WO2002086559A1 - Film antireflet et substrat plastique a couche antireflet apposee - Google Patents

Film antireflet et substrat plastique a couche antireflet apposee Download PDF

Info

Publication number
WO2002086559A1
WO2002086559A1 PCT/JP2002/003825 JP0203825W WO02086559A1 WO 2002086559 A1 WO2002086559 A1 WO 2002086559A1 JP 0203825 W JP0203825 W JP 0203825W WO 02086559 A1 WO02086559 A1 WO 02086559A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
film
refractive index
antireflection
substrate
Prior art date
Application number
PCT/JP2002/003825
Other languages
English (en)
French (fr)
Other versions
WO2002086559B1 (fr
Inventor
Tomio Kobayashi
Shujiro Watanabe
Takashi Watanabe
Masaki Kagawa
Haruo Ishizaki
Sung-Kil Lee
Original Assignee
Sony Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corporation filed Critical Sony Corporation
Priority to CNB028020340A priority Critical patent/CN100378469C/zh
Priority to EP02720470A priority patent/EP1380857A4/en
Priority to US10/311,290 priority patent/US20040005482A1/en
Publication of WO2002086559A1 publication Critical patent/WO2002086559A1/ja
Publication of WO2002086559B1 publication Critical patent/WO2002086559B1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers
    • G02B1/116Multilayers including electrically conducting layers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings

