WO2002016673A1 - Electrochemical treating method such as electroplating and electrochemical reaction device therefor - Google Patents

Electrochemical treating method such as electroplating and electrochemical reaction device therefor Download PDF

Info

Publication number
WO2002016673A1
WO2002016673A1 PCT/JP2001/006525 JP0106525W WO0216673A1 WO 2002016673 A1 WO2002016673 A1 WO 2002016673A1 JP 0106525 W JP0106525 W JP 0106525W WO 0216673 A1 WO0216673 A1 WO 0216673A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
electrochemical
electrode
bath
substance
Prior art date
Application number
PCT/JP2001/006525
Other languages
English (en)
French (fr)
Inventor
Hideo Yoshida
Seizo Miyata
Yoshihiro Asai
Masato Sone
Humiko Iwao
Hiroe Asai
Original Assignee
Hideo Yoshida
Myata Seizo
Yoshihiro Asai
Masato Sone
Humiko Iwao
Hiroe Asai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2000253572A external-priority patent/JP3571627B2/ja
Priority claimed from JP2000401301A external-priority patent/JP3703132B2/ja
Priority claimed from JP2001137191A external-priority patent/JP3613335B2/ja
Application filed by Hideo Yoshida, Myata Seizo, Yoshihiro Asai, Masato Sone, Humiko Iwao, Hiroe Asai filed Critical Hideo Yoshida
Priority to EP01953331.4A priority Critical patent/EP1314799B1/en
Priority to JP2002522342A priority patent/JP3841751B2/ja
Priority to AU2001275795A priority patent/AU2001275795A1/en
Priority to US10/070,516 priority patent/US6793793B2/en
Publication of WO2002016673A1 publication Critical patent/WO2002016673A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H3/00Electrochemical machining, i.e. removing metal by passing current between an electrode and a workpiece in the presence of an electrolyte
    • B23H3/08Working media
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1675Process conditions
    • C23C18/1685Process conditions with supercritical condition, e.g. chemical fluid deposition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/18Orthophosphates containing manganese cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/24Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing hexavalent chromium compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/73Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/005Apparatus specially adapted for electrolytic conversion coating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/02Tanks; Installations therefor
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/003Electroplating using gases, e.g. pressure influence
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F3/00Electrolytic etching or polishing

