WO2002082528A1 - Appareil contacteur pour dispositif semi-conducteur et procede de test dudit dispositif semi-conducteur - Google Patents

Appareil contacteur pour dispositif semi-conducteur et procede de test dudit dispositif semi-conducteur Download PDF

Info

Publication number
WO2002082528A1
WO2002082528A1 PCT/JP2001/002924 JP0102924W WO02082528A1 WO 2002082528 A1 WO2002082528 A1 WO 2002082528A1 JP 0102924 W JP0102924 W JP 0102924W WO 02082528 A1 WO02082528 A1 WO 02082528A1
Authority
WO
WIPO (PCT)
Prior art keywords
contactor
contact
semiconductor wafer
semiconductor
temperature
Prior art date
Application number
PCT/JP2001/002924
Other languages
English (en)
French (fr)
Inventor
Makoto Haseyama
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to JP2002580393A priority Critical patent/JP4794808B2/ja
Priority to CNB018226116A priority patent/CN1258212C/zh
Priority to PCT/JP2001/002924 priority patent/WO2002082528A1/ja
Priority to KR1020037009463A priority patent/KR100702021B1/ko
Priority to TW090108764A priority patent/TW510006B/zh
Publication of WO2002082528A1 publication Critical patent/WO2002082528A1/ja
Priority to US10/677,378 priority patent/US6975126B2/en
Priority to US11/247,245 priority patent/US7304487B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2886Features relating to contacting the IC under test, e.g. probe heads; chucks
    • G01R31/2887Features relating to contacting the IC under test, e.g. probe heads; chucks involving moving the probe head or the IC under test; docking stations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • G01R1/07307Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card
    • G01R1/07364Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card with provisions for altering position, number or connection of probe tips; Adapting to differences in pitch
    • G01R1/07371Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card with provisions for altering position, number or connection of probe tips; Adapting to differences in pitch using an intermediate card or back card with apertures through which the probes pass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2855Environmental, reliability or burn-in testing
    • G01R31/2872Environmental, reliability or burn-in testing related to electrical or environmental aspects, e.g. temperature, humidity, vibration, nuclear radiation
    • G01R31/2874Environmental, reliability or burn-in testing related to electrical or environmental aspects, e.g. temperature, humidity, vibration, nuclear radiation related to temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2855Environmental, reliability or burn-in testing
    • G01R31/286External aspects, e.g. related to chambers, contacting devices or handlers
    • G01R31/2865Holding devices, e.g. chucks; Handlers or transport devices