Definitions

  • the present invention relates to an antireflection film in which transparent high-refractive-index oxide layers and transparent low-refractive-index oxide layers are alternately laminated on a substrate, and further provided with an antireflection layer having an antireflection layer. It concerns plastic substrates. Background art
  • AR Film is formed on the screen surface of CRTs and LCDs (Liquid Crystal Display) to prevent external light from being reflected, making the screen easier to see and contrast. It is used to increase image quality and improve image quality.
  • a conductive layer in AR films has been added to provide antistatic and electromagnetic shielding effects, thereby preventing dust from adhering and contributing to environmental conservation.
  • the base ZS i ⁇ ⁇ / ⁇ i 0 2 / S i ⁇ 2 ZT i ⁇ 2 / S i ⁇ 2 and the base / S i O x / T i ⁇ 2 / S i 0 2 / T i 0 big structure of 2 / A 1 2 0 3 / S i 0 T i 0 2 clarity using such 2 are known.
  • each layer constituting the AR film is deposited by sputtering, considering the film formation speed, than configuration using a T i 0 2 sputtered layer, S i O x / I TO / S i 0 2 / I Write configuration using the IT_ ⁇ sputtering evening layer such as a tO / S I_ ⁇ 2 is excellent in productivity.
  • the length of the film running along the main roller in the sputter chamber in the running direction that is, the length to which the force sword can be attached is limited, and is the same. Comparing the film running lengths, the ratio between the film forming speeds of IT T and Ti ⁇ ⁇ 2 is about 3: 1.
  • T i 0 2 1/3 power of I TO a deposition rate of al 1 Z6. This is a film formation rate from the viewpoint of achieving both the transparency and conductivity of the ITO. If the transparency is ignored, the difference in the rate is further increased.
  • T i 0 of the second deposition rate is slow, T i is highly dependent on such that sputter evening rate is small compared to I n and S n is a component element of I TO.
  • AR film using an I TO film for example, base / S i ⁇ ⁇ : 4 nm / I TO: 1 8 nm / S ⁇ ⁇ 2: 3 2 ⁇ m / I tO: 6 0 nm / S i 0 2: AR film such as constituted by 9 5 nm is the disadvantage yellowish but is transparent is taking Have. In CRT applications, even if the AR layer is yellowish, it is possible to adjust the RZGZB force source current in a direction that cancels the yellowishness so that the AR layer is not affected by the yellowishness of the AR layer.
  • the AR film having the conventional structure has insufficient moisture-proof function and gas barrier properties.
  • a glass substrate is used in combination.
  • a top emission type organic EL device is manufactured by forming an organic light emitting layer and electrodes on a TFT glass device substrate, that is, a light reflection material electrode layer, an organic layer (buffer layer + hole transport layer + organic layer). After forming a translucent reflective layer, a transparent electrode, etc., in that order on a TFT glass substrate, the glass substrate is adhered with a UV-curing adhesive resin layer to seal the organic EL element portion. Then, an organic EL display with excellent color display is completed by bonding an anti-reflection film on a glass substrate via an adhesive layer.
  • the present invention has been made in view of the above-mentioned problems of the prior art, and uses a metal oxide film that can be sputtered at a high speed to provide a highly transparent and colorless antireflection film with excellent productivity.
  • An object of the present invention is to provide a plastic substrate provided with a prevention layer.
  • DISCLOSURE OF THE INVENTION-That is, the invention of claim 1 is characterized in that a hard coat layer is formed on a substrate, and a transparent high refractive index oxide layer and a transparent low refractive index oxide layer are alternately formed on the hard coat layer.
  • a antireflective film obtained by laminating, at least one of the transparent high refractive index oxide layer characterized in that it consists of Nb 2 0 5 layer formed by reactive sputtering.
  • the transparent high refractive index oxide layer by forming a Nb 2 ⁇ 5 film by reactive sputtering using Nb target, with T i 0 2 film
  • a colorless and highly transparent antireflection film having high transparency in the visible light wavelength range of 400 to 65 nm and a small variation in spectral transmittance of 10% or less can be obtained.
  • Nb 2 ⁇ 5 for the deposition rate of the film that can be a two or three times a child of T 1_Rei 2 film, inexpensive anti-reflection with excellent productivity than those using T i 0 2 film A film can be obtained.
  • a hard coat layer is provided on a substrate.
  • Zr is formed thereon by a reactive sputtering method using a metal or alloy target such as Zr, Ti, Si, or Cr.
  • the invention according ranging third term Oite the antireflection film of claim 1, wherein the other of the at least one transparent high refractive index oxide layer, and Nb 2 0 5 or Ranaru film, I n 2 0 3 and to have a film made of at least one metallic oxide selected from S N_ ⁇ 2, characterized in.
  • Nb 2 ⁇ with transparent high refractive index oxide layer consisting of 5, I n 2 ⁇ such I TO film having excellent Nb 2 0 5 film and a conductive transparency by 3 and providing a Z or S N_ ⁇ of two film and the transparent high refractive index oxide layer formed by stacking it is possible to impart conductivity without impairing the transparency, the antistatic effect A colorless and highly transparent antireflection film having the same can be obtained.
  • At least another one of the transparent high refractive index oxide layer, I n 2 0 3 and S n0 2 contains as a main component at least one metal oxide selected from, S i, Mg, a l , Z n, even without less selected from T i and Nb oxide component of one element, S i 0 2 , Mg_ ⁇ , a l 2 ⁇ 3, Z N_ ⁇ , T i 0 2 ⁇ Pi Nb 2 0 5 in terms to 5 mol% or more, 4 0 mol% or less, More preferably, it has an oxide film containing 10 mol% or more and 30 mol% or less.
  • the range of the fourth Ko ⁇ Pi fifth of claims, with N b 2 ⁇ 5 made of a transparent high refractive index oxide layer, selected from S i, Mg, A and Z n, T i and New b Transparency is provided by providing a transparent high-refractive-index oxide layer composed of an oxide of the above composition in which the reduction of the light transmittance near 400 nm in the ITO film has been improved by the addition of an oxide component of at least one element. Conductivity can be imparted without loss, and a colorless and highly transparent antireflection film having an antistatic effect can be obtained.
  • At least one high refractive index layer is formed by Nb 2 ⁇ 5, at least one layer T a 2 ⁇ 5 of the other high-refractive index layer, T I_ ⁇ 2 , Z R_ ⁇ 2, Tli_ ⁇ 2, S i 3 N 4, by including a layer Barre selected from Upsilon 2 0 3, by high-speed film formation available-reactive sputtering evening for a thick layer of high refractive index layer and Nb 2 ⁇ 5 layer, a thin high refractive index layer for. by the use of Nb 2 0 5 than the material, although Te odor that high-speed film formation is slightly inferior, versatility of the target material during sputtering evening About The degree of freedom can be expanded.
  • the invention according to claim 7 is characterized in that a transparent high-refractive-index oxide layer and a transparent low-refractive-index oxide layer are alternately laminated on a plastic substrate or on a plastic substrate having a hard coat layer formed on the surface.
  • a transparent high refractive index Rate oxide layer characterized in that it consists of N b 2 0 5 layer formed by reactive sputtering.
  • Claim H In the invention of claim 7, a plastic plate is used as the organic substrate.Even when a plastic plate having a hard coat layer formed thereon is used, a transparent high refractive index oxide layer is formed by a reactive sputtering method. By using the Nb 2 ⁇ 5 layer, a plastic substrate with an antireflection layer having the same action as that formed on a film can be obtained.
  • the invention according to claim 8 is an antireflection film comprising an antireflection layer formed by alternately laminating a transparent high refractive index oxide layer and a transparent low refractive index oxide layer on a substrate made of an organic material. Wherein an inorganic moisture-proof layer having a refractive index similar to that of the organic material is formed in contact with at least one surface of the substrate.
  • the inventions set forth in claims 9 to 11 define the formation position of the inorganic moisture-proof layer and the configuration of the base. By specifying these, the moisture-proof and gas-barrier properties are surely exhibited. Further, the definition of the structure of the substrate defines an antireflection film to which the invention described in claim 8 is applied, and a thin and lightweight antireflection film is realized by such a definition.
  • the invention of claim 12 defines the material constituting the inorganic moisture-proof layer.
  • a material having a refractive index close to that of the organic base material is selected from these materials and used as in the invention of claim 13, the optical characteristics of the organic moisture-proof layer will prevent the reflection of external light. The antireflection property of the antireflection layer is maintained.
  • the invention according to claim 14 is the invention according to claim 8, wherein the antireflection layer is formed by a method in which at least one transparent high refractive index oxide layer is formed by a reactive sputtering method. b 2 ⁇ 5 layers.
  • the transparent high-refractive-index oxide layer may be formed by a reactive sputtering method using an Nb target.
  • the invention according to claim 15 is characterized in that transparent high-refractive-index oxide layers and transparent low-refractive-index oxide layers are alternately laminated on a plastic substrate or on a plastic substrate having a hard coat layer formed on the surface thereof.
  • An inorganic moisture-proof layer having a refractive index similar to that of the plastic substrate is formed in contact with one surface of the plate.
  • the invention according to claim 16 may be a plastic substrate having an antireflection layer having the same function as the invention according to claim 15 .
  • the antireflection layer comprises at least one transparent high refractive index oxide layer, a feature that consists of N b 2 ⁇ five layers formed by reactive Spa Tsu evening ring method.
  • FIG. 1 is a cross-sectional view showing an example of a laminated structure of an antireflection film to which the present invention has been applied. '
  • FIG. 2 is a view schematically showing a sputtering apparatus for continuously forming each oxide layer of the antireflection film.
  • FIG. 3 is a diagram schematically showing an adhesive strength test apparatus for evaluating the base and the adhesive strength of the antireflection film.
  • FIG. 4 is a plan view showing the shape of the head section in FIG.
  • FIG. 5 is a diagram showing spectral transmittance characteristics of various oxide films.
  • FIG. 6 is a diagram showing spectral transmittance characteristics of various oxide films.
  • FIG. 7 is a diagram showing spectral transmittance characteristics of various oxide films.
  • FIG. 8 is a schematic perspective view showing one configuration example of an organic EL display.
  • FIG. 9 is a schematic cross-sectional view showing one configuration example of an organic EL display.
  • FIG. 3 is a schematic cross-sectional view showing a sealing state of a glass substrate to which an AR film is attached in an EL display.
  • FIG. 11 is a schematic cross-sectional view showing a top emission type organic EL display sealed with an AR film having an inorganic moisture-proof layer.
  • FIG. 12 is a schematic sectional view showing a configuration example of an AR film with an inorganic moisture-proof layer.
  • FIG. 13 shows a process for producing an organic EL display using an organic base substrate, and is a schematic perspective view showing a transparent electrode forming process.
  • FIG. 14 is a schematic perspective view showing a step of forming an organic light emitting element pattern.
  • FIG. 15 is a schematic perspective view showing a step of forming a light reflecting material electrode layer.
  • FIG. 16 is a schematic cross-sectional view showing a sealing state with a sealing film.
  • FIG. 17 is a diagram showing the spectral transmittance characteristics of Example 1 in comparison with the conventional example.
  • FIG. 18 is a diagram showing the spectral reflectance characteristics of Example 1 in comparison with the conventional example.
  • FIG. 19 is a diagram showing the spectral transmittance characteristics of Example 3 in comparison with the conventional example.
  • FIG. 20 is a diagram showing the spectral reflectance characteristics of Example 3 in comparison with the conventional example.
  • FIG. 21 is a schematic perspective view of a stainless steel container used for evaluating moisture permeability.
  • FIG. 22 is a schematic cross-sectional view showing a stainless steel container sealed with an AR film.
  • FIG. 23 is a characteristic diagram showing evaluation results of water permeability.
  • FIG. 24 is a schematic diagram showing an example of a film forming apparatus using an ionized binary vapor deposition method.
  • FIG. 1 is a cross-sectional view showing a laminated structure of an AR film to which the present invention is applied
  • FIG. 2 is a diagram schematically showing a sputtering apparatus for continuously forming each oxide layer of the AR film
  • FIG. 4 shows the shape of the head part to which a load is applied in FIG. It is a top view.
  • the AR film includes a base 1, a hard coat layer 3 formed on the base 1, a first sputter layer 5 formed on the hard coat layer 3, and a first sputter layer 5 formed on the first sputter layer 5.
  • Transparent high refractive index oxide layer 7 first transparent low refractive index oxide layer 9 formed on first transparent high refractive index oxide layer 9 formed on first transparent low refractive index oxide layer 9
  • the above is the basic configuration of the antireflection film.
  • the Nb 2 ⁇ 5 film formed by a reactive sputtering method is used as a refractive index oxide layer 1 1 first transparent high refractive index oxide layer 7 and the second magnetic Akiradaka.
  • first and second transparent low-refractive-index oxide layers 9 and 13 each include a Si 2 film formed by a reactive sputtering method. Used.
  • Each of the sputtering films of the first sputtered layer 5 and the second transparent low refractive index oxide layer 13 is provided on the base 1 on which the hard coat layer 3 is formed, for example, by a sputtering apparatus as shown in FIG. To form a film.
  • the base 1 an organic substrate such as PET, TAG (triacetylcellulose), and polycarbonate is used.
  • the material of the hard coat layer 3 formed on the base 1 include a silicon-based material, a polyfunctional acrylate-based material, a urethane resin-based material, a melamine resin-based material, and an epoxy resin-based material.
  • the sputter apparatus shown in FIG. 2 includes an unwinding chamber 1109 for unwinding a roll-shaped film 105 on which a hard coat layer has been formed in advance, and a sputter chamber 101 for performing sputtering on the film 105.
  • a winding chamber 110 for winding the film 105 is provided continuously.
  • a main roller 103 which winds the film 105 and runs in the direction of the arrow, is installed. There are multiple swords 107.
  • step (1) an oxygen gas atmosphere is formed on the surface of each of the cathodes 107, and a voltage is applied to the force source 107, whereby the sputtering film corresponding to the target placed on each of the cathodes 107 becomes a film 107. Films are sequentially formed on 5.
  • the first sputtered layer 5 made of at least one material selected from 1.5) is formed first.
  • the first sputtered layer 5 is composed of such a metal suboxide, it is possible to increase the adhesion strength to the hard coat.
  • a target material is a high melting point metal having a high affinity for oxygen of Zr, Ti, Si, and Cr, and a sputtering film is formed in an Ar atmosphere containing 50% by volume of oxygen
  • these metals are partially oxidized to form the above-described metal suboxide, they also combine with oxygen constituting the organic molecules of the hard coat material to form a strong adhesion layer between them and the hard coat. can be formed, whereas, in the case of sputtering the oxide material S i 0 2, Z R_ ⁇ 2, T I_ ⁇ 2, C r 2 O 3 as a data one g e t TMG, and the hard coat Has low adhesion strength.
  • Fig. 3 shows the adhesion strength test equipment used to check the adhesion strength with the eighty-one coat.
  • the head 205 applied with 0 3 is pressed through, for example, a four-layered gauze 207 impregnated with ethyl alcohol, and is reciprocated a distance of 10 cm in the direction of the arrow to obtain a film 201.
  • the adhesive strength of the sputter film is evaluated.
  • the head 205 has an elliptical cross section (long diameter 23.3 mm, minor axis 10 mm), the plane is a circle with a diameter of 23.3 mm as shown in Fig. 4, and the diameter of the actual contact surface (shown by the dotted line in the figure) is about 1 7 mm, and the contact area is about 2.3 cm 2 .
  • the number of reciprocations of the head 205 before the film 201 was peeled was measured, and using the metal targets Zr, Ti, Si, and Cr described above.
  • the first sputtered layer 5 composed of a metal suboxide When the first sputtered layer 5 composed of a metal suboxide was formed, it was intact in a reciprocating test of 30 to 50 times or more, but S i S 2 , Z r ⁇ 2 , T i 0 2 , C If form form the first sputter evening layer 5 with r 2 ⁇ third oxide evening one target, resulting in peeling in a reciprocating below 5 times.
  • Z r, T i, S i, in the C r is the easy-to-use material for S i is shall be used at all times in S I_ ⁇ second low refractive index oxide layer.
  • Nb 2 0 5 film is deposited as the first transparent high refractive index oxide layer 7, then S I_ ⁇ 2 film formed as the first transparent low refractive index oxide layer 9 after being second transparent high refractive index oxide layer 1 1, a second transparent low refractive index oxide layer 1 3, again Nb 2 0 5 film, S i 0 2 film is formed. Finally, the surface is coated with an antifouling layer 15 to appropriately prevent contamination, and an AR film is produced.
  • N b 2 0 5 films and S i 0 2 film is deposited by a reactive Supattari ring method, for example Nb, by sputtering in A r atmosphere containing oxygen 5 0% by volume by using a metal target of S i Is done.
  • Figure 5 is a spectral transmittance characteristic for Nb 2 0 5 film of 6 0 nm thickness shows at curve a, in curves T i 0 2 spectral transmittance characteristics of the same film thickness for comparison , IT_ ⁇ - are indicated by (8 3 mole% I ⁇ 2 0 3 1 7 mole% S N_ ⁇ 2) the spectral transmittance characteristic of the film curve c.
  • the film is formed using one get, and the respective sputtering conditions are as follows. Sputtering conditions when using Nb and Ti target
  • Atmosphere gas Ar—50% by volume 0 2
  • Atmosphere gas Ar—10% by volume 0 2
  • Nb 2 0 5 film is higher light transmittance in the low wavelength region of 40 0 nm, it has high transparency in the T I_ ⁇ 2 film as well as a wide range of wavelengths.
  • Nb 2 0 5 film is can be formed at two to three times the deposition rate of the T I_ ⁇ 2 film, on at least one of the transparent high refractive index oxide layer T I_ ⁇ 2 film the use of N b 2 0 5 film instead, it is possible to produce a colorless AR film at low cost Bok high transparency.
  • a metal suboxide film was used as the first sputtering layer formed on the hard coat layer, and at least the transparent high refractive index oxide layer was used.
  • the New b 2 O 5 film instead of one for ⁇ ⁇ 0 2 film, it is possible to obtain an excellent colorless high transparent AR film adhesion with the base at a low cost.
  • the first transparent high-refractive-index oxide layer 7 or the second transparent high-refractive-index oxide layer was used in order to provide an optimal specific resistance while being colorless and highly transparent in a wide wavelength range. and by stacking thin IT_ ⁇ film N b 2 0 5 film of the object layer 1 1.
  • the ITO film has the disadvantage that it has a low transmittance in the low wavelength range and is yellowish.
  • X 1 0 4 ⁇ / ⁇ (ohm Per Square) about imparting conductivity is suitable May have a thickness of about 5 nm in the case where there, be stacked to N b 2 0 5 film 5 nm thick about thin I TO film, influence of the I TO film is small, the spectral in the visible light wavelength region The transmittance becomes almost flat.
  • the third example shows a colorless and highly transparent type having conductivity similarly to the second example.
  • the first transparent high refractive index oxide layer 7 and the second transparent high refractive index oxide whereas one of the objects layer 1 1 e.g.
  • second transparent high refractive index oxide layer 1 1) n b 2 0 5 film using other (for example, the first transparent high refractive index oxide layer 7), I n 2 the ⁇ 3 or IT ⁇ as a main component, S i, Mg, a l , Z n, an oxide of Izu Re one or more elements of the T i and n b, S I_ ⁇ 2, Mg_ ⁇ , a 1 2 0 3, Z N_ ⁇ T i 0 2 and N b 2 ⁇ 5 in terms of 5-4 0 mol%, the oxide film more preferably contains in the range of 1 0 ⁇ _3 0 mol% Used.
  • FIGS. 6 and 7 show the spectral transmittance characteristics of an oxide film having the above composition having a film thickness of 60 nm as curves d to i, as in FIG. 5, and the composition of each oxide film is as follows. ,
  • Atmosphere gas A r - 1 0 vol% ⁇ 2
  • the I n 2 0 3 and I TO S I_ ⁇ second oxide film which is based on material, Mg_ ⁇ , 5 the content of a l 2 ⁇ 3, Z n 0, T I_ ⁇ 2 and n b 2 ⁇ oxide in terms of such 5 in total It is desirable to be at least mol% and at most 40 mol%. 5 mol% in the following less transmittance improvement in Teinami wavelength region, I n 2 0 3 and S n 0 2 ratio is too small sputtering evening advantage that a large deposition rate is 40 mol% or more Will not be obtained.
  • the sputter deposition rate and low wavelength range From the viewpoint of achieving the compatibility of the transmittance characteristics of the above, the content is more preferably from 10 mol% to 30 mol%.
  • 7 3 mole% I n 2 0 3 - oxide composition of 2 7 mol% Z ⁇ may form a film having a specific resistance of about I TO equivalent level or a 3 0 0 5 0 0 0 * cm And can impart conductivity to the AR film.
