WO2002089124A1 - Appareil a disc optique - Google Patents

Appareil a disc optique Download PDF

Info

Publication number
WO2002089124A1
WO2002089124A1 PCT/JP2002/003745 JP0203745W WO02089124A1 WO 2002089124 A1 WO2002089124 A1 WO 2002089124A1 JP 0203745 W JP0203745 W JP 0203745W WO 02089124 A1 WO02089124 A1 WO 02089124A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
focus
information
light beam
information carrier
Prior art date
Application number
PCT/JP2002/003745
Other languages
English (en)
French (fr)
Other versions
WO2002089124B1 (fr
Inventor
Kenji Fujiune
Yuuichi Kuze
Shin-Ichi Yamada
Katsuya Watanabe
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to KR10-2003-7013714A priority Critical patent/KR100532763B1/ko
Priority to US10/475,473 priority patent/US7257053B2/en
Priority to JP2002586337A priority patent/JP4038128B2/ja
Publication of WO2002089124A1 publication Critical patent/WO2002089124A1/ja
Publication of WO2002089124B1 publication Critical patent/WO2002089124B1/ja
Priority to US11/825,004 priority patent/US20070258337A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/085Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam into, or out of, its operative position or across tracks, otherwise than during the transducing operation, e.g. for adjustment or preliminary positioning or track change or selection
    • G11B7/08505Methods for track change, selection or preliminary positioning by moving the head
    • G11B7/08511Methods for track change, selection or preliminary positioning by moving the head with focus pull-in only
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/0946Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following specially adapted for operation during external perturbations not related to the carrier or servo beam, e.g. vibration
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2407Tracks or pits; Shape, structure or physical properties thereof
    • G11B7/24073Tracks
    • G11B7/24082Meandering

