ァリルイソシァヌレート、 1, 3—ジァリルイソシァ ヌレート、 1, 3—ジァリル一 5—ベンジルイソシァヌレート、 トリアリルイソシァ ヌレート、 1—ァリル一 3, 5—ジベンジルイソシァヌレート、 1—ァリル一 3 , 5 —ジグリシジルイソシァヌレート、 1 , 3—ジァリル一 5—グリシジリルイソシァヌ レート等のィソシァヌレートが挙げられる。
これらの硬化剤は、 それぞれ単独で、 あるいは 2種以上を組み合わせて用いること ができる。 これらの硬化剤のうち、 イソシァヌレート硬化剤は、 優れた難燃性を有す る硬化物が得られるので好ましい。 硬化剤の量は、 使用目的に応じて適宜選択される が、前記開環メタセシス共重合体または開環メタセシス共重合体水素化物 1 0 0重量 部に対して、 通常 0 . 1〜 2 0 0重量部、 好ましくは 1〜 1 5 0重量部、 より好まし くは 1 0〜1 0 0重量部の範囲である。 本発明の好適な硬化性樹脂組成物は開環メタセシス共重合体または開環メタセシ ス共重合体水素化物と、 硬化剤とが均一に相溶したものである。 相溶した状態になる と、 組成物が二層に分離したり、 組成物自体が不透明になることがない。 本発明の組 成物には、 上記成分以外に、 ゴム、 他の樹脂、 難燃剤、 充填剤、 耐熱安定剤、 老化防 止剤、 耐候安定剤、 紫外線吸収剤、 レべリング剤、 帯電防止剤、 スリ ップ剤、 アンチ ブロッキング剤、 防曇剤、 滑剤、 染料、 顔料、 天然油、 合成油、 ワックス、 乳化剤な どを含有させることができ、 その量は、 本発明の目的を損ねない範囲で適宜選択され る。
本発明の硬化性組成物は、 それを硬化させたものが、 電気特性に優れているので、 多層基板用、 電子部品用、 I Cチップ用および配線用などの絶縁材料;プリプレダ; ソルダーマスク ;プリント基板、 電子部品、 I Cチップ、 表示素子などの保護膜や層 間絶縁膜; EL装置、 液晶装置などの表示装置の材料;などに、 また素子内蔵多層回 路基板にも好適である。
以下に、 実施例と比較例とを挙げて、 本発明をさらに具体的に説明するが、 本発明 は以下の実施例に何ら限定されるものではない。 なお、 「部」 は特段の表記がない限 り重量基準である。
(1) 分子量は、 テトラヒドロフランを溶媒とするゲル ·パーミエーション 'クロマ トグラフィー (GPC) によるポリスチレン換算値として測定した。
(2) 共重合体中の単量体組成比、 ならびにヒドロキシル基およびヒ ドロキシカルボ ニル基の数は、 — NMRスぺク トルにより測定した。
(3) 水素化率は、 一 NMRスペク トルにより測定した。
(4) 加水分解率は、 I Rスペク トル (KB r法) により測定した。
(5) ガラス転移温度 (Tg) は、 示差走査型熱量計にて、 10°C/分で昇温して測 定した。
[実施例 1 ]
攪拌機付きガラス反応器に、テトラヒ ドロフラン 3 1 1部、テトラシク口 [4. 4. 0. I 2' 5. I 7' 10] ドデ力一 3—ェン 77. 8部、 5—ヒ ドロキシエトキシカルボ 二ルビシクロ [2. 2. 1] ヘプトー 2—ェン 22. 2部、 および 1一へキセン 0. 51部を仕込んだ。 テトラヒ ドロフラン 44. 9部に溶解した (1, 3—ジメシチル イミダゾリジン—2 _イリデン) (トリシクロへキシルホスフィン) ベンジリデンル テニゥムジクロリ ド 0. 05部を添カ卩して、 70°Cで共重合を行った。 2時間後、 共 重合反応液を多量のイソプロパノールに注いで固形分を析出させ、 濾別洗浄後、 4 0°Cで 18時間減圧乾燥し開環メタセシス共重合体を得た。得られた開環メタセシス 共重合体の収量は 98部で、ガラス転移温度(T g)は 1 78°Cであった。分子量は、 数平均分子量 (Mn) = 22, 100、 重量平均分子量 (Mw) =44, 400であ つた。 共重合体中の単量体組成比はテトラシクロ [4. 4. 0. I 2' 5. 17' 10] ド デカー 3—ェン Z5—ヒ ドロキシエトキシカルボ二ルビシクロ [2. 2. 1] ヘプト 一 2—ェン =80 20 (モル モル) であった。 全繰り返し単位に対するヒドロキ シル基の数の割合は 20%であった。
[実施例 2]
テトラシクロ [4. 4. 0. 12' 5. 17' 10] ドデカー 3—ェン 77. 8部、 及び 5—ヒ ドロキシエトキシカノレポ二/レビシクロ [2. 2. 1 ] ヘプト一 2—ェン 22. 2部を、 テトラシクロ [4. 4. 0. I 2' 5. I 7' 10] ドデ力一 3—ェン 37部及び 5—ヒ ドロキシエトキシカノレボニノレビシクロ [2. 2. 1 ] ヘプトー 2—ェン 63部 に変えた以外は、 実施例 1と同様にして開環メタセシス共重合体を得た。 得られた開 環メタセシス共重合体の収量は 63部で、 丁 8は154°Cであった。 分子量は、 数平 均分子量(Mn) =26, 200、重量平均分子量(Mw) = 58, 600であった。 共重合体中の単量体組成比はテトラシクロ [4. 4. 0. I 2' 5. 17 1°] ドデ力一 3—ェン 5—ヒ ドロキシエトキシカルボ二ルビシクロ [2. 2. 1] ヘプトー 2— ェン =42 58 (モル/モル) であった。 全繰り返し単位に対するヒドロキシル基 の数の割合は 58%であった。
[実施例 3] '
テトラシクロ [4. 4. 0. 12' 5. 17· 10] ドデ力一 3—ェン 77. 8部、 及び 5—ヒ ドロキシエトキシカルボニノレビシクロ [2. 2. 1 ] ヘプト一 2—ェン 22. 2部を、 8—ェチリデンテトラシクロ [4. 4. 0. 12' 5· 17' 10] ドデ力一 3— ェン 80. 3部、 及び 5—ヒ ドロキシエトキシカルボ二ルビシクロ [2. 2. 1] へ ブト一 2—ェン 19. 7部に変えた以外は、 実施例 1と同様にして開環メタセシス共 重合体を得た。 得られた開環メタセシス共重合体の収量は 95. 1部で、 T gは 1 7 5°Cであった。 分子量は、数平均分子量(Mn) = 21, 600、 重量平均分子量(M w) =44, 100であった。 共重合体中の単量体組成比は 8—ェチリデンテトラシ クロ [4. 4. 0. I 2' 5. I 7' 10] ドデカー 3—ェン Z5—ヒ ドロキシエトキシカ ルボニルビシクロ [2. 2. 1 ] ヘプトー 2—ェン = 82Z 18 (モル/モル) であ つた。 全繰り返し単位に対するヒドロキシル基の数の割合は 18 %であった。
[実施例 4]
