WO2002045199A1 - Electrodes a couches minces a semiconducteur realisees au moyen de colorants organiques comme photosensibilisateur et dispositifs de conversion photoelectriques - Google Patents

Electrodes a couches minces a semiconducteur realisees au moyen de colorants organiques comme photosensibilisateur et dispositifs de conversion photoelectriques Download PDF

Info

Publication number
WO2002045199A1
WO2002045199A1 PCT/JP2001/010404 JP0110404W WO0245199A1 WO 2002045199 A1 WO2002045199 A1 WO 2002045199A1 JP 0110404 W JP0110404 W JP 0110404W WO 0245199 A1 WO0245199 A1 WO 0245199A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
hydrogen atom
general formula
substituent
semiconductor
Prior art date
Application number
PCT/JP2001/010404
Other languages
English (en)
French (fr)
Inventor
Kohjirou Hara
Kazuhiro Sayama
Hironori Arakawa
Sadaharu Suga
Akira Shinpo
Yasuyo Ooga
Hajime Kusano
Original Assignee
National Institute Of Advanced Industrial Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute Of Advanced Industrial Science And Technology filed Critical National Institute Of Advanced Industrial Science And Technology
Priority to US10/415,552 priority Critical patent/US7262361B2/en
Priority to DE60143273T priority patent/DE60143273D1/de
Priority to EP01999017A priority patent/EP1339129B1/en
Publication of WO2002045199A1 publication Critical patent/WO2002045199A1/ja