Definitions

  • the present invention is suitable for electrochemical treatment such as electric plating, and can perform each treatment step safely, rationally and promptly using a supercritical or subcritical substance such as carbon dioxide.
  • Processing solution, etc. can be processed rationally and promptly, the amount of pickling solution and plating solution used is reduced, the amount of waste liquid generated from plating work is reduced, and environmental pollution is prevented. While improving the productivity and improving the reuse of the waste liquid, a sharp finish can be obtained by drastically improving the sticking of the plating solution.
  • the bath tub required for each treatment is omitted and the size and weight are reduced, the equipment cost is reduced and the installation space is made compact.
  • Solvent An electrochemical treatment method such as an electromechanical method and the like, which can suppress the electrolysis and improve the current efficiency, perform the electrochemical reaction rationally and efficiently, and obtain a dense and thin metal film, and its electrochemical reaction.
  • an electric plating plays an important role in industrial applications such as decoration of products, corrosion protection, corrosion resistance and mackerel protection. Further, as a method of mass-producing a specific metal, electrolytic purification can be cited.
  • Other examples of the application of an external electric field include cathodic treatment such as electrodeposition and electrophoretic coating, and the anodization treatment includes formation of an anodic oxide film of aluminum, electrolytic polishing, electrolytic processing, and electric treatment. Electrophoretic coating and the like. Further, examples to which no external electric field is applied include electroless plating and chemical conversion treatment.
  • Surfactants play an important role as controlling the gas generated by the electrochemical reaction, as a draining agent, controlling the generation of spots, and assisting in drying.
  • the waste liquid treatment is divided into three stages: decomposition of toxic substances contained in the waste liquid, separation and removal of harmful substances from the waste liquid, and treatment and disposal of the separated substances.
  • decomposition of toxic substances contained in the waste liquid separation and removal of harmful substances from the waste liquid
  • treatment and disposal of the separated substances treatment and disposal of the separated substances.
  • separation of harmful substances from waste liquid many methods have been adopted in which chemicals are added to the waste liquid to convert the harmful substances into a solid state.
  • the conventional electric plating process can be roughly divided into a pretreatment process, a plating process, and a post-treatment process.
  • the pretreatment process involves degreasing and pickling, and these are usually carried out by holding a predetermined processing solution in a dedicated bath and heating it, and immersing the object in the processing solution for a predetermined time. I have.
  • Japanese Patent Application Laid-Open No. 2000-63891 discloses that supercritical carbon dioxide is supplied and brought into contact with a small volume chamber for accommodating an object to be cleaned, The PCB is heated or vibrated to dissolve and remove the PCB attached to the object to be cleaned.
  • the conventional plating process requires multiple washings adjacent to the plating tank, and the main washing tank is constantly supplied with water. There are problems such as increased fees.
  • the conventional electric plating since the adhesion of the plating is generally poor, the plating is hardly attached to the back surface or the concave portion of the processing target having a low current density. And the trouble of arranging the auxiliary pole in the relevant part, it is not possible to cope with the irregularity of the deformed workpiece.
  • the conventional post-treatment process after washing, washing with water, washing with hot water and drying were performed, it took time and productivity was poor.
  • the quality of the wastewater discharged from the Metzki factory is regulated by law.
  • the washing wastewater is generally treated with detoxification by adding a specified chemical and then adjusted by PH adjustment. Heavy metals were removed as hydroxides, and the concentrated wastewater was treated by adding it to the washing wastewater little by little or separately, and the treated liquid was mixed into the thin washing wastewater for treatment.
  • the applicant introduced a substance in a supercritical state, an electrolyte solution, and a surfactant into a reaction bath, and electroplated under these emulsion states. After plating, a supercritical substance was vaporized and discharged out of the bath to develop an electrochemical reaction method that enables cleaning of the reaction bath and electrodes without the need for a cleaning solution. It has already been proposed as Request No. 2000-253572.
  • an electroless plating apparatus disclosed in Japanese Patent Application Laid-Open No. 2000-226671 disposes a surface to be processed upward in a closed space and raises a pressure in the space to an atmospheric pressure or higher. By pulsating the pressure of the bracket, the hydrogen gas bubbles generated by the reduction reaction during the electroless copper plating are dissolved in the plating solution, and the separation from the surface to be treated is promoted.
  • a main object of the present invention is to make the reaction highly reactive and efficient, and to generate less ⁇ > or no waste liquid such as an electrolyte solution or a washing solution, and to be environmentally friendly. It is an object of the present invention to provide a novel electrochemical reaction method and an electrochemical reaction device which do not require cleaning of electrodes and the like with a cleaning solution after the reaction.
  • Another object of the present invention is, for example, an electromechanical treatment such as an electromechanical treatment which is suitable for electrochemical treatment such as an electric plating and which can perform each treatment step safely, rationally and promptly using a supercritical or subcritical substance. It is an object of the present invention to provide an electrochemical treatment method and its electrochemical reaction device. Still another object of the present invention is to treat a supercritical or subcritical substance after use of carbon dioxide or the like, a treatment solution, and the like rationally and promptly, and to suppress the use amount of a pickling solution and a plating solution. In addition to reducing the amount of waste liquid generated from plating operations, preventing environmental pollution and improving the work environment, improving productivity and enabling reuse of them It is an object of the present invention to provide a processing method and an electrochemical reaction device therefor.
  • Another object of the present invention is to dramatically improve the coverage of the plating, obtain a beautiful finishing force J, and easily realize a fine and uniform plating on the back surface and the concave portion of the workpiece. And a method of electrochemically treating the electromechanical plating and the like, and an electrochemical reaction device thereof.
  • Still another object of the present invention is to provide a method for electrochemically treating an electric plating and the like, and to reduce the size and weight of each bathtub required for the plating treatment, to reduce the equipment cost and to make the installation space compact. It is to provide a reactor.
  • An object of the present invention is suitable for an electrochemical treatment such as an electric plating, for example, in which a reaction bath is pressurized to cause an electrochemical reaction, the electric decomposition of a solvent in an electrolytic solution is suppressed, and a current efficiency is improved.
  • An object of the present invention is to provide an electrochemical treatment method such as an electric plating and the like and an electrochemical reaction apparatus capable of performing a chemical reaction rationally and efficiently and obtaining a dense and thin metal film. Disclosure of the invention
  • the reaction is performed in a bath containing a substance in a supercritical state and an electrolyte solution.
  • the supercritical state refers to a state where the temperature is higher than the critical point of the temperature, pressure, and entropy diagrams in the phase diagram and the pressure is lower than the critical point.
  • the reaction bath is homogenized by a supercritical substance having a high diffusion constant, and ions are efficiently generated around the electrodes and the like. Good supply and increased reactivity.
  • electrolyte solution since a small amount of electrolyte solution is required, the amount of waste liquid to be treated can be suppressed.
  • the substance in a supercritical state, the electrolyte solution, and a surfactant are reacted in an emulsified reaction bath so that the substance in the supercritical state and the electrolyte solution are more uniformly dispersed.
  • the reaction efficiency on the surface of the electrode or the like is improved.
  • the substance in the supercritical state is made of carbon dioxide, methane trifluoride, ethane, propane, butane, benzene, methyl
  • the substance in the supercritical state is shifted to a state below the critical point, and after the reaction is completed, the pressure in the supercritical state is rapidly vaporized or liquefied. A flow is generated in the system, and impurities on the surface of the electrode and the like are blown off for cleaning.
  • the reaction in the reaction bath is performed by electroplating, electrolysis, formation of an anodic oxide film, electrolytic polishing, electrolytic processing, electrophoretic coating, electrolytic refining, chemical conversion treatment, and electroless plating.
  • the industrial field to which the present invention can be applied is specified.
  • an electrolytic bath (other plating baths, treatment liquids, etc.) contains a substance in a supercritical state, an electrolytic solution, and, if necessary, a surfactant. This allows the reaction to proceed efficiently.
  • the present invention provides a reaction bath containing an electrolyte and an electrolyte solution in a supercritical state or a subcritical state, and electrolyzes the electrode material under the state, or the electrolyzed electrode material and / or the electrolyte solution.
  • Is suitable for electrochemical treatment such as electroplating, for example, by using carbon dioxide in a supercritical or subcritical state. Can be performed safely, reasonably, and quickly.
  • the present invention provides a method in which a reaction bath containing an electrolytic substance is formed in a supercritical state or a subcritical state, and the electrolytic substance is electrolyzed under the supercritical state and collected on the other electrode substance side.
  • the method can be applied to electrolytic extraction and refining of metals, thereby improving productivity and obtaining a good finished state.
  • a reaction bath containing an electrolytic substance is formed in a supercritical state or a subcritical state, and under such a state, the electrolytic substance is treated (e.g., deposited and adhered, so that no external electric field is required). It can be applied to electroless plating and chemical conversion treatment to improve its productivity and obtain a good finished state.
  • the present invention provides an electrolysis of an electrode material, or the deposition and adhesion of the electrolyzed electrode material and / or an electrolyte contained in an electrolyte solution to the other electrode material, or the electrolysis of the electrolyte and the electrolysis of the other electrode material.
  • the reaction bath is shifted from the supercritical state or subcritical state to a state below the critical point, the electrolyte solution and the supercritical or subcritical substance are returned to the two-layer state, and their discharge is performed.
  • a rapid flow is formed in the system such as a reaction bath to promote the washing and drying of the object to be treated.
  • a supercritical state substance or a subcritical state substance is introduced into the reaction bath, and the electrode substance is washed or an oxide film is removed. In this way, their processing is performed reasonably and quickly, and their drying is promoted.
  • a supercritical substance or a subcritical substance is introduced into the reaction bath, and the electrode substance or the electrolytic substance collecting side is washed or dried. And that these processes are performed reasonably and quickly, and encourage their drying.
  • the present invention provides a method for introducing a supercritical substance or a subcritical substance, an electrolytic substance, and a surfactant into the reaction bath during the electrolysis of the electrode substance. And uniformly and quickly and densely deposits and deposits electrode or electrolytic substances, for example, dramatically improving the sticking of the plating and obtaining a beautiful finish and Dense and uniform plating is easily realized even on the back surface and the concave portion of the substrate, and the productivity is improved.
  • a supercritical substance or a subcritical substance, an oxide film removing solution, and a surfactant are introduced into the reaction bath before the electrolysis of the electrode substance or the electrolytic substance.
  • a supercritical substance or a subcritical substance, an oxide film removing solution, and a surfactant are introduced into the reaction bath before the electrolysis of the electrode substance or the electrolytic substance.
  • a storage tank that can communicate with the reaction bath is provided outside the reaction bath, and a supercritical substance or a subcritical substance, an electrolytic substance, or a cleaning or oxide film removing substance after use is stored in the storage tank. To control their emissions and to promote their recycling and rational and effective use.
  • the present invention provides a method for regenerating a used supercritical substance or subcritical substance stored in a storage tank and refluxing the supercritical substance or subcritical substance to a reaction bath, or a used electrolytic substance or a cleaning or oxide film stored in the storage tank.
  • the removed substances are regenerated and returned to the respective solution tanks, so that the used supercritical substances or subcritical substances, the used electrolyte substances or the cleaning or oxide film removing substances are effectively used.
  • the deposition and deposition of the electrode material and the pretreatment process thereof, or the electrolysis and collection of the electrolytic material and the pretreatment process thereof are treated in a single reaction bath, and the bathtub for each treatment process is eliminated.
  • the bathtub for each treatment process is eliminated.
  • objects to be treated are transferred to each bathtub. Eliminate the complexity of moving and improve the work efficiency.
  • the present invention provides at least two reaction baths capable of performing the deposition and deposition of the electrodes and the treatment steps before and after the electrolysis, and the electrolysis of the electrolytic solution and the treatment steps before and after the electrolysis solution.
  • the successive processing steps can be sequentially executed, and the electrochemical reaction and processing such as electric plating can be performed rationally, and mass production can be achieved.
  • the present invention provides the method according to claim 1, wherein after the predetermined treatment step in the reaction bath, the electrolytic solution or the cleaning or oxide film removing substance and the surfactant in the reaction bath on the preceding treatment step are supplied to the reaction bath on the subsequent treatment step.
  • the present invention provides an electrode material comprising: electrolyzing an electrode material; or depositing and depositing the electrolyzed electrode material on the other electrode material, and then depositing and depositing a plurality of layers of electrode material on the other electrode material using the reaction bath. In this way, it is possible to continue the pretreatment and deposition of the electrode material of the next layer without removing the object to be treated from the reaction bath, thereby improving workability and productivity.
  • the reaction bath is pressurized and electrochemically reacted under the pressurized state, thereby suppressing the electrolysis of the solvent of the electrolyte solution due to the electrochemical reaction and reducing the hydrogen gas and oxygen gas. Suppress the generation and promote the miniaturization of the bubbles and dissolution in the electrolyte solution to obtain a dense and thin metal film, improve the current efficiency, and perform the electrochemical reaction rationally and efficiently. .
  • the above-mentioned electrochemical reaction is realized at a lower temperature and lower pressure than in the supercritical state, and energy saving and a reduction in the size and weight of the equipment or a reduction in operation costs are achieved.
  • a safer and more stable electrochemical reaction can be obtained as compared with the case where a pressurized gas is introduced by introducing a pressurized liquid into the reaction bath and pressurizing the reaction bath.
  • the present invention provides a method wherein a surfactant is added to the reaction bath and the mixture is stirred, and the pressurized liquid and the electrolyte solution are emulsified to cause an electrochemical reaction.
  • the surfactant acts efficiently on the converted hydrogen gas and oxygen gas to quickly separate the gas from the surface to be treated and dissolve it quickly in the electrolyte solution.
  • the present invention provides a method for introducing a pressurized liquid into a reaction bath before the electrochemical reaction in the reaction bath, and discharging the used pressurized liquid from the reaction bath before and after the electrochemical reaction. Cleaning and drying of the reaction bath, electrodes and the surface to be treated.
  • the pressurized liquid is introduced into the reaction bath, and the electrode material is washed or the oxide film is removed before the electrochemical reaction in the reaction bath. Perform pretreatment with liquid to realize stable electrochemical reaction.
  • the present invention provides a method wherein the pressurized liquid is introduced into the reaction bath after the electrochemical reaction in the reaction bath, and the electrode substance is washed or dried, so that the pressurized liquid is used. Post-processing can be performed to obtain the stability of the next electrochemical reaction.
  • a storage tank which can communicate with the reaction bath is provided outside the reaction bath, and the used pressurized liquid and the electrolytic substance or the cleaning or oxide film removing substance are stored in the storage tank. In this way, their emission to the outside can be controlled, and their regeneration and rational and effective use can be achieved.
  • the present invention provides a method for regenerating the used liquid stored in the storage tank and refluxing the liquid to the reaction bath, or regenerating the used electrolytic substance or the cleaning or oxide film removing substance stored in the storage tank to obtain each solution. By returning to the tank, effective use of the used pressurized liquid, cleaning liquid, oxide film removing substance, etc. will be promoted.
  • FIG. 1 shows the reaction process according to the first embodiment of the present invention in (a), (b), (c).
  • FIG. 2 is an explanatory diagram showing a reaction process according to a second embodiment of the present invention in the order of (a), (b), and (c).
  • FIG. 3 is an explanatory view showing a third embodiment of the present invention, in which a single reaction bath is used to carry out multiple steps of plating.
  • FIG. 4 is an explanatory view showing the degreasing and cleaning process steps of the plating process in the third embodiment.
  • FIG. 5 is an explanatory diagram showing, in the order of (a), (b), and (c), an oxide film removal and workpiece activation treatment step of the plating treatment in the third embodiment.
  • FIG. 6 is an explanatory view showing an acid solution discharging and cleaning step of the plating process in the third embodiment.
  • FIG. 7 is an explanatory view showing plating steps of plating processing in the third embodiment in the order of (a), (b), and (c).
  • FIG. 8 is an explanatory view showing an electrolyte solution discharging and washing step of the plating process in the third embodiment.
  • FIG. 9 is an explanatory view showing the drying and washing steps of the plating process in the third embodiment.
  • FIG. 10 is an explanatory view showing a main part of a fourth embodiment of the present invention, in which each step of the plating process is independently performed using two reaction baths.
  • FIG. 11 is an explanatory view showing a fifth embodiment of the present invention, in which a single reaction bath is used to carry out multiple plating processes.
  • FIG. 12 is an explanatory diagram showing the degreasing and washing process steps of the plating process in the fifth embodiment.
  • FIG. 13 is an explanatory diagram showing, in the order of (a), (b), and (c), an oxide film removal and workpiece activation treatment step of the plating treatment in the fifth embodiment.
  • FIG. 14 is an explanatory view showing an acid solution discharging and cleaning step of the plating process in the fifth embodiment.
  • FIG. 15 is an explanatory view showing plating steps of plating processing in the fifth embodiment in the order of (a), (b), and (c).
  • FIG. 16 is an explanatory view showing an electrolyte solution discharging and washing step of the plating process in the fifth embodiment.
  • FIG. 17 is an explanatory diagram showing the drying and washing steps of the plating process in the fifth embodiment.
  • FIG. 18 is a phase diagram showing an application range of the fifth embodiment to the plating process.
  • FIG. 19 is a characteristic diagram showing the amount of plating deposited on the electrolyte solution when plating is performed using liquid carbon dioxide in the fifth embodiment, showing the amount of plating deposited using supercritical carbon dioxide. Compared to
  • FIG. 20 is a characteristic diagram showing the current efficiency with respect to the amount of the electrolyte solution when the plating process is performed using liquid carbon dioxide in the fifth embodiment, and is compared with the current efficiency using supercritical carbon dioxide. ing.
  • FIG. 21 is an explanatory view showing a main part of a sixth embodiment of the present invention, in which a plating process is performed using two reaction baths.
  • FIG. 1 shows a reaction process by an electrochemical reaction method according to a first embodiment of the present invention
  • FIG. FIG. 2 (b) shows the state during the reaction
  • FIG. 2 (c) shows the state after the reaction.
  • the electrode 4 is installed in the reaction bath 6 and an external electric field 7 is applied. Therefore, the electric plating, the electrode, the formation of the anodic oxide film, the electropolishing electrolytic processing, the electrophoretic coating, the electrolytic It can be applied commonly to each method such as refining.
  • the object to be treated (substrate to be treated) is immersed in place of the cathode and anode in the same manner as when an electric field is applied. Can be implemented.
  • the reaction bath 6 contains an electrolyte solution 1 and a substance 2 below the critical point.
  • 10 is a switch. From this state, the state shown in FIG. 1 (b), that is, the substance 2 below the critical point is shifted to the supercritical state, and the homogeneous state 3 is obtained, which is compatible with the electrolyte solution.
  • a surfactant may be added to the bath to make it emulsified.
  • the supercritical state is usually raised by increasing the pressure and temperature using a compressor, a heat exchanger, or the like.
  • the surface of the electrode 4 is naturally degreased and washed due to the flow generated in the system in the process of raising the temperature and pressure to the supercritical state. Therefore, it is possible to omit the degreasing work of the electrode 4 which has been performed before the reaction step.
  • Conventional degreasing work is performed using solvents such as trichloroethylene, tetrachloroethylene, and trichloroethane.However, these solvents are highly toxic and may cause environmental pollution. there were.
  • the solvent-based degreasing agent since the solvent-based degreasing agent is not required, an environment-conserving type system can be realized. Note that the above description does not prevent the electrode from being degreased and washed in advance as in the related art.
  • the supercritical substance rapidly evaporates or liquefies, creating a system.
  • a violent flow is generated, whereby impurities on the surface of the electrode 4 are blown off and cleaned.
  • phase-separated electrolyte solution 1 and the reaction bath 6 can be recovered, and the electrolyte lost by the reaction can be appropriately supplemented to adjust the concentration and reused.
  • the substance to be brought into the supercritical state is not particularly limited, and may be appropriately selected from conventionally known gases and liquid substances in consideration of the critical temperature and critical pressure inherent to the substance. Can be.
  • carbon dioxide methane trifluoride (full-form chloroform), ethane, propane, butane, benzene, methyl ether, and chloroform.
  • carbon dioxide is most preferable in terms of cost, safety, critical conditions and the like.
  • the carbon dioxide has a critical temperature of 304.5K and a critical pressure of 7.387 MPa, and transitions to a supercritical state in a range of more than that.
  • JP-A-5-132656, JP-A-8-231903, and JP-T-9-503158 disclose paints, enamels, lacquers, varnishes, adhesives, chemical agents, and release agents. It is disclosed that it is used as a component for protective oils, non-aqueous detergents, agricultural coatings and the like. None suggests the use as a bath 6 in an electrochemical reaction as in the present invention.
  • the electrolyte solution one obtained by dissolving one or more metal salts, an organic electrolyte, an acid such as phosphoric acid, an alkali substance, or the like in a solvent is used.
  • the solvent is not particularly limited as long as it is a polar solvent.
  • Specific examples include water, alcohols such as ethanol and methanol, and ethylene glycol.
  • examples thereof include cyclic carbonates such as propylene carbonate, linear carbonates such as dimethyl carbonate, ethyl methyl carbonate, and getyl carbonate, and a mixed solvent thereof.
  • the metal salt may be appropriately selected in consideration of the type of the metal, alloy, oxide or the like to be deposited.
  • Metals that can be electrochemically deposited include Cu, Zn, Ga, As, Cr, Se, Mn, Fe, Co, Ni, Ag, Cd, ln, Sn, Sb, Te, Ru, Rh, Pd , Au, Hg, Tl, Pb, Bi, W, Po, Re, ⁇ s, lr, Pt and the like.
  • organic electrolyte examples include anionic electrolytes such as polyacrylic acid and the like, and cationic electrolytes such as polyethylenimine.
  • anionic electrolytes such as polyacrylic acid and the like
  • cationic electrolytes such as polyethylenimine.
  • the organic electrolyte is not limited to these.
  • the electrolyte solution 1 may contain, in addition to the above substances, one or more substances for the purpose of stabilizing the solution. Specifically, substances that form complex salts with the ions of the deposited metal, unrelated salts for improving the conductivity of the electrolyte solution, stabilizers for the electrolyte solution, buffer materials for the electrolyte solution, substances that change the physical properties of the deposited metal, and cathodes Examples thereof include a substance that assists dissolution of the electrolyte, a substance that changes the properties of the electrolyte solution or the properties of the deposited metal, and a stabilizer of a mixed solution containing two or more metals.
  • the main components of the electrolyte solution in the main electrochemical reaction methods are as follows, but are not limited thereto.
  • Nickel sulfate, ammonium chloride, and boric acid nickel sulfate, nickel chloride, and boric acid, nickel sulfamate, nickel chloride, and Boric acid
  • the charging ratio of the substance 2 and the electrolyte solution 1 to be in the supercritical state in the bath 6 as described above is not particularly limited, taking into consideration the concentration of the electrolyte solution 1, the reaction conditions, and the like. It can be set appropriately. However, if the amount of the electrolyte solution 1 is too small, the reaction becomes difficult to proceed. Therefore, it is preferable to include at least 0.01 wt% or more of the electrolyte solution 1 with respect to the substance 2 below the critical point.
  • the bath 6 to be reacted can contain a surfactant in addition to the substance 2 and the electrolyte solution 1 which are brought into a supercritical state as described above.
  • a surfactant for example, if carbon dioxide is selected as the substance to be brought into the supercritical state, carbon dioxide is non-polar and therefore incompatible with the electrolyte solution 1, so that when the substance is shifted to the supercritical state, Usually, phase separation occurs. Therefore, by adding a surfactant, the system is emulsified to make the system uniform and the reaction efficiency is improved.
  • surfactant at least one or more of conventionally known anionic, nonionic, cationic, and zwitterionic surfactants can be appropriately selected and used.
  • anionic surfactant examples include stone, alpha-olefin sulfonate, alkylbenzene sulfonate, alkyl sulfate, alkyl ether sulfate, vinyl ether sulfate, methyl taurate.
  • sulfosuccinate ether sulfonate, sulfated oil, phosphate ester, perfluoroolefin sulfonate, perfume Fluoroalkylbenzene sulfonate, perfluoroalkyl sulfate ester, perfluoroalkyl ether sulfate, perfluorophenyl ether sulfate, perfluoromethyl taurate, sulfopa Examples include, but are not limited to, fluorosuccinates, perfluroyl ether sulfonates, and the like.
  • Examples of the cation of the salt of the anionic anionic surfactant include sodium, potassium, calcium, petraethylammonium, triethylmethylammonium, getyldimethylammonium, tetramethylammonium and the like.
  • the present invention is not limited thereto, and any cation that can be electrolyzed can be used.
  • nonionic surfactant examples include C1-25 alkylphenols, C1-20 alkanols, polyalkylene glycols, alkylamides, C1-22 fatty acid esters, and C1-22 fatty acids.
  • Examples of the cationic surfactant include lauryl trimethyl ammonium salt, stearyl trimethyl ammonium salt, lauryl dimethyl ethyl ammonium salt, dimethyl benzyl lauryl ammonium salt, and cetyl dimethyl base salt.
  • Ammonium salt octadecyldimethylbenzylammonium salt, trimethylbenzylammonium salt, hexadecylpyridinium salt, laurylpyridinium salt, dodecylpicolinium salt, stearylamine acetate , Laurylamine acetate, octadecylamine acetate, monoalkylammonium chloride, dialkylammonium chloride, ethyleneoxide-added ammonium chloride, alkylbenzylammonium chloride, tetramethylammonium chloride , Trimethylphenylammonium chloride, tetrabutylammonium chloride, monoalkylammonium acetate, imidazolinium betaine, alanine, alkyl betaine, monoperfluoroalkyl ammonium chloride Iodide, difluoroalkylammonium chloride, perfluoroethyleneoxide-added ammonium chloride
  • Examples of the zwitterionic surfactant include betaine, sulfobetaine, aminocarboxylic acid, etc., and sulfation or sulfonation of a condensation product of ethylene oxide and / or propylene oxide with an alkylamine or diamine. Power to be able to cite additional material etc. It is not limited to these.
  • the amount of the surfactant to be used is not particularly limited, but is preferably about 0.0001 to 20 wt% based on the electrolyte solution (preferably, most preferably 0.000 "! To 10 wt%. .
  • the reaction conditions in the state shown in FIG. 1 (b) can be appropriately set, except that the reaction is required to be performed in a supercritical state.
  • the reaction is required to be performed in a supercritical state.
  • the temperature at the critical point It is essential that the reaction be performed under conditions of 4.5K and a pressure of 7.387 MPa or more.
  • the reaction temperature in the case of carbon dioxide is not particularly limited as long as it is 304.5 K or more, and is preferably 304.5 K-573.2K, most preferably 304.5 K-473.2K. Range.
  • the reaction pressure is not particularly limited as long as it is 7.387 MPa or more, but is preferably in the range of 7.387 MPa to 40.387 MPa, and most preferably in the range of 7.4 MPa to 20.87 MPa.
  • the reaction time varies depending on the thickness of the film to be deposited and the like, and is not particularly limited. The time from 0.001 second to several months is set appropriately as needed.
  • the reaction bath 6 contains the electrolyte solution 1 and the substance 2 below the critical point in the same manner as in the first embodiment.
  • the substance 2 below the critical point is transferred to the substance 5 in the supercritical state by increasing the pressure, for example, the phase is separated as shown in FIG. 2 (b).
  • composition of each component in the bath 6 and the reaction conditions are the same as in the case of the first embodiment.
  • the present invention will be described in detail based on various specific examples and comparative examples.
  • the present invention is not limited to these, and within the scope described in the claims, the reaction such as the composition, concentration, current, etc., of the substance, the electrolyte solution, the surfactant, etc. to be in a supercritical state Conditions can be changed as appropriate.
  • Electric plating was performed using a pure nickel plate for the anode and a brass plate for the Hull cell test for the cathode. A nickel watt bath was used as an electrolyte solution. The composition is shown below.
  • carbon dioxide is used as a substance to be brought into a supercritical state
  • the volume ratio of the electrolyte solution to carbon dioxide at normal pressure is 1 Z2
  • the temperature is 50 ° C (323 K)
  • the pressure is 15 MPa
  • the current density is 2 AZdm.
  • the reaction was performed for 0 minutes.
  • Electric plating was performed using a pure nickel plate as the anode and a brass plate for Hull cell test as the cathode in the same manner as in Specific Example 1 above.
  • a nickel watt bath was used as the electrolyte solution.
  • the composition is as follows.
  • reaction was performed at a temperature of 50 ° C. and a current density of 2AZdm for 10 minutes.
  • Electric plating was performed using a pure copper plate for the anode and a brass plate for the Hull cell test for the cathode.
  • a cyan copper bath was used as the electrolyte solution. The composition is shown below.
  • carbon dioxide is used as the substance to be brought into the supercritical state, the volume ratio between the electrolyte solution and carbon dioxide at normal pressure is 12, the temperature is 50 ° C (323K), the pressure is 15MPa, and the current density is 5AZdm for 10 minutes.
  • Electric plating was performed in the same manner as in Example 2 using a pure copper plate as the anode and a brass plate for the Hull cell test as the cathode.
  • a cyan copper bath was used as an electrolyte solution.
  • the composition is as follows.
  • reaction was carried out at a temperature of 50 ° C. and a current density of 5 AZdm for 10 minutes.