重合溶媒としてのテトラヒドロフランをトルエン (比誘電率 =2. 379) に、 1 一へキセンの仕込み量を 0. 9 1部に、 (1, 3—ジメシチルイミダゾリジン一 2— イリデン) (トリシクロへキシルホスフィン) ベンジリデンルテニウムジクロリ ドの 仕込み量を 0. 02部に変えた以外は、 実施例 3と同様にして開環メタセシス共重合 体を得た。 得られた開環メタセシス共重合体の収量は 93. 2部で、 分子量は、 数平 均分子量(Mn) = 1 3, 400、重量平均分子量(Mw) =24, 200であった。 共重合体中の単量体組成比は 8—ェチリデンテトラシクロ [4. 4. 0. I 2' 5. 1 7' 10] ドデ力一 3—ェン /5—ヒ ドロキシエトキシカルボニノレビシクロ [2. 2. 1] ヘプトー 2—ェン = 80 20 (モル/モル) であった。 全繰り返し単位に対す るヒ ドロキシル基の数の割合は 20 %であった。
この開環メタセシス共重合体 100部をトルエン 400部に溶解した後、攪拌機付 きオートクレーブに仕込み、 次いでビス (トリシクロへキシルホスフィン) ベンジリ デンルテニウム (I V) ジクロリ ド 0. 05部及びェチルビニルエーテル 0. 39部 をトルエン 20部に溶解した水素化触媒溶液を添加し、水素圧 4. 5MP a、 1 20 °C で 6時間水素化反応を行った。水素化反応液を多量のィソプロパノールに注いで固形 分を完全に析出させ、 濾別洗浄後、 90°Cで 18時間減圧乾燥して開環共重合体水素 化物を得た。 得られた開環共重合体水素化物の T gは 1 1 2°Cであった。 分子量は、 数平均分子量 (Mn) = 18, 100、 重量平均分子量 (Mw) = 32, 800であ つた。 ヒ ドロキシル基およびエステル基が完全に保存され、 どちらも 20%であり、 主鎖中の炭素一炭素二重結合の 99 %以上が水素化されていることを1 H— NMRに より確認した。
[実施例 5]
5—ヒ ドロキシエトキシカルボ二ルビシクロ [2. 2. 1] ヘプト一 2—ェンを、 8—ヒ ドロキシメチルテトラシクロ [4. 4. 0. I 2' 5. I 7' 10] ドデカー 3—ェ ンに変えた以外は、 実施例 2と同様にして開環メタセシス共重合体を得た。 得られた 開環メタセシス共重合体の収量は 93部で、分子量は、数平均分子量(Mn) = 20, 600、 重量平均分子量 (Mw) =36, 600であった。 共重合体中の単量体組成 比はテトラシクロ [4. 4. 0. I 2' 5. I 7' 10] ドデ力一 3—ェン 8—ヒ ドロキ シメチルテトラシクロ [4· 4. 0. I 2' 5. I 7' 10] ドデ力一 3—ェン = 35 6 5 (モル /モル) であった。
得られた開環共重合体 1部をテトラヒドロフラン 65. 3部に溶解した後、 攪拌機 付きオートクレーブに仕込み。 次いでビス (トリシクロへキシノレホスフィン) ベンジ リデンルテユウム (I V) ジクロリ ド 0. 09部及びェチルビュルエーテル 0. 8部 をテトラヒドロフラン 16. 3部に溶解した水素化触媒溶液を添カ卩し、 水素圧 IMP a、 100°Cで 4時間水素化反応を行った。 水素化反応液を多量のイソプロパノール に注いで固形分を完全に析出させ、濾別洗浄後、 70°Cで 18時間減圧乾燥し開環共 重合体水素化物を得た。 得られた開環共重合体水素化物の T gは 93°Cであった。 分 子量は、 数平均分子量 (Mn) =27, 300、 重量平均分子量 (Mw) =48, 8 00であった。 ヒ ドロキシル基が完全に保存され、 ヒ ドロキシル基の数の割合は 6 5%であり、 主鎖中の炭素一炭素二重結合の 99%以上が水素化されていることを1 H— NMRにより確認した。
[実施例 6 ]
テトラシクロ [4. 4. 0. 12' 5. 17' 10] ドデ力一 3—ェン 77. 8部、 及び 5—ヒ ドロキシエトキシカノレボニルビシクロ [2. 2. 1] ヘプトー 2—ェン 22. 2部を、 テトラシクロ [4. 4. 0. 12· 5. 17' 10] ドデカー 3—ェン 50. 8部、 及び 5, 6—ジヒ ドロキシメチルビシクロ [2. 2. 1 ] ヘプト一 2—ェン 49. 2 部に変えた以外は、 実施例 1と同様にして開環メタセシス共重合体を得た。 得られた 開環メタセシス共重合体の収量は 68. 3部で、 Tgは 188°Cであった。分子量は、 数平均分子量 (Mn) =32, 100、 重量平均分子量 (Mw) = 59, 500であ つた。 共重合体中の単量体組成比はテトラシクロ [4. 4. 0. I 2' 5. 17' 10] ド デカ一3—ェン/ 5, 6—ジヒ ドロキシメチルビシクロ [2· 2. 1] ヘプト一 2— ェン =55/45 (モル/モル) であった。 全繰り返し単位に対するヒ ドロキシル基 の数の割合は 90%であった。
[実施例 7 ]
攪拌機付きガラス反応器に、 シクロへキサン 374部、 8—ェチリデンテトラシク 口 [4. 4. 0. 12' 5. 17' 10] ドデ力一 3—ェン 6 9. 1部、 5 _ t—ブトキシ カルボ二ルビシクロ [2. 2. 1] ヘプト一 2—ェン 30. 9部、 および 1—へキセ ン 1. 34部を仕込んだ。 シクロへキサン 24. 2部に溶解した (1, 3—ジメシチ ルイミダゾリジン一 2—イリデン) (トリシクロへキシルホスフィン) ベンジリデン ルテニウムジクロリ ド 0. 04部を添加して、 80°Cで共重合を行った。 2時間後、 重合反応液を多量のイソプロパノールに注いで固形分を析出させ、 濾別洗浄後、 4 0°Cで 18時間減圧乾燥し開環共重合体を得た。得られた開環共重合体の収量は 94. 5部で、 分子量は、 数平均分子量 (Mn) =8, 840、 重量平均分子量 (Mw) - 14, 900であった。共重合体中の単量体組成比は 8—ェチリデンテトラシク口 [4. 4. 0. I 2' 5. I 7' 10] ドデ力一 3—ェン /5— t—ブトキシカルボ二ルビシクロ [2. 2. 1] ヘプトー 2—ェン =69/31 (モル モル) であった。
得られた開環共重合体 1部をシクロへキサン 39部に溶解した後、攪拌機付きォー トクレーブに仕込んだ。 次いでビス (トリシクロへキシルホスフィン) ベンジリデン ルテニウム (I V) ジクロリ ド 0. 05部及びェチルビュルエーテル 0. 88部をシ クロへキサン 3. 9部に溶解した水素化触媒溶液を添加し、水素圧 IMP a、 140°C で 6時間水素化反応を行った。水素化反応液を多量のィソプロパノールに注いで固形 分を完全に析出させ、 濾別洗浄後、 40°Cで 18時間減圧乾燥し開環共重合体水素化 物を得た。 分子量は、 数平均分子量 (Mn) = 1 3, 800、 重量平均分子量 (Mw) = 22, 400であった。 〗H— NMRスペク トル測定により、 エステル基が完全に 保存されていることおよび主鎖中の炭素—炭素二重結合の 95 %以上が水素化され ていることを確認した。