Definitions

  • optical disk information is recorded on an optical disk by converging and irradiating a light beam from a light source onto a rotating disk-shaped information carrier (hereinafter referred to as an “optical disk”).
  • the present invention relates to an optical disk device for reproducing recorded information. More specifically, the present invention relates to an optical disc apparatus having a mechanism for avoiding collision between an optical disc and a condenser lens for condensing a light beam when recording and reproducing information.
  • Reproduction of information in a conventional optical disk device is performed by irradiating a relatively weak light beam of a constant light amount onto an optical disk as an information carrier, and detecting reflected light that is strongly modulated by the optical disk.
  • Information is recorded by irradiating a recording material film on an optical disk with a light beam whose light intensity is modulated in accordance with the information to be recorded (for example, Japanese Patent Application Laid-Open No. 52-8080). No. 2).
  • optical disks that can be recorded and played back use a method such as vapor deposition of a film (recording material film) made of an optically recordable / reproducible material on the surface of a base material having a spiral track structure. It is produced by forming by.
  • the focal point of the light beam is adjusted so that the light beam always has a predetermined convergence state on the recording material film. Focus control is required to control in the normal direction (hereinafter referred to as “focus direction”).
  • the optical head 110 is composed of a semiconductor laser 111, a coupling lens 111, a polarizing beam splitter 113, a 14-wave plate 114, and converging means.
  • FC actuating unit focus actuating unit
  • Track moving unit a tracking actuating unit
  • It is composed of 117, a detection lens 118, a cylindrical lens 119, and a photodetector 120.
  • the light beam emitted from the semiconductor laser 111 is converted into parallel light by the coupling lens 112.
  • This parallel light passes through the polarizing beam splitters 113 and the 1Z4 wavelength plate 114, and then is condensed on the information surface of the disc-shaped optical disk 101 by the condenser lens 115. Is done.
  • the light beam reflected by the optical disk 101 passes through the condenser lens 115 and the 14-wavelength plate 114 again, and then is reflected by the polarization beam splitter 113.
  • the reflected light passes through the detection lens 118 and the cylindrical lens 119, and is then applied to the photodetector 12.0 divided into four.
  • the condenser lens 115 is supported by an elastic body (not shown), and is moved in the focus direction by electromagnetic force when a current flows through the Fc-actuator 116.
  • the photodetector 120 sends the detected light quantity signal to a focus error generator (hereinafter referred to as “FE generator”) 130, which is a means for detecting a focus shift signal.
  • the FE generator 130 uses the light quantity signal from the photodetector 120 to generate an error indicating the convergence state of the light beam on the information surface of the optical disc 101.
  • a signal that is, a focus error signal (hereinafter, referred to as an “FE signal”) corresponding to the displacement of the focus of the light beam with respect to the information surface of the optical disc 101 is calculated.
  • the FE generator 130 converts the FE signal into a focus control filter (hereinafter referred to as “Fc filter”) for performing phase compensation in order to stabilize the control operation of the focus control.
  • Fc filter focus control filter
  • F c driver drive selector 1 3 2 and focus driver (hereinafter referred to as “F c driver”) 1 3 7
  • the Fc actuator 1 16 drives the condenser lens 115 in the focus direction so that the light beam converges on the information surface of the optical disc 101 in a predetermined state.
  • the fixed drive signal generator 13 6 drives the F c actuator 1 1 6 mechanically in a natural state, that is, a state in which no force is applied to the F c actuator 1 16 Send the signal to drive selector 1 32. If there is a displacement of the focal point of the light beam with respect to the information surface of the optical disk 101 and it is necessary to correct the displacement when recording and reproducing information, the drive selector 13 2 sends the signal from the Fc filter 13 1 to the F c driver 13 7. The F c driver 13 7 drives the F c actuator 1 16 based on the signal from the drive selector 13 2. Then, the Fc-actuator 1 16 drives the condenser lens 115 in the focusing direction so that the light beam is focused on the information surface of the optical disk 101.
  • Such a state is called “focus control is in operation”.
  • the drive selector 13 2 sends the signal from the fixed drive signal generator 13 36 to the F c driver 13 Send to 7.
  • the focus control is inoperative”.
  • the F c driver 13 7 drives the F c actuator 1 16 based on the signal from the drive selector 13 2.
  • the light amount signal of the photodetector 120 is also sent to the reflected light amount detector 161.
  • the reflected light amount detector 16 1 detects a signal corresponding to the reflected light amount of the optical disk 101 based on the light amount signal of the light detector 120, and focuses the signal on a focus abnormality detector (hereinafter referred to as “Fc abnormality detector”). 1) Send it to 1.
  • F c Anomaly detector 18 1 sets the internal status to the state where focus control is released when the signal from the reflected light amount detector 16 1 falls below the predetermined level for more than the abnormality detection time TW. . That is, the Fc abnormality detector 181 determines that the focal position of the light beam has shifted from the information surface of the optical disk 101.
  • the present invention has been made to solve the above-described problems in the related art, and relates to whether the focus control is in an operation state or a non-operation state. It is another object of the present invention to provide a highly reliable optical disc device that can avoid collision between the condenser lens and the optical disc and prevent the condenser lens and the optical disc from being damaged.
  • a first configuration of an optical disc device includes: a converging unit configured to converge and irradiate a light beam from a light source toward a rotating information carrier;
  • a focus shift signal detecting means for generating a signal corresponding to the shift of the focal point of the light beam with respect to the information surface of the information carrier;
  • Focus moving means for moving the convergence means in a direction normal to the information surface of the information carrier
  • a focus control unit that drives the focus moving unit in accordance with a signal from the focus shift signal detection unit, and controls a focus of the light beam to follow an information surface of the information carrier;
  • An information surface detection unit that detects that the focus of the light beam is near an information surface of the information carrier when the focus control unit is in an inoperative state
  • the information carrier and the convergence unit are closer to each other than the state where the focus of the light beam is located on the information surface of the information carrier. Therefore, collision between the information carrier and the convergence means can be avoided, and the information carrier and the convergence means can be prevented from being damaged, and a highly reliable optical disk device can be realized.
  • a second configuration of the optical disc device is a converging means for converging and irradiating a light beam from a light source toward a rotating information carrier,
  • a focus shift signal detecting means for generating a signal corresponding to the shift of the focal point of the light beam with respect to the information surface of the information carrier;
  • Focus moving means for moving the convergence means in a direction normal to the information surface of the information carrier
  • a focus control unit that drives the focus moving unit in accordance with a signal from the focus shift signal detection unit, and controls a focus of the light beam to follow an information surface of the information carrier;
  • Vibration detection means for detecting vibration of the device
  • the drive signal generated by the collision avoiding unit may be a signal of a reference level and the convergence unit may be displaced in a direction away from the information carrier. It is preferably a binary signal with a signal of a certain constant level. According to this preferred example, collision between the information carrier and the convergence means can be avoided with a simple mechanism.
  • the drive signal generated by the collision avoiding unit is a predetermined peak value such that the convergence unit is displaced in a direction away from the information carrier. It is preferably a pulse signal having According to this preferred example, since the time for generating the drive signal of the collision avoiding means is shortened, the information carrier and the convergence means can be connected with low power. Collision can be avoided.
  • the drive signal generated by the collision avoiding means is a ramp signal having a constant slope.
  • the drive signal generated by the collision avoiding means is a continuous signal, it is possible to avoid the collision between the information carrier and the convergence means while reducing the load on the convergence means and the focus moving means. it can.
  • the drive signal generated by the collision avoiding unit when no signal is generated from the information surface detecting unit or the vibration detecting unit is:
  • the convergence means is a signal which is displaced at a predetermined inclination in a direction approaching the information carrier.
  • the drive signal generated by the collision avoidance means becomes small, so that the collision between the information carrier and the convergence means can be avoided with low power. Can be.
  • the drive signal generated by the collision avoiding means is configured so that the output is saturated at a predetermined value. According to this preferred example, the collision between the information carrier and the convergence means can be avoided while preventing the convergence means or the focus moving means from being damaged by applying a large drive signal from the collision avoidance means.
  • a third configuration of the optical disc device includes a converging means for converging and irradiating a light beam from a light source toward a rotating information carrier;
  • a focus shift signal detecting means for generating a signal corresponding to the shift of the focal point of the light beam with respect to the information surface of the information carrier;
  • Focus moving means for moving the convergence means in a direction normal to the information surface of the information carrier
  • Focus control means for driving a moving means and controlling the focal point of the light beam to follow the information surface of the information carrier;
  • a collision avoiding unit that constantly generates a drive signal to the focus moving unit such that the convergence unit is displaced in a direction away from the information carrier when the focus control unit is in an inoperative state. It shall be.
  • the positional relationship between the information carrier and the convergence unit is always in a state where collision cannot occur.
  • a fourth configuration of the optical disc device includes a converging means for converging and irradiating a light beam from a light source toward an information carrier having a spiral track having minute radial fluctuations at a specific period.
  • a focus shift signal detecting means for generating a signal corresponding to the shift of the focal point of the light beam with respect to the information surface of the information carrier;
  • Focus moving means for moving the convergence means in a direction normal to the information surface of the information carrier
  • a focus control unit that drives the focus moving unit in accordance with a signal from the focus shift signal detection unit, and controls a focus of the light beam to follow an information surface of the information carrier;
  • the fluctuation amplitude detection means for detecting the amplitude of the fluctuation of the track, and an operation of the focus control means is determined to be abnormal by a change in the amplitude of the signal from the fluctuation amplitude detection means for a predetermined time.
  • Abnormality detecting means for generating a drive signal to the focus moving means so as to be displaced away from the information carrier.
  • the information recorded on the information carrier is The operation of the focus control means must be quick and abnormal even if the recording media cannot use a method to detect that the operation of the focus control means is abnormal from the amplitude of the reproduction signal obtained when the information is reproduced. Is detected, collision between the information carrier and the convergence means can be avoided, and damage to the information carrier and the convergence means can be prevented.
  • the fluctuation amplitude detecting means detects a fluctuation amplitude of the track when recording information and when reproducing information. It is preferable to provide a fluctuation detection sensitivity switching means for switching between the two. According to this preferred example, when information is recorded and when information is reproduced, even when the output of the light beam changes and the amount of light reflected from the information carrier changes, the information is recorded and the information is reproduced. In this case, the detection sensitivity of the fluctuation amplitude detection means can be switched to cancel the change in the amount of reflected light, so that erroneous detection of the abnormality detection means can be prevented.
  • the abnormality detection means may determine whether or not the information is abnormal when recording information and when reproducing the information. It is preferable to include an abnormal level switching means for switching the change level. According to this preferred example, when information is recorded and when information is reproduced, the output of the light beam changes, the amount of light reflected from the information carrier changes, and the signal from the fluctuation amplitude detecting means changes. In addition, since the signal change level of the fluctuation amplitude detecting means, which is determined to be abnormal, can be switched between when recording information and when reproducing information, the change in the signal from the fluctuation amplitude detecting means can be canceled. Erroneous detection of the abnormality detecting means can be prevented.
  • the apparatus further includes a recorded area detecting unit that outputs the detected signal, and a fluctuation detection sensitivity switching unit that switches detection sensitivity of the fluctuation amplitude detecting unit according to a detection result of the recorded area detecting unit.
  • the area irradiated with the light beam is It is possible to switch the detection sensitivity of the fluctuation amplitude detecting means depending on whether the data is recorded or unrecorded, thereby canceling the change in the amount of reflected light, thereby preventing erroneous detection of the abnormality detecting means.
  • the recorded area detecting means for detecting whether the area irradiated with the light beam is in a recorded state or in an unrecorded state; It is preferable that the apparatus further comprises an abnormal level switching means for switching a signal change level of the fluctuation amplitude detecting means for determining an abnormality in accordance with a detection result of the completed area detecting means.
  • an abnormal level switching means for switching a signal change level of the fluctuation amplitude detecting means for determining an abnormality in accordance with a detection result of the completed area detecting means.
  • the signal amplitude level of the fluctuation amplitude detection means which is determined to be abnormal depending on whether the recorded area is recorded or unrecorded, is changed to change the signal from the fluctuation amplitude detection means. Therefore, erroneous detection by the abnormality detecting means can be prevented.
  • the optical disc apparatus further includes: a track shift signal detecting unit configured to generate a signal corresponding to a shift of a focus position of the light beam with respect to the track of the information carrier; A track moving means for moving the information carrier in a direction traversing the track; and a track moving means for driving the track moving means in response to a signal from the track deviation signal detecting means;
  • the apparatus further includes tracking control means for performing the control so that the abnormality detection means operates only when the tracking control means is in an operating state. According to this preferred example, it is possible to prevent erroneous detection of the abnormality detection means due to disturbance of the signal from the fluctuation amplitude detection means or the signal from the focus deviation signal detection means when the tracking control means is in an inactive state. it can.
  • the optical disc apparatus further includes: a track shift signal detecting unit configured to generate a signal corresponding to a shift of a focus position of the light beam with respect to the track of the information carrier; A track moving means for moving the information carrier in a direction traversing the track; and a track moving means for driving the track moving means in response to a signal from the track shift signal detecting means, wherein a focal point of the light beam is Tracking control means for controlling to follow a track, wherein the abnormality detecting means determines whether the focus control means operates according to whether the tracking control means is operating or inactive.
  • a fifth configuration of the optical disc device according to the present invention is a converging means for converging and irradiating a light beam from a light source toward a rotating information carrier,
  • a focus shift signal detecting means for generating a signal corresponding to the shift of the focal point of the light beam with respect to the information surface of the information carrier;
  • Focus moving means for moving the convergence means in a direction normal to the information surface of the information carrier;
  • a focus control unit that drives the focus moving unit in accordance with a signal from the focus shift signal detection unit, and controls a focus of the light beam to follow an information surface of the information carrier;
  • a method is employed for detecting that the operation of the focus control means is abnormal from the amplitude of the reproduction signal obtained when reproducing the information recorded on the information carrier. Even in the case of recording media that cannot be used, it is possible to quickly detect that the operation of the focus control means is abnormal, avoid collision between the information carrier and the convergence means, and prevent the information carrier and the convergence means from being damaged. Can be.
  • the optical disc apparatus further includes a multiplying unit that multiplies a signal from the focus shift signal detecting unit by a predetermined value, and a case where information is recorded and a case where information is reproduced.
  • the apparatus further comprises a gain switching means for switching a multiplier of the multiplication means.
  • the multiplier of the multiplying means can be switched to cancel the change in the amount of reflected light, so that erroneous detection by the abnormality detecting means can be prevented.
  • the abnormality detection means may be configured to determine whether or not the information is abnormal when recording information and when reproducing information.
  • the signal to compare with the signal It is preferable to include a judgment level switching means for switching the level.
  • a judgment level switching means for switching the level.
  • the signal level of the judgment level switching means can be switched between recording information and reproducing information to cancel the change in the signal from the focus error signal detection means. Erroneous detection of the means can be prevented.
  • the multiplication means for multiplying the signal from the focus shift signal detection means by a predetermined value, and the area irradiated with the light beam is recorded.
  • a gain switching means for switching a multiplier of the multiplying means according to a detection result of the recorded area detecting means. Is preferred.
  • the area irradiated with the light beam is The change in the amount of reflected light can be canceled by switching the multiplier of the multiplying means depending on whether the data is recorded or unrecorded, so that erroneous detection by the abnormality detecting means can be prevented.
  • a recorded area detecting unit that detects whether an area irradiated with the light beam is in a recorded state or in an unrecorded state; It is preferable to further include a determination level switching unit that switches a signal level to be compared with a signal of the focus shift signal detection unit that determines that the signal is abnormal, according to a detection result of the completed area detection unit.
  • the amount of light reflected from the information carrier changes depending on whether the area irradiated with the light beam is recorded or unrecorded, and the signal from the focus deviation signal detecting means changes.
  • the signal level of the judgment level switching means can be switched to cancel the change in the signal from the defocus signal detection means. Therefore, erroneous detection of the abnormality detecting means can be prevented.
  • the optical disc apparatus further includes: a track shift signal detecting unit configured to generate a signal corresponding to a shift of a focal point of the light beam with respect to a track of the information carrier; A track moving means for moving the information carrier in a direction traversing the track, and driving the track moving means in response to a signal from the track deviation signal detecting means, wherein a focal point of the light beam moves the track on the information carrier. It is preferable that the apparatus further comprises tracking control means for performing control so that the abnormality detection means operates only when the tracking control means is operating.
  • a sixth configuration of the optical disc device according to the present invention is a converging means for converging and irradiating a light beam from a light source toward a rotating information carrier,
  • a focus shift signal detecting means for generating a signal corresponding to the shift of the focal point of the light beam with respect to the information surface of the information carrier;
  • Focus moving means for moving the convergence means in a direction normal to the information surface of the information carrier
  • a focus control unit that drives the focus moving unit in accordance with a signal from the focus shift signal detection unit, and controls a focus of the light beam to follow an information surface of the information carrier;
  • Focus integration means for integrating a signal from the focus error signal detection means when a change in a signal from the focus error signal detection means is within a predetermined range
  • a change in a signal from the focus shift signal detecting means falls within the predetermined range.
  • a method is employed for detecting that the operation of the focus control means is abnormal from the amplitude of the reproduction signal obtained when reproducing the information recorded on the information carrier. Even in the case of recording media that cannot be used, it is possible to quickly detect that the operation of the focus control means is abnormal, avoid collision between the information carrier and the convergence means, and prevent the information carrier and the convergence means from being damaged. Can be.
  • the focus integrator may detect at least two types of multipliers corresponding to a case where information is recorded and a case where the information is reproduced, for detecting the focus shift signal. It is preferable that a multiplying means for multiplying a signal from the means be provided, and a result of the multiplication by the multiplying means be integrated. According to this preferred example, when information is recorded and when information is reproduced, even when the output of the light beam changes and the amount of light reflected from the information carrier changes, the information is recorded and the information is not reproduced. In the case of reproduction, the change in the amount of reflected light can be canceled by switching the multiplier by which the signal from the focus deviation signal detecting means is multiplied, so that erroneous detection of the abnormality detecting means can be prevented.
  • the clearing unit may detect a change in a signal from the focus shift signal detecting unit between a case where information is recorded and a case where information is reproduced. It is preferable to switch the range for detection and comparison. According to this preferred example, the case of recording information and the information When the information is reproduced, even if the output of the light beam changes, the amount of light reflected from the information carrier changes, and the signal from the focus error signal detecting means changes, the signal from the focus error signal detecting means changes. Since the range of detection and comparison can be switched to cancel the change in the signal from the focus error signal detection means, erroneous detection of the abnormality detection means can be prevented.
  • the optical disc apparatus further includes a multiplying unit for multiplying a signal from the focus shift signal detecting unit by a predetermined value, and an area irradiated with the light beam. It is preferable that the apparatus further comprises: a recorded detecting unit that detects whether the recording area is in the unrecorded state; and a gain switching unit that switches a multiplier of the multiplying unit according to a detection result of the recorded area detecting unit. . According to this preferred example, even if the amount of light reflected from the information carrier changes depending on whether the area irradiated with the light beam is recorded or unrecorded, the area irradiated with the light beam is not changed. The change of the reflected light amount can be canceled by switching the multiplier of the multiplying means depending on whether the state is recorded or unrecorded, so that erroneous detection by the abnormality detecting means can be prevented.
  • the optical disc device further includes a recorded detection unit that detects whether an area irradiated with the light beam is recorded or unrecorded. It is preferable that the clearing unit switches a range for detecting and comparing a change in the signal from the focus shift signal detecting unit in accordance with a detection result of the recorded detection unit. According to this preferred example, the amount of light reflected from the information carrier changes depending on whether the area irradiated with the light beam is recorded or unrecorded, and the signal from the focus error signal detecting means changes.
  • the range for detecting and comparing the change in the signal from the focus error signal detection means is switched and focused. Since the change in the signal from the shift signal detecting means can be canceled, erroneous detection by the abnormality detecting means can be prevented.
  • a seventh configuration of the optical disc device according to the present invention includes a converging unit that converges and emits a light beam from a light source toward a rotating information carrier.
  • Light detection means for splitting and receiving the light beam reflected by the information carrier
  • a focus shift signal detecting means for generating a signal corresponding to a positional shift of a focal point of the light beam with respect to an information surface of the information carrier by a differential operation of the divided area of the light detecting means;
  • Focus moving means for moving the convergence means in a direction normal to the information surface of the information carrier
  • Offset applying means for applying an offset to the signal from the focus shift signal detecting means
  • a focus control unit that drives the focus moving unit in response to signals from the focus shift signal detection unit and the offset application unit, and controls the focus of the light beam to follow the information surface of the information carrier; Vibration detection means for detecting the vibration of
  • the offset applying means applies an offset such that the convergence means is displaced in a direction away from the information carrier.
  • the focus control means when the focus control means is in an abnormal state and vibration is applied to the apparatus before the abnormal state is detected, the focus control means sets the convergence means to Since a drive signal that generates displacement in the direction away from the information carrier is generated, collision between the information carrier and the convergence means is avoided, and the information carrier and the convergence means are prevented from being damaged.
  • the device can be realized. Further, in the seventh configuration of the optical disc device of the present invention, it is preferable that the offset applying unit increases the applied offset amount as the signal from the vibration detecting unit increases.
  • the focus control unit generates a drive signal such that the larger the vibration applied to the device, the larger the convergence unit is displaced in the direction away from the information carrier, so that the collision between the information carrier and the convergence unit Can be reliably avoided.
  • the focus deviation signal detecting means includes a balance multiplying means for giving an individual gain to each of the signals before the differential operation, and It is preferable that the multiplying unit switches each gain according to the offset applied by the offset applying unit so that the operating point of the force control unit does not change.
  • the focus control means generates the drive signal such that the convergence means is largely displaced in the direction away from the information carrier without changing the operating point, so that the collision between the information carrier and the convergence means is prevented. Evacuation can be assured.
  • the offset applied by the offset applying unit is configured to be saturated at a predetermined level. According to this preferred example, the collision between the information carrier and the convergence means can be avoided while preventing the convergence means or the focus moving means from being damaged by applying a large drive signal.
  • An eighth configuration of the optical disc device according to the present invention is a converging means for converging and irradiating a light beam from a light source toward a rotating information carrier;
  • a focus shift signal detecting means for generating a signal corresponding to the shift of the focal point of the light beam with respect to the information surface of the information carrier;
  • a focus control unit that drives the focus moving unit in accordance with a signal from the focus shift signal detection unit, and controls a focus of the light beam to follow an information surface of the information carrier;
  • the search means may cause the focus control means to be inactive when the focus control means operates.
  • the eighth configuration of the optical disk device when the possibility that the collision between the information carrier and the convergence means is high due to the vibration generated by the search means during the search operation is high, the information carrier and the convergence means Thus, the information carrier and the convergence means can be prevented from being damaged, and a highly reliable optical disk device can be realized.
  • the search means disables the focus control means when the number of tracks along which the focal point of the light beam moves is equal to or more than a predetermined number. Preferably, it is in a state.
  • the information carrier and the convergence means are connected to each other when the possibility of collision between the information carrier and the convergence means is high due to the large vibration generated during the search operation by the search means having a long moving distance. Collision can be avoided.
  • the search unit may include: the focus control unit, when a direction in which a focal point of the light beam moves across a track is an outer circumferential direction of the information carrier.
  • the control means is deactivated.
  • the information carrier has a high possibility of collision between the information carrier and the convergence means due to the influence of the surface deviation of the information carrier and the like. Income When the possibility of collision with the bundle means is high, it is possible to avoid collision between the information carrier and the convergence means.
  • the search unit may be configured such that the target track to which the focal point of the light beam should move across is within a predetermined distance from the outermost circumference of the information carrier.
  • the focus control unit is set in an inoperative state.
  • the large vibration generated during the search operation of the information carrier in the outer peripheral direction where the possibility of collision between the information carrier and the convergence means is high due to the influence of the information carrier's surface deviation, etc. When the possibility of occurrence of collision between the information carrier and the convergence means is high, it is possible to avoid collision between the information carrier and the convergence means.
  • FIG. 1 is a block diagram showing an optical disc device according to a first embodiment of the present invention
  • FIG. 2A is a diagram showing a signal output from the reflected light amount detector according to the first embodiment of the present invention
  • FIG. 2B is a signal output from the information surface detector according to the first embodiment of the present invention
  • FIG. 2C is a diagram showing a signal output from the avoidance drive signal generator according to the first embodiment of the present invention
  • FIG. 2D is a diagram showing a drive limit from the drive limiter according to the first embodiment of the present invention.
  • FIG. 2E is a diagram showing output signals
  • FIG. 2E is a diagram showing a positional relationship between the optical disc and the focusing lens according to the first embodiment of the present invention
  • FIG. 3 is a block diagram showing an optical disc device according to a second embodiment of the present invention.
  • FIG. 4A is an enlarged view of the optical disc in the second embodiment of the present invention when there is no wobble
  • FIG. 4B is an enlarged view of the optical disc in the second embodiment of the present invention when there is a wobble.
  • FIG. 5A is a diagram showing a signal output from the cobble amplitude detector according to the second embodiment of the present invention
  • FIG. 5B is a signal output from the recording operation indicator according to the second embodiment of the present invention.
  • FIG. 5C is a diagram showing a signal output from the recording area detector according to the second embodiment of the present invention.
  • FIG. 5D is an output from the variable multiplier according to the second embodiment of the present invention.
  • FIG. 5E is a diagram showing the internal status of the Fc abnormality detector according to the second embodiment of the present invention.
  • FIG. 6 is a block diagram showing an optical disc device according to the third embodiment of the present invention.
  • FIG. 7 is a diagram showing a signal of the FE generator when the focal point of the light beam passes through the information surface of the optical disc in the focus direction according to the third embodiment of the present invention.
  • FIG. 8A is a diagram illustrating a signal output from the FE generator according to the third embodiment of the present invention
  • FIG. 8B is a diagram illustrating a signal output from the recording operation indicator according to the third embodiment of the present invention
  • FIG. 8C is a diagram showing a signal output from the recording area detector according to the third embodiment of the present invention
  • FIG. 8D is a diagram showing the signal output from the variable multiplier according to the third embodiment of the present invention.
  • FIG. 9A shows a signal output from the variable multiplier according to the third embodiment of the present invention
  • FIG. 9B shows a level change signal according to the third embodiment of the present invention.
  • FIG. 9C is a diagram showing the reference level of the coded detector, FIG.
  • FIG. 9C is a diagram showing the count value of the level change detector in the third embodiment of the present invention
  • FIG. 9D is a third embodiment of the present invention
  • FIG. 9E is a diagram showing a signal output from the multiplier in FIG. Diagram showing the internal status of the detector
  • FIG. 10 is a block diagram showing an optical disc device according to a fourth embodiment of the present invention.
  • FIG. 11 is an input / output characteristic diagram of the offset generator according to the fourth embodiment of the present invention.
  • FIG. 12A is a diagram showing a signal output from the adder in the case where there is no vibration according to the fourth embodiment of the present invention
  • FIG. 12B is a diagram showing the case where the vibration according to the fourth embodiment of the present invention is detected
  • FIG. 12C is a diagram showing a signal output from the adder when there is no output from the balance signal generator
  • FIG. 12C shows a case where vibration is detected in the fourth embodiment of the present invention.
  • FIG. 13 is a diagram illustrating a signal output from an adder when there is an output from a balance signal generator.
  • FIG. 13 is a block diagram illustrating an optical disc device according to a fifth embodiment of the present invention.
  • FIG. 14 is a block diagram showing a conventional optical disk device. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a block diagram showing an optical disc device according to the first embodiment of the present invention.
  • the optical head 10 includes a semiconductor laser 11 as a light source, a coupling lens 12, a polarizing beam splitter 13, a 14-wave plate 14, and light from the light source.
  • the converging lens 15 as a converging means for converging and irradiating the beam toward the rotating disc-shaped optical disc 1 as an information carrier, and the converging lens 15 in the direction normal to the information surface of the optical disc 1
  • FC actuary a track moving means for moving the focus lens 16
  • FC actuary a focus moving means for moving
  • Tala trajectory of Ngakuchiyue hereinafter referred to as “Tkakuchiyue” 17 It comprises an exit lens 18, a cylindrical lens 19, and a photodetector 20.
  • the light beam emitted from the semiconductor laser 11 is converted into parallel light by the coupling lens 12.
  • the parallel light passes through the polarizing beam splitter 13 and the 1Z4 wavelength plate 14 and is then focused on the information surface of the optical disc 1 by the focusing lens 15.
  • the light beam reflected by the optical disk 1 passes through the condenser lens 15 and the 1Z4 wavelength plate 14 again, and is reflected by the polarization beam splitter 13. Then, the reflected light passes through the detection lens 18 and the cylindrical lens 19 and then irradiates the photodetector 20 divided into four.
  • the condenser lens 15 is supported by a conductive material (not shown), and is moved in the focus direction by an electromagnetic force when a current flows through the Fc-actuator 16.