  • Electric plating was performed using a zinc plate for the anode and a brass plate for the Hull cell test for the cathode.
  • a zinc zinc bath was used as an electrolyte solution. The composition is shown below.
  • carbon dioxide is used as the substance to be brought into the supercritical state
  • the volume ratio of the electrolyte solution to carbon dioxide at normal pressure is 1Z2
  • the temperature is 50 ° C (323 ° C).
  • the reaction was carried out at a pressure of 15 MPa and a current density of 5 AZdm for 10 minutes.
  • the deposited thickness at the center of the obtained film was 13.1 ⁇ m. Compared with the conventional method, Comparative Example 3 (described later), both the deposition rate and the deposition efficiency were significantly improved.
  • Electric plating was performed in the same manner as in Example 3 using a zinc plate for the anode and a brass plate for the Hull cell test for the cathode.
  • a zinc zincate bath was used as the electrolyte solution.
  • the composition is as follows.
  • the reaction was performed at a temperature of 50 ° (at a current density of 5AZdm for 10 minutes.
  • a zinc film was formed on the cathode surface with good throwing power, and the thickness of the resulting film at the central portion was 8.9; ⁇ .
  • a copper plate was used for the anode, and a brass plate for the Hull cell test was used for the cathode, and power was applied.
  • a copper sulfate bath was used for the electrolyte solution. The composition is shown below. . "Copper sulfate bath"
  • carbon dioxide is used as a substance to be brought into a supercritical state, and the volume ratio of the electrolyte solution to carbon dioxide at normal pressure is 1 to 2 at a temperature of 50 ° C (323 K), a pressure of 15 MPa, and a current density of 20 AZdm.
  • the reaction was performed for 0 minutes.
  • the aluminum plate was used for the anode and the lead plate for the Hull cell test was used for the cathode, and anodization was performed.
  • a sulfuric acid bath was used for the electrolyte solution. The composition is shown below.
  • PEO-PBO polybutylene xylene-polyethylene oxide
  • carbon dioxide is used as the substance to be brought into the supercritical state
  • the volume ratio of the electrolyte solution to carbon dioxide at normal pressure is 1 to 2
  • the temperature is 15 degrees (288 K)
  • the pressure is 15 MPa
  • the current density is 2 AZdm.
  • the reaction was performed for 30 minutes.
  • Electrolytic polishing was performed using a stainless steel plate for the anode and a carbon plate for the cathode.
  • a sulfuric acid bath was used for the electrolyte solution. The composition is shown below. "Sulfuric acid bath"
  • PEO—PB ⁇ polybutylene oxide polyethylene oxide block polymer
  • Electrolytic processing was performed using a copper plate for the anode and a chrome plate with a thickness of 4 mm for the cathode.
  • An aqueous sodium chloride solution was used as the electrolyte solution. The composition is shown below.
  • the volume ratio between the electrolyte solution and carbon dioxide at normal pressure is 1Z2, and the reaction is performed for 20 minutes at a temperature of 50 ° C (323 K), a pressure of 15 MPa, and a current density of 100 Adm.
  • the cathode surface was sufficiently etched, and the thickness at the center was reduced by 550 ⁇ m.
  • Electrophoretic coating was performed using a SUS304 plate for the anode and an iron plate for the cathode.
  • As an electrolyte solution Nippon Paint Power Top (trademark) U-30 system (pH 6.5) was used.
  • carbon dioxide is used as a substance to be brought into a supercritical state
  • the volume ratio of the electrolyte solution to carbon dioxide at normal pressure is 12, and the temperature is 50 degrees (323 K), the pressure is 15 MPa, and the current density is 20 AZdm.
  • the reaction was performed for seconds.
  • the central part deposition thickness of the obtained skin was 22 Aim.
  • a pure copper plate was used for the anode, and a brass plate for Hull cell test was used for the cathode, and electrolysis was performed.
  • a copper sulfate bath was used for the electrolyte solution. The composition is shown below.
  • carbon dioxide is used as a substance to be brought into a supercritical state
  • the volume ratio of the electrolyte solution to carbon dioxide at normal pressure is 12 and the temperature is 50 degrees (323 K), the pressure is 15 MPa, and the current density is 20 AZdm.
  • the reaction was performed for 0 minutes.
  • the material was iron and steel, which was subjected to a parkarizing chemical conversion treatment.
  • the liquid composition is shown below.
  • carbon dioxide was used as the substance to be brought into the supercritical state, and the reaction was carried out at a temperature of 100 ° C. (378 K) and a pressure of 15 MPa for 60 minutes at a volume ratio of the electrolyte solution to carbon dioxide of 12 at normal pressure.
  • the material used was zinc-plated iron, and a chromate treatment, one of the chemical conversion treatments, was performed.
  • the liquid composition is shown below.
  • PEO-PBO polybutylene oxide poly (ethylene oxide) block polymer
  • PEO-PBO polybutylene oxide polyethylene oxide
  • 3 to 10 show a third embodiment in which the present invention is applied to an electric plating (nickel plating).
  • reference numeral 6 denotes a stainless steel plating tank which is an electrochemical reaction bath, the inner surface of which is lined with vinyl chloride or hard rubber, and a lid (not shown) is hermetically sealed in the upper opening. It is detachably mounted.
  • a DC power source 7, which is an external electric field, is provided outside the plating tank 6, and an anode 8 that is an electrode material that conducts to a positive electrode side thereof, and a cathode 9 that is an electrode material and an object to be treated that conducts to a negative electrode side thereof.
  • it can be stored in the tank 6.
  • reference numeral 10 denotes a switch inserted in the power supply circuit of the DC power supply 7, which is turned on at the time of an electrochemical reaction, that is, at the time of an electric switch (this is turned on so that the anode 8 and the cathode 9 can be energized.
  • a stirrer such as a stirrer provided at the bottom makes it possible to stir carbon dioxide, which is a supercritical substance introduced into the plating tank 6, and an electrolyte solution or an acid solution containing a surfactant.
  • Liquid storage tanks 25 to 27, which are a plurality of storage tanks, are provided for accommodating 24.
  • each solution tank 16, 17, 19 return pipe 54-5 6 communicating is connected to, each solution 22 to 24 after use is separated from the surface active agent, or It is adjusted to a slightly higher concentration without separation, and after regeneration, it is refluxed to the solution tanks 14, 15, and 18.
  • the gas container 13 communicates with the upper part of the plating tank 6 through a conduit 23, and the pipe 28 (the compression pump 29 and the valve 30 are interposed.
  • the compression pump 29 compresses the carbon dioxide 7 at a predetermined pressure.
  • carbon dioxide 12 is The pressure can be increased to 10. OMPa with a pressure of 7.38MPa or more.
  • the subsequent processing can be performed by pressurizing the carbon dioxide 12 not only to the supercritical state but also to a subcritical state.
  • the valve 25 is fixed at each processing step of the plating operation, that is, before each of the degreasing treatment, the removal of the oxide film, so-called pickling treatment, plating treatment, and drying, and at the time of the cleaning step of the cathode 9 performed between the respective steps.
  • the valve is opened for a time, and supercritical carbon dioxide 12 can be introduced into the plating tank 6.
  • a heating means 31 such as a heater is arranged downstream of the conduit 28, and is capable of heating the carbon dioxide 12 to a critical temperature of 31.1 ° C. or higher.
  • Each of the tanks 16 to 18 communicates with the lower part of the plating tank 6 via conduits 32 to 34, and knobs 35 to 37 and a common liquid sending pump 38 are inserted into the pipes 32 to 34. .
  • the valves 35 and 36 are opened for a certain period of time before the plating process, so that the electrolyte solutions 14 and 15 containing a predetermined surfactant can be introduced into the plating tank 6 via the liquid sending pump 38. ing.
  • the valve 37 is opened for a certain period of time before pickling, so that an acid solution 18 containing a predetermined surfactant can be introduced into the plating tank 6 via a liquid sending pump 38.
  • reference numerals 39 to 41 denote surfactants to be added to the electrolyte solutions 14, 15 and the acid solution 18 via a suitable pump (not shown) when the solutions 14, 15, 18 are supplied. It is possible to introduce.
  • the gas storage tank 20 communicates with the upper part of the plating tank 6 via a conduit 42, and a valve 43 is inserted into the pipe 42.
  • the valve 43 is opened for a certain period of time before each of the degreasing, pickling, plating, and drying processes and before cleaning the object 9 to be performed therebetween, and the carbon dioxide 20 after use is stored in the gas reservoir 21. It is possible to introduce.
  • reference numeral 44 denotes a return pipe having one end connected to the gas reservoir 20 and the other end thereof. Is connected to the compression pump 29, and a column 45 capable of absorbing water and oil is inserted into the pipe 44.
  • the carbon dioxide 20 is guided to a column 45 to regenerate the carbon dioxide 20 in an initial state, and this can be returned to the compressor 29.
  • the liquid reservoirs 25 to 27 communicate with the lower part of the plating tank 6 via conduits 46 to 48, and valves 49 to 51 are interposed in the respective tubes 46 to 48.
  • the valve 49 is opened for a predetermined time after the pickling of the cathode 9, so that the used pickling solution 22 can be introduced into the reservoir 25 together with the surfactant 41.
  • the valves 50 and 51 are opened for a certain period of time after each plating process, so that the used electrolyte solutions 23 and 24 can be introduced into the liquid storage tanks 26 and 27 together with the surfactants 39 and 40.
  • reference numeral 52 in the figure denotes a washing water tank interposed in parallel with the liquid sending pump 38 and the conduits 32 to 34, and after sending each solution 14, 15, 15, 18 to the plating tank 6, the pump 38 The inside can be washed.
  • Numeral 53 denotes an entrainer made of an organic solvent such as alcohol, which is selectively introduced into a conduit 28 between the gas container 13 and the compressor 29 so as to be able to degrease gypsum.
  • the electrochemical reaction device such as an electric plating configured in this manner is used for a multi-step of plating pretreatment, that is, each of degreasing, pickling, and washing, plating treatment, and plating posttreatment, that is, collection and drying of the object 9 to be processed. Is carried out in a single plating tank 6, so that the configuration is simpler, the installation space is more compact, and the equipment cost is lower than in the conventional plating method and equipment that require a dedicated bathtub for each treatment. I can do it.
  • the apparatus of the present invention contains various discharges, carbon dioxide, and surfactants discharged from the degreasing, pickling, washing, and plating and drying operations.
  • the pickling solution and the electrolyte solution are discharged to the gas reservoir 21 and the plurality of reservoirs 25 to 27 to avoid discharge to the outside and to treat them rationally, so that they are expensive and large as in the past. No wastewater treatment equipment is required.
  • the apparatus of the present invention uses carbon dioxide having a critical point of relatively low temperature and low pressure as a supercritical substance, a supercritical state can be obtained easily and quickly with relatively small energy, and its use cost is reduced.
  • the pressure resistance of the plating tank 1 can be reduced, and this can be manufactured at low cost.
  • the electroplating process is performed on the negative electrode side of the plating tank 6, for example, after the surface is polished, in a state where the electrodes 8 and 9 are not energized. Attach the object 9 to be treated, close the lid (not shown), and seal the plating tank 6.
  • the compression pump 29 is driven, the heating means 31 is operated to open the gas container 13, and the carbon dioxide 12 inside is guided to the compression pump 29, which is pressurized to a pressure higher than the critical pressure and further heated.
  • the heating means 31 is operated to open the gas container 13, and the carbon dioxide 12 inside is guided to the compression pump 29, which is pressurized to a pressure higher than the critical pressure and further heated.
  • This is introduced into the plating tank 6 through the opening of the valve 30.
  • the supercritical carbon dioxide diffuses into the plating tank 6 at a high speed, and the carbon dioxide in the tank 6 also becomes a supercritical state, comes into contact with the object 9 and adheres to the object 9 and the anode 8. Cleans oils and fats, water, foreign matters, etc., which are generated, at high speed and efficiently.
  • the object 9 is degreased and washed under a supercritical state. Therefore, compared to the conventional method of immersing the object in a degreasing solution, a harmful degreasing agent is used. In addition to improving the work environment, this can be done safely, quickly and easily, and the degreasing and cleaning is performed in the plating tank 6. Costs can be reduced.
  • the valve 43 is opened, and the valve 30 is closed instead, and the driving of the compression pump 29 is stopped.
  • the article 9 to be treated is pickled.
  • the valve 37 is opened with the power supply stopped and the sealing tank 6 airtight, and the acid solution 18 in the acid solution tank 19 is sent to the solution sending pump 38, and at the same time, the acid is removed.
  • a predetermined surfactant 41 is added to the solution 18 and these are fed into the plating tank 6.
  • the acid solution 18 and the surfactant 41 form two layers in the plating tank 6 as shown in FIG. 5 (a).
  • the compression pump 29 is driven, the heating means 31 is operated to open the gas container 13, and the carbon dioxide inside is guided to the compression pump 29, which is pressurized to a pressure higher than the critical pressure. Further, the carbon dioxide is further heated to a critical temperature or higher by the heating means 31 to generate supercritical carbon dioxide, which is introduced into the plating tank 6 by opening the valve 30.
  • the supercritical carbon dioxide when introduced into the plating tank 6, it is rapidly diffused into the plating tank 6, and is rapidly mixed with the acid solution 18 and the surfactant 41 to be emulsified, and the fine particles are covered. It comes into contact with the surface of the object to be treated 9, removes ⁇ on the surface of the object to be treated 9, removes an oxide film and activates the surface.
  • the oxide film of the object 9 is removed under the supercritical state, and therefore, the use of the acid solution is less than in the conventional pickling method in which the object is immersed in the acid solution. Volume, making it quicker and easier Since the pickling tank 6 is used for pickling, it is not necessary to use a dedicated pickling tank as in the past, and the equipment costs can be reduced accordingly.
  • valve 49 when the acid solution 22 has been discharged, the valve 49 is closed, the valve 53 is opened instead, and the used carbon dioxide in the plating tank 6 is pushed out by the introduced carbon dioxide, This is guided to a conduit 42 and moved to the gas storage tank 20 for storage.
  • the order of discharging the acid solution 17 and the carbon dioxide after use may be opposite to that described above, but both can be efficiently and precisely discharged as described above.
  • valve 43 After discharging the used carbon dioxide, the valve 43 is closed, and high-pressure carbon dioxide 12 is introduced into the plating tank 6 for a predetermined time.
  • the inside of the plating tank 6 is pressurized and heated, and a critical state of carbon dioxide is formed, and this supercritical carbon dioxide comes into contact with the article 9 to be treated, and the article 9 and the anode 8 Cleans and dries the water adhering to the surface quickly and efficiently.
  • the compression pump 29 is stopped, the valve 30 is closed, the introduction of carbon dioxide is stopped, and the valve 43 is opened instead.
  • the carbon dioxide is led to the conduit 42 and moved to the gas storage tank 20 for storage.
  • valve 35 or 36 in this example, the valve 35 is opened, and the electrolyte solution 14 in the electrolyte solution tank 16 is sent out to the liquid sending pump 38, and at the same time, the solution 14 The surfactant 39 is added, and these are fed into the plating tank 6.
  • the electrolyte solution 14 and the surfactant 39 form two layers in the plating tank 6 as shown in FIG. 7 (a).
  • the compression pump 29 is driven, the heating means 31 is operated to open the gas container 13, and the carbon dioxide 12 inside is guided to the compression pump 29, and this is sent to a high pressure above the critical pressure. Then, the carbon dioxide is heated to a critical temperature or higher by the heating means 31 to generate supercritical carbon dioxide, which is introduced into the plating tank 6 via the valve 30.
  • the supercritical carbon dioxide When the supercritical carbon dioxide is introduced into the plating tank 6 in this way, it is rapidly diffused into the plating tank 6 and rapidly mixed with the electrolyte solution 14 and the surfactant 39 to be emulsified, and the emulsion solution 14 The fine particles are diffused at a high density in the plating tank 6 and come into contact with the surface of the workpiece 9.
  • stirrer 11 is actuated to stir the emulsion material to uniformly distribute the electrolytic nickel ions, and to make the electrolytic nickel ions adhere to the surface of the processing object 9 densely. This situation is as shown in Fig. 7 (b).
  • the electrolytic nickel ions are electrolyzed, deposited and adhered in a supercritical state, the electrolytic nickel ions quickly diffuse in the plating tank 6 and are uniformly distributed at a high density to be treated. Attaches to front and back of object 9.
  • the conventional method of electrolytically depositing and depositing the anode material in the electrolyte solution Compared with the plating method, a uniform and dense plating state can be obtained on the front and back surfaces of the object to be treated 9, in which so-called plating coverage is very good, and a good finishing surface can be obtained.
  • productivity can be improved by eliminating the trouble of separating the surface and the back surface of the object 9 to be processed, and even if the object 9 has a complicated shape, It can be easily handled without requiring poles.
  • the switch 10 is turned off, the stirrer 11 is stopped, and the valve 50 is opened. The pressure of the carbon dioxide is reduced, and the carbon dioxide shifts to a state below the critical point. While being vaporized or liquefied, the electrolyte solution 15 and the surfactant 39 recover a two-layer state. This situation is as shown in Fig. 7 (c).
  • valve 50 is opened, and the used electrolyte solution 23 is pushed out together with the surfactant 39 into the plating tank 6, and this is introduced into the conduit 47 and the liquid storage tank 26 and stored therein.
  • valve 50 is closed, and the valve 43 is opened instead, and the used carbon dioxide is pushed out from the plating tank 6, and the used carbon dioxide is guided from the conduit 42 to the gas storage tank 21 for storage.
  • valve 43 After discharging the used carbon dioxide, the valve 43 is closed and the valve 30 is opened during that time to introduce high-pressure carbon dioxide 12 into the plating tank 6.
  • the inside of the plating tank 6 is pressurized and heated, and a supercritical state of carbon dioxide is formed, and this supercritical carbon dioxide contacts the article 9 to be treated, and the article 9 and the anode 8 Cleans and dries the water adhering to the surface quickly and efficiently.
  • the compression pump 29 is stopped, the valve 30 is closed, the introduction of carbon dioxide is stopped, the lid (not shown) of the plating tank 6 is opened, and the treatment When the object 9 is taken out, a series of plating operations is completed.
  • an external valve is opened to guide the used carbon dioxide to the column 45 via the return pipe 44, and the column is used.
  • the water and oils and fats in the carbon dioxide are absorbed, regenerated to the initial state, and returned to the compression pump 29 at appropriate times for reuse.
  • the object 9 to be processed is taken out of the plating tank and moved to each tank to perform the pretreatment, thereby improving productivity.
  • FIG. 10 shows a fourth embodiment of the present invention, and the same reference numerals are used for components corresponding to those in the third embodiment.
  • Fig. 10 shows only the main parts of the embodiment.
  • the supply and discharge of supercritical or subcritical carbon dioxide to and from each reaction bath 6, 6a, the configuration of the storage section, and the supply of various solutions The illustration of the structure of the discharge, discharge and storage parts is omitted, and the relevant parts are substantially the same as in FIG.
  • reaction baths 6 and 6a are arranged in parallel in the embodiment, and these are connected to each other by conduits 57 and 58, and the conduits 57 and 58 are connected via valves 59 and 60.
  • reaction baths 6 and 6a sequentially perform successive plating treatment steps, perform a predetermined treatment step in one reaction bath 6, and after the treatment, the electrolyte solution 14 used in the reaction bath 6 And the surfactant 39 etc. are moved to the reaction bath 6a, and the treatment of the reaction bath 6 is executed in the reaction bath 6a. Thereafter, the process is shifted by one step between the baths 6 and 6a, and a series of plating processes is sequentially performed. Makes the process executable.
  • one reaction bath 6 is prepared for electric plating, and the electrolyte solution 14 is placed in the bath 6.
  • the surfactant 39 was introduced, and in the other reaction bath 6a, the electrolyte solution 14 and the surfactant 39 introduced into the bath 6a were emulsified, and the switch 10 was turned ON under the supercritical state.
  • nickel ions are precipitated and adhered to the surface of the workpiece 9.
  • the electrolyte solution 14 and the surfactant 39 are emulsified in one of the reaction baths 6, and the switch 10 is turned on under the supercritical condition, and the nickel is turned on.
  • the ions are deposited and adhered to the surface of the object 9 to be processed, and the processing of the reaction bath 6a is executed one step later.
  • the method of depositing and adhering the electrolyzed electrode material to the other electrode material as in the above-described embodiment can be applied to the same electrode and anodic oxide film formation method in principle, and has the same effect as described above. Can be obtained.
  • the present invention can be applied to an electrolysis method in which an electrolytic substance and an electrode substance are contained in a reaction bath, one of the electrode substances is electrolyzed, and the other is collected on the other electrode substance side.
  • the present invention can be applied to, for example, electrolytic refining, electrolytic extraction, and electrolytic polishing of a metal, and the same effects as described above can be obtained.
  • the present invention is also applied to an electroless plating method and a chemical conversion treatment method in which an object to be treated is accommodated in a reaction bath capable of accommodating an electrolytic substance, and an electrolytic substance contained in an electrolyte solution is deposited and adhered to the object to be treated, and an external electric field is not applied.
  • the invention can be applied, and by doing so, the same effect as described above can be obtained.
  • FIGS. 11 to 20 show a fifth embodiment of the present invention, in which the same reference numerals are used for components corresponding to those in the third and fourth embodiments. .
  • the present invention is applied to an electric plating (nickel plating), and a gas container 13 installed outside the plating tank 6 is provided with a pressurized medium or a pressurized substance, for example, liquefied carbon dioxide 1
  • a pressurized fluid such as 2 is filled to about 6 MPa.
  • the pressurized substance or medium may be a liquid or a gas, but if the solvent for dissolving the electrolyte solutions 14 and 15 is water, it is harmless, safe and chemically stable carbon dioxide. Is preferred.
  • the pressurized liquid of the present invention can include any liquid that is insoluble in the electrolyte solution.
  • pressurized substances include gases such as nitrogen and argon, spindle oils and fats and oils not mixed with the electrolyte solutions 14 and 15, petroleum such as hexane, benzene, toluene, and halogens such as black form. Hydrocarbons can be used.
  • the solvent is an organic electrolyte such as propylene carbonate, acetonilyl, polyethylene oxide, etc.
  • the pressurized substance or the pressurized medium a mixture of plural kinds of liquids or gases can be used.
  • a substance having a low liquefaction pressure the strength of the plating tank 6 can be reduced, which can be inexpensively used. Can be manufactured.
  • the compression pump 29 is capable of pressurizing carbon dioxide 12 to a predetermined pressure, in the embodiment, 1 to 8 MPa which is higher than atmospheric pressure and lower than supercritical pressure.
  • the carbon dioxide 12 is pressurized and liquefied before and after each processing step of plating work, i.e., before each of degreasing treatment, oxide film removal, so-called pickling treatment, plating treatment, and drying after plating treatment.
  • a heating means 31 such as a heater is arranged on the downstream side of the conduit 28, and is capable of heating the pressurized liquid carbon dioxide 12 to 0 to 31 ° C. which is lower than its critical temperature during the plating process.
  • the respective density ratios of the liquefied carbon dioxide 12 to the acid solution 18 and the electrolyte solutions 14 and 15 were set to 1: 5 to 5: 1 to equalize the emulsion state by the surfactant. I try to plan.
  • the configuration is simpler and the installation space is more compact, and the equipment cost is lower than in the conventional plating method and equipment. Can be reduced.
  • the apparatus of the present invention uses harmless, safe and chemically stable liquid carbon dioxide at a low temperature and low pressure as the pressurized liquid substance.
  • the means of the means can be reduced.
  • a general-purpose pressurizing pump 29 is used as a pressurizing means for the plating tank 6 and a large-scale pressurizing device with a built-in piston is not required, it is possible to reduce the size and weight of the equipment and reduce equipment costs. At the same time, energy costs can be reduced to reduce operating costs.
  • the pressure resistance can be reduced compared with the supercritical state of the plating tank 6 in the low pressure part, and this can be manufactured at low cost.
  • the gas container 13 is opened, the compression pump 29 is driven, and the liquefied carbon dioxide 12 in the gas container 13 is appropriately pressurized (1 to 8 MPa). And heated to introduce it into the plating tank 6.
  • the stirrer 11 is actuated to stir the emulsion substance, thereby uniformly distributing the electrolytic nickel ions and causing the electrolytic nickel ions to adhere to the surface of the article 9 to be treated.
  • the electrolytic nickel ions since the electrolysis, deposition and adhesion of the electrolytic nickel ions are performed in the plating tank 6 under pressure, the electrolytic nickel ions quickly diffuse in the plating tank 6 and are uniformly distributed, so that the electrolytic nickel ions are uniformly distributed. It adheres to the front and back surfaces of the processed material 9.
  • hydrogen gas or oxygen gas is generated by the electrolytic decomposition of the electrolyte solution 18, that is, water, that is, the water is electrolyzed, and the air bubbles stay on the surface of the workpiece 9 to be processed.
  • the surface of the processed object 9 may be moved by the agitation, which may cause chipping and uneven spots.
  • the volume of the liquid changes from a small volume to a large volume in a gaseous state, but under the pressure of pressurizing the inside of the plating tank 6 with liquefied carbon dioxide as in the embodiment, The reaction shifts in the direction of smaller volume and suppresses the electrolysis. For this reason, generation of hydrogen gas and oxygen gas is suppressed, and these bubbles are covered.
  • the gas and oxygen gas have high solubility in the electrolyte solution 14 under the above-described pressure, the amount of the gas and oxygen gas adhering to and remaining on the surface of the workpiece 9 is reduced. In addition, increase the prevention of chipping and uneven spots.
  • the hydrogen gas or oxygen gas bubbles are compressed and miniaturized or crushed. Therefore, compared to the conventional plating method performed under atmospheric pressure, the surface of the workpiece 9 is more densely packed. In addition, a uniform and thin plating film can be obtained, and the plating liquid can penetrate into the details of the object 9 to be processed, thereby facilitating plating of the through hole.
  • the same plating as before can be obtained even if the amount of plating metal / electrodeposited material used is reduced with respect to the plating object, and this is particularly advantageous for noble metal plating.
  • the generated gas is miniaturized as described above, the surfactant works efficiently, and the generated gas adhering to the surface of the workpiece 9 is promptly peeled off to promote dissolution in the electrolyte solution 14. In combination with the above, chipping is prevented, and chipping is prevented.
  • the present invention suppresses the electrolysis of water at the time of plating, thereby saving electric energy consumption by that amount, and can use this for plating and electrodeposition, thereby improving current efficiency.
  • FIG. 18 shows the applicable range of the fifth embodiment, and Electric plating is performed in an emulsion state under a liquid phase at a lower temperature and lower pressure than the critical state.
  • the supply and discharge of liquefied carbon dioxide as described above discharges various solutions after the pretreatment step and after use, and cleans and dries the plating tank 6, the workpiece 9 and the electrode 8. Has been realized.
  • FIG. 19 Various characteristics of the electric plating according to the fifth embodiment are as shown in FIG. 19 and FIG.
  • Fig. 19 shows the comparison between the amount of plating in the supercritical state and the amount of plating in the supercritical state when liquefied carbon dioxide is pressurized and electroplated. It is shown that. Also, since the current efficiency according to this embodiment is improved as described later, the plating is efficiently deposited. In this figure, the precipitation amount at 90% of the supercritical phase is set to 1.
  • Fig. 20 shows the current efficiency of the electrolyte solution when pressurizing liquid carbon dioxide and applying electric power, compared with the current efficiency of supercritical carbon dioxide. It was confirmed that the method was superior to the electric plating method.
  • valve 45 is opened, and the used electrolyte solution 18 is pushed out together with the surfactant 39 from the container 6, which is guided to the liquid reservoir 26 via the conduit 47 and stored therein.
  • valve 50 is closed, and the valve 43 is opened instead.
  • the used liquefied carbon dioxide is pushed out from the plating tank 6, and is led from the conduit 42 to the gas storage tank 21 to be stored. At this time, a flow is generated in the system when the carbon dioxide moves, and the anode 8 and the object 9 are washed.
  • valve 43 After discharging the used carbon dioxide, the valve 43 is closed and the liquefied carbon dioxide 12 is introduced into the plating tank 6.
  • FIG. 21 shows a sixth other embodiment of the present invention, wherein the same reference numerals are used for components corresponding to those of the above-described embodiment, particularly, the fourth embodiment.
  • FIG. 21 shows only the main parts of this embodiment, and shows the supply and discharge of pressurized liquid carbon dioxide to and from each reaction bath 6a, the configuration of the storage part, and the supply and discharge of various solutions.
  • the illustration of the configuration of the storage part is omitted.
  • reaction baths 6 and 6a are arranged in parallel, and these are connected by conduits 57 and 58, and valves 5 and 60 are connected to the conduits 57 and 58. I'm working.
  • reaction baths 6 and 6a sequentially perform successive plating treatment steps, perform a predetermined treatment step in one reaction bath 6, and after the treatment, the electrolyte solution 14 used in the reaction bath 6 And the surfactant 39 etc. are moved to the reaction bath 6a, and the treatment of the reaction bath 6 is executed in the reaction bath 6a. Execute the process Making it possible.
  • one reaction bath 6 is prepared for electric plating, and the electrolyte solution 14 is placed in the bath 6.
  • the surfactant 39 was introduced, and in the other reaction bath 6a, the electrolyte solution 14 and the surfactant 39 introduced into the bath 6a were emulsified, and the switch 10 was turned ON under supercritical conditions, Nickel ions are deposited and adhered to the surface of the workpiece 9.
  • the electrolyte solution 14 and the surfactant 39 are emulsified in one of the reaction baths 6, and the switch 10 is turned on under the supercritical state, and the nickel ion Is deposited and adhered to the surface of the article 9 to be treated, and the treatment of the reaction bath 6a is executed one step later.
  • successive plating treatments are sequentially performed in the plurality of reaction baths 6, 6a, and at that time, the electrolyte solution 13, the pickling solution, the surfactant, etc. used in the preceding bath are used. Are transferred to the bathtub on the subsequent line to make effective use of them, and to perform a series of plating processes rationally and promptly.
  • the method of depositing and adhering the electrolyzed electrode material to the other electrode material as in the above-described embodiment can be applied to the same electrode and anodic oxide film formation method in principle, and has the same effect as described above. Can be obtained.
  • the present invention can be applied to an electrolysis method in which an electrolytic substance and an electrode substance are contained in a reaction bath, one of the electrode substances is electrolyzed, and the other is collected on the other electrode substance side.
  • electrolytic refining of metal for example, electrolytic refining of metal, electrolytic extraction, electrolytic polishing, etc.
  • the electrochemical treatment method of the present invention such as an electric plating and the like, and the electrochemical reaction device are provided with an electrode in a reaction bath to be reacted and an external electric field applied thereto.
  • the present invention can be applied to various methods and apparatuses such as forming, electrolytic polishing, electrolytic processing, electrophoretic coating, and electrolytic refining. Also, the present invention can be applied to a case where an external electric field such as an electroless plating or a chemical conversion treatment is not applied.