攪拌機付きガラス反応器に、得られた開環共重合体水素化物 1部をトルエン 200 部に溶解した溶液を仕込んだ。 トリフルォロ酢酸 20部を加え、 1 2時間加熱還流を 行ったのち、 反応液を多量のイソプロパノールに注いで固形分を完全に析出させ、 濾 別洗浄後、 80°Cで 18時間減圧乾燥し加水分解物を得た。 加水分解物の T gは 1 5 8°Cであり、 I Rスペク トル測定により、 3000 c m— 1付近の幅広いカルボン酸 O 一 H伸縮振動由来の吸収が出現したことを確認した。 さらに、 1 150 cm一1付近の エステル基 c_o伸縮振動由来の吸収が完全に消滅したことから、加水分解率は 10 0%であることを確認した。全繰り返し単位に対するヒ ドロキシカルボニル基の数の 割合は 31 %であった。
[実施例 8]
攪拌機付きガラス反応器に、 シクロへキサン 386部とジシクロペンタジェン 91. 3部、 5, 6—ジァセチルォキシメチルビシクロ [2. 2. 1]ヘプト一 2—ェン 8. 7部、 および 1—へキセン 0. 6 1部を仕込んだ。 シクロへキサン 1 3. 3部に溶解 した ( 1 , 3ージメシチルイミダゾリジン一 2—イリデン) (トリシク口へキシルホ スフイン) ベンジリデンルテニウムジクロリ ド 0. 06部を添加して、 80°Cで共重 合を行った。 2時間後、 重合反応液を多量のイソプロパノールに注いで固形分を析出 させ、 濾別洗浄後、 40°Cで 18時間減圧乾燥し開環共重合体を得た。 開環共重合体 の収量は 87. 6部で、 分子量は、 数平均分子量 (Mn) = 1 5, 900、 重量平均 分子量 (Mw) =29, 700、 全繰り返し単位に対するエステル基の数が 12%で あった。
得られた開環共重合体 1部をシク口へキサン 39部に溶解した後、攪拌機付きォー トクレーブに仕込んだ。 次いでビス (トリシクロへキシルホスフィン) ベンジリデン ルテニウム ( I V) ジクロリ ド 0. 1部及びェチルビュルエーテル 0. 88部をシク 口へキサン 7. 8部に溶解した水素化触媒溶液を添加し、水素圧 10MP a、 100°C で 8時間水素化反応を行った。水素化反応液を多量のィソプロパノールに注いで固形 分を完全に析出させ、 濾別洗浄後、 40°Cで 18時間減圧乾燥し開環共重合体水素化 物を得た。 分子量は、 数平均分子量 (Mn) = 20, 700、 重量平均分子量 (Mw) = 38, 600であった。 1H— NMRスペク トル測定により、 エステル基が完全に 保存されていることおよび主鎖中の炭素一炭素二重結合の 99 %以上が水素化され ていることを確認した。
攪拌機付きガラス反応器に、得られた開環共重合体水素化物 1部とテトラヒドロフ ラン 200部を仕込んだ。 そこにナトリウムメ トキシド (10%) メタノール溶液 2 0部を加え、 1 2時間加熱還流を行った。 反応液を多量のイソプロパノールに注いで 固形分を完全に析出させ、 濾別洗浄後、 80°Cで 18時間減圧乾燥して加水分解物を 得た。 加水分解物の T gは 108°Cであり、 I Rスぺク トル測定により、 3300 c m一1付近の幅広いアルコール O— H伸縮振動由来の吸収が出現したことを確認した。 さらに、 1 740 cm一1付近のエステル基 C = 0伸縮振動由来の吸収が完全に消滅し たことから、 加水分解率は 100%であることを確認した。 全繰り返し単位に対する ヒ ドロキシル基の数の割合は 12%であった。
[実施例 9]
テトラシクロ [4. 4. 0. I 2' 5. l 7' 10] ドデ力一 3—ェン 77. 8部及び 5 —ヒ ドロキシエトキシカルボ二ルビシクロ [2. 2. 1] ヘプト一 2—ェン 22. 2 部を、 テトラシクロ [4. 4. 0. I 2' 5. 17' 10] ドデ力一 3—ェン 80部及びノ ルボルネンジカルボン酸無水物 (95%ェキソ体) 20部に変えた以外は、 実施例 1 と同様にして開環共重合体を得た。 開環共重合体の収量は 95部で、 分子量 (ポリス チレン換算) は、 数平均分子量 (Mn) = 13, 300、 重量平均分子量 (Mw) = 23, 400であった。 共重合体中の単量体組成比はテトラシクロ [4. 4. 0. 1 2' 5. I 7' 10] ドデカー 3—ェン ノルボルネンジカルボン酸無水物 =8 OZ 20 (モ ノレ/モノレ) であった。
得られた開環共重合体を用いた以外は実施例 4と同様にして、水素化反応を行った。 得られた開環共重合体水素化物の分子量は、 数平均分子量 (Mn) = 18, 000、 重量平均分子量 (Mw) =31, 500であった。 — NMRスペク トル測定によ り、 力ルポン酸無水物基が完全に保存されていることおよび主鎖中の炭素一炭素二重 結合の 99 %以上が水素化されていることを確認、した。
攪拌機付きガラス反応器に、得られた開環共重合体水素化物 1部とテトラヒ ドロフ ラン 200部を仕込んだ。 そこにナトリウムメ トキシド (10%) メタノール溶液 2 0部を加え、 12時間加熱還流を行った。 10%塩酸 1 3. 5部を加えて反応を停止 したのち、 反応液を多量のイソプロパノールに注いで固形分を完全に析出させ、 濾別 洗浄後、 80°Cで 18時間減圧乾燥した。 反応生成物の T gは 1 10°Cであり、 I R スぺク トル測定により環状酸無水物の開環率が 100%であることを確認した。全繰 り返し単位に対するヒ ドロキシカルボニル基の数の割合は 20%であった。
[比較例 1 ]
単量体を 8—メチルー 8—メ トキシカルボニルテトラシクロ [4. 4. 0. 12' 5. 17· 10] - 3-ドデセン 1 00部として、実施例 4と同様にして重合反応を行った。 得られた開環重合体の収量は 9 5部で、 分子量は、 数平均分子量 (Mn) = 1 5, 4 00、 重量平均分子量 (Mw) = 34, 200であった。
得られた開環重合体を用いた以外は実施例 4と同様にして、 水素化反応を行った。 得られた開環重合体水素化物の T gは 1 70°Cであり、 分子量は、 数平均分子量 (M n) = 1 8, 600、 重量平均分子量 (Mw) = 38, 200であった。 1 H— NM Rスぺク トル測定により、エステル基が完全に保存されていることおよび主鎖中の炭 素一炭素二重結合の 9 9%以上が水素化されていることを確認した。全繰り返し単位 に対するエステル基の数は 1 00%で、 ヒ ドロキシカルボニル基の数の割合は 0%で めった。
[比較例 2 ]