Definitions

  • the present invention relates to a contactor device, and more particularly to a contactor device for obtaining electrical contact with each of a plurality of semiconductor devices formed on a wafer.
  • Electrodes such as power supply electrodes and input / output signal electrodes are formed in each of the semiconductor devices. Therefore, in order to provide a test while driving the semiconductor device, it is necessary to make electrical contact with each semiconductor device. That is, it is necessary to make contact with an electrode provided on each semiconductor device.
  • the number of electrodes formed on one semiconductor device is as large as several hundreds in some cases. Further, 1 Q0 or more semiconductor devices are formed on one wafer. Therefore, in order to collectively contact the entire wafer, it is necessary to contact several hundred thousand electrodes at a time.
  • a contactor having contacts that individually contact each of the electrodes of the semiconductor device is used. Therefore, in order to collectively contact the semiconductor device in a wafer state, it is necessary to form the same number of contacts on the contactor as the number of electrodes on the wafer. That is, to test a wafer with several hundred thousand electrodes It is necessary to form hundreds of thousands of contacts on this contactor.
  • Very large pressures are required to contact such a large number of contacts at once. For example, if the contact pressure required for one contact is several grams, a contactor that obtains contacts all over the wafer must apply hundreds of kilograms of pressure.
  • a general object of the present invention is to provide an improved and useful semiconductor device testing contactor device and a semiconductor device testing method which solve the above-mentioned problems.
  • a more specific object of the present invention is to provide a contactor device that can be easily manufactured by reducing the number of contacts to be formed on one contactor and the number of pattern wirings.
  • a contactor device for obtaining electrical conduction with a plurality of semiconductor devices formed on a semiconductor wafer, comprising: The first contactor having a contact directly in contact with the terminal of the first system and the first terminal have an independent separate electric path and are movable with respect to the first contactor. Further, there is provided a contactor device comprising: a second contactor having a contact that is electrically connected to a second system terminal of the semiconductor device.
  • the contacts that contact the terminals formed on the semiconductor wafer can be distributed to the first contactor and the second contactor. Therefore, the number of pattern wirings formed on each of the first contactor and the second contactor is smaller than the number of all terminals on the semiconductor wafer, and the number of pattern wirings on the first contactor and the second contactor is smaller. Can be easily formed. Therefore, the present invention According to this, a contactor device for testing a semiconductor wafer on which a large number of terminals are formed can be easily manufactured.
  • the contactor device may include a moving mechanism for sequentially moving the second contactor to a position corresponding to the plurality of semiconductor devices.
  • the first contactor is formed by a membrane contactor.
  • the first contactor has an opening, and the portion of the second contactor where the contact is provided contacts the second terminal of the semiconductor device through the opening.
  • the first contactor has an extended contact extending from a surface of the first contactor facing the second contactor to a surface facing the semiconductor wafer;
  • the contact of the contactor is electrically connected to the second terminal of the semiconductor device by contacting the extended contact.
  • the semiconductor device may further include a suction mechanism for suctioning the first contactor to the semiconductor wafer.
  • the suction mechanism has a cassette on which the semiconductor wafer is mounted, an elastic seal member provided on the cassette, and a suction passage connected to a space defined by the cassette, the first contactor, and the elastic seal member.
  • the semiconductor wafer may be arranged in the space.
  • the contactor device according to the present invention has an elastic body disposed on a surface of the first contactor opposite to a surface facing the semiconductor wafer, and presses the first contactor via the elastic body. You can also add.
  • the contactor device includes a sheet having anisotropic conductivity disposed on a surface of the first contactor opposite to a surface facing the semiconductor wafer, and the second contactor is provided via a sheet. The contact may be pressed to the extended contact to make the contact conductive.
  • a protruding electrode is formed on the first system terminal and the second system terminal of the semiconductor wafer, and the contact of the first contactor has a concave surface having a shape corresponding to the shape of the protruding electrode. It may be in contact with the protruding electrode. Furthermore, the extended contact of the first contactor may have a recess that contacts the contact of the second contactor.
  • the contactor device according to this effort has a temperature control that controls the temperature of the semiconductor wafer. Even if you have control means.
  • the temperature control means has a fluid passage provided in the second contactor, and locally supplies the fluid at a predetermined temperature to the fluid passage to locally reduce the temperature of the semiconductor wafer. Temperature can be controlled. Further, the temperature control means may include a temperature sensor for detecting the temperature of the fluid discharged from the fluid passage, and may control the temperature of the fluid supplied to the fluid passage based on the output from the temperature sensor. According to another embodiment of the present invention, the temperature control means has a medium passage provided in a cassette on which the semiconductor wafer is mounted, and controls the temperature of the semiconductor wafer by flowing a medium having a predetermined temperature through the medium passage. can do. Further, the temperature control means has a medium passage provided in a temperature control unit to which a cassette to which the semiconductor wafer is attached is detachably attached, and allows a medium of a predetermined temperature to flow through the medium passage. You can also control the temperature.
  • a method for testing a plurality of semiconductor devices formed on a semiconductor wafer comprising: attaching a semiconductor wafer to a predetermined position of a cassette; Disposing a first contactor having a contact directly in contact with the formed power terminal on the semiconductor wafer and fixing the first contactor; and a second contactor for the signal terminal formed on the semiconductor device of the semiconductor wafer. Testing the semiconductor device by inputting a signal to the semiconductor via the second contactor and detecting a corresponding output while supplying power to the semiconductor device via the first contactor; And a test method.
  • the test step may include a step of sequentially testing the semiconductor devices while moving the second contactor. Further, the test step may include a step of performing the test while controlling the temperature of the semiconductor wafer via the second contactor. Further, the test step may include a step of performing the test while controlling the temperature of the semiconductor wafer via the cassette.
  • FIG. 1 is a sectional view showing the configuration of a contactor device according to a first embodiment of the present invention.
  • FIG. 2 is a view for explaining a configuration for moving the second contactor device of the contactor according to the first embodiment of the present invention.
  • FIG. 3 is a sectional view showing the configuration of a contactor device according to a second embodiment of the present invention.
  • FIG. 4 is a view for explaining a configuration for fixing the first contactor of the contactor device according to the second embodiment of the present invention.
  • FIG. 5 is a cross-sectional view illustrating a configuration of a contactor device according to a modification of the first embodiment of the present invention.
  • FIG. 6 is a sectional view showing a configuration of a contactor device according to a first modification of the second embodiment of the present invention.
  • FIG. 7 is a sectional view showing a configuration of a contactor device according to a second modification of the second embodiment of the present invention.
  • FIG. 8 is a sectional view showing a configuration of a contactor device according to a third modification of the second embodiment of the present invention.
  • 9A, 9B, and 9C are diagrams for explaining a semiconductor device test method using a contactor device according to a second embodiment of the present invention.
  • FIG. 10 is a cross-sectional view showing an example in which the second contactor is provided with temperature control means.
  • FIG. 11 is a cross-sectional view showing an example in which a temperature sensor is provided in the second contactor shown in FIG.
  • FIG. 12 is a sectional view showing an example in which a temperature control means is provided in a cassette for mounting a semiconductor wafer.
  • FIG. 13 is a cross-sectional view showing an example in which a medium passage is provided in a unit different from a cassette.
  • FIG. 1 is a sectional view showing the configuration of a contactor device according to a first embodiment of the present invention.
  • the contactor according to the first embodiment of the present invention includes a first contactor 2 and a second contactor 4, and is configured to contact a plurality of IC chips (semiconductor devices) in a wafer state.
  • the first contactor 2 is configured to cover substantially the entire surface of the semiconductor wafer 6.
  • the second contactor 4 is configured so as to individually contact each of the plurality of semiconductor devices formed on the substrate 6.
  • the first contactor 2 is constituted by, for example, a membrane contactor, and makes contact with a predetermined electrode of each IC chip in a wafer state.
  • the contacts of the first contactor 2 are arranged so as to contact the power supply electrode (power supply terminal) 6a of each IC chip. Therefore, each IC chip can be activated by supplying a voltage by contacting the first contactor 2.
  • the first contactor 2 has a contact 2b formed on the membrane by nickel-gold plating or the like. As described above, by using the first contactor 2 as a membrane contactor, the thickness of the contactor 2 is reduced, and when the second contactor 4 is moved as described later, the first contactor 2 is moved with a small vertical moving distance. Interference with the first contactor can be avoided.
  • the first contactor 2 has an opening 2a at a predetermined position, and the contact 4a of the second contactor 4 is connected to the signal electrode (signal terminal) 6b of the IC chip through the opening 2a. Can be contacted. That is, the openings 2a are arranged so as to be positioned above the signal terminals 6b of each IC chip, and the contact 4a of the second contactor 4 can contact the signal terminal 6b of each IC chip. it can.
  • the signal terminal 6b includes a signal input terminal and a signal output terminal.
  • the second contactor 4 has a protruding portion 4 b at which a portion where the contact 4 a is provided protrudes, and the protruding portion 4 b is inserted into the opening 2 a of the first contactor 2.
  • the contact 4a of the second contactor 4 is a so-called pogo pin type contact made of a pin that can be elastically moved by a coil spring or the like. Therefore, the contact 4a of the second contactor 4 can obtain a stable contact with a relatively large stroke.
  • the second contactor 4 sequentially moves to the next IC chip, for example, an adjacent IC chip, and takes contact.
  • the movement of the second contactor 4 is performed by the moving mechanism 7. 1
  • the structure of the moving mechanism 7 can be achieved by a known structure, and a description of the specific structure will be omitted.
  • the second contactor 4 shown in FIG. 1 is configured to contact a single IC chip, the second contactor 4 has a number of contacts corresponding to a plurality of IC chips. It may be. By doing so, a test can be performed simultaneously on a plurality of IC chips, the number of movements of the second contactor 4 can be reduced, and the test time can be shortened.
  • FIG. 2 is a view for explaining a configuration for moving the second contactor of the contactor device according to the first embodiment of the present invention.
  • the first contactor 2 shown in FIG. 2 is a membrane contactor, and has a contact 2 a at a position corresponding to a power supply terminal of each IC chip of the semiconductor wafer 6.
  • the second contactor 4 shown in FIG. 2 is configured to be able to contact the signal terminals 6b of two IC chips at a time.
  • the first contactor 2 is placed on the wafer 6, and a contact is made to the power supply terminal 6a of each IC chip, and each IC chip is activated by supplying a voltage.
  • contact the contact 4a of the second contactor 4 with the signal terminal 6b of the IC chip to be tested supply a signal to a predetermined signal input terminal, and measure the output of the signal output terminal.
  • the second contactor 4 is moved onto two adjacent IC chips to make contact, and the test is performed in the same manner.
  • the contactor is divided into the first contactor 2 that contacts the power supply terminal 6a and the second contactor 4 that contacts the signal terminal 6b. Since it achieves the function as one contactor, the contacts provided corresponding to the terminals formed on the entire semiconductor wafer 6 are connected to the first contactor. It can be distributed to the contactor 2 and the second contactor 4. Therefore, the number of contacts required for each of the first contactor 2 and the second contactor 4 is smaller than the number of terminals formed on the entire wafer, and the pattern wiring connecting the contacts is easily formed in a small area. be able to.