Description

明 細 書 電気メツキ等の電気化学的処理方法およびその電気化学的反応装置 技術分野
この発明は、例えば電気メツキ等の電気化学的処理に好適で、超臨 界または亜臨界物質、例えば二酸化炭素を用いて、各処理工程を安全 で合理的かつ速やかに行なえ、使用後の二酸化炭素および処理溶液 等を合理的かつ迅速に処理できるとともに、酸洗い液ゃメツキ液等の使 用量を抑制し、更にメツキ作業から発生する廃液量を低減して環境汚 染を防止し、作業環境の改善と生産性の向上、並びに前記廃液の再利 用を図る一方、メツキのつき廻りを飛躍的に向上して美麗な仕上がりを 得られ、被処理物の裏面や凹部にも緻密かつ一様なメツキを容易に実 現するとともに、各処理に要する浴槽を省略かつ小形軽量化し、設備費 の軽減と設置スペースのコンパクト化を図れ、更に反応浴槽を加圧して 電気化学的反応させ、電解溶液の溶媒の電気分解を抑制し電流効率 を向上して、電気化学的反応を合理的かつ効率良く行ない、緻密で薄 厚の金属皮膜を得られる、電気メツキ等の電気化学的処理方法および その電気化学的反応装置に関する。 背景技術
従来、電気化学的反応方法の代表的なものとして、電気メツキが挙 げられる。電気メツキは、製品の装飾、防食、耐食、防鯖等の工業的用 途に重要な役割を果たしている。また、特定の金属を大量生産する方 法として、電解精鍊が挙げられる。その他、外部電界を加えるものとし ては、陰極処理として電錶、電気泳動塗装等が挙げられ、陽極処理とし てはアルミニウムの陽極酸化皮膜の形成、電解研磨、電解加工、電気 泳動塗装等が挙げられる。更に、外部電界を加えないものとしては、無 電解メツキ、化成処理等を挙げることができる。
上述した種々の電気化学的反応方法に関し、その反応効率を向上さ せ、あるいは皮膜の均一性、つきまわり性を向上させることを目的として、 様々な検討がなされている。
その一つとして、界面活性剤を用いる方法が知られている。界面活性 剤は、電気化学反応による生成ガスの抑制、水切り剤として、またシミ の発生の抑制、乾燥の補助等に重要な役割を果たしている。
更に、界面活性剤を用いることで、弱電流部において補助電極を用い ることなぐ高い電気特性をもって反応させることができる。この効果は、 消費電力を低減し、析出'溶解速度を上げ、結果としてレべリング効果 を高めることに寄与している。
しかし、上記界面活性剤は、価格や工程等の理由から現実には使用 されていない。それゆえ、反応性、反応効率を高め、皮膜の均一性、つ きまわり性を向上させるための新技術の開発が望まれていた。
また、電気メツキ等の電気化学的反応方法の技術分野においては、使 用後のメツキ液等の廃液処理の問題があり、環境問題の高まりから早 急に解決すべき問題とされていた。
前記廃液処理は、廃液中の含有毒物の分解、廃液中からの有害物 の分離除去、分離された物質の処理'処分の三段階に分かれている。 特に、廃液中からの有害物の分離に関しては、廃液に薬品を加え、 有害物を固体の状態にして、分離する方法が多くとられている。
し力、し、この方法は、一般に能率の悪い大掛リな設備を用いて行って し、ることが多く、近時の規則強化の下では廃液処理の問題に十分に対 処できない。
更に、従来は電気化学的反応後、メツキした電極等の目的物を洗净 する必要があった。この洗浄工程は、通常、水中ですすいだり、流水に さらす等して行われており、工程が煩雑になるという問題があった。ま た、洗浄に用いた液が多量の廃液となり、上述のような廃液処理の問 題を招いていた。
ところで、 従来の電気メツキ工程は大別すると、前処理工程とメツキ 工程、後処理工程に分けられる。このうち、前処理工程は脱脂洗浄や 酸洗いを伴い、これらは通常、専用の浴槽に所定の処理液を収容して 加温し、この処理液に被処理物を所定時間浸潰して行なっている。
したがって、複数の浴槽とその作業スペースを要して設備費が高価に なり、また処理液の飛散や有害なガスが発生する状況下での作業を強 いられて作業環境が悪 しかも前記浸潰に長時間を要して生産性 が悪い、という問題があった。
また、従来の脱脂洗浄に、アルカリ加熱、電解洗浄、溶剤洗浄、エマ ルジョン洗浄等種々の洗浄法が提案されているが、何れも薬剤の投入 や特別の設備を要し、しかも各処理液に被処理物を浸潰し、若しくは処 理液の蒸気中に晒すため、その後の水切りに時間が掛かる等の問題が あ 。
このような問題を解決するものとして、例えば特開 2000— 63891号 公報では、被洗浄物を収容する小容積のチャンバ一に超臨界状態の二 酸化炭素を供給して接触させ、同時に被洗浄物を加熱し若しくは振動さ せて、被洗浄物に付着した PCBを溶解し除去するようにしている。
しかし、この従来の洗浄装置は、洗浄後、超臨界状態の二酸化炭素 . をすベて大気へ排出しているため、前記チャンバ一よリ大容積の電気メ ツキ製品の洗浄には、前記二酸化炭素の消費量が増大して高価にな •リ、また前記二酸化炭素の排出に伴う作業環境の劣化が予想されて、 実用化は難しい。
また、従来のメツキ工程は、メツキ槽に隣接して複数の水洗いを要し、 その主要な水洗槽に常時給水するため、設備費が高価になり、水の使 用料が嵩む等の問題がある。
更に、メツキ槽から被メツキ物を取り出す際のメツキ液の回収、いわゆ るくみ戻しが非常に煩雑で手間が掛かり、しかもその回収液に濃縮を要 する等して、生産性が非常に低かった。
一方、従来の電気メツキは、概してメツキのつき廻りが悪ぐ電流密度 の低い被処理物の裏面や凹部にはメツキが殆ど付かないため、当該部 をメツキする場合、それらの向きを変えてメツキする力、、当該部に補助極 を配置する面倒があり、異形の被処理物のメツキに対応できない。 また、従来の後処理工程は、メツキ後水洗いし、湯洗いして乾燥してい たが、それらに時間が掛かり生産性が悪かった。
更に、メツキ工場から排出される廃水は、その水質を法規制されている が、メツキ作業から発生する排水のうち、洗浄排水は一般に所定の薬品 を添加し無害化処理してから、 P H調整により重金属を水酸化物として 除去し、濃厚排水は洗浄排水に少しづつ加えて処理するか、別途処理 し、その処理液を薄い洗浄排水中に混合して処理していた。
しかし、前記従来の排水処理は高価な設備と種々の薬品、多量の水 と多くの時間を要し、生産性が非常に悪かった。
このような問題を解決するものとして、出願人は、超臨界状態とした物 質と、電解質溶液と、界面活性剤とを反応浴槽に導入し、これらの乳濁 状態の下で電気メツキし、メツキ後は超臨界物質を気化させ、これを浴 槽外に排出することで、洗浄液を要することなく反応浴槽や電極等を洗 浄できるようにした電気化学的反応方法を開発し、これを特願 2000— 253572号として既に提案してしヽる。
一方、電気メツキ等においては、電解液の電気分解によって、水素ガ スゃ酸素ガスが発生し、その気泡が被処理表面に滞留したり移動して 、メツキ欠けゃメツキムラを発生させ、また前記ガスの発生に電気エネ ルギ一が消費され、その分メツキが阻害されて、電流効率が低下すると いう問題があった。
このような問題を解決するものとして、例えば特開 2000— 22667 1 号公報の無電解メツキ装置は、密閉空間内に被処理表面を上向きに配 置し、前記空間内の圧力を大気圧以上にし、かっこの圧力を脈動させ て、無電解銅メツキ時の還元反応に伴って発生する水素ガス気泡を、メ ツキ液中へ溶解させるとともに、被処理表面からの離脱を促すようにし ている。
し力、し、無電解メツキにおいては、メツキの析出反応に伴って、水素ガ ス等が必然的に発生するため、ガスの発生を抑制する手法は、メツキの 析出が低下し、メツキそのものが行なえなくなるため、実用的ではない。 すなわち、無電解メツキにおいては、水素ガス等の発生を許容した上 でメツキを行ない、不都合な水素ガス等に対しては、浴中に適当な安定 剤を添加し、または窒素ガスを用いる等して対応していた。
したがって、このような水素ガス等の発生を許容する前記無電解メツキ の手法は、電気メツキ等には採用できない。
しかも、前記の手法で電気メツキする場合、被処理面に対向して電極 を配置しなければならず、そのようにすると被処理面から発生する水素 ガスは電極に滞留して、電解液中の通電を妨げ、電気メツキが困難にな るため、前記方法は電気メツキに採用できない。
このため、本発明の主な目的は、反応性が高 かつ効率的に反応 させることができ、また電解質溶液、洗浄液等の廃液の発生量が少な <>または全く発生せず環境的に好ましぐ更に反応後に洗浄液で電極 等を洗浄する必要がない、新規な電気化学的反応方法およびその 電気化学的反応装置を提供することである。
また、本発明の他の目的は、例えば電気メツキ等の電気化学的処理 に好適で、超臨界または亜臨界物質を用いて、各処理工程を安全で 合理的かつ速やかに行なえる電気メツキ等の電気化学的処理方法お よびその電気化学的反応装置を提供することである。 本発明の更に他の目的は、二酸化炭素等の使用後の超臨界または 亜臨界物質、および処理溶液等を合理的かつ迅速に処理するととも に、酸洗い液ゃメツキ液等の使用量を抑制し、メツキ作業から発生する 廃液量を低減して、環境汚染を防止し作業環境を改善して、生産 性を向上するとともに、それらの再利用を図れるようにした、電気メツキ 等の電気化学的処理方法およびその電気化学的反応装置を提供する ことである。
本発明の別の目的は、メツキのつき廻りを飛躍的に向上し、美麗な仕 上力 Jを得られるとともに、被処理物の裏面や凹部にも緻密かつ一様な メツキを容易に実現し、その電気メツキ等の電気化学的処理方法および その電気化学的反応装置を提供することである。
本発明の更に別の目的は、メツキ処理に要する各浴槽を省略かつ小 形軽量化し、設備費の軽減と設置スペースのコンパクト化を図れる 、電気メツキ等の電気化学的処理方法およびその電気化学的反応 装置を提供することである。
本発明の目的は、例えば電気メツキ等の電気化学的処理に好適で、 反応浴槽を加圧して電気化学的反応させ、電解溶液の溶媒の電気分 解を抑制して電流効率を向上し、電気化学的反応を合理的かつ効率 良く行ない、緻密で薄厚の金属皮膜を得られる、電気メツキ等の電気化 学的処理方法およびその電気化学的反応装置を提供することである。 発明の開示
本発明は、超臨界状態とした物質と、電解質溶液とを含む浴中で反 応させる。ここで超臨界状態とは、状態図で温度、圧力、エントロピー 線図の臨界点より上の温度'圧力下にある状態をいい、気体でも液体 でもない性質を示す。上記手段によれば、高い拡散定数を有する超臨 界物質により、反応浴槽が均質化され、電極等の周辺にイオンが効率 良く供給されて反応性が高まる。また、電解質溶液が少量で^むため、 処理すべき廃液の量が抑えられる。
また、超臨界状態とした物質と、電解質溶液と、界面活性剤とを含み 、乳濁させた反応浴槽中で反応させることにより、超臨界状態とした物 質と電解質溶液とが一層均一に分散し、電極等の表面における反応 効率が向上する。
前記超臨界状態とした物質は、実用性および適合性の観点から、二 酸化炭素、 3フッ化メタン、ェタン、プロパン、ブタン、ベンゼン、メチルェ
—テル、クロ口ホルムから一つ以上が選ばれる。
前記電気化学的反応後、超臨界状態の物質を臨界点以下の状態へ 移行させ、反応を終えた後に減圧する等して、超臨界状態の物質を急 激に気化又は液化させることにより、激しく系に流れを生じさせ、電極等 の表面の不純物を吹き飛ばして洗浄させる。
前記電気化学的反応方法において、反応浴槽中での反応が、電気メ ツキ、電錶、陽極酸化皮膜の形成、電解研磨、電解加工、電気泳動塗 装、電解精鍊、化成処理、及び無電解メツキであり、本発明の適用可能 な工業分野が特定される。
すなわち、上記電解メツキ等の各工業分野において、電解浴(その他 メツキ浴、処理液等)中に、超臨界状態とした物質と、電解質溶液と、必 要に応じて界面活性剤とを含むことにより、反応が効率的に行われる。 また、本発明は、電解物質および電解質溶液を収容した反応浴槽を 超臨界状態または亜臨界状態に形成し、該状態の下で前記電極物質 を電解し、若しくは前記電解した電極物質およびまたは電解質溶液に 含まれる電解物質を他方の電極物質に析出付着するようにして、例え ば電気メツキ等の電気化学的処理に好適で、例えば超臨界または亜臨 界状態の二酸化炭素を用いて、各処理工程を安全で合理的かつ速や かに行なえ、またメツキのつき廻りを飛躍的に向上し、美麗な仕上がりを 得られるとともに、被処理物の裏面や凹部にも緻密かつ一様なメツキを 容易に実現し、その生産性を向上するとともに、これを電錶法や陽極酸 化皮膜形成法、電解研磨法に適用可能にし、その生産性の向上と良好 な仕上がり状態を得られる。
更に、本発明は、電解物質を収容した反応浴槽を超臨界状態または 亜臨界状態に形成し、該状態の下で前記電解物質を電解し、これを他 方の電極物質側で採集するようにして、金属の電解抽出、精鍊法に適 用可能にし、生産性の向上と良好な仕上がり状態を得られる。
本発明は、電解物質を収容した反応浴槽を超臨界状態または亜臨界 状態に形成し、該状態の下で前記電解物質を被処理物 (こ析出付着す るようにして、外部電界を要しない無電界メツキや化成処理法に適用可 能にし、その生産性の向上と良好な仕上がり状態を得られる。
また、本発明は、電極物質を電解し、若しくは前記電解した電極物質 およびまたは電解質溶液に含まれる電解物質を他方の電極物質に析 出付着後、若しくは前記電解物質を電解し、これを他方の電極物質側 で採集後、前記反応浴槽を超臨界状態または亜臨界状態から前記臨 界点以下の状態へ移行し、電解質溶液と超臨界または亜臨界物質を 二層状態に戻し、それらの排出を実現するとともに、前記移行時に反応 浴槽等の系内に急激な流れを形成し、被処理物の洗浄および乾燥を促 す。
更に、本発明は、前記電極物質若しくは電解物質の電解後に、超臨 界状態の物質または亜臨界状態の物質を前記反応浴槽に導入し、前 記電極物質を洗浄し、若しくは酸化皮膜を除去するようにして、それらの 処理を合理的かつ迅速に行ない、その乾燥を促す。
本発明は、前記電極物質若しくは電解物質の電解後に、超臨界状態 の物質または亜臨界状態の物質を前記反応浴槽に導入し、前記電極 物質若しくは電解物質採集側を洗浄し、若しくは乾燥するようにして、そ れらの処理を合理的かつ迅速に行ない、その乾燥を促す。
また、本発明は、電極物質の電解時に、前記反応浴槽に超臨界状態 の物質または亜臨界状態の物質と電解物質と界面活性剤とを導入し、 前記反応浴槽内を超臨界状態または亜臨界で乳濁させて、電極物質 または電解物質の析出付着を均一で迅速かつ高密度に行ない、例え ばメツキのつき廻りを飛躍的に向上し、美麗な仕上がりを得られるととも に、被処理物の裏面や凹部にも緻密かつ一様なメツキを容易に実現し、 その生産性を向上する。
更に、本発明は、電極物質若しくは電解物質の電解前に、前記反応 浴槽に超臨界状態の物質または亜臨界状態の物質と酸化皮膜除去溶 液と界面活性剤とを導入し、前記反応浴槽内を超臨界状態または亜臨 界状態で乳濁させるようにして、それらの処理を合理的かつ迅速に、し かも高密度に行なう。
本発明は、反応浴槽の外部に前記反応浴槽に連通可能な貯留槽を 設け、該貯留槽に使用後の超臨界物質または亜臨界物質、電解物質 または洗浄若しくは酸化皮膜除去物質を貯留させるようにして、それら の排出を制止し、その再生や合理的かつ有効な使用を図る。
また、本発明は、貯留槽に貯留した使用後の超臨界物質または亜臨 界物質を再生して反応浴槽に還流し、または前記貯留槽に貯留した使 用後の電解物質または洗浄若しくは酸化皮膜除去物質等を再生して 各溶液槽に還流するようにして、使用後の超臨界物質または亜臨界物 質や、使用後の電解物質または洗浄若しくは酸化皮膜除去物質等の 有効利用を図る。
更に、本発明は、電極物質の析出付着およびその前処理工程または 前記電解物質の電解および採集並びにその前処理工程を、単一の反 応浴槽で処理して、前記処理工程毎の浴槽を廃し、設備費の低減と設 置スペースのコンパクト化を図るとともに、前記浴槽毎に被処理物を移 動する煩雑を解消し、その作業能率を向上する。
本発明は、前記電極の析出付着およびその前後の処理工程、また は前記電解溶液の電解およびその前後の処理工程を実行可能な少な くとも二つの反応浴槽を設け、これらの反応浴槽において、相前後する 処理工程を順次実行可能にして、電気メツキ等の電気化学的反応およ び処理を合理的に行ない、その量産化を図れる。
また、本発明は、前記反応浴槽における所定の処理工程後、先行 処理工程側の反応浴槽内の電解溶液または洗浄若しくは酸化皮膜除 去物質、界面活性剤を、後行処理工程側の反応浴槽へ移動可能にし 、使用溶液等の有効利用と処理コストの低減を図れる。
更に、本発明は、電極物質を電解し、または前記電解した電極物質を 他方の電極物質に析出付着後、前記反応浴槽を使用して、他方の電 極物質に複数層の電極物質を析出付着するようにして、被処理物を反 応浴槽から搬出することな 次層の電極物質の前処理、析出付着を 続行可能にし、作業性および生産性を向上する。
本発明は、反応浴槽を加圧し、該加圧状態の下で電気化学的反応さ せるようにして、電気化学的反応に伴う電解質溶液の溶媒の電気分解 を抑制し、水素ガスや酸素ガスの発生を抑制し、かつその気泡の微細 化と電解質溶液への溶解を促して、緻密で薄厚の金属皮膜を得られる とともに、電流効率を向上し、電気化学的反応を合理的かつ効率良く行 なえる。しかも、前記電気化学的反応を、超臨界状態よりも低温低圧状 態で実現し、その分省エネルギー化と設備の小形軽量化ないし稼動コ ストの低減を図る。
本発明は、前記反応浴槽へ加圧液体を導入し、前記反応浴槽を加 圧するようにして、加圧気体を導入する場合に比べて、安全で安定した 電気化学的反応を得られる。
また、本発明は、前記反応浴槽に界面活性剤を添加して撹拌し、加圧 液体と電解質溶液とを乳濁させて電気化学的反応させ、加圧下で微細 化した水素ガスや酸素ガスに対し、界面活性剤を効率良く働かせ、被処 理面から前記ガスを速やかに剥離し、電解質溶液へ速やかに溶解させ る。
更に、本発明は、前記反応浴槽で電気化学的反応させる前に、加圧 液体を反応浴槽へ導入し、使用後の加圧液体を反応浴槽から排出す るようにして、電気化学的反応前後における反応浴槽、電極および被処 理面の洗浄や乾燥を行なえる。
本発明は、前記反応浴槽で電気化学的反応させる前に、前記加圧液 体を前記反応浴槽へ導入し、前記電極物質を洗浄し、若しくは酸化皮 膜を除去するようにして、前記加圧液体による前処理を実行をさせ、安 定した電気化学的反応を実現させる。
また、本発明は、前記反応浴槽で電気化学的反応させた後、前記加 圧液体を前記反応浴槽へ導入し、前記電極物質を洗浄し、若しくは乾 燥するようにして、前記加圧液体による後処理を実行させ、次期電気化 学的反応の安定性を得られる。
更に、本発明は、前記反応浴槽の外部に前記反応浴槽に連通可能 な貯留槽を設け、該貯留槽に使用後の加圧液体と、電解物質または洗 浄若しくは酸化皮膜除去物質とを貯留させるようにして、それらの外部 への排出を制止し、その再生や合理的かつ有効な使用を図れる。
本発明は、前記貯留槽に貯留した使用後の前記液体を再生して反応 浴槽に還流し、または前記貯留槽に貯留した使用後の電解物質または 洗浄若しくは酸化皮膜除去物質を再生して各溶液槽に還流するように して、使用後の加圧液体や洗浄液、酸化皮膜除去物質等の有効利用 を図る。
本発明の上述した目的と特徴および利点は、添付図面に基づく以下 の詳細な説明から、一層明らかとなろう。 図面の簡単な説明
第 1図は、本発明の第 1の実施形態による反応過程を(a) , ( b) , ( c) の順に示す説明図、第 2図は、本発明の第 2の実施形態による反応過 程を (a), (b), (c)の順に示す説明図である。第 3図は、本発明の第 3 の実施形態を示す説明図で、単一の反応浴槽を用いてメツキ処理の多 工程を実施させている。
第 4図は、前記第 3の実施形態におけるメツキ処理の脱脂および洗浄 処理工程を示す説明図である。第 5図は、前記第 3の実施形態におけ るメツキ処理の酸化皮膜除去および被処理物活性化処理工程を、 (a), (b), (c)の順に示す説明図である。
第 6図は、前記第 3の実施形態におけるメツキ処理の酸溶液排出およ び洗浄工程を示す説明図である。第 7図は、前記第 3の実施形態にお けるメツキ処理のメツキ工程を、(a), (b), (c)の順に示す説明図であ る。第 8図は、前記第 3の実施形態におけるメツキ処理の電解質溶液排 出および洗浄工程を示す説明図である。
第 9図は、前記第 3の実施形態におけるメツキ処理の乾燥および洗浄 工程を示す説明図である。
第 10図は、本発明の第 4の実施形態の要部を示す説明図で、二つの 反応浴槽を用いてメツキ処理の各工程をそれぞれ独自に実施させてい る。
第 11図は、本発明の第 5の実施形態を示す説明図で、単一の反応 浴槽を用いてメツキ処理の多工程を実施させている。
第 12図は、前記第 5の実施形態におけるメツキ処理の脱脂および洗 浄処理工程を示す説明図である。
第 13図は、前記第 5の実施形態におけるメツキ処理の酸化皮膜除去 および被処理物活性化処理工程を、(a), (b), (c)の順に示す説明図 である。
第 14図は、前記第 5の実施形態におけるメツキ処理の酸溶液排出お よび洗浄工程を示す説明図である。第 15図は、前記第 5の実施形態に おけるメツキ処理のメツキ工程を、(a), (b), (c)の順に示す説明図であ る。 第 1 6図は、前記第 5の実施形態におけるメツキ処理の電解質溶液排 出および洗浄工程を示す説明図である。