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/652Cyanine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • H10K30/15Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2
    • H10K30/151Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2 the wide bandgap semiconductor comprising titanium oxide, e.g. TiO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to a semiconductor thin film electrode using an organic dye as a photosensitizer, a photoelectric conversion element, and a photoelectrochemical solar cell using the same. Background technique
  • Organic dyes that have been used as dyes in dye-sensitized photoelectrochemical solar cells so far include phenylxanthene dyes, phthalocyanine dyes, tamarin dyes, cyanine dyes, porphyrin dyes, and porphyrin dyes. Zo dyes and proflavin dyes. These organic dyes have advantages as a photosensitizer, such as having a large absorption coefficient, being inexpensive, and being capable of controlling the absorption characteristics by a variety of structures, as compared with metal complexes. However, since the absorption wavelength region is limited to a relatively short wavelength region, the solar energy conversion efficiency was much lower than that using a metal complex such as a ruthenium complex.
  • the present invention provides a semiconductor thin-film electrode using a specific organic dye sensitizer, a high-efficiency dye-sensitized photoelectric conversion element using the electrode, and a dye-sensitized photoelectrochemical solar cell using the same.
  • the subject is a specific organic dye sensitizer, a high-efficiency dye-sensitized photoelectric conversion element using the electrode, and a dye-sensitized photoelectrochemical solar cell using the same.
  • the present inventors have conducted intensive studies to solve the above problems, and as a result, completed the present invention.
  • the present invention there are provided the following semiconductor thin film electrode, a photoelectric conversion element using the electrode, and A photoelectrochemical solar cell using a cell is provided.
  • Z represents a heterocyclic group which may have a substituent
  • L represents an electron-withdrawing group
  • represents a hydrogen atom or a substituent, and any of May combine with each other to form a cyclic structure
  • M represents a hydrogen atom or a salt-forming cation
  • n is an integer from 0 to 3.
  • a thin-film electrode comprising a semiconductor sensitized by an organic dye having a structure represented by the following general formula (2).
  • ⁇ ⁇ represents a hydrogen atom or a substituent, and any two adjacent to ⁇ ⁇ may be bonded to each other to form a cyclic structure, and Y and Y 2 represent a heteroatom atom; ⁇ represents a hydrogen atom or a salt-forming cation, and ⁇ is an integer from 0 to 3.
  • a thin-film electrode comprising a semiconductor sensitized by an organic dye having a structure represented by the following general formula (4).
  • L is an electron-withdrawing group
  • Ri ⁇ R 2 represents a hydrogen atom or a substituent
  • 1 2 from each other May combine to form a ring structure
  • M represents a hydrogen atom or a salt-forming cation
  • n is an integer from 0 to 3.
  • a thin-film electrode comprising a semiconductor sensitized by an organic dye having a structure represented by the following general formula (5).
  • a thin-film electrode comprising a semiconductor sensitized by an organic dye having a structure represented by the following general formula (6).
  • a thin-film electrode comprising a semiconductor sensitized by an organic dye having a structure represented by the following general formula (7).
  • represents a hydrogen atom or a substituent
  • R 9 - R 12 represents an alkyl group having from 1 several hydrogen or C 6, and Y 2 is to indicate the hetero atom, the 1 ⁇ to 1 3 Any two of them may be bonded to each other to form a cyclic structure
  • M represents a hydrogen atom or a salt-forming cation
  • n is an integer of 0 to 3.
  • Z represents a heterocyclic group which may have a substituent.
  • the heterocyclic group can be a group derived from various conventionally known heterocycles.
  • the hetero atom contained in the hetero ring may be an oxygen atom, a sulfur atom, a nitrogen atom, or the like, and the number of the hetero atoms contained in the ring is one or more (2 to 5). . If the ring contains more than one heteroatom, the heteroatoms may be the same or different.
  • a heterocyclic ring includes a carbon ring having 6 to 12 carbon atoms such as a benzene ring, a naphthalene ring, and a cyclohexane ring, and another heterocyclic ring having 5 to 12 ring elements (for example, julolidine). And the like) may be condensed.
  • heterocycle examples include thiazole, benzothiazole, oxazole, benzoxenazone, selenazonore, benzoselenazonole, indoneole, coumarin, phenylxanthene, and the like.
  • One or more substituents may be bonded to the heterocyclic ring.
  • substituents include a straight-chain or branched C1-C22, preferably C2-C18, methyl, ethyl, octyl, octadecyl, or 2-ethylhexyl group.
  • Alkyl group alkoxy group having 1 to 22 carbon atoms, preferably 1 to 18 carbon atoms such as methoxy group, propoxy group and butoxy group; Aryl group having a prime number of 6 to 22, preferably 6 to 12; an aralkyl group having a carbon number of 7 to 22, preferably 7 to 12, such as a benzyl group; a hydroxyl group; a cyano group; a nitro group; A halogen group such as a group or an odo group; a trifluoromethyl group; an amino group; a monoalkyl group having an alkyl group having 1 to 22 carbon atoms, preferably 1 to 12 carbon atoms such as a methylamino group or an octylamino group; A dialkylamino group having an alkyl group having 1 to 22 carbon atoms, preferably 1 to 12 carbon atoms such as a dibutylamino group and a dioctadecylamino group; and
  • L represents an electron-withdrawing group.
  • an electron-withdrawing group various types which are conventionally generally known are used. Specific examples of such a compound include, for example, a cyano group; a nitro group; a halogen group such as a chloro group, a bromo group and an odo group; a hydroxyl group; a trifluoromethyl group; a sulfonic acid group; a carboxyl group; And the like.
  • I ⁇ , R 2 and R 3 represent a hydrogen atom or a substituent.
  • the substituent in this case includes various conventional substituents which can be bonded to a carbon atom. Examples of such a substituent include a hydroxyl group; a linear or branched carbon number of 1 to 12, preferably 1 to 6 such as a methyl group, an ethyl group, an octyl group, an octadecyl group, and a 2-ethylhexyl group.
  • the ring in this case includes a carbon ring or a heterocyclic ring having 5 to 10, preferably 5 to 8, elements.
  • the ring constituent element includes one or more hetero atoms (oxygen atom, sulfur atom, nitrogen atom, etc.).
  • M represents a hydrogen atom or a salt-forming cation.
  • Salt-forming cations include various cations (cations) that can form salts with the lipoxyl group. ) Is included. Examples of such cations include ammonium cations (NH 4 + ); organic ammonium cations derived from amines (A 1 A 2 A 3 A 4 N +, A to A 4 are hydrogen atoms or carbon atoms).
  • n represents an integer of 0 to 3, preferably 1 to 2.
  • ⁇ ⁇ Ri, R 2 , R 3 , M and n have the same meaning as described above.
  • 1 ⁇ ⁇ 1 8 to is a hydrogen atom or a substituent, as the ⁇ substituent, various ones given for the 1 ⁇ to 1 3.
  • M and n have the same meaning as described above.
  • heteroatoms include an oxygen atom (-1 0_), a sulfur atom (-1 S_), a nitrogen atom (1 NH—, -NR-1, R; an alkyl group having 1 to 6 carbon atoms), a selenium atom (1 S_ e—) and tellurium (-T e-) are included.
  • Y 2 represents a hetero atom.
  • Z represents a divalent heterocyclic group which may have a substituent.
  • the heterocyclic group can be a group derived from various conventionally known heterocycles.
  • the hetero atom contained in the hetero ring may be an oxygen atom, a sulfur atom, a nitrogen atom, or the like, and the number of the hetero atoms contained in the ring may be one or more (2 to 5). It is. If the ring contains more than one heteroatom, the heteroatoms may be the same or different.
  • a heterocyclic ring includes a carbon ring having 6 to 12 carbon atoms such as a benzene ring, a naphthalene ring, and a cyclohexane ring, and another heterocyclic ring having 5 to 12 ring elements (for example, a julolidine ring). May be condensed.
  • One or more substituents described above may be bonded to the heterocyclic ring.
  • Specific examples of the heterocycle include rhodanine, thiazoline, benzothiazoline, and Opalbitur ring, oxazolidone, thioxazolidone and the like.
  • R 2 , L, M and n have the same meaning as described above.
  • 1 ⁇ ⁇ 1 ⁇ , Yj, Y 2 and n are as defined above.
  • X represents a complex ring group containing at least one anionic group.
  • the heterocyclic group includes those derived from a 5- or 6-membered heterocyclic ring containing at least two heteroatoms.
  • an aromatic ring such as a benzene ring or a naphthalene ring may be condensed with the heterocyclic ring.
  • Specific examples of the heterocyclic group X including such a heterocyclic ring include rhodanine, thioxazolidone, thiohydantoin, thioparbitur ring, thiazoline, benzothiazoline, oxazoline and the like.
  • R represents an anionic group or a group containing an anionic group.
  • R 1 and R 2 represent a hydrogen atom, an anionic group, a group containing an anionic group or a substituent, and at least one of them represents a group containing an anionic group or an anionic group.
  • substituent various groups that can be bonded to a nitrogen atom can be used. Such groups include alkyl or alkenyl groups having 1 to 22 carbon atoms, preferably 2 to 18 carbon atoms, cycloalkyl groups having 5 to 8 carbon atoms, 6 to 22 carbon atoms, preferably 6 to 1 carbon atoms. And an aralkyl group having 7 to 22 carbon atoms, preferably 7 to 12 carbon atoms.
  • These groups may have a substituent such as a hydroxyl group, a carboxyl group, a sulfonic acid group, a phosphoric acid group, an alkoxy group, an alkoxycarbonyl group, an acyl group, and a halogen atom.
  • the group containing an anionic group (a group containing an anionic group as a substituent) can be represented by the following general formula (14).
  • a 1 represents a divalent hydrocarbon group
  • X 1 is c showing the anionic group
  • the divalent hydrocarbon group A 1 includes an alkylene group having 1 to 6, preferably 1 to 3 carbon atoms ( Ethylene, propylene, butylene, etc., C6-C12 arylene group (phenylene, tolylene, naphthylene, etc.), ethylenedialkylene group (phenylene diethylene, phenylene ethylene, etc.) and the like. You.
  • anionic group X 1, carboxyl group, sulfonic acid group, a phosphoric acid group and the like. These anionic groups may be free groups or neutralized groups neutralized with the salt-forming cation M.
  • anionic groups act as anchor groups for adsorption on the semiconductor surface.
  • anionic group represented by the general formula (14) include, for example, one C OOH, one CH 2 COOH, one C 2 H 4 COOH, one C 3 H 6 COOH, —C 6 H 4 CO OH, one S0 3 H, one C 2 H 4 S0 3 H, one C 6 H 4 S0 3 H, - P 0 3 H 2, -COON a, one S_ ⁇ 3 Na, _P0 3 HN a etc. No.
  • B represents a hydrogen atom or a substituent.
  • substituent include those described above.