  • FIG. 3 is a sectional view showing the structure of a contactor device according to a second embodiment of the present invention.
  • parts that are the same as the parts shown in FIG. 2 are given the same reference numerals, and descriptions thereof will be omitted.
  • the contactor device includes a first contactor 8 and a second contactor 4 as in the above-described first embodiment.
  • the second contactor 8 does not have the opening 2a.
  • the second contactor 8 has a contact 8 a that contacts the power supply terminal 6 a of the semiconductor wafer 6.
  • the contact 8 a provided on the first contactor 8 extends in the thickness direction of the first contactor 8.
  • One end of the contact 8 a is arranged so as to contact the signal terminal 6 b of the semiconductor wafer 6, and the other end is exposed on the surface of the first contactor 8.
  • the contact 4a of the second contactor 4 is in contact with the exposed portion of the contact 8a of the first contactor 8.
  • the signal terminal 6b of the semiconductor wafer 6 is electrically connected to the contact 4a of the second contactor 4, and the contact by the second contactor 4 can be achieved.
  • the first contactor 8 has the same number of contacts 8a and 8b as the number of terminals 6a and 6b of the semiconductor wafer 6, but the contactor 8a has Since no signal is input from the first contactor 8, it is not necessary to provide a pattern wiring for the contact 8b in the first contactor 8. That is, the contact 8b is arranged between the contact 4a of the second contactor and the signal terminal 6b of the semiconductor wafer, and is provided to make them conductive.
  • FIG. 4 is a view for explaining a configuration for fixing the first contactor 8 of the contactor device according to the second embodiment of the present invention.
  • the first contactor 8 shown in FIG. 4 is a membrane contactor, and has a contact 8 b at a position corresponding to the power supply terminal 6 a of each IC chip on the semiconductor wafer 6.
  • the second contactor 4 shown in FIG. 4 is configured so as to be able to contact the signal terminals 6b of two IC chips at a time.
  • the semiconductor wafer 6 is placed on the cassette 10 of the test apparatus.
  • An O-ring 12 having a diameter larger than the outer diameter of the semiconductor wafer 6 but smaller than the outer diameter of the first contactor 8 is attached to the cassette 10.
  • the semiconductor wafer 6 is accommodated in a concave portion 10 a formed inside the O-ring 12, and a first contactor 8 is arranged so as to cover the semiconductor wafer 6 and the O-ring 12 from above.
  • the O-ring 12 is an elastic sealing member formed of a heat-resistant material such as silicon rubber.
  • the first contactor 8 is positioned so that the contacts 8a and 8b of the first contactor 8 make contact with the power supply terminal 6a and the signal terminal 6b on the wafer 6. Then, the space defined between the first contactor 8, the semiconductor wafer 6, and the O-ring 12 is evacuated. That is, the cassette 10 is provided with a suction passage 10b for evacuation, and by connecting a vacuum pump (suction pump) to the suction passage 10b, the space is maintained at a negative pressure. Therefore, the first contactor 8 is pressed entirely toward the semiconductor wafer 6 by the atmospheric pressure (ie, the first contactor 8 is sucked toward the semiconductor wafer 6), and the cassette 10 (ie, the semiconductor wafer 6) is pressed.
  • the contacts 8a and 8 of the first contactor 8 reliably contact the power supply terminal 6a and the signal terminal 6b on the semiconductor wafer 6.
  • the above-described cassette 10, the O-ring 12, and the suction passage 10b provided in the cassette 10 constitute a suction mechanism.
  • a power supply voltage is supplied to the power supply terminal 6a of each of the IC chips via the first contactor 8, so that each of the IC chips is activated.
  • the contact 4a of the second contactor 4 is contacted with the contact 8a that is in contact with the signal terminal 6b (signal input terminal) of the IC chip to be tested, and a predetermined signal is supplied.
  • Terminal 6 b (Signal output terminal) Test the IC chip by measuring the output of the power.
  • the second contactor 4 is moved over two adjacent IC chips to make contact, and the test is performed in the same manner.
  • the contactor is divided into the first contactor 8 that contacts the power supply terminal 6a and the second contactor 4 that contacts the signal terminal 6b. Since the function as one contactor is achieved, contacts to all terminals formed on the entire semiconductor wafer 6 can be divided into the first contactor 8 and the second contactor 4. Therefore, the number of pattern wirings to be formed on the first contactor 8 is smaller than the number of terminals formed on the entire wafer. Further, the number of contacts required for the second contactor 4 is smaller than the number of terminals formed on the entire wafer, and the number of pattern wirings formed is also reduced. Therefore, the pattern wiring connected to the contact corresponding to the terminal formed on the semiconductor wafer 6 can be easily formed by distributing the pattern wiring to the first contactor 8 and the second contactor 4.
  • FIG. 5 is a cross-sectional view showing a configuration of a contactor device according to a modification of the first embodiment described above.
  • the contactor shown in FIG. 5 has a structure in which an elastic plate 14 made of silicon rubber, plastic, or the like is provided on the first contactor 2, and a pressing plate 16 made of a rigid body is provided thereon. By pressing the pressing plate 16 toward the semiconductor wafer 6, the contact pressure of the first contactor 2 can be easily obtained by utilizing the elasticity of the elastic plate 14.
  • openings 14 a and 16 a are provided in the elastic raw plate 14 and the holding plate 16 at positions corresponding to the openings 2 a of the first contactor 2, respectively.
  • FIG. 6 is a cross-sectional view showing a configuration of a contactor device according to a first modification of the second embodiment described above.
  • an elastic plate 18 having an anisotropic conductive layer is provided on a first contactor 8. That is, by pressing the contact 4 a of the second contactor 4 via the elastic plate 18 having anisotropic conductivity to the contact 8 a in contact with the signal terminal 6 b of the semiconductor wafer 6, Contactor 4 contact 4a Conduction with the signal terminal 6b of the semiconductor wafer can be easily achieved.
  • the contact 4a of the second contactor 4 does not need to be a pogo pin type, but may be a fixed pin. Further, a holding plate having an opening as shown in FIG. 5 may be provided on the elastic plate 18 to press a portion corresponding to the contact 8b.
  • FIG. 7 is a cross-sectional view illustrating a configuration of a contactor device according to a second modification of the above-described second embodiment.
  • the illustration of the second contactor 4 is omitted.
  • the contactor shown in FIG. 7 is used when a protruding electrode 6c such as a solder ball is formed on electrodes 6a and 6b of an IC chip of a semiconductor wafer 6. That is, the tips of the contacts 8Aa and 8Ab of the first contactor 8A shown in FIG. 7 are machined into a shape that conforms to the rounded shape of the protruding electrode 6c. As a result, a contact with a large contact area can be achieved without damaging the projection electrode 6c.
  • a protruding electrode 6c such as a solder ball
  • the shape of the contact 8Ab can be applied to the contact 2b provided in the first contactor 2 shown in FIG. That is, when a protruding electrode is formed on the electrode of the semiconductor wafer shown in FIG. 1, the tip of the contact 2b provided on the first contactor 2 has the same shape as the contact 8Ab. . In this case, it is preferable that the tip of the contact 4a of the second contactor 4 has the same shape as the contact 8Ab.
  • FIG. 8 is a cross-sectional view showing a configuration of a contactor device according to a third modification of the above-described second embodiment.
  • the contactor shown in FIG. 8 is one in which a contact 8Ba of the first contactor 8B has a concave portion formed on the surface on the second contact 4 side.
  • the tip of the contact point 4a of the second contactor 4 has a convex shape corresponding to the concave portion of the contact 8Ba.
  • a concave portion is formed in the contact 8Ba and the tip of the contact 4a is made convex, but a concave portion is formed in the tip of the contact 4a and the contact 8Ba is made convex.
  • the same effect can be obtained even if the shape is adopted.
  • FIGS. 9A, 9B, and 9C a test method using the contactor device according to the above-described first or second embodiment will be described with reference to FIGS. 9A, 9B, and 9C. Examples shown in Fig. 9A, 9B, 9C Uses the contactor according to the second embodiment, but the test method is the same for the contactor according to the first embodiment.
  • a first contactor 8 and a second contactor 4 are prepared.
  • the semiconductor wafer 6 on which the IC chip to be tested is formed is placed in the recess 10a of the cassette 10. Thereby, the alignment of the semiconductor wafer 6 is performed.
  • the first contactor 8 is pressed against the semiconductor wafer 6. That is, the contacts 8a and 8b of the first contactor 8 are brought into contact with the power supply terminal 6a and the signal terminal 6b of the semiconductor wafer 6 with respect to 6b. Then, the contact 4 a of the second contactor 4 is brought into contact with the contact 8 a of the first contactor 8 to make the second contactor 4 and the IC chip of the semiconductor wafer 6 conductive. As a result, a signal can be supplied to the input signal terminal of the IC chip via the second contactor 4, and the output from the output terminal with respect to the input can be checked. Then, the test is sequentially performed on the IC chips of the semiconductor wafer 6 while moving the second contactor 4.
  • FIG. 10 is a cross-sectional view showing an example in which the second contactor 4 is provided with temperature control means. That is, the second contactor 4 shown in FIG. 10 is provided with an air passage 4c for supplying temperature-controlled air.
  • the air passage 4c is connected to the blower 20 and the air supplied from the blower 20 is discharged from the second contactor 4 through the air passage 4c.
  • the air supplied to the air passage 4c is heated or cooled by a heating device such as an electric heater or a cooling device 22 and supplied to the air passage 4c.
  • a heating device such as an electric heater or a cooling device 22
  • the heating device and the cooling device can be realized by one device.
  • the discharge port of the air passage 4c is arranged at a position directly above the IC to be tested of the first contactor 8. Therefore, the IC chip contacted by the second contactor 4 is heated or cooled by the air discharged from the air passage 4c. Is done. As a result, the temperature of only the IC to be tested can be controlled, and a wider range of test temperature conditions can be set.
  • FIG. 11 is a cross-sectional view showing an example in which a temperature sensor 24 is provided in the second contactor 4 shown in FIG.
  • the temperature sensor 24 is disposed near the discharge port of the air passage 4c, and detects the temperature of the air discharged from the discharge port.
  • the output from the temperature sensor 24 is sent to a heating device or a cooling device 22.
  • the heating device or the cooling device 22 controls the temperature of the air from the blowing device 20 based on the output from the temperature sensor 24. Therefore, the temperature of the air discharged from the air passage 4c is accurately controlled by the feedback control based on the output from the temperature sensor 24. Thereby, the temperature of the IC chip tested by the second contactor 4 can be accurately controlled.
  • the temperature-controlled air is supplied to the second contactor 4, but a predetermined gas such as an inert gas or nitrogen is used instead of the air. It may be supplied.
  • the blowing device 20 is replaced with a gas supply source of a predetermined gas supplied to the heating device or the cooling device 22.
  • FIG. 12 is a sectional view showing an example in which a temperature control means is provided in a cassette for mounting the semiconductor wafer 6. That is, the cassette 1OA shown in FIG. 12 is provided with a medium passage 26 through which a medium (for example, a refrigerant) for controlling the temperature of the semiconductor wafer 6 flows. A medium controlled at a predetermined temperature is supplied from a medium supply device 28 to a supply port 26 a of the medium passage 26. The medium flows through the medium passage 26 and is discharged from the outlet 26b.
  • a medium for example, a refrigerant
  • the temperature of the cassette 1OA is controlled by the medium flowing through the medium passage 26, and thereby the temperature of the semiconductor wafer 6 attached to the cassette 1OA is also controlled. Therefore, by controlling the temperature of the medium supplied from the medium supply device 28, the temperature of the semiconductor wafer 6 can be controlled.
  • FIG. 13 is a cross-sectional view showing an example in which a medium passage is provided in a unit different from a cassette. That is, in FIG. 13, the medium passage 26 is provided in the temperature control unit 30, and the cassette 10 is detachably attached to the temperature control unit 30. According to the example shown in FIG. 13, since the medium passage 26 is not provided in the cassette 10, the cassette 10 can have a simple structure.
  • the IC chip to be tested by the second contactor 4 can be controlled while controlling the temperature of the entire semiconductor wafer 6. Further temperature control can be performed locally. As a result, the IC used for the test can accurately control the chip temperature.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)