  • Z n OS i 0 2 Mg_ ⁇ addition by adjusting the type and amount of such A 1 2 0 3 T I_ ⁇ Nb 2 0 5 Te above content range smell, the resistivity of the oxide film It is possible to provide various conductivity required for antistatic.
  • an oxide target or a metal target may be used.
  • the oxide target a mixture obtained by mixing the respective oxide materials according to the composition of the target sputtering film, pressing the mixture, and sintering in an atmosphere having an adjusted oxygen concentration can be used.
  • an alloy having a metal composition corresponding to the composition of the target sputtered film is used.
  • a metal target it is preferable to use a gas having a flow ratio of 50% oxygen to 50% Ar at the time of sputtering.
  • the amount of oxygen is preferably 30% or less, particularly 1%. It is preferable to be about 0%.
  • these oxide films in addition to S i 0 2 MgO A 1 2 0 3 Z n OT i 0 2 and Nb 2 0 5, etc., the trace amount of S b 2 0 3 B 2 0 3 Y 2 ⁇ 3 C E_ ⁇ 2 Z r 0 2 Th0 2 T a 2 ⁇ B i 2 ⁇ 3 L a 2 ⁇ 3 Nd 2 0 transparent oxide such as 3 may be added.
  • a transparent high-refractive-index oxide layer was partially formed of In 2 ⁇ 3 and I TO was formed of ZnO Si ⁇ 2 Mg ⁇ and Al. an oxide film added with 2 ⁇ T i ON b 2 0 5 and the like, By using an Nb 2 O 5 film for the other parts, a highly reliable and colorless and highly transparent AR film having an antistatic effect can be obtained at low cost.
  • the film configuration when formed on a PET base on which a hard coat layer is formed has been mainly described. From the viewpoint of handling, it can be formed on a TAC (triacetyl cellulose) base, on a TAC base provided with a hard coat layer, on a film of polycarbonate or the like, or on a glass or acrylic plate. It goes without saying that this may be done.
  • the AR film is suitable for use by applying an adhesive to the back of the base and attaching it to the surface to which anti-reflection is to be applied. It can be applied to various forms such as forming and using an oxide layer.
  • the Nb 2 0 5 film formed as a high refractive index oxide layer, by ln 2 0 3, S N_ ⁇ 2, Z nO selection of sputtering conditions such as N b 2 0 5 than can sputtering evening to increase the rate material may be added in a small amount.
  • At least one high refractive index oxides layer is formed by Nb 2 ⁇ 5, and the other high-refractive index layer, T a 2 0 5, T i 0 2, Z R_ ⁇ 2, Th 0 2, S i 3 N 4, Y 2 0 3 may also include a layer selected from.
  • the inorganic moisture-proof layer which is the second feature of the present invention, will be described.
  • the performance of the organic EL element may be degraded by moisture, gas, and the like.
  • the inorganic moisture-proof layer of the present invention is particularly effective.
  • the organic EL display includes an organic light emitting layer pattern 22 and a transparent electrode pattern on a TFT glass element substrate 21 corresponding to pixels.
  • An arbitrary image is displayed by selectively driving each organic light emitting layer pattern 22 to emit light.
  • FIG. 9 shows a cross-sectional structure of the organic EL display.
  • This organic EL display is of a top emission type.
  • a light reflecting material electrode layer 24 and a translucent reflecting layer 2 are provided. 5 are formed.
  • the organic light emitting layer pattern 22 includes a hole transport layer, a charge transport layer, a light emitting layer, a buffer layer, and the like, and is formed by stacking these in a predetermined order. Have been.
  • the hole transport layer of the organic light emitting layer pattern 22 plays a role of transporting holes injected from the anode line to the light emitting layer.
  • the hole transporting material constituting the hole transporting layer any known materials can be used.
  • Polymers and the like can be used. Specific compounds include mono-naphthylphenyldiamine, porphyrin, gold-tetraphenylporphyrin, metal naphthalocyanine, 4,4,4-tris (3-methylphenylphenylamino) triphenylamine, N, N , N, N-tetrakis (p-tolyl) monophenylenediamine, N, N, N, N-tetraphenyl 4,4-diaminobiphenyl, N-phenylcarbazole, 4-zy P-tolylaminostilbene, poly (Paraphenylene vinylene), poly (thiophenvinylene), poly (2,2-chenylpi) Roll) and the like, but are not limited to these.
  • the material used for the light-emitting layer is such that holes can be injected from the anode side and electrons can be injected from the anode side when a voltage is applied, and the injected charges, that is, holes and electrons, are moved.
  • Any material can be used as long as it can provide a binding site, high luminous efficiency, and the like.
  • organic materials such as low-molecular fluorescent dyes, fluorescent polymers, and metal complexes can be used. No.
  • Such materials include anthracene, naphthalene, phenanthrene, pyrene, chrysene, perylene, butadiene, coumarin, acridine, stilbene, tris (8-quinolinolato) aluminum complex, bis (benzoquinoline) (Linolato) beryllium complex, tri (dibenzoylmethyl) phenanthroline phosphorus europium complex, ditolylbinylbiphenyl, para-naphthylphenyldiamine and the like.
  • the charge transport layer transports electrons injected from the force source line to the light emitting layer.
  • the charge transport material that can be used for the charge transport layer include quinoline, perylene, bisstyryl, pyrazine, and derivatives thereof.
  • Specific compounds include 8-hydroxyquinoline aluminum, anthracene, naphthalene, phenanthrene, pyrene, chrysene, perylene, butadiene, coumarin, acridine, stilbene, (8-quinolinolato) aluminum complex, and derivatives thereof. Can be illustrated.
  • a light reflection material electrode layer 24, an organic light emitting layer pattern 22 (including a buffer layer + a hole transport layer + an organic light emitting layer), A translucent reflective layer 25, a transparent electrode pattern 23, etc. are sequentially formed on the TFT glass element substrate 21.
  • a glass substrate 26 serving as a panel is bonded with a UV-curing adhesive resin layer 27 or the like to seal the organic EL element portion. Thereafter, an anti-reflection film 28 is adhered to the glass substrate 26 via the adhesive layer 34 to complete an organic EL display having excellent color display.
  • an antireflection film 29 having an inorganic moisture-proof layer is bonded by a UV-curable adhesive resin layer 27 or the like without passing through a glass substrate 26.
  • the anti-reflection film 29 has an inorganic moisture-proof layer 31 and an anti-reflection layer 3 on an organic base substrate 30 made of polyethylene terephthalate (PET) / triacetyl cellulose (TAC) or the like. 2 and an antifouling layer 33 are sequentially laminated.
  • PET polyethylene terephthalate
  • TAC triacetyl cellulose
  • the present invention is not limited to this.
  • the inorganic moisture-proof layer 31 may be formed on the surface of the organic base substrate 30 opposite to the surface on which the antireflection layer 32 is formed.
  • the inorganic material constituting the inorganic moisture-proof layer 31 needs to be excellent in moisture-proof property and gas-pallidability, and preferably has a refractive index close to that of the organic base substrate from the viewpoint of optical characteristics. Therefore, as the material of the inorganic moisture barrier layer 3 1, S I_ ⁇ 2, S I_ ⁇ x, S i O x N y , S i 3 N 4, S i x N y, A 1 2 0 3, A 1 x O y , A 1 O x N y (where x and y are arbitrary integers). One or more of these may be used as the main component to form the inorganic moisture-proof layer 31.
  • the refractive index of the inorganic moisture-proof layer 31 is 1.4 to 2.5. It is preferably within the range. If the refractive index of the inorganic moisture-proof layer 31 increases beyond the above range, reflection at the interface becomes a problem.
  • Inorganic moisture barrier 3 1 The refractive index of is preferably as small as possible within the above range, the S i 0 2 and A ⁇ 2 ⁇ 3 From this point of view it is preferred.
  • the anti-reflection film having both the anti-reflection performance and the moisture-proof performance is also useful for organic EL displays other than the top emission type.
  • a stripe-shaped transparent electrode 42 is formed on an organic base substrate 41 as shown in FIG. 13, and as shown in FIG.
  • An organic light emitting layer pattern 43 is formed thereon at predetermined intervals.
  • a light reflecting material electrode layer 44 orthogonal to the transparent electrode 42 is formed so as to overlap the organic light emitting layer pattern 43.
  • the opposite side of the organic base substrate 41 is covered with the sealing film 45 and simultaneously adhered with the UV curable resin 46 (Monthly Display July 2001 Vol. 7 No. 7 11 1 ⁇ See 15).
  • the anti-reflection film having both the inorganic moisture-proof layer and the anti-reflection layer as the organic base substrate 41 instead of a mere organic base substrate, the anti-reflection layer formed on the surface The effect is less affected by the color of the reflected light, and an easily viewable screen with excellent color reproducibility can be realized.
  • the anti-reflection film with an inorganic moisture-proof layer (AR film) described above is not only excellent in moisture-proof properties, gas barrier properties, and optical properties, but also has an anti-reflection layer between an anti-reflection layer and a hard coat layer made of an organic resin. Because it has an inorganic moisture barrier layer that is many times thicker, the surface has a high pencil hardness (4H to 5H), and is excellent in the scratch resistance protection performance of the display.
  • Example 1 As an example corresponding to the first example of the film configuration of the antireflection film of the present invention, an AR film having the following configuration was produced.
  • N b 2 O 5 layers 1 1 2 nm /
  • the formation of the SiO x layer reduces the total light transmittance reduction by 0.5 to 2.
  • the value of X of S i ⁇ x can range from 0.5 or more to less than 2.0, but is more preferably from 1.0 to 1.8.
  • the S i 0 2 layer was formed by a dual magnetron type force sword with a volume ratio of Ar: oxygen gas of 1: 1 as a sputter condition.
  • a hard coat layer with a thickness of 6 m was formed on the base of the PET film using an ultraviolet curable resin. hard When there was no coat, the pencil hardness was 1H, but the hardness of 3H was achieved by forming a hard coat.
  • an AR film having the following configuration was produced as a conventional example with respect to this embodiment.
  • FIG. 17 shows the spectral transmittance of the AR films of Example 1 and the conventional example
  • FIG. 18 shows the spectral reflectance.
  • FIGS. 17 and 18 show the spectral transmittance and spectral reflectance in a simple manner by averaging small fluctuations. This is indicated by a solid line.
  • the AR film of Example 1 showed about 16% improvement in transmittance at an optical wavelength of 400 nm as compared with that of the conventional example. This is due to the difference in light absorption characteristics with respect to the wavelength of the I TO layer and N b 2 .0 5 layers.
  • the spectral reflectance in the wavelength range of 500 to 600 nm of Example 1 was able to obtain a value almost the same as that of the conventional example.
  • a hard coat layer was formed on the PET base in order to secure hardness and scratch resistance, and the adhesion strength of the AR sputtering film to the hard coat layer was sufficiently maintained.
  • a SiO x layer As a high refractive index oxide layer in order to flatten the light transmittance curve in the visible light wavelength region, T I_ ⁇ capable deposited at more than twice the rate than the second film-forming speed N b 2 0 5 film By forming, a colorless and highly transparent AR film excellent in productivity and reliability could be obtained.
  • an AR film having the following configuration was produced.
  • N b 2 O 5 layers 1 2 nm /
  • N b 2 ⁇ 5 layers 1 1 2 nm /
  • the AR film can be formed by the sputtering apparatus shown in FIG. 2 in both the first and second embodiments, but in the case of the second embodiment, the AR film is formed as shown in FIG.
  • the AR film is formed as shown in FIG.
  • Six sputter films can be formed in one film pass. Since both the first SiO x film and the second ITO film are thin layers of about 4 nm, they can be formed even using a force sword with a short dimension.
  • an AR film having the following configuration was produced.
  • the spectral transmittance of Example 3 is shown in FIG. 19, and the spectral reflectance is shown by a two-dot chain line in FIG. 20.
  • those shown as conventional examples are shown by solid lines in FIGS. 19 and 20 for comparison.
  • the AR film of Example 3 was about 15% at an optical wavelength of 400 nm compared to the conventional example in which all the high refractive index oxide layers were formed by ITO.
  • the transmittance of As can be seen, the variation range of the spectral transmittance in the wavelength range of 400 to 65 nm was significantly reduced to about 5%.
  • the spectral reflectance in the wavelength range of 500 to 600 nm of Example 3 was almost equal to that of the conventional example. In addition, a value of 920 ⁇ / port was obtained for the conductivity.
  • a thin high refractive index oxide layer 7 3 mole% I n 2 03 - 2 7 mol% Z conductivity high using a material thick high refractive index oxide, such as N_ ⁇ the Rukoto using Nb 2 0 5 layer is at the object layer are more excellent transparency is obtained while the five layers as sputtered film structure conductive, inexpensive AR film having a high transparency ⁇ beauty reliability I was able to.
  • an AR film having the following configuration was produced.
  • Example 4 the spectral reflectance in the wavelength range of 500 to 600 nm was equivalent to that of the conventional example of the above configuration, but the light transmittance on the low wavelength side of 400 nm was 1 2% improvement.
  • the same material is used for the high-refractive-index oxide layer.
  • the present invention is not limited to this.
  • the thickness 7 8 mole% I n 2 ⁇ upper half 3 - 1 2 molar% S n 0 2 - 1 to 0 mole% M G_ ⁇ oxide film of the composition the thickness of the lower half 7 5 mol% it is also possible to 7 mol% Mg_ ⁇ one 6 mole% T i 0 2 oxide film of the composition - I n 2 O s - 1 2 mol% S N_ ⁇ 2.
  • an AR film having the following configuration was produced.
  • Z r 0 2 portions with Z r metal as a target, again, by applying an AC of 4 0 KH z between the two Z r target at cathode one de de Yuarumaguneto port down scheme, A r: Oxygen gas volume ratio 1: 1, gas pressure 0.3 Pa.
  • the present invention has been described mainly on the case where the organic substrate is formed on a thin organic substrate film.
  • the organic substrate is generally referred to as a plastic plate, and has a thickness of, for example, about 300 m or more. It is also effective when formed on a plate.
  • the antireflection layer of the present invention is also effective in preventing reflection from the surface of a substrate such as a transparent molded product of an acrylic resin or Arton (trade name, manufactured by JSR Corporation). On such a plastic substrate as above By forming the anti-reflection layer in this manner, a plastic substrate with an anti-reflection layer can be obtained.
  • This example is an example of an AR film on which an inorganic moisture-proof layer is formed.
  • a layer consisting of S i 0 2 and A 1 2 0 3 as the inorganic moisture barrier layer forms only a thickness of 2 forms by sputtering.
  • the inorganic moisture barrier layer has a refractive index is formed by adjusting the proportion of S i 0 2 and A 1 2 0 3 to be approximately the same: 1. 5 1. about 6 and acrylic eighty-one Dokoto layer . That is, it was formed by performing reactive sputtering in an Ar-50% oxygen gas atmosphere using an alloy target having a mixture weight ratio of Si and A 1 of 1: 3.9. .
  • the luminous reflectance at a wavelength of 450 to 65 nm was 0.
  • Example 7 On the 5 m 1 8 to form organic hard coat thickness 8 m thick P ET (polyethylene terephthalate evening rate) based on the surface, consisting of S i 0 2 and A 1 2 0 3 as an inorganic moisture barrier layer The layer was formed to a thickness of 4 m in the same manner as in Example 6, and the AR layer and the antifouling layer were also formed in the same manner as in Example 6, which was referred to as Example 7.
  • P ET polyethylene terephthalate evening rate
  • a stainless steel container 51 shown in FIG. 21 was prepared.
  • the container 51 is a container having a flange of 200 ⁇ 200 ⁇ 80 mm in internal volume by welding a stainless steel plate having a thickness of 5 mm.
  • 800 cc of pure water 52 was put into the container 51, an AR film with an inorganic moisture-proof layer was attached to the flange portion 51a, and the container opening was sealed.
  • AR film 5 3 was adhered to the flange portion 51a by UV curing sealing using a moisture-resistant UV curing adhesive 54.
  • FIG. 22 is a cross-sectional view taken along the line C--C 'of FIG. 20 showing a state when comparing the moisture permeability after the sealing process.
  • a stainless steel grid-like support plate 55 was provided on the AR film 53, and was further pressed and held using a horseshoe-shaped screw clamp so that a force was applied in the direction of the arrow, which is the support plate holding direction.
  • a stainless steel container similarly sealed using these three types of samples and a 0.7 mm thick glass plate was prepared, and aged at 100 ° C. under atmospheric pressure.
  • the initial weight of the stainless steel container and the weight after each aging time were precisely weighed, and the change in the weight difference was recorded in FIG. 23.
  • Aging at 100 ° C raises the pressure inside the stainless steel container and accelerates the permeation and release of moisture.
  • the relative weight loss rate is compared by comparing the rate of weight loss with the moisture permeability of each sample film and glass. It is possible to do.
  • the weight loss when the stainless steel container was sealed with the 18.8 m thick PET film and the AR film of the comparative sample was less than that of the stainless steel container in Examples 6 and 7. It can be seen that it is larger than the sealed one.
  • the rate of weight loss due to moisture permeation and release was both the same as when the stainless steel container was sealed with a 07 mm glass plate. It turned out to be equivalent. That is, the weight loss due to the permeation and release of moisture from the stainless steel container flange that has been UV-cured and adhered occurs equally in the case of Example 6, Example 7 and the 0.7 mm glass plate. 6 and implementation Water release through Example 7 itself was found to be barely observable, as was 0.7 mm thick glass.
  • the antireflection films of Examples 6 and 7 had both antireflection performance, pencil hardness and moisture proof performance.
  • This weight ratio, S i ⁇ second refractive index 1. 5 5 - A 1 2 0 3 mixed film could form formed.
  • the oxygen gas ejection pipes 67, 68 were arranged near the crucible in order to sufficiently promote the bonding with oxygen. Also, at this time, by applying a voltage of +250 V to the platinum positive potential ionization ring 69 to which the resistor 69a and the DC power supply 69b are connected, the S vapor coming from the crucibles 61 and 62 is evaporated.
  • the anti-reflection layer consisting of S i 0 2 and N b 2 ⁇ 5 serving as a reflection preventing layer (S i O x: 3 nm / N b 2 O 5: 1 5 nmZS i O 2: 2 8 nm / N b 2 0 5: 1 2 nm / S i 0 2: 8 5 nm) is particularly good configuration from the viewpoint of both low reflectivity characteristics and deposition rate, the present invention is the Nb 2 ⁇ 5 This does not preclude a film configuration in which part or all of the film is replaced with another high refractive index material.
  • a hard coat layer for example, polymethyl methacrylate ( PMMA), silicone one Akurireto material containing the ultraviolet curing treatment such Nakurireto, since very little is excellent and the surface protrusion also in surface smoothness, inorganic oxide layer S i 0 2 ⁇ a 1 2 thereon ⁇ ⁇ Excellent barrier performance because it enables dense growth of the inorganic oxide layer when forming the three- mixed layer.
  • PMMA polymethyl methacrylate
  • the hard coat layer as a base used when forming the inorganic moisture-proof layer on the side opposite to the side on which the AR layer is formed is not on the surface side of the display, the hardness exceeds 3 H. It does not have to be a high layer. That is, if the surface has smoothness, the pencil hardness itself is not necessary. Therefore, a hard coat layer containing a silicon-based smoothing material component may be used from the viewpoint of reducing the acrylate component and emphasizing smoothness. Forming the anti-reflection AR layer and the inorganic moisture-proof layer on the same surface of the base film achieves higher pencil hardness. However, by forming the inorganic moisture-proof layer on the surface opposite to the anti-reflection layer, the AR film of the present invention having both a pencil hardness of 3 to 4H and moisture-proof performance can be realized.
  • the material of the inorganic moisture barrier layer S i 0 2, A 1 2 0 3 other than the S I_ ⁇ x, S I_ ⁇ x N y, S i 3 N 4, S i x N y, A 1 x It is possible to use a sputtering film such as O y , A 1 O x N y , or a deposited film.
  • Nb 2 ⁇ 5 film as the transparent high refractive index oxides layer, to provide a colorless high transparency and inexpensive anti-reflection film it can.
  • an oxide layer having excellent adhesion to the hard coat layer is formed on the base on which the hard coat layer is formed, so that the oxide layer is colorless, highly transparent, and has a high hardness and hardness.
  • a highly reliable antireflection film with excellent adhesion strength can be provided at low cost.
  • the transparent high refractive index oxide layer consisting of Nb 2 ⁇ 5, the Nb 2 ⁇ 5 film from I n 2 0 3 and S N_ ⁇ 2 at least
  • Section 4 and Section 5 a transparent high refractive index oxide layer consisting of Nb 2 0 5, small selected from I n 2 ⁇ 3 and S N_ ⁇ 2 Kutomo one
  • a colorless and highly transparent antireflection film having an antistatic effect can be provided at low cost.
  • the present invention is applied to a substrate such as a plastic substrate having a thickness of 300 im or more, or a plastic substrate having a hard coat layer formed on the surface.
  • a plastic substrate with an antireflection layer which is colorless and transparent and inexpensive can be obtained.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Physical Vapour Deposition (AREA)