  • R 9 , R 1Q , Ru and R 12 represent a hydrogen atom or an alkyl group having 1 to 12 carbon atoms, preferably 1 to 6 carbon atoms.
  • the compound represented by the general formula (1) is produced by reacting a heterocyclic aldehyde represented by the following general formula (15) with acetic acid having a substituent represented by the following general formula (16). be able to.
  • the compound represented by the general formula (4) is obtained by reacting a heterocyclic aldehyde represented by the following general formula (17) with acetic acid having a substituent represented by the general formula (16).
  • a heterocyclic aldehyde represented by the following general formula (17) with acetic acid having a substituent represented by the general formula (16).
  • ⁇ ⁇ , RR 2 and n have the same meaning as described above.
  • the compound represented by the general formula (6) has a heterocyclic aldehyde corresponding to the compound and at least one anionic group or a group containing an anionic group, and has two or more hetero atoms. It is produced by reacting with a heterocyclic compound contained therein.
  • the semiconductor thin-film electrode sensitized with the organic dye according to the present invention can be obtained by using the organic dye according to the present invention described above as the organic dye in a conventionally known organic dye-sensitized semiconductor electrode. .
  • a transparent electrode is prepared, a semiconductor thin film is laminated thereon, and the organic dye according to the present invention is adsorbed on the semiconductor thin film.
  • the transparent electrode may be of any type as long as it has conductivity.
  • a transparent or translucent glass substrate or plastic plate for example, fluorine or antimony-doped tin oxide (NESA), A material coated with a conductive transparent oxide semiconductor thin film such as tin-doped indium oxide (ITO) or zinc oxide, preferably a material coated with a fluorine-doped tin oxide thin film is used.
  • the semiconductor thin film used in the present invention can be composed of a compound semiconductor having a nanoporous structure composed of nanoparticles (particle diameter: 5 to 200 nm).
  • Such materials include single metal oxides such as titanium oxide, indium oxide, tin oxide, bismuth oxide, zirconium oxide, tantalum oxide, niobium oxide, tungsten oxide, iron oxide, gallium oxide, nickel oxide, and titanate.
  • single metal oxides such as titanium oxide, indium oxide, tin oxide, bismuth oxide, zirconium oxide, tantalum oxide, niobium oxide, tungsten oxide, iron oxide, gallium oxide, nickel oxide, and titanate.
  • titanium Complex oxides such as barium phosphate, potassium niobate, and sodium tantalate; metal halides such as silver iodide, silver bromide, iodide, and copper bromide; zinc sulfide; titanium sulfide; indium sulfide; and sulfide Bismuth, Cadmium Sulfide, Zirconium Sulfide, Tantalum Sulfide, Silver Sulfide, Copper Sulfide, Tin Sulfide, Tungsten Sulfide, Molybdenum Sulfide, Selenide Force Dome, Zirconium Selenide, Selenide Acetate, Titanium Selenide, Indium Selenide , Tungsten selenide, molybdenum selenide, bismuth selenide, cadmium telluride, tungsten telluride, chalcogenide compounds such as molybdenum telluride, zinc telluride, bismuth telluride, and
  • the semiconductor thin film has a thickness of 0.1 to 100 / m, preferably 8 to 20 ⁇ m.
  • the organic dye is adsorbed on the semiconductor thin film by immersing the semiconductor thin film in the dye solution and leaving it at room temperature for 1 minute to 2 days or under heating conditions for 1 minute to 24 hours. Preferably, it is left at room temperature for 12 hours or more.
  • the solvent used to adsorb the organic dye on the semiconductor thin film may be any solvent that dissolves the organic dye.
  • alcohol solvents such as methanol, ethanol, isopropanol, and t-butanol
  • hydrocarbon solvents such as benzene
  • organic solvents such as tetrahydrofuran and acetonitrile
  • mixed solvents thereof Preferably, ethanol or a mixed solvent of t-butanol and acetonitrile is used.
  • the concentration of the dye solution is from 0.1 mM to a saturated amount, and preferably 0.1 to 0.5 mM.
  • the photoelectric conversion element according to the present invention is composed of a semiconductor thin film electrode on which an organic dye is adsorbed, a counter electrode thereof, and a redox electrolyte contacting those electrodes. It can be easily obtained by using a semiconductor thin-film electrode to which the dye according to the present invention is adsorbed.
  • FIG. 1 shows a schematic diagram of one example of the photoelectric conversion element of the present invention. As shown in this schematic diagram, the photoelectric conversion element of the present invention has a conductive transparent electrode (tin oxide coated glass). It consists of a nanoporous semiconductor thin film electrode, a counter electrode, and an electrolyte containing a redox electrolyte. The organic dye / sensitizer is adsorbed on the surface of the semiconductor nanoparticles.
  • the organic dye on the nanoporous semiconductor electrode absorbs ultraviolet light, visible light, near-infrared light, etc. (The absorption wavelength region depends on the type of organic dye. ).
  • the excited electrons in the dye are injected into the conduction band level of the semiconductor, move through the semiconductor thin film, and reach the transparent conductive electrode, which is a pack contact.
  • the dye that has lost electrons is reduced by redox ions (such as I-ions) in the electrolyte and receives electrons.
  • redox ions such as I-ions
  • 1 3 - counterions such ions are re-reduced in pairs electrode, iodide ion is regenerated. External current can be extracted by this electron flow
  • the electrolytic solution used for the photoelectric conversion element of the present invention contains a redox ion pair.
  • Redox ion pairs include, but are not limited to, iodine redox, bromine redox, iron redox, tin redox, chromium redox, vanadium redox, sulfide ion redox, anthraquinone redox, and the like.
  • iodine redox a mixture of iodine with an imidazolium iodide derivative, lithium iodide, potassium iodide, tetraalkylammonium iodide salt, and in the case of bromine redox, Use a mixture of bromine with an imidazolym bromide derivative, lithium bromide, potassium bromide, tetraalkylammonium bromide salt, and the like.
  • iodine redox lithium iodide and tetraalkylammonium imidazolide derivatives.
  • the concentration of the redox electrolyte is usually from 0.05 to 5M, preferably from 0.1 to 0.5M.
  • the electrolyte solvent for dissolving the redox electrolyte may be any solvent that is stable and dissolves the electrolyte.
  • organic solvents such as acetonitrile, methoxyacetonitrile, propionitrile, methoxypropionitrile, ethylene carbonate, propylene dipropionate, dimethyl sulfoxide, dimethylformamide, tetrahydrofuran, and nitromethane, or a mixed solvent thereof.
  • it is a nitrile solvent.
  • the counter electrode used in the photoelectric conversion element of the present invention is a thin film coated on a conductive substrate.
  • Gold, rhodium, ruthenium, carbon, or oxide semiconductor electrodes Preferably, it is a platinum or carbon electrode.
  • the spacer used for the photoelectric conversion element of the present invention may be any spacer that prevents contact between the semiconductor thin film electrode and the counter electrode.
  • a polymer film such as polyethylene is used, and its film thickness is 5 to 2000 m, preferably 15 to 30 m.
  • a spacer may not be used.
  • a gelled pseudo-solidified electrolyte containing a gelling agent may be used in the redox electrolyte.
  • a solid electrolyte using a polymer such as a polyethylene oxide derivative may be used instead of the redox electrolyte.
  • a p-type inorganic compound semiconductor thin film layer such as copper iodide, copper bromide, or copper thiocyanate may be used instead of the redox electrolyte.
  • a P-type organic semiconductor hole transport layer such as a polythiophene derivative or a polypyrrole derivative may be used.
  • the dye-photosensitive conversion element of the present invention can be applied to various sensors and photoelectrochemical solar cells.
  • a commercially available coumarin 343 (compound No. 60 below) was used as a comparative example.
  • FIG. 2 shows an absorption spectrum diagram of coumarin 343 and compound No. 3 in an ethanol solution.
  • the absorption wavelength peak is 440 nm for coumarin 343 and the organic dye of compound No. 3 is 530 nm, and the absorption wavelength region is shifted to the longer wavelength side.
  • the organic dye of Compound No. 3 is more suitable as a photosensitizer for a photoelectric conversion element than the conventionally known coumarin 343, and has a higher Efficiency can be expected.
  • Table 1 shows nanoporous titanium dioxide thin film electrodes (thickness 13 / m) using coumarin 343 and organic dye of compound No. 3 as sensitizers, iodine redox electrolyte (0.3M tetrapropylammonium iodide).
  • Photovoltaic properties of dye-sensitized electrochemical solar cells consisting of a 0.03M iodine ethylene carbonate 'acetonitrile 6: 4 mixed solution in volume ratio), a polyethylene spacer (thickness 13 ⁇ ) and a platinum counter electrode showed that.
  • the light source was used artificial sunlight 100 mWZc m 2 using a solar simulator.
  • Table 2 shows that the organic dyes of the compounds No. 1 to No. 7 and No. 10 were used as photosensitizers, and a nanoporous titanium dioxide thin film electrode (thickness: 13 m) to which the photosensitizer was adsorbed, iodine ion redox electrolysis Solution (0.3M tetrapropylammonium iodide-0.33M iodine ethylene carbonate-acetonitrile volume ratio 6: 4 mixed solution), polyethylene spacer (thickness 30 m) and dye consisting of platinum counter electrode
  • the photovoltaic characteristics of sensitized photoelectrochemical solar cell under AMI.5 100 mW / c sunlight intensity
  • a photoelectrochemical solar cell using a dye-sensitized semiconductor electrode in which the compound having the specific structure (organic dye) is adsorbed on a titanium dioxide thin film exhibits high photoelectric conversion efficiency.
  • the conversion efficiency when sensitized with the dye of compound No. 7 is 4.0%, which is remarkable.
  • an anchor group one CH 2 COOH group or one C 2 H 4 COOH group
  • the COOH group which is the anchor group
  • the conjugated system is not cut off, so electrons flow in It is thought that this is likely to occur.
  • the presence of the CN group, which is an electron withdrawing group is considered to have the effect of promoting electron injection from the dye molecule into the semiconductor.
  • an inexpensive dye-sensitized photoelectric conversion element having high photoelectric conversion efficiency is provided by using a specific organic dye as a photosensitizer. Further, by using this, a photoelectrochemical solar cell having high photoelectric conversion efficiency can be easily provided.
  • FIG. 1 shows a schematic diagram of one example of the photoelectric conversion element according to the present invention.
  • FIG. 2 shows an absorption spectrum of an ethanol solution of coumarin 343 and an ethanol solution of a specific organic dye used in the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)