Description

明細書 半導体装置用コンタクタ装置及び半導体装置の試験方法 技術分野
本発明はコンタクタ装置に係り、 特にゥェハ上に形成された複数の半導体装置 の各々に対して電気的コンタクトを得るコンタクタ装置に関する。 背景技術
近年、 半導体装置の製造工程において、 ウェハ状態のまま半導体装置の試験を 行うことにより半導体装置の製造工程を簡略化する技術が開発されている。 この ような技術によれば、 一枚のウェハ上に形成した複数の半導体装置をウェハ状態 のままで各種半導体試験に供し、 パッケージングまで行う。 そして、 ウェハ状態 でパッケージングした半導体装置の各々を分離する。 このような技術によれば、 半導体装置をロット毎に管理することができる。 また、 不良半導体装置のパッケ 一ジングに費やされるコストを削減することができる。
一枚のゥ ハ上には多数の半導体装置が整列した状態で形成される。 半導体装 置の各々には電源供給用電極や入出力信号用電極のような電極が形成される。 し たがって、 半導体装置を駆動しながら試験に供するためには、 各半導体装置に対 して電気的コンタクトをとる必要がある。 すなわち、 各半導体装置上に設けられ た電極にコンタクトをとる必要がある。
一つの半導体装置に形成される電極の数ほ多レ、場合には数百個にもなる。 また 、 1枚のウェハには 1 Q 0個以上の半導体装置が形成される。 したがって、 ゥェ ハ全体に対して一括でコンタクトをとるには、 多い場合では数 1 0万個もの電極 に対して一度にコンタクトをとらなければならない。 一般的に、 半導体装置の電 極にコンタクトをとるには、 半導体装置の電極の各々に個別に接触する接点を有 するコンタクタが用いられる。 したがって、 ウェハ状態の半導体装置に一括して コンタクトをとるには、 ウェハ上の電極の数と同じ数の接点をコンタクタ上に形 成する必要がある。 すなわち、 数 1 0万個の電極を有するウェハを試験するため のコンタクタには、 数 1 0万個もの接点を形成する必要がある。
このように多数の接点を一括してコンタクトするには、 非常に大きな圧力を必 要とする。 例えば、 一つの接点に必要なコンタクト圧が数グラムであったとする と、 ウェハ全体を一括してコンタクトを得るコンタクタでは数百キログラムもの 圧力を加えなければならなレ、。
また、 数 1 0万個もの接点をコンタクタ上に形成した場合、 これらの接点と外 部端子とを電気的に接続するパターン配線をコンタクタ上に設ける必要がある。 しかし、 パターン配線を引き回すには大きな面積を必要とし、 このような多数の パターン配線を 1つのコンタクタ上に形成するのは困難であるといった問題があ る。 発明の開示
本発明の総括的な目的は、 上述の問題を解消した改良された有用な半導体装置 試験用コンタクタ装置及び半導体装置試験方法を提供することである。
本発明のより具体的な目的は、 一つのコンタクタに形成すべき接点の数を減ら してパターン配線の数を減らすことにより容易に製造可能なコンタクタ装置を提 供することである。
上述の目的を達成するために、 本発明の一つの面によれば、 半導体ウェハ上に 形成された複数の半導体装置に対して電気的な導通を得るためのコンタクタ装置 であって、 半導体装置の第一系統の端子に直接接触する接点を有する第 1のコン タクタと、 第 1の端子とは電気的経路が独立した別経路となっており、 第 1のコ ンタクタに対して移動可能であり、 半導体装置の第二系統の端子と導通する接点 を有する第 2のコンタクタとを有することを特徴とするコンタクタ装置が提供さ れる。
上述の発明によれば、 半導体ウェハに形成される端子にコンタクトをとる接点 を、 第 1のコンタクタと第 2のコンタクタに分配することができる。 このため、 第 1のコンタクタ及ぴ第 2のコンタクタの各々に形成するパターン配線の数は、 半導体ウェハの全ての端子の数より少なくなり、 第 1のコンタクタ及ぴ第 2のコ ンタクタのパターン配線を容易に形成することができる。 したがって、 本発明に よれば、 非常に多くの端子が形成された半導体ウェハの試験を行なうためのコン タクタ装置を容易に製造することができる。
本発明によるコンタクタ装置は、 第 2のコンタクタを複数の半導体装置に対応 する位置に順次移動させる移動機構を有することとしてもよい。 また、 第 1のコ ンタクタはメンブレンコンタクタにより形成することが好ましい。
本発明の一実施例において、 第 1のコンタクタは開口を有し、 第 2のコンタク タの接点が設けられた部分が開口を通じて半導体装置の第二系統の端子に接触す る。
また、 本発明の他の実施例において、 第 1のコンタクタは第 1のコンタクタの 第 2のコンタクタに対向する面から半導体ウェハに対向する面まで延在する延在 接点を有し、 第 2のコンタクタの接点は前記延在接点に接触することにより半導 体装置の第二系統の端子と導通する。 第 1のコンタクタを半導体ウェハに対して 吸引する吸引機構を更に有することとしてもよい。 吸引機構は、 半導体ウェハが 取り付けられるカセットと、 カセットに設けられた弾性シール部材と、 カセット と第 1のコンタクタと弾性シール部材とにより画成される空間に接続された吸引 通路とを有し、 半導体ウェハはその空間内に配置されることとしてもよレ、。 また、 本発明によるコンタクタ装置は、 第 1のコンタクタの半導体ウェハに対 向する面とは反対側の面に配置された弾性体を有し、 弾性体を介して第 1のコン タクタに押圧力を加えることとしてもよレ、。
さらに、 本発明によるコンタクタ装置は、 第 1のコンタクタの半導体ウェハに 対向する面とは反対側の面に配置された異方導電性を有するシートを有し、 シー トを介して第 2のコンタクタの接点を延在接点に押圧することにより接点を接点 に導通させることとしてもよい。
また、 半導体ウェハの第一系統の端子及び第二系統の端子には突起電極が形成 されており、 第 1のコンタクタの接点は突起電極の形状に対応した形状の凹面を 有し、 該凹面が突起電極に接触することとしてもよい。 さらに、 第 1のコンタク タの延在接点は、 第 2のコンタクタの接点と接触する凹部を有することとしても よい。
また、 本努明によるコンタクタ装置は、 半導体ウェハの温度を制御する温度制 御手段を有することとしてもよレ、。
本発明の一実施例によれば、 温度制御手段は、 第 2のコンタクタに設けられた 流体通路を有しており、 流体通路に所定温度の流体を供給することにより半導体 ウェハの温度を局所的に温度制御することができる。 また、 温度制御手段は、 流 体通路から吐出される流体の温度を検出する温度センサを有し、 温度センサから の出力に基づいて流体通路に供給する流体の温度を制御することとしてもよい。 本発明の他の実施例によれば、 温度制御手段は、 半導体ウェハが取り付けられ るカセットに設けられた媒体通路を有し、 媒体通路に所定温度の媒体を流すこと により半導体ウェハの温度を制御することができる。 また、 温度制御手段は、 半 導体ウェハが取り付けられるカセットが離脱可能に取り付けられる温度制御ュニ ットに設けられた媒体通路を有し、 媒体通路に所定温度の媒体を流すことにより 半導体ウェハの温度を制御することとしてもよレ、。
また、 本発明の他の面によれば、 半導体ウェハに形成された複数の半導体装置 を試験する方法であって、 半導体ウェハをカセットの所定の位置に取り付けるェ 程と、 半導体ウェハの半導体装置に形成された電源端子に直接接触する接点を有 する第 1のコンタクタを前記半導体ウェハ上に配置して固定する工程と、 半導体 ウェハの半導体装置に形成された信号端子に対して第 2のコンタクタの接点を導 通させる工程と、 第 1のコンタクタを介して半導体装置に電源を供給しながら第 2のコンタクタを介して半導体に信号を入力してそれに対応する出力を検出する ことにより半導体装置の試験を行なう工程とを有することを特徴とする試験方法 が提供される。
上述の発明において、 試験工程は、 第 2のコンタクタを移動しながら半導体装 置を順次試験する工程を含むこととしてもよい。 また、 試験工程は、 第 2のコン タクタを介して半導体ウェハの温度を制御しながら試験を行なう工程を含むこと としてもよい。 さらに、 試験工程は、 カセットを介して半導体ウェハの温度を制 御しながら試験を行なう工程を含むこととすることもできる。
本発明の他の目的、 特徴及ぴ利点は添付の図面を参照しながら以下の詳細な説 明を読むことにより、 一層明瞭となるであろう。 図面の簡単な説明
図 1は本発明の第 1実施例によるコンタクタ装置の構成を示す断面図である。 図 2は本発明の第 1実施例によるコンタクタの第 2のコンタクタ装置を移動す る構成を説明するための図である。
図 3は本発明の第 2実施例によるコンタクタ装置の構成を示す断面図である。 図 4は本発明の第 2実施例によるコンタクタ装置の第 1のコンタクタを固定す る構成を説明するための図である。
図 5は本発明の第 1実施例の変形例によるコンタクタ装置の構成を示す断面図 である。
図 6は本発明の第 2実施例の第 1の変形例によるコンタクタ装置の構成を示す 断面図である。
図 7は本発明の第 2実施例の第 2の変形例によるコンタクタ装置の構成を示す 断面図である。
図 8は本発明の第 2実施例の第 3の変形例によるコンタクタ装置の構成を示す 断面図である。
図 9 A, 9 B , 9 Cは本発明の第 2の実施例によるコンタクタ装置を用いた半 導体装置試験方法を説明するための図である。
図 1 0は第 2のコンタクタに温度制御手段を設けた例を示す断面図である。 図 1 1は図 1 0に示す第 2のコンタクタに温度センサを設けた例を示す断面図 である。
図 1 2は半導体ウェハを取り付けるカセットに温度制御手段を設けた例を示す 断面図である。
図 1 3はカセットとは異なるュニットに媒体通路を設けた例を示す断面図であ る。 発明を実施するための最良の形態
以下に、 本発明の実施例について図面を参照しつつ説明する。 なお、 図中同等 の構成部品には同じ符号を付す。