Description

明細 ; 反射防止フィルム及び反射防止層付きプラスチック基板 技術分野
本発明は、 基体上に透明高屈折率酸化物層と透明低屈折率酸化物層を 交互に積層してなる反射防止フィルムに関するものであり、 さらには、 反射防止層を備えた反射防止層付きプラスチック基板に関するものであ る。 背景技術
反射防止 (Anti-Ref lection、 以下略して ARという。 ) フィルム は、 CRTや LCD (液晶表示素子) の画面表面に形成されて、 外光の 映り込みを防止して画面を見やすくしたり、 コントラストを上げて画質 を向上させたりするために用いられている。 さらに ARフィルムは、 導 電層を存在させることにより、 帯電防止や電磁遮蔽効果を持たせてホコ リの付着防止や環境保全に寄与させることもなされている。
CRT用途としては、 特開平 1 1— 2 1 86 0 3号公報、 特開平 9一 8 0 2 0 5号公報及び H. Ishikawa et al./thin Solid Films 351 (1999) 212- 215の文献等に示されているように、 P ET (ポリエチレ ンテレフタレート) ベースの上にハードコート層を形成し、 さらにその 上に S i Ox/ I TO/S i〇2/ I T〇/S i〇2や S i〇ノ T i N x (x= 0. 3〜 1) /S i 02等の積層構造の A R層が形成されたも のが知られている。
一方、 L CD表面に形成する ARフィルムとしては、 ベース ZS i〇 Χ/Ύ i 02/S i〇2ZT i 〇2/S i〇2やべ一ス/ S i Ox/T i〇 2/S i 02/T i 02/A 1 203/S i 02等の T i 02を用いた透明 度の大きな構成が知られている。
A Rフィルムを構成する各層はスパッタリングによって成膜されるが, その成膜スピードを考えると、 T i 02スパッタ層を用いた構成よりも, S i Ox/ I TO/S i 02/ I TO/S i〇 2のような I T〇スパッ夕 層を用いた構成の方が生産性に優れている。 フィルム用のスパッタ装置 を用いて成膜する場合、 スパッタ室においてメインローラに沿って走行 するフィルムの走行方向における成膜可能な長さ、 すなわち力ソードを 取り付けられる長さは限られており、 同一のフィルム走行長さで比較す ると、 I T〇と T i〇2の成膜速度の比は約 3対 1程度となる。 また、 同一のスパッ夕電力密度で比較しても、 T i 02は I TOの 1/3力、ら 1 Z6の成膜速度である。 これは、 I TOの透明性と導電性を両立させ る観点からの成膜速度であって、 透明性を無視すれば速度の差はさらに 大きくなる。
T i 02の成膜速度が遅いのは、 T iが I TOの成分元素である I n や S nに比べてスパッ夕率が小さいこと等に大きく依存している。
上記したように、 I丁〇膜は丁 i〇2膜よりも生産性に優れているが、 I TO膜を用いた ARフィルム、 例えばベース/ S i Οχ : 4 nm/ I TO: 1 8 n m/ S Ί Ο 2 : 3 2 η m/ I TO : 6 0 n m/ S i 02 : 9 5 nmで構成されるような ARフィルムは、 透明であるけれど黄色み がかかっているという欠点を有している。 CRT用途においては、 AR 層が黄色みがかかっていても、 RZGZBの力ソード電流を黄色みを打 消す方向へ調整することにより、 A R層の黄色みの影響を受けないよう にすることがある程度可能であるが、 L CDの場合には ARフィルムに 対応させるためにだけ色調整をすることは容易ではない。 カラーフィル 夕一他を含めての調整が必要になるからである。 このような事情から、 成膜速度が遅くても T i 0 2が透明高屈折率材料として用いられている が、 このため A Rフィルムを高価なものとしている。 また、 L C D用途 や有機 E Lディスプレイ用途においても、 表面の帯電防止のために所定 の導電性を有することが有用である場合があり、 T i〇2層では対応が 難しい。
一方、 有機 E Lディスプレイ等の用途を考えた場合、 従来構成の A R フィルムでは防湿機能やガスバリア性が不十分であり、 例えばガラス基 板を併用することが行われている。 例えば、 上面発光型の有機 E L素子 は、 T F Tガラス素子基板上に有機発光層や電極を形成して製造される, すなわち、 光反射材料電極層、 有機層 (バッファ層 +ホール輸送層 +有 機発光層を含む) 、 半透明反射層、 透明電極等を順次、 T F Tガラス素 子基板の上に形成した後、 ガラス基板を U V硬化接着樹脂層により接着 して有機 E L素子部分を密封する。 その後、 ガラス基板の上に粘着層を 介して反射防止フィルムを貼り合わせることにより色表示に優れた有機 E Lディスプレイを完成する。
しかしながら、 有機 E L素子部の密封に際し、 ガラス基板の接着と A Rフィルムの接着の 2度の接着工程は煩雑であり、 製造コストの増加も 招く。 また、 ガラス基板の併用は、 薄型化や軽量化の妨げになり、 さら には、 フレキシブルディスプレイを実現する際にも大きな障害となる。 本発明は、 上記従来技術の問題点に対処してなされたものであり、 高 速スパッタリングが可能な金属酸化物膜を用いて、 生産性に優れた透明 度の高い無色の反射防止フィルム及び反射防止層付きプラスチック基板 を提供することを目的とする。
また、 本発明は、 高速スパッタリングが可能な金属酸化物膜を用いて. 導電性を有する透明度の高い無色の反射防止フィルム及び反射防止層付 きプラスチック基板を提供することを目的とする。 さらに、 本発明は、 防湿性やガスバリア性が付与され、 煩雑な接着工 程を要することがなく、 光学特性にも優れた反射防止フィルム及び反射 防止層付きプラスチック基板を提供することを目的とする。 発明の開示 - すなわち、 請求の範囲第 1項の発明は、 基体上にハードコート層が形 成され、 該八ードコート層上に透明高屈折率酸化物層と透明低屈折率酸 化物層が交互に積層されてなる反射防止フィルムであって、 少なくとも 一つの透明高屈折率酸化物層が、 反応性スパッタリング法により形成さ れた Nb 205層で構成されていることを特徴とする。
請求の範囲第 1項の発明においては、 透明高屈折率酸化物層として、 Nbターゲットを用いた反応性スパッタリング法により Nb25膜を 形成することにより、 T i 02膜を用いたものと同様に、 40 0〜6 5 0 nmの可視光波長範囲において透明度が高く分光透過率の変化の幅が 1 0 %以下とばらつきの小さい無色高透明の反射防止フィルムを得るこ とができ、 かつ Nb 25膜の成膜速度を T 1〇2膜の2〜3倍とするこ とが可能なため、 T i 02膜を用いたものよりも生産性に優れた安価な 反射防止フィルムを得ることができる。
請求の範囲第 2項の発明は、 請求の範囲第 1項の反射防止フィルムに おいて、 基体上に形成されるハードコート層上に、 Z r Ox (伹し、 X = 1〜2) 、 T i〇x (但し、 x= :!〜 2) 、 S ί Οχ (但し、 χ= 1 〜 2) 、 S i〇xNy (但し、 x= l〜2、 y = 0. 2〜 0. 6) 及び C r Ox (但し、 x= 0. 2 ~ 1. 5) から選択される少なくとも一種 の材料からなる酸化物層が反応性スパッタリング法により形成されてな ることを特徴とする。 請求の範囲第 2項の発明においては、 基体上にハードコート層を設け. その上に Z r、 T i、 S i、 C r等の金属または合金ターゲットを用い た反応性スパッタリング法により Z r Ox (但し、 x= l〜2) 、 T i 〇x (伹し、 x= l〜 2) 、 S i Ox (但し、 x= l〜 2) 、 S i OxN y (伹し、 x= l〜 2、 y = 0. 2〜 0. 6) 及び C r Ox (伹し、 x = 0. 2〜 1. 5) から選択される少なくとも一種の材料からなる酸化 物層を形成することにより、 ハードコート層との付着力を高めることが でき、 硬度及び付着強度に優れた信頼性の高い反射防止フィルムを得る ことができる。
請求の範囲第 3項の発明は、 請求の範囲第 1項の反射防止フィルムに おいて、 他の少なくとも一つの透明高屈折率酸化物層が、 Nb 205か らなる膜と、 I n 203及び S n〇2から選択される少なくとも一種の金 属酸化物からなる膜とを有することを特徴とする。
請求の範囲第 3項の発明においては、 Nb 25からなる透明高屈折 率酸化物層とともに、 透明性に優れた Nb 205膜と導電性を有する I TO膜等の I n 23及び Zまたは S n〇2からなる膜とを積層してなる 透明高屈折率酸化物層を設けることにより、 透明性を損なうことなく導 電性を付与することが可能となり、 帯電防止効果を有する無色高透明な 反射防止フィルムを得ることができる。
請求の範囲第 4項及び第 5項の発明は、.請求の範囲第 1項の反射防止 フィルムにおいて、 他の少なくとも一つの透明高屈折率酸化物層が、 I n 203及び S n02から選ばれる少なくとも一種の金属酸化物を主成分 として含有し、 S i、 Mg、 A l、 Z n、 T i及び Nbから選ばれる少 なくとも一種の元素の酸化物成分を、 S i 02、 Mg〇、 A l 23、 Z n〇、 T i 02及ぴ Nb 205に換算して 5モル%以上, 4 0モル%以下、 より好ましくは 1 0モル%以上, 3 0モル%以下含有する酸化物膜を有 することを特徴とする。
請求の範囲第 4項及ぴ第 5項の発明においては、 N b 25からなる 透明高屈折率酸化物層とともに、 S i、 Mg、 Aし Z n、 T i及び Ν bから選ばれる少なくとも一種の元素の酸化物成分の添加により I TO 膜における 400 nm近傍の光線透過率の低下が改善された上記組成の 酸化物からなる透明高屈折率酸化物層を設けることにより、 透明性を損 なうことなく導電性を付与することが可能となり、 帯電防止効果を有す る無色高透明な反射防止フィルムを得ることができる。
請求の範囲第 6項の発明は、 請求の範囲第 1項の反射防止フィルムに おいて、 高屈折率酸化物層のうち、 N b 25層以外の層の少なくとも 一層が T a 205, T i 02, Z r 02, Th 02, S i 3N4, Y203か ら選ばれた層で形成されていることを特徴とする。
請求の範囲第 6項の発明においては、 少なくとも一つの高屈折率層が Nb 25で形成されており、 それ以外の高屈折率層の少なくとも一層 が T a 25, T i〇2, Z r〇2, Tli〇2, S i 3N4, Υ203から選 ばれた層を含むことにより、 高屈折率層の厚い層については高速成膜可 能な反応性スパッ夕による Nb25層とし、 薄い高屈折率層について . は Nb 205以外の材料を用いることにより、 高速成膜という点におい ては少し劣勢であるが、 スパッ夕時のターゲット材料の汎用性について 自由度を広げることができる。
請求の範囲第 7項の発明は、 プラスチック基板上、 又はハードコート 層を表面に形成したプラスチック基板上に、 透明高屈折率酸化物層と透 明低屈折率酸化物層が交互に積層された反射防止層が形成されてなる反 射防止層付きプラスチック基板において、 少なくとも一つの透明高屈折 率酸化物層が、 反応性スパッタリング法により形成された N b 205層 で構成されていることを特徴とする。
請求の範 H第 7項の発明においては、 有機基体としてプラスチック板 ゃハ一ドコート層を上に形成したプラスチック板を用いる場合において も、 透明高屈折率酸化物層を反応性スパッタリング法により形成された Nb 25層で構成することにより、 フィルム上に形成する場合と同様 の作用を有する反射防止層付きプラスチック基板とすることができる。 請求の範囲第 8項の発明は、 有機材料からなる基体上に透明高屈折率 酸化物層と透明低屈折率酸化物層が交互に積層されてなる反射防止層が 形成されてなる反射防止フィルムであって、 少なくとも基体の一方の面 に接して上記有機材料と近似する屈折率を有する無機防湿層が形成され ていることを特徴とする。
請求の範囲第 8項の発明においては、 有機材料からなる基体を用いた 反射防止フィルムに対して、 無機防湿層を形成することで良好な防湿性, ガスバリア性が付与され、 ガラス基板の併用が不要となる。 その結果、 これを用いたディスプレイの薄型化、 軽量化が実現される。
請求の範囲第 9項乃至第 1 1項の発明は、 無機防湿層の形成位置や、 基体の構成を規定するものである。 これらを規定することで、 確実に防 湿性、 ガスバリア性が発揮される。 また、 基体の構成の規定は、 請求の 範囲第 8項記載の発明の適用対象となる反射防止フィルムを規定するも のであり、 かかる規定により薄くて軽量な反射防止フィルムが実現され る。
請求の範囲第 1 2項の発明は、 請求の範囲第 8項の発明において、 無 機防湿層は、 S i 02, S i Οχ) S i OxNy, S i 3N4, S i xNy, A 1 203, A 1 xOy, A 1 OxNy (ただし、 x, yはいずれも任意の 整数である。 ) から選ばれる少なくとも 1種を主成分とすることを特徴 とする。 また、 請求の範囲第 1 3項の発明は、 請求の範囲第 8項の発明 において、 無機防湿層の屈折率が 1 . 4 ~ 2 . 1であることを特徴とす る。
請求の範囲第 1 2項の発明においては、 無機防湿層を構成する材料を 規定している。 特に、 これらの材料から請求の範囲第 1 3項の発明のよ うに基体有機材料に近い屈折率を有するものを選択して使用すれば、 無 機防湿層の光学的特性が外光の反射防止の妨げとなることはなく、 反射 防止層が有する良好な反射防止特性が維持される。
請求の範囲第 1 4項の発明は、 請求の範囲第 8項の発明において、 反 射防止層は、 少なくとも一つの透明高屈折率酸化物層が、 反応性スパッ 夕リング法により形成された N b 25層で構成されていることを特徴 とする。
請求の範囲第 1 4項の発明においては、 上記無機防湿層を形成するこ との利点に加えて、 透明高屈折率酸化物層として、 N bターゲットを用 いた反応性スパッ夕リング法により N b 2 0 5膜を形成することにより T i 0 2膜を用いたものと同様に、 4 0 0〜 6 5 0 n mの可視光波長範 囲において透明度が高く分光透過率の変化の幅が 1 0 %以下とばらつき の小さい無色高透明の反射防止フィルムを得ることができ、 かつ N b 2 0 5膜の成膜速度を T i 0 2膜の 2 ~ 3倍とすることが可能なため、 T i 0 2膜を用いたものよりも生産性に優れた安価な反射防止フィルムを 得ることができる。
請求の範囲第 1 5項の発明は、 プラスチック基板上、 又はハ一ドコー ト層を表面に形成したプラスチック基板上に、 透明高屈折率酸化物層と 透明低屈折率酸化物層が交互に積層された反射防止層が形成されてなる 反射防止層付きプラスチック基板において、 少なくともプラスチック基 板の一方の面に接して当該プラスチック基板と近似する屈折率を有する 無機防湿層が形成されていることを特徴とする。
請求の範囲第 1 5項の発明においては、 有機基体としてプラスチック 板やハードコート層を上に形成したプラスチック板を用いる場合におい ても、 無機防湿層を形成することにより、 請求の範囲第 8項の発明と同 様の作用を有する反射防止層付きプラスチック基板とすることができる 請求の範囲第 1 6項の発明は、 請求の範囲第 1 5項の発明において、 反射防止層は、 少なくとも一つの透明高屈折率酸化物層が、 反応性スパ ッ夕リング法により形成された N b 25層で構成されていることを特 徴とする。
請求の範囲第 1 6項の発明においては、 上記無機防湿層を形成するこ との利点に加えて、 透明高屈折率酸化物層として、 N b夕一ゲッ.トを用 いた反応性スパッタリング法により N b 2 0 5膜を形成することにより. T i 0 2膜を用いたものと同様に、 4 0 0〜 6 5 0 n mの可視光波長範 囲において透明度が高く分光透過率の変化の幅が 1 0 %以下とばらつき の小さい無色高透明の反射防止フィルムを得ることができ、 かつ N b 2 0 5膜の成膜速度を T i 0 2膜の 2〜 3倍とすることが可能なため、 T i 0 2膜を用いたものよりも生産性に優れた安価な反射防止層付きブラ スチック基板を得ることができる。 図面の簡単な説明
第 1図は、 本発明を適用した反射防止フィルムの積層構成の一例を示 す断面図である。 '
+ 第 2図は、 反射防止フィルムの各酸化物層を連続的に成膜するスパッ 夕装置を模式的に示す図である。 第 3図は、 反射防止フィルムのべ一スと付着強度を評価するための付 着強度試験装置を模式的に示す図である。
第 4図は、 第 3図中のヘッド部の形状を示す平面図である。
第 5図は、 各種酸化物膜の分光透過率特性を示す図である。
第 6図は、 各種酸化物膜の分光透過率特性を示す図である。
第 7図は、 各種酸化物膜の分光透過率特性 示す図である。