比較例 1で得られた重合体水素化物 1 0部、 N—メチルピロリ ドン 1 0部、 プロピ レンダリコーノレ 50部、 水酸化力リゥム 8部を反応器に仕込み、 1 90°Cで 5時間攪 拌した。 得られた反応溶液を大量の水、 テトラヒ ドロフランおよび塩酸の混合溶液に 注いで、加水分解物を凝固させた。凝固ポリマーを水洗、乾燥して加水分解物を得た。 得られた加水分解物の T gは 20 5°Cであり、 加水分解率は 9 5%であった。 全繰り 返し単位に対するエステル基の数は 5%で、 ヒドロキシカルボエル基の数の割合は 9 5%であった。
[比較例 3 ]
単量体を 8—ェチルテトラシクロ [4. 4. 0. I 2' 5. 17' 10] — 3—ドデセン 1 00部として、 実施例 4と同様にして重合反応を行った。 得られた開環重合体の収 量は 99部で、 分子量 (ポリスチレン換算) は、 数平均分子量 (Mn) = 1 2, 80 0、 重量平均分子量 (Mw) = 29, 200であった。
得られた開環重合体を用いた以外は実施例 4と同様にして、 水素化反応を行った。 得られた開環重合体水素化物の T gは 1 3 8°Cであり、 分子量は、 数平均分子量 (M n) = 1 5, 200、 重量平均分子量 (Mw) = 34, 1 00であった。 水素化率は 9 9%以上であった。 全繰り返し単位に対する官能基の数は 0%であった。
[実施例 1 0 ]
実施例 1〜 9および比較例 1〜 3で得られた開環メタセシス共重合体または開環 メタセシス共重合体水素化物 2部をク口口ベンゼン 6. 5部にそれぞれ溶解した。 各溶液を加圧ろ過し、 ろ液を銅基板、 シリコン基板それぞれにスピンコートした。 これらの基板を 60°C、 2分間加熱した後、 200°Cで 2時間窒素気流下にて加熱乾 燥することにより、 銅基板、 シリコン基板上に (見かけ上) 密着した膜厚 30 ± 1ミ ク口ンの共重合体及び共重合体水素化物のフィルムを得た。
さらに、 スピンコート条件を適切に調整し、 前述と同様な操作を行い、 テフロン基 板上に膜厚約 5ミクロンのフィルムを得た。
(評価法)
銅基板およびシリコン基板に密着した各フィルムの密着性を J I S K 5400 に従って Xカットテープ試験によって測定し、 〇: 1. Omm以下、 0〜2. 0mm, X : 2. 0 mm以上を指標とした。
テフロン基板からフィルムを丁寧に剥がし、 剥がしたフィルムについて吸水率、 誘 電率および誘電正接を測定した。
吸水率は J I S K 7 20 9に従って測定し、 〇: 1%以下、 △: 1〜2%、 X :
2%以上を指標とした。
また、誘電率および誘電正接を J I S C 23 30に従って 1 MH zの高周波で測 定し、 下記の指標で表示した。
比誘電率 〇: 3. 0以下、 Δ : 3. 0〜3. 5、 X : 3. 5以上
誘電正接 〇: 0 · 0 1以下、 △ : (). 0 1〜0. 02、 X : 0. 02以上 調製した各溶液 2部に硬化剤として水素化ビスフエノール Α型エポキシ樹脂 (商品 名 : E P I CLON EXA— 70 1 5 :大日本インキ株式会社製) 0. 1部を添加 し、 よく攪拌後、 静置し、 目視観察し、 均一な溶液になるかどうかで硬化剤との相溶 性を評価した。 評価指標として、 〇:均一な溶液、 X :濁り、 または相分離あり を 用いた。
信号遅延及び信号ノイズは、 硬化剤を配合した共重合体溶液を硬化させ、 その表面 にメツキにより導体層配線を形成し、 1 GH zの高周波信号を流して観測した。 遅延 が実質無い場合を〇、 在る場合を X、 信号ノイズが実質無い場合を〇、 在る場合を X として評価した。 一は未測定。
表 1 卜举看 5^ 密着性 おΗ iι-SΘΊ'W±: Ί口 ¾£¾£ 信号 ノイズ 剛 似 シリ コン
基板
実施例 1 〇 〇 〇 〇 〇 〇 〇 〇
2 o 〇 〇 〇 〇 〇 〇 〇
3 〇 〇 o 〇 〇 〇 〇 〇
4 〇 〇 〇 〇 〇 〇 〇 〇
5 〇 〇 〇 〇 〇 〇 〇 〇
6 〇 〇 〇 〇 〇 ο Ο 〇
7 〇 〇 〇 〇 〇 〇 〇 〇
8 〇 o 〇 〇 〇 〇 〇 〇
9 〇 o o 〇 〇 〇 〇 〇 比較例 1 〇 Δ X Δ Δ X X X
2 X X X 〇 〇 〇 X X
3 〇 〇 〇 X X X
[比較例 4 ]
1—へキセンの添加量を 72部とし、 (1, 3—ジメシチルイミダゾリジン一 2 f リデン) (トリシクロへキシルホスフィン) ベンジリデンルテニウムジクロリ ドに代 えて、 トリェチルアルミニウムのシクロへキサン溶液 (0. 5mo l Z l ) 0. 74 部、 t—ブタノール/メタノールで変性した WC 16 ( t—ブタノール/メタノール /WC 16 = 0. 35/0. 3/ 1 ;モル比) のシクロへキサン溶液 (0. 01 mo 1 /〗) 7. 4部を触媒溶液として用いた以外は、 実施例 7と同様にして、 8—ェチ リデンテトラシクロ [4. 4. 0. I 2' 5. I 7' 10] ドデカ _ 3—ェン /5— t—ブ トキシカルボ二ルビシクロ [2. 2. 1] ヘプト— 2—ェンの共重合を試みた。 反応 途中で副反応を併発するようになり、 反応液の粘度が急激に上昇し固化し、 不溶性の ポリマーが得られ、 本発明の開環共重合体は得られなかった。
[比較例 5 ]
(1, 3—ジメシチルイミダゾリジン一 2—イリデン) (トリシクロへキシルホス フィン) ベンジリデンルテニウムジクロリ ドに代えて、 トリェチルアルミニウムのテ トラヒ ドロフラン溶液 (0. 5mo l Z l ) 0. 74部、 t—ブタノール メタノー ルで変性した WC 16 ( t—ブタノール Zメタノール/ WC 16= 0. 35/0. 3/
1 ;モル比) のテトラヒ ドロフラン溶液 (0. O lmo l /1 ) 7. 4部を触媒溶液 として加えた以外は、 実施例 1と同様にして、 テトラシクロ [4.4.0.12' 5.17' 1 °] ドデカー 3—ェン/ 5—ヒ ドロキシエトキシカルボ二ルビシクロ [2. 2. 1] ヘプトー 2—ェンの共重合を試みた。 6時間後、 重合反応液を多量のイソプロパノー ルに注いだが、 固形分は析出しなかった。 本発明の開環共重合体は得られなかった。 産業上の利用可能性
本発明の製造方法によれば、 ヒ ドロキシル基ゃヒ ドロキシカルボニル基などの基を 有するノルボルネン系単量体と、 3環体以上のノルボルネン系単量体との開環メタセ シス共重合ができ、 所望の単量体 *a成比で、 高分子量のものが得られる。 また、 本発 明の開環メタセシス共重合体及びその水素化物は、 吸水性が低く、 信号遅延や信号ノ ィズが少なく、 銅ゃシリコンとの密着性に優れ、 さらに、 従来相溶性の低かった硬化 剤との相溶性にも優れている。 本発明の共重合体及び水素化物と、 硬化剤とを含有す る組成物は、 それを硬化することによって、 電子部品や多層回路基板などの電気絶縁 材料として好適に用いることができる。