図 1は本発明の第 1実施例によるコンタクタ装置の構成を示す断面図である。 本発明の第 1実施例によるコンタクタは、 第 1のコンタクタ 2と第 2のコンタク タ 4とにより構成され、 ウェハ状態の複数の I Cチップ (半導体装置) に対して コンタクトをとるよう構成されている。 第 1のコンタクタ 2は半導体ウェハ 6の 略全面を覆うように構成される。 一方、 第 2のコンタクタ 4はゥヱハ 6上に形成 された複数の半導体装置の各々に対して個別にコンタクトを得るよう構成されて レヽる。
図 1に示すように、 第 1のコンタクタ 2は、 例えばメンブレンコンタクタによ り構成され、 ウェハ状態の各 I Cチップの所定の電極に対してコンタクトをとる 。 本実施例の場合、 第 1のコンタクタ 2の接点は、 各 I Cチップの電源用電極 ( 電源端子) 6 aにコンタクトをとるように配列されている。 したがって、 第 1の コンタクタ 2をコンタクトさせて電圧を供給することにより、 各 I Cチップを作 動状態とすることができる。
なお、 第 1のコンタクタ 2はメンブレン上にニッケルゃ金メツキ等により接点 2 bを开成したものである。 このように、 第 1のコンタクタ 2をメンブレンコン タクタとすることによりコンタクタ 2の厚さが減少し、 後述するように第 2のコ ンタクタ 4を移動する際に、 小さな垂直方向の移動距離で第 1のコンタクタとの 干渉を回避することができる。
第 1のコンタクタ 2は、 所定の位置に開口 2 aを有しており、 第 2のコンタク タ 4の接点 4 aが開口 2 aを介して I Cチップの信号用電極 (信号端子) 6 bに コンタクトすることができる。 すなわち、 開口 2 aは各 I Cチップの信号端子 6 bの上に位置するように配列されており、 第 2のコンタクタ 4の接点 4 aが各 I Cチップの信号端子 6 bにコンタクトをとることができる。 なお、 信号端子 6 b は信号入力端子と信号出力端子とを含むものである。
第 2のコンタクタ 4は、 図 1に示すように接点 4 aが設けられる部分が突出し た突出部 4 bを有し、 突出部 4 bが第 1のコンタクタ 2の開口 2 aに挿入される 。 第 2のコンタクタ 4の接点 4 aは、 コイルスプリング等により弾性的に移動可 能なピンよりなる、 いわゆるポゴピン型のコンタクトである。 したがって、 第 2 のコンタクタ 4の接点 4 aは、 比較的大きなストロークにより安定したコンタク トを得ることができる。 なお、 後述のように、 第 2のコンタクタ 4は、 一つの I Cチップの試験が終了 したら、 例えば隣の I Cチップのように次の I Cチップの上に順次移動して、 コ ンタクトをとる。 これにより、 半導体ウェハ 6上の I Cチップに対して順次試験 を行うことができる。 第 2のコンタクタ 4の移動は、 移動機構 7により行われる 1 移動機構 7の構成は周知の構成により達成することができるため、 その具体 的な構成についての説明は省略する。
また、 図 1に示す第 2のコンタクタ 4は、 単一の I Cチップに対してコンタク トをとる構成であるが、 複数の I Cチップに対応する数の接点を第 2のコンタク タ 4に設けることとしてもよい。 このようにすれば、 複数の I Cチップに対して 同時に試験を行うことができ、 第 2のコンタクタ 4の移動回数を減少することが でき、 試験時間を短縮することができる。
図 2は本発明の第 1実施例によるコンタクタ装置の第 2のコンタクタを移動す る構成を説明するための図である。 図 2に示す第 1のコンタクタ 2はメンブレン コンタであり、 半導体ウェハ 6の各 I Cチップの電源端子に対応する位置に接点 2 aを有している。 また、 図 2に示す第 2のコンタクタ 4は 2個の I Cチップの 信号端子 6 bに対して一度にコンタクトをとることができるように構成されてい る。
したがって、 まず第 1のコンタクタ 2をウェハ 6上に配置して、 各 I Cチップ の電源端子 6 aにコンタクトをとり、 電圧を供給することで各 I Cチップを作動 状態にしておく。 次に、 第 2のコンタクタ 4の接点 4 aを試験すべき I Cチップ の信号端子 6 bに対してコンタクトして所定の信号入力端子に信号を供給し、 信 号出力端子の出力を測定することにより、 I Cチップの試験を行う。 試験が終了 したら (図 2においては 2個の I Cチップの試験を同時に行う) 、 第 2のコンタ クタ 4を隣接する 2個の I Cチップ上に移動してコンタクトをとり、 同様に試験 を行う。
以上のように、 本実施例によるコンタクタ装置によれば、 コンタクタを電源端 子 6 aにコンタクトをとる第 1のコンタクタ 2と信号端子 6 bにコンタクトをと る第 2のコンタクタ 4とに分けて一つのコンタクタとしての機能を達成するので 、 半導体ウェハ 6全体に形成される端子に対応して設けられる接点を第 1のコン タクタ 2及び第 2のコンタクタ 4に分配することができる。 したがって、 第 1の コンタクタ 2及び第 2のコンタクタ 4の各々に必要な接点の数は、 ゥェハ全体に 形成される端子の数より少なくなり、 接点を接続するパターン配線を小さな領域 で容易に形成することができる。
次に、 本発明の第 2実施例によるコンタクタについて、 図 3を参照しながら説 明する。 図 3は本発明の第 2実施例によるコンタクタ装置の構造を示す断面図で ある。 図 3において、 図 2に示す構成部品と同等な部品には同じ符号を付し、 そ の説明は省略する。
本発明の第 2実施例によるコンタクタ装置は、 上述の第 1の実施例と同様に第 1のコンタクタ 8と第 2のコンタクタ 4とより構成される。 第 2のコンタクタ 8 は、 図 1に示す第 2のコンタクタ 2とは異なり、 開口 2 aを有していない。 代わ りに、 第 2のコンタクタ 8は、 半導体ウェハ 6の電源端子 6 aにコンタクトする 接点 8 aを有している。 第 1のコンタクタ 8に設けられる接点 8 aは、 第 1のコ ンタクタ 8の厚み方向に貫通して延在している。 接点 8 aの一端は半導体ウェハ 6の信号端子 6 bにコンタクトするように配列され、 他端は第 1のコンタクタ 8 の表面に露出している。
以上のような構成において、 第 2のコンタクタ 4の接点 4 aを、 第 1のコンタ クタ 8の接点 8 aの露出した部分にコンタクトする。 これにより、 半導体ウェハ 6の信号端子 6 bは第 2のコンタクタ 4の接点 4 aに導通することとなり、 第 2 のコンタクタ 4によるコンタクトを達成することができる。
なお、 本実施例においては、 第 1のコンタクタ 8は半導体ウェハ 6の端子 6 a , 6 bの数と同じ数の接点 8 a, 8 bを有しているが、 接点 8 aに対しては第 1 のコンタクタ 8からは信号を入力することはないため、 接点 8 bに対するパター ン配線を第 1のコンタクタ 8に設ける必要はない。 すなわち、 接点 8 bは第 2の コンタクタの接点 4 aと半導体ウェハの信号端子 6 bとの間に配置されてこれら を導通するために設けられる。
また、 図 3に示す例では、 第 2のコンタクタ 4が突出部 4 bを有しているが、 本実施例においては接点 4 aを開口に揷入する必要は無いので、 必ずしも突出部 4 bを設ける必要はない。 図 4は本発明の第 2実施例によるコンタクタ装置の第 1のコンタクタ 8を固定 する構成を説明するための図である。 図 4に示す第 1のコンタクタ 8はメンブレ ンコンタクタであり、 半導体ウェハ 6の各 I Cチップの電源端子 6 aに対応する 位置に接点 8 bを有している。 また、 図 4に示す第 2のコンタクタ 4は 2個の I Cチップの信号端子 6 bに対して一度にコンタクトをとることができるように構 成されている。
まず、 第 1のコンタクタ 8を半導体ウェハ 6上に固定するために、 半導体ゥェ ハ 6を試験装置のカセット 1 0の上に配置する。 カセット 1 0には、 半導体ゥェ ハ 6の外径より大きいが第 1のコンタクタ 8の外径より小さい径を有する Oリン グ 1 2が取り付けられている。 半導体ウェハ 6は Oリング 1 2の内側に形成され た凹部 1 0 aに収容され、 その上から第 1のコンタクタ 8が半導体ウェハ 6及ぴ Oリング 1 2を覆うように配置される。 なお、 Oリング 1 2はシリコンゴム等の 耐熱性を有する材料で形成された弾性シール部材である。
この状態で、 第 1のコンタクタ 8の接点 8 a , 8 bがウェハ 6上の電源端子 6 a及び信号端子 6 bに接角虫するように、 第 1のコンタクタ 8を位置決めする。 そ して、 第 1のコンタクタ 8と半導体ウェハ 6と Oリング 1 2との間に画成された 空間を真空引きする。 すなわち、 カセット 1 0には真空引き用の吸引通路 1 0 b が設けられており、 吸引通路 1 0 bに真空ポンプ (吸引ポンプ) を接続すること により、 上記空間を負圧に維持する。 したがって、 第 1のコンタクタ 8は大気圧 により全体的に半導体ウェハ 6に向かって押圧され (すなわち、 第 1のコンタク タ 8は半導体ウェハ 6に向かって吸引され) 、 カセット 1 0 (すなわち半導体ゥ ェハ 6 ) に対して固定される。 同時に、 第 1のコンタクタ 8の接点 8 a, 8 が 半導体ウェハ 6上の電源端子 6 a及び信号端子 6 bに確実に接触する。 なお、 上 述のカセット 1 0と、 Oリング 1 2と、 カセット 1 0に設けられた吸引通路 1 0 bとは吸引機構を構成する。
次に、 第 1のコンタクタ 8を介して各 I Cチップの電源端子 6 aに電源電圧を 供給することで各 I Cチップを作動状態にしておく。 そして、 第 2のコンタクタ 4の接点 4 aを試験すべき I Cチップの信号端子 6 b (信号入力端子) にコンタ クトしている接点 8 aに対してコンタクトして所定の信号を供給し、 信号端子 6 b (信号出力端子) 力 らの出力を測定することにより、 I Cチップの試験を行う 。 試験が終了したら (図 4においては 2個の I Cチップの試験を同時に行う) 、 第 2のコンタクタ 4を隣接する 2個の I Cチップ上に移動してコンタクトをとり 、 同様に試験を行う。