  • the photodetector 20 converts a detected light quantity signal into a focus error generator (hereinafter, referred to as a focus shift signal detecting means) that generates a signal corresponding to a displacement of the focal point of the light beam with respect to the information surface of the optical disc 1.
  • a focus error generator hereinafter, referred to as a focus shift signal detecting means
  • the FE generator 30 uses the light amount signal from the photodetector 20 to generate an error signal indicating the convergence state of the light beam on the information surface of the optical disc 1, that is, the focus of the light beam on the information surface of the optical disc 1. Calculates a focus error signal (hereinafter referred to as “FE signal”) corresponding to the displacement. Then, in order to stabilize the control operation of the focus control, the FE generator 30 converts the FE signal into a focus control filter (hereinafter referred to as “Fc filter”) 3 for phase compensation. 1 and drive selector 3 2 and focus driver (hereinafter referred to as “Fc driver”) 37 Send to Fc factory 16 via F7.
  • Fc filter focus control filter
  • Fc driver focus driver
  • the focus lens 16 drives the condenser lens 15 in the focus direction so that the light beam converges on the information surface of the optical disc 1 in a predetermined state.
  • the reflected light amount detector 61 and the information surface detector 62 constitute an information surface detecting means for detecting that the focal point of the light beam is near the information surface of the optical disk 1, and the light amount of the light detector 20
  • the signal is sent to the reflected light amount detector 61.
  • the reflected light amount detector 61 detects a signal (reflected light amount signal) corresponding to the reflected light amount of the optical disk 1 based on the light amount signal of the light detector 20 and sends the signal to the information surface detector 62.
  • the information surface detector 62 can be constituted by a comparator or the like.
  • the information surface detector 62 outputs a high level signal when the reflected light amount signal from the reflected light amount detector 61 is larger than the comparison level A, and outputs a low level signal when the reflected light amount signal is smaller than the comparison level A. Is sent to the avoidance drive signal generator 63, which is collision avoidance means.
  • the drive limiter 64 sends a signal to the avoidance drive signal generator 63 to limit the signal from the avoidance drive signal generator 63 so as not to become too large.
  • the drive signal generator 6 3 avoids when the signal from the information plane detector 62 is at a high level, in the direction in which the condenser lens 15 moves away from the optical disc 1.
  • a drive signal is generated so as to be displaced at a predetermined speed (inclination).
  • the avoidance drive signal generator 63 sends the generated drive signal to the drive selector 32 and the drive limiter 64.
  • the avoidance drive signal generator 63 clears the output drive signal to 0 and sends the generated drive signal to the drive selector 32 and the drive limiter 64. .
  • the drive limiter 64 outputs a high-level signal when the drive signal from the avoidance drive signal generator 63 is 0 or more, and outputs a high-level signal when the drive signal from the avoidance drive signal generator 63 is smaller than 0.
  • the low-level signal is sent to the avoidance drive signal generator 63.
  • Drive selector 3 2 When the focus control is active, the signal from the Fc filter 31 is sent to the Fc actuator 16 via the Fc driver 37, and the focus control is inactive. In this case, signal switching is performed such that the signal from the avoidance drive signal generator 63 is sent to the Fc actuator 16 via the Fc driver 37.
  • FIG. Fig. 2A shows the reflected light amount signal output from the reflected light amount detector 61
  • Fig. 2B shows the signal output from the information surface detector 62
  • Fig. 2C shows the output from the avoidance drive signal generator 63
  • FIG. 2D shows a signal output from the drive limiter 64
  • FIG. 2E shows the positional relationship between the optical disk 1 (indicated by broken lines) and the condenser lens (indicated by solid lines).
  • the distance between the condenser lens 15 and the optical disc 1 changes due to the surface deviation of the optical disc 1 or the like.
  • the condenser lens 15 and the optical disk 1 come close to each other and the focal point of the light beam approaches the information surface of the optical disk 1, as shown in Fig. 2A, the reflection output from the reflected light amount detector 61
  • the light intensity signal increases.
  • the signal output from is at the eight-level.
  • the avoidance drive signal generator 63 displaces the focusing lens 15 away from the optical disk 1 as shown in FIG. 2C. Generate a drive signal to Fc actuary 16 like that. As a result, the condenser lens 15 and the optical disc 1 gradually The reflected light amount signal output from the reflected light amount detector 61 decreases as shown in FIG. 2A.
  • the degree to which the distance between the condenser lens 15 and the optical disc 1 is approached is detected using the amount of reflected light.
  • the present invention is not necessarily limited to this configuration. Not something.
  • the amplitude of the signal recorded on the information surface of the optical disc 1, the amplitude of the FE signal, which is an error signal used for focus control, and the tracking error signal (hereinafter, referred to as the TE signal) used for tracking control. ) May be used to detect the degree to which the distance between the condenser lens 15 and the optical disc 1 is reduced. As shown in FIG.
  • a signal corresponding to the wobble component of the track is detected by the information surface detector 62 and the signal is detected. It is also possible to detect that the distance between the condenser lens 15 and the optical disc 1 has been reduced by using the amplitude of the light.
  • a position sensor may be attached to the optical head 10 to constitute the information surface detector 62, and the distance from the optical disk 1 may be directly detected.
  • an acceleration sensor which is vibration detection means, is attached to the housing of the entire device, and the detected acceleration signal, that is, a signal corresponding to external vibration, is detected.
  • the avoidance drive signal generator 63 is condensed by the vibration. The configuration may be such that the distance between the lens 15 and the optical disk 1 is predicted to be short, and a drive signal is generated to avoid collision between them.
  • the condenser lens 15 and the optical disc 1 when approaching each other, it decreases at a fixed inclination, and then when the condenser lens 15 and the optical disc 1 start to separate again.
  • the avoidance drive signal generator 63 see FIG. 2C
  • the present invention is not necessarily limited to this configuration. is not.
  • the same effect can be obtained even if the pulse signal having a predetermined peak value such that the condenser lens 15 is displaced away from the optical disk 1 is output from the avoidance drive signal generator 63. be able to. Further, the same effect can be obtained even when the ramp signal having a constant slope is output from the avoidance drive signal generator 63.
  • the drive signal output from the avoidance drive signal generator 63 is configured to be saturated at a predetermined value set in advance by the operation of the drive limiter 64. For this reason, the drive signal output from the avoidance drive signal generator 63 does not cause an excessive current to flow through the Fc actuator 16. As a result, no more heat is generated than is necessary in F Thus, the optical head 10 can be prevented from being damaged.
  • a reference level signal corresponding to the case where the condenser lens 15 is separated from the optical disk 1 and the condenser lens 15 colliding with the optical disk 1 when the condenser lens 15 is closer to the optical disk 1 The same effect can be obtained even if a configuration is adopted in which a binary signal with a small constant level signal that does not occur is output from the avoidance drive signal generator 63.
  • the avoidance drive signal generator 63 sends the condenser lens 15 to the optical disc 1.
  • the condenser lens 15 is configured to generate a drive signal that is displaced at a predetermined speed in a direction away from the device, it is not necessarily limited to this configuration. For example, even if the condenser lens 15 does not approach the optical disc 1, if the focus control is in the inoperative state, a small constant value signal that always displaces the condenser lens 15 away from the optical disc 1 is avoided.
  • the drive signal is generated from the drive signal generator 63, it is possible to reliably prevent the condenser lens 15 from colliding with the optical disk 1 when the focus control is in an inoperative state.
  • FIG. 3 is a block diagram showing an optical disc device according to the second embodiment of the present invention. Note that the same components as those in FIG. 1 of the first embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • a variable power laser 21 is used as a semiconductor laser.
  • the FE generator 30 sends the FE signal to the actuator 16 via the Fc filter 31 and the Fc driver 37. That is, unlike the first embodiment, the FE signal from the FE generator 30 is connected to the F c filter 31 without passing through the drive selector 32 (see FIG. 1). It is sent to Fcactuyie 16 via the Fc driver 37 only.
  • the photodetector 20 converts the detected light amount signal into an FE generator 30 and a track shift signal detecting means for generating a signal corresponding to the shift of the focal point of the light beam with respect to the track of the optical disc 1.
  • Tracking error generator (hereinafter referred to as “TE generator”) 40 and fluctuation to detect the amplitude of fluctuation of spiral track with slight radial fluctuation at a specific period on optical disc 1
  • a wobble amplitude detector 65 as amplitude detecting means
  • a recording area detector 70 as recorded area detecting means for detecting whether the area irradiated with the light beam is recorded or unrecorded.
  • the TE generator 40 uses the light amount signal from the photodetector 20 to generate a tracking error signal (hereinafter, referred to as a “TE signal”) corresponding to the positional deviation between the focus of the light beam and the track on the optical disc 1. Calculate. Then, the TE generator 40 sends the TE signal to a tracking control filter 41 (hereinafter referred to as “Tk filter”) 41 as tracking control means. Based on the TE signal from the TE generator 40, the Tk filter 41 supplies a drive signal such that the focal point of the light beam follows the track, using the switch 42 and a tracking driver (hereinafter referred to as a “Tk driver”). ] 4) Send to Tk Kakuchiyue 17 via 4 4.
  • a tracking error signal hereinafter, referred to as a “TE signal”
  • the Tk factory 17 moves the condenser lens 15 in the radial direction of the optical disc 1 according to the drive signal from the Tk driver 44.
  • the tracking control operation indicator (hereinafter referred to as “Tk control operation indicator”) 68 outputs a high-level signal when tracking control is performed and a single-level signal when tracking control is not performed.
  • the focus abnormality detector (hereinafter referred to as “Fc abnormality detector”) as an abnormality detection means is sent to the switch 67 and the switch 42.
  • the switch 42 sends the signal from the Tk filter 41 to the Tk factory 17 and the Tk control operation indicator 68 When the signal from is low level, it operates so that 0 is sent to T-actuator overnight.
  • FIG. 4A is an enlarged view showing the optical disc 1 without a pebble
  • FIG. 4B is an enlarged view showing the optical disc 1 with a pebble. Since the track wobble shown in FIG. 4B has a higher frequency than the tracking control band, the light beam scans near the center of the track regardless of the presence or absence of the wobble.
  • the wobble amplitude detector 65 detects the amplitude of the wobble of the specific frequency of the track on the optical disc 1 shown in FIG. 4B and sends it to the variable multiplier 66.
  • the recording area detector 70 as a recorded area detecting means detects the amplitude value of the light amount signal from the photodetector 20 and outputs a high signal when the light beam irradiates the recording area of the optical disc 1.
  • the level signal is sent to the variable multiplier 66.
  • the mouth level signal is sent to the variable multiplier 66.
  • the recording operation indicator 69 sends a low-level signal to the variable multiplier 66 and the variable power laser 21 when reproducing the information recorded on the optical disk 1, and when recording information on the optical disk 1. Sends a high-level signal to the variable multiplier 66 and the variable power laser 21.
  • the variable power laser 21 emits light at the reproduction power when the signal from the recording operation indicator 69 is at a low level, and at the recording power when the signal from the recording operation indicator 69 is at an eight-level. It emits pulse light.
  • the variable multiplier 66 receives the signal from the cobble amplitude detector 65 according to the logical state of the signal from the recording operation indicator 69 and the signal from the recording area detector 70.
  • the multiplier by which the signal is multiplied is switched, and the signal thus obtained is sent to the Fc abnormality detector 67.
  • the Fc abnormality detector 67 sets the internal status to the state where focus control is released when the time from when the signal from the variable multiplier 66 falls below the reference level to a predetermined level or more continues for the abnormality detection time TW or more. I do.
  • the Fc abnormality detector 67 switches the abnormality detection time TW based on a signal from the Tk control operation indicator 68.
  • FIG. 5A shows the signal output from the cobble amplitude detector 65
  • FIG. 5B shows the signal output from the recording operation indicator 69
  • FIG. 5C shows the signal output from the recording area detector 70
  • FIG. 5D shows a signal output from the variable multiplier 66
  • FIG. 5E shows the internal status of the Fc abnormality detector 67.
  • the signal from the Tk control operation indicator 68 is at the mouth level and is sent to the Tk actuator 17
  • the drive signal is 0.
  • the light beam crosses the track of the optical disc 1 according to the eccentric state of the track.
  • the wobble amplitude detector 65 detects the wobble in the on-track state, but stops detecting the wobble as the state of the off-track state is reached. For this reason, as shown in FIG. 5A, the signal output from the cobble amplitude detector 65 fluctuates.
  • the signal output from the recording operation indicator 69 changes from the eight level. Change to low level.
  • the signal output from the recorded area detector 70 changes from low level to high level as shown in FIG. 5C. Since the wobble amplitude detector 65 detects the amplitude of the wobble from the reflected light, the detection result differs depending on the amount of reflected light.
  • FIG. 5A even when the information is reproduced even in the same unrecorded area (when the signal output from the recorded area detector 70 in FIG. 5C is at the mouth level) (FIG. 5C).
  • recording information when the signal output from the recording operation indicator 69 in FIG. 5B is at a high level
  • the signal output from the recording operation indicator 69 of B is at a high level
  • the amplitude of the pebble detected by the pebble amplitude detector 65 is larger.
  • the light beam irradiates the recording area (see the recording in FIG. 5C).
  • Irradiating an unrecorded area (when the signal output from the recorded area detector 70 in FIG. 5C is low) is better than when the signal output from the area detector 70 is high.
  • the amplitude of the pebble detected by the pebble amplitude detector 65 is large.
  • the multiplier of the variable multiplier 66 is used to emit light from the variable power laser 21 when recording information and when reproducing information.
  • the fluctuation detection sensitivity switching means (not shown) for transmitting a signal to be switched in accordance with the power and the reflection rate of the optical disk 1 to the variable multiplier 66, the fluctuation detection sensitivity is provided in the fluctuation amplitude detector 65. A change in the detection sensitivity of the detector 65 can be corrected.
  • the detection sensitivity of the cobble amplitude detector 65 can be switched to cancel the change in the amount of reflected light.
  • the variable multiplier 6 6 The amplitude of the signal output from the terminal can be kept constant. As a result, erroneous detection of the Fc abnormality detector 67 can be prevented.
  • a fluctuation detection sensitivity switching means (not shown) for sending a signal for switching the multiplier of the variable multiplier 66 to the variable multiplier 66 depending on whether the area irradiated with the light beam is recorded or unrecorded.
  • the output of the light beam changes between the case where the light beam irradiates the recording area and the case where the light beam irradiates the unrecorded area. Even if the amount of reflected light changes, the detection sensitivity of the cobble amplitude detector 65 can be similarly switched to cancel the change in the amount of reflected light, so that erroneous detection of the Fc abnormality detector 67 can be prevented. it can.
  • the Fc abnormality detector 67 selects the abnormality detection time TW when the tracking control is inactive. Then, the Fc abnormality detector 67 measures the time during which the signal from the variable multiplier 66 falls below the abnormality detection level TL, and when this time becomes longer than the abnormality detection time TW, The Fc abnormality detector 67 changes its internal status to a state in which focus control is lost. In this case, erroneous detection in the off-track state can be prevented by making the abnormality detection time TW longer than the period in which the light beam traverses the track.
  • the signal output from the cobble amplitude detector 65 becomes 0, so that the Fc abnormality detector 67 is used after the abnormality has occurred and after the abnormality detection time TW has elapsed.
  • the internal status is set to a state where the focus control is lost.
  • the reflected light is detected over a wide range from the state where the focal point of the light beam is located on the information surface of the optical disc 1, the force using the reflected light amount is used.
  • the detection speed for detecting abnormalities There is a certain limit to the detection speed for detecting abnormalities.
  • the detection range of the amplitude of the pebble is narrower than that of the reflected light, so that the detection speed can be increased in the focus abnormality detection using the amplitude of the pebble.
  • the tracking control When the tracking control is in the operating state, the light beam always follows the track, so that the fluctuation of the signal output from the cobble amplitude detector 65 as in the case where the tracking control is in the non-operating state is small. Absent. For this reason, if the abnormality detection time TW of the Fc abnormality detector 67 is longer than the pebble period, erroneous detection of the Fc abnormality detector 67 can be prevented, and the tracking control is disabled.
  • the abnormality detection time TW can be set shorter than in certain cases. Therefore, abnormality detection can be performed quickly.
  • the Fc abnormality detector 67 as the abnormality detection means is operated even when the tracking control is in an inactive state.
  • the tracking control when the tracking control is inactive, the focal point of the light beam traverses the track of the optical disk 1, and the detection of the wobble amplitude is performed when the light beam irradiates the track and when the light beam irradiates between the tracks.
  • the detection sensitivity is different (when the light beam irradiates between the tracks, the detection sensitivity decreases). For this reason, an accurate wobble amplitude cannot be obtained, and an erroneous detection of the Fc abnormality detector 67 occurs.
  • the Fc abnormality detector 67 is operated only when the tracking control is in the operating state, the Fc abnormality detector 67 is not affected by the track crossing due to the eccentricity. Since the signal component is emphasized, the detection accuracy of the Fc abnormality detector 67 can be improved.
  • the Fc abnormality detector 6 7 differs depending on whether the light beam irradiates the recording area of the optical disc 1 or the unrecorded area. The same effect can be obtained by changing the signal level for judging that the focus control has been deviated. Or, depending on the result detected by the recording area detector 70, when the light beam irradiates the recording area of the optical disc 1 and irradiates the unrecorded area, the focus control is deviated.
  • the Fc abnormality detector 67 may be provided with abnormality level switching means (not shown) for determining, that is, switching the signal change level of the pebble amplitude detector 65 for determining that the abnormality is abnormal.
  • the value to be multiplied by the signal from the cobble amplitude detector 65 in the variable multiplier 66 is switched between the case of recording the information and the case of reproducing the information.
  • the case of preventing erroneous detection of the abnormality detector 67 was described.However, it was determined that the focus control was lost in the Fc abnormality detector 67 when recording information and when reproducing information. May be configured to change the signal level to be applied. Alternatively, depending on the result detected by the recording area detector 70 when information is recorded and when information is reproduced, it is determined that the focus control has been deviated, that is, an abnormal amplitude that is determined to be abnormal.
  • An abnormal level switching means (not shown) for switching the signal change level of the detector 65 may be provided in the Fc abnormality detector 67.
  • FIG. 6 is a block diagram showing an optical disc device according to the third embodiment of the present invention. Note that the same components as those in FIG. 1 of the first embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the variable power laser 21 is used as a semiconductor laser.
  • the FE generator 30 outputs the FE signal via the Fc filter 31 and the Fc driver 37. F cakuchiyue overnight Send to 16.
  • the FE signal from the FE generator 30 is different from that of the first embodiment in that the FE signal 31 and the c driver 3 do not go through the drive selector 32 (see FIG. 1).
  • Sent via F 7 only to F 16 the FE signal of the FE generator 30 is also sent to a variable multiplier 66 which is a multiplication means and a gain switching means.
  • the photodetector 20 sends the detected light quantity signal to the FE generator 30 and the recording area detector 70.
  • the recording area detector 70 detects the amplitude value of the light quantity signal from the photodetector 20 and outputs a high-level signal when the light beam irradiates the recording area of the optical disc 1.
  • a low-level signal is sent to each of the variable multipliers 66.
  • the recording operation indicator 69 reproduces the information recorded on the optical disc 1.
  • a high-level signal is sent to the variable multiplier 66 and the variable power laser 21 respectively.
  • the variable power laser 21 emits light at the reproduction power when the signal from the recording operation indicator 69 is at a low level, and at the recording power when the signal from the recording operation indicator 69 is at a high level. It emits pulse light.
  • the variable multiplier 66 switches the multiplier by which the signal from the FE generator 30 is multiplied according to the logical state of the signal from the recording operation indicator 69 and the signal from the recording area detector 70, and The multiplier is multiplied by the signal from the FE generator 30, and the resulting signal is sent to the level change detector 71.
  • the level change detector 71 converts the signal from the variable multiplier 66 to the reference level. On the other hand, when the value falls within the specified level range w, the count value is increased to integrate the focus shift signal.
  • the level change detector 71 detects the level change when the signal from the variable multiplier 66 does not fall within the predetermined level range W with respect to the reference level (that is, exceeds the predetermined level range W).
  • the counter value is cleared to 0 by a clear means (not shown) provided in the multiplier 71, and the signal level of the variable multiplier 66 is set to the reference level.
  • the level change detector 71 sends the counter value by the counter provided in the level change detector 71 and the reference level to the multiplier 72.
  • the multiplier 72 integrates the focus error signal by multiplying the count value of the variable multiplier 66 by the absolute value of the reference level in the focus integrating means composed of the counter and the multiplier 72. Then, a value corresponding to the calculated value is calculated, and the multiplication result is sent to the Fc abnormality detector 73 as abnormality detection means.
  • the Fc abnormality detector 73 sets the internal status to a state where the focus control is normal, and the signal from the multiplier 72 becomes lower than the abnormality detection level. If the value is also large, the internal status is set to a state where the focus control is lost. 'Hereinafter, the operation of the focus abnormality detection according to the present embodiment will be described with reference to FIGS.
  • FIG. 7 shows a signal of the FE generator 30 when the focal point of the light beam passes through the information surface of the optical disc 1 in the focus direction.
  • the signal of the FE generator 30 has a constant value.
  • FIG. 8 shows how the detection signal is generated.
  • 8A shows the signal output from the FE generator 30.
  • FIG. 8B shows the signal output from the recording operation indicator 69.
  • FIG. 8C shows a signal output from the recording area detector 70, and
  • FIG. 8D shows a signal output from the variable multiplier 66.
  • the signal output from the recording operation indicator 69 changes from the high level to the mouth level.
  • the signal output from the recorded area detector 70 changes from the mouth level to the high level.
  • the FE generator 30 detects the FE signal from the reflected light, the detection result differs depending on the amount of reflected light.
  • FIG. 8A even when the information is reproduced even in the same unrecorded area (when the signal output from the recorded area detector 70 in FIG. 8C is at a low level) (FIG. 8C).
  • information is recorded (when the signal output from the recording operation indicator 69 in FIG. 8B is at a high level) than when the signal output from the recording operation indicator 69 of B is at a low level. Is larger in amplitude of the FE signal generated by the FE generator 30. Even when the same information is reproduced (when the signal output from the recording operation indicator 69 in FIG.
  • the light beam irradiates the recording area (FIG. 8C).
  • the signal output from the recording area detector 70 is 8-level (when the signal output from the recording area detector 70 in FIG. 8C is a single level)
  • the light beam can be used for recording information and reproducing information. Even if the output changes and the amount of reflected light from the optical disk 1 changes, the multiplier of the variable multiplier 6 & can be switched between the case of recording information and the case of reproducing information to cancel the change in the amount of reflected light. Therefore, as shown in FIG. 8D, the amplitude of the signal output from variable multiplier 66 can be made constant. As a result, erroneous detection of the Fc abnormality detector 73 can be prevented.
  • variable multiplier 66 is provided with a gain switching means (not shown) for switching the variable multiplier 66 between the case where the light beam irradiates the recording area and the case where the light beam irradiates the unrecorded area.
  • a gain switching means not shown for switching the variable multiplier 66 between the case where the light beam irradiates the recording area and the case where the light beam irradiates the unrecorded area.
  • FIG. 9 shows how the focus control deviates from the normal state when the focus control is in operation.
  • 9A shows the signal output from the variable multiplier 66
  • FIG. 9B shows the reference level of the level change detector 71
  • FIG. 9C shows the counter value of the level change detector 71
  • FIG. 9E shows the internal status of the Fc abnormality detector 73.
  • the level range W to be compared which is the condition for changing the reference level of the level change detector 71, is set to be smaller than the residual amount of the focus control.
  • the focus control is in a normal state by reducing the value
  • the reference level of the level change detector 71 is frequently rewritten by the residual of the focus control, as shown in FIG. 9B.
  • the count value of the level change detector 71 does not increase.
  • the signal output from the variable multiplier 66 becomes a constant value as shown in FIG. 9A, and therefore, as shown in FIG. 9C, the level change detector 7 1
  • the counter value of the counter 72 counts up, and at the same time, the signal output from the multiplier 72 also increases as shown in FIG. 9D.
  • the signal output from the multiplier 72 reaches the abnormality detection level, as shown in FIG. State.
  • the amount of reflected light from the optical disk 1 differs depending on whether the focal point of the light beam is located on a track of the optical disk 1 or between the tracks. For this reason, when the detection speed of the focus abnormality detection based on the reflected light amount is increased while the tracking control is in the inoperative state, the Fc abnormality detector 73 may erroneously detect.
  • the multiplication result of the reference level of the level change detector 71 and the counter value is sent to the Fc abnormality detector 73.
  • the present invention is not necessarily limited to this configuration. Absent. For example, only the counter value is sent to the Fc abnormality detector 73, and the counter value is compared with the abnormality detection level. If the count value is equal to or higher than the abnormality detection level, the Fc abnormality detector 73 The internal status may be set to a state where the focus control is lost. Further, in the present embodiment, variable multipliers are used for irradiating a recorded area and an unrecorded area with a light beam, or for recording information and reproducing information, respectively.
  • an abnormal condition is determined by changing the level range W to be compared, which is a condition for changing the reference level of the level change detector 71, between recording information and reproducing information. Even with a configuration in which a judgment level switching means (not shown) for switching the signal level of the c generator 30 is provided, the same effect can be obtained without providing the variable multiplier 66.
  • the signal level of the Fc generator 30 that is determined to be abnormal is switched.
  • the configuration may be such that a judgment level switching means (not shown) is provided.
  • FIG. 10 is a block diagram showing an optical disc device according to the fourth embodiment of the present invention. Note that the same components as those in FIG. 1 of the first embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the balance calculator 33, the differential amplifier 34, and the adder 35 provide a focus shift signal detecting means corresponding to the FE generator 30 of FIG. Is configured.
  • a photodetector 22 different from the photodetector 20 in FIG. 1 is used as the photodetector. While the photodetector 20 in FIG. 1 outputs a signal corresponding to the amount of received light from each of a plurality of light receiving sections in the detector, the photodetector 22 of the present embodiment further includes a focus shift signal. After calculating the differential signal to generate You.
  • the photodetector 22 generates two differential input signals for detecting a focus error from the detected light amount signal, and sends them to the balance calculator 33.
  • the balance calculator 33 When the balance signal from the balance signal generator 76 is larger than 0 (reference level), the balance calculator 33 amplifies one of the two differential input signals output from the photodetector 22 greatly. Then, a balance operation is performed to amplify the other one smaller. That is, for example, a balance operation such as “one of the differential input signals” X (1 + balance signal) and “the other of the differential input signals” X (1—balance signal) is performed. Then, the balance calculator 33 sends both signals to the differential amplifier 34. The differential amplifier 34 generates a differential output of the two signals from the balance calculator 33 and sends it to the adder 35.
  • the adder 35 adds the signal from the differential amplifier 34 and the signal from the offset generator 75, and sends a signal obtained by the addition to the Fc filter 31.
  • An acceleration sensor 74 composed of a device such as a piezoelectric element as a vibration detecting means detects the vibration applied to the optical disk device as an electric charge amount, and converts this into a voltage, thereby detecting the vibration of the optical disk device.
  • An acceleration signal corresponding to the amount of vibration detected by the acceleration sensor 74 is sent to a limiter 77 via an offset generator 75.
  • FIG. 11 shows an example of the input / output characteristics of the offset generator 75. As shown in FIG. 11, the offset generator 75 is designed so that the output increases as the acceleration signal from the acceleration sensor 74 increases.
  • the limiter 77 limits the signal from the offset generator 75 to a predetermined level or less, and sends the signal to the adder 35 and the balance signal generator 76.
  • the balance signal generator 76 receives the signal from the offset generator 75.
  • a balance signal for switching each gain of the balance calculator 33 is generated so that the operating point of the adder 35 does not change in accordance with the signal, and the balance signal is sent to the balance calculator 33. By preventing the operating point of the adder 35 from changing, the operating point of the Fc filter 31 does not change.
  • FIGS. Fig. 12A shows the signal output from adder 35 when there is no vibration
  • Fig. 12B shows the adder when vibration is detected and there is no output from balance signal generator 76
  • Fig. 12C shows the signal output from the adder 35 when vibration is detected and there is an output from the balance signal generator 76.
  • All of FIG. 12 show signals when the focus control is inactive and the focus of the light beam passes through the information surface of the optical disc 1.
  • the signal output from the adder 35 is in the state shown in FIG. 12A, and the focus of the light beam is controlled on the information surface of the optical disk 1 by the focus control.
  • an offset signal corresponding to the amount is generated in the offset generator 75. If vibration occurs and the offset signal from the offset generator 75 changes, a balance signal is generated before and after. If there is no change, the signal output from the adder 35 will be in the state shown in FIG. 12B. That is, the signal output from the adder 35 becomes smaller outside the focus error (FE) detection range. The smaller the signal output from the adder 35 (the larger the vibration applied to the device), the more the Fc filter 31 is displaced in the direction in which the condenser lens 15 moves away from the optical disk 1. A drive signal to evening 16 can be generated.
  • FE focus error
  • the balance signal generator 76 sends a balance signal corresponding to the offset value of the offset generator 75 to the balance calculator 33, and the balance calculator 33 performs the balance calculation.
  • the focus of the light beam is controlled on the information surface of the optical disc 1.
  • the offset generator 75 generates an excessively large offset amount, a large drive signal to the Fc actuator 16 is generated when the focus control is lost, and the Fc actuator 16 is generated.
  • the optical head 10 may be damaged by the heat generated.
  • the offset signal generated by the offset generator 75 is configured to be saturated at a predetermined level by the limiter 77.
  • the focus control when the focus control is deviated while maintaining the state where the focus of the light beam is controlled by the information surface of the optical disc 1 only when the focus control is normal.
  • the force for driving the condenser lens 15 in the direction away from the optical disk 1 can be increased in accordance with the vibration applied to the optical disk device, collision between the condenser lens 15 and the optical disk 1 is prevented. be able to.
  • FIG. 13 is a block diagram showing an optical disc device according to the fifth embodiment of the present invention. Note that the same components as those in FIG. 1 of the first embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the signal from the Fc filter 31 is connected to the switch 4 2 And sent via Fc Driver 37 to Fc Actuyue 16.
  • a signal relating to the movement distance commanded by a search operation indicator 78 as a search means for moving the condenser lens 15 so that the light beam irradiates a desired track in the optical disk 1 is a search drive signal generation.
  • the drive signal from the search drive signal generator 79 is sent to the transfer motor 43 and the Fc control operation indicator 80.
  • the transfer motor 43 transfers the optical head 10 in the radial direction of the optical disk 1 according to the drive signal from the search drive signal generator 79.
  • the optical disc 1 has a large amount of surface runout on its outer periphery, and therefore, when the focus control is in a non-operating state, there is a possibility that the condenser lens 15 and the optical disc 1 collide on the outer periphery of the optical disc 1. Is extremely high.
  • the condenser lens 15 is shaken through the housing of the optical head 10 due to vibration or the like, and there is a risk that the focus control may be lost.
  • the direction in which the focal point of the light beam moves across the track is the outer circumferential direction of the optical disk 1 and the search distance at which there is a risk of deviating the focus control is defined as the dangerous distance K, and the search operation indicator 7 8
  • the following signal is output from the Fc control operation indicator 80 to the switch 42. That is, the F c control operation indicator 80 generates a low-level signal when the drive signal is generated by the search drive signal generator 79, and generates a drive signal by the search drive signal generator 79. If not, a high-level signal is sent to the switch 42.
  • the F c control operation indicator 80 sends a high-level signal to the switch 42 whenever the movement distance commanded from the search operation indicator 78 is smaller than the dangerous distance K. Then, the switch 42 is operated from the F c control operation indicator 80. If the signal from the Fc control operation indicator 80 is low, the signal from the Fc filter 31 is sent to the Fc actuator 16 when the signal is high. Send 0 to F cactuyue 1/6.
  • the search operation indicator 78 sets the focus control to the inactive state. You may comprise.
  • the distance that the focal point of the light beam moves across is converted into the number of tracks corresponding to the distance, and the converted number of tracks is equal to or greater than a predetermined number (for example, the number of tracks corresponding to the dangerous distance K).
  • the search operation indicator 78 may be configured so as to disable the focus control.
  • the present invention it is possible to avoid the collision between the condenser lens and the optical disk regardless of whether the focus control is in an operation state or a non-operation state. It can be used for an optical disk device equipped with a high-density optical disk that has a high possibility of collision with the optical disk.