Description

' 明細書 有機色素を光増感剤とする半導体薄膜電極、 光電変換素子 技術分野
本発明は、 有機色素を光増感剤とする半導体薄膜電極、 光電変換素子及びこれ を用いた光電気化学太陽電池に関する。 背景技
これまで、 ルテニウムなどの金属錯体ゃ有機色素を光増感剤とし、 ナノ粒子の 二酸化チタンや酸化亜鉛などの大きいパンドギヤップを有する酸化物半導体薄膜 電極とレドックス電解液からなる高効率の色素増感型光電変換素子が報告されて いる。 その変換効率の高さと製造における低コス トの可能性から、 光電気化学太 陽電池への応用が注目されている。
色素増感型光電気化学太陽電池における增感色素としてこれまでに用いられて きた有機色素には、 フエニルキサンテン系色素、 フタロシアニン系色素、 タマリ ン系色素、 シァニン系色素、 ポルフィリン系色素、 ァゾ系色素、 プロフラビン系 色素などがある。 これらの有機色素は、 金属錯体と比べて吸収係数が大きく、 安 価であり、 且つ構造の多様性により吸収特性を制御できるなどの光増感剤として の利点がある。 しかしながら、 その吸収波長領域が比較的短波長領域に限られる ため、 太陽エネルギー変換効率はルテニウム錯体などの金属錯体を用いたものと 比べて大きく劣っていた。
本発明は、 特定の有機色素増感剤を用いた半導体薄膜電極、 該電極を用いた高 効率色素増感型光電変換素子及びこれを用いる色素増感型光電気化学太陽電池を 提供することをその課題とする。
発明の開示
本発明者らは、 前記課題を解決すべく鋭意研究を重ねた結果、 本発明を完成す るに至った。
本発明によれば、 下記半導体薄膜電極、 該電極を用いた光電変換素子及ぴ該素 子を用いた光電気化学太陽電池が提供される。
(1) 下記一般式 (1) で表される構造を有する有機色素により增感された半 導体からなる薄膜電極。
Figure imgf000004_0001
(式中、 Zは置換基を有していても良い複素環基を示し、 Lは電子吸引性基を示 し、 〜 は水素原子又は置換基を示し、 〜!^のうちの瞵接する任意の 2 つは互いに結合し環状構造を形成しても良く、 Mは水素原子又は塩形成性陽ィォ ンを示し、 nは 0から 3の整数である)
(2) 下記一般式 (2) で表される構造を有する有機色素により増感された半 導体からなる薄膜電極。
Z - CR中 R2 - ( 2 )
Figure imgf000004_0002
(式中、 Ζ、 Ι^〜Ι 3、 Μ及ぴ ηは前記と同じ意味を有する)
(3) 下記一般式 (3) で表される構造を有する有機色素により增感された半 導体からなる薄膜電極。
Figure imgf000004_0003
(式中、 〜^は水素原子又は置換基を示し、 〜^のうち隣接する任意の 2つは互いに結合し環状構造を形成しても良く、 Y 及び Y2はへテ口原子を示し 、 Μは水素原子又は塩形成性陽イオンを示し、 ηは 0から 3の整数である)
(4) 下記一般式 (4) で表される構造を有する有機色素により増感された半 導体からなる薄膜電極。 n XCOO
(式中、 は置換基を有していても良い 2価の複素環基を示し、 Lは電子吸引 性基を示し、 Ri〜R2は水素原子又は置換基を示し、 〜12は互いに結合し環 状構造を形成しても良く、 Mは水素原子又は塩形成性陽イオンを示し、 nは 0か ら 3の整数である)
(5) 下記一般式 (5) で表される構造を有する有機色素により増感された半 導体からなる薄膜電極。
Z1 (5)
Figure imgf000005_0001
(式中、 τχ、 1^〜12、 Μ及ぴ ηは前記と同じ意味を有する)
(6) 下記一般式 (6) で表される構造を有する有機色素により増感された半 導体からなる薄膜電極。
Figure imgf000005_0002
(式中 1^〜18は水素原子又は置換基を示し、 1^〜18のうち隣接する任意の 2 つは互いに結合し環状構造を形成しても良く、 Xは陰イオン性基又は陰イオン性 基を含有する基を少なくとも 1つ有し、 ヘテロ原子を 2つ以上含有する複素環基 を示し、 及び Y2はへテロ原子を示し、 ηは 0から 3の整数である)
(7) 下記一般式 (7) で表される構造を有する有機色素により増感された半 導体からなる薄膜電極。 R10 R9 , i /CN
Γ T T Ί n COOM ,マ、
R11
(式中、 〜 は水素原子又は置換基を示し、 R9~R12は水素原子又は炭素数 1から 6のアルキル基を示し、 及び Y2はへテロ原子を示し、 1^〜1 3のうち 隣接する任意の 2つは互いに結合し環状構造を形成しても良く、 Mは水素原子又 は塩形成性陽イオンを示し、 nは 0から 3の整数である)
( 8 ) 前記 (1 ) から (7 ) のいずれかの半導体電極を用いることを特徴とす る光電変換素子。
( 9 ) 前記光電変換素子を用いることを特徴とする光電気化学太陽電池。 発明の実施の形態
前記一般式 (1 ) において、 Zは置換基を有していても良い複素環基を示す。 この場合の複素環基は、 従来公知の各種の複素環から誘導された基であることが できる。 また、 この複素環に含まれるヘテロ原子は、 酸素原子、 硫黄原子、 窒素 原子等であることができ、 その環中に含まれるヘテロ原子の数は 1つ又は、 複数 ( 2〜 5 ) である。 環中に 2つ以上のへテロ原子が含まれる場合、 そのへテロ原 子は同一又は異なっていてもよい。 さらに、 複素環には、 ベンゼン環、 ナフタレ ン環、 シクロへキサン環等の炭素数 6〜 1 2の炭素環や、 環構成元素の数が 5〜 1 2の他の複素環 (例えば、 ジュロリジン環など) が縮合してもよい。
前記複素環の具体例としては、 チアゾール、 ベンゾチアゾール、 ォキサゾール 、 ベンゾ才キサゾーノレ、 セレナゾーノレ、 ベンゾセレナゾーノレ、 インドーノレ、 クマ リン、 フエニルキサンテン等が挙げられる。
前記複素環には、 1つの置換基又は複数の置換基が結合していてもよい。 この ような置換基としては、 例えば、 メチル基、 ェチル基、 ォクチル基、 ォクタデシ ル基、 2 —ェチルへキシル基などの直鎖又は分岐の炭素数 1 〜 2 2、 好ましくは 2〜 1 8のアルキル基;メ トキシ基、 プロポキシ基、 ブトキシ基などの炭素数 1 〜 2 2、 好ましくは 1 〜 1 8のアルコキシ基; フエニル基、 ナフチル基などの炭 素数 6〜2 2、 好ましくは 6〜 1 2のァリール基;ベンジル基などの炭素数 7〜 2 2、 好ましくは 7 ~ 1 2のァラルキル基;水酸基;シァノ基;ニトロ基; クロ 口基、 プロモ基、 ョード基などのハロゲン基; トリフルォロメチル基;アミノ基 ;メチルァミノ基、 ォクチルァミノ基などの炭素数 1〜 2 2, 好ましくは 1〜1 2のアルキル基を有するモノアルキル基;ジェチルァミノ基、 ジブチルァミノ基 、 ジォクタデシルァミノ基などの炭素数 1〜 2 2、 好ましくは 1〜1 2のアルキ ル基を有するジアルキルァミノ基; ピペリジル基、 モルホリル基などの環構成元 素数 5〜8、 好ましくは 5〜 6の環状ァミノ基が挙げられる。
前記一般式 (1 ) において、 Lは電子吸引性基を示す。 このような電子吸引性 基としては、 従来一般に知られている各種のものが用いられる。 このようなもの の具体例としては、 例えば、 シァノ基;ニトロ基; クロ口基、 ブロモ基、 ョード 基などのハロゲン基;水酸基; トリフルォロメチル基;スルホン酸基;カルボキ シル基;アルコキシカルボキシル基などが挙げられる。
前記一般式 (1 ) において、 I^、 R2及び R3は、 水素原子又は置換基を示す 。 この場合の置換基には、 炭素原子に結合することのできる慣用の各種置換基が 包含される。 このような置換基としては、 例えば、 水酸基;メチル基、 ェチル基 、 ォクチル基、 ォクタデシル基、 2 _ェチルへキシル基などの直鎖又は分岐の炭 素数 1〜1 2、 好ましくは 1〜6のアルキル基; クロ口基、 ブロモ基、 ョード基 などのハロゲン基;ニトロ基;シァノ基;アミノ基; メチルァミノ基、 ォクチル アミノ基などの炭素数 1〜1 2、 好ましくは 1〜6のアルキル基を有するモノア ルキルァミノ基;ジェチルァミノ基、 ジプチルァミノ基、 ジォクタデシルァミノ 基などの炭素数 1〜1 2、 好ましくは 1〜6のアルキル基を有するジアルキルァ ミノ基; トリフルォロメチル基などが挙げられる。
前記 1^~1 3のうちの隣接する 2つは相互に結合して環状構造を構成してもよ い。 この場合の環には、 元素数が 5〜 1 0、 好ましくは 5〜 8の炭素環や複素環 が包含される。 複素環の場合、 その環構成元素には、 1つ又は複数のへテロ原子 (酸素原子、 硫黄原子、 窒素原子等) が包含される。
前記一般式 (1 ) において、 Mは水素原子又は塩形成性陽イオンを示す。 塩形 成性陽イオンには、 力ルポキシル基と塩を形成し得る各種の陽イオン (カチオン ) が包含される。 このような陽イオンとしては、 例えば、 アンモニゥムカチオン (NH4 +) ; ァミンから誘導された有機アンモニゥムカチオン (A1A2A3A4N+ 、 A〜A4は水素原子又は炭素数 1から 2 2のアルキル基もしくはァルケ-ル基 を示すが、 その少なく とも 1つはアルキル基又はアルケニル基である) ; L i + 、 N a+、 K C s+等のアルカリ金属イオン; Mg2+、 C a2+、 S r2+等のアル力 リ土類金属イオン等が挙げられる。
前記一般式 (1) において、 nは 0〜3、 好ましくは 1〜 2の整数を示す。 前記一般式 (2) において、 τヽ Ri、 R2、 R3、 M及び nは、 前記と同じ意味 を有する。
前記一般式 (3) において、 1^~1 8のは水素原子又は置換基を示すが、 該置 換基としては、 前記 1^〜1 3に関して示した各種のものが挙げられる。 また、 M 及び nは、 前記と同じ意味を有する。
前記一般式 (3) において、 はへテロ原子を示す。 このようなヘテロ原子 には、 酸素原子 (一 0_) 、 硫黄原子 (一 S_) 、 窒素原子 (一 NH—、 -NR 一、 R ;炭素数 1〜6のアルキル基) 、 セレン原子 (一 S e—) 、 テルル原子 ( -T e -) 等が包含される。 Y2はへテロ原子を示す。 このようなヘテロ原子に は、 酸素原子 (=Ο) 、 硫黄原子 (=S) 、 窒素原子 ( = NR、 R ;水素又は炭 素数 1〜 6のアルキル基) 、 セレン原子 (=S e) 、 テルル原子 (=T e) 等が 包含される。
前記一般式 (4) において、 Z は置換基を有していても良い 2価の複素環基 を示す。 この場合の複素環基は、 従来公知の各種の複素環から誘導された基であ ることができる。 また、 この複素環に含まれるヘテロ原子は、 酸素原子、 硫黄原 子、 窒素原子等であることができ、 その環中に含まれるヘテロ原子の数は 1つ又 は、 複数 (2〜5) である。 環中に 2つ以上のへテロ原子が含まれる場合、 その ヘテロ原子は同一又は異なっていてもよい。 さらに、 複素環には、 ベンゼン環、 ナフタレン環、 シクロへキサン環等の炭素数 6〜1 2の炭素環や、 環構成元素の 数が 5〜1 2の他の複素環 (例えば、 ジュロリジン環など) が縮合してもよい。 前記複素環には、 前記の 1つの置換基又は複数の置換基が結合していてもよい。 前記複素環の具体例としては、 ロダニン、 チアゾリン、 ベンゾチアゾリン、 チ ォパルビツール環、 ォキサゾリ ドン、 チォォキサゾリ ドン等が挙げられる。 前記一般式 (4 ) において、 R2、 L、 M及ぴ nは、 前記と同じ意味を有 する。