Claims

請求の範囲
1. 一般式 (1) で表される繰り返し単位と、 一般式 (2) で表される繰り返し単 位または一般式 (3) で表される繰り返し単位とからなり、 全繰り返し単位の数に対 するヒ ドロキシル基の数の割合が 5 ~ 1 00 %であり、かつゲルパーミエーションク 口マトグラフィ一で測定したポリスチレン換算の重量平均分子量が 1, 000〜50 0, 000である開環メタセシス共重合体。
-
Figure imgf000039_0001
(1)
(式 (1) 中、 Ri〜R4は、 少なくとも一つが、 一OH (すなわち、 ヒドロキシル基) を有する置換基 (ヒドロキシカルボ二ル基は除く) であり、 その他は水素原子、 炭素 数 1〜 20の炭化水素基又はハロゲン原子、 ケィ素原子、 酸素原子もしくは窒素原子 を含有する基 (ヒドロキシル基及びヒ ドロキシカルボ二ル基を除く) を示す。 mは 0 〜 2の整数を表す。)
Figure imgf000039_0002
(式 (2) 中、 R5、 R R 7および R 8は、 それぞれ独立に、 水素原子又は炭素数 1〜2 0の炭化水素基を示し、 R 5または R 6が R 7または R 8と結合して環を形成し ても構わない。 nは 1〜2の整数を表す。)
Figure imgf000040_0001
(式 (3) 中、 R9、 R1 Q、 R11および R12は、 それぞれ独立に、 水素原子又は炭素 数 1〜20の炭化水素基を示し、 R 9または R 1 (3が R 11または R 12と結合して環を形 成している。)
2. 一般式 (1) で表される繰り返し単位において、 mが 0または 1である請求項 1記載の開環メタセシス共重合体。
3. 一般式 (1) で表される繰り返し単位が、 5—ヒ ドロキシビシクロ [2. 2. 1] ヘプトー 2—ェン、 5—ヒ ドロキシメチルビシクロ [2. 2. 1] ヘプト一 2— ェン、 5, 6—ジヒ ドロキシメチルビシクロ [2. 2. 1] ヘプト一 2—ェン、 5— ヒ ドロキシエトキシカルボ-ルビシクロ [2. 2. 1 ] ヘプト一 2—ェンから選ばれ る少なくとも一種の単量体由来の繰り返し単位である請求項 1記載の開環メタセシ ス共重合体。
4. 一般式 (4) で表される繰り返し単位と、 一般式 (2) または (3) で表され る繰り返し単位とからなり、全繰り返し単位の数に対するヒ ドロキシカルボニル基の 数の割合が 5〜 50 %であり、かつゲルパーミエーシヨンクロマトグラフィ一で測定 したポリスチレン換算の重量平均分子量が 1, 000〜500, 000である開環メ タセシス共重合体。
Figure imgf000040_0002
(4)
(式 (4) 中、 R13〜R16は、 少なくとも一つが、 一 COOH (すなわち、 ヒ ドロ キシカルボニル基) を有する置換基であり、 その他は水素原子、 炭素数 1〜20の炭 化水素基又はハ口ゲン原子、ケィ素原子、酸素原子もしくは窒素原子を含有する基(ヒ ドロキシカ ボ二ル基を除く) を示す。 pは 0〜2の整数を表す。)
5. 請求項 1または 4記載の開環メタセシス共重合体と、 硬化剤とを含有する硬化 性樹脂組成物。
6. 一般式 (1) で表される繰り返し単位と、 一般式 (2) または (3) で表され る繰り返し単位と、一般式(5)で表される繰り返し単位と、一般式(6) または(7) で表される繰り返し単位とからなり、 一般式 (1)、 (2) 及び (3) で表される繰り 返し単位の合計が全繰り返し単位の 50〜 0 %であり、 一般式 ( 5 )、 (6) 及び ( 7 ) で表される繰り返し単位の合計が全繰り返し単位の 50〜100%であり、
全繰り返し単位に対するヒドロキシル基の数の割合が 5〜 100 %であり、かつゲ ルパーミエーシヨンクロマトグラフィ一で測定したポリスチレン換算の重量平均分 子量が 1, 000〜500, 000である開環メタセシス共重合体水素化物。
Figure imgf000041_0001
(5
(式 (5) 中、 !^〜尺4および mは前記と同様の意味を表す。)
Figure imgf000041_0002
(6)
(式 (6) 中、 R5、 R6、 R7、 R 8および nは前記と同様の意味を表す。)
Figure imgf000042_0001
(式 (7) 中、 R9 R10, R11および R12は前記と同様の意味を表す。)
7. 一般式 (1) 及び (5) で表される繰り返し単位において、 mが 0または 1で ある請求項 6記載の水素化物。
8. 一般式 (1) 及び (5) で表される繰り返し単位が、 5—ヒ ドロキシビシクロ [2. 2. 1] ヘプトー 2—ェン、 5—ヒ ドロキシメチルビシクロ [2. 2. 1] へ プト一 2—ェン、 5, 6—ジヒ ドロキシメチルビシクロ [2. 2. 1] ヘプトー 2— ェン、 5—ヒ ドロキシエトキシカルボ二ルビシクロ [2. 2. 1]ヘプト一 2—ェン、 5, 6—ジヒ ドロキシビシクロ [2. 2. 1] ヘプトー 2—ェンから選ばれる少なく とも一種の単量体由来の繰り返し単位である請求項 6記載の水素化物。
9. 一般式 (4) で表される繰り返し単位と、 一般式 (2) または (3) で表され る繰り返し単位と、一般式(8)で表される繰り返し単位と、一般式(6) または(7) で表される繰り返し単位とからなり、 一般式 (4)、 (2) 及び (3) で表される繰り 返し単位の合計が全繰り返し単位の 50 0 %であり、 一般式 ( 8 ) (6) 及び ( 7 ) で表される繰り返し単位の合計が全繰り返し単位の 50 100%であり、
全繰り返し単位に対するヒ ドロキシカルボ-ル基の数の割合が 5 50 %であり、 かつゲルパーミエーションクロマトグラフィ一で測定したポリスチレン換算の重量 平均分子量が 1, 000 500 000である開環メタセシス共重合体水素化物。
Figure imgf000042_0002
(式 (8) 中、 1^13〜1^16ぉょび1)は前記と同様の意味を表す。)
1 0. —般式 (4) 及び (8) で表される繰り返し単位において、 mが 0または 1 である請求項 9記載の水素化物。
1 1. 一般式 (4) 及び (8) で表される繰り返し単位が、 5—ヒ ドロキシカルボ ニノレビシクロ [2. 2. 1] ヘプト一 2—ェン、 5—ヒ ドロキシカルボ二ルメチルビ シクロ [2. 2. 1] ヘプト一 2—ェン、 5, 6—ジヒ ドロキシカノレボニルビシクロ
[2. 2. 1] ヘプトー 2—ェンから選ばれる少なくとも一種の単量体由来の繰り返 し単位である請求項 9記載の水素化物。
1 2. 請求項 6または 9記載の開環メタセシス共重合体水素化物と、 硬化剤とを含 有する硬化性樹脂組成物。
1 3. 一般式 (9) で表される単量体と、 一般式 (1 0) で表される単量体または 一般式 (1 1) で表される単量体とを、 中性の電子供与性配位子が配位している有機 ルテニウム化合物を主成分とする触媒の存在下で、開環メタセシス共重合することを 含む開環メタセシス共重合体の製造方法。
Figure imgf000043_0001
(式 (9) 中、 Ri〜R4および mは前記と同様の意味を表す。)
Figure imgf000043_0002
( 1 0) (式 (10) 中、 R5、 R6、 R7、 R8、 および nは前記と同様の意味を表す。)
Figure imgf000044_0001
2
(式 (1 1) 中、 R9、 R1Q、 R 11および R 12は、 前記と同様の意味を表す。)
14. 有機ルテニウム化合物が、 一般式 (14) で表されるものである、 請求項 1 3記載の製造方法。
[(L2) c (Y2) dRu二 (C=) eCQ2] y (14)
(式 (14) 中、 L 2はそれぞれ独立に中性の電子供与性配位子を表し、 Y2はそれぞ れ独立にァニオン性の配位子を表す。 Qはそれぞれ独立に水素または炭素数 1〜20 個の炭化水素基 (ハロゲン原子、 窒素原子、 酸素原子、 珪素原子、 リン原子、 硫黄原 子を含んでいてもよい)を表す。 c、 d及び yはそれぞれ独立に 1〜4の整数を表し、 eは 0または 1を表す。)
1 5. 一般式 (12) で表される単量体と、 一般式 (10) または (1 1) で表さ れる単量体とを、 中性の電子供与性配位子が配位している有機ルテ二ゥム化合物を主 成分とする触媒の存在下で、 開環メタセシス共重合することを含む開環メタセシス共 重合体の製造方法。
Figure imgf000044_0002
(式 (1 2) 中、 R13〜R16および pは前記と同様の意味を表す。)
16. 有機ルテニウム化合物が、 一般式 (14) で表されるものである、 請求項 1 5記載の製造方法。
[(L2) c (Y2) dRu= (C=) eCQ2] y (14)
(式 (14) 中、 L 2はそれぞれ独立に中性の電子供与性配位子を表し、 Y2はそれぞ れ独立にァニオン性の配位子を表す。 Qはそれぞれ独立に水素または炭素数 1〜2 0 個の炭化水素基 (ハロゲン原子、 窒素原子、 酸素原子、 珪素原子、 リン原子、 硫黄原 子を含んでいてもよい)を表す。 c、 d及び yはそれぞれ独立に 1〜4の整数を表し、 eは 0または 1を表す。)
1 7 . 請求項 1 3または 1 5記載の製造方法で得られた開環メタセシス共重合体の 主鎖二重結合を水素化することを含む開環メタセシス共重合体水素化物の製造方法。
PCT/JP2002/005531 2001-06-08 2002-06-05 Open-ring copolymer, hydrogenated open-ring copolymer, processes for production of both, and compositions WO2002100917A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US10/480,002 US6995226B2 (en) 2001-06-08 2002-06-05 Open-ring copolymer, hydrogenated open-ring copolymer, process for production of both, and compositions
KR1020037016051A KR100883765B1 (ko) 2001-06-08 2002-06-05 개환 공중합체, 개환 공중합체 수소화물, 이들의 제조방법및 조성물
DE60227956T DE60227956D1 (de) 2001-06-08 2002-06-05 Offene ringe enthaltendes copolymer, hydriertes offene ringe enthaltendes copolymer, verfahren zu deren herstellung und zusammensetzungen
EP02738616A EP1408064B1 (en) 2001-06-08 2002-06-05 Open-ring copolymer, hydrogenated open-ring copolymer, processes for production of both, and compositions