第 8図は、 有機 E Lディスプレイの一構成例を示す概略斜視図である, 第 9図は、 有機 E Lディスプレイの一構成例を示す概略断面図である 第 1 0図は、 上面発光型の有機 E Lディスプレイにおいて A Rフィル ムを貼り付けたガラス基板による封止状態を示す概略断面図である。
第 1 1図は、 上面発光型の有機 E Lディスプレイにおいて無機防湿層 付き A Rフィルムによる封止状態を示す概略断面図である。
第 1 2図は、 無機防湿層付き A Rフィルムの構成例を示す概略断面図 である。
第 1 3図は、 有機ベース基板を用いた有機 E Lディスプレイの作製ェ 程を示すものであり、 透明電極形成工程を示す概略斜視図である。
第 1 4図は、 有機発光素子パターンの形成工程を示す概略斜視図であ る。
第 1 5図は、 光反射材料電極層の形成工程を示す概略斜視図である。 第 1 6図は、 封止膜による封止状態を示す概略断面図である。
第 1 7図は、 実施例 1の分光透過率特性を従来例と比較して示す図で ある。
第 1 8図は、 実施例 1の分光反射率特性を従来例と比較して示す図で ある。
第 1 9図は、 実施例 3の分光透過率特性を従来例と比較して示す図で ある。 第 2 0図は、 実施例 3の分光反射率特性を従来例と比較して示す図で める。
第 2 1図は、 水分透過性の評価に用いたステンレス製容器の概略斜視 図である。
第 2 2図は、 ステンレス製容器の A Rフィルムによる密封状態を示す 概略断面図である。
第 2 3図は、 水分透過性の評価結果を示す特性図である。
第 2 4図は、 イオン化 2元蒸着法による成膜装置の一例を示す模式図 である。 発明を実施するための形態
以下、 図面に基づいて本発明を適用した反射防止フィルム及び反射防 止層付きプラスチック基板について詳細に説明する。
第 1図は、 本発明を適用した A Rフィルムの積層構成を示す断面図、 第 2図は、 A Rフィルムの各酸化物層を連続的に成膜するスパッタ装置 を模式的に示す図、 第 3図は、 A Rフィルムの酸化物層の付着強度を評 価するための付着強度試験装置を模式的に示す図、 第 4図は、 第 3図中 の荷重をかけるへッド部の形状を示す平面図である。
第 1図において、 A Rフィルムは、 ベース 1、 ベース 1上に形成され るハードコート層 3、 ハードコート層 3上に形成される第 1スパッタ層 5、 第 1スパッタ層 5上に形成される第 1透明高屈折率酸化物層 7、 第 1透明高屈折率酸化物層 7上に形成される第 1透明低屈折率酸化物層 9 第 1透明低屈折率酸化物層 9上に形成される第 2透明高屈折率酸化物層 1 1、 第 2透明高屈折率酸化物層 1 1に形成される第 2透明低屈折率酸 化物層 1 3、 及び第 2透明低屈折率酸化物層 1 3の表面に形成され汚染 を防止する防汚層 1 5によって構成されている。 以上が反射防止フィルムの基本構成であるが、 次に、 その膜構成例に ついて説明する。 第 1例では、 第 1透明高屈折率酸化物層 7及び第 2透 明高屈折率酸化物層 1 1として、 反応性スパッタリング法により形成さ れる Nb 25膜が用いられる。 また、 第 1スパッ夕層 5には、 Z r〇x (但し、 x= l〜2) 、 T i〇x (伹し、 x= l〜2) 、 S i Ox (伹 し、 x= :!〜 2) 、 S i OxNy (但し、 x=;!〜 2、 y = 0. 2〜 0 6 ) 及び C r Ox (但し、 x = 0. 2〜 1. 5) から選ばれる少なくと も一種の材料からなる酸化物膜が用いられ、 第 1及び第 2透明低屈折率 酸化物層 9、 1 3には、 反応性スパッタリング法により形成される S i 〇2膜が用いられる。
上記第 1スパッタ層 5〜第 2透明低屈折率酸化物層 1 3の各スパッ夕 膜は、 ハードコート層 3が形成されたべ一ス 1上に、 例えば第 2図に示 すようなスパッタ装置により成膜される。 ベ一ス 1としては、 PET、 TAG (トリアセチルセルロース) 、 ポリカーボネート等の有機物基体 が用いられる。 このベース 1上に形成されるハードコート層 3の材料と しては、 シリコン系、 多官能ァクリレート系、 ウレタン樹脂系、 メラミ ン榭脂系、 エポキシ樹脂系等が挙げられるが、 ポリメチルメタクリレー ト (PMMA) 等の紫外線硬化処理を含むァクリレート系材料が、 鉛筆 硬度、 透明性、 クラックの発生し難さ等の総合性能の点で好ましい。 第 2図に示すスパッ夕装置は、 ハードコート層があらかじめ形成され たロール状のフィルム 1 0 5を繰り出す巻出し室 1 0 9と、 フィルム 1 0 5上にスパッタリングを行うスパッタ室 1 0 1と、 フィルム 1 0 5を -巻き取る巻取り室 1 1 0が連続して設けられている。 スパッタ室 1 0 1 には、 フィルム 1 0 5を巻き付けて矢印方向に走行させるメインローラ 1 0 3が設置され、 メインローラ 1 0 3の周囲に一定の距離をおいて、 ターゲットを載置した力ソード 1 07が複数設置されている。 この構成 において、 各カゾード 1 0 7表面に酸素ガス雰囲気を形成し、 力ソード 1 0 7に電圧を印加することにより、 各カゾード 1 0 7に載置したター ゲットに応じたスパッ夕膜がフィルム 1 0 5上に順次成膜される。
このようなスパッ夕装置により、 ベース 1のハードコート層 3上に、 Z r Ox (但し、 x = l〜2) 、 T i Ox (但し、 x = l〜2) 、 S i 〇x (但し、 x = 1〜 2 ) 、 S i OxNy (伹し、 x= l〜2、 y = 0. 2〜0. 6 ) 及び C r〇x (但し、 x= 0. 2〜1. 5) から選ばれる 少なくとも一種の材料からなる第 1スパッタ層 5が最初に形成される。 第 1スパッタ層 5がこのような金属亜酸化物によって構成されることに より、 ハードコートへの付着強度を大きくすることが可能となる。 例え ば、 ターゲット材料として、 Z r、 T i、 S i、 C rの酸素との親和力 の大きい高融点金属を用いて、 酸素を 5 0体積%含む A r雰囲気中でス パッ夕成膜すると、 これらの金属が一部酸化されて上述したような金属 亜酸化物となるときに、 ハードコート材料の有機分子を構成する酸素と も結合してハ一ドコートとの間に強固な付着層を形成することができる, 一方、 S i 02、 Z r〇2、 T i〇2、 C r 2 O 3の酸化物材料をタ一ゲ ットとしてスパッタ成膜する場合には、 ハードコートとの付着強度は弱 い。
第 3図は、 八一ドコートとの付着強度を調べるために用いた付着強度 試験装置を示すもので、 第 1スパッ夕層 5、 第 1透明高屈折率酸化物層 7、 第 1透明低屈折率酸化物層 9、 第 2透明高屈折率酸化物層 1 1、 第 2透明低屈折率酸化物層 1 3、 及び防汚層 1 5を形成したフィルム 2 0 1上に 2 k gの負荷 2 0 3をかけたへッド 2 0 5をエチルアルコールを 含浸させた例えば 4枚重ねのガーゼ 2 0 7を介して押し付け、 1 0 c m の距離を矢印方向に往復させて、 フィルム 2 0 1におけるスパッ夕膜の 付着強度の評価を行う。 ここで、 ヘッド 2 0 5は断面が楕円形状 (長径 2 3. 3mm、 短径 1 0 mm) であり、 平面が第 4図に示すように直径 2 3. 3mmの円形状で、 実際の接触面 (図中点線で示す。 ) の直径が 約 1 7mm、 接触面積が約 2. 3 cm2である。 この付着強度試験装置 を用いて、 フィルム 2 0 1に剥がれが生じるまでのへッド 20 5の往復 回数を測定したところ、 上記 Z r、 T i、 S i、 C rの金属ターゲット を用いて金属亜酸化物からなる第 1スパッタ層 5を形成した場合は、 3 0〜 5 0回以上の往復テストに無傷であつたが、 S i〇2、 Z r〇2、 T i 02、 C r 23の酸化物夕一ゲットを用いて第 1スパッ夕層 5を形 成した場合は、 5回以下の往復で剥離を生じた。 なお、 Z r、 T i、 S i、 C rの中では、 S iが低屈折率酸化物層の S i〇2にも常時使用す るものであるため使いやすい材料である。
第 1スパッタ層 5の上には第 1透明高屈折率酸化物層 7として Nb 2 05膜が成膜され、 ついで第 1透明低屈折率酸化物層 9として S i〇2 膜が成膜された後、 第 2透明高屈折率酸化物層 1 1、 第 2透明低屈折率 酸化物層 1 3として、 再び Nb 205膜、 S i 02膜が成膜される。 最後 に、 表面に適宜汚染を防止する防汚層 1 5がコーティングされて ARフ イルムが作製される。 N b 205膜及び S i 02膜は、 反応性スパッタリ ング法により、 例えば Nb、 S iの金属ターゲットを用いて酸素を 5 0 体積%含む A r雰囲気中でスパッタリングすることにより成膜される。 第 5図は、 6 0 nm膜厚の Nb 205膜について分光透過率特性を曲 線 aにて示すもので、 比較のため同じ膜厚の T i 02の分光透過率特性 を曲線 で、 I T〇 (8 3モル% I η 203 - 1 7モル%S n〇2) 膜の 分光透過率特性を曲線 cで示している。 Nb 25膜及び T i 02膜は N bまたは T iの金属ターゲットを用い、 I TO膜は 8 3モル% I n20 3— 1 7モル% S n 02組成の酸化物夕一ゲットを用いて成膜しており それぞれのスパッタ条件は次の通りである。 N b及び T i夕ーゲット使用時のスパッタ条件
雰囲気ガス : A r— 5 0体積%02
電力密度: 6 W/c m2
基板:ハードコート付 P ETベース
I TOターゲット使用時のスパッ夕条件
雰囲気ガス : A r— 1 0体積%02
電力密度: 3. 6W/cm2
基板:ハードコート付 P E Tベース
第 5図から明らかなように、 Nb 205膜は 40 0 nmの低波長域で の光線透過率も高く、 T i〇2膜と同様に広い波長範囲において高い透 明性を有する。 一方、 Nb 205膜は、 T i〇2膜の 2〜 3倍の成膜速度 で成膜することが可能であり、 少なくとも一つの透明高屈折率酸化物層 に T i〇2膜の代わりに N b 205膜を用いることにより、 高透明で無色 の ARフィルムを低コス卜で作製することができる。
上記の説明からも明らかなように、 第 1例の膜構成においては、 ハー ドコート層上に成膜する第 1スパッ夕層として金属亜酸化物膜を用い、 透明高屈折率酸化物層として少なくとも一つに Τ ί 02膜の代わりに Ν b 2 O 5膜を用いることにより、 安価でベースとの付着性に優れた無色 高透明の A Rフィルムを得ることができる。
次に、 膜構成の第 2例について説明する。 なお、 第 1例と共通する部 分について重複する説明は省略する。 第 1例と比較して、 本例では、 広 波長範囲において無色高透明でありながら最適な比抵抗を付与するため に、 第 1透明高屈折率酸化物層 7または第 2透明高屈折率酸化物層 1 1 の N b 205膜に薄い I T〇膜を積層させている。
I TO膜は低波長域で透過率が低く黄色みを帯びる欠点があるが、 1
X 1 04Ω/ϋ (オーム ·パー ·スクェア) 程度の導電性付与が適して いる場合には 5 nm程度の厚さで良く、 N b 205膜に 5 nm厚程度の 薄い I TO膜を積層させても、 I TO膜による影響は小さいため、 可視 光波長域における分光透過率はほぼ平坦となる。
したがって、 本例においては、 透明高屈折率酸化物層として Nb 25膜に加えて薄い I TO膜を積層させることにより、 帯電防止効果を有 し L CD及び有機 E Lディスプレイ用途に好適な、 安価で信頼性の高い 無色高透明の ARフィルムを得ることができる。
次に、 膜構成の第 3例について説明する。 第 3例は、 第 2例と同様に 導電性を有する無色高透明タイプを示すもので、 第 1例と比較して、 第 1透明高屈折率酸化物層 7及び第 2透明高屈折率酸化物層 1 1のいずれ か一方 (例えば第 2透明高屈折率酸化物層 1 1 ) に N b 205膜を用い 他方 (例えば第 1透明高屈折率酸化物層 7) に、 I n 23または I T 〇を主成分とし、 S i、 Mg、 A l、 Z n、 T i及び N bのうちのいず れか 1種以上の元素の酸化物を、 S i〇2、 Mg〇、 A 1 203、 Z n〇 T i 02及び N b 25に換算して 5〜4 0モル%、 より好ましくは 1 0 〜_3 0モル%の範囲で含有する酸化物膜を用いている。
第 6図及び第 7図は、 第 5図と同様に 6 0 nm膜厚の上記組成の酸化 物膜の分光透過率特性を曲線 d〜 iにて示すもので、 各酸化物膜の組成 は、
d : 7 3モル% I n 23— 2 7モル% Z n〇、
e : 7 8モル% I n 23— 1 2モル% S n〇2— 5モル% Z n〇— 5モ ル% S i 〇 2
f : 7 0モル% I n 23— 1 0モル% S n O 2— 2 0モル%N b 205. g : 7 8モル% I n203— 1 2モル% S n 02 - 1 0モル%Mg〇、 h : 8 0モル% I n 23— 1 2モル%S n〇2— 8モル%A 1 23、 i : 7 5モル% I n 23— 1 2モル% S n〇2— 7モル%Mg〇一 6モ ル%丁 102である。 また、 これらの酸化物膜の成膜はそれぞれ対応す る組成の酸化物ターゲットを用いて行っており、 スパッ夕条件は次の通 りである。
雰囲気ガス : A r - 1 0体積%〇2
電力密度: 3. 6 W/cm2
基板:ハードコー卜付 P ETベース
第 6図及び第 7図から明らかなように、 I n 23や I TOに Z n〇 S i 02、 MgO、 A 1 203、 T i〇2、 N b 2 O 5等を添加した酸化物 膜では、 I TOより 40 0 nmの低波長側における透過率が約 1 0 %程 度以上大きくなつている。 これらの酸化物膜において添加成分として用 いられる S i 02、 MgO、 A 1 203、 Z n O、 T i〇2及ぴ Nb25 は、 それ自体低波長側の光線透過率が高く、 かつ I n 23や S n02と 混合融解したときにガラス化しやすく、 ガラス組織ネットワークを形成 しゃすい酸化物 (例えば、 S 102は i同士の結合を介してのガラス 網目形成酸化物の代表である。 ) であり、 これを I n 203または I T Oに添加することにより、 I n 203または I TOのみからなるものよ りも低波長側の透過率を高めることができるものである。 したがって、 これらの酸化物膜は、 I TO膜と同程度の成膜速度を維持しながら I T 〇膜の黄色みを消すことが可能であり、 そのためには、 I n 203や I TOを基本材料とした酸化物膜中の S i〇2、 Mg〇、 A l 23、 Z n 0、 T i〇2及び N b 25等に換算した酸化物の含有量を合計で 5モ ル%以上 40モル%以下とすることが望ましい。 5モル%以下では低波 長域での透過率改善効果が少なく、 40モル%以上では I n 203及び S n 02の比率が小さくなり過ぎてスパッ夕成膜速度が大きいという利 点が得られなくなってしまう。 さらに、 スパッタ成膜速度と低波長域で の透過率特性の両立の観点から、 1 0モル%以上 3 0モル%以下がより 好ましい。
さらにまた、 例えば 7 3モル% I n 203— 2 7モル% Z ηθの酸化 物組成は、 I TOと同等レベルすなわち 3 0 0 5 0 0 0 * cm程度 の比抵抗を有する膜を形成することができ、 ARフィルムに導電性を付 与することができる。 すなわち、 添加する Z n O S i 02 Mg〇、 A 1 203 T i〇 Nb 205等の種類と量を上記含有量範囲におい て調整することにより、 酸化物膜の比抵抗を種々選択することができ、 帯電防止に必要な種々の導電性を付与することができる。
これらの酸化物膜を成膜するにあたっては、 酸化物ターゲットを用い ても、 金属ターゲットを用いてもよい。 酸化物ターゲットとしては、 目 的のスパッ夕膜の組成に応じてそれぞれの酸化物材料を混合し、 型プレ スし、 酸素濃度を調整した雰囲気で焼結したものを用いることができる 金属タ一ゲットとしては、 目的のスパッタ膜の組成に対応した金属組成 の合金が用いられる。 金属ターゲッ トの場合には、 スパッ夕時に 5 0 % 酸素一 5 0 % A r流量比のガスを用いるのが好ましく、 酸化物ターゲッ トの場合には、 酸素量を 3 0 %以下、 特に 1 0 %程度とすることが好ま しい。
さらにまた、 これらの酸化物膜には、 S i 02 MgO A 1 203 Z n O T i 02及び Nb 205等に加えて、 ごく微量の S b 203 B 2 03 Y23 C e〇2 Z r 02 Th02 T a 2〇 B i 23 L a 23 Nd 203等の透明酸化物が添加されていてもよい。
上記の説明からも明らかなように、 上記各膜構成例においては、 透明 高屈折率酸化物層として一部に I n 23や I TOに Z nO S i 〇2 M g〇、 A l 2〇 T i O N b 205等を添加した酸化物膜を用い, 他に部分に N b 2 O 5膜を用いることにより、 安価で帯電防止効果を有 する信頼性の高い無色高透明な ARフィルムを得ることができる。