前記一般式 (5 ) において、 Ζ R R2、 M及び nは、 前記と同じ意味を有 する。
前記一般式 (6 ) において、 1^〜1^、 Yj, Y2及び nは、 前記と同じ意味を 有する。
前記一般式 (6 ) において、 Xは、 陰イオン性基を少なくとも 1つ含有する複 素環基を示す。 この場合、 複素環基には、 ヘテロ原子を少なくとも 2個含有する 5員環又は 6員環の複素環から誘導されたものが包含される。 また、 この場合の 複素環には、 ベンゼン環やナフタレン環等の芳香族環が縮合していてもよい。 こ のような複素環には、 ロダニン、 チォォキサゾリ ドン、 チォヒダントイン、 チォ パルビツール環、 チアゾリン、 ベンゾチアゾリン、 ォキサゾリン等が包含される 複素環基 Xの具体例を以下に示す。
Figure imgf000009_0001
Figure imgf000010_0001
Figure imgf000010_0002
前記式中、 Rは陰イオン性基又は陰イオン性基を含む基を示す。 R1及び R2は 水素原子、 陰イオン性基、 陰イオン性基を含有する基又は置換基を示すが、 それ らのうちの少なくとも一方は陰イオン性基又は陰イオン性基を含有する基である 前記置換基としては、 窒素原子に結合し得る各種の基を用いることができる。 このような基には、 炭素数 1〜2 2、 好ましくは 2〜1 8のアルキル基又はアル ケニル基、 炭素数 5〜 8のシクロアルキル基、 炭素数 6〜 2 2、 好ましくは 6〜 1 2のァリール基、 炭素数 7〜2 2、 好ましくは 7〜1 2のァラルキル基等が包 含される。 これらの基は、 水酸基やカルボキシル基、 スルホン酸基、 リン酸基、 アルコキシ基、 アルコキシカルポニル基、 ァシル基、 ハロゲン原子等の置換基を 有していてもよい。
前記陰イオン性基を含有する基 (陰イオン性基を置換基として含有する基) は 、 下記一般式 (1 4 ) で表されるものであることができる。
-A1- X1 ( 1 4 ) 刖 •己式中、 A1は 2価炭化水素基を示し、 X1は陰イオン性基を示す c
2価炭化水素基 A1には、 炭素数 1〜6、 好ましくは 1〜3のアルキレン基 ( エチレン、 プロピレン、 ブチレン等) 、 炭素数 6〜1 2のァリーレン基 (フエ二 レン、 トリ レン、 ナフチレン等) 、 了リーレンジアルキレン基 (フエ二レンジメ チレン、 フエ二レンジエチレン等) 等が包含される。
陰イオン性基 X1には、 カルボキシル基、 スルホン酸基、 リン酸基等が包含さ れる。 これらの陰イオン性基は、 遊離状態の基の他、 塩形成性陽イオン Mで中和 された中和状態の基であってもよい。
これらの陰イオン性基は、 半導体表面に吸着するためのアンカー基として作用 する。
前記一般式 (14) で表される陰イオン性基の具体例を示すと、 例えば、 一 C OOH、 一 CH2COOH、 一 C2H4COOH、 一 C3H6COOH、 — C6H4CO OH、 一 S03H、 一 C2H4S03H、 一 C6H4S03H、 — P 03H2、 -COON a 、 一 S〇3Na、 _P03HN a等が挙げられる。
前記 Bは水素原子又は置換基を示す。 置換基としては、 前記した各種のものを 示すことができる。
前記一般式 (7) において、 1^〜1 5、 Yい Y2、 Μ及ぴ ηは、 前記と同じ意 味を有する。 R9、 R1Q、 Ru及び R12は、 水素原子又は炭素数 1〜1 2、 好まし くは 1〜 6のアルキル基を示す。
次に、 前記一般式 (1) 〜 (7) で表される化合物 (有機色素) の具体例を以 下に示す。
Figure imgf000011_0001
No. 2
Figure imgf000012_0001
O
Figure imgf000013_0001
Figure imgf000014_0001
1
Figure imgf000015_0001
t
8 1
Figure imgf000016_0001
No. 2 7
Figure imgf000017_0001
31 tOtOl/lOdt/Ud
Figure imgf000018_0001
o odf/ェ:) d
Figure imgf000019_0001
No. 4 2 8 ·0Μ
Figure imgf000020_0001
Figure imgf000020_0002
8T o odf/ェ:) d
Figure imgf000021_0001
Figure imgf000021_0002
No. 50
Figure imgf000021_0003
前記一般式 (1) で表される化合物は、 下記一般式 (15) で表される複素環 アルデヒドと下記一般式 (16) で表される置換基を有する酢酸と反応させるこ とによって製造することができる。
: -CRi CR2-CR3fcO (1 5)
n
Figure imgf000022_0001
前記式中、 Z、 R1 R2、 R3、 n及ぴ Lは、 前記と同じ意味を有する。
前記一般式 (4 ) で表される化合物は、 下記一般式 (1 7 ) で表される複素環 アルデヒ ドを、 前記一般式 (1 6 ) で表される置換基を有する酢酸と反応させる ことによって製造することができる。
Z ^CR— CR2^0
" π ( 1 7 )
前記式中、 τ λ、 R R2及び nは、 前記と同じ意味を有する。
前記一般式 (6 ) で表される化合物は、 該化合物に対応する複素環アルデヒ ド と、 陰イオン性基又は陰イオン性基を含有する基を少なくとも 1つ有し、 ヘテロ 原子を 2つ以上含有する複素環化合物とを反応させることによつて製造される。 本発明による有機色素により増感された半導体薄膜電極は、 従来公知の有機色 素増感型半導体電極において、 その有機色素として、 前記で示した本発明による 有機色素を用いることにより得ることができる。
本発明による有機色素增感型半導体薄膜電極を好ましく製造するには、 透明電 極を用意し、 その上に半導体薄膜を積層し、 その半導体薄膜に本発明による有機 色素を吸着させる。
前記透明電極としては、 導電性を有するものであればどのようなものでもよく 、 例えば、 透明ないし半透明のガラス基板やプラスチック板上に、 例えば、 フッ 素あるいはアンチモンドープの酸化スズ (N E S A) 、 スズドープの酸化インジ ゥム ( I T O) 、 酸化亜鉛などの導電性透明酸化物半導体薄膜をコートしたもの 、 好ましくは、 フッ素ドープの酸化スズ薄膜をコートしたもの等が用いられる。 本発明で用いられる半導体薄膜は、 ナノ粒子 (粒子径 5〜2 0 0 0 n m) から なるナノポーラス構造を有する化合物半導体で構成することができる。 その材料 としては、 例えば、 酸化チタン、 酸化インジウム、 酸化スズ、 酸化ビスマス、 酸 化ジルコニウム、 酸化タンタル、 酸化ニオブ、 酸化タングステン、 酸化鉄、 酸化 ガリウム、 酸化ニッケルなどの単一金属酸化物、 チタン酸ストロンチウム、 チタ ン酸バリウム、 ニオブ酸カリウム、 タンタル酸ナトリウムなどの複合酸化物、 ョ ゥ化銀、 臭化銀、 ヨウ化鲖、 臭化銅などの金属ハロゲン化物、 硫化亜鉛、 硫化チ タン、 硫化インジウム、 硫化ビスマス、 硫化カ ドミウム、 硫化ジルコニウム、 硫 化タンタル、 硫化銀、 硫化銅、 硫化スズ、 硫化タングステン、 硫化モリブデン、 セレン化力 ドミゥム、 セレン化ジルコニウム、 セレン化亜口、、 セレン化チタン、 セレン化ィンジゥム、 セレン化タングステン、 セレン化モリプデン、 セレン化ビ スマス、 テルル化カ ドミウム、 テルル化タングステン、 テルル化モリプデン、 テ ルル化亜鉛、 テルル化ビスマスなどのカルコゲナイド化合物、 さらには、 これら の化合物を二種類以上含む混合化合物半導体材料 (例えば、 酸化スズ 酸化亜鉛
、 酸化スズ Z酸化チタン) が挙げられるが、 これらに限定されない。
前記した半導体薄膜の膜厚は、 0 . 1〜1 0 0 / mであり、 好ましくは、 8〜 2 0 μ mである。
有機色素の半導体薄膜上への吸着は、 色素溶液中に半導体薄膜を浸し、 室温で 1分〜 2日、 あるいは加熱条件下で 1分から 2 4時間放置することによりおこな う。 好ましくは、 室温で 1 2時間以上放置する方法である。
有機色素を半導体薄膜上に吸着させる場合に用いる溶媒は、 有機色素を溶解す る溶媒なら何でも良い。 例えば、 メタノール、 エタノール、 イソプロパノール、 t —ブタノール等のアルコール溶媒、 ベンゼン等の炭化水素溶媒の他、 テトラヒ ドロフラン、 ァセトニトリルなどの有機溶媒、 さらには、 それらの混合溶媒であ る。 好ましくは、 エタノール又は t—ブタノールとァセトニトリルの混合溶媒で あ 。
有機色素を半導体薄膜上に吸着させる場合の色素溶液の濃度は、 0 . O l mM から飽和量であり、 好ましくは、 0 . 1〜0 . 5 mMである。
本発明による光電変換素子は、 有機色素を吸着させた半導体薄膜電極と、 その 対極と、 それらの電極に接触するレドックス電解液とから構成されるものであり 、 従来公知の光電変換素子において、 その半導体薄膜電極として、 前記した本発 明による色素を吸着させたものを用いることにより容易に得ることができる。 図 1に、 本発明の光電変換素子の 1例についての模式図を示す。 この模式図に 示すように、 本発明の光電変換素子は、 導電性透明電極 (酸化スズコートガラス など) 上に形成したナノポーラス半導体薄膜電極、 対極、 レドックス電解質を含 む電解液などから成る。 有機色素增感剤は、 半導体ナノ粒子の表面上に吸着して いる。 色素吸着半導体薄膜電極側から光を照射することにより、 ナノポーラス半 導体電極上の有機色素が紫外光、 可視光、 近赤外光などを吸収する (吸収波長領 域は、 有機色素の種類に依存) 。 色素中の励起された電子は半導体の伝導帯準位 に注入され、 半導体薄膜中を移動し、 パックコンタク トである透明導電性電極ま で至る。 電子を失った色素は、 電解液中のレドックスイオン ( I—イオンなど) により還元され、 電子を受け取る。 さらに、 1 3—イオンなどの対イオンは対極上 で再還元され、 ヨウ素イオンが再生される。 この電子の流れにより外部電流を取 り出すことができる
本発明の光電変換素子に用いられる電解液には、 レドックスイオン対が含まれ る。 レドックスイオン対は、 ヨウ素レドックス、 臭素レドックス、 鉄レドックス 、 スズレドックス、 クロムレドックス、 バナジウムレドックス、 硫化物イオンレ ドックス、 アントラキノンレドックスなどであるが、 これらに限定されない。 電 解質として、 ヨウ素レドックスの場合、 ヨウ化イミダゾリウム誘導体、 ヨウィ匕リ チウム、 ヨウ化カリウム、 ョゥ化テトラアルキルアンモニゥム塩などとョゥ素の 混合物、 又臭素レドックスの場合には、 臭化イミダゾリゥム誘導体、 臭化リチウ ム、 臭化カリウム、 臭化テトラアルキルアンモニゥム塩などと臭素の混合物を用 いる。 好ましくは、 ヨウ素レドックスのヨウ化リチウム、 テトラアルキルアンモ ニゥムゃョゥ化ィミダゾリゥム誘導体である。
前記のレドックス電解質の濃度は、 通常 0 . 0 5〜 5 M、 好ましくは、 0 . 1 〜 0 . 5 Mである。