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001174872A JP2002363263A (ja) 2001-06-08 2001-06-08 開環共重合体、開環共重合体水素化物、それらの製造方法および組成物
JP2001-174872 2001-06-08

Publications (1)

Publication Number Publication Date
WO2002100917A1 true WO2002100917A1 (en) 2002-12-19

Family

ID=19016096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/005531 WO2002100917A1 (en) 2001-06-08 2002-06-05 Open-ring copolymer, hydrogenated open-ring copolymer, processes for production of both, and compositions

Country Status (6)

Country Link
US (1) US6995226B2 (ja)
EP (2) EP1408064B1 (ja)
JP (1) JP2002363263A (ja)
KR (1) KR100883765B1 (ja)
DE (1) DE60227956D1 (ja)
WO (1) WO2002100917A1 (ja)

Families Citing this family (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI295410B (en) * 2002-11-29 2008-04-01 Zeon Corp Radiation-sensitive resin composition
BRPI0406756A (pt) 2003-01-13 2005-12-20 Cargill Inc Método para fabricação de agentes quìmicos industriais
JP4556598B2 (ja) * 2004-09-30 2010-10-06 住友ベークライト株式会社 半導体装置
JP2006098984A (ja) * 2004-09-30 2006-04-13 Sumitomo Bakelite Co Ltd 平坦化樹脂層、並びにそれを有する半導体装置及び表示体装置
WO2006076364A2 (en) 2005-01-10 2006-07-20 Cargill, Incorporated Candle and candle wax containing metathesis and metathesis-like products
KR20070121684A (ko) * 2005-03-22 2007-12-27 니폰 제온 가부시키가이샤 열가소성 수지, 그의 제조 방법 및 성형 재료
JP2006307154A (ja) * 2005-03-31 2006-11-09 Nippon Zeon Co Ltd 脂環式オレフィン重合体から成る樹脂膜
WO2007023618A1 (en) * 2005-08-26 2007-03-01 Sumitomo Chemical Company, Limited Homopolymer and copolymer, and production process thereof
WO2007081987A2 (en) * 2006-01-10 2007-07-19 Elevance Renewable Sciences, Inc. Method of making hydrogenated metathesis products
US8888908B2 (en) 2006-03-07 2014-11-18 Elevance Renewable Sciences, Inc. Colorant compositions comprising metathesized unsaturated polyol esters
JP2009529092A (ja) 2006-03-07 2009-08-13 エレバンス リニューアブル サイエンシーズ, インク. 不飽和ポリオールエステルメタセシス反応生成物類を含む組成物
US8344052B2 (en) 2006-07-12 2013-01-01 Elevance Renewable Sciences, Inc. Hot melt adhesive compositions comprising metathesized unsaturated polyol ester wax
WO2008008440A2 (en) 2006-07-12 2008-01-17 Elevance Renewable Sciences, Inc. Ring opening cross-metathesis reaction of cyclic olefins with seed oils and the like
US8067610B2 (en) 2006-07-13 2011-11-29 Yann Schrodi Synthesis of terminal alkenes from internal alkenes and ethylene via olefin metathesis
EP2060937A4 (en) 2006-08-25 2011-08-31 Nippon Oil Corp RETARDING FILM AND LIQUID CRYSTAL DISPLAY ARRANGEMENT THEREWITH
EP2076483A4 (en) 2006-10-13 2013-12-04 Elevance Renewable Sciences METHODS FOR PRODUCING ORGANIC COMPOUNDS BY METATHESIS AND HYDROCYANATION
EP3281931A1 (en) 2006-10-13 2018-02-14 Elevance Renewable Sciences, Inc. Methods of making organic compounds by metathesis
ATE519725T1 (de) 2006-10-13 2011-08-15 Elevance Renewable Sciences Metatheseverfahren mit hydrierung, und damit in zusammenhang stehende zusammensetzungen
US8501973B2 (en) 2006-10-13 2013-08-06 Elevance Renewable Sciences, Inc. Synthesis of terminal alkenes from internal alkenes via olefin metathesis
US9280685B2 (en) * 2006-12-08 2016-03-08 Johnnie R. Jackson System and method for portable medical records
US7943715B2 (en) * 2007-02-28 2011-05-17 Sumitomo Chemical Company, Limited Diene polymer and process for producing the same
US20080221287A1 (en) * 2007-02-28 2008-09-11 Sumitomo Chemical Company, Limited Diene polymer and process for producing the same
US20080221288A1 (en) * 2007-02-28 2008-09-11 Sumitomo Chemical Company, Limited Diene polymer and process for producing the same
US7956145B2 (en) * 2007-02-28 2011-06-07 Sumitomo Chemical Company, Limited Diene polymer and process for producing the same
US7964691B2 (en) * 2007-02-28 2011-06-21 Sumitomo Chemical Company, Limited Olefin-diene copolymer and process for producing the same
US20080214756A1 (en) * 2007-02-28 2008-09-04 Sumitomo Chemical Company, Limited Cyclic olefin-diene copolymer and process for producing the same
US20080214754A1 (en) * 2007-02-28 2008-09-04 Sumitomo Chemical Company, Limited Diene polymer and process for producing the same
US8633034B2 (en) * 2007-06-25 2014-01-21 Becton, Dickinson And Company Methods for evaluating the aggregation of a protein in a suspension including organopolysiloxane and medical articles coated with organopolysiloxane containing a protein solution
TW200951150A (en) * 2008-02-29 2009-12-16 Sumitomo Chemical Co Diene polymer and production process thereof
JP5396763B2 (ja) * 2008-07-18 2014-01-22 Jsr株式会社 ノルボルネン系樹脂フィルム
EP3505206B1 (en) 2008-09-22 2022-03-16 Becton, Dickinson and Company A system for coating the interior of a container using a photolysis chemical vapor deposition process
CN102803336B (zh) * 2009-06-15 2014-09-10 日本瑞翁株式会社 聚合性组合物、树脂成型体以及叠层体