第 1 7図は、前記第 5の実施形態におけるメツキ処理の乾燥および洗 浄工程を示す説明図である。第 1 8図は、前記第 5の実施形態のメツキ 処理への適用範囲を示す相図である。
第 1 9図は、前記第 5の実施形態において、液体二酸化炭素を用いて メツキ処理した際の、電解質溶液に対するメツキの析出量を示す特性図 で、超臨界二酸化炭素を用いたメツキの析出量と比較している。
第 20図は、前記第 5の実施形態において、液体二酸化炭素を用いて メツキ処理した際の、電解質溶液量に対する電流効率を示す特性図で、 超臨界二酸化炭素を用いての電流効率と比較している。
第 21図は、本発明の第 6の実施形態の要部を示す説明図で、二つの 反応浴槽を用いてそれぞれメツキ処理を実施させている。 発明を実施するための最良の形態
以下、本発明の実施の形態を図面により説明すると、図 1は本発 明の第 1の実施形態である、電気化学的反応方法による反応過程を示 し、同図(a)は反応前、同図(b)は反応中、同図(c)は反応後の各状態 を示している。
この実施形態は、反応浴槽 6中に電極 4を設置して外部電界 7を加え る場合であり、したがって、電気メツキ、電錶、陽極酸化皮膜の形成、電 解研磨電解加工、電気泳動塗装、電解精鍊等の各方法に共通して適 用することが、できる。
また、無電解メツキ、化成処理等の外部電界 7を加えない場合であつ ても、陰極及び陽極に代えて、被メツキ物(被処理物)を浸潰させること により、電界を加える場合と同様に実施することができる。
このうち、図 1 ( a)の状態は、反応浴槽 6中に電解質溶液 1と、臨界 点以下の物質 2とを含んでいる。図中、 1 0はスィッチである。 この状態から図 1 ( b)の状態、すなわち臨界点以下の物質 2を超臨界 状態に移行させ、電解質溶液と相溶した均一状態 3にする。或いは、浴 中に界面活性剤を加えて乳濁させた状態とすることもできる。
なお、超臨界状態にするためには、通常、コンプレッサーや熱交換器 等を用いて、圧力、温度を上げることにより行なう。
電極 4の表面は、温度'圧力を上げて超臨界状態とする過程で、系に 生じた流れのため、自然に脱脂洗浄される。したがって、従来、反応ェ 程前に予め行っていた電極 4の脱脂作業を省略することができる。 従来の脱脂作業は、トリクロロエチレン、テトラクロロエチレン、トリクロ ロェタン等の溶剤を用いて行っているが、これらの溶剤は毒性が強ぐ 環境汚染を引き起こす惧れがあり規制基準も厳しぐ安全面にも問題が あった。
本発明により、上記溶剤系脱脂剤が不要となるため、環境保全型の システムを実現することができる。なお、以上の説明は、従来と同様に電 極を予め脱脂洗浄することを妨げるものではない。
続いて、図 1 ( b)の状態で反応を行う。超臨界状態とした物質 2は、高 い拡散定数を有するため、電解質溶液中の金属イオン等が電極 4の周 囲に効率良く供給され、電極 4の表面の析出'溶解速度が大きくなると ともに、系が常に均質化されるため、つきまわり性、皮膜の均一性も向 上する。
更に、高い反応効率は維持しつつ、使用する電解質溶液 1は少量で 済むため、処理すべき廃液の量を削減でき、環境保全、コストの面で好 ましい。
次に、反応を行った後、減圧するか又は温度を下げることにより、超臨 界状態の物質を、再び臨界点以下の状態へ移行させ、図 1 ( c)の相分 離した状態とする。
この過程で、超臨界状態の物質が急激に気化又は液化するため系に 激しい流れが生じ、それに伴い電極 4表面の不純物が吹き飛ばされて 洗浄される。
したがって、反応後に従来行っていた水等による洗浄が不要となり、 洗浄に用いた水等の廃液を生じない。なお、相分離した電解質溶液 1お よび反応浴 6は回収し、反応により失われた電解質を適宜補充し濃度 を調整した上で再利用することができる。
次に、反応浴槽 6中の各成分についてそれぞれ説明する。
まず、超臨界状態とする物質は、特に限定されるものではなぐその物 質に固有の臨界温度、臨界圧力を考慮して、従来知られた気体、液体 物質の中から適宜選択して用いることができる。
具体例として、二酸化炭素、 3フッ化メタン(フル才ロホルム)、ェタン、 プロパン、ブタン、ベンゼン、メチルエーテル、クロ口ホルム等を挙げるこ とができる。その中でも二酸化炭素が、コスト、安全性、臨界条件等の 点で最も好ましい。前記二酸化炭素は、臨界温度 304. 5K、臨界圧力 7. 387 MPaであり、それ以上の範囲で超臨界状態に移行する。
なお、前記の二酸化炭素等の超臨界流体については、塗装技術や 塗料に応用することが既に提案されている。具体的には、特開平 5— 1 32656号公報、特開平 8— 231 903号公報、特表平 9— 5031 58号 公報に、ペイント、エナメル、ラッカー、ワニス、接着剤、化学薬剤、剥離 剤、保護油、非水系洗浄剤、農業用コーティング等の成分として用いる ことが開示されている。し力、し、本発明のように電気化学的反応におけ る浴 6として用いることを示唆するものは皆無である。
次に、電解質溶液としては、溶媒に対して、一種又は二種以上の金属 の塩、有機電解質、リン酸等の酸、アルカリ物質等の各種電解質を溶 解させたものが用いられる。
前記溶媒は、極性溶媒であれば特に限定されるものではな 具体例 として、水、エタノール、メタノール等のアルコール類、エチレン力一ポネ 一卜、プロピレンカーボネート等の環状カーボネート類、ジメチルカーポネ ート、ェチルメチルカ一ポネート、ジェチルカ一ボネート等の直鎖状カー ボネート類、或いはこれらの混合溶媒が挙げられる。
金属の塩としては、析出させようとする金属、合金、酸化物の種類等を 考慮して適宜選択すれば良い。電気化学的に析出させることができる 金属としては、 Cu、 Zn、 Ga、 As、 Cr、 Se、 Mn、 Fe、 Co、 Ni、 Ag、 Cd、 l n、 Sn、 Sb、 Te、 Ru、 Rh、 Pd、 Au、 Hg、 Tl、 Pb、 Bi、 W、 Po、 Re、 〇s、 l r、 Pt等が挙げられる。
また、有機電解質としては、ポリアクリル酸等の陰イオン系電解質、ポ リエチレンィミン等の陽イオン系電解質が挙げられる力 これに限定され るものではない。
電解質溶液 1には、上記物質の他にも、溶液の安定化等を目的として —種又はそれ以上の物質を含むことができる。具体的には、析出する 金属のイオンと錯塩をつくる物質、電解質溶液の導電性をよくするため の無関係塩、電解質溶液の安定剤、電解質溶液の緩衝材、析出金属 の物性を変える物質、陰極の溶解を助ける物質、電解質溶液の性質あ るいは析出金属の性質を変える物質、二種以上の金属を含む混合溶 液の安定剤等を挙げることができる。
更に具体的に、主な電気化学的反応方法における電解質溶液の主 成分を挙げれば以下の通りであるが、これらに限定されるものではな し、。
a. 銅を析出させる場合
結晶硫酸銅及び硫酸、ホウフッ化銅及びホウフッ酸、シアン化銅及 びシアン化ソ一ダ、ピロリン酸銅、ピロリン酸カリウム、及びアンモニア水 b,ニッケルを析出させる場合
硫酸ニッケル、塩化アンモニゥム、及びホウ酸、硫酸ニッケル、塩化 ニッケル、及びホウ酸、スルファミン酸ニッケル、塩化ニッケル、及び ホウ酸
c クロムを析出させる場合
クロム酸及び硫酸、クロム酸、酢酸バリウム、及び酢酸亜鉛 d. 亜鉛を析出させる場合
硫酸亜鉛、塩化アンモニゥ厶、硫酸アンモニゥム、ホウ酸、及びデキ ストリン、酸化亜鉛、シアン化ソーダ、及び苛性ソーダ、(3)酸化亜鉛 及び苛性ソーダ
e. カドミウムを析出させる場合
酸化カドミウム、シアン化ソーダ、ゼラチン、及びデキストリン f. スズを析出させる場合
硫酸第一スズ、硫酸、クレゾ一ルスルホン酸、 β一ナフトール、及び ゼラチン、すず酸カリ及び遊離苛性カリ
g. 銀を析出させる場合
シアン化銀及びシアン化カリ
h.金を析出させる場合
金、シアン化カリ、炭酸カリ、及びリン酸水素カリ
i . 白金を析出させる場合
塩化白金酸、第二リン酸アンモニゥム、及び第二リン酸ソーダ、塩化 白金酸及び酢酸塩
j. ロジウムを析出させる場合
濃硫酸及びロジウム、リン酸及びリン酸ロジウム
ルテニウムを析出させる場合
ルテニウム錯体
に 黄銅を析出させる場合
シアン化第一銅、シアン化亜鉛、シアン化ナトリウム、及び炭酸ナトリ ゥム
m . スズ鉛合金を析出させる場合 スズ、鉛、遊離ホウフッ酸、及びペプトン、スズ、鉛、遊離ホウフッ化 水素酸、及びペプトン
n. 鉄ニッケル合金を析出させる場合
スルファミン酸ニッケル、スルファミン酸第一鉄、及び酢酸ナトリウム o.コバルト燐を析出させる場合
塩化コバルト、亜リン酸、及びリン酸
また、前述したような、超臨界状態とする物質 2及び電解質溶液 1の 、浴槽 6中での仕込み比は、特に限定されるものではな 電解質溶 液 1の濃度や反応条件等を考慮して適宜設定することができる。 しかし、電解質溶液 1が少な過ぎると反応が進み難くなるため、臨界 点以下の物質 2に対して少なくとも 0. 01 wt%以上の電解質溶液 1を 含むことが好ましい。
更に、反応させる浴 6中には、上述したような超臨界状態とする物 質 2及び電解質溶液 1に加えて、界面活性剤を含むことができる。例 えば、超臨界状態とする物質として二酸化炭素を選択した場合、二酸 化炭素は無極性であるので電解質溶液 1とは非相溶であり、そのた め、超臨界状態に移行させたときに通常は相分離してしまう。そこで、 界面活性剤を加えることにより、系を乳濁させて均一とし、反応効率を 向上させるものである。
前記界面活性剤としては、従来知られた陰イオン性、非イオン性、陽 イオン性、及び両性イオン性界面活性剤の中から、少なくとも一種以上 を適宜選択して使用することができる。
前記陰イオン性界面活性剤としては、石鹼、アルファオレフインスルホ ン酸塩、アルキルベンゼンスルホン酸塩、アルキル硫酸エステル塩、ァ ルキルエーテル硫酸エステル塩、フヱ二ルェ一テル硫酸エステル塩、 メチルタウリン酸塩、スルホコハク酸塩、エーテルスルホン酸塩、硫酸 化油、リン酸エステル、パーフルォロォレフインスルホン酸塩、パーフ ルォロアルキルベンゼンスルホン酸塩、パーフルォロアルキル硫酸ェ ス亍ル塩、パ一フルォロアルキルエーテル硫酸エステル塩、パーフル オロフヱニルエーテル硫酸エステル塩、パーフルォロメチルタウリン酸 塩、スルホパ一フルォロコハク酸塩、パーフル才ロエーテルスルホン 酸塩等が挙げられるが、これらに限定されるものではない。
上記陰イオン性ァニオン界面活性剤の塩のカチオンとしては、ナト リウム、カリウム、カルシウム、亍トラェチルアンモニゥ厶、卜リエチルメ チルアンモニゥム、ジェチルジメチルアンモニゥ厶、テトラメチルアンモ ニゥ厶等が挙げられるが、これらに限定されるものではなく、電解可 能な陽イオンであれば用いることができる。
前記非イオン性界面活性剤としては、 C 1〜25アルキルフヱノール系、 C 1〜20アル力ノール、ポリアルキレングリコール系、アルキロ一ルァ ミド系、 C1〜22脂肪酸エステル系、 C1 ~ 22脂肪族ァミン、アルキ ルァミンエチレンォキシド付加体、ァリールアルキルフエノール、 C 1〜 25アルキルナフトール、 C 1〜25アルコキシ化リン酸(塩)、ソルビタ ンエステル、スチレン化フエノール、アルキルアミンエチレンォキシドノプ ロピレンォキシド付加体、アルキルアミンオキサイド、 C1〜25アルコキシ 化リン酸(塩)、パ一フルォロノ二ルフヱノール系、パーフル才ロ高級アル コール系、パ一フル才ロポリアルキレングリコール系、パ一フルォロアル キロ一ルアミド系、パーフル才ロ脂肪酸エステル系、パーフルォロアルキ ルァミンエチレンォキシド付加体、パ一フルォロアルキルアミンエチレン ォキシド パーフルォロプロピレン才キシド付加体、パーフルォロアルキ ルァミンオキサイド等を挙げることができるが、これらに限定されるもの はない。
前記陽イオン性界面活性剤としては、ラウリルトリメチルアンモニゥム 塩、ステアリルトリメチルアンモニゥム塩、ラウリルジメチルェチルアンモ ニゥム塩、ジメチルベンジルラウリルアンモニゥ厶塩、セチルジメチルべ ンジルアンモニゥム塩、ォクタデシルジメチルベンジルアンミニゥム塩、ト リメチルベンジルアンモニゥ厶塩、へキサデシルピリジニゥ厶塩、ラウリ ルピリジニゥム塩、ドデシルピコリニゥム塩、ステアリルァミンアセテート、 ラウリルアミンァセ亍一卜、ォクタデシルァミンアセテート、モノアルキルァ ンモニゥ厶クロライド、ジアルキルアンモニゥ厶クロライド、エチレンォキ シド付加型アンモニゥ厶クロライド、アルキルべンジルアンモニゥ厶クロラ イド、テ卜ラメチルアンモニゥ厶クロライド、トリメチルフエ二ルアンモニゥム クロライド、テトラプチルアンモニゥ厶クロライド、酢酸モノアルキルアンモ 二ゥム、イミダゾリニゥムベタイン系、ァラニン系、アルキルべタイン系、 モノパーフルォロアルキルアンモニゥ厶クロライド、ジパ一フルォロアルキ ルアンモニゥムクロライド、パ一フルォロエチレンォキシド付加型アンモニ ゥ厶クロライド、パ一フルォロアルキルべンジルアンモニゥ厶クロライド、 テトラパーフルォロメチルアンモニゥムクロライド、トリパーフルォロメチル フエ二ルアンモニゥムクロライド、亍トラパーフルォロブチルアンモニゥム クロライド、酢酸モノパーフルォロアルキルアンモニゥ厶、パーフルォロア ルキルべタイン系等を挙げることができる力 これらに限定されるものは ない。
前記両性イオン性界面活性剤としては、ベタイン、スルホベタイン、アミ ノカルボン酸等が挙げられ、また、エチレンオキサイド及び 又はプロピ レン才キシドとアルキルアミン又はジァミンとの縮合生成物の硫酸化又 はスルホン酸化付加物等を挙げることができる力 これらに限定される ものではない。前記界面活性剤の使用量は、特に限定されないが、電 解質溶液に対して、 0. 0001〜20wt%程度とすること力《好ましく、最も 好ましくは 0. 00 "!〜 1 0wt%である。
また、図 1 ( b)の状態での反応条件は、超臨界状態で反応させること を必須条件とする以外は適宜設定できる。例えば、超臨界状態とする 物質として二酸化炭素を選択した場合には、その臨界点である温度 30 4. 5K、かつ圧力 7. 387 MPa以上の条件で反応させることが必須とさ れる。
なお、二酸化炭素の場合の反応温度は、 304. 5 K以上である限リ特 に限定されなし、力、好ましくは 304. 5K- 573. 2K、最も好ましくは 30 4. 5K—473. 2Kの範囲である。
また、反応圧力は 7. 387 MPa以上である限り特に限定されないが、 好ましくは 7. 387 MPa〜40. 387 MPa、最も好ましくは 7. 4M Pa〜2 0. 387 MPaの範囲である。
また、反応時間は、析出させようとする皮膜の厚さ等により異なり、特 に限定されない。必要に応じて 0. 001秒〜数ケ月程度の時間が適宜 設定される。 次に、本発明の第 2の実施形態を図 2により説明する。
この実施形態では、反応前の図 2 (a)の状態において、反応浴槽 6中 に電解質溶液 1と臨界点以下の物質 2とを含むことは、第 1の実施形態 と同様であるが、系の圧力を上げる等して、臨界点以下の物質 2を超臨 界状態の物質 5に移行させたときに、図 2( b)に示すように相分離した状 態となる。
この状態では、超臨界状態の物質 5の密度が、電解質溶液 1のそれよ りも高いために、超臨界状態の物質 5が電解質溶液 1よりも下側に位置 するようになる。
そして、この図 2( b)の状態で電気化学的反応を行い、反応後、再び 臨界点以下の状態に移行させることにより、.超臨界状態の物質 5が急 激に気化または液化しつつ上側の層に移動するため、第 1の実施形態 と同様に系に流れが生じ、電極 4の表面が洗浄される。
なお、浴槽 6中の各成分の組成、反応条件等は、第 1の実施形態の 場合に準ずる。 次に、本発明を種々の具体例および比較例に基いて詳細に説明す る。し力、し、本発明はこれらに限定されるものではなぐ請求項に記載し た範囲内において、超臨界状態とする物質、電解質溶液、界面活性剤 等の組成、濃度、及び電流等の反応条件は適宜変更することができ る。
(具体例 1 )
陽極に純ニッケル板、陰極にハルセル試験用真鍮板を用い、電気メッ キを行った。電解質溶液としてはニッケルワット浴を用いた。その組成を 以下に示す。
「メツキ浴組成」
硫酸ニッケル 330gZI
塩化ニッケル 80gZl
ホウ酸 50gZI
光沢剤 0. 45gZI
pH 4. 3
また、界面活性剤として、ポリブチレンォキシド一ポリエチレンォキシド のブロックポリマー(PEO— PBO、分子量 = 860— b— 660gZmol ) を上記電解質溶液に対して、 1 . 5wt<½加えた。
そして、超臨界状態とする物質として二酸化炭素を用い、常圧におけ る電解質溶液と二酸化炭素の体積比を 1 Z2とし、温度 50°C ( 323 K)、圧力 1 5MPa、電流密度 2AZdmで 1 0分間反応を行った。
その結果、陰極表面に、つきまわり性良く均一なニッケル皮膜が形成 され、得られた皮膜の中心部析出厚さは 8. 0 u mであった。これを従 来の方法である比較例 1 (後述)と比較すると、析出速度、析出効率とも に格段の向上が見られた。
また、反応終了後、減圧することによリニ酸化炭素が気化し、電極が 洗浄された。従来の、 500m lの水で 2回のためすすぎ、流水で 3分間の 洗浄と、同程度の洗浄効果が得られた。
(比較例 1 )
前記具体 1と同様に、陽極に純ニッケル板、陰極にハルセル試験用真 鍮板を用いて電気メツキを行った。電解質溶液としてニッケルワット浴を 用いた。その組成は以下の通りである。
「メツキ浴組成」
硫酸ニッケル 330gZI
塩化ニッケル 80g/l
ホウ酸 50g/l
光沢剤 0. 45gZl
pH 4. 3
そして、温度 50°C、電流密度 2AZdmで 1 0分間反応を行った。
その結果、陰極表面に、つきまわり性良くニッケル皮膜が形成された。 得られた皮膜の中心部析出厚さは 5. 6 u mであった。
(具体例 2)
陽極に純銅板、陰極にハルセル試験用真鍮板を用い、電気メツキを行 つた。電解質溶液としてはシアン銅浴を用いた。その組成を以下に示 す。
「メツキ浴組成」
シアン化第一銅 30gZI
シアン化ナトリウム 45gZl
(遊離シアン化ナトリウム) 1 5gZl
炭酸ナトリウム 1 5gZl
pH 1 2. 5
また、界面活性剤として、ポリブチレンォキシドーポリエチレンォキシド のブロックポリマー(PE〇一PBO、分子量 = 860— b— 660gZmol) を、上記電解質溶液に対して、 1 . 5wto/0加えた。 そして、超臨界状態とする物質として二酸化炭素を用い、常圧における 電解質溶液と二酸化炭素の体積比を 1 2とし、温度 50°C(323K)、 圧力 1 5MPa、電流密度 5AZdmで 1 0分間反応を行った。
その結果、陰極表面に、つきまわり性良く均一な銅皮膜が形成され 、得られた皮膜の中心部析出厚さは 1 0. 8 u mであった。従来の方法で ある比較例 2(後述)と比較し、析出速度、析出効率ともに格段の向上 が見られた。
(比較例 2)
具体例 2と同様にして、陽極に純銅板、陰極にハルセル試験用真鍮 板を用い、電気メツキを行った。電解質溶液としてシアン銅浴を用いた。 その組成は以下の通りである。
「メツキ浴組成」
シアン化第一銅 30gZl
シアン化ナトリウム 45gZl
(遊離シアン化ナトリウム) 1 5gZl
炭酸ナトリウム 1 5g/l
H 1 2. 5
そして、温度 50°C、電流密度 5AZdmで 1 0分間反応を行った。
その結果、陰極表面に、つきまわり性良く銅皮膜が形成され、得られ た皮膜の中心部析出厚さは 8. 3 mであった。
(具体例 3)
陽極に亜鉛板、陰極にハルセル試験用真鍮板を用い、電気メツキを行 つた。電解質溶液としては亜鉛ジンケ一ト浴を用いた。その組成を以下 に示す。
「メツキ浴組成」
酸化亜鉛 40gZI
水酸化ナトリウム 1 80gZI pH 5. 1
また、界面活性剤として、ポリブチレンォキシドーポリエチレンォキシド のブロックポリマ一(PEO— PBO、分子量 = 860— b— 660gZmol) を、上記電解寳溶液に対して 1. 5wt%加えた。
そして、超臨界状態とする物質として二酸化炭素を用い、常圧におけ る電解質溶液と二酸化炭素の体積比を 1Z2とし、温度 50°C(323
K)、圧力 15MPa、電流密度 5AZdmで 10分間反応を行った。
その結果、陰極表面に、つきまわり性良く均一な亜鉛皮膜が形成され
、得られた皮膜の中心部析出厚さは 13. 1 μ mであった。従来の方法で ある比較例 3(後述)と比較し、析出速度、析出効率ともに格段の向上 が見られた。
(具体例 3)
前記具体例 3と同様にして、陽極に亜鉛板、陰極にハルセル試験用真 鍮板を用い、電気メツキを行った。電解質溶液として亜鉛ジンケート浴を 用いた。その組成は以下の通りである。
Γメツキ浴組成」
酸化亜鉛 40gZI
水酸化ナトリウム 180gZI
pH 5. 1
そして、温度 50° (、電流密度 5AZdmで 10分間反応を行った。 その結果、陰極表面に、つきまわり性良く亜鉛皮膜が形成され、得られ た皮膜の中心部析出厚さは 8. 9;α Γηであった。