レドックス電解質を溶解する電解液溶媒は、 安定でかつ電解質を溶解する溶媒 ならば何でも良い。 例えば、 ァセトニトリル、 メ トキシァセトニトリル、 プロピ ォニトリル、 メ トキシプロピオ二トリノレ、 エチレンカーボネート、 プロピレン力 ーポネート、 ジメチルスルホキシド、 ジメチルホルムアミ ド、 テトラヒ ドロフラ ン、 ニトロメタンなどの有機溶媒、 あるいはそれらの混合溶媒である。 好ましく は、 二トリル系溶媒である。
本発明の光電変換素子に用いる対極は、 導電性基板上に薄膜状にコートした白 金、 ロジウム、 ルテニウム、 カーボン、 あるいは酸化物半導体電極などである。 好ましくは、 白金あるいはカーボン電極である。
本発明の光電変換素子に用いるスぺーサ一は、 半導体薄膜電極と対極との接触 を防ぐものであればなんでもよい。 たとえば、 ポリエチレンなどのポリマーフィ ルムが用いられ、 その膜厚は、 5〜2000 ^m、 好ましくは 15〜30 μ mで ある。 あるいは、 半導体薄膜電極と対極との接触を防ぐ構造を有しているセルで は、 スぺーサーを用いなくても良い。
本発明の光電変換素子では、 レドックス電解液中に、 ゲル化剤を含みゲル化し た擬固体化電解質を用いても良い。 また、 レドックス電解液の代わりに、 ポリエ チレンォキシド誘導体などのポリマーを用いた固体電解質を用いても良い。 本発明の光電変換素子では、 レドックス電解液の代わりに、 ヨウ化銅、 臭化銅 、 チォシアン化銅などの p型無機化合物半導体薄膜層を用いても良い。 また、 レ ドックス電解液の代わりに、 ポリチォフェン誘導体やポリピロール誘導体などの P型有機半導体ホール輸送層を用いても良い。
本発明の色素增感光電変換素子は、 各種のセンサーや光電気化学太陽電池に応 用できる。
実施例
次に本発明を参考例及び実施例により詳述する。
参考例 1
下記化合物 No. 57で表される 3位にホルミル基を有するクマリン誘導体 2 . 5 gと下記化合物 No. 58で表されるロダニン誘導体 2. 04 gをァセトニ トリル中で加熱溶解し、 ピぺリジン 0. 8m lを加え、 還流下 1時間反応後、 放 冷し、 析出した結晶を濾取した。 得られた結晶は DMF (ジメチルホルムアミ ド ) に溶解し濾過後、 ァセトニトリルを加え冷却、 濾取し、 前記化合物 No. 1で 表される朱色結晶を 3. 1 g得た。
結晶の一部をとり、 常法により融点を測定したところ 230乃至 232°Cであ つた。 塩化メチレン溶液における可視吸収スぺク トルでは、 518 nmに吸収極 大が観察された。 重クロ口ホルム中での —核磁気共鳴スぺクトル (以下 — NMRスペク トル」 と略記する) を測定したところ、 δ (TMS、 p pm) 1 . 27 (6 H, t ) 、 3. 51 (4H, q) 、 4. 69 (2H, s ) 、 6. 5 1 (1H, s) 、 6. 70 (1H, d d) 、 7. 40— 7. 45 (3 H, m) の位 置にピークが観察された。
参考例 2
下記化合物 No. 55で表されるクマリン誘導体を 3. 25 gと前記化合物 N o . 58で表されるロダニン誘導体 2 gをァセトニトリル中で加熱溶解し、 ピぺ リジン 0. 8m 1を加え還流下 2時間反応後、 放冷し、 析出した結晶を濾取した 。 得られた結晶はクロ口ホルムに溶解し濾過後、 ァセトニトリルを加え冷却、 濾 取し、 前記化合物 No. 3で表される紫褐色結晶を 4. 67 g得た。
結晶の一部をとり、 常法により融点を測定したところ 244乃至 246 °Cであ つた。 塩化メチレン溶液における可視吸収スぺク トルでは、 540 nmに吸収極 大が観察された。 重クロ口ホルム中での — NMRスぺクトルを測定したとこ ろ、 δ (TMS、 p p m) 1. 31 (6H, s) 、 1. 54 ( 6 H, s) 、 1. 70- 1. 83 (4H, m) 、 3. 30 (2H, t ) 、 3. 39 (2H, t ) 、 4. 68 (2 H, s ) 7. 1 2 ( 1 H, s ) 、 7. 62 (1H, s ) 、 7. 80 (1H, s) の位置にピークが観察された。
参考例 3
下記化合物 No. 56で表されるクマリン誘導体 1 gと下記化合物 No. 59 で表されるシァノ酢酸 0. 36 gをァセトニトリル中で加熱溶解し、 ピぺリジン 0. 1m lを加え、 還流下で 1時間反応させ、 析出した結晶を濾取した。 得られ た結晶は DMFに溶解し濾過後、 イソプロピルアルコールを加え、 析出した結晶 を濾取し、 前記化合物 No. 7で表される輝紫色結晶を 0. 42 g得た。
結晶の一部をとり、 常法により融点を測定したところ 270乃至 275°Cであ つた。 塩化メチレン溶液における可視吸収スぺクトルでは、 531 nmに吸収極 大が観察された。 重クロ口ホルム中での 1H— NMRスぺク トルを測定したとこ ろ、 δ (TMS、 p pm) 1. 3 1 (6H, s ) 、 1. 53 (6H, s ) 、 1. 74- 1. 85 (4H, m) 、 3. 41— 3. 49 (4H, m) 、 7. 47 (2 H, m) 7. 75 (1H, d d) 、 8. 08 ( 1 H, d) 、 8. 22 ( 1 H, s ) の位置にピークが観察された 参考例 4
下記化合物 No. 55で表されるクマリン誘導体 3. 3 gと下記化合物 No. 59で表されるシァノ酢酸 1. 9 gをァセトニトリル中、 加熱溶解し、 ピペリジ ン 0. 5 m 1を加え還流下 3時間反応させ、 析出した結晶を熱時濾取した。 得ら れた結晶をトリェチルァミンを加えたクロ口ホルムに溶解したのち、 シリカゲル カラムクロマトグラフィー (溶離液:クロ口ホルム一メタノール混合溶媒) によ る精製をおこない、 前記化合物 No. 10で表される輝赤紫色結晶を 0. 99 g 得た。
結晶の一部をとり、 常法により融点を測定したところ 186乃至 192°Cであ つた。 メタノール溶液における可視吸収スぺク トルでは、 491 nmに吸収極大 が観察された。 重クロ口ホルム中での — NMRスペクトルを測定したところ 、 8 (TMS、 p pm) 1. 28 (6H, s ) , 1, 32 (9H, t) , 1. 5 4 (6 H, s ) , 1. 74 (2H, t ) , 1. 80 ( 2 H, t ) , 3. 1 3 (6 H, q) , 3. 23 (2 H, t ) , 3. 36 (2H, t ) , 7. 1 9 ( 1 H, s ) , 8. 38 (1H, s) , 8. 75 (1H, s ) の位置にピ一クが観察された 実施例 1
本発明の実施例として、 前記化合物 No. 1で表される有機色素を二酸化チタ ン薄膜 (厚さ 1 3 μπι) 上に吸着させた色素増感半導体電極を用いた光電気化学 太陽電池の例を示す。 また、 比較例として一般に市販されているクマリン 343 (下記化合物 No. 60) を用いた。
図 2には、 クマリン 343と化合物 N o . 3のエタノール溶液中での吸収スぺ クトル図を示した。 この図のように、 吸収波長のピークは、 クマリン 343の 4 40 nmに対して、 化合物 No. 3の有機色素は 530 n mと吸収波長領域が長 波長側にシフ トしている。 光電変換素子の高効率化のためには、 より広い範囲の 波長領域の光を吸収し、 利用できることが望まれる。 太陽電池の場合には、 太陽 光により多く含まれる可視光 (400— 750 nm) をより多く吸収できること が望まれる。 このことから、 化合物 No. 3の有機色素は、 これまで知られてい るクマリン 343に比べて、 光電変換素子の光増感剤として適しており、 より高 効率が期待できる。
表 1には、 クマリン 343及ぴ化合物 No. 3の有機色素を増感剤としたナノ ポーラス二酸化チタン薄膜電極 (厚さ 1 3 / m) 、 ヨウ素レドックス電解液 (0 . 3Mヨウ化テトラプロピルアンモニゥム一 0. 03Mヨウ素のエチレンカーボ ネート 'ァセトニトリル体積比 6 : 4混合溶液) 、 ポリエチレンスぺーサー (厚 さ 1 3 μηι) および白金対極から成る色素増感光電気化学太陽電池の光電変換特 性を示した。 光源としては、 ソーラーシミュレーターを用いた疑似太陽光 100 mWZc m2を用いた。
Figure imgf000028_0001
表 1から明らかなように、 従来のクマリン 343を用いた太陽電池では、 光短 辂電流密度 J seは、 2. OmA/ cm2, 光開放電圧 V。。は、 0. 55 V、 形状因 子 (フィルファクター) f f は、 0. 6 1で、 太陽エネルギー変換効率 77が 0. 7%であるのに対して、 本発明による化合物 No. 3の有機色素を用いた太陽電 池では、 クマリン 343を上回る太陽エネルギー変換効率 1. 5%が得られた。 実施例 2
表 2には、 前記化合物 No. l〜No. 7及ぴ No. 10の有機色素を光増感 剤とし、 これを吸着させたナノポーラス二酸化チタン薄膜電極 (厚さ 13 m) 、 ヨウ素イオンレドックス電解液 (0. 3Mヨウ化テトラプロピルアンモニゥム 一 0. 03Mョゥ素のエチレンカーボネート ·ァセトニトリル体積比 6 : 4混合 溶液) 、 ポリエチレンスぺーサー (厚さ 30 m) および白金対極からなる色素 増感型光電気化学太陽電池の AMI . 5 (1 00 mW/ c 太陽光と同等の 光強度) 条件下での光電変換特性を示した。 表 2
Figure imgf000029_0001
表 2から明らかなように、 前記特定構造を有する化合物 (有機色素) を二酸化 チタン薄膜上に吸着させた色素増感半導体電極を用いた光電気化学太陽電池は、 高い光電変換効率を示す。 とりわけ化合物 No. 7の色素で増感した場合の変換 効率は 4. 0%と特筆すべきものである。 化合物 No. l〜No. 6の有機色素 では、 半導体表面に吸着するアンカー基 (一 CH2COOH基や一 C2H4COOH 基) がロダニン環に付いているため、 色素分子とアンカー基との間の共役系が切 れているのに対して、 化合物 No. 7及び No. 10の色素では、 アンカー基で ある一 COOH基が直接メチン鎖に付いており共役系が切れないため電子流入が おこりやすくなつているものと考えられる。 さらに、 電子吸引基である CN基が 存在することにより、 色素分子から半導体への電子注入が促進されている効果が あるものと考えられる。
実施例 3
さらに、 化合物 No. 7の色素を光増感剤とする二酸化チタン太陽電池におい て、 電解液を 0. 6Mヨウ化ジメチルプロピルイミダゾリゥム一0. 1Mヨウィ匕 リチウム一 0. 05Mョゥ素のメ トキシァセトニトリル溶液を用いた場合には、 AMI . 5条件下で、 光短絡電流密度 J s。は、 1 5. OmA/ cm2, 光開放電 圧 V。cは、 0. 59V、 フィルファクター f f は、 0. 6 1で、 太陽エネルギー 変換効率 5. 4%が得られた。
Figure imgf000030_0001
No, 5 8
CN
H2C
COOH No. 5 9
Figure imgf000030_0002
本発明によれば、 特定の有機色素を光增感剤とすることにより、 安価で、 光電 変換効率が高い色素増感型光電変換素子が提供される。 また、 これを用いること により光電変換効率の高い光電気化学太陽電池を容易に提供できる。
図面の簡単な説明
図 1は、 本発明による光電変換素子の 1例についての模式図を示す。 図 2は、 クマリン 3 4 3のエタノール溶液と、 本発明で用いる特定有機色素の エタノール溶液の吸収スぺク トル図を示す。