なお、 上記第 1例〜第 3例では、 ハードコート層を形成した P ETベ ース上に形成する場合の膜構成を中心に説明したが、 上記各層は、 より 透過率を高める目的や偏光を扱う観点から、 TAC (トリアセチルセル ロース) ベース上や、 ハードコート層を設けた T ACベ一ス上に形成し ても、 またポリカーボネート等のフィルム上や、 ガラスやアクリル板の 上に形成してもよいことはいうまでもない。 また、 上記 ARフィルムは, ベースの裏に粘着剤を塗布して反射防止を施したい面に貼り付けて使用 する場合に好適な形態であるが、 これ以外にも、 透明アクリル板の裏表 に A R酸化物層を形成して使用するなど種々の形態に適用することがで さる。
さらにまた、 第 1例〜第 3例において、 高屈折率酸化物層として形成 される Nb 205膜には、 l n 203、 S n〇2、 Z nO等のスパッタ条 件の選択により N b 205よりスパッ夕速度を大きくすることができる 材料が微量添加されていてもよい。
さらにまた、 第 1例〜第 3例において、 少なくとも一つの高屈折率酸 化物層が Nb25で形成されており、 それ以外の高屈折率層が、 T a2 05, T i 02, Z r〇2, Th 02, S i 3N4, Y203から選ばれた層 を含んでいても良い。
次に、 本発明の 2番目の特徴点である無機防湿層について説明する。 例えば、 有機 ELディスプレイの場合、 水分やガス等によって有機 EL 素子の性能に劣化が生ずる虞れがある。 このようなディスプレイにおい て、 特に本発明の無機防湿層が有効になる。
有機 ELディスプレイは、 第 8図に示すように、 TFTガラス素子基 板 2 1上に画素に対応して有機発光層パターン 22及び透明電極パター ン 2 3を形成してなるものであり、 各有機発光層パターン 2 2を選択的 に駆動し発光させることにより、 任意の画像表示が行われる。
第 9図は、 上記有機 E Lディスプレイの断面構造を示すものである。 この有機 E Lディスプレイは上面発光型であり、 T F Tガラス素子基板 2 1上には、 上記有機発光層パターン 2 2及び透明電極パターン 2 3の 他、 光反射材料電極層 2 4や半透明反射層 2 5が形成されている。
有機発光層パターン 2 2は、 正孔輸送層、 電荷輸送層、 発光層、 バッ ファ層等を含み、 これらを所定の順序で積層することにより形成され、 各画素に対応してパ夕一ニングされている。
有機発光層パタ一ン 2 2のうち、 正孔輸送層は、 アノードラインから 注入された正孔を発光層まで輸送するという役割を果たすものである。 この正孔輸送層を構成する正孔輸送材料としては、 公知のものがいずれ も使用可能であり、 例えばベンジン、 スチリルァミン、 トリフエニルァ ミン、 ポルフィ リン、 トリァゾール、 イミダゾール、 ォキサジァゾ一ル, ポリアリールアルカン、 フエ二レンジァミン、 ァリールァミン、 ォキサ ゾール、 アントラセン、 フルォレノン、 ヒドラゾン、 スチルベン、 また はこれらの誘導体、 並びにポリシラン系化合物、 ビニルカルバゾール系 化合物、 チォフェン系化合物、 ァニリン系化合物等の複素環式共役系の モノマー、 オリゴマー、 ポリマー等が使用可能である。 具体的化合物と しては、 一ナフチルフエ二ルジァミン、 ポルフィリン、 金厲テトラフ ェニルポルフィリン、 金属ナフタロシアニン、 4, 4, 4ートリス (3 一メチルフエニルフエニルァミノ) トリフエニルァミン、 N , N , N, N—テトラキス ( p —トリル) 一フエ二レンジァミン、 N , N , N , N—テトラフェニル 4, 4—ジアミノビフエニル、 N—フエ二ルカルバ ゾール、 4ージー P —トリルアミノスチルベン、 ポリ (パラフエ二レン ビニレン) 、 ポリ (チォフェンビニレン) 、 ポリ (2 , 2 -チェニルピ ロール) 等を例示することができるが、 勿論これらに限定されるもので はない。
発光層に用いられる材料は、 電圧印加時に陽極側から正孔を、 また陰 極側から電子を注入できること、 注入された電荷、 すなわち正孔及び電 子を移動させ、 これら正孔と電子が再結合できる場を提供できること、 発光効率が高いこと、 等の条件を満たしていれば如何なるものであって もよく、 例えば低分子蛍光色素、 蛍光性の高分子、 金属錯体等の有機材 料等が挙げられる。 このような材料としては、 具体的には、 アントラセ ン、 ナフタリン、 フエナン卜レン、 ピレン、 クリセン、 ペリレン、 ブタ ジェン、 クマリン、 ァクリジン、 スチルベン、 トリス ( 8—キノリノラ ト) アルミニウム錯体、 ビス (ベンゾキノリノラト) ベリリウム錯体、 トリ (ジベンゾィルメチル) フエナント口リンユーロピウム錯体、 ジト ルイルビ二ルビフエニル、 ひ —ナフチルフエニルジアミン等を挙げるこ とができる。
電荷輸送層は、 力ソードラインから注入された電子を発光層まで輸送 するものである。 電荷輸送層に使用可能な電荷輸送材料としては、 キノ リン、 ペリレン、 ビススチリル、 ピラジン、 またはこれらの誘導体を挙 げることができる。 具体的化合物としては、 8—ヒドロキシキノリンァ ルミ二ゥム、 アントラセン、 ナフタリン、 フエナントレン、 ピレン、 ク リセン、 ペリレン、 ブタジエン、 クマリン、 ァクリジン、 スチルベン、 ( 8—キノリノラト) アルミニウム錯体、 またはこれらの誘導体等を例 示することができる。
上面発光型の有機 E Lディスプレイの場合、 通常、 第 1 0 ¾に示すよ うに、 光反射材料電極層 2 4、 有機発光層パターン 2 2 (バッファ層 + ホール輸送層 +有機発光層を含む) 、 半透明反射層 2 5、 透明電極パ夕 —ン 2 3等を順次、 T F Tガラス素子基板 2 1の上に形成した後、 前面 パネルとなるガラス基板 2 6を UV硬化接着樹脂層 2 7等により接着し て有機 E L素子部分を密封する。 その後、 ガラス基板 2 6の上に粘着層 3 4を介して反射防止フィルム 2 8を貼り合わせることにより色表示に 優れた有機 E Lディスプレイを完成する。
しかしながら、 上記ガラス基板 2 6を用いた場合、 ディスプレイの薄 型化や軽量化が難しい。 そこで、 本発明では、 第 1 1図に示すように、 無機防湿層を有する反射防止フィルム 2 9をガラス基板 2 6を介するこ となく UV硬化接着樹脂層 2 7等により接着する。
上記用途の反射防止フィルム 2 9においては、 無機防湿層を設けるこ とが必要であり、 その構成例を第 1 2図に示す。 この反射防止フィルム 2 9では、 ポリエチレンテレフ夕レート (P ET) ゃトリアセチルセル ロース (TAC) 等で構成される有機べ一ス基板 3 0の上に、 無機防湿 層 3 1、 反射防止層 3 2及び防汚層 3 3が順次積層形成されている。 勿 論、 これに限らず、 例えば無機防湿層 3 1が有機ベース基板 3 0の反射 防止層 3 2が形成される面とは反対側の面に形成されていてもよい。 無機防湿層 3 1を構成する無機材料は、 防湿性やガスパリア性に優れ ることが必要であり、 光学特性の観点から有機ベース基板と近似する屈 折率を有することが好まし.い。 したがって、 無機防湿層 3 1の構成材料 としては、 S i〇2, S i〇x, S i OxNy, S i 3N4, S i xNy, A 1 203, A 1 xOy, A 1 OxNy (ただし、 x, yはいずれも任意の整 数である。 ) 等を例示することができる。 これらの 1種、 または 2種以 上を主成分として無機防湿層 3 1を形成すればよい。
また、 特に、 屈折率に関して言えば、 上述の有機べ一ス基板の屈折率 が 1. 4〜1. 5であることから、 無機防湿層 3 1の屈折率も 1. 4〜 2. 5の範囲であることが好ましい。 無機防湿層 3 1の屈折率が上記範 翻を越えて大きくなると、 界面での反射が問題になる。 無機防湿層 3 1 の屈折率は、 上記範囲内でなるべく小さいことが好ましく、 かかる観点 から S i 0 2や A Ϊ 23が好適である。
上記反射防止性能と防湿性能を併せ持たせた反射防止フィルムは、 上 面発光型以外の有機 E Lディスプレイにおいても有用である。 例えば、 下面発光型の有機 E Lディスプレイの場合、 第 1 3図に示すように有機 ベ一ス基板 4 1の上にストライプ状の透明電極 4 2を形成し、 第 1 4図 に示すように、 その上に所定の間隔で有機発光層パターン 4 3を形成す る。 さらに、 第 1 5図に示すように、 有機発光層パターン 4 3上に重な るように上記透明電極 4 2と直交する光反射材料電極層 4 4を形成する その後、 第 1 6図に示すように、 有機ベース基板 4 1とは反対側を封止 膜 4 5でカバ一すると同時に U V硬化樹脂 4 6で接着する (月刊デイス プレイ 200 1年 7月 V o l . 7 No . 7 1 1〜1 5 参照) 。
このような構造において、 上記無機防湿層と反射防止層を併せ持った 反射防止フィルムを単なる有機ベース基板に代わって上記有機ベース基 板 4 1として用いることにより、 .表面に形成された反射防止層の効果に より反射光の色の影響を受けることが少なく、 色再現性に優れた見やす い画面を実現することができる。
また、 上述の無機防湿層付き反射防止フィルム (A Rフィルム) は、 防湿性、 ガスパリア性、 光学特性に優れるばかりでなく、 例えば反射防 止層と有機物樹脂によるハードコート層との間に反射防止層より何倍も 厚い無機防湿層を有しているため、 表面の鉛筆硬度が高く (4 H〜 5 H ) 、 ディスプレイの耐傷性保護性能においても優れている。
(実施例)
以下、 本発明を適用した具体的実施例について説明する。
実施例 1 本発明の反射防止フィルムの膜構成のうち第 1例に相当する実施例と して、 下記構成の ARフィルムを作製した。
P E Tベース 1 8 8 urn/
ハ一ドコート層 6 [i /
S i〇x層 4 nm/
N b 2 O s層 1 5 n m/
S i O 2層 2 8 nm/
N b 2 O 5層 1 1 2 nm/
S i〇 2層 8 5 nm/
防汚層 5 nm
上記構成において、 Nb25層のスパッタリングは、 デュアルマグ ネト口ン方式のカソ一ドにて 2本の N bターゲット間に 40 KH zの交 流を印加して、 A r :酸素ガスの体積比 1 : 1、 ガス圧 0. l P aで実 施した。 このスパッ夕条件で、 T i 02層の成膜に比べて 2. 2倍の成 膜速度を実現することができた。
また、 S i Ox層の成膜は、 全光線透過率の減少量を 0. 5〜2.
5 %に保つように A r :酸素ガスの体積比 1 : 1を中心的な比としてコ ントロールしながらスパッタリングを実施した。 このとき、 S i〇xの Xの値は、 分析によると 0. 5以上から 2. 0未満の範囲が可能である が、 1. 0から 1. 8の範囲がより好ましい。 このような S i Ox層を 形成しない場合には、 第 3図に示す付着強度試験において剥がれが発生 し、 必要な付着強度が得られないことが判明した。
また、 S i 02層は、 スパッ夕条件として A r :酸素ガスの体積比を 1 : 1とし、 同様にデュアルマグネトロン方式の力ソードにて成膜した, さらにまた、 本実施例においては、 P E Tフィルムのベース上に紫外線 硬化型樹脂を用いてハードコート層を 6 mの厚さで形成した。 ハード コートのないときは、 鉛筆硬度 1 Hの硬度であつたが、 ハードコートの 形成により鉛筆硬度 3 Hの硬度を実現することができた。
ここで、 本実施例に対して従来例として、 下記構成の ARフィルムを 作製した。
P E Tベ一ス 1 8 8 n /
ハードコ一卜層 6 m/
S i 0 x層 4 n m/
I TO (8 3モル% l n 203— 1 7モル% S n 02組成) 層 2 1 η m/
S i〇 2層 3 2 nm/
I TO層 6 0 nm/
S i O 2層 9 5 nmZ
防汚層 5 nm
実施例 1と従来例のそれぞれの ARフィルムの分光透過率を第 1 7図 に、 分光反射率を第 1 8図に示す。 なお、 第 1 7図及び第 1 8図は、 分 光透過率及び分光反射率を微小なゆらぎを平均化した曲線にて簡便に示 すもので、 実施例 1を一点鎖線で、 従来例を実線で示している。 第 1 7 図から明らかなように、 実施例 1の ARフィルムは、 従来例のものと比 較して、 4 0 0 nmの光学波長において約 1 6 %の透過率改善が認めら れた。 これは、 I TO層と N b 2.05層との波長に対する光吸収特性の 違いによるものである。 一方、 第 1 8図から明らかなように、 実施例 1 の 5 0 0〜 6 0 0 nmの波長範囲における分光反射率は、 従来例とほと んど変わらない値を得ることができた。
上述したように、 本実施例においては、 硬度及び傷つき耐久性を確保 するために P ETベース上にハードコート層を形成し、 ハードコート層 への ARスパッ夕膜の付着強度を十分に保っために S i Ox層を形成し. 可視光波長領域における光透過率曲線を平坦にするために高屈折率酸化 物層として、 T i〇2の成膜速度よりも 2倍以上の速度で成膜が可能な N b 205膜を形成することにより、 生産性及び信頼性に優れた無色高 透明の ARフィルムを得ることができた。
実施例 2
本発明の反射防止フィルムの膜構成の第 2例に相当する実施例として, 下記構成の A Rフィルムを作製した。
P E Tベース 1 8 8 nm/
ハードコート層 6 urn/
S i Ox層 4 nm/
I T〇層 4 nm/
N b 2 O 5層 1 2 nm/
S i〇 2層 2 8 nm/
N b 25層 1 1 2 nm/
S i 02層 8 5 nmZ
防汚層 5 nm
上記構成において、 I TO層以外は実施例 1と同様にして形成したが、 I TO層は、 I TO夕一ゲットを用いて、 A r : 02の体積比 9 : 1の ガス雰囲気で成膜した。 その結果、 4 0 0 nm波長における透過率は、 実施例 1のものに比べて 1 %程度低下したが、 導電性として 1 X 1 04 Ω /口の値を得ることができ、 導電性の付与が可視光波長領域での透過 率特性の平坦性を損なうことなく可能であった。 これにより、 生産性及 び信頼性に優れた無色高透明の導電性を有する ARフィルムを得ること ができた。
なお、 実施例 1及び実施例 2ともに第 2図に示すスパッ夕装置にて A Rフィルムを成膜することができるが、 実施例 2の場合には、 第 2図に おいて 5基の力ソード 1 0 7のうち 1基目の部分をフィルム走行方向に おいて短い寸法の力ソード 2基と入れ替えて、 合計 6基の力ソード 1 0 7とすることにより、 1回のフィルムパスで 6層のスパッ夕膜を成膜す ることができる。 1層目の S i Ox膜及び 2層目の I TO膜は共に 4 n m程度の薄い層なので、 寸法の短い力ソードを用いても成膜は可能であ る。
実施例 3
本発明の反射防止フィルムの膜構成の第 3例に相当する実施例として, 下記構成の ARフィルムを作製した。
P ETベ一ス ΐ δ δ πιΖ
ハードコート層
S i〇x層 4 nm/
7 3モル% I n 203— 27モル% Z n〇組成の層 1 8 nmZ
S i〇 2層 2 8 nm/
Nb 205層 1 1 2 nm/
S i〇2層 8 5 nmZ
防汚層 5 nm
上記構成において、 7 3モル% I n 23— 27モル% Z n〇組成の 層は酸化物ターゲットを用い、 A r : 02の体積比 9 : 1のガス雰囲気 で成膜した。 成膜速度も I TO膜の場合とほぼ同等にすることができた c その他は実施例 1と同様にして ARフィルムを作製した。
実施例 3の分光透過率を第 1 9図に、 分光反射率を第 2 0.図にそれぞ れニ点鎖線で示す。 図中、 比較のため第 1 9図、 第 20図に従来例とし て示したものを実線にて示す。 第 1 9図から明らかなように、 実施例 3 の ARフィルムは、 高屈折率酸化物層をすベて I TOで形成した従来例 と比較して、 400 nmの光学波長において約 1 5 %の透過率の改善が 見られ、 40 0〜 6 5 0 nmの波長範囲における分光透過率のばらつき 幅は 5 %程度と大幅に縮小した。 一方、 第 2 0図から明らかなように、 実施例 3の 5 0 0〜 6 0 0 nmの波長範囲における分光反射率は、 従来 例とほとんど同等の値を得ることができた。 また、 導電性についても、 9 2 0 Ω /口の値を得た。
上述したように、 本実施例においては、 薄い高屈折率酸化物層に 7 3 モル% I n 203 - 2 7モル% Z n〇のような導電率の高い材料を用い 厚い高屈折率酸化物層にはより透明性に優れている Nb 205層を用い ることにより、 スパッタ膜構成として 5層のままで導電性、 高透明性及 び高信頼性を有する安価な A Rフィルムを得ることができた。