以上のように、 本実施例によるコンタクタ装置によれば、 コンタクタを電源端 子 6 aにコンタクトをとる第 1のコンタクタ 8と信号端子 6 bにコンタクトをと る第 2のコンタクタ 4とに分けて一つのコンタクタとしての機能を達成するので 、 半導体ウェハ 6全体に形成される全ての端子へのコンタクトを第 1のコンタク タ 8及ぴ第 2のコンタクタ 4に分酉 3することができる。 したがって、 第 1のコン タクタ 8に形成すべきパターン配線の数は、 ウェハ全体に形成される端子の数よ り少なくなる。 また、 第 2のコンタクタ 4に必要な接点の数は、 ウェハ全体に形 成される端子の数より少なく、 形成されるパターン配線の数も少なくなる。 した がって、 半導体ウェハ 6に形成された端子に対応する接点に接続するパターン配 線を第 1のコンタクタ 8及び第 2のコンタクタ 4に分配して容易に形成すること ができる。
次に上述の第 1及び第 2実施例によるコンタクタ装置の変形例について説明す る。
図 5は上述の第 1実施例の変形例によるコンタクタ装置の構成を示す断面図で ある。 図 5に示すコンタクタは第 1のコンタクタ 2の上にシリコンゴム又はプラ スチック等よりなる弾性板 1 4を設け、 その上に剛体よりなる押さえ板 1 6を設 けたものである。 押さえ板 1 6を半導体ウェハ 6に向かって押圧することにより 、 弾性板 1 4の弾性を利用して第 1のコンタクタ 2の接触圧を容易に得ることが できる。 なお、 弾†生板 1 4及ぴ押さえ板 1 6には、 第 1のコンタクタ 2の開口 2 aに対応する位置にそれぞれ開口 1 4 a, 1 6 aが設けられる。
図 6は、 上述の第 2実施例の第 1の変形例によるコンタクタ装置の構成を示す 断面図である。 図 6に示すコンタクタは、 第 1のコンタクタ 8の上に異方導電十生 を有する弾性板 1 8が設けられている。 すなわち、 第 2のコンタクタ 4の接点 4 aを異方導電性を有する弾性板 1 8を介して、 半導体ウェハ 6の信号端子 6 bに 接触している接点 8 aに押圧することにより、 第 2のコンタクタ 4の接点 4 aと 半導体ウェハの信号端子 6 bとを容易に導通することができる。
図 6に示す例では、 第 2のコンタクタ 4の接点 4 aをポゴピン型とする必要は なく、 固定されたピンであってもよい。 また、 図 5に示すような開口を有する押 さえ板を弾性板 1 8上に設けて、 接点 8 bに対応する部分を押圧することとして あよい。
図 7は上述の第 2実施例の第 2の変形例によるコンタクタ装置の構成を示す断 面図である。 図 7において、 第 2のコンタクタ 4の図示は省略されている。 図 7 に示すコンタクタは、 半導体ウェハ 6の I Cチップの電極 6 a, 6 b上にハンダ ボールのような突起電極 6 cが形成されている場合に用いられる。 すなわち、 図 7に示す第 1のコンタクタ 8 Aの各接点 8 A a , 8 A bの先端部分は、 突起電極 6 cの丸みを帯びた形状に適合する形状に加工されている。 これにより、 突起電 極 6 cを傷付けることなく、 広い接触面積でのコンタクトを達成することができ る。
なお、 接点 8 A bの形状は図 1に示す第 1のコンタクタ 2に設けられる接点 2 bに適用することもできる。 すなわち、 図 1に示す半導体ウェハの電極上に突起 電極が形成されている場合に、 第 1のコンタクタ 2に設けられる接点 2 bの先端 形状を接点 8 A bと同様な形状とするものである。 この場合、 第 2のコンタクタ 4の接点 4 aの先端形状も接点 8 A bの形状と同様にすることが好ましレ、。 図 8は上述の第 2実施例の第 3の変形例によるコンタクタ装置の構成を示す断 面図である。 図 8に示すコンタクタは、 第 1のコンタクタ 8 Bの接点 8 B aの第 2のコンタクト 4側の面に凹部を形成したものである。 第 2のコンタクタ 4の接 点 4 aの先端部分は、 接点 8 B aの凹部に対応した凸形状を有している。 これに より、 第 2のコンタクタ 4の接点 4 aを接点 8 B aに対して正確に位置決めする ことができ、 確実なコンタクトをとることができる。
なお、 図 8に示す例では、 接点 8 B aに凹部を形成し、 接点 4 aの先端部分を 凸形状としたが、 接点 4 aの先端部分に凹部を形成し、 接点 8 B aを凸形状とし ても同様の効果を得ることができる。
次に、 上述の第 1又は第 2実施例によるコンタクタ装置を用いた試験方法につ いて図 9 A, 9 B, 9 Cを参照しながら説明する。 図 9 A, 9 B , 9 Cに示す例 では、 第 2の実施例によるコンタクタを用いているが、 試験方法については第 1 の実施例によるコンタクタも同様である。
まず、 図 Aに示すように、 第 1のコンタクタ 8と第 2のコンタクタ 4とを準 備する。 次に、 図 9 Bに示すように、 カセット 1 0の凹部 1 0 aに試験すべき I Cチップが形成された半導体ウェハ 6を配置する。 これにより半導体ウェハ 6の 位置合わせが行われる。
そして、 図 9 Cに示すように、 第 1のコンタクタ 8を半導体ウェハ 6に対して 押圧する。 すなわち、 第 1のコンタクタ 8の接点 8 a, 8 bを半導体ウェハ 6の 電源端子 6 a及び信号端子に 6 b対してコンタクトさせる。 そして、 第 2のコン タクタ 4の接点 4 aを第 1のコンタクタ 8の接点 8 aに対してコンタクトさせる ことにより、 第 2のコンタクタ 4と半導体ウェハ 6の I Cチップとを導通状態と する。 これにより、 第 2のコンタクタ 4を介して I Cチップの入力信号端子に信 号を供給することができ、 入力に対する出力端子からの出力をチェックすること ができる。 そして、 第 2のコンタクタ 4を移動させながら、 半導体ウェハ 6の I Cチップに対して順次試験を行う。
次に、 上述の第 1及び第 2実施例によるコンタクタ装置に温度制御手段を設け た例について説明する。 温度制御手段とは、 試験すべき I Cチップの温度を制御 する手段であり、 I Cチップを加熱する場合もあり、 また冷却する場合もある。 図 1 0は第 2のコンタクタ 4に温度制御手段を設けた例を示す断面図である。 すなわち、 図 1 0に示す第 2のコンタクタ 4には、 温度制御された空気を供給す るための空気通路 4 cが設けられている。 空気通路 4 cは送風装置 2 0に接続さ れており、 送風装置 2 0から供給される空気は、 空気通路 4 cを通じて第 2のコ ンタクタ 4から吐出される。 ここで、 空気通路 4 cに供給される空気は、 電気ヒ ータ等の加熱装置又は冷却装置 2 2により加熱又は冷却されて空気通路 4 cに供 給される。 ペルチヱ素子を利用することにより、 加熱装置及び冷却装置を一つの 装置で実現することができる。
空気通路 4 cの吐出口は、 第 1のコンタクタ 8の試験される I Cの真上の位置 となるように配置されている。 したがって、 第 2のコンタクタ 4がコンタクトを とっている I Cチップは、 空気通路 4 cから吐出された空気により加熱又は冷却 される。 これにより、 試験される I Cだけ温度を制御することができ、 より広範 囲な試験温度条件を設定することができる。
図 1 1は図 1 0に示す第 2のコンタクタ 4に温度センサ 2 4を設けた例を示す 断面図である。 温度センサ 2 4は空気通路 4 cの吐出口付近に配置され、 吐出口 から吐出される空気の温度を検出する。 温度センサ 2 4からの出力は加熱装置又 は冷却装置 2 2に送られる。 加熱装置又は冷却装置 2 2は、 温度センサ 2 4から の出力に基づいて、 送風装置 2 0からの空気の温度を制御する。 したがって、 空 気通路 4 cから吐出される空気の温度は、 温度センサ 2 4からの出力によるフィ ードバック制御により正確に制御される。 これにより、 第 2のコンタクタ 4によ り試験される I Cチップの温度を正確に制御することができる。
なお、 図 1 0及ぴ図 1 1に示す例では、 温度制御された空気を第 2のコンタク タ 4に供給する構成であるが、 空気の代わりに不活性ガスや窒素等の所定のガス を供給することとしてもよい。 この場合、 送風装置 2 0は加熱装置又は冷却装置 2 2に供給される所定のガスのガス供給源に置き換えられる。
図 1 2は半導体ウェハ 6を取り付けるカセットに温度制御手段を設けた例を示 す断面図である。 すなわち、 図 1 2に示すカセット 1 O Aには、 半導体ウェハ 6 の温度を制御するための媒体 (例えば冷媒) を流すための媒体通路 2 6が設けら れる。 媒体通路 2 6の供給口 2 6 aには、 所定の温度に制御された媒体が媒体供 給装置 2 8から供給される。 媒体は媒体通路 2 6を流れて排出口 2 6 bから排出 される。
カセット 1 O Aの温度は媒体通路 2 6を流れる媒体によって制御され、 それに よりカセット 1 O Aに取り付けられた半導体ウェハ 6の温度も制御される。 した がって、 媒体供給装置 2 8から供給する媒体の温度を制御することにより、 半導 体ウェハ 6の温度を制御することができる。
図 1 3はカセットとは異なるュニットに媒体通路を設けた例を示す断面図であ る。 すなわち、 図 1 3において、 温度制御ユニット 3 0に媒体通路 2 6が設けら れ、 温度制御ュ-ット 3 0にカセット 1 0が離脱可能に取り付けられる。 図 1 3 に示す例によれば、 カセット 1 0に媒体通路 2 6を設けないので、 カセット 1 0 を簡単な構造とすることができる。 なお、 図 1 2及び 1 3に示す構成に、 図 1 1又は図 1 2に示す構成を組み合わ せることにより、 半導体ウェハ 6全体を温度制御しながら、 第 2のコンタクタ 4 で試験する I Cチップを局所的に更に温度制御することができる。 これにより、 試験に供される I Cはチップの温度を精度よく制御することができる。
本発明は上述の具体的に開示された実施例に限られることなく、 本発明の範囲 ないで様々な変形及ぴ改良がなされるであろう。