Landscapes

  • Optical Recording Or Reproduction (AREA)
  • Moving Of The Head For Recording And Reproducing By Optical Means (AREA)

Description

明 細 書 光ディスク装置 技術分野
本発明は、光源からの光ビームを、回転している円盤状の情報担体(以 下 『光ディスク』 と呼ぶ) に向けて収束照射することにより、 光デイス クに情報を記録し、 あるいは光ディスクに記録された情報を再生する光 ディスク装置に関する。さらに詳細には、情報の記録 ·再生を行う際の、 光ディスクと光ビームを集光する集光レンズとの衝突を回避する機構を 備えた光ディスク装置に関する。 背景技術
従来の光ディスク装置における情報の再生は、 比較的弱い一定光量の 光ビームを、 情報担体である光ディスク上に照射し、 光ディスクによつ て強弱に変調された反射光を検出することにより行われる。 また、 情報 の記録は、記録する情報に応じてその光量を強弱に変調した光ビームを、 光ディスク上の記録材料膜に照射することにより行われる (例えば、 特 開昭 5 2— 8 0 8 0 2号公報参照)。
再生専用の光ディスクにおいては、 ピッ トによる情報が予めスパイラ ル状に記録されている。 また、 記録 ·再生が可能な光ディスクは、 スパ ィラル状の凹凸構造のトラックを有する基材表面に、 光学的に記録 '再 生が可能な材料からなる膜 (記録材料膜) を蒸着等の手法によって形成 することにより作製される。 光ディスクに情報を記録し、 あるいは光デ イスクに記録された情報を再生するためには、 光ビームが記録材料膜上 で常に所定の収束状態となるように、 光ビームの焦点を光ディスクの面 の法線方向 (以下 『フォーカス方向』 と呼ぶ) に制御するフォーカス制 御が必要となる。
以下、 従来の光ディスク装置の制御動作について、 図 1 4を参照しな がら説明する。 図 1 4に示すように、 光ヘッド 1 1 0は、 半導体レーザ 1 1 1と、 カップリングレンズ 1 1 2と、 偏光ビームスプリッタ 1 1 3 と、 1 4波長板 1 1 4と、 収束手段である集光レンズ 1 1 5と、 フォ 一カス移動手段であるフォーカスァクチユエ一夕 (以下 『F cァクチュ エー夕』 と呼ぶ) 1 1 6と、 トラック移動手段であるトラッキングァク チユエ一夕 (以下 『T kァクチユエ一夕』 と呼ぶ) 1 1 7と、 検出レン ズ 1 1 8と、 円筒レンズ 1 1 9と、 光検出器 1 2 0とにより構成されて いる。
半導体レーザ 1 1 1から出射された光ビームは、 カップリングレンズ 1 1 2によって平行光に変換される。 この平行光は、 偏光ビームスプリ ッタ 1 1 3と 1 Z 4波長板 1 1 4を通過した後、 集光レンズ 1 1 5によ つて円盤状の光ディスク 1 0 1の情報面上に集光される。 次いで、 光デ イスク 1 0 1で反射された光ビームは、 集光レンズ 1 1 5と 1 4波長 板 1 1 4を再び通過した後、偏光ビ一ムスプリッ夕 1 1 3で反射される。 そして、 この反射光は、 検出レンズ 1 1 8と円筒レンズ 1 1 9を通過し た後、 4つに分割された光検出器 1 2 .0に照射される。 集光レンズ 1 1 5は、 弾性体 (図示せず) によって支持されており、 F cァクチユエ一 夕 1 1 6に電流を流すことにより、 電磁気力によってフォーカス方向に 移動する。
光検出器 1 2 0は、 検出された光量信号をフォーカスずれ信号検出手 段であるフォーカスエラ一生成器 (以下 『F E生成器』 と呼ぶ) 1 3 0 に送る。 F E生成器 1 3 0は、光検出器 1 2 0からの光量信号を用いて、 光ディスク 1 0 1の情報面上における光ビームの収束状態を示すエラ一 信号、 つまり、 光ディスク 1 0 1の情報面に対する光ビームの焦点の位 置ずれに応じたフォーカスエラー信号 (以下 『F E信号』 と呼ぶ) を演 算する。 そして、 F E生成器 1 3 0は、 フォーカス制御の制御動作を安 定にするために、 この F E信号を、 位相補償を行うフォーカス制御用フ ィル夕 (以下 『F cフィル夕』 と呼ぶ) 1 3 1と駆動セレクタ 1 3 2と フォーカスドライバ (以下 『F c ドライバ』 と呼ぶ) 1 3 7を介して F cァクチユエ一夕 1 1 6に送る。 F cァクチユエ一夕 1 1 6は、 光ビー ムが光ディスク 1 0 1の情報面上に所定の状態で収束するように、 集光 レンズ 1 1 5をフォーカス方向に駆動する。
固定駆動信号発生器 1 3 6は、 F cァクチユエ一夕 1 1 6が機械的に 自然な状態、 すなわち、 F cァクチユエ一夕 1 1 6に対して何も力が加 わらない状態となる駆動信号を、 駆動セレクタ 1 3 2に送る。 光デイス ク 1 0 1の情報面に対する光ビームの焦点の位置ずれが生じており、 情 報の記録 ·再生を行う際に、 その位置ずれを補正する必要がある場合に は、 駆動セレクタ 1 3 2は、 F cフィル夕 1 3 1からの信号を F c ドラ ィバ 1 3 7に送る。 F c ドライバ 1 3 7は、 駆動セレクタ 1 3 2からの 信号に基づいて、 F cァクチユエ一夕 1 1 6を駆動する。 そして、 F c ァクチユエ一夕 1 1 6は、 光ビームが光ディスク 1 0 1の情報面上に収 束するように、 集光レンズ 1 1 5をフォーカス方向に駆動する。 このよ うな状態を、 『フォーカス制御が動作状態にある』 という。光ディスク 1 0 1の情報面に対する光ビームの焦点の位置ずれを補正する必要がない 場合には、 駆動セレクタ 1 3 2は、 固定駆動信号発生器 1 3 6からの信 号を F c ドライバ 1 3 7に送る。このような状態を、 『フォーカス制御が 不動作状態にある』 という。 F c ドライバ 1 3 7は、 駆動セレクタ 1 3 2からの信号に基づいて、 F cァクチユエ一夕 1 1 6を駆動する。 フォ 一カス制御が不動作状態にある場合に、 F cァクチユエ一夕 1 1 6は自 然な状態となる。
また、 光検出器 1 2 0の光量信号は、 反射光量検出器 1 6 1にも送ら れる。 反射光量検出器 1 6 1は、 光検出器 1 2 0の光量信号に基づいて 光ディスク 1 0 1の反射光量に応じた信号を検出し、 それをフォーカス 異常検出器 (以下 『F c異常検出器』 と呼ぶ) 1 8 1に送る。 F c異常 検出器 1 8 1は、 反射光量検出器 1 6 1からの信号が所定レベル以下と なる時間が異常検出時間 T W以上連続した場合に、 その内部ステータス をフォーカス制御が外れた状態にする。 すなわち、 F c異常検出器 1 8 1は、 光ディスク 1 0 1の情報面に対する光ビームの焦点の位置ずれが 発生していると判断する。
光ディスクの高密度化に伴い、 光ビームの焦点が光ディスクの情報面 上に位置する場合の光ディスクと集光レンズとが接近し、 光ディスクと 集光レンズとが衝突する可能性が高くなる。 そして、 この場合の課題と しては、 以下の二点が挙げられる。 すなわち、
( 1 ) フォーカス制御が不動作状態にある場合、 すなわち、 光デイス ク装置を輸送したり移動させたりする場合に、 集光レンズと光ディスク とが衝突し易い。
( 2 ) 反射光量を用いたフォーカス異常検出では、 検出速度が遅く、 集光レンズと光ディスクとが衝突し易い。 特に、 光ヘッドを移送して光 ビームの焦点を所望のトラックへ検索する場合や光ディスク装置に外部 から振動や衝撃が加わった場合に、 フォーカス制御が外れ、 集光レンズ と光ディスクとが衝突してしまう。 発明の開示
本発明は、 従来技術における前記課題を解決するためになされたもの であり、 フォーカス制御が動作状態にあるか不動作状態にあるかに関わ らず、 集光レンズと光ディスクとの衝突を回避し、 集光レンズや光ディ スクが損傷することを防止することのできる、 信頼性の高い光ディスク 装置を提供することを目的とする。
前記目的を達成するため、 本発明に係る光ディスク装置の第 1の構成 は、 光源からの光ビームを、 回転している情報担体に向けて収束照射す る収束手段と、
前記情報担体の情報面に対する前記光ビームの焦点の位置ずれに応じ た信号を発生させるフォーカスずれ信号検出手段と、
前記収束手段を前記情報担体の情報面の法線方向に移動させるフォー カス移動手段と、
前記フォーカスずれ信号検出手段からの信号に応じて前記フォーカス 移動手段を駆動し、 前記光ビームの焦点が前記情報担体の情報面を追従 するように制御するフォーカス制御手段と、
前記フォーカス制御手段が不動作状態にある場合に、 前記光ビームの 焦点が前記情報担体の情報面近傍にあることを検出する情報面検出手段 と、
前記情報面検出手段から信号が発生した場合に、 前記収束手段が前記 情報担体から離れる方向に変位するような前記フォーカス移動手段への 駆動信号を発生させる衝突回避手段とを備えたことを特徴とする。
この光ディスク装置の第 1の構成によれば、 フォーカス制御手段が不 動作状態にある場合に、 情報担体と収束手段とが、 光ビームの焦点が情 報担体の情報面に位置する状態よりも接近しないため、 情報担体と収束 手段との衝突を回避し、情報担体や収束手段が損傷することを防止して、 信頼性の高い光ディスク装置を実現することができる。
本発明に係る光ディスク装置の第 2の構成は、光源からの光ビームを、 回転している情報担体に向けて収束照射する収束手段と、 前記情報担体の情報面に対する前記光ビームの焦点の位置ずれに応じ た信号を発生させるフォーカスずれ信号検出手段と、
前記収束手段を前記情報担体の情報面の法線方向に移動させるフォー カス移動手段と、
前記フォーカスずれ信号検出手段からの信号に応じて前記フォーカス 移動手段を駆動し、 前記光ビームの焦点が前記情報担体の情報面を追従 するように制御するフォーカス制御手段と、
装置の振動を検出する振動検出手段と、
前記振動検出手段から所定値以上の信号が発生した場合に、 前記収束 手段が前記情報担体から離れる方向に変位するような前記フォーカス移 動手段への駆動信号を発生させる衝突回避手段とを備えたことを特徴と する。
この光ディスク装置の第 2の構成によれば、 装置の振動により情報担 体と収束手段との衝突の発生の可能性が高い状態にある場合において、 情報担体と収束手段との衝突を回避し、 情報担体や収束手段が損傷する ことを防止して、信頼性の高い光ディスク装置を実現することができる。 また、前記本発明の光ディスク装置の第 1又は第 2の構成においては、 前記衝突回避手段が発生させる駆動信号が、 基準レベルの信号と、 前記 収束手段が前記情報担体から離れる方向に変位するような一定レベルの 信号との 2値信号であるのが好ましい。 この好ましい例によれば、 簡素 な仕組で情報担体と収束手段との衝突を回避することができる。
また、前記本発明の光ディスク装置の第 1又は第 2の構成においては、 前記衝突回避手段が発生させる駆動信号が、 前記収束手段が前記情報担 体から離れる方向に変位するような所定の波高値を有するパルス信号で あるのが好ましい。 この好ましい例によれば、 衝突回避手段の駆動信号 を発生させる時間が短くなるので、 低い電力で、 情報担体と収束手段と の衝突を回避することができる。
また、前記本発明の光ディスク装置の第 1又は第 2の構成においては、 前記衝突回避手段が発生させる駆動信号が、 一定の傾きを有するランプ 信号であるのが好ましい。 この好ましい例によれば、 衝突回避手段の発 生させる駆動信号が連続信号となるので、 収束手段及びフォーカス移動 手段に対する負担を少なくした状態で、 情報担体と収束手段との衝突を 回避することができる。
また、前記本発明の光ディスク装置の第 1又は第 2の構成においては、 前記情報面検出手段又は前記振動検出手段から信号が発生していない場 合に前記衝突回避手段が発生させる駆動信号は、 前記収束手段が前記情 報担体に近づく方向に所定の傾きで変位するような信号であるのが好ま しい。 この好ましい例によれば、 情報担体と収束手段とが十分離間した ときに、 衝突回避手段の発生させる駆動信号が小さくなるので、 低い電 力で、 情報担体と収束手段との衝突を回避することができる。
これらの場合、 前記衝突回避手段が発生させる駆動信号が、 予め設定 された所定値で出力が飽和するように構成されているのが好ましい。 こ の好ましい例によれば、 衝突回避手段から大きな駆動信号を印加するこ とによる、収束手段あるいはフォーカス移動手段の破損を防止しながら、 情報担体と収束手段との衝突を回避することができる。
本発明に係る光ディスク装置の第 3の構成は、光源からの光ビームを、 回転している情報担体に向けて収束照射する収束手段と、
前記情報担体の情報面に対する前記光ビームの焦点の位置ずれに応じ た信号を発生させるフォーカスずれ信号検出手段と、
前記収束手段を前記情報担体の情報面の法線方向に移動させるフォー カス移動手段と、
前記フォーカスずれ信号検出手段からの信号に応じて前記フォーカス 移動手段を駆動し、 前記光ビームの焦点が前記情報担体の情報面を追従 するように制御するフォーカス制御手段と、
前記フォーカス制御手段が不動作状態にある場合に、 前記収束手段が 前記情報担体から離れる方向に変位するような前記フォーカス移動手段 への駆動信号を常時発生させる衝突回避手段とを備えたことを特徴とす る。
この光ディスク装置の第 3の構成によれば、 フォーカス制御手段が不 動作状態の場合に、 情報担体と収束手段との位置関係が、 常時、 衝突の 発生し得ない状態となるので、 情報担体や収束手段が損傷することを防 止して、 信頼性の高い光ディスク装置を実現することができる。
本発明に係る光ディスク装置の第 4の構成は、光源からの光ビームを、 特定の周期で微少な半径方向の揺らぎを持ったスパイラル状のトラック を有する情報担体に向けて収束照射する収束手段と、
前記情報担体の情報面に対する前記光ビームの焦点の位置ずれに応じ た信号を発生させるフォーカスずれ信号検出手段と、
前記収束手段を前記情報担体の情報面の法線方向に移動させるフォー カス移動手段と、
前記フォーカスずれ信号検出手段からの信号に応じて前記フォーカス 移動手段を駆動し、 前記光ビームの焦点が前記情報担体の情報面を追従 するように制御するフォーカス制御手段と、
前記トラックの揺らぎの振幅を検出する揺らぎ振幅検出手段と、 所定時間の前記揺らぎ振幅検出手段からの信号の振幅変化によって前 記フォーカス制御手段の動作が異常であると判断し、 前記収束手段が前 記情報担体から離れる方向に変位するような前記フォーカス移動手段へ の駆動信号を発生させる異常検出手段とを備えたことを特徴とする。 この光ディスク装置の第 4の構成によれば、 情報担体に記録された情 報を再生する際に得られる再生信号の振幅からフォーカス制御手段の動 作が異常であることを検出する手法を採ることができない記録メディァ においても、 迅速にフォーカス制御手段の動作が異常であることを検出 し、 情報担体と収束手段との衝突を回避して、 情報担体や収束手段が損 傷することを防止することができる。
また、 前記本発明の光ディスク装置の第 4の構成においては、 前記揺 らぎ振幅検出手段が、 情報を記録する場合と情報を再生する場合とで、 前記トラックの揺らぎの振幅を検出する検出感度を切り替える揺らぎ検 出感度切替手段を備えているのが好ましい。 この好ましい例によれば、 情報を記録する場合と情報を再生する場合とで、 光ビームの出力が変化 して情報担体からの反射光量が変化しても、 情報を記録する場合と情報 を再生する場合とで、 揺らぎ振幅検出手段の検出感度を切り替えて反射 光量の変化を打ち消すことができるので、 異常検出手段の誤検出を防止 することができる。
また、 前記本発明の光ディスク装置の第 4の構成においては、 前記異 常検出手段が、 情報を記録する場合と情報を再生する場合とで、 異常で あると判断する前記揺らぎ振幅検出手段の信号変化レベルを切り替える 異常レベル切替手段を備えているのが好ましい。 この好ましい例によれ ば、 情報を記録する場合と情報を再生する場合とで、 光ビームの出力が 変化して情報担体からの反射光量が変化し、 揺らぎ振幅検出手段からの 信号が変化しても、 情報を記録する場合と情報を再生する場合とで、 異 常であると判断する揺らぎ振幅検出手段の信号変化レベルを切り替えて 揺らぎ振幅検出手段からの信号の変化を打ち消すことができるので、 異 常検出手段の誤検出を防止することができる。
また、 前記本発明の光ディスク装置の第 4の構成においては、 前記光 ビームが照射している領域が記録済みであるか未記録状態であるかを検 出する記録済み領域検出手段と、 前記記録済み領域検出手段の検出結果 に応じて、 前記揺らぎ振幅検出手段の検出感度を切り替える揺らぎ検出 感度切替手段とをさらに備えているのが好ましい。 この好ましい例によ れば、 光ビームが照射している領域が記録済みであるか未記録状態であ るかによって情報担体からの反射光量が変化しても、 光ビームが照射し ている領域が記録済みであるか未記録状態であるかによって揺らぎ振幅 検出手段の検出感度を切り替えて反射光量の変化を打ち消すことができ るので、 異常検出手段の誤検出を防止することができる。
また、 前記本発明の光ディスク装置の第 4の構成においては、 前記光 ビームが照射している領域が記録済みであるか未記録状態であるかを検 出する記録済み領域検出手段と、 前記記録済み領域検出手段の検出結果 に応じて、 異常であると判断する前記揺らぎ振幅検出手段の信号変化レ ベルを切り替える異常レベル切替手段とをさらに備えているのが好まし レ この好ましい例によれば、 光ビームが照射している領域が記録済み であるか未記録状態であるかによって情報担体からの反射光量が変化し て揺らぎ振幅検出手段からの信号が変化しても、 光ビームが照射してい る領域が記録済みであるか未記録状態であるかによって異常であると判 断する揺らぎ振幅検出手段の信号変化レベルを切り替えて揺らぎ振幅検 出手段からの信号の変化を打ち消すことができるので、 異常検出手段の 誤検出を防止することができる。
また、 前記本発明の光ディスク装置の第 4の構成においては、 前記情 報担体の前記トラックに対する前記光ビームの焦点の位置ずれに応じた 信号を発生させるトラックずれ信号検出手段と、 前記収束手段を前記情 報担体の前記トラックを横切る方向に移動させるトラック移動手段と、 前記卜ラックずれ信号検出手段からの信号に応じて前記トラック移動手 段を駆動し、 前記光ビームの焦点が前記情報担体の前記トラックを追従 するように制御するトラッキング制御手段とをさらに備え、 前記トラッ キング制御手段が動作状態にある場合にのみ前記異常検出手段が動作す るのが好ましい。 この好ましい例によれば、 トラッキング制御手段が不 動作状態にある場合に、 揺らぎ振幅検出手段からの信号あるいはフォー カスずれ信号検出手段からの信号の乱れによる異常検出手段の誤検出を 防止することができる。
また、 前記本発明の光ディスク装置の第 4の構成においては、 前記情 報担体の前記トラックに対する前記光ビームの焦点の位置ずれに応じた 信号を発生させるトラックずれ信号検出手段と、 前記収束手段を前記情 報担体の前記トラックを横切る方向に移動させるトラック移動手段と、 前記トラックずれ信号検出手段からの信号に応じて前記トラック移動手 段を駆動し、 前記光ビームの焦点が前記情報担体の前記トラックを追従 するように制御するトラッキング制御手段とをさらに備え、 前記トラッ キング制御手段が動作状態にある場合と不動作状態にある場合とで、 前 記異常検出手段が、 前記フォーカス制御手段の動作が異常であると判断 する前記揺らぎ振幅検出手段の信号振幅変化の検出時間又は振幅変化レ ベルを切り替えるのが好ましい。 この好ましい例によれば、 トラツキン グ制御手段が不動作状態にある場合に、 揺らぎ振幅検出手段からの信号 あるいはフォーカスずれ信号検出手段からの信号の乱れによる異常検出 手段の誤検出を防止することができる。
本発明に係る光ディスク装置の第 5の構成は、光源からの光ビームを、 回転している情報担体に向けて収束照射する収束手段と、
前記情報担体の情報面に対する前記光ビームの焦点の位置ずれに応じ た信号を発生させるフォーカスずれ信号検出手段と、
前記収束手段を前記情報担体の情報面の法線方向に移動させるフォー カス移動手段と、 前記フォーカスずれ信号検出手段からの信号に応じて前記フォーカス 移動手段を駆動し、 前記光ビームの焦点が前記情報担体の情報面を追従 するように制御するフォーカス制御手段と、
所定時間の前記フォーカスずれ信号検出手段からの信号の変化が所定 範囲内である場合に、 前記フォーカス制御手段の動作が異常であると判 断し、 前記収束手段が前記情報担体から離れる方向に変位するような前 記フォーカス移動手段への駆動信号を発生させる異常検出手段とを備え たことを特徴とする。
この光ディスク装置の第 5の構成によれば、 情報担体に記録された情 報を再生する際に得られる再生信号の振幅からフォーカス制御手段の動 作が異常であることを検出する手法を採ることができない記録メディァ においても、 迅速にフォーカス制御手段の動作が異常であることを検出 し、 情報担体と収束手段との衝突を回避して、 情報担体や収束手段が損 傷することを防止することができる。
また、 前記本発明の光ディスク装置の第 5の構成においては、 前記フ ォ一カスずれ信号検出手段からの信号に所定値を乗じる乗算手段と、 情 報を記録する場合と情報を再生する場合とで、 前記乗算手段の乗数を切 り替えるゲイン切替手段とをさらに備えているのが好ましい。 この好ま しい例によれば、 情報を記録する場合と情報を再生する場合とで、 光ビ —ムの出力が変化して情報担体からの反射光量が変化しても、 情報を記 録する場合と情報を再生する場合とで、 乗算手段の乗数を切り替えて反 射光量の変化を打ち消すことができるので、 異常検出手段の誤検出を防 止することができる。