Claims

請求の範囲
(1) 下記一般式 (1) で表される構造を有する有機色素により增感された半 導体からなる薄膜電極。
Figure imgf000032_0001
(式中、 Zは置換基を有していても良い複素環基を示し、 Lは電子吸引性基を示 し、 〜 は水素原子又は置換基を示し、 1^〜13のうちの隣接する任意の 2 つは互いに結合し環状構造を形成しても良く、 Mは水素原子又は塩形成性陽ィォ ンを示し、 nは 0から 3の整数である)
(2) 下記一般式 (2) で表される構造を有する有機色素により増感された半 導体からなる薄膜電極。
CN
Z-CRrfCR2-CR3te ( 2 )
、 'η COOM
(式中、 Z、 1^〜1^、 M及び nは前記と同じ意味を有する)
(3) 下記一般式 (3) で表される構造を有する有機色素により增感された半 導体からなる薄膜電極。
Figure imgf000032_0002
(式中、 〜18は水素原子又は置換基を示し、 〜1^のうち隣接する任意の 2つは互いに結合し環状構造を形成しても良く、 及び Y2はへテ口原子を示し 、 Μは水素原子又は塩形成性陽イオンを示し、 ηは 0から 3の整数である)
(4) 下記一般式 (4) で表される構造を有する有機色素により増感された半 導体からなる薄膜電極。
Figure imgf000033_0001
(式中、 は置換基を有していても良い 2価の複素環基を示し、 Lは電子吸引 性基を示し、 1^〜1^は水素原子又は置換基を示し、 1^〜1 2は互いに結合し環 状構造を形成しても良く、 Mは水素原子又は塩形成性陽イオンを示し、 nは 0か ら 3の整数である)
(5) 下記一般式 (5) で表される構造を有する有機色素により増感された半 導体からなる薄膜電極。
Z
Figure imgf000033_0002
(式中、 τ、 Ri〜R2、 M及び nは前記と同じ意味を有する)
(6) 下記一般式 (6) で表される構造を有する有機色素により增感された半 導体からなる薄膜電極。
(6)
Figure imgf000033_0003
(式中 1^〜18は水素原子又は置換基を示し、 1^~18のうち隣接する任意の 2 つは互いに結合し環状構造を形成しても良く、 Xは陰ィオン性基又は陰ィォン性 基を含有する基を少なくとも 1つ有し、 ヘテロ原子を 2つ以上含有する複素環基 を示し、 及ぴ 2はへテロ原子を示し、 nは 0から 3の整数である)
(7) 下記一般式 (7) で表される構造を有する有機色素により増感された半 導体からなる薄膜電極。 ノ CN ノ nヽ COOM ( )
Figure imgf000034_0001
(式中、 1^〜15は水素原子又は置換基を示し、 R9〜R12は水素原子又は炭素数 1から 6のアルキル基を示し、 及ぴ 2はへテロ原子を示し、 1^〜13のうち 隣接する任意の 2つは互いに結合し環状構造を形成しても良く、 Mは水素原子又 は塩形成性陽イオンを示し、 nは 0から 3の整数である)
(8) 請求の範囲 (1) から (7) のいずれかの薄膜電極を用いることを特徴 とする光電変換素子。
(9) 請求の範囲 (8) の光電変換素子を用いることを特徴とする光電気化学 太陽電池。
PCT/JP2001/010404 2000-11-28 2001-11-28 Electrodes a couches minces a semiconducteur realisees au moyen de colorants organiques comme photosensibilisateur et dispositifs de conversion photoelectriques WO2002045199A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/415,552 US7262361B2 (en) 2000-11-28 2001-11-28 Semiconductor thin film electrodes made by using organic dyes as the photosensitizer and photoelectric conversion devices
DE60143273T DE60143273D1 (de) 2000-11-28 2001-11-28 Dünnfilmelektroden auf Basis von mit organischen Farbstoffen sensibilisierten Halbleiter und fotoelektrische Wandler
EP01999017A EP1339129B1 (en) 2000-11-28 2001-11-28 Thin Film Electrodes comprising a semiconductor sensitized with an organic dye and Photoelectric Conversion Devices

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000361549A JP5142307B2 (ja) 2000-11-28 2000-11-28 有機色素を光増感剤とする半導体薄膜電極、光電変換素子
JP2000-361549 2000-11-28

Publications (1)

Publication Number Publication Date
WO2002045199A1 true WO2002045199A1 (fr) 2002-06-06

Family

ID=18832969

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/010404 WO2002045199A1 (fr) 2000-11-28 2001-11-28 Electrodes a couches minces a semiconducteur realisees au moyen de colorants organiques comme photosensibilisateur et dispositifs de conversion photoelectriques

Country Status (5)

Country Link
US (1) US7262361B2 (ja)
EP (1) EP1339129B1 (ja)
JP (1) JP5142307B2 (ja)
DE (1) DE60143273D1 (ja)
WO (1) WO2002045199A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8383831B2 (en) 2008-08-06 2013-02-26 Mitsubishi Paper Mills Limited Dye for dye-sensitized solar cell, semiconductor electrode, and dye-sensitized solar cell

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1311001B1 (en) * 2000-07-27 2009-12-09 Nippon Kayaku Kabushiki Kaisha Dye-sensitized photoelectric transducer
TW541330B (en) 2001-03-07 2003-07-11 Nippon Kayaku Kk Photo-electric conversion device and oxide semiconductor fine particle
CA2453060C (en) 2001-07-06 2011-02-08 Nippon Kayaku Kabushiki Kaisha Dye-sensitized photoelectric conversion device
JP4542741B2 (ja) * 2002-09-02 2010-09-15 独立行政法人産業技術総合研究所 有機色素を光増感剤とする半導体薄膜電極、光電変換素子及び光電気化学太陽電池
JP5310675B2 (ja) * 2002-12-12 2013-10-09 コニカミノルタ株式会社 光電変換材料用半導体、光電変換素子及び太陽電池
US8227690B2 (en) 2003-03-14 2012-07-24 Nippon Kayaku Kabushiki Kaisha Dye-sensitized photoelectric conversion device
JP4591667B2 (ja) * 2003-08-27 2010-12-01 東洋インキ製造株式会社 光機能材料
JP4599824B2 (ja) * 2003-10-27 2010-12-15 コニカミノルタホールディングス株式会社 光電変換材料用半導体、光電変換素子及び太陽電池
WO2005043632A1 (en) * 2003-11-03 2005-05-12 Sustainable Technologies International Pty Ltd Multilayered photovoltaic device on envelope surface
JP4645031B2 (ja) * 2003-12-25 2011-03-09 コニカミノルタホールディングス株式会社 光電変換材料用半導体、光電変換素子及び太陽電池
JP4599844B2 (ja) * 2004-01-20 2010-12-15 コニカミノルタホールディングス株式会社 光電変換材料用半導体、光電変換素子及び太陽電池
JP4739693B2 (ja) * 2004-05-28 2011-08-03 シャープ株式会社 光電変換素子
US20060021647A1 (en) * 2004-07-28 2006-02-02 Gui John Y Molecular photovoltaics, method of manufacture and articles derived therefrom
JP4963343B2 (ja) 2004-09-08 2012-06-27 日本化薬株式会社 色素増感光電変換素子
CN101185192B (zh) 2005-05-24 2010-12-08 日本化药株式会社 色素增感的光电变换元件
KR101227928B1 (ko) 2005-06-14 2013-01-30 니폰 가야꾸 가부시끼가이샤 색소증감 광전변환소자
JP5369366B2 (ja) * 2006-02-16 2013-12-18 ソニー株式会社 光電変換素子、半導体装置および電子機器
JP5106381B2 (ja) 2006-03-02 2012-12-26 日本化薬株式会社 色素増感光電変換素子
CN101485036B (zh) 2006-07-05 2012-07-04 日本化药株式会社 染料敏化的太阳能电池
EP2053618A1 (en) * 2007-10-25 2009-04-29 Sony Corporation A dye including an anchoring group in its molecular structure
EP2112671A1 (en) * 2008-04-23 2009-10-28 Sony Corporation A dye including an anchoring group in its molecular structure
EP2208212B1 (en) * 2007-10-25 2015-12-09 Sony Corporation A dye including an anchoring group in its molecular structure
BRPI0907721B1 (pt) * 2008-02-06 2020-07-07 John Bean Technologies Corporation permutador de calor e método para fabricar um permutador de calor
US20130118570A1 (en) * 2010-01-07 2013-05-16 Nec Corporation Dye for photoelectric conversion, semiconductor electrode, photoelectric conversion element, solar cell, and novel pyrroline-based compound
CN102884137B (zh) * 2010-03-16 2015-07-29 宇部兴产株式会社 包含具有经取代的联吡啶基团的双核钌络合物染料的光电转换元件和光化学电池
US8419980B2 (en) 2011-04-26 2013-04-16 Toyota Motor Engineering And Manufacturing North America Ternary thermoelectric material containing nanoparticles and process for producing the same
KR101871027B1 (ko) * 2011-10-18 2018-06-25 에꼴 뽈리떼끄닉 뻬데랄 드 로잔느 (으뻬에프엘) 전기화학 및/또는 광전자 소자를 위한 화합물
KR101327438B1 (ko) * 2011-11-10 2013-11-08 건국대학교 산학협력단 신규한 크로멘 염료 및 그의 제조 방법
KR101327436B1 (ko) * 2011-11-10 2013-11-11 건국대학교 산학협력단 크로멘 염료를 포함하는 염료감응형 태양전지
ITMI20121672A1 (it) * 2012-10-05 2014-04-06 Eni Spa Colorante organico per una cella solare sensibilizzata da colorante
JP6337561B2 (ja) 2014-03-27 2018-06-06 株式会社リコー ペロブスカイト型太陽電池
US10727001B2 (en) 2014-04-16 2020-07-28 Ricoh Company, Ltd. Photoelectric conversion element
WO2017130820A1 (ja) 2016-01-25 2017-08-03 株式会社リコー 光電変換素子
US10651390B2 (en) 2016-06-08 2020-05-12 Ricoh Company, Ltd. Tertiary amine compound, photoelectric conversion element, and solar cell
KR102163405B1 (ko) 2016-12-07 2020-10-08 가부시키가이샤 리코 광전 변환 소자
EP3769327A1 (en) 2018-03-19 2021-01-27 Ricoh Company, Ltd. Photoelectric conversion device, process cartridge, and image forming apparatus
CN114072414A (zh) * 2019-04-27 2022-02-18 健康研究股份有限公司 用于治疗前列腺癌的香豆素修饰的雄激素
EP4000098A1 (en) 2019-07-16 2022-05-25 Ricoh Company, Ltd. Solar cell module, electronic device, and power supply module
US20220342327A1 (en) 2019-09-26 2022-10-27 Ricoh Company, Ltd. Electronic device and method for producing the same, image forming method, and image forming apparatus
US20210167287A1 (en) 2019-11-28 2021-06-03 Tamotsu Horiuchi Photoelectric conversion element, photoelectric conversion module, electronic device, and power supply module
JP2021113901A (ja) 2020-01-20 2021-08-05 株式会社リコー 電子デバイス及びその製造方法、画像形成方法、並びに画像形成装置
JP7413833B2 (ja) 2020-02-27 2024-01-16 株式会社リコー 光電変換素子及び光電変換モジュール
US11502264B2 (en) 2020-02-27 2022-11-15 Ricoh Company, Ltd. Photoelectric conversion element and photoelectric conversion module
JP2022144443A (ja) 2021-03-19 2022-10-03 株式会社リコー 光電変換素子、電子機器、及び電源モジュール
EP4064355A1 (en) 2021-03-23 2022-09-28 Ricoh Company, Ltd. Solar cell module
EP4092704A1 (en) 2021-05-20 2022-11-23 Ricoh Company, Ltd. Photoelectric conversion element and method for producing photoelectric conversion element, photoelectric conversion module, and electronic device
EP4377978A1 (en) 2021-07-29 2024-06-05 Ricoh Company, Ltd. Photoelectric conversion element and solar cell module
JP2023019661A (ja) 2021-07-29 2023-02-09 株式会社リコー 光電変換素子、光電変換モジュール、及び電子機器
CN115915793A (zh) 2021-09-30 2023-04-04 株式会社理光 光电转换元件、光电转换模块及电子设备
CN116096111A (zh) 2021-10-29 2023-05-09 株式会社理光 光电转换元件和光电转换元件模块
EP4188053A1 (en) 2021-11-26 2023-05-31 Ricoh Company, Ltd. Photoelectric conversion element, photoelectric conversion module, electronic device, and partition
JP2023137773A (ja) 2022-03-18 2023-09-29 株式会社リコー 光電変換素子、光電変換モジュール、電子機器、及び太陽電池モジュール