(具体例 4)
陽極には銅板、陰極にはハルセル試験用真鍮板を用い、電錶を行つ た。電解質溶液には硫酸銅浴を用いた。その組成を以下に示す。 . 「硫酸銅浴」
硫酸銅 200sZI 硫酸 60gZl
塩酸 30mgZI
ρΉ 4. 5
また、界面活性剤として、ポリブチレン才キシドーポリエチレン才キシド のブロックポリマー(ΡΕΟ— ΡΒΟ、分子量 = 860— b— 660gZmol )を 上記電解質溶液に対して 1 . 5wt%加えた。 ·
そして、超臨界状態とする物質として二酸化炭素を用い、常圧におけ る電解質溶液と二酸化炭素の体積比を 1ノ 2とし、温度 50度(323 K)、圧力 1 5MPa、電流密度 20AZdmで 1 0分間反応を行った。
その結果、陰極表面に、つきまわり性良〈均一な銅電錶皮膜が形成さ れ、得られた皮膜の中心部析出厚さは 40 ju mであった。
(具体例 5)
陽極にはアルミニウム板、陰極にはハルセル試験用鉛板を用い、陽 極酸化を行った。,電解質溶液には硫酸浴を用いた。その組成を以下に 示す。
「硫酸浴」
硫酸銅 200gZl
また、界面活性剤として、ポリブチレン才キシドーポリエチレンォキシド のブロックポリマー(PEO— PBO、分子量 = 860— b— 660gZmol )を 上記電解質溶液に対して 1 . 5wt%加えた。
そして、超臨界状態とする物質として二酸化炭素を用い、常圧におけ る電解質溶液と二酸化炭素の体積比を 1ノ 2とし、温度 1 5度(288 K)、圧力 1 5MPa、電流密度 2AZdmで 30分間反応を行った。
その結果、陽極表面に、均一な酸化皮膜が形成された。
(具体例 6)
陽極にはステンレス板、陰極には炭素板を用い、電解研磨を行った。 電解質溶液には硫酸浴を用いた。その組成を以下に示す。 「硫酸浴」
硫酸 300gZI
リン酸 600gZI
クロム酸 50gZl
また、界面活性剤として、ポリブチレンォキシドーポリエチレンォキシド のブロックポリマー(PEO— PB〇、分子量 = 860— b— 660gZmol)を 上記電解質溶液に対して 1. 5wt%加えた。
そして、超臨界状態とする物質として二酸化炭素を用い、常圧における 電解質溶液と二酸化炭素の体積比を 1/2とし、温度 60度(333K)、 圧力 15MPa、電流密度 500A dmで 10分間反応を行った。
その結果、陽極表面において平滑化され光沢のある研磨面が形成さ れた。
(具体例 7)
陽極には銅板、陰極には板厚 4mmのクロム板を用い、電解加工を行 つた。電解質溶液には塩化ナトリウム水溶液を用いた。その組成を以下 に示す。
「液組成」
塩化ナ卜リウ厶 200g/l
また、界面活性剤として、ポリブチレンォキシドーポリエチレン才キシド のブロックポリマー(PEO— PBO、分子量 = 860— b— 660gZmol) を上記電解質溶液に対して 1. 5wt%加えた。
そして、超臨界状態とする物質として二酸化炭素を用い、常圧におけ る電解質溶液と二酸化炭素の体積比を 1Z2とし、温度 50度(323 K)、圧力 15MPa、電流密度 100A dmで 20分間反応を行った。 その結果、陰極表面は十分にエッチングされ、中心部の厚さが 550u m減少した。
(具体例 8) 陽極には S US304板、陰極には鉄板を用い、電気泳動塗装を行つ た。電解質溶液には日本ペイント製のパワートップ(商標) U— 30系(pH 6. 5)を用いた。
また、界面活性剤として、ポリブチレンォキシドーポリエチレンォキシド のブロックポリマ一(PEO— PBO、分子量 = 860— b— 660gZmol )を 上記電解質溶液に対して 1 . 5wt%加えた。
そして、超臨界状態とする物質として二酸化炭素を用い、常圧におけ る電解質溶液と二酸化炭素の体積比を 1 2とし、温度 50度(323 K)、圧力 1 5MPa、電流密度 20AZdmで 1 5秒間反応を行った。
その結果、陰極表面はっきまわり良く均一に塗装された。得られた皮 膜の中心部析出厚さは 22 Ai mであった。
(具体例 9)
陽極には純銅板、陰極にはハルセル試験用真鍮板を用い、電解精鍊 を行った。電解質溶液には硫酸銅浴を用いた。その組成を以下に示 す。
「硫酸銅浴」
硫酸銅 200gZl
硫酸 60gZI
塩酸 30mgZI
pH 4. 5
また、界面活性剤として、ポリブチレン才キシドーポリエチレンォキシド のブロックポリマー(PEO— PB〇、分子量 = 860— b— 660gZmol )を 上記電解質溶液に対して 1 . 5wt%加えた。
そして、超臨界状態とする物質として二酸化炭素を用い、常圧におけ る電解質溶液と二酸化炭素の体積比を 1 2とし、温度 50度(323 K)、圧力 1 5M Pa、電流密度 20AZdmで 1 0分間反応を行った。
その結果、陰極表面に均一で純度の高い純銅が析出した。得られた 純銅の中心部析出厚さは 40だ であった。
(具体例 10)
素材は鉄鋼を用い、パーカライジング法化成処理を行った。液組成を 以下に示す。
「液組成」
リン酸 25gZI
二酸化マンガン 1. 5gZI
また、界面活性剤として、ポリブチレンォキシドーポリエチレンォキシド のブロックポリマー(PEO— PB〇、分子量 = 860— b— eeOgZmol)を 上記電解質溶液に対して 1. 5wto/0加えた。
そして、超臨界状態とする物質として二酸化炭素を用い、常圧における 電解質溶液と二酸化炭素の体積比を 1 2とし、温度 100度(378K)、 圧力 15MPaで 60分間反応を行った。
その結果、素材表面に、均一なリン酸鉄皮膜が形成された。
(具体例" M)
素材は亜鉛メツキをされた鉄を用い、化成処理の一つであるクロメート 処理法を行った。液組成を以下に示す。
「液組成」
重クロム酸ナトリウム 10g l
硫酸 0. 5ml/-|
硝酸 3ml/1
酢酸 1. 5ml/l
また、界面活性剤として、ポリブチレンォキシドーポリエチレンォ午シド のブロックポリマー(PEO— PBO、分子量 = 86Q— b— eeOgZmol)を 上記電解質溶液に対して 1. 5wt%加えた。
そして、超臨界状態とする物質として二酸化炭素を用い、常圧における 電解質溶液と二酸化炭素の体積比を 1ノ 2とし、温度 32度(305K)、 圧力 1 5MPaで 1 5秒間反応を行った。
その結果、素材表面に、均一なクロメート皮膜が形成された。
(具体例 1 2)
素地にはハルセル試験用真鍮板を用い、無電解メツキを行った。メッ キ浴の組成を以下に示す。
「メツキ浴組成」
硫酸ニッケル 21 gZl
次亜リン酸ナトリウム 60gZl
乳酸 25gZl
プロピオン酸 3gZl
安定剤(鉛) 3mgZI
pH 4. 5
また、界面活性剤として、ポリブチレンォキシドーポリエチレンォキシド のブロックポリマ一(PEO— PBO、分子量 = 860— b— 660gZmol)を 上記電解質溶液に対して 1 . 5wt%加えた。
そして、超臨界状態とする物質として二酸化炭素を用い、常圧における 電解質溶液と二酸化炭素の体積比を 1 2とし、温度 90度(363K)、 圧力 1 5MPaで 1 0分間.反応を行った。
その結果、素地表面に、つきまわり性良く均一なニッケル一リン皮膜が 形成され、得られた皮膜の中心部析出厚さは 4 mであった。 第 3図乃至第 1 0図は、本発明を電気メツキ(ニッケルメツキ)に適用し た第 3の実施形態を示している。
この実施形態において、 6は電気化学的反応浴槽であるステンレス鋼 製のメツキ槽で、その内面を塩化ビニールや硬質ゴムでライニングして おり、その上側の開口部に蓋体(図示略)が気密かつ着脱可能に装着 されている。 前記メツキ槽 6の外部に外部電界である直流電源 7が設けられ、その 正極側に導通する電極物質である陽極 8と、負極側に導通する、電極 物質でかつ被処理物である陰極 9とが、メツキ槽 6に収容可能にされて いる。
この実施形態では陽極 8に純ニッケル板、陰極 9にハルセル試験用真 鍮板が使用されている。図中、 10は直流電源 7の給電回路に挿入され たスィッチで、電気化学的反応時、つまり電気メツキ時 (このみ ONされ、 陽極 8および陰極 9に通電可能にしている。 11はメツキ槽 6底部に設け たスターラ等の攪拌子で、メツキ槽 6に導入された超臨界物質である後 述の二酸化炭素と、界面活性剤を含む電解質溶液若しくは酸溶液とを 攪拌可能にしている。
前記メツキ槽 6の外部に、超臨界物質である二酸化炭素 12を高圧に 加圧して収容したガス容器 13と、互いに異種の電解質溶液 14, 15を 収容した電解質溶液槽 16, 17と、 PH7およびそれ以下の酸溶液 18を 収容した酸溶液槽 19とが配置されている。
また、前記メツキ槽 6の外部に、使用後の二酸化炭素 20を収容するガ ス溜槽 21と、使用後の界面活性剤を含む酸溶液 22、若しくは使用後 の界面活性剤を含む電解質溶液 23, 24を収容する、複数の貯留槽で ある液溜槽 25~27とが配置されている。
これらの液溜槽 25~27には、前記各溶液槽 16, 17, 19に連通する リターンパイプ 54〜56が接続され、使用後の各溶液 22〜24を界面活 性剤と分離し、または分離せずに若干高濃度に調製して再生後、これを 各溶液槽 14, 15, 18へ還流させている。
前記ガス容器 13は導管 23を介してメツキ槽 6の上部に連通し、該管 2 8(こ圧縮ポンプ 29とバルブ 30が介揷されている。前記圧縮ポンプ 29 は、二酸化炭素 7を所定圧、実施形態では二酸化炭素 12をその臨界 圧 7. 38MPa以上の 1 0. OMPaに加圧可能にしている。
この場合、二酸化炭素 1 2を超臨界に限らず、亜臨界状態に加圧して 以降の処理を実行することも可能である。
前記バルブ 25は、メツキ作業の各処理工程、つまり脱脂処理、酸化 皮膜除去、いわゆる酸洗い処理、メツキ処理、乾燥の各処理前と、前記 各工程の間に実行する陰極 9の洗浄工程時に一定時間開弁し、超臨 界状態の二酸化炭素 1 2をメツキ槽 6に導入可能にしている。
前記導管 28の下流側にヒータ等の加熱手段 31が配置され、前記二 酸化炭素 1 2をその臨界温度 31 . 1 °C以上に加熱可能にしている。 前記各槽 1 6〜 1 8は導管 32〜34を介してメツキ槽 6の下部に連通 し、該管 32〜34にノヽ レブ 35 ~ 37と、共用の送液ポンプ 38が介挿され ている。このうち、前記バルブ 35, 36は、メツキ処理前に一定時間開弁 し、所定の界面活性剤を含む電解質溶液 1 4, 1 5を、送液ポンプ 38を 介してメツキ槽 6に導入可能にしている。
前記バルブ 37は酸洗い前に一定時間開弁し、所定の界面活性剤を 含む酸溶液 1 8を、送液ポンプ 38を介してメツキ槽 6に導入可能にして いる。
図中、 39〜41は前記電解質溶液 1 4, 1 5および酸溶液 1 8に添加す る界面活性剤で、前記溶液 1 4, 1 5, 1 8の供給時に適宜ポンプ (図示 略)を介して導入可能にしている。
前記ガス溜槽 20は導管 42を介してメツキ槽 6の上部に連通し、該管 4 2にバルブ 43が介挿されている。前記バルブ 43は脱脂処理、酸洗い、 メツキ処理、乾燥の各処理前、およびそれらの間に行なう被処理物 9の 洗浄前に一定時間開弁し、使用後の二酸化炭素 20をガス溜槽 21に 導入可能にしている。
図中、 44は前記ガス溜槽 20に一端を接続したリターンパイプで、他端 を前記圧縮ポンプ 29に接続し、該パイプ 44に水および油脂分を吸収可 能なカラム 45を挿入している。
そして、前記ガス溜槽 20に所定量の二酸化炭素 20が貯留された際、 該二酸化炭素 20をカラム 45へ導いて初期状態に再生し、これを前記 圧縮機 29へ還流可能にしている。
前記液溜槽 25〜27は導管 46〜48を介してメツキ槽 6の下部に連通 し、これら各管 46〜48にバルブ 49~ 5 1が介揷されている。このうち、 前記バルブ 49は陰極 9の酸洗い後、一定時間開弁し、使用後の酸洗 い溶液 22を界面活性剤 41と一緒に液溜槽 25へ導入可能にしている。 また、前記バルブ 50, 51は各メツキ処理後、一定時間開弁し、使用 後の電解質溶液 23, 24を界面活性剤 39, 40と一緒に液溜槽 26, 27 へ導入可能にしている。
この他、図中 52は、前記送液ポンプ 38および導管 32〜34に並列に 介挿した洗浄水槽で、各溶液 1 4, 1 5, 1 8をメツキ槽 6に送液後、前記 ポンプ 38内を洗浄可能にしている。
53はアルコール等の有機溶媒からなるェン卜レーナで、ガス容器 1 3と 圧縮機 29との間の導管 28に選択的に導入し、しっこい油脂分を脱脂 可能にしている。
このように構成した電気メツキ等の電気化学的反応装置は、メツキ前 処理、つまり脱脂、酸洗い、洗浄の各処理、メツキ処理、メツキ後処理、 つまり被処理物 9の回収、乾燥の多工程を単一のメツキ槽 6で行ってい るから、各処理毎に専用の浴槽を要する従来のメツキ処理法および設 備に比べて、構成が簡単で設置スペースがコンパクトになり、設備費の 低減を図れる。
また、本発明装置は、前記脱脂、酸洗い、洗浄、メツキ処理乾燥の各 作業から排出する種々の排出物、つまリニ酸化炭素や界面活性剤を含 む酸洗い溶液や電解質溶液をガス溜槽 21や複数の液溜槽 25〜27に 排出し、外部への排出を回避するとともに、これを合理的に処理してい るから、従来のような高価かつ大形の排水処理設備を要しない。
しかも、前記各処理は非常に良好な拡散性を有する超臨界二酸化炭 素を利用して行なっているから、メツキ液に被処理物を浸漬する従来の メツキ法に比べて、酸溶液や電解質溶液の使用量が非常に少量で足 リ、したがってそれらの使用量の節減と排出処理設備の小形軽量化を 図れる。
更に、前記各処理を超臨界二酸化炭素を利用して行ない、溶液や水 の使用を可及的に抑制したから、前記排水処理設備の省略化を図れる とともに、被処理物の洗浄や回収、乾燥、電解質溶液の回収を容易か つ速やかに行える。
また、本発明装置は超臨界物質として、比較的低温かつ低圧の臨界 点を持つ二酸化炭素を使用しているから、超臨界状態を比較的小さな , エネルギーで容易かつ速やかに得られ、その使用コストの低減を図れる とともに、メツキ槽 1の耐圧強度の緩和を図れ、これを安価に製作,でき る。
このような電気化学的反応装置を使用して電気メツキを行なう場合 は、電極 8, 9の通電停止状況の下で、先ずメツキ槽 6の負極側に、例え ば表面を研磨処理し終えたメツキ対象の被処理物 9を取り付け、蓋(図 示略)を閉めてメツキ槽 6を密閉する。
次に圧縮ポンヴ 29を駆動し、加熱手段 31を作動してガス容器 1 3を開 け、内部の二酸化炭素 1 2を圧縮ポンプ 29へ導き、これを臨界圧以上 の高圧に加圧し、更に加熱手段 31で臨界温度以上に加熱して、超臨 界二酸化炭素を生成し、これをバルブ 30の開弁を介してしてメツキ槽 6 へ導入する。 前記超臨界二酸化炭素はメツキ槽 6に高速に拡散し、該槽 6内の二 酸化炭素も超臨界状態になって、前記被処理物 9に接触し、該被処理 物 9および陽極 8に付着している油脂分や水分、異物等を高速かつ効 率良く洗浄する。
その際、撹拌子 1 1を作動して超臨界二酸化炭素を撹拌すれば、前記 拡散が一様化され洗浄能率が向上する。
しかも、従来のェマルジヨン洗浄のような水、溶液の使用を廃している から、その分被処理物 9の乾燥が促される。
このように本発明は超臨界状態の下で被処理物 9の脱脂洗浄を行な つているから、被処理物を脱脂液に浸漬する従来の方法に比べて、有 害な脱脂剤の使用をなくし、作業環境を改善して、これを安全で迅速か つ容易に行えるとともに、メツキ槽 6で脱脂洗浄を行なっているから、従 来のような専用の脱脂槽を要せず、その分設備費の低減を図れる。 そして、所定時間洗浄後、バルブ 43を開弁し、代わりにバルブ 30を閉 じて圧縮ポンプ 29の駆動を停止する。
このようにすると、前記二酸化炭素が減圧されて臨界点以下の状態に 移行し、急激に気化または液化してメツキ槽 6内を上方へ移動し、導管 42に導かれてガス溜槽 21へ移動する。この状況は図 4のようである。 したがって、前記二酸化炭素に捕集された油脂分や水分、異物等が ガス溜槽 21へ移動し、かつ前記二酸化炭素の移動時に系に流れが発 生して、陽極 8および被処理物 9を洗浄し、前述の洗浄と相俟って洗浄 精度を高める。こうして使用後の二酸化炭素 20をガス溜槽 21へ排出 後、バルブ 43を閉じる。
次に前記洗浄後、被処理物 9を酸洗いする。この酸洗いに際しては、 前記通電停止状態とメツキ槽 6の気密状態の下でバルブ 37を開弁し、 酸溶液槽 1 9内の酸溶液 1 8を送液ポンプ 38へ送り出し、同時に前記酸 溶液 1 8に所定の界面活性剤 41を加えて、これらをメツキ槽 6内へ送り 込む。
前記酸溶液 1 8と界面活性剤 41は、第 5図(a)のようにメツキ槽 6内で 二層を形成する。この状況の下で圧縮ポンプ 29を駆動し、加熱手段 3 1 を作動してガス容器 1 3を開弁し、内部の二酸化炭素を圧縮ポンプ 29 へ導き、これを臨界圧以上の高圧に加圧し、更に前記二酸化炭素を加 熱手段 3 1で臨界温度以上に加熱して、超臨界二酸化炭素を生成し、こ れをバルブ 30を開弁してメツキ槽 6へ導入する。
こうして、超臨界二酸化炭素がメツキ槽 6へ導かれると、これがメツキ 槽 6に高速に拡散して、前記酸溶液 1 8と界面活性剤 41に急速に混合 して乳濁させ、その微粒子が被処理物 9の表面に接触し、該被処理物 9 表面の鲭を落とし酸化皮膜を除去して、表面を活性化する。
この状況は第 5図(b)のようで、その際撹拌子 1 1を作動し、前記乳濁 物質を撹袢すれば、前記拡散が均一化され、酸化皮膜が均一かつ効 率良く除去されて、酸洗い能率が向上する。
そして、所定時間酸洗い後、バルブ 49を開弁すると、臨界二酸化炭 素が減圧されて臨界点以下の状態に移行し、メツキ槽 6内に使用後の 酸溶液 1 8と界面活性剤 41との二層状態が回復される。この状況は第 5図(c)のようである。
その間、バルブ 30から高圧の二酸化炭素がメツキ槽 6内に導入され、 その圧力によって使用後の酸溶液 1 8と界面活性剤 41とが押し出され、 これが導管 46に導かれて液溜槽 25へ移動して収容される。この状況 は第 4図のようである。
このように本発明は超臨界状態の下で、被処理物 9の酸化皮膜を除 去しているから、被処理物を酸溶液に浸漬する従来の酸洗い法に比べ て、酸溶液の使用量を低減し、これを迅速かつ容易に行えるとともに、メ ツキ槽 6で酸洗いを行なっているから、従来のような専用の酸洗い槽を 要せず、その分設備費の低減を図れる。
こうして、酸溶液 22を排出し終えたところで、前記バルブ 49を閉弁し、 代わりにバルブ 53を開弁して、メツキ槽 6内の使用後の二酸化炭素を 前記導入下の二酸化炭素によって押し出し、これを導管 42に導いてガ ス溜槽 20へ移動し、収容する。
その際、前記二酸化炭素の移動時に系に流れが発生して、陽極 8お よび被処理物 9を洗浄する。この状況は第 6図のようである。
この場合、酸溶液 1 7と使用後の二酸化炭素の排出順序を前述と反 対にしても良いが、前述のようにすれば両者を能率良く精密に排出でき る。
そして、使用後の二酸化炭素を排出後、バルブ 43を閉じ、所定時間 高圧の二酸化炭素 1 2をメツキ槽 6内に導入する。
このようにすると、メツキ槽 6内が加圧かつ加温され、二酸化炭素の臨 界状態が形成されて、この超臨界二酸化炭素が被処理物 9に接触し、 該被処理物 9および陽極 8に付着している水分を高速かつ効率良く洗 浄し乾燥する。
その際、撹袢子 1 "Iを作動して超臨界二酸化炭素を撹拌すれば、前記 拡散が増進され洗浄能率が向上する。
こうして被処理物 9を洗浄し乾燥後、圧縮ポンプ 29を停止し、バルブ 3 0を閉じて、二酸化炭素の導入を停止し、代わりにバルブ 43を開弁し、 メツキ槽 6内の使用後の二酸化炭素を導管 42に導き、ガス溜槽 20へ 移動して収容する。
その際、前記二酸化炭素の移動時に系に流れが発生して、陽極 8お よび被処理物 9を洗浄する。この状況は第 6図のようである。
したがって、メツキ槽 6内に前記種々の前処理を終え、乾燥された被.処 理物 9が置かれている。
このような状況の下でバルブ 35または 36、この例ではバルブ 35を開 弁し、電解質溶液槽 1 6内の電解質溶液 1 4を送液ポンプ 38へ送り出 し、同時に前記溶液 1 4に所定の界面活性剤 39を加えて、これらをメッ キ槽 6内へ送り込む。
前記電解質溶液 1 4と界面活性剤 39は、第 7図(a)のようにメツキ槽 6 内で二層を形成する。この状況の下で圧縮ポンプ 29を駆動し、加熱手 段 31を作動してガス容器 1 3を開弁し、内部の二酸化炭素 1 2を圧縮ポ ンプ 29へ導き、これを臨界圧以上の高圧に加圧し、更に前記二酸化炭 素を加熱手段 31で臨界温度以上に加熱して、超臨界二酸化炭素を生 成し、これをバルブ 30の開弁を介してしてメツキ槽 6へ導入する。
こうして、超臨界二酸化炭素がメツキ槽 6へ導かれると、これがメツキ 槽 6に高速に拡散し、前記電解質溶液 1 4と界面活性剤 39に急速に混 合して乳濁化し、電解質溶液 1 4の微粒子がメツキ槽 6内に高密度に拡 散し、被処理物 9の表面に接触する。