US9051519B2 (en) 2009-10-12 2015-06-09 Elevance Renewable Sciences, Inc. Diene-selective hydrogenation of metathesis derived olefins and unsaturated esters
US8802603B2 (en) 2010-06-17 2014-08-12 Becton, Dickinson And Company Medical components having coated surfaces exhibiting low friction and low reactivity
WO2012174502A2 (en) 2011-06-17 2012-12-20 Materia, Inc. Adhesion promoters and gel-modifiers for olefin metathesis compositions
EP2804936B1 (en) 2012-01-10 2016-03-23 Elevance Renewable Sciences, Inc. Renewable fatty acid waxes and methods of making
WO2013176317A1 (ko) * 2012-05-24 2013-11-28 코오롱인더스트리주식회사 위상차 필름
US20150152283A1 (en) 2012-06-12 2015-06-04 Materia, Inc. Method and composition for improving adhesion of metathesis compositions to substrates
MX2014015460A (es) 2012-06-20 2015-06-23 Elevance Renewable Sciences Metodos y composiciones de metatesis de aceites naturales.
US9527982B2 (en) 2012-12-19 2016-12-27 Materia, Inc. Storage stable adhesion promoter compositions for cyclic olefin resin compositions
US9598531B2 (en) 2013-02-27 2017-03-21 Materia, Inc. Olefin metathesis catalyst compositions comprising at least two metal carbene olefin metathesis catalysts
US9334460B2 (en) * 2013-03-14 2016-05-10 Exxonmobil Research And Engineering Company Ring opening cross metathesis of vinyl terminated polymers and their functionalized derivatives for fouling mitigation in hydrocarbon refining processes
US10633484B2 (en) 2014-01-10 2020-04-28 Materia, Inc. Method and composition for improving adhesion of metathesis compositions to substrates
US9593217B2 (en) 2014-05-30 2017-03-14 Pall Corporation Self-assembled structure and membrane comprising block copolymer and process for producing the same by spin coating (Va)
US9193835B1 (en) 2014-05-30 2015-11-24 Pall Corporation Self-assembling polymers—IV
US9598543B2 (en) 2014-05-30 2017-03-21 Pall Corporation Self-assembled structure and membrane comprising block copolymer and process for producing the same by spin coating (VIa)
US9592476B2 (en) 2014-05-30 2017-03-14 Pall Corporation Membrane comprising self-assembled block copolymer and process for producing the same by hybrid casting (IIb)
US9592477B2 (en) 2014-05-30 2017-03-14 Pall Corporation Membrane comprising self-assembled block copolymer and process for producing the same by hybrid casting (Ib)
US9765171B2 (en) 2014-05-30 2017-09-19 Pall Corporation Self-assembling polymers—V
US9593218B2 (en) 2014-05-30 2017-03-14 Pall Corporation Self-assembled structure and membrane comprising block copolymer and process for producing the same by spin coating (IIIa)
US9163122B1 (en) 2014-05-30 2015-10-20 Pall Corporation Self-assembling polymers—II
US9328206B2 (en) 2014-05-30 2016-05-03 Pall Corporation Self-assembling polymers—III
US9469733B2 (en) 2014-05-30 2016-10-18 Pall Corporation Self-assembled structure and membrane comprising block copolymer and process for producing the same by spin coating (IVa)
US9162189B1 (en) 2014-05-30 2015-10-20 Pall Corporation Membrane comprising self-assembled block copolymer and process for producing the same by spin coating (Ia)
US9441078B2 (en) 2014-05-30 2016-09-13 Pall Corporation Self-assembling polymers—I
US9593219B2 (en) 2014-05-30 2017-03-14 Pall Corporation Membrane comprising self-assembled block copolymer and process for producing the same by spin coating (IIa)
US9616395B2 (en) 2014-05-30 2017-04-11 Pall Corportaion Membrane comprising self-assembled block copolymer and process for producing the same by spray coating (Ic)
US9604181B2 (en) 2014-05-30 2017-03-28 Pall Corporation Membrane comprising self-assembled block copolymer and process for producing the same by spray coating (IIc)
US9169361B1 (en) 2014-05-30 2015-10-27 Pall Corporation Self-assembling polymers—VI
US9303133B2 (en) 2014-06-30 2016-04-05 Pall Corporation Hydrophilic membranes and method of preparation thereof (IV)
US9260569B2 (en) 2014-06-30 2016-02-16 Pall Corporation Hydrophilic block copolymers and method of preparation thereof (III)
US9718924B2 (en) 2014-06-30 2017-08-01 Pall Corporation Hydrophilic block copolymers and membranes prepared therefrom (II)
US9254466B2 (en) 2014-06-30 2016-02-09 Pall Corporation Crosslinked cellulosic membranes
US9394407B2 (en) 2014-06-30 2016-07-19 Pall Corporation Hydrophilic block copolymers and membranes prepared therefrom (I)
US9962662B2 (en) 2014-06-30 2018-05-08 Pall Corporation Fluorinated polymer and use thereof in the preparation of hydrophilic membranes (vi)
US9309367B2 (en) 2014-06-30 2016-04-12 Pall Corporation Membranes comprising cellulosic material and hydrophilic block copolymer (V)
WO2017137570A1 (en) 2016-02-10 2017-08-17 Becton Dickinson France Method to evaluate the stability of a protein-based formulation
CN110669207B (zh) * 2019-11-15 2022-09-13 无锡阿科力科技股份有限公司 一种环烯烃共聚物及其制备方法和应用
CN116496446B (zh) * 2022-12-26 2024-03-22 杭州睿丰融创科技有限公司 一种降冰片烯类氢化开环聚合物及其制备方法和光学材料