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1093118A (ja) * 1996-09-12 1998-04-10 Agency Of Ind Science & Technol 有機色素増感型酸化物半導体電極及びそれを含む太陽電池
JPH11214731A (ja) * 1997-07-18 1999-08-06 Fuji Photo Film Co Ltd 光電変換素子および光電気化学電池
JP2000106224A (ja) * 1998-09-29 2000-04-11 Fuji Photo Film Co Ltd 光電変換素子および光電気化学電池
JP2000223167A (ja) * 1999-01-28 2000-08-11 Fuji Photo Film Co Ltd 光電変換素子および光電気化学電池
EP1083582A2 (en) * 1999-09-07 2001-03-14 Fuji Photo Film Co., Ltd. Dye sensitized photoelectrochemical cell

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4052536A (en) * 1976-06-24 1977-10-04 The Trustees Of Boston University Electrolytes which are useful in solar energy conversion
EP0025136B1 (de) * 1979-08-27 1983-07-06 Bayer Ag Lichtsammelsystem und Verwendung von Cumarinderivaten als Energiewandler in solchen Systemen
JPS59218779A (ja) * 1983-05-26 1984-12-10 Agency Of Ind Science & Technol 光起電力素子
JPS6156175A (ja) * 1984-08-24 1986-03-20 Yamanouchi Pharmaceut Co Ltd ロダニン誘導体およびその製造法
WO1994005025A1 (en) 1992-08-17 1994-03-03 Sandoz Ltd. Use of optical brighteners and phthalocyanines as photosensitizers
EP0857007B1 (en) * 1996-08-19 2004-07-21 TDK Corporation Organic electroluminescent device
DE19809840A1 (de) * 1996-09-28 1999-09-02 Forschungszentrum Juelich Gmbh Langzeitstabile, farbstoffsensibilisierte Solarzelle
EP0911841B1 (en) * 1997-10-23 2003-01-02 Fuji Photo Film Co., Ltd. Photoelectric conversion device and photoelectrochemical cell
JPH11185836A (ja) * 1997-12-16 1999-07-09 Fuji Photo Film Co Ltd 光電変換素子および光再生型光電気化学電池
JP2000268892A (ja) * 1999-01-14 2000-09-29 Fuji Photo Film Co Ltd 光電変換素子および光電池
EP1311001B1 (en) * 2000-07-27 2009-12-09 Nippon Kayaku Kabushiki Kaisha Dye-sensitized photoelectric transducer
JP4422945B2 (ja) * 2002-05-07 2010-03-03 株式会社林原生物化学研究所 光増感組成物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1093118A (ja) * 1996-09-12 1998-04-10 Agency Of Ind Science & Technol 有機色素増感型酸化物半導体電極及びそれを含む太陽電池
JPH11214731A (ja) * 1997-07-18 1999-08-06 Fuji Photo Film Co Ltd 光電変換素子および光電気化学電池
JP2000106224A (ja) * 1998-09-29 2000-04-11 Fuji Photo Film Co Ltd 光電変換素子および光電気化学電池
JP2000223167A (ja) * 1999-01-28 2000-08-11 Fuji Photo Film Co Ltd 光電変換素子および光電気化学電池
EP1083582A2 (en) * 1999-09-07 2001-03-14 Fuji Photo Film Co., Ltd. Dye sensitized photoelectrochemical cell

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1339129A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8383831B2 (en) 2008-08-06 2013-02-26 Mitsubishi Paper Mills Limited Dye for dye-sensitized solar cell, semiconductor electrode, and dye-sensitized solar cell

Also Published As

Publication number Publication date
JP5142307B2 (ja) 2013-02-13
DE60143273D1 (de) 2010-11-25
US20040099306A1 (en) 2004-05-27
US7262361B2 (en) 2007-08-28
EP1339129A1 (en) 2003-08-27
EP1339129A4 (en) 2006-10-25
EP1339129B1 (en) 2010-10-13
JP2002164089A (ja) 2002-06-07

Similar Documents

Publication Publication Date Title
JP5142307B2 (ja) 有機色素を光増感剤とする半導体薄膜電極、光電変換素子
JP4542741B2 (ja) 有機色素を光増感剤とする半導体薄膜電極、光電変換素子及び光電気化学太陽電池
JP5925541B2 (ja) 光電変換素子用金属錯体色素、光電変換素子、色素増感太陽電池、色素増感太陽電池用色素吸着組成液、色素増感太陽電池用半導体電極および色素増感太陽電池の製造方法
JPH11214731A (ja) 光電変換素子および光電気化学電池
JP4341621B2 (ja) 光機能材料
JP4423857B2 (ja) 光機能材料
JP2007246885A (ja) 光機能材料
JP4591667B2 (ja) 光機能材料
JP5170357B2 (ja) 光電変換素子、及び光化学電池
JP2014172835A (ja) 光機能材料及び光電変換用増感色素
JP4460686B2 (ja) 光電変換素子および光電気化学電池
Echeverry et al. New organic dyes with high IPCE values containing two triphenylamine units as co-donors for efficient dye-sensitized solar cells
JP2008226505A (ja) フェナントロチオフェン系化合物、および、その用途、ならびに製造方法
JP2003234133A (ja) スチリル色素を光増感剤とする半導体電極、光電変換素子及び光電気化学太陽電池
JP4739693B2 (ja) 光電変換素子
JP2007131767A (ja) 光機能材料
JP5740984B2 (ja) 光機能材料
JP6616907B2 (ja) 光電変換素子、色素増感太陽電池、金属錯体色素、色素溶液及び酸化物半導体電極
JP2007084684A (ja) 光機能材料
JP6300337B2 (ja) 光電変換素子、色素増感太陽電池、ルテニウム錯体色素および色素溶液
JP2005108663A (ja) 光電変換素子及びそれを用いた色素増感型太陽電池
JP2006063034A (ja) 光電変換材料、光電変換素子および光電気化学電池
JP6831404B2 (ja) 光電変換素子、色素増感太陽電池、金属錯体色素、色素組成物及び酸化物半導体電極
JPWO2005121098A1 (ja) スクアリリウム化合物ならびにこれを用いた光電変換材料、光電変換素子および光電気化学電池
JPWO2006041155A1 (ja) スクアリリウム化合物ならびにこれを用いた光電変換材料、光電変換素子および光電気化学電池

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10415552

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2001999017

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2001999017

Country of ref document: EP