Claims

請求の範囲
1. 半導体ウェハ (6) 上に形成された複数の半導体装置に対して電気的な導 通を得るためのコンタクタ装置であって、
; 前記半導体装置の第一系統の端子 (6 a) に直接接触する接点 (2 b, 8 b) を有する第 1のコンタクタ (2, 8) と、
前記第 1のコンタクタとは電気的に経路が独立した別経路となっており、 前記 第 1のコンタクタに対して移動可能であり、 前記半導体装置の第二系統の端子 ( 6 b) と導通する接点 (4 a) を有する第 2のコンタクタ (4) と
を有することを特徴とするコンタクタ装置。
2. 請求の範囲第 1項記載のコンタクタ装置であって、
前記第 2のコンタクタ (4) を前記複数の半導体装置に対応する位置に順次移 動させる移動機構 (7) を有することを特徴とするコンタクタ装置。
3. 請求の範囲第 1項記載のコンタクタ装置であって、
前記第 1のコンタクタ (2, 8) はメンブレンコンタクタであることを特徴と するコンタクタ装置。
4. 請求の範囲第 1項乃至第 3項のうちいずれか一項記載のコンタクタ装置で あって、
前記第 1のコンタクタ (2) は開口 (2 a) を有し、 前記第 2のコンタクタ ( 4) の接点 (4 a) が設けられた部分 (4 b) が前記開口 (2 a) を通じて前記 半導体装置の第二系統の端子 (6 b) に接触することを特徴とするコンタクタ装 置。
5. 請求の範囲第 1項乃至第 3項のうちいずれか一項記載のコンタクタ装置で あって、
前記第 1のコンタクタ (8) は前記第 1のコンタクタの前記第 2のコンタクタ (4) に対向する面から前記半導体ウェハ (6) に対向する面まで延在する延在 接点 (8 b) を有し、 前記第 2のコンタクタ (4) の接点 (4 a) は前記延在接 点 (8 b) に接触することにより前記半導体装置の第二系統の端子 (6 b) と導 通することを特徴とするコンタクタ装置。
6. 請求の範囲第 5項記載のコンタクタ装置であって、
前記第 1のコンタクタ (8) を前記半導体ウェハ (6) に対して吸引する吸引 機構を更に有することを特徴とするコンタクタ装置。
7. 請求の範囲第 6項記載のコンタクタ装置であって、
前記吸引機構は、 前記半導体ウェハ (6) が取り付けられるカセット (10) と、 前記カセット (10) に設けられた弾性シール部材 (1 2) と、 前記カセッ ト (10) と前記第 1のコンタクタ (8) と前記弾性シール部材 (12) とによ り画成される空間に接続された吸引通路 (10 b) とを有し、
前記半導体ウェハ (6) は前記空間内に配置されることを特徴とするコンタク
8. 請求の範囲第 1項乃至第 3項記載のうちいずれか一項記載のコンタクタ装 置であって、
前記第 1のコンタクタ (2) の前記半導体ウェハ (6) に対向する面とは反対 側の面に配置された弾性体 (16) を有し、 前記弾性体を介して前記第 1のコン タクタ (2) に押圧力を加えることを特徴とするコンタクタ装置。
9. 請求の範囲第 5項記載のコンタクタ装置であって、
前記第 1のコンタクタ (8) の前記半導体ウェハ (6) に対向する面とは反対 側の面に配置された異方導電性を有するシート (18) を有し、 前記シートを介 して前記第 2のコンタクタ (4) の接点 (4 a) を前記延在接点 (8 a) に押圧 することにより前記接点 (4 a) を前記接点 (8 a) に導通させることを特徴と するコンタクタ装置。
10. 請求の範囲第 1項記載のコンタクタ装置であって、 前記半導体ウェハ (6) の第一系統の端子 (6 a) 及ぴ第二系統の端子 (6 b ) には突起電極 (6 c) が形成されており、
前記第 1のコンタクタ (8A) の接点 (8Aa, 8 Ab) は前記突起電極 (6 c) の形状に対応した形状の凹面を有し、 該凹面が前記突起電極 (6 c) に接触 することを特徴とするコンタクタ装置。
1 1. 請求の範囲第 5項記載のコンタクタ装置であって、
前記第 1のコンタクタ (8B) の延在接点 (8B a) は、 前記第 2のコンタク タ (4) の接点 (4 a) と接触する凹部を有することを特徴とするコンタクタ装
12. 請求の範囲第 1項乃至第 3項のうちいずれか一項記載のコンタクタ装置 であって、
前記半導体ウェハ (6) の温度を制御する温度制御手段を有することを特徴と するコンタクタ装置。
13. 請求の範囲第 12項記載のコンタクタ装置であって、
前記温度制御手段は、 前記第 2のコンタクタ (4) に設けられた流体通路 (4 c) を有しており、 前記流体通路 (4 c) に所定温度の流体を供給することによ り前記半導体ウェハの温度を局所的に温度制御することを特徴とするコンタクタ
14. 請求の範囲第 13項記載のコンタクタ装置であって、
前記温度制御手段は、 前記流体通路 (4 c) から吐出される流体の温度を検出 する温度センサ (24) を有し、 前記温度センサ (24) からの出力に基づいて 前記流体通路 (4 c) に供給する流体の温度を制御することを特徴とするコンタ クタ装置。
15. 請求の範囲第 12項記載のコンタクト装置であって、 前記半導体ウェハ (6) が取り付けられるカセット (10A) を有し、 前記温 度制御手段は前記カセット (10A) に設けられた媒体通路 (26) を有し、 前 記媒体通路 (26) に所定温度の媒体を流すことにより前記半導体ウェハ (6) の温度を制御することを特徴とするコンタクタ装置。
16. 請求の範囲第 12項記載のコンタクト装置であって、
前記半導体ウェハ (6) が取り付けられるカセット (10) が離脱可能に取り 付けられる温度制御ユニット (30) を有し、 前記温度制御手段は前記温度制御 ユニット (30) に設けられた媒体通路 (26) を有し、 前記媒体通路 (26) に所定温度の媒体を流すことにより前記半導体ウェハ (6) の温度を制御するこ とを特徴とするコンタクタ装置。
17. 半導体ウェハ (6) に形成された複数の半導体装置を試験する方法であ つて、
前記半導体ウェハ (6) をカセット (10) の所定の位置に取り付ける工程と 前記半導体ゥヱハ (6) の半導体装置に形成された電源端子 (6 a) に直接接 触する接点 (2b、 8 b) を有する第 1のコンタクタ (2, 8) を前記半導体ゥ ヱハ (6) 上に配置して固定する工程と、
前記半導体ウェハ (6) の半導体装置に形成された信号端子 (6 b) に対して 第 2のコンタクタ (4) の接点 (4 a) を導通させる工程と、
前記第 1のコンタクタを介して前記半導体装置に電源を供給しながら、 前記第 2のコンタクタを介して前記半導体に信号を入力してそれに対応する出力を検出 することにより前記半導体装置の試験を行なう工程と
を有することを特徴とする試験方法。
18. 請求の範囲第 17項記載の試験方法であって、 前記試験工程は、 前記第 2のコンタクタ (4 ) を移動しながら前記半導体装置 を順次試験する工程を含むことを特徴とする試験方法。
1 9 . 請求の範囲第 1 7項又は第 1 8項記載の試験方法であって、
前記試験工程は、 前記第 2のコンタクタ (4 ) を介して前記半導体ウェハ (6 ) の温度を制御しながら試験を行なう工程を含むことを特徴とする試験方法。
2 0 . 請求の範囲第 1 7項又は第 1 8項記載の試験方法であって、
前記試験工程は、 前記カセット (1 0 ) を介して前記半導体ウェハ (6 ) の温 度を制御しながら試験を行なう工程を含むことを特徴とする試験方法。
PCT/JP2001/002924 2001-04-04 2001-04-04 Appareil contacteur pour dispositif semi-conducteur et procede de test dudit dispositif semi-conducteur WO2002082528A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2002580393A JP4794808B2 (ja) 2001-04-04 2001-04-04 半導体装置用コンタクタ装置及び半導体装置の試験方法
CNB018226116A CN1258212C (zh) 2001-04-04 2001-04-04 半导体器件用连接器装置以及半导体器件的测试方法
PCT/JP2001/002924 WO2002082528A1 (fr) 2001-04-04 2001-04-04 Appareil contacteur pour dispositif semi-conducteur et procede de test dudit dispositif semi-conducteur
KR1020037009463A KR100702021B1 (ko) 2001-04-04 2001-04-04 반도체 장치용 컨택터 장치 및 반도체 장치의 시험 방법
TW090108764A TW510006B (en) 2001-04-04 2001-04-12 Contactor apparatus for semiconductor device and testing method of semiconductor device
US10/677,378 US6975126B2 (en) 2001-04-04 2003-10-03 Contactor apparatus for semiconductor devices and a test method of semiconductor devices
US11/247,245 US7304487B2 (en) 2001-04-04 2005-10-12 Test method of semiconductor devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2001/002924 WO2002082528A1 (fr) 2001-04-04 2001-04-04 Appareil contacteur pour dispositif semi-conducteur et procede de test dudit dispositif semi-conducteur