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1152574A (ja) * 1997-08-06 1999-02-26 Jsr Corp 感放射線性樹脂組成物
JP2001030272A (ja) * 1999-05-14 2001-02-06 Sekisui Chem Co Ltd ノルボルネン系ポリマー成形品の製造方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61179214A (ja) * 1984-11-16 1986-08-11 帝人メトン株式会社 シクロオレフインの共重合法,反応組成物およびポリマ−
JP2825157B2 (ja) * 1988-03-22 1998-11-18 ジェイエスアール株式会社 重合体の製造方法
JPH072929A (ja) * 1993-06-16 1995-01-06 Japan Synthetic Rubber Co Ltd 開環重合体水素化物の製造方法
JP3522009B2 (ja) * 1995-07-21 2004-04-26 三井化学株式会社 環状オレフィン系開環メタセシス重合体水素添加物及びその製造方法
US6020443A (en) * 1996-02-08 2000-02-01 Advanced Polymer Technologies, Inc. Polymerization of low grade DCPD monomers using an olefin metathesis catalyst
JPH1060048A (ja) * 1996-08-23 1998-03-03 Nippon Zeon Co Ltd 環状オレフィン系重合体及びその製造方法
WO1998015595A1 (fr) * 1996-10-09 1998-04-16 Nippon Zeon Co., Ltd. Composition a base d'un polymere de norbornene
JPH10120767A (ja) * 1996-10-17 1998-05-12 Teijin Ltd 環状オレフィン系共重合体およびその製造方法
DE19654074C2 (de) * 1996-12-23 2001-01-25 Bayer Ag Verfahren zur Herstellung hydrierter ringgeöffneter Metathesepolymeren
TW411348B (en) * 1997-05-28 2000-11-11 Mitsui Chemicals Inc Preparation of hydrogenated product of cyclic olefin ring-opening metathesis polymer
US6713154B1 (en) * 1997-06-06 2004-03-30 Nippon Zeon Co., Ltd. Insulating material containing cycloolefin polymer
JP3693484B2 (ja) * 1998-02-20 2005-09-07 三井化学株式会社 開環メタセシス共重合体の水素添加物及びその製造方法
KR100403904B1 (ko) * 1998-04-23 2003-11-01 히다치 가세고교 가부시끼가이샤 경화가능한 성형재 및 성형품의 제조법
JP2000089461A (ja) * 1998-09-10 2000-03-31 Fuji Photo Film Co Ltd ポジ型レジスト組成物
JP4691867B2 (ja) * 1999-05-31 2011-06-01 日本ゼオン株式会社 環状オレフィンの開環重合体水素化物の製造方法
TW548312B (en) * 1999-06-30 2003-08-21 Nippon Zeon Corp Curable composition, and cured article
JP4221850B2 (ja) * 1999-11-10 2009-02-12 Jsr株式会社 熱硬化性樹脂組成物およびその硬化物
JP4150839B2 (ja) * 1999-11-10 2008-09-17 Jsr株式会社 熱硬化性樹脂組成物およびその硬化物
JP4096487B2 (ja) * 2000-02-29 2008-06-04 日本ゼオン株式会社 開環メタセシス重合体水素化物の製造方法
TWI300429B (en) * 2000-04-18 2008-09-01 Zeon Corp Photosensitive resin composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1152574A (ja) * 1997-08-06 1999-02-26 Jsr Corp 感放射線性樹脂組成物
JP2001030272A (ja) * 1999-05-14 2001-02-06 Sekisui Chem Co Ltd ノルボルネン系ポリマー成形品の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1408064A4 *

Also Published As

Publication number Publication date
EP1408064B1 (en) 2008-07-30
EP1803761B1 (en) 2016-04-27
JP2002363263A (ja) 2002-12-18
KR100883765B1 (ko) 2009-02-18
EP1803761A1 (en) 2007-07-04
US6995226B2 (en) 2006-02-07
US20040152843A1 (en) 2004-08-05
KR20040010692A (ko) 2004-01-31
EP1408064A4 (en) 2005-03-23
DE60227956D1 (de) 2008-09-11
EP1408064A1 (en) 2004-04-14

Similar Documents

Publication Publication Date Title
WO2002100917A1 (en) Open-ring copolymer, hydrogenated open-ring copolymer, processes for production of both, and compositions
US6908970B2 (en) Process for producing hydrogenated product of cyclic olefin polymer prepared through ring-opening polymerization
KR100506381B1 (ko) 노르보르넨계 중합체 조성물
JP5708538B2 (ja) 開環共重合体水素化物
WO2003085025A1 (fr) Polymere a polymerisation par ouverture de cycle, a base de norbornene, produit de l'hydrogenation de ce polymere, et procedes d'elaboration correspondants
WO2001014446A1 (fr) Polymeres de norbornene par ouverture de cycle, produits de leur hydrogenation et procedes de productions de ces deux types de polymeres
JP4714955B2 (ja) 環状オレフィン系付加重合体およびその製造方法
JP2010037349A (ja) 樹脂組成物およびその成形体
JP2002317034A (ja) 末端に官能基を有するノルボルネン系開環重合体水素化物及びその製造方法
JP4096487B2 (ja) 開環メタセシス重合体水素化物の製造方法
JP2009167433A (ja) 開環共重合体、開環共重合体水素化物、それらの製造方法および組成物
JPH10286911A (ja) 積層体
JP6331560B2 (ja) 開環重合体水素化物
JPS63264626A (ja) 開環重合体およびその製造方法
JP3191299B2 (ja) 塗 料
JP2003128766A (ja) 開環重合体および開環重合体水素化物の製造方法
JP4239589B2 (ja) ブロック共重合体の製造法、得られるブロック共重合体及びその用途
JP2006183001A (ja) ランダム共重合体およびその製造方法
JP2015178561A (ja) 環状オレフィン開環重合体の製造方法
JP2003301032A (ja) ノルボルネン系開環重合体、ノルボルネン系開環重合体水素化物およびそれらの製造方法
JP2008222935A (ja) 重合体およびその水添物

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020037016051

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2002738616

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10480002

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2002738616

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2002738616

Country of ref document: EP