実施例 4
本発明の反射防止フィルムの膜構成の第 3例に相当する他の実施例と して、 下記構成の ARフィルムを作製した。
P ETベース 7 5 iim/
ハードコート層 6 n /
S i〇x層 5 nm/
7 8モル% I n 203— 1 2モル% S n〇2 _ 1 0モル%Mg〇組成の 層 1 8 n m/
S i〇2層 2 0 nm/
N b 2 O 5層 8 3 nmZ
S i〇 2層 8 5 nm/
防汚層 5 nm
また、 この実施例に対する従来例として、 下記構成の ARフィルムを 作製した。
P E Tベース 7 5 urn/
ハ一ドコート層 6 n / S i O x層 5 n m/
I TO層 1 5 nm/
S i 02層 2 0 nm/
I TO層 9 8 nm/
S i O 2層 8 5 nm/
防汚層 5 nm
実施例 4においては、 上記構成の従来例に比べて、 5 0 0〜 6 00 n mの波長範囲における分光反射率は同等であつたが、 40 0 nmの低波 長側における光線透過率は 1 2 %向上した。
なお、 第 3例に相当する実施例では、 高屈折率酸化物層に同一材料を 用いているが、 これに限定されるものではなく、 例えば一つの透明高屈 折率酸化物層のうちほぼ上半分の厚さを 7 8モル% I n23— 1 2モ ル% S n 02— 1 0モル%M g〇組成の酸化物膜とし、 下半分の厚さを 7 5モル% I n2Os - 1 2モル% S n〇2— 7モル%Mg〇一 6モル% T i 02組成の酸化物膜とすることも可能である。 この場合には、 実施 例 2の場合と同様に第 2図における力ソ一ド 1 0 7を 6基とすることで 対応することができる。
実施例 5
本発明の反射防止フィルムの膜構成の第 1例に相当する他の実施例と して、 下記構成の ARフィルムを作製した。
P ETベース 1 8 8 nm/
ハードコート層 6 /im/
S i Ox層 5 n /
Z r 02層 1 8 n m/
S i 02層 2 8 nm/
N b 205層 1 1 nm/ S i〇 2層 8 5 nm/
防汚層 5 nm
上記構成における、 Z r〇2以外の部分のスパッ夕条件は実施例 1と 同様とした。
又、 Z r 02の部分は Z r金属をターゲットとして用い、 やはり、 デ ュアルマグネト口ン方式のカソ一ドにて 2本の Z rターゲット間に 4 0 KH zの交流を印加して、 A r :酸素ガスの体積比 1 : 1、 ガス圧 0. 3 P aで実施した。
このように、 高屈折率層の一部を N b 205以外の Z r 02で置き換え ても実施例 1と同等の反射率特性を得ることができる事がわかった。 又. Z r 02層の成膜速度は同じ印加電力密度 1 5 WZ cm2で比較すると Nb 25層の成膜速度の 1 Z4であったが、 Z r〇2を用いた層の厚さ は Nb 205を用いた層の 1Z6以下である。 そのため、 第 2図に示さ れるようなフィルムスパッタ機により連続成膜をする場合のフィルム走 行速度は一番厚い N b 205層の成膜速度により規定されることになり、 生産性の観点からは、 大きな遜色はないことがわかった。 これにより、 高屈折率層の薄い方の層は、 T a 25, T i 〇2, Z r 02, Th 02, S i 3N4, Y203等の層に置き換えても本発明の利点を損なうもので はないことが明らかになった。
一方、 本発明は、 薄い有機基体フィルムの上に形成する場合を中心に 述べて来たが、 有機基体がプラスチック板と総称される、 厚さが例えば、 3 0 0 m以上ぐらいに厚いような板の上に形成される場合においても 有効である。 またアクリル樹脂の透明成型品や商品名アートン (J S R 株式会社製) 等の基板の表面からの反射を防止する場合にも本発明の反 射防止層は有効である。 このようなプラスチック基板上に上記と同様に して反射防止層を形成することにより、 反射防止層付きプラスチック基 板が得られる。
また、 基板上に、 Z r、 T i、 S i、 C r等の金属または合金ターゲ ットを用いた反応性スパッタリング法により Z r Ox (但し、 x= l〜 2 ) 、 T i〇x (但し、 x= l〜 2) 、 S i 〇x (伹し、 x= l〜 2 ) S i OxNy (但し、 x= l〜 2、 y = 0. 2〜 0. 6) 及び C r〇x (但し、 x= 0. 2〜 1. 5) から選択される少なくとも一種の材料か らなる酸化物層を形成することによって有機基体との付着強度を大きく 向上させることができるのは上に述べて来た ARフィルムの場合と同様 である。
又、 かかる有機基板の上にハ一ドコート層を形成する場合にも、 硬度 を上昇させた状態で反応性スパッ夕法による光学層の付着強度を向上さ せることができる点も上記と同様である。 そして本発明法により、 高屈 折率層の少なくとも一部を反応性スパッタ法による Nb 205層とする ことにより AR層形成速度が従来の T i 02を用いた場合に比べて 2〜 3倍になることも同様である。 これら、 プラスチック基板を用いる場合 には、 第 2図に示したようなロールフィルム用のスパッ夕機ではなく、 ガラス等の剛体基板用のスパッ夕機が適用されるのは言うまでも無い。 実施例 6, 7
本実施例は、 無機防湿層を形成した ARフィルムに係る実施例である 表面に 5 厚の有機物ハードコートを形成した 1 8 厚 P ET
(ボリエチレンテレフタレート) ベースの上に、 無機防湿層として S i 02と A 1 203からなる層をスパッタリング法により厚さ 2 だけ形 成した。 ,
そして、 その上に S i 02と^[1^ 205とからなる反射防止層 (Nb 2 O 5 : 1 5 nm/S i 02 : 2 8 nm/N b 25 : 1 1 2 nm/S i〇 2 : 8 5 nm) を形成し、 更に防汚層を形成した。 ここで、 無機防湿層 は、 屈折率がアクリル系八一ドコート層とほぼ同じ 1. 5〜 1. 6程度 になるように S i 02と A 1 203の割合を調整して形成した。 すなわち. S i と A 1 との混合重量比を 1 : 3. 9とした合金タ一ゲットを用いて A r— 5 0 %酸素ガス雰囲気中の反応性スパッタを行うことにより形成 したものである。
このようにして作製した無機防湿層を有する反射防止フィルム (実施 例 6) においては、 波長 45 0〜 6 5 0 nmにおける視感反射率 0.
3 %が得られた。
次に、 表面に 5 m厚の有機物ハードコートを形成した 1 8 8 m厚 P ET (ポリエチレンテレフ夕レート) ベースの上に、 無機防湿層とし て S i 02と A 1203からなる層を実施例 6と同様の方法で厚さ 4 m だけ形成し、 AR層、 防汚層の形成についても実施例 6と同様に形成し それを実施例 7とした。
比較用として、 無機防湿層を形成しないでハードコート層の上に 3 n m厚の S i Ox層を形成し、 その上に S i 02と Nb205とからなる反 射防止層 (N b 205 : 1 5 nm/S i〇2 : 28 nm/N b 25 : 1 1 2 nm/S i 02 : 8 5 nm) を形成したものを作製した (比較用サ ンプル) 。
これらの、 3種のサンプルの水分透過性を従来のガラス基板と比較す るに当たり、 第 2 1図に示したステンレス鋼製の容器 5 1を準備した。 この容器 5 1は、 5mm厚のステンレス鋼板を溶接により内容積として 2 0 0 X 2 00 X 80mmのフランジを有する容器である。 この容器 5 1の中に純水 52を 800 c c入れて、 無機防湿層付き ARフィルムを フランジ部 5 1 aに貼着し、 容器開口部を密封した。 ARフィルム 5 3 のフランジ部 5 1 aへの貼着は、 耐湿性 U V硬化接着剤 5 4を用いた U V硬化シール処理により行った。
第 2 2図には、 シール処理後の水分透過性を比較する時の状態を第 2 0図の C一 C '線位置における断面図にて示している。 A Rフィルム 5 3の上には、 ステンレス製格子状支持板 5 5を設け、 更に支持板保持方 向である矢印方向に力がかかるように馬蹄形ネジクランプを用いて加圧 保持を行った。
これら 3種のサンプル及び 0 . 7 mm厚のガラス板を用いて同様にス テンレス鋼製の容器を封じたものを準備して、 大気圧中、 1 0 0 °Cにて エイジングを行った。 各サンプル及びガラスについて、 ステンレス鋼製 の容器の初期の重量と各エイジング時間経過後の重量を精密秤量し、 そ の重量差の変化を記録したものが第 2 3図である。 1 0 0 °Cのエイジン グにより、 ステンレス容器内の圧力は上昇し、 水分の透過放出が加速さ れる。 又、 各サンプルやガラスは、 同様の方法によりステンレス容器フ ランジ部の接着硬化とクランプを行っているので、 重量減少速度を比較 する事により各サンプルフィルム及びガラスからの水分透過率の相対的 比較を行うことが可能である。
第 2 3図より、 1 8 8 m厚 P E T及び比較用サンプルの A Rフィル ムによりステンレス鋼製の容器を封じた場合の重量減少は、 実施例 6及 び実施例 7によりステンレス鋼製の容器の封じを行ったものよりも大き いことがわかる。 また、 実施例 6及ぴ実施例 7によりステンレス鋼製の 容器の封じを行ったものの水分透過放出による重量減少速度は、 共に 0 7 mmガラス板でステンレス鋼製の容器の封じを行ったものと同等であ ることがわかった。 すなわち、 U V硬化接着を行ったステンレス容器フ ランジ部からの水分透過放出による重量減少は、 実施例 6 , 実施例 7及 ぴ 0 . 7 mmガラス板の場合に同等に生じているが、 実施例 6及び実施 例 7自体を通しての水分放出は、 0. 7 mm厚のガラス同様にほとんど 観察されないことがわかった。
ごのことから、 実施例 6及び実施例 7の反射防止フィルムは、 反射防 止性能と鉛筆硬度と防湿性能とを併せ持つていることが明らかになつた さらに、 本発明の他の例として、 5 m厚の有機物ハードコートを形 成した 1 8 8 m厚 P ETの面に第 24図に示したイオン化 2元蒸着法 により、 無機防湿層として S i〇2と A 1203からなる層を 4 m厚形 成することも可能である。 すなわち、 第 24図の中で S i 02原料を入 れた坩堝 6 1と A 1 203原料を入れた坩堝 6 2をそれぞれの坩堝 6 1 6 2に対して装備された電子銃 6 3, 64により電子ビームを制御して
5 i 02と A 1 203のそれぞれの坩堝加熱温度を制御し、 S i 02と八 1 23の重量組成比が 1 : 3. 4となるような膜がクーリングドラム
6 5上を走行するフィルム 6 6上に蒸着形成できるようにした。
この重量比により、 屈折率 1. 5 5の S i 〇2— A 1203混合膜が形 成出来た。 このとき、 S i〇2及び A 1203を蒸着するための電子銃 6 3, 64としては、 3 0 k Vの加速電圧を用いた。 なお、 酸素との結合 を十分促進するため酸素ガス噴出しパイプ 6 7, 6 8を坩堝近傍に配置 する構成とした。 また、 そのとき抵抗 69 a及び直流電源 69 bが接続 された白金製の正電位イオン化リング 69に + 2 50 Vの電圧を印加す ることにより、 坩堝 6 1, 6 2より蒸発して来る S i 02及び A 1 23 に正の電荷を与えイオン化することができた。 また、 正電位イオン化リ ング 6 9に付着する S i〇2及び A 1 203膜は通電過熱により蒸発させ 堆積を避けてプロセスを進行させることができる。 さちにまた、 イオン プレーティング法のいくつかの種類として報告されている H CD方式 (Hoi low Cathode Discharge) や、 URT— I P法 (J. Vac. Soc. Jpn. Vol. 4, No.4, 2001 418〜427, 435〜439) を 適用することも可能である。
さらにまた、 反射防止層としての S i 02と N b 25とからなる反射 防止層 (S i Ox : 3 nm/N b 2 O 5 : 1 5 nmZS i O 2 : 2 8 nm /N b 205 : 1 2 nm/S i 02 : 8 5 nm) は、 低反射率特性と成膜 速度の両立という観点から特に優れた構成であるが、 本発明は Nb 25の一部を又は全部を他の高屈折率材料で置き換えた膜構成を排除す るものではない。 すなわち、 N b 25の薄い層を T a 205、 Z r O 2 S i 3N4、 T i 02、 更には I T〇と Mg O、 A 1 23等の混合酸化 物からなる高屈折率酸化物で置き換えても、 反射防止フィルムとしての 性能と防湿フィルムとしての性能を併せ持つフィルムを実現することは 可能である。
さらにまた、 上記の実施例においては P ETベースの片面にハ一ドコ ート層、 無機防湿層、 反射防止層等全てを設けた例を示したが、 ハード コート層、 例えば、 ポリメチルメタクリレート (PMMA) 、 シリコ一 ンァクリレート等の紫外線硬化処理を含むァクリレート系材料は、 表面 平滑性においても優れており表面突起が極めて少ないことから、 その上 に無機酸化物層の S i 02 · A 123混合層を形成する時に無機酸化物 層の緻密な成長を可能とするため、 バリァ性能においても優れている。 しかしながら、 AR層を形成する面とは反対側の面に無機防湿層を形成 する場合に用いる下地としてのハ一ドコート層は、 ディスプレイとして の表面側には無いため、 3 Hを越えるような硬度の高い層でなくても良 い。 すなわち、 表面平滑性があれば鉛筆硬度自体は必要ではないため、 ァクリレ一ト成分を少なくして平滑性重視の観点からシリコン系の平滑 材料成分を多くしたハードコート層としても良い。 反射防止 AR層と無 機防湿層をベースフィルムの同じ面に形成する方が鉛筆硬度も高く実現 できるが、 無機防湿層を反射防止層と反対側の面に形成することによつ ても、 3〜4Hの鉛筆硬度と防湿性能を併せ持つた本発明の A Rフィル 厶を実現できるものである。
さらにまた、 無機防湿層の材料としては、 S i 02, A 1203以外に S i〇x, S i〇xNy, S i 3N4, S i xNy, A 1 xOy, A 1 OxNy 等のスパッ夕膜、 または蒸着膜を用いることが可能である。
上記したように、 請求の範囲第 1項の発明によれば、 透明高屈折率酸 化物層として Nb25膜を用いることにより、 無色高透明でかつ安価 な反射防止フィルムを提供することができる。
また、 請求の範囲第 2項の発明によれば、 ハードコート層を形成した ベース上にハードコート層との付着性に優れた酸化物層を成膜すること により、 無色高透明でかつ硬度及び付着強度に優れた信頼性の高い反射 防止フィルムを安価に提供することができる。
また、 請求の範囲第 3項の発明によれば、 Nb 25からなる透明高 屈折率酸化物層と、 Nb25膜に I n 203及び S n〇2から選択され る少なくとも一種の金属酸化物からなる膜が積層された透明高屈折率酸 化物層とを有することにより、 帯電防止効果を有する無色高透明な反射 防止フィルムを安価に提供することができる。
また、 請求の範囲第 4項及び第 5項の発明によれば、 Nb 205から なる透明高屈折率酸化物層と、 I n23及び S n〇2から選ばれる少な くとも一種の金属酸化物成分に、 S i、 Mg、 A l、 Z n、 T i及び N bから選ばれる少なくとも一種の元素の酸化物成分が添加されてなる透 明高屈折率酸化物層とを有することにより、 帯電防止効果を有する無色 高透明な反射防止フィルムを安価に提供することができる。'
また、 請求の範囲第 6項の発明によれば、 Nb 205を用いる高屈折 率層以外の部分の高屈折率層に関して材料選択の自由度を増した状態で, 付着強度が高く、 スパッタ成膜速度が速い A R (反射防止) 膜構成を提 供することができる。
また、 請求の範囲第 7項の発明によれば、 本発明を厚さ 3 0 0 i m以 上のプラスチック基板、 またはハードコート層を表面に形成したプラス ティック基板等の基板に対して適用しても無色透明で、 かつ安価な反射 防止層付きプラスチック基板が得られる。
一方、 請求の範囲第 8項乃至第 1 3項の発明によれば、 有機材料から なる基体を用いた反射防止フィルムにおいて、 良好な防湿性、 ガスバリ ァ性を付与することができ; ガラス基板の併用が不要となる。 また、 光 学特性を損なうこともない。 その結果、 ディスプレイの薄型化、 軽量化 を実現することが可能である。 さらに、 請求の範囲第 1 4項の発明によ れば、 上記に加えて請求の範囲第 1項の発明の利点も付与される。 さらに、 請求の範囲第 1 5項及ぴ第 1 6項の発明によれば、 プラスチ ック基板、 またはハードコート層を表面に形成したプラスティック基板 等の有機材料からなる基体に適用することで、 光学特性に優れ、 良好な 防湿性やガスバリァ性を有し、 かつ安価な反射防止層付きプラスチック 基板が得られる。