また、 前記本発明の光ディスク装置の第 5の構成においては、 前記異 常検出手段が、 情報を記録する場合と情報を再生する場合とで、 異常で あると判断する前記フォーカスずれ信号検出手段の信号と比較する信号 レベルを切り替える判断レベル切替手段を備えているのが好ましい。 こ の好ましい例によれば、情報を記録する場合と情報を再生する場合とで、 光ビームの出力が変化して情報担体からの反射光量が変化し、 フォー力 スずれ信号検出手段からの信号が変化しても、 情報を記録する場合と情 報を再生する場合とで、 判断レベル切替手段の信号レベルを切り替えて フォーカスずれ信号検出手段からの信号の変化を打ち消すことができる ので、 異常検出手段の誤検出を防止することができる。
また、 前記本発明の光ディスク装置の第 5の構成においては、 前記フ ォ一カスずれ信号検出手段からの信号に所定値を乗じる乗算手段と、 前 記光ビームが照射している領域が記録済みであるか未記録状態であるか を検出する記録済み領域検出手段と、 前記記録済み領域検出手段の検出 結果に応じて、 前記乗算手段の乗数を切り替えるゲイン切替手段とをさ らに備えているのが好ましい。 この好ましい例によれば、 光ビームが照 射している領域が記録済みであるか未記録状態であるかによって情報担 体からの反射光量が変化しても、 光ビームが照射している領域が記録済 みであるか未記録状態であるかによって乗算手段の乗数を切り替えて反 射光量の変化を打ち消すことができるので、 異常検出手段の誤検出を防 止することができる。
また、 前記本発明の光ディスク装置の第 5の構成においては、 前記光 ビームが照射している領域が記録済みであるか未記録状態であるかを検 出する記録済み領域検出手段と、 前記記録済み領域検出手段の検出結果 に応じて、 異常であると判断する前記フォーカスずれ信号検出手段の信 号と比較する信号レベルを切り替える判断レベル切替手段をさらに備え ているのが好ましい。 この好ましい例によれば、 光ビームが照射してい る領域が記録済みであるか未記録状態であるかによって情報担体からの 反射光量が変化してフォーカスずれ信号検出手段からの信号が変化して も、 光ビームが照射している領域が記録済みであるか未記録状態である かによつて判断レベル切替手段の信号レベルを切り替えてフォーカスず れ信号検出手段からの信号の変化を打ち消すことができるので、 異常検 出手段の誤検出を防止することができる。
また、 前記本発明の光ディスク装置の第 5の構成においては、 前記情 報担体のトラックに対する前記光ビームの焦点の位置ずれに応じた信号 を発生させるトラックずれ信号検出手段と、 前記収束手段を前記情報担 体の前記トラックを横切る方向に移動させるトラック移動手段と、 前記 トラックずれ信号検出手段からの信号に応じて前記トラック移動手段を 駆動し、 前記光ビームの焦点が前記情報担体の前記トラックを追従する ように制御するトラツキング制御手段とをさらに備え、 前記トラツキン グ制御手段が動作状態にある場合にのみ前記異常検出手段が動作するの が好ましい。
本発明に係る光ディスク装置の第 6の構成は、光源からの光ビームを、 回転している情報担体に向けて収束照射する収束手段と、
前記情報担体の情報面に対する前記光ビームの焦点の位置ずれに応じ た信号を発生させるフォーカスずれ信号検出手段と、
前記収束手段を前記情報担体の情報面の法線方向に移動させるフォー カス移動手段と、
前記フォーカスずれ信号検出手段からの信号に応じて前記フォーカス 移動手段を駆動し、 前記光ビームの焦点が前記情報担体の情報面を追従 するように制御するフォーカス制御手段と、
前記フォーカスずれ信号検出手段からの信号の変化が所定範囲内であ る場合に、 前記フォーカスずれ信号検出手段からの信号を積分するフォ 一カス積分手段と、
前記フォーカスずれ信号検出手段からの信号の変化が前記所定範囲を 超えている場合に、 前記フォーカス積分手段の積分値をクリァするクリ ァ手段と、
前記フォーカス積分手段の積分値の絶対値が所定値以上である場合に, 前記フォーカス制御手段の動作が異常であると判断し、 前記収束手段が 前記情報担体から離れる方向に変位するような前記フォーカス移動手段 への駆動信号を発生させる異常検出手段とを備えたことを特徴とする。
この光ディスク装置の第 6の構成によれば、 情報担体に記録された情 報を再生する際に得られる再生信号の振幅からフォーカス制御手段の動 作が異常であることを検出する手法を採ることができない記録メディァ においても、 迅速にフォーカス制御手段の動作が異常であることを検出 し、 情報担体と収束手段との衝突を回避して、 情報担体や収束手段が損 傷することを防止することができる。
また、 前記本発明の光ディスク装置の第 6の構成においては、 前記フ オーカス積分手段が、 情報を記録する場合と情報を再生する場合とに対 応する少なくとも 2種類の乗数を前記フォーカスずれ信号検出手段から の信号に乗じる乗算手段を備え、 前記乗算手段で乗算した結果を積分す るのが好ましい。 この好ましい例によれば、 情報を記録する場合と情報 を再生する場合とで、 光ビームの出力が変化して情報担体からの反射光 量が変化しても、 情報を記録する場合と情報を再生する場合とで、 フォ —カスずれ信号検出手段からの信号に乗じる乗数を切り替えて反射光量 の変化を打ち消すことができるので、 異常検出手段の誤検出を防止する ことができる。
また、 前記本発明の光ディスク装置の第 6の構成においては、 前記ク リア手段が、 情報を記録する場合と情報を再生する場合とで、 前記フォ 一カスずれ信号検出手段からの信号の変化を検出比較する範囲を切り替 えるのが好ましい。 この好ましい例によれば、 情報を記録する場合と情 報を再生する場合とで、 光ビームの出力が変化して情報担体からの反射 光量が変化し、 フォーカスずれ信号検出手段からの信号が変化しても、 フォーカスずれ信号検出手段からの信号の変化を検出比較する範囲を切 り替えてフォーカスずれ信号検出手段からの信号の変化を打ち消すこと ができるので、 異常検出手段の誤検出を防止することができる。
また、 前記本発明の光ディスク装置の第 6の構成においては、 前記フ ォ一カスずれ信号検出手段からの信号に所定値を乗じる乗算手段と、 前 記光ビームが照射している領域が記録済みであるか未記録状態であるか を検出する記録済み検出手段と、 前記記録済み領域検出手段の検出結果 に応じて、 前記乗算手段の乗数を切り替えるゲイン切替手段とをさらに 備えているのが好ましい。 この好ましい例によれば、 光ビームが照射し ている領域が記録済みであるか未記録状態であるかによって情報担体か らの反射光量が変化しても、 光ビームが照射している領域が記録済みで あるか未記録状態であるかによって乗算手段の乗数を切り替えて反射光 量の変化を打ち消すことができるので、 異常検出手段の誤検出を防止す ることができる。
また、 前記本発明の光ディスク装置の第 6の構成においては、 前記光 ビームが照射している領域が記録済みであるか未記録状態であるかを検 出する記録済み検出手段をさらに備え、 前記クリア手段が、 前記記録済 み検出手段の検出結果に応じて、 前記フォーカスずれ信号検出手段から の信号の変化を検出比較する範囲を切り替えるのが好ましい。 この好ま しい例によれば、 光ビームが照射している領域が記録済みであるか未記 録状態であるかによって情報担体からの反射光量が変化してフォーカス ずれ信号検出手段からの信号が変化しても、 光ビームが照射している領 域が記録済みであるか未記録状態であるかによってフォーカスずれ信号 検出手段からの信号の変化を検出比較する範囲を切り替えてフォーカス ずれ信号検出手段からの信号の変化を打ち消すことができるので、 異常 検出手段の誤検出を防止することができる。
本発明に係る光ディスク装置の第 7の構成は、光源からの光ビームを、 回転している情報担体に向けて収束照射する収束手段と、
前記情報担体で反射した前記光ビームを分割して受光する光検出手段 と、
前記光検出手段の分割された領域の差動演算により、 前記情報担体の 情報面に対する前記光ビームの焦点の位置ずれに応じた信号を発生させ るフォーカスずれ信号検出手段と、
前記収束手段を前記情報担体の情報面の法線方向に移動させるフォー カス移動手段と、
前記フォーカスずれ信号検出手段からの信号にオフセットを印加する オフセット印加手段と、
前記フォーカスずれ信号検出手段及び前記オフセット印加手段からの 信号に応じて前記フォーカス移動手段を駆動し、 前記光ビームの焦点が 前記情報担体の情報面を追従するように制御するフォーカス制御手段と, 装置の振動を検出する振動検出手段と、
前記振動検出手段からの信号に基づき、 前記オフセット印加手段が、 前記収束手段が前記情報担体から遠ざかる方向に変位するようなオフセ ットを印加することを特徴とする。
この光ディスク装置の第 7の構成によれば、 フォーカス制御手段が異 常状態となり、 異常状態であることが検出されるまでの間に装置に振動 が加わった場合、 フォーカス制御手段は、 収束手段が情報担体から遠ざ かる方向に変位するような駆動信号を発生させるので、 情報担体と収束 手段との衝突を回避し、情報担体や収束手段が損傷することを防止して、 信頼性の高い光ディスク装置を実現することができる。 また、 前記本発明の光ディスク装置の第 7の構成においては、 前記ォ フセット印加手段が、 前記振動検出手段からの信号が大きいほど、 印加 するオフセット量を大きくするのが好ましい。この好ましい例によれば、 フォーカス制御手段は、 装置に加わる振動が大きいほど、 収束手段が情 報担体から遠ざかる方向に大きく変位するような駆動信号を発生させる ので、 情報担体と収束手段との衝突を確実に回避することができる。 また、 前記本発明の光ディスク装置の第 7の構成においては、 前記フ オーカスずれ信号検出手段が、 差動演算前の信号のそれぞれに対して個 別のゲインを与えるバランス乗算手段を備え、前記バランス乗算手段は、 前記オフセット印加手段が印加するオフセットに応じて、 前記フォー力 ス制御手段の動作点が変化しないように各ゲインを切り替えるのが好ま しい。 この好ましい例によれば、 フォーカス制御手段は、 動作点を変化 させずに、 収束手段が情報担体から遠ざかる方向に大きく変位するよう な駆動信号を発生させるので、 情報担体と収束手段との衝突を確実に回 避することができる。
また、 前記本発明の光ディスク装置の第 7の構成においては、 前記ォ フセット印加手段が印加するオフセッ卜が、 所定のレベルで飽和させる ように構成されているのが好ましい。 この好ましい例によれば、 大きな 駆動信号を印加することによる、 収束手段あるいはフォーカス移動手段 の破損を防止しながら、 情報担体と収束手段との衝突を回避することが できる。
本発明に係る光ディスク装置の第 8の構成は、光源からの光ビームを、 回転している情報担体に向けて収束照射する収束手段と、
前記情報担体の情報面に対する前記光ビームの焦点の位置ずれに応じ た信号を発生させるフォーカスずれ信号検出手段と、
前記収束手段を前記情報担体の情報面の法線方向に移動させるフォー カス移動手段と、
前記フォーカスずれ信号検出手段からの信号に応じて前記フォーカス 移動手段を駆動し、 前記光ビームの焦点が前記情報担体の情報面を追従 するように制御するフォーカス制御手段と、
前記光ビームが前記情報担体内の所望のトラックを照射するように前 記収束手段を移動させる検索手段とを備え、
前記検索手段が、 前記前記フォーカス制御手段の動作時に前記フォー カス制御手段を不動作状態にすることを特徴とする。
この光ディスク装置の第 8の構成によれば、 検索手段が検索動作時に 発生させる振動により情報担体と収束手段との衝突の発生の可能性が高 い状態にある場合において、 情報担体と収束手段との衝突を回避し、 情 報担体や収束手段が損傷することを防止して、 信頼性の高い光ディスク 装置を実現することができる。
また、 前記本発明の光ディスク装置の第 8の構成においては、 前記検 索手段は、 前記光ビームの焦点が横切って移動するトラック本数が所定 本数以上である場合に、 前記フォーカス制御手段を不動作状態にするの が好ましい。 この好ましい例によれば、 検索手段が移動距離の長い検索 動作時に発生させる大きな振動により情報担体と収束手段との衝突の発 生の可能性が高い状態にある場合において、 情報担体と収束手段との衝 突を回避することができる。
また、 前記本発明の光ディスク装置の第 8の構成においては、 前記検 索手段は、 前記光ビームの焦点がトラックを横切って移動する方向が前 記情報担体の外周方向である場合に、 前記フォーカス制御手段を不動作 状態にするのが好ましい。 この好ましい例によれば、 情報担体の面ぶれ 等の影響のために情報担体と収束手段との衝突の可能性が高い情報担体 の外周方向への検索動作時に発生する大きな振動により、 情報担体と収 束手段との衝突の発生の可能性が高い状態にある場合において、 情報担 体と収束手段との衝突を回避することができる。
また、 前記本発明の光ディスク装置の第 8の構成においては、 前記検 索手段は、 前記光ビームの焦点が横切って移動するべき目的トラックが 前記情報担体の最外周から所定距離の範囲内にある場合に、 前記フォー カス制御手段を不動作状態にするのが好ましい。 この好ましい例によつ ても、 情報担体の面ぶれ等の影響のために情報担体と収束手段との衝突 の可能性が高い情報担体の外周方向への検索動作時に発生する大きな振 動により、 情報担体と収束手段との衝突の発生の可能性が高い状態にあ る場合において、情報担体と収束手段との衝突を回避することができる。 図面の簡単な説明
図 1は本発明の第 1の実施の形態における光ディスク装置を示すプロ ック図、
図 2 Aは本発明の第 1の実施の形態における反射光量検出器から出力 される信号を示す図、 図 2 Bは本発明の第 1の実施の形態における情報 面検出器から出力される信号を示す図、 図 2 Cは本発明の第 1の実施の 形態における回避駆動信号生成器から出力される信号を示す図、 図 2 D は本発明の第 1の実施の形態における駆動リミッ夕から出力される信号 を示す図、 図 2 Eは本発明の第 1の実施の形態における光ディスクと集 光レンズとの位置関係を示す図、
図 3は本発明の第 2の実施の形態における光ディスク装置を示すプロ ック図、
図 4 Aは本発明の第 2の実施の形態における、 ゥォブルがない場合の 光ディスクの拡大図、 図 4 Bは本発明の第 2の実施の形態における、 ゥ ォブルがある場合の光ディスクの拡大図、 図 5 Aは本発明の第 2の実施の形態におけるゥォブル振幅検出器から 出力される信号を示す図、 図 5 Bは本発明の第 2の実施の形態における 記録動作指示器から出力される信号を示す図、 図 5 Cは本発明の第 2の 実施の形態における記録領域検出器から出力される信号を示す図、 図 5 Dは本発明の第 2の実施の形態における可変乗算器から出力される信号 を示す図、 図 5 Eは本発明の第 2の実施の形態における F c異常検出器 の内部ステータスを示す図、
図 6は本発明の第 3の実施の形態における光ディスク装置を示すプロ ック図、
図 7は本発明の第 3の実施の形態における光ビームの焦点が光ディス クの情報面をフォーカス方向に通過した場合の F E生成器の信号を示す 図、
図 8 Aは本発明の第 3の実施の形態における F E生成器から出力され る信号を示す図、 図 8 Bは本発明の第 3の実施の形態における記録動作 指示器から出力される信号を示す図、 図 8 Cは本発明の第 3の実施の形 態における記録領域検出器から出力される信号を示す図、 図 8 Dは本発 明の第 3の実施の形態における可変乗算器から出力される信号を示す図, 図 9 Aは本発明の第 3の実施の形態における可変乗算器から出力され る信号を示す図、 図 9 Bは本発明の第 3の実施の形態におけるレベル変 化検出器の基準レベルを示す図、 図 9 Cは本発明の第 3の実施の形態に おけるレベル変化検出器のカウン夕値を示す図、 図 9 Dは本発明の第 3 の実施の形態における乗算器から出力される信号を示す図、 図 9 Eは本 発明の第 3の実施の形態における F c異常検出器の内部ステータスを示 す図、
図 1 0は本発明の第 4の実施の形態における光ディスク装置を示すブ ロック図、 図 1 1は本発明の第 4の実施の形態におけるオフセット発生器の入出 力特性図、
図 1 2 Aは本発明の第 4の実施の形態における振動がない場合の加算 器から出力される信号を示す図、 図 1 2 Bは本発明の第 4の実施の形態 における振動が検出された場合で、 かつ、 バランス信号発生器から出力 がない場合の加算器から出力される信号を示す図、 図 1 2 Cは本発明の 第 4の実施の形態における振動が検出された場合で、 かつ、 バランス信 号発生器からの出力がある場合の加算器から出力される信号を示す図、 図 1 3は本発明の第 5の実施の形態における光ディスク装置を示すブ ロック図、
図 1 4は従来の光ディスク装置を示すブロック図である。 発明を実施するための最良の形態
以下、 実施の形態を用いて本発明をさらに具体的に説明する。
[第 1の実施の形態]
図 1は本発明の第 1の実施の形態における光ディスク装置を示すプロ ック図である。
図 1に示すように、 光へッド 1 0は、 光源としての半導体レーザ 1 1 と、 カップリングレンズ 1 2と、 偏光ビームスプリツ夕 1 3と、 1 4 波長板 1 4と、 光源からの光ビームを、 回転している情報担体としての 円盤状の光ディスク 1に向けて収束照射する収束手段としての集光レン ズ 1 5と、 集光レンズ 1 5を光ディスク 1の情報面の法線方向に移動さ せるフォーカス移動手段としてのフォーカスァクチユエ一夕 (以下 『F cァクチユエ一夕』 と呼ぶ) 1 6と、 集光レンズ 1 5を光ディスク 1の トラックを横切る方向に移動させるトラック移動手段としてのトラツキ ングァクチユエ一夕 (以下 『T kァクチユエ一夕』 と呼ぶ) 1 7と、 検 出レンズ 1 8と、 円筒レンズ 1 9と、 光検出器 2 0とにより構成されて いる。
半導体レーザ 1 1から出射された光ビームは、 カップリングレンズ 1 2によって平行光に変換される。 この平行光は、 偏光ビームスプリツ夕 1 3と 1 Z 4波長板 1 4を通過した後、 集光レンズ 1 5によって光ディ スク 1の情報面上に集光される。
光ディスク 1で反射された光ビームは、 集光レンズ 1 5と 1 Z 4波長 板 1 4を再び通過した後、 偏光ビームスプリツ夕 1 3で反射される。 そ して、 この反射光は、 検出レンズ 1 8と円筒レンズ 1 9を通過した後、 4つに分割された光検出器 2 0に照射される。 集光レンズ 1 5は、 弹性 体 (図示せず) によって支持されており、 F cァクチユエ一夕 1 6に電 流を流すことにより、 電磁気力によってフォーカス方向に移動する。 光検出器 2 0は、 検出された光量信号を、 光ディスク 1の情報面に対 する光ビームの焦点の位置ずれに応じた信号を発生させるフォーカスず れ信号検出手段としてのフォーカスエラー生成器 (以下 『F E生成器』 と呼ぶ) 3 0に送る。 F E生成器 3 0は、 光検出器 2 0からの光量信号 を用いて、 光ビームの光ディスク 1の情報面上における収束状態を示す エラー信号、 つまり、 光ディスク 1の情報面に対する光ビームの焦点の 位置ずれに応じたフォーカスエラ一信号 (以下 『F E信号』 と呼ぶ) を 演算する。 そして、 F E生成器 3 0は、 フォーカス制御の制御動作を安 定にするために、 この F E信号を、 位相補償を行うフォーカス制御用フ ィル夕 (以下 『F cフィル夕』 と呼ぶ) 3 1と駆動セレクタ 3 2とフォ 一カスドライバ (以下 『F c ドライバ』 と呼ぶ) 3 7を介して F cァク チユエ一夕 1 6に送る。 F cァクチユエ一夕 1 6は、 光ビームが光ディ スク 1の情報面上に所定の状態で収束するように、 集光レンズ 1 5をフ ォ一カス方向に駆動する。 反射光量検出器 6 1と情報面検出器 6 2とにより、 光ビームの焦点が 光ディスク 1の情報面近傍にあることを検出する情報面検出手段が構成 されており、光検出器 2 0の光量信号は反射光量検出器 6 1に送られる。 反射光量検出器 6 1は、 光検出器 2 0の光量信号に基づいて光ディスク 1の反射光量に応じた信号 (反射光量信号) を検出し、 それを情報面検 出器 6 2に送る。 情報面検出器 6 2は、 コンパレータ等によって構成す ることができる。 情報面検出器 6 2は、 反射光量検出器 6 1からの反射 光量信号が比較レベル Aよりも大きい場合にはハイレベルの信号を、 比 較レベル Aよりも小さい場合にはローレベルの信号を、 衝突回避手段で ある回避駆動信号生成器 6 3に送る。
駆動リミッタ 6 4は、 回避駆動信号生成器 6 3からの信号がゼロレべ ルょりも大きくならないように制限するための信号を回避駆動信号生成 器 6 3に送る。 駆動リミッタ 6 4からの信号がローレベルの場合、 回避 駆動信号生成器 6 3は、 情報面検出器 6 2からの信号が八ィレベルのと きは、 集光レンズ 1 5が光ディスク 1から離れる方向に所定の速度 (傾 き) で変位するような駆動信号を生成し、 情報面検出器 6 2からの信号 が口一レベルのときは、 集光レンズ 1 5が光ディスク 1に近づく方向に 所定の速度 (傾き) で変位するような駆動信号を生成する。 そして、 回 避駆動信号生成器 6 3は、 生成した駆動信号を駆動セレクタ 3 2と駆動 リミッタ 6 4に送る。
駆動リミッタ 6 4からの信号が八ィレベルの場合、 回避駆動信号生成 器 6 3は、 出力する駆動信号を 0にクリアして、 生成した駆動信号を駆 動セレクタ 3 2と駆動リミッタ 6 4に送る。 駆動リミッタ 6 4は、 回避 駆動信号生成器 6 3からの駆動信号が 0以上のときは、 ハイレベルの信 号を、回避駆動信号生成器 6 3からの駆動信号が 0よりも小さいときは、 ローレベルの信号を回避駆動信号生成器 6 3に送る。 駆動セレクタ 3 2 は、 フォーカス制御が動作状態にある場合には、 F cフィル夕 3 1から の信号を、 F c ドライバ 3 7を介して F cァクチユエ一夕 1 6に送り、 フォーカス制御が不動作状態にある場合には、 回避駆動信号生成器 6 3 からの信号を F c ドライバ 3 7を介して F cァクチユエ一夕 1 6に送る ような信号切替を行う。