この状況の下でスィッチ 1 0を閉じ、陽極 8および陰極 9に通電すると、 陽極片である純ニッケルが電解して乳濁化した電解質溶液 1 4に析出 し、これが被処理物 9の表面に付着する。
その際、撹拌子 1 1を作動し、前記乳濁物質を撹拌して前記電解ニッ ケルイオンを均一に分布させ、被処理物 9の表面に緻密に付着させる。 この状況は第 7図(b)のようである。
しかも、前記電解ニッケルイオンの電解、析出および付着を超臨界状 態で行なっているから、電解ニッケルイオンがメツキ槽 6内を速やかに拡 散し、かつ高密度で均一に分布して、被処理物 9の表面および裏面に 付着する。
したがって、電解質溶液中で陽極物質を電解し析出、付着する従来の メツキ法に比べて、いわゆるメツキのつき廻りが非常に良ぐ被処理物 9 の表面および裏面に均一かつ緻密なメツキ状態を得られ、良好な仕上 カ《リ面を得られる。
このため、従来のメツキ法のように、被処理物 9の表面と裏面のメツキ を分けて行なう面倒がなぐその分生産性を向上でき、しかも被処理物 9 が複雑な形状の場合でも、補助極を要することなく容易に対応できる。 前記メツキ工程終了後、スィッチ 1 0を O FFし、撹袢子 1 1を停止してバ ルブ 50を開弁すると、前記二酸化炭素が減圧されて臨界点以下の状 態に移行し、急激に気化または液化するとともに、電解質溶液 1 5と界 面活性剤 39とが二層状態を回復する。この状況は第 7図(c)のようで ある。
この後、バルブ 50を開弁し、使用後の電解質溶液 23を界面活性剤 3 9と一緒にメツキ槽 6カヽら押し出し、これを導管 47力ゝら液留槽 26へ導しゝ て収容する
そして、電解質溶液 23を排出後、バルブ 50を閉じ、代わりにバルブ 4 3を開いて使用後の二酸化炭素をメツキ槽 6から押し出し、これを導管 4 2からガス溜槽 21へ導いて収容する。
その際、前記二酸化炭素の移動時に系に流れが発生して、陽極 8お よび被処理物 9を洗浄する。
使用後の二酸化炭素を排出後、バルブ 43を閉じ、かつその間バルブ 30を開弁して、高圧の二酸化炭素 1 2をメツキ槽 6に導入する。
このようにすると、メツキ槽 6内が加圧かつ加温され、二酸化炭素の超 臨界状態が形成されて、この超臨界二酸化炭素が被処理物 9に接触 し、該被処理物 9および陽極 8に付着している水分を高速かつ効率良く 洗浄し乾燥する。
その際、撹拌子 1 1を作動して超臨界二酸化炭素を撹拌すれば、前記 拡散が増進され洗浄能率が向上する。
こうして被処理物 9を洗浄し乾燥後、圧縮ポンプ 29を停止しバルブ 30 を閉じて、二酸化炭素の導入を停止し、メツキ槽 6の蓋 (図示略)を開け て、メツキ処理後の被処理物 9を取り出せば、一連のメツキ作業が終了 する。
なお、使用後の二酸化炭素がガス溜槽 21に所定量貯留されると、そ の外部のバルブを開弁し、前記使用後の二酸化炭素をリターンパイプ 4 4を介してカラム 45へ導き、該カラム 45で前記二酸化炭素中の水およ び油脂分を吸収し、初期状態に再生して適時、圧縮ポンプ 29へ還流 し、再利用する。
したがって、使用後の二酸化炭素を大気中へ放出する無駄を解消し、 また前記放出による作業環境の悪化を未然に防止し得る。
また、使用後の酸溶液 22および電解質溶液 23, 24が液溜槽 25~ 2 7に所定量貯留されると、これらを混入した界面活性剤と分離し、または 分離せずに若干高濃度に調製して再生後、各溶液槽 1 6, 1 7, 1 9へ還 流する。
したがって、従来のように被処理物 9を回収後、メツキ液等の煩雑な汲 み戻しや濃縮調整の面倒がない。
なお、被処理物 9に複数のメツキ層を形成する、いわゆる重ねメツキを 行なう場合は、一層目のメツキ終了後、被処理物 9をメツキ槽 6から取り 出すことな 前述の前処理を実行してメツキ処理すれば良い。
したがって、従来の重ねメツキのように、メツキ終了後、被処理物 9をメ ツキ槽からいちいち取り出し、これを各槽へ移動して前処理を行なう面 倒がなぐ生産性が向上する。
第 1 0図は本発明の第 4の実施形態を示し、前述の第 3の実施形態と 対応する構成部分には同一の符号を用いている。 なお、第 1 0図.は実施形態の要部のみを図示し、各反応浴槽 6, 6aに 対する超臨界または亜臨界二酸化炭素の供給と排出、並びに貯留部 分の構成、および各種溶液の供給と排出、並びに貯留部分の構成は図 示を省略しており、当該部は第 3図と実質的に同一である。
この実施形態は、実質的に同一な反応浴槽 6, 6aを複数、実施形態 では 2っ並設し、これらを導管 57, 58で連通し、該導管 57, 58にバル ブ 59, 60を介揷している。
これらの反応浴槽 6, 6aは、相前後するメツキ処理工程を順次実行 し、一方の反応浴槽 6で所定の処理工程を実行し、当該処理後、該反 応浴槽 6で使用した電解質溶液 1 4や界面活性剤 39等を反応浴槽 6a へ移動し、該反応浴槽 6aで前記反応浴槽 6の処理を実行し、以降、浴 槽 6, 6aの間で一工程分ずらせて、順次一連のメツキ処理工程を実行 可能にしている。
これを、例えば第 7図に示す電気メツキ処理工程で説明すると、第 1 0 図(a)の第 1ステップでは、一方の反応浴槽 6は電気メツキに備え、浴槽 6内に電解質溶液 1 4と界面活性剤 39とを導入し、他方の反応浴槽 6a では、該浴槽 6a内に導入した電解質溶液 1 4と界面活性剤 39とを乳濁 し、超臨界状態の下でスィッチ 1 0を O Nし、ニッケルイオンを被処理物 9 の表面に析出および付着させている。
次に第 1 0図(b)の第 2ステップでは、一方の反応浴槽 6では電解質溶 液 1 4と界面活性剤 39とを乳濁し、超臨界状態の下でスィッチ 1 0を O N し、ニッケルイオンを被処理物 9の表面に析出および付着し、前記反応 浴槽 6aの処理を一工程分遅れて実行させている。
一方、他方の反応浴槽 6aでは電気メツキ終了後、臨界点以下の状 態へ移行し、超臨界物質である二酸化炭素を急激に気化または液化さ せ、陽極 8および被処理物 9を洗浄している。 このように、この実施形態では複数の反応浴槽 6, 6aで相前後するメ ツキ処理を順次行なわせ、かつその際、先行の浴槽で使用した電解質 溶液 1 3や酸洗い溶液、界面活性剤等を後行の浴槽へ移動し、それら の有効利用を図るとともに、一連のメツキ処理を合理的かつ迅速に 行なうようにしている。
なお、前述の実施形態のように電解した電極物質を他方の電極物質 に析出付着する方法は、原理的に同様な電錶および陽極酸化皮膜形 成法に適用することができ、前述と同様な効果を得られる。
また、反応浴槽に電解物質と電極物質を収容し、一方の電極物質を 電解し、これを他方の電極物質側で採集する電解法にも、本発明を適 用することが可能であり、そのようにすることで、例えば金属の電解精 製、電解抽出、電解研磨等に適用することができ、前述と同様な効果を 得られる。
また、電解物質を収容可能な反応浴槽に被処理物を収容し、電解質 溶液に含まれる電解物質を前記被処理物に析出付着し、外部電界を 加えない無電解メツキや化成処理法にも本発明を適用することが可能 であり、そのようにすることで前述と同様な効果を得られる。 第 1 1図乃至第 20図は本発明の第 5の実施形態を示し、前記第 3 および第 4の実施形態と対応する構成部分に同一の符号を用いてい る。.
この実施形態は、本発明を電気メツキ(ニッケルメツキ)に適用してお リ、メツキ槽 6の外部に設置したガス容器 1 3に、加圧媒体ないしは加圧 物質である、例えば液化二酸化炭素 1 2等の加圧流体を約 6M Paに充 填している。
前記加圧媒体ないしは加圧物質、および電解溶液等の給排方法、お よびその再利用方法は、前述の第 3の実施形態と基本的に同一で、そ れらの構造および設備を使用可能である。 この場合、前記加圧物質ないし媒体は液体または気体の何れでも良 し、が、電解質溶液 1 4、 1 5を溶解する溶媒が水の場合は、無害かつ安 全で化学的に安定した二酸化炭素が好適である。しかし、本発明の加 圧液体は電解質溶液と不溶性の全ての液体を含ませることができる。 また、この他の加圧物質として窒素やアルゴン等の気体、電解質溶液 1 4、 1 5と混合しないスピンドル油、油脂類、へキサン、ベンゼン、トルェ ン等の石油類、クロ口ホルム等のハロゲン化炭化水素を用いることがで ぎる。
更に、前記溶媒がプロピレンカーボネート、ァセトニリル、ポリエチレン オキサイド等の有機電解質の場合は、これらの溶媒と反応しない気体、 相分離し、かつその相にイオンが移行しない種々の圧力物質等を用い ることができる。
前記加圧物質ないし加圧媒体は、複数種の液体若しくは気体を混合 使用することができ、例えば液化圧力が低圧な物質を採択することで、 メツキ槽 6の強度を緩和でき、これを安価に製作できる。
前記圧縮ポンプ 29は、二酸化炭素 1 2を所定圧、実施形態では大気 圧以上で超臨界圧以下の 1〜8 MPaに加圧可能にしている。
前記二酸化炭素 1 2は、加圧かつ液化状態でメツキ作業の各処理工 程、つまり脱脂処理、酸化皮膜除去、いわゆる酸洗い処理、メツキ処理、 メツキ処理後の乾燥の各処理前と、これら各工程の間に実行するメツキ 槽 6および陰極 9の洗浄工程時に、メツキ槽 6へ導入可能にしている。 前記導管 28の下流側に、ヒータ等の加熱手段 3 1が配置され、前記メ ツキ処理時に圧力液体二酸化炭素 1 2を、その臨界温度以下の 0~ 3 1 °Cに加熱可能にしている。
また、前記液化二酸化炭素 1 2と酸溶液 1 8、電解質溶液 1 4, 1 5との 各密度比を、 1 : 5乃至 5 : 1に設定し、界面活性剤による乳濁状態の均 一化を図るようにしている。 前記第 5の実施形態は、メツキ処理に関する多工程を単一のメツキ槽 6で行っているから、従来のメツキ処理法および設備に比べて、構成が 簡単で設置スペースがコンパクトになり、設備費の低減を図れる。
また、メツキ処理から排出する種々の排出物を複数の液溜槽 25〜27 へ排出し、外部への排出を回避するとともに、これを合理的に処理して 、従来のような高価かつ大形の排水処理設備を要しない。
しかも、前記各処理は拡散性を有する圧力液体二酸化炭素を利用し て行なっているから、メツキ液に被処理物を浸漬する従来のメツキ法に 比べて、酸溶液や電解質溶液の使用量を節減でき、排出処理設備の 小形軽量化を図れる。
更に、本発明装置は加圧液体物質として、無害で安全かつ化学的に 安定した液体二酸化炭素を低温低圧で使用しているから、超臨界状態 で電気メツキする場合に比べ、加圧手段や加熱手段の小能力化を図れ る。
し力、も、メツキ槽 6の加圧手段として、汎用の加圧ポンプ 29を使用し、 ピストンを内蔵した大掛かりな加圧装置を要しないから、設備の小形軽 量化と設備費の低減を図れるとともに、省エネルギーで稼働コストの低 減を図れる。
したがって、前記低圧分、超臨界状態のメツキ槽 6に比べ耐圧強度の 緩和を図れ、これを安価に製作できる。
このような電気化学的反応装置を使用して電気メツキを行なう場合は、 前述の第 3の実施形態と同様な前処理工程を採用し、それらの各工程 では液化二酸化炭素を導入して、前述と同様な作用効果を得られる力 それらについては重複を避けるため説明を省略し、特徴的な電気メツキ 時を以下に説明する。
すなわち、被処理物 9を前処理し乾燥後、ガス容器 1 3を開弁し、圧縮 ポンプ 29を駆動して、ガス容器 1 3内の液化二酸化炭素 1 2を適宜圧 ( 1〜8 MPa)に加圧し、これを加熱してメツキ槽 6へ導入する。
こうして、加圧された液化二酸化炭素がメツキ槽 6へ導かれると、これ が前記電解質溶液 1 4と界面活性剤 39に急速に混合して乳濁化し、そ の微粒子がメツキ槽 6内に高密度に拡散し、被処理物 9の表面に接触 する。
この状況の下でスィッチ 1 0を閉じ、陽極 8および陰極 9に通電すると、 陽極片である純ニッケルが電解して、乳濁化した電解質溶液 1 4に析出 し、これが被処理物 9の表面に付着する。
その際、撹拌子 1 1を作動し、前記乳濁物質を撹拌して、前記電解ニッ ケルイオンを均一に分布させ、被処理物 9の表面に緻密に付着させる。
この場合、前記電解ニッケルイオンの電解、析出および付着を、加圧 下のメツキ槽 6で行なっているから、電解ニッケルイオンがメツキ槽 6内を 速やかに拡散し、かつ均一に分布して、被処理物 9の表面および裏面 に付着する。
したがって、常圧の電解質溶液中で陽極物質を電解し析出、付着する 従来のメツキ法に比べて、いわゆるメツキのつき廻りが良ぐ被処理物 4 の表面および裏面に均一かつ緻密なニッケル皮膜を得られ、良好な仕 上がり面を得られる。
このため、従来のメツキ法のように、被処理物 9の表面と裏面のメツキ を分けて行なう面倒がな その分生産性を向上でき、しかも被処理物 4 が複雑な形状の場合でも、補助極を要することなく容易に行える。
一方、このようなメツキ処理時は、電解質溶液 1 8、つまり水の電気分 解によって、つまり水の電気分解によって水素ガスや酸素ガスが発生し、 その気泡が被処理物 9の表面に滞留し、若しくは前記攪拌により被処 理物 9表面を移動して、メツキ欠けゃメツキムラの原因になる惧れがあ る。
このような電解質溶液 1 8ないし水の電気分解時には、液体の小さい 体積からガス状態の大きな体積に変化するが、実施形態のように液化 二酸化炭素によってメツキ槽 6内を加圧する圧力下では、前記反応は 体積の小さな方向へ移行し、前記電気分解を抑制することとなる。 このため、水素ガスや酸素ガスの発生が抑制され、それらの気泡が被
4S 処理物 9の表面に滞留し、移動する事態を抑制し、これによるメツキ欠 けゃメツキムラを防止する。
また、前記ガスや酸素ガスは、前述のような圧力下では、電解質溶液 1 4に対する溶解度が高くなるから、それらが被処理物 9の表面に付着 し滞留する量が少なくなリ、前述と相俟ってメツキ欠け、メツキムラ防止を 増進する。
しかも、前述のような圧力下では、前記水素ガスや酸素ガスの気泡は 押し縮められ微細化または押し潰されるから、大気圧下で行なう従来の メツキ法に比べ、被処理物 9の表面に緻密かつ一様で薄膜のメツキ皮 膜を得られ、また被処理物 9の細部までメツキ液が進入し、スルーホー ルのメツキを容易に行なえる。
したがって、被メツキ物に対し、使用するメツキ金属ゃ電着物質を減量 しても、従来と同様なメツキを得られ、特に貴金属のメツギに有利にな る。
また、前述のように発生ガスが微細化されるから、界面活性剤が効率 良く働き、被処理物 9の表面に付着する発生ガスを速やかに剥離し、電 解質溶液 1 4に対する溶解を促し、前述と相俟ってメツキ欠けゃメツキ厶 ラを防止する。
一方、本発明は前述のように、メツキ時の水の電気分解を抑制するか ら、その分の電気エネルギー消費を節減し、これをメツキゃ電着に使用 できるから、電流効率が向上する。
また、メツキ槽 6の加圧下では、内部の液体が圧縮され、単位体積当 たりのイオン濃度が大きくなリ、それらの電気抵抗値が低下するから、ジ ユール熱の発生も少なくなリ、前述と相俟って電流効率の向上を増進す る。
そして、このようにメツキ槽 6内を加圧し、水の電気分解を抑制しても、 メツキの電気化学的反応に支障はなぐむしろ電流効率が向上し、また 薄厚で良好なメツキを得られる。
第 1 8図は前記第 5の実施形態の適用範囲を示し、メツキ槽 6内を超 臨界状態よりも低温低圧の液相下の乳濁状態で、電気メツキを行なつ ている。
したがって、超臨界状態より加圧手段や加熱手段の小能力化を図れ、 設備の小形軽量化と設備費の低減を図れ、省エネルギーで稼働コスト の低減を図れる。
また、電気メツキ前後は、前述のように液化二酸化炭素の給排によつ て、前処理工程や使用後の各種溶液の排出と、メツキ槽 6、被処理物 9、 電極 8の洗浄および乾燥を実現している。
前記第 5の実施形態による電気メツキの諸特性は第 1 9図および第 2 0図のようである。
このうち、第 1 9図は液化二酸化炭素を加圧して電気メツキした場合の メツキの析出量を、超臨界状態でのメツキの析出量と比較したもので、 超臨界状態でのメツキと遜色ないことを示している。し力、も、この実施形 態による電流効率は後述のように向上するから、メツキが効率良く析出 する。なお、同図では超臨界相 90%時の析出量を 1としている。
第 20図は液体二酸化炭素を加圧して電気メツキする際の、電解質溶 液に対する電流効率を、超臨界二酸化炭素による電流効率と比較した もので、超臨界状態に比べ全体的に劣るが、従来の電気メツキ法よりは 優れていることが確認された。
こうして、前記メツキ工程終了後、スィッチ 1 0を OFFし、撹拌子 1 1を停 止してバルブ 50を開弁すると、前記二酸化炭素が減圧され、前記乳濁 状態が消失して、電解質溶液 1 5と界面活性剤 39とが二層状態を回復 する。この状況は第 1 5図(c)のようである。
この後、バルブ 45を開弁し、使用後の電解質溶液 1 8を界面活性剤 3 9と一緒にメツキ槽 6カヽら押し出し、これを導管 47カヽら液溜槽 26へ導し、 て収容する。
そして、電解質溶液 23を排出後、バルブ 50を閉じ、代わりにバルブ 4 3を開いて使用後の液化二酸化炭素をメツキ槽 6から押し出し,これを 導管 42からガス溜槽 21へ導いて収容する。 その際、前記二酸化炭素の移動時に系に流れが発生して、陽極 8お よび被処理物 9を洗浄する。
こうして、使用後の二酸化炭素を排出後、バルブ 43を閉じ、液化二酸 化炭素 1 2をメツキ槽 6に導入する。
このようにすると、前記二酸化炭素が被処理物 9に接触し、該被処理 物 9および陽極 8に付着している水分を効率良く洗浄する。
その際、撹拌子 1 1を作動して液化二酸化炭素を撹拌すれば、前記洗 浄能率が向上する。
こうして被処理物 9を洗浄し乾燥後、圧縮ポンプ29を停止しバルブ 30 を閉じて、液化二酸化炭素の導入を停止し、メツキ槽 6の蓋 (図示略)を 開けて、メツキ処理後の被処理物 9を取り出せば、一連のメツキ作業 が終了する。 第 21図は本発明の第 6の他の実施形態を示し、前述の実施形態 、特に第 4の実施形態と対応する構成部分に同一の符号を用いてい る。
なお、第 21図は、この実施形態の要部のみを図示し、各反応浴槽 6, aに対する加圧した液体二酸化炭素の供給と排出、並びに貯留部分の 構成、および各種溶液の供給と排出、並びに貯留部分の構成は、図示 を省略している。
この実施形態は、実質的に同一な反応浴槽 6, 6aを複数、実施形態 では 2っ並設し、これらを導管 57, 58で連通し、該導管 57, 58にバル ブ 5 Θ, 60を介揷している。
これらの反応浴槽 6, 6aは、相前後するメツキ処理工程を順次実行 し、一方の反応浴槽 6で所定の処理工程を実行し、当該処理後、該反 応浴槽 6で使用した電解質溶液 1 4や界面活性剤 39等を反応浴槽 6a へ移動し、該反応浴槽 6aで前記反応浴槽 6の処理を実行し、以降、浴 槽 6, 6aの間で一工程分ずらせて、順次一連のメツキ処理工程を実行 可能にしている。
これを、例えば第 1 5図に示す電気メツキ処理工程で説明すると、第 2 1図 )の第 1ステップでは、一方の反応浴槽 6は電気メツキに備え、浴 槽 6内に電解質溶液 1 4と界面活性剤 39とを導入し、他方の反応浴槽 6aでは、該浴槽 6a内に導入した電解質溶液 1 4と界面活性剤 39とを 乳濁し、超臨界状態の下でスィッチ 1 0を O Nし、ニッケルイオンを被処理 物 9の表面に析出および付着させている。
次に第 21図(b)の第 2ステップでは、一方の反応浴槽 6では電解質溶 液 1 4と界面活性剤 39とを乳濁し、超臨界状態の下でスィッチ 1 0を O N し、ニッケルイオンを被処理物 9の表面に析出および付着し、前記反応 浴槽 6aの処理を一工程分遅れて実行させている。
—方、他方の反応浴槽 6aでは電気メツキ終了後、臨界点以下の状 態へ移行し、超臨界物質である二酸化炭素を急激に気化または液化さ せ、陽極 8および被処理物 9を洗浄している。
このように、この実施形態では複数の反応浴槽 6, 6aで相前後するメ ツキ処理を順次行なわせ、かつその際、先行の浴槽で使用した電解質 溶液 1 3や酸洗い溶液、界面活性剤等を後行の浴槽へ移動し、それら の有効利用を図るとともに、一連のメツキ処理を合理的かつ迅速に 行なうようにしている。
なお、前述の実施形態のように電解した電極物質を他方の電極物質 に析出付着する方法は、原理的に同様な電錶および陽極酸化皮膜形 成法に適用することができ、前述と同様な効果を得られる。
また、反応浴槽に電解物質と電極物質を収容し、一方の電極物質を 電解し、これを他方の電極物質側で採集する電解法にも、本発明を適 用することが可能であり、そのようにすることで、例えば金属の電解精製、 電解抽出、電解研磨等 (こ適用することができ、前述と同様な効果を得ら れる c 産業上の利用可能性
以上のように、本発明の電気メツキ等の電気化学的処理方法および その電気化学的反応装置は、反応させる反応浴槽中に電極を設置して 外部電界を加える、電気メツキ、電錶、陽極酸化皮膜の形成、電解研 磨、電解加工、電気泳動塗装、電解精鍊等の各方法および装置に適 用することができる。また、無電解メツキ、化成処理等の外部電界を加 えない場合にも、適用することができる。