Claims

請求の範囲
1. 基体上にハードコート層が形成され、 該ハードコート層上に透明 高屈折率酸化物層と透明低屈折率酸化物層が交互に積層されてなる反射 防止フィルムであって、 少なくとも一つの透明高屈折率酸化物層が、 反 応性スパッタリング法により形成された N b 205層で構成されている ことを特徴とする反射防止フィルム。
2. 前記ハードコート層上に、 Z r Ox (但し、 x= l〜2) 、 T i 〇x (伹し、 x= 1〜 2) 、 S i Ox (伹し、 X = 1〜 2 ) 、 S i OxN y (但し、 x=:!〜 2、 y = 0. 2〜 0. 6) 及び C r Ox (伹し、 x = 0. 2〜 1. 5) から選択される少なくとも一種の材料からなる酸化 物層が反応性スパッ夕リング法により形成されてなることを特徴とする 請求の範囲第 1項記載の反射防止フィルム。
3. 他の少なくとも一つの透明高屈折率酸化物層が、 Nb 205からな る膜と、 I n 203及び S n〇2から選択される少なくとも一種の金属酸 化物からなる膜とを有することを特徴とする請求の範囲第 1項記載の反 射防止フィルム。
4. 他の少なくとも一つの透明高屈折率酸化物層が、 I n23及び S n〇2から選ばれる少なくとも一種の金属酸化物を主成分として含有し S i、 Mg、 A ^ Z n、 T i及び N bから選ばれる少なくとも一種の 元素の酸化物成分を、 S i〇2、 Mg〇、 A 1 203、 Z n O、 T i 02 及び Nb 25に換算して 5モル%以上, 40モル%以下含有する酸化 物膜を有することを特徴とする請求の範囲第 1項記載の反射防止フィル ム。 '
5. 前記酸化物膜が、 前記酸化物成分を、 S i 02、 MgO、 A l 23、 Z nO、 T i 02及ぴ N b 205に換算して 1 0モル%以上, 3 0モ ル%以下含有することを特徴とする請求の範囲第 4項記載の反射防止フ ィルム。
6. 透明高屈折率酸化物層のうち、 Nb 205層以外の層の少なくとも 一層が T a 205, T i O 2, Z r〇2, Th02, S i 3N4, Y203か ら選ばれた層で形成されていることを特徴とする請求の範囲第 1項記載 の反射防止フィルム。
7. プラスチック基板上、 又はハードコート層を表面に形成したブラ • スチック基板上に、 透明高屈折率酸化物層と透明低屈折率酸化物層が交 互に積層された反射防止層が形成されてなる反射防止層付きプラスチッ ク基板において、 少なくとも一つの透明高屈折率酸化物層が、 反応性ス パッタリング法により形成された Nb 205層で構成されていることを 特徴とする反射防止層付きプラスチック基板。
8. 有機材料からなる基体上に透明高屈折率酸化物層と透明低屈折率 酸化物層が交互に積層されてなる反射防止層が形成されてなる反射防止 フィルムであって、 少なくとも基体の一方の面に接して上記有機材料と 近似する屈折率を有する無機防湿層が形成されていることを特徴とする 反射防止フィルム。
9. 上記無機防湿層は、 上記基体と反射防止層の間に形成されている ことを特徴とする請求の範囲第 8項記載の反射防止フィルム。
1 0. 上記基体上にハードコート層が形成され、 その上に上記反射防 止層が形成されていることを特徴とする請求の範囲第 8項記載の反射防 止フィルム。
1 1. 上記有機材料からなる基体は、 有機材料からなるベースフィル ムの表面に表面改質層を湿式塗布法により形成してなる構成を有するこ とを特徴とする請求の範囲第 8項記載の反射防止
1 2. 上記無機防湿層は、 S i〇2, S i〇x, S i OxNy, S i 3N 4, S i xNy, A 1203> A 1 xOy, A 1〇xNy (ただし、 x, yは いずれも任意の整数である。 ) から選ばれる少なくとも 1種を主成分と することを特徴とする請求の範囲第 8項記載の反射防止フィルム。
1 3. 上記無機防湿層の屈折率が 1. 4〜2. 1であることを特徴と する請求の範囲第 8項記載の反射防止フィルム。
14. 上記反射防止層は、 少なくとも一つの透明高屈折率酸化物層が, 反応性スパッタリング法により形成された N b 205層で構成されてい ることを特徴とする請求の範囲第 8項記載の反射防止フィルム。
1 5. プラスチック基板上、 又はハードコート層を表面に形成したプ ラスチック基板上に、 透明高屈折率酸化物層と透明低屈折率酸化物層が 交互に積層された反射防止層が形成されてなる反射防止層付きプラスチ ック基板において、 少なくともプラスチック基板の一方の面に接して当 該プラスチック基板と近似する屈折率を有する無機防湿層が形成されて いることを特徴とする反射防止層付きプラスチック基板。
1 6. 上記反射防止層は、 少なくとも一つの透明高屈折率酸化物層が、 反応性スパッ夕リング法により形成された N b 2 O 5層で構成されてい ることを特徴とする請求の範囲第 1 5項記載の反射防止層付きプラスチ ック基板。
PCT/JP2002/003825 2001-04-17 2002-04-17 Film antireflet et substrat plastique a couche antireflet apposee WO2002086559A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CNB028020340A CN100378469C (zh) 2001-04-17 2002-04-17 防反射薄膜以及带防反射层的塑料基片
EP02720470A EP1380857A4 (en) 2001-04-17 2002-04-17 ANTIREFLECTION FILM AND PLASTIC SUBSTRATE WITH ANTIREFLECTION LAYER APPLIED
US10/311,290 US20040005482A1 (en) 2001-04-17 2002-04-17 Antireflection film and antireflection layer-affixed plastic substrate

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2001118463 2001-04-17
JP2001-118463 2001-04-17
JP2001353265 2001-11-19
JP2001-353265 2001-11-19
JP2002-74033 2002-03-18
JP2002074033A JP2003215309A (ja) 2001-04-17 2002-03-18 反射防止フィルム及び反射防止層付きプラスチック基板

Publications (2)

Publication Number Publication Date
WO2002086559A1 true WO2002086559A1 (fr) 2002-10-31
WO2002086559B1 WO2002086559B1 (fr) 2002-12-27

Family

ID=27346547

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/003825 WO2002086559A1 (fr) 2001-04-17 2002-04-17 Film antireflet et substrat plastique a couche antireflet apposee

Country Status (6)

Country Link
EP (1) EP1380857A4 (ja)
JP (1) JP2003215309A (ja)
KR (1) KR20030038554A (ja)
CN (1) CN100378469C (ja)
TW (1) TW557364B (ja)
WO (1) WO2002086559A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100358710C (zh) * 2003-06-30 2008-01-02 东丽株式会社 硬涂层薄膜、防反射薄膜以及图像显示装置

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100510999B1 (ko) * 2002-07-22 2005-08-31 주식회사 하이닉스반도체 반도체 소자의 패턴 형성 방법
JP5022601B2 (ja) * 2003-12-18 2012-09-12 パナソニック株式会社 固体撮像装置
US20110110117A1 (en) * 2004-02-27 2011-05-12 Masashi Takai Optical member and backlight using the same
GB2423870B (en) * 2004-05-13 2009-02-11 Ulvac Inc Organic EL device and method for manufacturing organic EL device
CN100368828C (zh) * 2004-10-12 2008-02-13 精工爱普生株式会社 透镜及透镜的制造方法
CN100368099C (zh) * 2005-03-21 2008-02-13 四川世创达电子科技有限公司 Pdp保护屏的消除高光反射膜的制作方法
CN100468081C (zh) * 2005-06-03 2009-03-11 鸿富锦精密工业(深圳)有限公司 光学元件
JP5301766B2 (ja) * 2006-03-31 2013-09-25 株式会社ニデック 反射防止膜付透明基板
JP5186144B2 (ja) * 2006-07-18 2013-04-17 昭和電工株式会社 透明反射防止板
DE102008014900A1 (de) * 2008-03-19 2009-09-24 Rodenstock Gmbh Schichtsystem zur Beheizung optischer Oberflächen und gleichzeitiger Reflexminderung
JP2010092003A (ja) * 2008-09-11 2010-04-22 Toppan Printing Co Ltd 反射防止フィルム
JP5245893B2 (ja) * 2009-02-13 2013-07-24 凸版印刷株式会社 多層フィルムおよびその製造方法
US9214253B2 (en) 2009-10-26 2015-12-15 Jx Nippon Mining & Metals Corporation Sintered compact of indium oxide system, and transparent conductive film of indium oxide system
JP5595190B2 (ja) * 2010-08-31 2014-09-24 富士フイルム株式会社 機能性フィルムおよび機能性フィルムの製造方法
CN102033259A (zh) * 2010-11-15 2011-04-27 深圳市三利谱光电科技股份有限公司 超薄透过型液晶显示器用偏光片
JP5527482B2 (ja) * 2011-04-28 2014-06-18 旭硝子株式会社 反射防止積層体
JP5893271B2 (ja) * 2011-06-10 2016-03-23 オリンパス株式会社 反射防止膜、光学系、及び光学機器
KR101308480B1 (ko) * 2011-06-14 2013-09-16 엘지디스플레이 주식회사 플라스틱 유기 전계 발광 표시 장치 및 그 제조 방법
EP2753960B1 (en) * 2011-09-07 2016-12-07 Applied Materials, Inc. Method and system for manufacturing a transparent body for use in a touch panel
KR101392050B1 (ko) * 2012-01-06 2014-05-07 (주)엘지하우시스 시인성이 우수한 양면 투명 전도성 필름 및 그 제조 방법
EP2804026B1 (en) 2012-02-08 2017-03-22 Tokai Optical Co., Ltd. Optical product and method for manufacturing same
JP2015511759A (ja) * 2012-03-31 2015-04-20 オーシャンズ キング ライティング サイエンスアンドテクノロジー カンパニー リミテッド 有機エレクトロルミネッセンスデバイス及びその製造方法
CN107140827B (zh) * 2013-09-13 2020-06-05 康宁股份有限公司 具有保留的光学性质的耐划痕制品
WO2015179739A1 (en) 2014-05-23 2015-11-26 Corning Incorporated Low contrast anti-reflection articles with reduced scratch and fingerprint visibility
CN103995303B (zh) * 2014-05-29 2015-07-22 苏州胜利精密制造科技股份有限公司 一种智能终端增透保护片
JP5935931B2 (ja) * 2014-07-16 2016-06-15 旭硝子株式会社 カバーガラス
CN104216034B (zh) * 2014-09-02 2016-04-06 西安应用光学研究所 一种用于大曲率透镜表面的0.532微米与1.064微米倍频减反射膜
JP6582974B2 (ja) 2015-12-28 2019-10-02 Agc株式会社 カバーガラスおよびその製造方法
CN110168135B (zh) * 2017-01-12 2021-12-31 应用材料公司 硬涂层系统以及用于以连续卷绕式工艺制造硬涂层系统的方法
CN108205166A (zh) * 2017-12-04 2018-06-26 张家港康得新光电材料有限公司 一种光学膜及触控屏
CN108169826A (zh) * 2017-12-04 2018-06-15 张家港康得新光电材料有限公司 一种光学膜、ito膜及触控屏
CN108089246A (zh) * 2017-12-04 2018-05-29 张家港康得新光电材料有限公司 一种光学膜及触控屏及光学膜的制备方法
CN108385063B (zh) * 2018-03-30 2020-01-14 江西泽发光电有限公司 一种流沙纹理冰钻黑的镀膜方法
WO2019208240A1 (ja) * 2018-04-26 2019-10-31 三菱マテリアル株式会社 シールド層、シールド層の製造方法、及び、酸化物スパッタリングターゲット
CN109212645A (zh) * 2018-10-18 2019-01-15 苏州文迪光电科技有限公司 一种新型梯形滤光片
CN109212642A (zh) * 2018-10-19 2019-01-15 苏州文迪光电科技有限公司 一种新型滤光片结构
CN109212646B (zh) * 2018-10-19 2021-09-21 苏州文迪光电科技有限公司 一种滤光片镀膜方法
CN112444893A (zh) * 2019-09-03 2021-03-05 上海和辉光电有限公司 显示面板及其制造方法、显示装置
KR102431893B1 (ko) * 2019-11-26 2022-08-11 닛토덴코 가부시키가이샤 반사 방지 필름 및 그 제조 방법, 그리고 화상 표시 장치
CN115343787B (zh) * 2022-06-27 2024-05-28 四川虹基光玻新材料科技有限公司 Ar膜及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1062602A (ja) * 1996-08-26 1998-03-06 Toppan Printing Co Ltd 導電性反射防止膜
JPH10119162A (ja) * 1996-10-24 1998-05-12 Fujimori Kogyo Kk 光学用積層シート
JPH1164602A (ja) * 1997-08-25 1999-03-05 Toppan Printing Co Ltd 反射防止フィルム
JPH1186758A (ja) * 1997-07-11 1999-03-30 Fuji Photo Optical Co Ltd 導電性反射防止膜およびその製造方法
JPH11119002A (ja) * 1997-10-17 1999-04-30 Sony Corp 光学部品製造装置およびこれを用いた光学部品製造方法ならびに光学部品さらにこの光学部品を用いたプロジェクションテレビ
JPH11258405A (ja) * 1998-03-12 1999-09-24 Toppan Printing Co Ltd 反射防止フィルム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5744227A (en) * 1995-04-03 1998-04-28 Southwall Technologies Inc. Antireflective coatings comprising a lubricating layer having a specific surface energy
US5916684A (en) * 1997-12-22 1999-06-29 Applied Vacuum Technologies Co., Ltd. Simple process for anti-reflection coating with multiple metal films

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1062602A (ja) * 1996-08-26 1998-03-06 Toppan Printing Co Ltd 導電性反射防止膜
JPH10119162A (ja) * 1996-10-24 1998-05-12 Fujimori Kogyo Kk 光学用積層シート
JPH1186758A (ja) * 1997-07-11 1999-03-30 Fuji Photo Optical Co Ltd 導電性反射防止膜およびその製造方法
JPH1164602A (ja) * 1997-08-25 1999-03-05 Toppan Printing Co Ltd 反射防止フィルム
JPH11119002A (ja) * 1997-10-17 1999-04-30 Sony Corp 光学部品製造装置およびこれを用いた光学部品製造方法ならびに光学部品さらにこの光学部品を用いたプロジェクションテレビ
JPH11258405A (ja) * 1998-03-12 1999-09-24 Toppan Printing Co Ltd 反射防止フィルム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1380857A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100358710C (zh) * 2003-06-30 2008-01-02 东丽株式会社 硬涂层薄膜、防反射薄膜以及图像显示装置

Also Published As

Publication number Publication date
CN1463367A (zh) 2003-12-24
TW557364B (en) 2003-10-11
CN100378469C (zh) 2008-04-02
KR20030038554A (ko) 2003-05-16
JP2003215309A (ja) 2003-07-30
EP1380857A1 (en) 2004-01-14
EP1380857A4 (en) 2007-01-03
WO2002086559B1 (fr) 2002-12-27

Similar Documents

Publication Publication Date Title
WO2002086559A1 (fr) Film antireflet et substrat plastique a couche antireflet apposee
US20040005482A1 (en) Antireflection film and antireflection layer-affixed plastic substrate
CN100441639C (zh) 色移的含碳干涉颜料
US5783049A (en) Method of making antireflective coatings
TWI272314B (en) Optical antireflection film and process for forming the same
US6284382B1 (en) Antireflection film and manufacturing method thereof
EP2416185A2 (en) Optical article and optical article production method
JPH0980205A (ja) 光反射防止部材及びその作製方法、並びに陰極線管
JP3464785B2 (ja) 改良された反射防止複合材料
AU2493801A (en) Anti-static, anti-reflection coating
WO2006095632A1 (ja) エレクトロルミネッセンス素子及び照明装置
JP3679074B2 (ja) 透明積層フィルム、偏光板、液晶表示素子及び液晶表示装置
JP2022159380A (ja) 反射防止フィルム
JPH06102558B2 (ja) 色ガラス板
US6689479B2 (en) Anti-reflection film, and silica layer
JP2002371350A (ja) 透明積層体の製造方法
US20230258980A1 (en) Gas barrier film and wavelength conversion sheet
JPH0634801A (ja) 導電性反射防止膜
JP2003098306A (ja) 反射防止フィルム
JP3739478B2 (ja) 反射防止多層膜とその成膜方法並びにその成膜装置
JP2722509B2 (ja) 青色乃至緑色の反射色を呈する透明板およびその製造方法
JP2008001929A (ja) 反射防止積層体の製造方法、光学機能性フィルタおよび光学表示装置
JP2004255635A (ja) 透明積層フィルム、反射防止フィルム及びそれを用いた偏光板、液晶表示装置
JP7489164B2 (ja) 成分勾配無機層を有するフィルム、その製造方法およびディスプレイ装置
KR970000382B1 (ko) 저반사 코팅유리 및 그 제조방법

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

WWE Wipo information: entry into national phase

Ref document number: 1020027016847

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2002720470

Country of ref document: EP

AK Designated states

Kind code of ref document: B1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

B Later publication of amended claims
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 028020340

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020027016847

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10311290

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2002720470

Country of ref document: EP