以下、 フォーカス制御が不動作状態にある場合の、 集光レンズ 1 5と 光ディスク 1との衝突回避の動作について、 図 2を参照しながら説明す る。 図 2 Aは反射光量検出器 6 1から出力される反射光量信号を、 図 2 Bは情報面検出器 6 2から出力される信号を、 図 2 Cは回避駆動信号生 成器 6 3から出力される駆動信号を、 図 2 Dは駆動リミッタ 6 4から出 力される信号をそれぞれ示している。 また、 図 2 Eは光ディスク 1 (破 線で表示) と集光レンズ (実線で表示) との位置関係を示している。 フォーカス制御が不動作状態にある場合、駆動セレクタ 3 2は、常に、 回避駆動信号生成器 6 3からの信号を F cァクチユエ一夕 1 6に送る。 フォーカス制御が不動作状態にあるため、 集光レンズ 1 5と光ディスク 1との距離は、 光ディスク 1の面ぶれ等によって変化する。 集光レンズ 1 5と光ディスク 1とが近づき、 それに伴って光ビームの焦点が光ディ スク 1の情報面に近づくと、 図 2 Aに示すように、 反射光量検出器 6 1 から出力される反射光量信号が増加する。 光ビームの焦点が光ディスク 1の情報面にさらに近づき、 反射光量検出器 6 1から出力される反射光 量信号が比較レベル Aを超えると、 図 2 Bに示すように、 情報面検出器 6 2から出力される信号が八ィレベルとなる。
情報面検出器 6 2から出力される信号がハイレベルになると、 図 2 C に示すように、 回避駆動信号生成器 6 3は、 集光レンズ 1 5が光デイス ク 1から離れる方向に変位するような F cァクチユエ一夕 1 6への駆動 信号を発生させる。これにより、集光レンズ 1 5と光ディスク 1とが徐々 に離れていき、 反射光量検出器 6 1から出力される反射光量信号が図 2 Aに示すように減少していく。
集光レンズ 1 5と光ディスク 1とが所定距離以上離れ、 反射光量検出 器 6 1から出力される反射光量信号が比較レベル Aを下回ると、 図 2 B に示すように、 情報面検出器 6 2から出力される信号がローレベルとな る。 情報面検出器 6 2から出力される信号が口一レベルになると、 図 2 Cに示すように、 回避駆動信号生成器 6 3は、 集光レンズ 1 5が光ディ スク 1に近づく方向に変位するような F cァクチユエ一夕 1 6への駆動 信号を発生させる。
回避駆動信号生成器 6 3から出力される駆動信号 (図 2 C ) が 0にな ると、 図 2 Dに示すように、 駆動リミッタ 6 4から出力される信号が八 ィレベルとなる。 そして、 図 2 C、 図 2 Dに示すように、 駆動リミッタ 6 4から出力される信号がハイレベルの場合、 回避駆動信号生成器 6 3 から出力される駆動信号は、 0よりも大きくなることなく一定値となる。 以上のように、 集光レンズ 1 5と光ディスク 1とが接近しょうとする と、 集光レンズ 1 5は光ディスク 1から離れる方向に変位するように駆 動されるので、 集光レンズ 1 5と光ディスク 1との衝突を回避すること ができる。
尚、 本実施の形態においては、 集光レンズ 1 5と光ディスク 1との距 離が近づいた度合いを、 反射光量を用いて検出しているが、 本発明は必 ずしもこの構成に限定されるものではない。 例えば、 光ディスク 1の情 報面に記録されている信号の振幅、 フォーカス制御に用いられる誤差信 号である F E信号の振幅、 トラッキング制御に用いられる誤差信号であ るトラッキングエラー信号(以下『T E信号』と呼ぶ)の振幅を用いて、 集光レンズ 1 5と光ディスク 1との距離が近づいた度合いを検出するよ うにしてもよい。 また、 図 4 Bに示すように、 光ディスク 1の情報面がゥォブルを有す るトラックである場合には、 情報面検出器 6 2によってそのトラックの ゥォブル成分に相当する信号を検出し、 その信号の振幅を用いて集光レ ンズ 1 5と光ディスク 1との距離が近づいたことを検出するようにして もよい。 さらに、 光ヘッド 1 0に位置センサを取り付けて情報面検出器 6 2を構成し、光ディスク 1との距離を直接検出するようにしてもよい。 また、 装置全体の筐体に振動検出手段である加速度センサを取り付け て、 その検出した加速度信号、 すなわち、 外部振動に相当する信号を検 出し、 回避駆動信号生成器 6 3は、 振動によって集光レンズ 1 5と光デ イスク 1との距離が近くなることを予測してそれらの衝突を回避するよ うな駆動信号を生成するように構成してもよい。
また、 本実施の形態においては、 集光レンズ 1 5と光ディスク 1とが 近づき始めた場合には、 一定の傾きで減少し、 その後再び集光レンズ 1 5と光ディスク 1とが離れ始めた場合には、 一定の傾きで増加する三角 状の駆動信号が回避駆動信号生成器 6 3から出力されるように構成され ているが(図 2 C参照)、本発明は必ずしもこの構成に限定されるもので はない。 例えば、 集光レンズ 1 5が光ディスク 1から離れる方向に変位 するような所定の波高値を有するパルス信号が回避駆動信号生成器 6 3 から出力されるように構成しても、 同様の効果を得ることができる。 ま た、 一定の傾きを有するランプ信号が回避駆動信号生成器 6 3から出力 されるように構成しても、 同様の効果を得ることができる。
回避駆動信号生成器 6 3から出力される駆動信号は、 駆動リミッタ 6 4の作用により、 予め設定された所定値で飽和するように構成されてい る。 このため、 回避駆動信号生成器 6 3から出力される駆動信号によつ て必要以上の電流が F cァクチユエ一夕 1 6に流れることはない。 その 結果、 F cァクチユエ一夕 1 6に必要以上の熱が発生することはないの で、 光ヘッド 1 0の破損を防止することができる。
さらに、 集光レンズ 1 5と光ディスク 1とが離れている場合に対応す る基準レベルの信号と、 集光レンズ 1 5と光ディスク 1とが近づいたと きに集光レンズ 1 5が光ディスク 1と衝突することのない微少な一定レ ベルの信号との 2値信号を回避駆動信号生成器 6 3から出力するように 構成しても、 同様の効果を得ることができる。
また、本実施の形態においては、フォーカス制御が不動作状態にあり、 かつ、 集光レンズ 1 5が光ディスク 1に近づいたときに、 回避駆動信号 生成器 6 3から集光レンズ 1 5が光ディスク 1から離れる方向に所定速 度で変位するような駆動信号を発生させるように構成されているが、 必 ずしもこの構成に限定されるものではない。 例えば、 集光レンズ 1 5が 光ディスク 1に近づかなくても、フォーカス制御が不動作状態にあれば、 常に集光レンズ 1 5が光ディスク 1から離れる方向に変位するような微 少な一定値信号を回避駆動信号生成器 6 3から発生させるように構成す ることにより、 フォーカス制御が不動作状態にあるときに集光レンズ 1 5が光ディスク 1に衝突することを確実に防止することができる。
[第 2の実施の形態]
図 3は本発明の第 2の実施の形態における光ディスク装置を示すプロ ック図である。 尚、 上記第 1の実施の形態の図 1と同一の構成要素につ いては、 同一の符号を付してその詳細な説明は省略する。
図 3に示すように、 本実施の形態においては、 半導体レーザとして可 変パワーレーザ 2 1が用いられている。 また、 本実施の形態の光デイス ク装置において、 F E生成器 3 0は、 F E信号を、 F cフィルタ 3 1と F c ドライバ 3 7を介して じァクチユエ一夕 1 6に送る。 つまり、 F E生成器 3 0からの F E信号は、上記第 1の実施の形態の場合と異なり、 駆動セレクタ 3 2 (図 1参照) を介することなく、 F cフィルタ 3 1と F c ドライバ 3 7のみを経由して F cァクチユエ一夕 1 6に送られる。 光検出器 2 0は、 検出された光量信号を、 F E生成器 3 0と、 光ディ スク 1のトラックに対する光ビームの焦点の位置ずれに応じた信号を発 生させるトラックずれ信号検出手段としてのトラッキングエラ一生成器 (以下 『T E生成器』 と呼ぶ) 4 0と、 光ディスク 1上にある特定の周 期で微少な半径方向の揺らぎを持ったスパイラル状のトラックの揺らぎ の振幅を検出する揺らぎ振幅検出手段としてのゥォブル振幅検出器 6 5 と、 光ビームが照射している領域が記録済みであるか未記録状態である かを検出する記録済み領域検出手段としての記録領域検出器 7 0とに送 る。
T E生成器 4 0は、 光検出器 2 0からの光量信号を用いて、 光ビーム の焦点と光ディスク 1上のトラックとの位置ずれに応じたトラッキング エラー信号 (以下 『T E信号』 と呼ぶ) を演算する。 そして、 T E生成 器 4 0は、 この T E信号をトラッキング制御手段としてのトラッキング 制御用フィルタ 4 1 (以下 『T kフィル夕』 と呼ぶ) 4 1に送る。 T k フィルタ 4 1は、 T E生成器 4 0からの T E信号に基づいて、 光ビーム の焦点がトラック上を追従するような駆動信号を、 スィッチ 4 2とトラ ッキングドライバ (以下 『T kドライバ』 と呼ぶ) 4 4を介して T kァ クチユエ一夕 1 7に送る。
T kァクチユエ一夕 1 7は、 T kドライバ 4 4からの駆動信号にした がって、 集光レンズ 1 5を光ディスク 1の半径方向に移動させる。 トラ ッキング制御動作指示器(以下『T k制御動作指示器』と呼ぶ) 6 8は、 トラッキング制御を行なう場合にはハイレベルの信号を、 トラッキング 制御を行なわない場合には口一レベルの信号を、 異常検出手段としての フォーカス異常検出器 (以下 『F c異常検出器』 と呼ぶ) 6 7とスイツ チ 4 2とに送る。 スィッチ 4 2は、 T k制御動作指示器 6 8からの信号がハイレベルの 場合には T kフィルタ 4 1からの信号を T kァクチユエ一夕 1 7に送り, T k制御動作指示器 6 8からの信号がローレベルの場合には 0を T ア クチユエ一夕 1 7に送るように作動する。
以下、 トラックのゥォブルについて、 図 4を参照しながら説明する。 図 4 Aはゥォブルがない場合の光ディスク 1を示す拡大図であり、 図 4 Bはゥォブルがある場合の光ディスク 1を示す拡大図である。 図 4 Bに 示すトラックのゥォブルは、 トラッキング制御の帯域よりも高い周波数 を有するため、 光ビームの焦点はゥォブルの有無に関わらずトラックの 中心付近を走査する。 ゥォブル振幅検出器 6 5は、 図 4 Bに示す光ディ スク 1上のトラックの特定周波数のゥォブルの振幅を検出し、 それを可 変乗算器 6 6に送る。
記録済み領域検出手段としての記録領域検出器 7 0は、 光検出器 2 0 からの光量信号の振幅値を検出することにより、 光ビームが光ディスク 1の記録領域を照射している場合にはハイレベルの信号を可変乗算器 6 6に送り、 光ビームが光ディスク 1の未記録領域を照射している場合に は口一レベルの信号を可変乗算器 6 6に送る。
記録動作指示器 6 9は、 光ディスク 1に記録されている情報を再生す る場合にはローレベルの信号を可変乗算器 6 6と可変パワーレーザ 2 1 に送り、 光ディスク 1に情報を記録する場合にはハイレベルの信号を可 変乗算器 6 6と可変パワーレーザ 2 1に送る。可変パワーレーザ 2 1は、 記録動作指示器 6 9からの信号がローレベルの場合には再生パワーで発 光し、 記録動作指示器 6 9からの信号が八ィレベルの場合には記録パヮ 一でパルス発光する。
可変乗算器 6 6は、 記録動作指示器 6 9からの信号と記録領域検出器 7 0からの信号の論理状態に応じて、 ゥォブル振幅検出器 6 5からの信 号に乗算する乗数を切り替え、 このようにして得られた信号を F c異常 検出器 6 7に送る。 F c異常検出器 6 7は、 可変乗算器 6 6からの信号 が基準レベルに対し所定レベル以下となる時間が異常検出時間 T W以上 連続した場合に、 その内部ステータスをフォーカス制御が外れた状態に する。 F c異常検出器 6 7は、 T k制御動作指示器 6 8からの信号に基 づいて異常検出時間 T Wを切り替える。
以下、 トラッキング制御が不動作状態にある場合のフォーカス異常検 出の動作について、 図 5を参照しながら説明する。 図 5 Aはゥォブル振 幅検出器 6 5から出力される信号を、 図 5 Bは記録動作指示器 6 9から 出力される信号を、図 5 Cは記録領域検出器 7 0から出力される信号を、 図 5 Dは可変乗算器 6 6から出力される信号をそれぞれ示している。 ま た、 図 5 Eは F c異常検出器 6 7の内部ステータスを示している。
以下の説明では、 まず、 未記録領域において情報の記録を行い、 次い で、 未記録領域において情報の再生を行い、 次いで、 記録領域において 情報の再生を行い、 この記録領域における再生動作中にフォーカス制御 が外れる場合を想定する。
トラッキング制御を行なわない場合、 すなわち、 トラッキング制御が 不動作状態にある場合であるから、 T k制御動作指示器 6 8からの信号 は口一レベルであり、 T kァクチユエ一夕 1 7に送られる駆動信号は 0 である。 光ディスク 1のトラックの偏芯状態に応じて、 光ビームはトラ ックを横断する。 ゥォブル振幅検出器 6 5は、 オントラック状態の場合 にはゥォブルを検出するが、 オフトラック状態となるにしたがってゥォ ブルを検出しなくなる。 このため、 図 5 Aに示すように、 ゥォブル振幅 検出器 6 5から出力される信号は揺らいでしまう。
情報を記録する状態から情報を再生する状態に遷移すると、 図 5 Bに 示すように、 記録動作指示器 6 9から出力される信号が八ィレベルから ローレベルに変化する。
光ビームが照射する位置が光ディスク 1の未記録領域から記録領域へ 遷移すると、 図 5 Cに示すように、 記録領域検出器 7 0から出力される 信号がローレベルからハイレベルに変化する。 ゥォブル振幅検出器 6 5 は反射光からゥォブルの振幅を検出するため、 反射光量によって検出結 果が異なってくる。
すなわち、 図 5 Aに示すように、 同じ未記録領域 (図 5 Cの記録領域 検出器 7 0から出力される信号が口一レベルの場合) であっても、 情報 を再生する場合 (図 5 Bの記録動作指示器 6 9から出力される信号が口 一レベルの場合) よりも情報を記録する場合 (図 5 Bの記録動作指示器 6 9から出力される信号がハイレベルの場合) の方がゥォブル振幅検出 器 6 5によって検出されるゥォブルの振幅は大きい。 また、 同じ情報を 再生する状態 (図 5 Bの記録動作指示器 6 9から出力される信号がロー レベルの場合) であっても、 光ビームが記録領域を照射する場合 (図 5 Cの記録領域検出器 7 0から出力される信号がハイレベルの場合) より も未記録領域を照射する場合 (図 5 Cの記録領域検出器 7 0から出力さ れる信号がローレベルの場合) の方がゥォブル振幅検出器 6 5によって 検出されるゥォブルの振幅は大きい。
以上のようなゥォブル振幅検出器 6 5における検出感度の変化は一定 であるため、 情報を記録する場合と情報を再生する場合とで、 可変乗算 器 6 6の乗数を可変パワーレーザ 2 1の発光パワーと光ディスク 1の反 射率に対応させて切り替える信号を可変乗算器 6 6に送る揺らぎ検出感 度切替手段 (図示せず) を、 ゥォブル振幅検出器 6 5に設けることによ り、 ゥォブル振幅検出器 6 5における検出感度の変化を補正することが できる。 すなわち、 情報を記録する場合と情報を再生する場合とで、 光 ビームの出力が変化して光ディスク 1からの反射光量が変化しても、 情 報を記録する場合と情報を再生する場合とで、 ゥォブル振幅検出器 6 5 の検出感度を切り替えて反射光量の変化を打ち消すことができるので、 図 5 Dに示すように、 可変乗算器 6 6から出力される信号の振幅を一定 にすることができる。 その結果、 F c異常検出器 6 7の誤検出を防止す ることができる。 また、 光ビームが照射している領域が記録済みである か未記録状態であるかによって可変乗算器 6 6の乗数を切り替える信号 を可変乗算器 6 6に送る揺らぎ検出感度切替手段 (図示せず) を、 ゥォ ブル振幅検出器 6 5に設けることにより、 光ビームが記録領域を照射す る場合と未記録領域を照射する場合とで、 光ビームの出力が変化して光 ディスク 1からの反射光量が変化しても、 同様に、 ゥォブル振幅検出器 6 5の検出感度を切り替えて反射光量の変化を打ち消すことができるの で、 F c異常検出器 6 7の誤検出を防止することができる。
T k制御動作指示器 6 8からの信号がローレベルであるため、 F c異 常検出器 6 7は、 トラッキング制御が不動作状態にある場合の異常検出 時間 T Wを選択する。 そして、 F c異常検出器 6 7は、 可変乗算器 6 6 からの信号が異常検出レベル T Lを下回る状態が持続する時間を計測し, この時間が異常検出時間 T Wよりも長くなつた時点で、 F c異常検出器 6 7が、 その内部ステータスをフォーカス制御が外れた状態にする。 こ の場合、 異常検出時間 T Wを光ビームがトラックを横断する周期よりも 長くすることにより、 オフトラック状態における誤検出を防止すること ができる。 フォーカス制御が外れると、 ゥォブル振幅検出器 6 5から出 力される信号は 0になるので、 F c異常検出器 6 7は、 異常が発生した 後で、 かつ、 異常検出時間 T Wを経過した後に、 その内部ステータスを フォーカス制御が外れた状態にする。
反射光は、 光ビームの焦点が光ディスク 1の情報面に位置する状態か ら広い範囲にわたって検出されることから、 反射光量を用いたフォー力 ス異常検出の検出速度には一定の限界がある。 これに対して、 ゥォブル の振幅は、 反射光に比べて検出される範囲が狭いため、 ゥォブルの振幅 を用いたフォーカス異常検出では検出速度を速くすることができる。
トラッキング制御が動作状態にある場合には、 光ビームは常にトラッ クを追従しているため、 トラッキング制御が不動作状態にある場合のよ うなゥォブル振幅検出器 6 5から出力される信号の揺らぎはない。 この ため、 F c異常検出器 6 7の異常検出時間 T Wがゥォブル周期よりも長 ければ、 F c異常検出器 6 7の誤検出を防止することができるので、 ト ラッキング制御が不動作状態にある場合よりも異常検出時間 T Wを短く 設定することができる。 従って、 異常検出を迅速に行うことが可能とな る。
尚、 本実施の形態においては、 トラッキング制御が不動作状態にある 場合にも異常検出手段としての F c異常検出器 6 7を動作させている。 ところが、 トラッキング制御が不動作状態にある場合には、 光ビームの 焦点が光ディスク 1のトラックを横断し、 ゥォブル振幅検出は、 光ビ一 ムがトラックを照射する場合とトラック間を照射する場合とで、 検出感 度が異なる (光ビームがトラック間を照射する場合には、 検出感度が下 がる)。 そのため、 正確なゥォブル振幅を得ることができず、 F c異常検 出器 6 7の誤検出が生じてしまう。 従って、 トラッキング制御が動作状 態にある場合にのみ F c異常検出器 6 7を動作させるようにすれば、 F c異常検出器 6 7が偏芯によるトラック横断の影響を受けなくなり、 ゥ ォブルの信号成分が強調されるので、 F c異常検出器 6 7の検出精度を 上げることが可能となる。
また、 本実施の形態においては、 光ビームが光ディスク 1の記録領域 を照射している場合と未記録領域を照射している場合とで、 ゥォブル振 幅検出器 6 5からの信号に異なる値を乗算することにより、 F c異常検 出器 6 7の誤検出を防止するようにしているが、 光ビームが光ディスク 1の記録領域を照射している場合と未記録領域を照射している場合とで, F c異常検出器 6 7においてフォーカス制御が外れたと判断する信号レ ベルを変化させるように構成しても、 同等の効果を得ることができる。 または、 光ビームが光ディスク 1の記録領域を照射している場合と未記 録領域を照射している場合とで、 記録領域検出器 7 0によって検出され た結果に応じて、 フォーカス制御が外れたと判断する、 すなわち、 異常 であると判断するゥォブル振幅検出器 6 5の信号変化レベルを切り替え る異常レベル切替手段 (図示せず) を、 F c異常検出器 6 7に設ける構 成としてもよい。
また、 本実施の形態においては、 情報を記録する場合と情報を再生す る場合とで、 可変乗算器 6 6においてゥォブル振幅検出器 6 5からの信 号に乗算する値を切り替えることにより、 F c異常検出器 6 7の誤検出 を防止する場合を例に挙げて説明したが、 情報を記録する場合と情報を 再生する場合とで、 F c異常検出器 6 7においてフォーカス制御が外れ たと判断する信号レベルを変化させるように構成してもよい。 または、 情報を記録する場合と情報を再生する場合とで、 記録領域検出器 7 0に よって検出された結果に応じて、 フォーカス制御が外れたと判断する、 すなわち、 異常であると判断するゥォブル振幅検出器 6 5の信号変化レ ベルを切り替える異常レベル切替手段 (図示せず) を、 F c異常検出器 6 7に設ける構成としてもよい。
[第 3の実施の形態]
図 6は本発明の第 3の実施の形態における光ディスク装置を示すプロ ック図である。 尚、 上記第 1の実施の形態の図 1と同一の構成要素につ いては、 同一の符号を付してその詳細な説明は省略する。