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/677,378 Continuation US6975126B2 (en) 2001-04-04 2003-10-03 Contactor apparatus for semiconductor devices and a test method of semiconductor devices

Publications (1)

Publication Number Publication Date
WO2002082528A1 true WO2002082528A1 (fr) 2002-10-17

Family

ID=11737225

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/002924 WO2002082528A1 (fr) 2001-04-04 2001-04-04 Appareil contacteur pour dispositif semi-conducteur et procede de test dudit dispositif semi-conducteur

Country Status (6)

Country Link
US (2) US6975126B2 (ja)
JP (1) JP4794808B2 (ja)
KR (1) KR100702021B1 (ja)
CN (1) CN1258212C (ja)
TW (1) TW510006B (ja)
WO (1) WO2002082528A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011090146A1 (ja) * 2010-01-22 2011-07-28 日本電気株式会社 プローブカード、半導体ウェハ、検査装置及び、検査方法
CN103197105A (zh) * 2013-03-13 2013-07-10 健大电业制品(昆山)有限公司 一种pin针通路检测治具

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7071715B2 (en) * 2004-01-16 2006-07-04 Formfactor, Inc. Probe card configuration for low mechanical flexural strength electrical routing substrates
CN100346467C (zh) * 2005-07-19 2007-10-31 钰创科技股份有限公司 电路重布线方法及电路结构
GB201114351D0 (en) * 2011-08-19 2011-10-05 Paternoster Holdings Llc Game entry
JP5827554B2 (ja) 2011-12-05 2015-12-02 株式会社日本マイクロニクス 電力用半導体デバイス検査用プローブ集合体とそれを用いる検査装置
KR102053081B1 (ko) * 2013-10-08 2019-12-06 (주)테크윙 테스트핸들러
DE202015001622U1 (de) * 2015-03-03 2015-03-17 Feinmetall Gmbh Elektrische Kontaktvorrichtung
JP6593251B2 (ja) 2016-05-19 2019-10-23 三菱電機株式会社 半導体検査装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6211243A (ja) * 1985-07-04 1987-01-20 Hitachi Electronics Eng Co Ltd 温度制御手段を備えたプロ−バ装置
JPS6357745U (ja) * 1986-09-30 1988-04-18
JPS6384946U (ja) * 1986-11-20 1988-06-03
JPH10223704A (ja) * 1997-02-03 1998-08-21 Tokyo Electron Ltd ウエハの一括検査装置及びウエハの一括検査方法
US5825192A (en) * 1995-07-14 1998-10-20 Tokyo Electron Limited Probe card device used in probing apparatus
US6130543A (en) * 1997-03-07 2000-10-10 Tokyo Electron Limited Inspection method and apparatus for semiconductor integrated circuit, and vacuum contactor mechanism

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4227149A (en) * 1978-05-30 1980-10-07 International Business Machines Corporation Sensing probe for determining location of conductive features
US4471298A (en) * 1981-12-11 1984-09-11 Cirdyne, Inc. Apparatus for automatically electrically testing printed circuit boards
JPS6329538A (ja) * 1986-07-23 1988-02-08 Hitachi Ltd プロ−ブ装置
JPH0819507B2 (ja) 1986-08-27 1996-02-28 日新製鋼株式会社 加工性に優れた高強度ステンレス鋼
JPS6384946A (ja) * 1986-09-30 1988-04-15 Tdk Corp サ−マルヘツド
US5107206A (en) * 1990-05-25 1992-04-21 Tescon Co., Ltd. Printed circuit board inspection apparatus
JPH07130802A (ja) 1993-11-02 1995-05-19 Hitachi Ltd 半導体ウェハの製造方法および半導体検査装置
JPH0926437A (ja) * 1995-07-12 1997-01-28 Hitachi Ltd プローブカードおよびそれを用いた検査装置
JPH0936188A (ja) * 1995-07-14 1997-02-07 Tokyo Electron Ltd プローブ装置に用いられるプローブカードデバイス
US5600257A (en) * 1995-08-09 1997-02-04 International Business Machines Corporation Semiconductor wafer test and burn-in
US6084418A (en) * 1996-02-28 2000-07-04 Denso Corporation Method for accurately detecting sensor element resistance
TW480645B (en) 1997-02-24 2002-03-21 Tokyo Electron Ltd Method and apparatus for inspecting semiconductor integrated circuits, and contactor incorporated in the apparatus
JP2945666B1 (ja) * 1998-09-16 1999-09-06 日本電子材料株式会社 プローブカード
US6531774B1 (en) * 2000-05-03 2003-03-11 Advanced Micro Devices, Inc. Chip scale electrical test fixture with isolation plate having a recess

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6211243A (ja) * 1985-07-04 1987-01-20 Hitachi Electronics Eng Co Ltd 温度制御手段を備えたプロ−バ装置
JPS6357745U (ja) * 1986-09-30 1988-04-18
JPS6384946U (ja) * 1986-11-20 1988-06-03
US5825192A (en) * 1995-07-14 1998-10-20 Tokyo Electron Limited Probe card device used in probing apparatus
JPH10223704A (ja) * 1997-02-03 1998-08-21 Tokyo Electron Ltd ウエハの一括検査装置及びウエハの一括検査方法
US6130543A (en) * 1997-03-07 2000-10-10 Tokyo Electron Limited Inspection method and apparatus for semiconductor integrated circuit, and vacuum contactor mechanism

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011090146A1 (ja) * 2010-01-22 2011-07-28 日本電気株式会社 プローブカード、半導体ウェハ、検査装置及び、検査方法
CN103197105A (zh) * 2013-03-13 2013-07-10 健大电业制品(昆山)有限公司 一种pin针通路检测治具

Also Published As

Publication number Publication date
US6975126B2 (en) 2005-12-13
JPWO2002082528A1 (ja) 2004-07-29
KR20030085519A (ko) 2003-11-05
CN1258212C (zh) 2006-05-31
US7304487B2 (en) 2007-12-04
TW510006B (en) 2002-11-11
US20060028223A1 (en) 2006-02-09
JP4794808B2 (ja) 2011-10-19
US20040070961A1 (en) 2004-04-15
CN1489785A (zh) 2004-04-14
KR100702021B1 (ko) 2007-04-06

Similar Documents

Publication Publication Date Title
US7304487B2 (en) Test method of semiconductor devices
US7667474B2 (en) Probe device
EP1174723A1 (en) Temperature control apparatus
US6791347B2 (en) Probe apparatus applicable to a wafer level burn-in screening
KR100383009B1 (ko) 반도체 집적 회로의 검사 방법, 검사 장치 및 진공 컨택터 기구
JPH0883825A (ja) プローブ装置
US20050253575A1 (en) Reliability evaluation test apparatus, reliability evaluation test system, contactor, and reliability evaluation test method
US8468690B2 (en) Holding member for use in test and method for manufacturing same
WO2005069019A1 (ja) プローブカード
JP5113905B2 (ja) 試験システムおよびプローブ装置
TW201530166A (zh) 半導體元件對準插座單元以及含其之半導體元件測試裝置
KR100690514B1 (ko) 반도체 기판 시험 장치 및 반도체 기판 시험 방법
JP2001203244A (ja) 半導体集積回路の検査方法、半導体集積回路の検査装置及びアライメント装置
JP3648699B2 (ja) ウエハの一括検査装置及びウエハの一括検査方法
JP5100217B2 (ja) プローブカード及び電子部品試験装置
JP2995134B2 (ja) プローブ装置
JP5147192B2 (ja) プローバにおけるウエハ保持方法、プローバ及び高熱伝導性シート
JP3544036B2 (ja) ベアチップテスト用ソケット
WO2009130793A1 (ja) 試験システムおよびプローブ装置
US11579187B1 (en) Test carrier and electronic component testing apparatus
JP3147966B2 (ja) 圧力素子測定用圧力印加ステージ
JP2002208620A (ja) ウェハバーンイン装置
JPH04302448A (ja) 半導体素子の一括検査方法及びその装置
JP2003188217A (ja) ニードル用チップ、ニードル用チップを備えた半導体ウエハ、プローブカード及びその製造方法、プローブ装置及びこれを用いた検査方法
TWM523959U (zh) 半導體元件之測試載具

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN DE JP KR US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1020037009463

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 018226116

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2002580393

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 10677378

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020037009463

Country of ref document: KR

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 1020037009463

Country of ref document: KR