図 6に示すように、 本実施の形態においても、 上記第 2の実施の形態 と同様に、半導体レーザとして可変パワーレーザ 2 1が用いられている。 また、 本実施の形態の光ディスク装置においても、 上記第 2の実施の形 態と同様に、 F E生成器 3 0は、 F E信号を、 F cフィル夕 3 1と F c ドライバ 3 7を介して F cァクチユエ一夕 1 6に送る。 つまり、 F E生 成器 3 0からの F E信号は、 上記第 1の実施の形態の場合と異なり、 駆 動セレクタ 3 2 (図 1参照) を介することなく、 じフィル夕 3 1と c ドライバ 3 7のみを経由して F cァクチユエ一夕 1 6に送られる。 ま た、 F E生成器 3 0の F E信号は、 乗算手段及びゲイン切替え手段であ る可変乗算器 6 6にも送られる。
光検出器 2 0は、 検出された光量信号を、 F E生成器 3 0と、 記録領 域検出器 7 0とに送る。
記録領域検出器 7 0は、 光検出器 2 0からの光量信号の振幅値を検出 することにより、 光ビームが光ディスク 1の記録領域を照射している場 合にはハイレベルの信号を、 光ビームが光ディスク 1の未記録領域を照 射している場合にはローレベルの信号をそれぞれ可変乗算器 6 6に送る < 記録動作指示器 6 9は、 光ディスク 1に記録されている情報を再生す る場合には口一レベルの信号を、 光ディスク 1に情報を記録する場合に はハイレベルの信号をそれぞれ可変乗算器 6 6と可変パワーレーザ 2 1 に送る。 可変パワーレーザ 2 1は、 記録動作指示器 6 9からの信号が口 —レベルの場合には再生パワーで発光し、 記録動作指示器 6 9からの信 号がハイレベルの場合には記録パワーでパルス発光する。
可変乗算器 6 6は、 記録動作指示器 6 9からの信号と記録領域検出器 7 0からの信号の論理状態に応じて、 F E生成器 3 0からの信号に乗算 する乗数を切り替えると共に、 この乗数と F E生成器 3 0からの信号と を乗算し、 これによつて得られた信号をレベル変化検出器 7 1に送る。 レベル変化検出器 7 1は、 可変乗算器 6 6からの信号が基準レベルに 対し所定レベル範囲 w以内に入る場合に、 カウン夕値を上昇させること により、 フォーカスずれ信号の積分を行う。
また、 レベル変化検出器 7 1は、 可変乗算器 6 6からの信号が基準レ ベルに対し所定レベル範囲 W以内に入らない (つまり、 所定レベル範囲 Wを超えている) 場合に、 レベル変化検出器 7 1に設けられたクリア手 段 (図示せず) により、 カウンタ値を 0にクリアし、 可変乗算器 6 6の 信号レベルを基準レベルにする。 さらに、 レベル変化検出器 7 1は、 レ ベル変化検出器 7 1に設けられたカウン夕によるカウンタ値と基準レべ ルを乗算器 7 2に送る。 乗算器 7 2は、 カウン夕と乗算器 7 2とにより 構成されるフォーカス積分手段において、 可変乗算器 6 6のカウン夕値 と基準レベルの絶対値を乗算することにより、 フォーカスずれ信号を積 分したものに対応する値を算出し、 その乗算結果を、 異常検出手段とし ての F c異常検出器 7 3に送る。
F c異常検出器 7 3は、 乗算器 7 2からの信号が異常検出レベル以下 である場合に、その内部ステータスをフォーカス制御が正常な状態にし、 乗算器 7 2からの信号が異常検出レベルよりも大きい場合に、 その内部 ステータスをフォーカス制御が外れた状態にする。 ' 以下、 本実施の形態におけるフォーカス異常検出の動作について、 図 7〜図 9を参照しながら説明する。
図 7に、 光ビームの焦点が光ディスク 1の情報面をフォーカス方向に 通過した場合の F E生成器 3 0の信号を示す。 図 7に示すように、 光ビ ームの焦点が光ディスク 1の情報面近傍にある場合には、 フォーカス方 向の誤差信号が現れ、 光ビームの焦点が光ディスク 1の情報面からある 程度離れると、 F E生成器 3 0の信号は一定値となる。
図 8に、 検出信号生成の様子を示す。 図 8 Aは F E生成器 3 0から出 力される信号を、 図 8 Bは記録動作指示器 6 9から出力される信号を、 図 8 Cは記録領域検出器 7 0から出力される信号を、 図 8 Dは可変乗算 器 6 6から出力される信号をそれぞれ示している。
以下では、 動作を分かり易くするために、 まず、 未記録領域において 情報の記録を行ない、 未記録領域から記録領域にかけて情報の再生を行 なう場合について説明する。 フォーカス制御が動作状態にある場合にお いても、 完全に誤差がなくなるのではなく、 図 8 Aに示すように、 面振 れゃディスクの傷や表面荒さに応じた残差が残る。
情報を記録する状態から情報を再生する状態に遷移すると、 図 8 Bに 示すように、 記録動作指示器 6 9から出力される信号がハイレベルから 口一レベルに変化する。
光ビームが照射する位置が光ディスク 1の未記録領域から記録領域に 遷移すると、 図 8 Cに示すように、 記録領域検出器 7 0から出力される 信号が口一レベルからハイレベルに変化する。
F E生成器 3 0は反射光から F E信号を検出するため、 反射光量によ つて検出結果が異なってくる。 すなわち、 図 8 Aに示すように、 同じ未 記録領域 (図 8 Cの記録領域検出器 7 0から出力される信号がローレべ ルの場合) であっても、 情報を再生する場合 (図 8 Bの記録動作指示器 6 9から出力される信号がローレベルの場合) よりも情報を記録する場 合 (図 8 Bの記録動作指示器 6 9から出力される信号がハイレベルの場 合)の方が F E生成器 3 0によって生成される F E信号の振幅は大きい。 また、 同じ情報を再生する状態 (図 8 Bの記録動作指示器 6 9から出力 される信号がローレベルの場合) であっても、 光ビームが記録領域を照 射する場合 (図 8 Cの記録領域検出器 7 0から出力される信号が八ィレ ベルの場合) よりも未記録領域を照射する場合 (図 8 Cの記録領域検出 器 7 0から出力される信号が口一レベルの場合) の方が F E生成器 3 0 によって生成される F E信号の振幅は大きい。 以上のような F E生成器 3 0における検出感度の変化は一定であるた め、 情報を記録する場合と情報を再生する場合とで、 可変乗算器 6 6の 乗数を可変パワーレーザ 2 1の発光パワーと光ディスク 1の反射率に対 応させて切り替えるゲイン切替手段 (図示せず) を、 可変乗算器 6 6に 設けることにより、 情報を記録する場合と情報を再生する場合とで、 光 ビームの出力が変化して光ディスク 1からの反射光量が変化しても、 情 報を記録する場合と情報を再生する場合とで、 可変乗算器 6 &の乗数を 切り替えて反射光量の変化を打ち消すことができるので、 図 8 Dに示す ように、 可変乗算器 6 6から出力される信号の振幅を一定にすることが できる。 その結果、 F c異常検出器 7 3の誤検出を防止することができ る。
また、 光ビームが記録領域を照射する場合と未記録領域を照射する場 合とで、可変乗算器 6 6の菜教を切り替えるゲイン切替手段(図示せず) を、 可変乗算器 6 6に設けることにより、 光ビームが記録領域を照射す る場合と未記録領域を照射する場合とで、 光ビームの出力が変化して光 ディスク 1からの反射光量が変化しても、 同様に、 可変乗算器 6 6の乗 数を切り替えて反射光量の変化を打ち消すことができるので、 F c異常 検出器 7 3の誤検出を防止することができる。
図 9に、 フォーカス制御が動作状態にある場合に、 フォーカス制御が 正常な状態から外れる様子を示す。 図 9 Aは可変乗算器 6 6から出力さ れる信号を、 図 9 Bはレベル変化検出器 7 1の基準レベルを、 図 9 Cは レベル変化検出器 7 1のカウンタ値を、 図 9 Dは乗算器 7 2から出力さ れる信号をそれぞれ示している。 また、 図 9 Eは F c異常検出器 7 3の 内部ステータスを示している。
図 9 Aに示すように、 レベル変化検出器 7 1の基準レベルを変更する 条件である、 比較するレベル範囲 Wを、 フォーカス制御の残差量よりも 小さくすることにより、 フォーカス制御が正常な状態にある場合には、 図 9 Bに示すように、 レベル変化検出器 7 1の基準レベルがフォーカス 制御の残差によって頻繁に書き換わるため、 図 9 Cに示すように、 レべ ル変化検出器 7 1のカウン夕値は大きくならない。
フォーカス制御が正常な状態から外れると、 図 9 Aに示すように、 可 変乗算器 6 6から出力される信号が一定値となるので、 図 9 Cに示すよ うに、レベル変化検出器 7 1のカウンタ値がカウントアップし、同時に、 図 9 Dに示すように、 乗算器 7 2から出力される信号も大きくなつてい く。 この乗算器 7 2から出力される信号が異常検出レベルに達したとこ ろで、 図 9 Eに示すように、 F c異常検出器 7 3は、 その内部ステ一夕 スをフォーカス制御が外れた状態にする。
ここで、 光ディスク 1からの反射光量は、 光ビームの焦点が光デイス ク 1のトラック上に位置する場合とトラック間に位置する場合とで異な る。 このため、 トラッキング制御が不動作状態にある場合に反射光量に よるフォーカス異常検出の検出速度を速くすると、 F c異常検出器 7 3 が誤検出することがある。
本実施の形態に示すフォーカス異常検出によれば、 トラッキング制御 が動作状態にあるか不動作状態にあるかに関わらず、 検出速度を速くす ることが可能となる。
尚、 本実施の形態においては、 レベル変化検出器 7 1の基準レベルと カウンタ値との乗算結果を F c異常検出器 7 3に送るようにしているが, 必ずしもこの構成に限定されるものではない。 例えば、 カウンタ値のみ を F c異常検出器 7 3に送り、 カウンタ値と異常検出レベルとを比較し て、 カウン夕値が異常検出レベル以上である場合に、 F c異常検出器 7 3が、 その内部ステータスをフォーカス制御が外れた状態とするように してもよい。 また、 本実施の形態においては、 光ビームが記録領域を照射する場合 と未記録領域を照射する場合とで、 あるいは情報を記録する場合と情報 を再生する場合とで、 それぞれ可変乗算器 6 6の乗数を切り替え、 この 乗数と F E生成器 3 0からの信号とを乗算することにより、 F c異常検 出器 7 3の誤検出を防止するようにしているが、 必ずしもこの構成に限 定されるものではない。 例えば、 レベル変化検出器 7 1の基準レベルを 変更する条件である、 比較するレベル範囲 Wを、 情報を記録する場合と 情報を再生する場合とで変化させることにより、 異常であると判断する F c生成器 3 0の信号レベルを切り替える判断レベル切替え手段 (図示 せず) を設けるような構成にしても、 可変乗算器 6 6を設けることなく 同等の効果を得ることができる。 または、 比較するレベル範囲 Wを、 光 ビームが記録領域を照射する場合と未記録領域を照射する場合とで変化 させることにより、 異常であると判断する F c生成器 3 0の信号レベル を切り替える判断レベル切替え手段 (図示せず) を設けるような構成に してもよい。
[第 4の実施の形態]
図 1 0は本発明の第 4の実施の形態における光ディスク装置を示すブ ロック図である。 尚、 上記第 1の実施の形態の図 1と同一の構成要素に ついては、 同一の符号を付してその詳細な説明は省略する。
図 1 0に示すように、 本実施の形態においては、 バランス演算器 3 3 と差動増幅器 3 4と加算器 3 5とにより、 図 1の F E生成器 3 0に相当 するフォーカスずれ信号検出手段が構成されている。 また、 光検出器と しては、 図 1の光検出器 2 0と異なる光検出器 2 2が用いられている。 図 1の光検出器 2 0は、 検出器内の複数の受光部からそれぞれ受光量に 応じた信号を出力するのに対し、 本実施の形態の光検出器 2 2は、 さら にフォーカスずれ信号を生成するための差動信号を演算してから出力す る。
光検出器 2 2は、 検出された光量信号からフォーカスエラーを検出す るための 2つの差動入力信号を生成し、 それらをバランス演算器 3 3に 送る。
バランス演算器 3 3は、 バランス信号発生器 7 6からのバランス信号 が 0 (基準レベル) よりも大きい場合には、 光検出器 2 2から出力され た 2つの差動入力信号の一方を大きく増幅し、 他方を小さく増幅するバ ランス演算を行なう。 すなわち、 例えば、 "差動入力信号の一方" X ( 1 +バランス信号)、 "差動入力信号の他方" X ( 1—バランス信号) のよ うなバランス演算が行われる。 そして、 バランス演算器 3 3は、 両方の 信号を差動増幅器 3 4に送る。 差動増幅器 3 4は、 バランス演算器 3 3 からの 2つの信号の差動出力を生成し、 それを加算器 3 5に送る。
加算器 3 5は、 差動増幅器 3 4からの信号とオフセッ ト発生器 7 5か らの信号を加算し、 これによつて得られた信号を F cフィル夕 3 1に送 る。
振動検出手段としての圧電素子等のデバイスからなる加速度センサ 7 4は、 光ディスク装置に加わる振動を電荷量として検出し、 これを電圧 に変換することにより、 光ディスク装置の振動を検出する。 この加速度 センサ 7 4によって検出された振動量に応じた加速度信号は、 オフセッ ト発生器 7 5を介してリミッタ 7 7に送られる。
図 1 1に、 オフセッ ト発生器 7 5の入出力特性の一例を示す。 図 1 1 に示すように、 オフセッ ト発生器 7 5は、 加速度センサ 7 4からの加速 度信号が大きいほど、 その出力が大きくなるように設計されている。
リミッタ 7 7は、 オフセット発生器 7 5からの信号を、 所定レベル以 下となるように制限し、 その信号を加算器 3 5とバランス信号発生器 7 6に送る。 バランス信号発生器 7 6は、 オフセッ ト発生器 7 5からの信 号に応じて、 加算器 3 5の動作点が変化しないようにバランス演算器 3 3の各ゲインを切り替えるためのバランス信号を生成し、 それをバラン ス演算器 3 3に送る。 加算器 3 5の動作点が変化しないようにすること により、 F cフィルタ 3 1の動作点は変化しなくなる。
以下、 本実施の形態における衝突回避の動作について、 図 1 2を参照 しながら説明する。 図 1 2 Aは振動がない場合の加算器 3 5から出力さ れる信号を、 図 1 2 Bは振動が検出された場合で、 かつ、 バランス信号 発生器 7 6から出力がない場合の加算器 3 5から出力される信号を、 図 1 2 Cは振動が検出された場合で、 かつ、 バランス信号発生器 7 6から の出力がある場合の加算器 3 5から出力される信号を示している。 図 1 2はすべて、 フォーカス制御が不動作状態で、 かつ、 光ビームの焦点が 光ディスク 1の情報面を通過する際の信号である。
振動がない場合には、 加算器 3 5から出力される信号が図 1 2 Aに示 すような状態となり、 フォーカス制御によって光ビームの焦点が光ディ スク 1の情報面に制御される。
振動が発生すると、 その量に応じたオフセット信号がオフセット発生 器 7 5で発生し、 もし、 振動が発生し、 オフセット発生器 7 5からのォ フセット信号が変化する前と後において、 バランス信号が変化しなけれ ば、加算器 3 5から出力される信号が図 1 2 Bに示すような状態となる。 すなわち、 フォーカスエラ一 (F E ) 検出範囲外において加算器 3 5か ら出力される信号がより小さくなる。 F cフィルタ 3 1は、 加算器 3 5 から出力される信号が小さくなるほど(装置に加わる振動が大きいほど). 集光レンズ 1 5が光ディスク 1から遠ざかる方向に大きく変位するよう な F cァクチユエ一夕 1 6への駆動信号を発生させることができる。
このように、 振動や衝撃によってフォーカス制御が外れ、 光ビームの 焦点が F E検出範囲外に出たとしても、 光ディスク装置に加わる振動量 に応じて、 集光レンズ 1 5が光ディスク 1から遠ざかる方向に大きく変 位するような駆動信号が F cァクチユエ一夕 1 6に印加されるので、 集 光レンズ 1 5と光ディスク 1との衝突を防止することができる。
図 1 2 Bに示すように、 フォーカス制御が正常な状態の場合に振動が 発生すると、 光ビームの焦点は光ディスク 1の情報面に制御されなくな る。 この場合には、 バランス信号発生器 7 6がオフセット発生器 7 5の オフセット値に応じたバランス信号をバランス演算器 3 3に送り、 バラ ンス演算器 3 3でバランス演算が行なわれることにより、 図 1 2 Cに示 すように、 光ビームの焦点が光ディスク 1の情報面に制御される。
また、 オフセット発生器 7 5が過度に大きなオフセット量を発生させ ると、 フォーカス制御が外れた場合に F cァクチユエ一夕 1 6への大き な駆動信号が発生し、 F cァクチユエ一夕 1 6が発生する熱によって光 ヘッド 1 0が破損する可能性がある。 これを防止するために、 オフセッ ト発生器 7 5が発生させるオフセット信号はリミッタ 7 7によって所定 のレベルで飽和するように構成されている。
以上説明したように、 本実施の形態によれば、 フォーカス制御が正常 な状態の場合にのみ光ビームの焦点が光ディスク 1の情報面に制御され る状態を維持しつつ、 フォーカス制御が外れた場合に、 集光レンズ 1 5 を光ディスク 1から遠ざける方向に駆動する力を、 光ディスク装置に加 わる振動に応じて増やすことができるので、 集光レンズ 1 5と光デイス ク 1との衝突を防止することができる。
[第 5の実施の形態]
図 1 3は本発明の第 5の実施の形態における光ディスク装置を示すブ ロック図である。 尚、 上記第 1の実施の形態の図 1と同一の構成要素に ついては、 同一の符号を付してその詳細な説明は省略する。
図 1 3に示すように、 F cフィルタ 3 1からの信号は、 スィッチ 4 2 と F c ドライバ 3 7を介して F cァクチユエ一夕 1 6に送られる。 光ビ ームが光ディスク 1内の所望のトラックを照射するように集光レンズ 1 5を移動させる検索手段としての検索動作指示器 7 8から指令される移 動距離に関する信号は、 検索駆動信号発生器 7 9、 フォーカス制御動作 指示器 (以下 『F c制御動作指示器』 と呼ぶ) 8 0に送られる。
また、 検索駆動信号発生器 7 9からの駆動信号は、 移送モータ 4 3と F c制御動作指示器 8 0に送られる。
移送モータ 4 3は、 検索駆動信号発生器 7 9からの駆動信号にしたが つて、 光へッド 1 0を光ディスク 1の半径方向へ移送する。 ここで、 光 ディスク 1は、 その外周で面ぶれ量が増えるため、 フォーカス制御が不 動作状態にある場合に、 光ディスク 1の外周で集光レンズ 1 5と光ディ スク 1とが衝突する可能性が極めて高い。
また、 長距離の検索を行なうと、 その振動等により光へッド 1 0の筐 体を通じて集光レンズ 1 5が振られ、 フォーカス制御が外れる危険性が ある。
そこで、 光ビームの焦点がトラックを横切って移動する方向が光ディ スク 1の外周方向で、 かつ、 フォーカス制御が外れる危険性がある検索 距離を危険距離 Kと定義し、 検索動作指示器 7 8から指令される移動距 離が危険距離 K以上である場合に、 F c制御動作指示器 8 0からスィッ チ 4 2に次のような信号を出力させるようにした。 すなわち、 F c制御 動作指示器 8 0は、 検索駆動信号発生器 7 9で駆動信号が発生している 場合にはローレベルの信号を、 検索駆動信号発生器 7 9で駆動信号が発 生していない場合にはハイレベルの信号をスィツチ 4 2に送る。
F c制御動作指示器 8 0は、 検索動作指示器 7 8から指令される移動 距離が危険距離 Kよりも小さければ、 常に、 ハイレベルの信号をスイツ チ 4 2に送る。 そして、 スィッチ 4 2は、 F c制御動作指示器 8 0から の信号がハイレベルの場合には F cフィル夕 3 1からの信号を F cァク チユエ一夕 1 6に送り、 F c制御動作指示器 8 0からの信号がローレべ ルの場合には 0を F cァクチユエ一夕 1 6に送る。
次に、 検索動作指示器 7 8から指令される移動距離 (検索距離) が危 険距離 Kよりも長い場合の動作について説明する。 検索動作を行なって いる間、 検索駆動信号発生器 7 9から駆動信号が発生し、 F c制御動作 指示器 8 0からスィッチ 4 2に口一レベルの信号が送られる。 その間、 スィッチ 4 2は、 0を F cァクチユエ一夕 1 6に送るため、 フォーカス 制御は不動作状態となり、 集光レンズ 1 5は光ディスク 1と衝突しない 位置に離間する。
検索動作が終わって、 検索駆動信号発生器 7 9から駆動信号が発生し なくなると、 スィッチ 4 2にハイレベルの信号が送られるため、 フォー 力ス制御は再び動作状態となる。
以上説明したように、 本実施の形態によれば、 例えば、 光ディスク 1 の外周方向で 1 Z 3ストローク以上の長い距離を検索する場合に、 フォ 一カス制御を不動作状態にし、 さらに集光レンズ 1 5と光ディスク 1と の距離を大きく離間することにより、 集光レンズ 1 5と光ディスク 1と の衝突を防止することができるので、 その実用的効果は極めて大きい。 また、 光ビームの焦点が横切って移動するべき目的トラックが光ディ スク 1の最外周から所定距離の範囲内にある場合に、 検索動作指示器 7 8がフォーカス制御を不動作状態にするように構成してもよい。
また、 光ビームの焦点が横切って移動する距離を、 これに対応するト ラックの本数に換算し、 換算したトラックの本数が所定本数 (例えば、 危険距離 Kに対応するトラックの本数) 以上である場合に、 検索動作指 示器 7 8がフォーカス制御を不動作状態にするように構成してもよい。 産業上の利用可能性
以上のように、 本発明によれば、 フォーカス制御が動作状態にあるか 不動作状態にあるかに関わらず、 集光レンズと光ディスクとの衝突を回 避することができるので、 集光レンズと光ディスクとの衝突の可能性の 高い、高密度の光ディスクを搭載した光ディスク装置に利用可能である。

Claims

請 求 の 範 囲
1 . 光源からの光ビームを、 回転している情報担体に向けて収束照 射する収束手段と、
前記情報担体の情報面に対する前記光ビームの焦点の位置ずれに応じ た信号を発生させるフォーカスずれ信号検出手段と、
前記収束手段を前記情報担体の情報面の法線方向に移動させるフォー カス移動手段と、
前記フォーカスずれ信号検出手段からの信号に応じて前記フォーカス 移動手段を駆動し、 前記光ビームの焦点が前記情報担体の情報面を追従 するように制御するフォーカス制御手段と、
前記フォーカス制御手段が不動作状態にある場合に、 前記光ビームの 焦点が前記情報担体の情報面近傍にあることを検出する情報面検出手段 と、
前記情報面検出手段から信号が発生した場合に、 前記収束手段が前記 情報担体から離れる方向に変位するような前記フォーカス移動手段への 駆動信号を発生させる衝突回避手段とを備えたことを特徴とする光ディ スク装置。
2 . 光源からの光ビームを、 回転している情報担体に向けて収束照 射する収束手段と、
前記情報担体の情報面に対する前記光ビームの焦点の位置ずれに応じ た信号を発生させるフォーカスずれ信号検出手段と、
前記収束手段を前記情報担体の情報面の法線方向に移動させるフォー カス移動手段と、
前記フォーカスずれ信号検出手段からの信号に応じて前記フォーカス 移動手段を駆動し、 前記光ビームの焦点が前記情報担体の情報面を追従 するように制御するフォーカス制御手段と、
装置の振動を検出する振動検出手段と、
前記振動検出手段から所定値以上の信号が発生した場合に、 前記収束 手段が前記情報担体から離れる方向に変位するような前記フォーカス移 動手段への駆動信号を発生させる衝突回避手段とを備えたことを特徴と する光ディスク装置。
3 . 前記衝突回避手段が発生させる駆動信号が、 基準レベルの信号 と、 前記収束手段が前記情報担体から離れる方向に変位するような一定 レベルの信号との 2値信号である請求項 1又は 2に記載の光ディスク装 置。
4 . 前記衝突回避手段が発生させる駆動信号が、 前記収束手段が前 記情報担体から離れる方向に変位するような所定の波高値を有するパル ス信号である請求項 1又は 2に記載の光ディスク装置。
5 . 前記衝突回避手段が発生させる駆動信号が、 予め設定された所 定値で出力が飽和するように構成されている請求項 4に記載の光ディス ク装置。
6 . 前記衝突回避手段が発生させる駆動信号が、 一定の傾きを有す るランプ信号である請求項 1又は 2に記載の光ディスク装置。
7 . 前記衝突回避手段が発生させる駆動信号が、 予め設定された所 定値で出力が飽和するように構成されている請求項 6に記載の光ディス ク装置。
8 . 前記情報面検出手段又は前記振動検出手段から信号が発生して いない場合に前記衝突回避手段が発生させる駆動信号は、 前記収束手段 が前記情報担体に近づく方向に所定の傾きで変位するような信号である 請求項 1又は 2に記載の光ディスク装置。
9 . 前記衝突回避手段が発生させる駆動信号が、 予め設定された所 定値で出力が飽和するように構成されている請求項 6に記載の光ディス ク装置。
1 0 . 光源からの光ビームを、 回転している情報担体に向けて収束 照射する収束手段と、
前記情報担体の情報面に対する前記光ビームの焦点の位置ずれに応じ た信号を発生させるフォーカスずれ信号検出手段と、
前記収束手段を前記情報担体の情報面の法線方向に移動させるフォー カス移動手段と、
前記フォーカスずれ信号検出手段からの信号に応じて前記フォーカス 移動手段を駆動し、 前記光ビームの焦点が前記情報担体の情報面を追従 するように制御するフォーカス制御手段と、
前記フォーカス制御手段が不動作状態にある場合に、 前記収束手段が 前記情報担体から離れる方向に変位するような前記フォーカス移動手段 への駆動信号を常時発生させる衝突回避手段とを備えたことを特徴とす る光ディスク装置。
1 1 . 光源からの光ビームを、 特定の周期で微少な半径方向の揺ら ぎを持ったスパイラル状のトラックを有する情報担体に向けて収束照射 する収束手段と、
前記情報担体の情報面に対する前記光ビームの焦点の位置ずれに応じ た信号を発生させるフォーカスずれ信号検出手段と、
前記収束手段を前記情報担体の情報面の法線方向に移動させるフォー カス移動手段と、
前記フォーカスずれ信号検出手段からの信号に応じて前記フォーカス 移動手段を駆動し、 前記光ビームの焦点が前記情報担体の情報面を追従 するように制御するフォーカス制御手段と、
前記トラックの揺らぎの振幅を検出する揺らぎ振幅検出手段と、 所定時間の前記揺らぎ振幅検出手段からの信号の振幅変化によって前 記フォーカス制御手段の動作が異常であると判断し、 前記収束手段が前 記情報担体から離れる方向に変位するような前記フォーカス移動手段へ の駆動信号を発生させる異常検出手段とを備えたことを特徴とする光デ イスク装置。
1 2 . 前記揺らぎ振幅検出手段が、 情報を記録する場合と情報を再 生する場合とで、 前記トラックの揺らぎの振幅を検出する検出感度を切 り替える揺らぎ検出感度切替手段を備えた請求項 1 1に記載の光ディス ク装置。
1 3 . 前記異常検出手段が、 情報を記録する場合と情報を再生する 場合とで、 異常であると判断する前記揺らぎ振幅検出手段の信号変化レ ベルを切り替える異常レベル切替手段を備えた請求項 1 1に記載の光デ イスク装置。
1 4 . 前記光ビームが照射している領域が記録済みであるか未記録 状態であるかを検出する記録済み領域検出手段と、 前記記録済み領域検 出手段の検出結果に応じて、 前記揺らぎ振幅検出手段の検出感度を切り 替える揺らぎ検出感度切替手段とをさらに備えた請求項 1 1に記載の光 ディスク装置。
1 5 . 前記光ビームが照射している領域が記録済みであるか未記録 状態であるかを検出する記録済み領域検出手段と、 前記記録済み領域検 出手段の検出結果に応じて、 異常であると判断する前記揺らぎ振幅検出 手段の信号変化レベルを切り替える異常レベル切替手段とをさらに備え た請求項 1 1に記載の光ディスク装置。
1 6 . 前記情報担体の前記トラックに対する前記光ビームの焦点の 位置ずれに応じた信号を発生させるトラックずれ信号検出手段と、 前記 収束手段を前記情報担体の前記トラックを横切る方向に移動させるトラ ック移動手段と、 前記トラックずれ信号検出手段からの信号に応じて前 記トラック移動手段を駆動し、 前記光ビームの焦点が前記情報担体の前 記トラックを追従するように制御するトラツキング制御手段とをさらに 備え、 前記トラッキング制御手段が動作状態にある場合にのみ前記異常 検出手段が動作する請求項 1 1に記載の光ディスク装置。
1 7 . 前記情報担体の前記トラックに対する前記光ビームの焦点の 位置ずれに応じた信号を発生させるトラックずれ信号検出手段と、 前記 収束手段を前記情報担体の前記トラックを横切る方向に移動させるトラ ック移動手段と、 前記トラックずれ信号検出手段からの信号に応じて前 記トラック移動手段を駆動し、 前記光ビームの焦点が前記情報担体の前 記トラックを追従するように制御するトラツキング制御手段とをさらに 備え、 前記トラッキング制御手段が動作状態にある場合と不動作状態に ある場合とで、 前記異常検出手段が、 前記フォーカス制御手段の動作が 異常であると判断する前記揺らぎ振幅検出手段の信号振幅変化の検出時 間又は振幅変化レベルを切り替える請求項 1 1に記載の光ディスク装置 <
1 8 . 光源からの光ビームを、 回転している情報担体に向けて収束 照射する収束手段と、
前記情報担体の情報面に対する前記光ビームの焦点の位置ずれに応じ た信号を発生させるフォーカスずれ信号検出手段と、
前記収束手段を前記情報担体の情報面の法線方向に移動させるフォー カス移動手段と、
前記フォーカスずれ信号検出手段からの信号に応じて前記フォーカス 移動手段を駆動し、 前記光ビームの焦点が前記情報担体の情報面を追従 するように制御するフォーカス制御手段と、
所定時間の前記フォーカスずれ信号検出手段からの信号の変化が所定 範囲内である場合に、 前記フォーカス制御手段の動作が異常であると判 断し、 前記収束手段が前記情報担体から離れる方向に変位するような前 記フォーカス移動手段への駆動信号を発生させる異常検出手段とを備え たことを特徴とする光ディスク装置。
1 9 . 前記フォーカスずれ信号検出手段からの信号に所定値を乗じ る乗算手段と、 情報を記録する場合と情報を再生する場合とで、 前記乗 算手段の乗数を切り替えるゲイン切替手段とをさらに備えた請求項 1 8 に記載の光ディスク装置。
2 0 . 前記異常検出手段が、 情報を記録する場合と情報を再生する 場合とで、 異常であると判断する前記フォーカスずれ信号検出手段の信 号と比較する信号レベルを切り替える判断レベル切替手段を備えた請求 項 1 8に記載の光ディスク装置。
2 1 . 前記フォーカスずれ信号検出手段からの信号に所定値を乗じ る乗算手段と、 前記光ビームが照射している領域が記録済みであるか未 記録状態であるかを検出する記録済み領域検出手段と、 前記記録済み領 域検出手段の検出結果に応じて、 前記乗算手段の乗数を切り替えるゲイ ン切替手段とをさらに備えた請求項 1 8に記載の光ディスク装置。
2 2 . 前記光ビームが照射している領域が記録済みであるか未記録 状態であるかを検出する記録済み領域検出手段と、 前記記録済み領域検 出手段の検出結果に応じて、 異常であると判断する前記フォーカスずれ 信号検出手段の信号と比較する信号レベルを切り替える判断レベル切替 手段をさらに備えた請求項 1 8に記載の光ディスク装置。
2 3 . 前記情報担体のトラックに対する前記光ビームの焦点の位置 ずれに応じた信号を発生させるトラックずれ信号検出手段と、 前記収束 手段を前記情報担体の前記トラックを横切る方向に移動させるトラック 移動手段と、 前記トラックずれ信号検出手段からの信号に応じて前記ト ラック移動手段を駆動し、 前記光ビームの焦点が前記情報担体の前記ト ラックを追従するように制御するトラッキング制御手段とをさらに備え, 前記トラッキング制御手段が動作状態にある場合にのみ前記異常検出手 段が動作する請求項 1 8に記載の光ディスク装置。
2 4 . 光源からの光ビームを、 回転している情報担体に向けて収束 照射する収束手段と、
前記情報担体の情報面に対する前記光ビームの焦点の位置ずれに応じ た信号を発生させるフォーカスずれ信号検出手段と、
前記収束手段を前記情報担体の情報面の法線方向に移動させるフォー カス移動手段と、
前記フォーカスずれ信号検出手段からの信号に応じて前記フォーカス 移動手段を駆動し、 前記光ビームの焦点が前記情報担体の情報面を追従 するように制御するフォーカス制御手段と、
前記フォーカスずれ信号検出手段からの信号の変化が所定範囲内であ る場合に、 前記フォーカスずれ信号検出手段からの信号を.積分するフォ 一カス積分手段と、
前記フォーカスずれ信号検出手段からの信号の変化が前記所定範囲を 超えている場合に、 前記フォーカス積分手段の積分値をクリァするクリ ァ手段と、
前記フォーカス積分手段の積分値の絶対値が所定値以上である場合に, 前記フォーカス制御手段の動作が異常であると判断し、 前記収束手段が 前記情報担体から離れる方向に変位するような前記フォーカス移動手段 への駆動信号を発生させる異常検出手段とを備えたことを特徴とする光 ディスク装置。
2 5 . 前記フォーカス積分手段が、 情報を記録する場合と情報を再 生する場合とに対応する少なくとも 2種類の乗数を前記フォーカスずれ 信号検出手段からの信号に乗じる乗算手段を備え、 前記乗算手段で乗算 した結果を積分する請求項 2 4に記載の光ディスク装置。
2 6 . 前記クリア手段が、 情報を記録する場合と情報を再生する場 合とで、 前記フォーカスずれ信号検出手段からの信号の変化を検出比較 する範囲を切り替える請求項 2 4に記載の光ディスク装置。
2 7 . 前記フォーカスずれ信号検出手段からの信号に所定値を乗じ る乗算手段と、 前記光ビームが照射している領域が記録済みであるか未 記録状態であるかを検出する記録済み検出手段と、 前記記録済み領域検 出手段の検出結果に応じて、 前記乗算手段の乗数を切り替えるゲイン切 替手段とをさらに備えた請求項 2 4に記載の光ディスク装置。
2 8 . 前記光ビームが照射している領域が記録済みであるか未記録 状態であるかを検出する記録済み検出手段をさらに備え、 前記クリア手 段が、 前記記録済み検出手段の検出結果に応じて、 前記フォーカスずれ 信号検出手段からの信号の変化を検出比較する範囲を切り替える請求項 2 4に記載の光ディスク装置。
2 9 . 光源からの光ビームを、 回転している情報担体に向けて収束 照射する収束手段と、
前記情報担体で反射した前記光ビームを分割して受光する光検出手段 と、
前記光検出手段の分割された領域の差動演算により、 前記情報担体の 情報面に対する前記光ビームの焦点の位置ずれに応じた信号を発生させ るフォーカスずれ信号検出手段と、
前記収束手段を前記情報担体の情報面の法線方向に移動させるフォー カス移動手段と、
前記フォーカスずれ信号検出手段からの信号にオフセットを印加する オフセット印加手段と、
前記フォーカスずれ信号検出手段及び前記オフセット印加手段からの 信号に応じて前記フォーカス移動手段を駆動し、 前記光ビームの焦点が 前記情報担体の情報面を追従するように制御するフォーカス制御手段と, 装置の振動を検出する振動検出手段と、
前記振動検出手段からの信号に基づき、 前記オフセット印加手段が、 前記収束手段が前記情報担体から遠ざかる方向に変位するようなオフセ ットを印加することを特徴とする光ディスク装置。
3 0 . 前記オフセット印加手段が、 前記振動検出手段からの信号が 大きいほど、 印加するオフセット量を大きくする請求項 2 9に記載の光 ディスク装置。
3 1 . 前記フォーカスずれ信号検出手段が、 差動演算前の信号のそ れぞれに対して個別のゲインを与えるバランス乗算手段を備え、 前記バ ランス乗算手段は、 前記オフセット印加手段が印加するオフセットに応 じて、 前記フォーカス制御手段の動作点が変化しないように各ゲインを 切り替える請求項 2 9に記載の光ディスク装置。
3 2 . 前記オフセット印加手段が印加するオフセットが、 所定のレ ベルで飽和させるように構成されている請求項 2 9に記載の光ディスク
3 3 . 光源からの光ビームを、 回転している情報担体に向けて収束 照射する収束手段と、
前記情報担体の情報面に対する前記光ビームの焦点の位置ずれに応じ た信号を発生させるフォーカスずれ信号検出手段と、
前記収束手段を前記情報担体の情報面の法線方向に移動させるフォー カス移動手段と、
前記フォーカスずれ信号検出手段からの信号に応じて前記フォーカス 移動手段を駆動し、 前記光ビームの焦点が前記情報担体の情報面を追従 するように制御するフォーカス制御手段と、 前記光ビームが前記情報担体内の所望のトラックを照射するように前 記収束手段を移動させる検索手段とを備え、
前記検索手段が、 前記前記フォーカス制御手段の動作時に前記フォー カス制御手段を不動作状態にすることを特徴とする光ディスク装置。
3 4 . 前記検索手段は、 前記光ビームの焦点が横切って移動するト ラック本数が所定本数以上である場合に、 前記フォーカス制御手段を不 動作状態にする請求項 3 3に記載の光ディスク装置。
3 5 . 前記検索手段は、 前記光ビームの焦点がトラックを横切って 移動する方向が前記情報担体の外周方向である場合に、 前記フォーカス 制御手段を不動作状態にする請求項 3 3に記載の光ディスク装置。
3 6 . 前記検索手段は、 前記光ビームの焦点が横切って移動するべ き目的トラックが前記情報担体の最外周から所定距離の範囲内にある場 合に、 前記フォーカス制御手段を不動作状態にする請求項 3 3に記載の 光ディスク装置。
PCT/JP2002/003745 2001-04-20 2002-04-15 Appareil a disc optique WO2002089124A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR10-2003-7013714A KR100532763B1 (ko) 2001-04-20 2002-04-15 광디스크 장치
US10/475,473 US7257053B2 (en) 2001-04-20 2002-04-15 Optical disc apparatus
JP2002586337A JP4038128B2 (ja) 2001-04-20 2002-04-15 光ディスク装置
US11/825,004 US20070258337A1 (en) 2001-04-20 2007-07-03 Optical disc apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001122433 2001-04-20
JP2001-122433 2001-04-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/825,004 Division US20070258337A1 (en) 2001-04-20 2007-07-03 Optical disc apparatus

Publications (2)

Publication Number Publication Date
WO2002089124A1 true WO2002089124A1 (fr) 2002-11-07
WO2002089124B1 WO2002089124B1 (fr) 2002-12-19

Family

ID=18972142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/003745 WO2002089124A1 (fr) 2001-04-20 2002-04-15 Appareil a disc optique

Country Status (5)

Country Link
US (2) US7257053B2 (ja)
JP (1) JP4038128B2 (ja)
KR (2) KR100532763B1 (ja)
CN (2) CN1808594A (ja)
WO (1) WO2002089124A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1542216A3 (en) * 2003-12-10 2006-12-20 Matsushita Electric Industrial Co., Ltd. Optical heads device and control method of optical head
CN101192425B (zh) * 2006-11-30 2010-05-19 建兴电子科技股份有限公司 全像光学储存系统

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3751954B2 (ja) * 2003-04-25 2006-03-08 株式会社東芝 ディスク記憶装置及びヘッド位置決め制御方法
CN100495549C (zh) * 2005-03-17 2009-06-03 松下电器产业株式会社 光盘装置及其驱动方法
KR100698908B1 (ko) * 2005-08-24 2007-03-22 삼성전자주식회사 광 디스크 기록 및 재생 장치의 제어 방법
JP4918766B2 (ja) * 2005-09-15 2012-04-18 株式会社日立製作所 光ディスク装置
JP4497192B2 (ja) * 2007-11-08 2010-07-07 船井電機株式会社 光ディスク装置
WO2010074533A2 (ko) * 2008-12-26 2010-07-01 엘지전자 주식회사 접근속도 제어방법, 기록/재생장치 및 기록/재생방법
US20230071312A1 (en) * 2021-09-08 2023-03-09 PassiveLogic, Inc. External Activation of Quiescent Device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57120239A (en) * 1981-01-17 1982-07-27 Sharp Corp Focus servomechanism of optical information reader
JPS623436A (ja) * 1985-06-27 1987-01-09 Toshiba Corp 光学式デイスク再生装置
JPH0432028A (ja) * 1990-05-28 1992-02-04 Sony Corp 光ディスク再生装置
JPH05182206A (ja) * 1992-01-08 1993-07-23 Matsushita Electric Ind Co Ltd フォーカス制御装置
JPH06119648A (ja) * 1992-10-05 1994-04-28 Matsushita Electric Ind Co Ltd 光ディスク装置のフォーカスはずれ判別方法
JPH06187654A (ja) * 1992-12-18 1994-07-08 Kenwood Corp 光ディスク装置のディフェクト検出回路および光ディスク装置
JPH08203108A (ja) * 1995-01-30 1996-08-09 Toshiba Corp 光ディスク再生装置
JP2001101677A (ja) * 1999-09-28 2001-04-13 Sanyo Electric Co Ltd 光ディスク装置およびトラックジャンプもしくはシーク方法
JP2001134954A (ja) * 1999-11-02 2001-05-18 Sony Corp 光ディスク装置およびカートリッジ

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5922290B2 (ja) 1975-12-26 1984-05-25 松下電器産業株式会社 コウガクシキジヨウホウキロクサイセイソウチ
JPS6134734A (ja) * 1984-07-25 1986-02-19 Sony Corp 光学式デイスクプレ−ヤ
JP2735124B2 (ja) 1988-10-13 1998-04-02 三菱電機株式会社 情報記録装置の対物レンズ駆動装置
JP2797521B2 (ja) 1989-09-26 1998-09-17 松下電器産業株式会社 自動焦点制御装置
JP2935548B2 (ja) 1990-08-04 1999-08-16 松下電器産業株式会社 自動焦点制御装置
JP2749715B2 (ja) 1990-11-09 1998-05-13 シャープ株式会社 光ディスク装置のフォーカスサーチ回路
JP2770640B2 (ja) 1991-10-02 1998-07-02 松下電器産業株式会社 対物レンズ駆動装置
DE69418761T2 (de) * 1993-04-02 1999-10-21 Sony Corp., Tokio/Tokyo Servosystem zum Fokussieren und Verfahren zum Ermöglichen der Erfassung eines Fokussierungsservosystems
US5838907A (en) * 1996-02-20 1998-11-17 Compaq Computer Corporation Configuration manager for network devices and an associated method for providing configuration information thereto
JPH10116423A (ja) * 1996-10-09 1998-05-06 Matsushita Electric Ind Co Ltd フォーカス制御の引き込み装置
US6246647B1 (en) * 1997-10-16 2001-06-12 Sony Corporation Optical disc apparatus, driving control method for objective lens, control method for optical head and recording/reproducing method for optical head
US6286038B1 (en) * 1998-08-03 2001-09-04 Nortel Networks Limited Method and apparatus for remotely configuring a network device
US6760761B1 (en) * 2000-03-27 2004-07-06 Genuity Inc. Systems and methods for standardizing network devices
US7143153B1 (en) * 2000-11-09 2006-11-28 Ciena Corporation Internal network device dynamic health monitoring
US6978301B2 (en) * 2000-12-06 2005-12-20 Intelliden System and method for configuring a network device
US20020099787A1 (en) * 2001-01-12 2002-07-25 3Com Corporation Distributed configuration management on a network
US6813228B2 (en) * 2001-01-25 2004-11-02 Dphi Acquisitions, Inc. Tracking and focus servo system with direction sensor
JP3517223B2 (ja) * 2001-04-24 2004-04-12 株式会社東芝 光ディスク装置及び光ディスク処理方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57120239A (en) * 1981-01-17 1982-07-27 Sharp Corp Focus servomechanism of optical information reader
JPS623436A (ja) * 1985-06-27 1987-01-09 Toshiba Corp 光学式デイスク再生装置
JPH0432028A (ja) * 1990-05-28 1992-02-04 Sony Corp 光ディスク再生装置
JPH05182206A (ja) * 1992-01-08 1993-07-23 Matsushita Electric Ind Co Ltd フォーカス制御装置
JPH06119648A (ja) * 1992-10-05 1994-04-28 Matsushita Electric Ind Co Ltd 光ディスク装置のフォーカスはずれ判別方法
JPH06187654A (ja) * 1992-12-18 1994-07-08 Kenwood Corp 光ディスク装置のディフェクト検出回路および光ディスク装置
JPH08203108A (ja) * 1995-01-30 1996-08-09 Toshiba Corp 光ディスク再生装置
JP2001101677A (ja) * 1999-09-28 2001-04-13 Sanyo Electric Co Ltd 光ディスク装置およびトラックジャンプもしくはシーク方法
JP2001134954A (ja) * 1999-11-02 2001-05-18 Sony Corp 光ディスク装置およびカートリッジ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1542216A3 (en) * 2003-12-10 2006-12-20 Matsushita Electric Industrial Co., Ltd. Optical heads device and control method of optical head
CN101192425B (zh) * 2006-11-30 2010-05-19 建兴电子科技股份有限公司 全像光学储存系统

Also Published As

Publication number Publication date
KR100532763B1 (ko) 2005-12-01
KR100532764B1 (ko) 2005-11-30
KR20040015106A (ko) 2004-02-18
US7257053B2 (en) 2007-08-14
KR20050085986A (ko) 2005-08-29
CN1543644A (zh) 2004-11-03
CN1808594A (zh) 2006-07-26
US20040136280A1 (en) 2004-07-15
WO2002089124B1 (fr) 2002-12-19
JPWO2002089124A1 (ja) 2004-08-19
US20070258337A1 (en) 2007-11-08
JP4038128B2 (ja) 2008-01-23
CN1246843C (zh) 2006-03-22

Similar Documents

Publication Publication Date Title
US6434094B2 (en) Optical disk apparatus
US20070258337A1 (en) Optical disc apparatus
JP3553241B2 (ja) 光ディスク装置
KR100464413B1 (ko) 광기록매체의 종류 판별방법 및 장치
WO2008007646A1 (fr) Dispositif de disque optique
EP1998330B1 (en) Discrimination method for optical disc types and optical disc apparatus
JP4139751B2 (ja) 光ディスク装置
USRE42067E1 (en) Method for controlling optical pickup head upon switching from following mode to seeking mode
US7130250B2 (en) Optical head and optical disk apparatus for performing focus pull in
JP2003059083A (ja) 光学ヘッドおよび光ディスク再生装置
KR100524996B1 (ko) 광 디스크 시스템의 엑츄에이터 코일 손상 방지 장치 및그 방법
JP2008112490A (ja) 光記録媒体再生装置および光ピックアップ装置
KR20080032837A (ko) 고밀도 다층 디스크에 대한 층간 포커스 제어 장치 및 방법
KR20080033337A (ko) 적응 제어신호를 발생할 수 있는 광학장치
JP2003099964A (ja) 対物レンズ制御方法及び光ディスク装置
JP2001195751A (ja) 光ピックアップ、光情報記録再生装置、及び焦点制御方法
JP2003346353A (ja) 光ディスク装置
WO2010092761A1 (ja) 光学的情報再生装置、光学的情報再生方法及び集積回路
US20090092020A1 (en) Focus servo controlling method and apparatus and optical disk drive using the focus servo controlling method
JPH06139587A (ja) 光ディスクの情報記録再生方法及びその装置
JPH03116427A (ja) 情報記録装置
JPH03116429A (ja) 情報記録装置
JPH03116435A (ja) 情報記録装置
JPH03116434A (ja) 情報記録装置
JP2010067331A (ja) 光ディスク装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

AK Designated states

Kind code of ref document: B1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: B1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

B Later publication of amended claims
121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2002586337

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 10475473

Country of ref document: US

Ref document number: 028084934

Country of ref document: CN

Ref document number: 1020037013714

Country of ref document: KR

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
WWE Wipo information: entry into national phase

Ref document number: 1020057013783

Country of ref document: KR