Claims

請 求 の 範 囲
1 . 電解質溶液(1 )を収容した反応浴槽(6)の超臨界または亜 臨界状態の下で、電気化学的反応させるようにしたことを特 徴とする電気メツキ等の電気化学的処理方法。
2.前記反応浴槽(6)を界面活性剤(41 )を介して乳濁し、該乳 濁状態の下で前記電気化学的反応させる請求項 1記載の 電気メツキ等の電気化学的処理方法。
3.前記反応浴槽(6)に収容した電極(4)若しくは電解溶液(1 ) の電解前に、超臨界または亜臨界状態の物質(5)を前 記反応浴槽(6)へ導入し、前記電極(4)を洗浄し、若しくは 酸化皮膜を除去する請求項 1記載の電気メツキ等の電気化 学的処理方法。
4.前記電気化学的反応後、前記超臨界または亜臨界状態の 物質(5)を前記臨界点以下の状態へ移行させる請求項 1記 載の電気メツキ等の電気化学的処理方法。
5.前記電極(4)若しくは電解溶液(1 )の電解後に、前記超臨 界たは亜臨界状態の物質(5)を前記反応浴槽(6)へ導入 し、前記電極(4)を洗浄し、若しくは乾燥する請求項 1記載 の電気メツキ等の電気化学的処理方法。
6.前記反応浴槽(6)の外部に、該反応浴槽(6)に連通可能な 貯留槽(25)〜(27)を設け、該貯留槽(25) ~ ( 27 )に使用 後の前記超臨界または亜臨界物質(5)、電解溶液(1 )また は洗浄若しくは酸化皮膜除去物質(1 8)を貯留させる請求 項 1記載の電気メツキ等の電気化学的処理方法。
7.前記貯留槽(25)〜(27)に貯留した使用後の超臨界また 亜臨界物質(5 )を再生して反応浴槽(6)へ還流し、または前 記貯留槽(25)〜(27 )に貯留した使用後の電解溶液(1 )ま たは洗浄若しくは酸化皮膜除去物質(1 8)を再生して各 溶液槽(1 6), ( 1 7) , ( 1 9)へ還流する請求項 1記載の電気 メツキ等の電気化学的処理方法。
8.前記電極(4)の析出付着およびその前処理工程、または前 記電解溶液(1 )の電解およびその前処理工程を、単一の反 応浴槽(6)で処理する請求項 1記載の電気メツキ等の電気 化学的処理方法。
9. 前記超臨界または亜臨界状態とする物質(5)が、二酸化炭 素、 3フッ化メタン、ェタン、プロパン、ブタン、ベンゼン、メチル エーテル、クロ口ホルムの一つまたはそれ以上である請求項 1 記載の電気メツキ等の電気化学的処理方法。
1 0.前記電気化学的反応が、電気メツキまたは電錶、陽極酸化 皮膜の形成若しくは電解加工、電解研磨または電気泳動塗 装、電解精鍊若しくは化成処理、無電解メツキである請求項 1 または請求項 1記載の電気メツキ等の電気化学的処理方法。
1 1 . 電解溶液(1 )と電極(4)とを収容した反応浴槽(6)内で電 気化学的反応させる電気メツキ等の電気化学的処理方法に おいて、前記反応浴槽(6)を加圧して電気化学的反応させる ようにしたことを特徴とする電気メツキ等の電気化学的処理方 法。
1 2.前記反応浴槽(6)に加圧流体を導入し、前記反応浴槽(6) を大気圧以上かつ前記流体の超臨界圧以下に加圧する請求 項 1 1記載の電気メツキ等の電気化学的処理方法。
1 3.前記反応浴槽(6)を界面活性剤(41 )を して乳濁し、該乳 濁状態の下で前記電気化学的反応させる請求項 1 1記載の 電気メツキ等の電気化学的処理方法。
14.前記電極(4)若しくは電解溶液(1)の電解前に、前記加圧 流体を導入し、前記電極(4)を洗浄し、若しくは酸化皮膜を 除去する請求項 12記載の電気メツキ等の電気化学的処理 方法。
15.前記電極(4)若しくは電解溶液(1)の電解後に、前記前記 加圧流体を前記 ^応浴槽(6)へ導入し、前記電極(4)を洗 浄し、若しくは乾燥する請求項 12記載の電気メツキ等の電 気化学的処理方法。
16. 前記反応浴槽(6)の外部に、該反応浴槽(6)に連通可能な 貯留槽(25)〜(27)を設け、該貯留槽(25)〜(27)に使用 後の前記加圧流体、電解溶液(1)または洗浄若しくは酸化 皮膜除去物質(18)を貯留させる請求項 12記載の電気メッ キ等の電気化学的処理方法。
17. 前記貯留槽(25)〜(27)に貯留した使用後の前記加圧流 体を再生して反応浴槽(6)へ還流し、または前記貯留槽(2
5)〜(27)に貯留した使用後の電解溶液(1)、若しくは洗浄 または酸化皮膜除去物質(18)を再生して、各溶液槽(1
6) , (17), (19)へ還流する請求項 12記載の電気メツキ等 の電気化学的処理方法。.
18. 前記電極(4)の析出付着およびその前処理工程、または前 記電解溶液( 1 )の電解およびその前処理工程を、単一の反 応浴槽(6)で処理する請求項 11記載の電気メツキ等の電 気化学的処理方法。
9. 前記加圧流体が、二酸化炭素、油脂類、へキサン、トルェ ン、ベンゼン、クロ口ホルム、窒素、アルゴンの一つまたはそ れ以上である請求項 12記載の電気メツキ等の電気化学的 処理方法。
20.前記電気化学的反応が、電気メツキまたは電錶、陽極酸化 皮膜の形成若しくは電解加工、電解研磨または電気泳動塗 装、電解精鍊若しくは化成処理である請求項 1 1記載の電気 . メツキ等の電気化学的処理方法。
21 . 電解質溶液(1 )を収容可能な反応浴槽(6)を超臨界または 亜臨界状態に形成可能に設け、前記臨界状態の下で電気化 学的反応を可能にしたことを特徴とする電気メツキ等の電気化 学的反応装置。
22.前記反応浴槽(6)に収容した電極(4)若しくは電解溶液 ( 1 )の電解前に、超臨界または亜臨界状態状態の物質(5)を 前記反応浴槽(6)へ導入可能に設け、前記電極(4).を洗 浄、若しくは酸化皮膜を除去可能にした請求項 21記載の電 気メツキ等の電気化学的反応装置。
23.前記電気化学的反応後、超臨界または亜臨界状態の物質 ( 5)を前記臨界点以下の状態へ移行可能にした請求項 21 記載の電気メツキ等の電気化学的反応装置。
24.前記電極(4)若しくは電解溶液(1 )の電解後に、前記超臨 界たは亜臨界状態の物質(5)を前記反応浴槽(6)へ導入 可能に設け、前記電極(4)を洗浄、若しくは乾燥可能にした 請求項 21記載の電気メツキ等の電気化学的反応装置。
25. 前記反応浴槽(6)の外部に、該反応浴槽(6)に連通可能な 貯留槽(25)〜(27)を設け、該貯留槽(25 )〜(27 )に使用 後の前記超臨界または亜臨界物質(5)、電解溶液(1 )また
. は洗浄若しくは酸化皮膜除去物質(1 8)を貯留可能にした 請求項 21記載の電気メツキ等の電気化学的反応装置。
26.前記貯留槽(25)〜(27)に貯留した使用後の超臨界また 亜臨界物質(5)を再生して反応浴槽(6)へ還流可能にする とともに、前記貯留槽(25) ~(27)に貯留した使用後の電 解溶液(1)または洗浄若しくは酸化皮膜除去物質(1S)を再 生して各溶液槽(16), (17), (19)へ還流可能にした請求 項 21記載の電気メツキ等の電気化学的反応装置。
27.前記電極(4)の析出付着およびその前処理工程、また は前記電解溶液(1)の電解およびその前処理工程を、単一 の反記電解溶液(1)の電解およびその前処理工程を、単一 の反応浴槽(6)で処理可能にした請求項 21記載の電気メッ キ等の電気化学的反応装置。
28.前記電極(4)の析出付着およびその前後の処理工程、ま たは前記電解溶液(1)の電解およびその前後の処理工程 を実行可能な少なくとも二つの反応浴槽(6), (6a)を設け、 これらの反応浴槽(6), (6a)において、相前後する前記処 理工程を順次実行可能にした請求項 21記載の電気メツキ 等の電気化学的反応装置。
29. 前記反応浴槽(6), (6a)における所定の処理工程後、先 行処理工程側の反応浴槽(6)内の電解溶液(1)または洗 浄若しくは酸化皮膜除去物質(18)、界面活性剤(39), (4 0)を、後行処理工程側の反応浴槽(6a)へ移動可能にした 請求項 28記載の電気メツキ等の電気化学的反応装置。
30.前記電極(4)を電解し、または前記電解した電極(4)を他方 の電極(4)に析出付着後、前記反応浴槽(6)を使用して、他 方の電極(4)に複数層の電極物質を析出付着可能にした請 求項 21記載の電気メツキ等の電気化学的反応装置。
31. 電解溶液(1)と電極(4)とを収容可能な反応浴槽(6)を設 け、該反応浴槽(6)内で電気化学的反応を可能にした電気メ ツキ等の電気化学的処理装置において、前記反応浴槽(6)を 加圧可能に設け、該加圧状態の下で電気化学的反応を可能 にしたことを特徴とする電気メツキ等の電気化学的処理装置。
32.前記反応浴槽(6)へ加圧液体を導入可能に設け、前記反 応浴槽(6)を大気圧以上かつ前記加圧液体の超臨界圧以下 に加圧可能 した請求項 31記載の電気メツキ等の電気化学 的処理装置。
33.前記反応浴槽(6)の電気化学的反応前に、前記加圧液体 を反応浴槽(6)へ導入可能に設け、使用後の加圧液体を反 応浴槽(6)から排出可能にした請求項 31記載の電気メツキ 等の電気化学的処理装置。
34.前記反応浴槽(6)の電気化学的反応前に、前記加圧液体 を前記反応浴槽(6)へ導入可能に設け、前記電極(4)を洗 浄、若しくは酸化皮膜を除去可能にした請求項 31記載の電 気メツキ等の電気化学的処理装置。
35.前記反応浴槽(6)の電気化学的反応後、前記加圧液体を 前記反応浴槽(6)へ導入可能に設け、前記電極(4)を洗浄、 若しくは乾燥可能にした請求項 31記載の電気メツキ等の電 気化学的処理装置。
36. 前記反応浴槽(6)の外部に、該反応浴槽(6)に連通可能な 貯留槽(25)〜(27)を設け、該貯留槽(25)〜(27)に使用 後の加圧液体と、電解溶液(1)または洗浄若しくは酸化皮 膜除去物質(18)とを貯留可能にした請求項 31記載の電気 メツキ等の電気化学的処理装置。
37.前記貯留槽(25) ~(27)に貯留した使用後の前記加圧液 体を再生して反応浴槽(6)に還流するとともに、前記貯留槽
(25) ~(27)に貯留した使用後の電解溶液(1)または洗浄 若しくは酸化皮膜除去物質(18)を再生し、各溶液槽(16), (17), い 9)へ還流可能にした請求項 31記載の電気メツキ 等の電気化学的処理装置。
38.前記電気化学的反応およびその前後の処理工程を、単一 の反応浴槽(6)で処理可能にした請求項 31記載の電気メッ キ等の電気化学的処理装置。 .
39.前記電極(4)の析出付着およびその前後の処理工程、また は前記電解溶液(1 )の電解およびその前後の処理工程を 実行可能な少なくとも二つの反応浴槽(6), (6a)を設け、こ れらの反応浴槽(6) , ( 6a)において、相前後する前記処理 工程を順次実行可能にした請求項 3 1記載の電気メツキ等 の電気化学的反応装置。
40.前記反応浴槽(6), (6a)における所定の処理工程後、先行 処理工程側の反応浴槽(6)内の電解溶液(1 )または洗浄 若しくは酸化皮膜除去物質(1 8)、界面活性剤(39) , ( 40 )を、後行処理工程側の反応浴槽(6a)へ移動可能にした請 求項 39記載の電気メツキ等の電気化学的反応装置。
4 1 .前記電極(4)を電解し、または前記電解した電極(4)を他方 の電極(4)に析出付着後、前記反応浴槽(6)を使用して、 他方の電極(4)に複数層の電極物質を析出付着可能にした 請求項 31記載の電気メツキ等の電気化学的反応装置。
PCT/JP2001/006525 2000-08-24 2001-07-30 Electrochemical treating method such as electroplating and electrochemical reaction device therefor WO2002016673A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP01953331.4A EP1314799B1 (en) 2000-08-24 2001-07-30 Electrochemical treating method such as electroplating and electrochemical reaction device therefor
JP2002522342A JP3841751B2 (ja) 2001-07-30 2001-07-30 電気化学的処理方法およびその電気化学的反応装置
AU2001275795A AU2001275795A1 (en) 2000-08-24 2001-07-30 Electrochemical treating method such as electroplating and electrochemical reaction device therefor
US10/070,516 US6793793B2 (en) 2000-08-24 2001-07-30 Electrochemical treating method such as electroplating and electrochemical reaction device therefor

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2000253572A JP3571627B2 (ja) 2000-08-24 2000-08-24 電気化学的反応方法
JP2000-253572 2000-08-24
JP2000401301A JP3703132B2 (ja) 2000-12-28 2000-12-28 電気メッキ等の電気化学的処理方法およびその電気化学的反応装置
JP2000-401301 2000-12-28
JP2001-137191 2001-05-08
JP2001137191A JP3613335B2 (ja) 2001-05-08 2001-05-08 電気メッキ等の電気化学的処理方法およびその電気化学的反応装置

Publications (1)

Publication Number Publication Date
WO2002016673A1 true WO2002016673A1 (en) 2002-02-28

Family

ID=27344419

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/006525 WO2002016673A1 (en) 2000-08-24 2001-07-30 Electrochemical treating method such as electroplating and electrochemical reaction device therefor

Country Status (5)

Country Link
US (1) US6793793B2 (ja)
EP (1) EP1314799B1 (ja)
AU (1) AU2001275795A1 (ja)
TW (1) TW588119B (ja)
WO (1) WO2002016673A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004081255A1 (ja) * 2003-01-27 2004-09-23 Tokyo Electron Limited 半導体装置
WO2005078161A1 (ja) * 2004-02-12 2005-08-25 Daikin Industries, Ltd. Co2存在下での電気めっき
JP2005248192A (ja) * 2004-03-01 2005-09-15 Nariyuki Uemiya 水素分離用薄膜の製造方法およびパラジウムめっき浴
WO2006090785A1 (ja) * 2005-02-23 2006-08-31 Daikin Industries, Ltd. 燃料電池用めっき部材並びにその製造方法及び製造装置
WO2006090775A1 (ja) * 2005-02-23 2006-08-31 Daikin Industries, Ltd. コーティング膜、コーティング膜で被覆された物品及び耐食性コーティング方法
JP2006265729A (ja) * 2005-02-23 2006-10-05 Daikin Ind Ltd 多層膜構造体の製造方法、多層膜構造体及びめっき装置
WO2007007617A1 (ja) * 2005-07-08 2007-01-18 Daikin Industries, Ltd. 有機溶媒存在下での表面処理
US7323096B2 (en) 2001-11-14 2008-01-29 Hideo Yoshida Method for treating the surface of object and apparatus thereof
US8932440B2 (en) 2010-09-24 2015-01-13 Denso Corporation Plating apparatus and plating method
CN106801235A (zh) * 2015-05-12 2017-06-06 江苏理工学院 降低加工成本的超临界复合电铸体系回收利用装置

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3695703B2 (ja) * 2001-10-25 2005-09-14 株式会社日立製作所 電気めっき方法、電気めっき装置及び半導体装置の製造方法及び製造装置
JP3830386B2 (ja) * 2001-12-20 2006-10-04 英夫 吉田 陽極酸化法およびその処理装置
CN100395544C (zh) * 2004-08-02 2008-06-18 大金工业株式会社 氧电极
US7906210B2 (en) * 2004-10-27 2011-03-15 Nissei Plastic Industrial Co., Ltd. Fibrous nanocarbon and metal composite and a method of manufacturing the same
SE0403042D0 (sv) * 2004-12-14 2004-12-14 Polymer Kompositer I Goeteborg Improved stabilization and performance of autocatalytic electroless process
US7579117B1 (en) * 2005-08-25 2009-08-25 Kirby Beard Electrochemical cell energy device based on novel electrolyte
FR2898138B1 (fr) * 2006-03-03 2008-05-16 Commissariat Energie Atomique Procede de structuration electrochimique d'un materiau conducteur ou semi-conducteur, et dispositif de mise en oeuvre.
US20070264451A1 (en) * 2006-05-11 2007-11-15 Hitachi Maxell, Ltd. Method of manufacturing polymer member and polymer member
JP4919262B2 (ja) * 2006-06-02 2012-04-18 日立マクセル株式会社 貯蔵容器、樹脂の成形方法及びメッキ膜の形成方法
JP4163728B2 (ja) * 2006-10-02 2008-10-08 エス・イー・エス株式会社 電気めっき方法
JP4177400B2 (ja) * 2006-11-10 2008-11-05 エス・イー・エス株式会社 無電解めっき方法
JP5398175B2 (ja) * 2008-06-03 2014-01-29 富士フイルム株式会社 インクジェット記録ヘッドの製造方法
EP2143828B1 (en) * 2008-07-08 2016-12-28 Enthone, Inc. Electrolyte and method for the deposition of a matt metal layer
TWI404826B (zh) * 2009-02-27 2013-08-11 Univ Fooyin Stainless steel golf head supercritical fluid polishing method and stainless steel golf head
US8673445B2 (en) * 2009-07-17 2014-03-18 Nissei Plastic Industrial Co. Ltd. Composite-plated article and method for producing same
TW201121680A (en) * 2009-12-18 2011-07-01 Metal Ind Res & Dev Ct Electrochemical machining device and machining method and electrode unit thereof.
US20130312481A1 (en) * 2010-12-08 2013-11-28 Halliburton Energy Services Inc. Fluid properties including equation of state modeling with optical constraints
KR101318197B1 (ko) * 2011-07-01 2013-10-17 주승기 전기 도금장치 및 전기 도금방법
CN103173795B (zh) * 2012-03-27 2016-08-03 上海域高环境技术有限公司 一种电镀的方法
WO2015074006A1 (en) * 2013-11-15 2015-05-21 The Regents Of The University Of California Electrochemical devices comprising compressed gas solvent electrolytes
CN104724663A (zh) * 2013-12-20 2015-06-24 中国科学院兰州化学物理研究所 一种硅基仿生微纳结构表面的制备方法
US10011918B2 (en) * 2014-12-23 2018-07-03 Taiwan Semiconductor Manufacturing Co., Ltd. Apparatus and process of electro-chemical plating
JP6400512B2 (ja) * 2015-03-18 2018-10-03 株式会社東芝 電気めっき方法及び電気めっき装置
CN108754479B (zh) * 2018-07-02 2020-04-21 杨景峰 基于高压密闭循环系统的零排放磷化、皂化的方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02209729A (ja) * 1989-02-09 1990-08-21 Matsushita Electric Ind Co Ltd 半導体装置の製造方法及び異物除去装置
JPH05132656A (ja) 1991-11-14 1993-05-28 Matsushita Electric Ind Co Ltd 超臨界流体接着剤とそれを用いた面状採暖具の製造方法
JPH08231903A (ja) 1994-12-12 1996-09-10 Morton Internatl Inc 粉体塗料および皮膜適用法
JPH09503158A (ja) 1993-09-29 1997-03-31 ユニオン カーバイド ケミカルズ アンド プラスティックス テクノロジー コーポレイション ポリマー組成物を圧縮流体及び高い噴霧によってスプレーする方法
JPH09139374A (ja) * 1995-11-15 1997-05-27 Hitachi Ltd 表面処理方法および装置ならびにこれにより得られた素子
JPH10321991A (ja) * 1997-05-21 1998-12-04 Fujitsu Ltd 回路基板の配線形成方法
WO1999010167A1 (fr) * 1997-08-27 1999-03-04 Kabushiki Kaisha Toyota Chuo Kenkyusho Objet enrobe et procede de fabrication de cet objet
JPH1187306A (ja) * 1997-09-12 1999-03-30 Nippon Telegr & Teleph Corp <Ntt> 超臨界乾燥装置
JPH1192990A (ja) * 1997-09-16 1999-04-06 Ebara Corp めっき前処理方法
JPH11216437A (ja) * 1998-01-30 1999-08-10 Sharp Corp 超臨界流体洗浄方法及び超臨界流体洗浄装置
JP2000063891A (ja) 1998-08-17 2000-02-29 Nippon Telegr & Teleph Corp <Ntt> 超臨界二酸化炭素による洗浄装置
JP3035594B1 (ja) * 1999-03-11 2000-04-24 工業技術院長 二酸化炭素媒体中で用いる界面活性剤
JP2000226671A (ja) 1999-02-08 2000-08-15 Ebara Corp 無電解めっき装置
JP2000253572A (ja) 1999-03-01 2000-09-14 Okamura Kenkyusho:Kk 接続切り換え制御キャパシタ電源装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4581105A (en) * 1984-06-20 1986-04-08 The Dow Chemical Company Electrochemical cell operating near the critical point of water
JP3580136B2 (ja) 1998-07-03 2004-10-20 株式会社豊田中央研究所 触媒の製造方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02209729A (ja) * 1989-02-09 1990-08-21 Matsushita Electric Ind Co Ltd 半導体装置の製造方法及び異物除去装置
JPH05132656A (ja) 1991-11-14 1993-05-28 Matsushita Electric Ind Co Ltd 超臨界流体接着剤とそれを用いた面状採暖具の製造方法
JPH09503158A (ja) 1993-09-29 1997-03-31 ユニオン カーバイド ケミカルズ アンド プラスティックス テクノロジー コーポレイション ポリマー組成物を圧縮流体及び高い噴霧によってスプレーする方法
JPH08231903A (ja) 1994-12-12 1996-09-10 Morton Internatl Inc 粉体塗料および皮膜適用法
JPH09139374A (ja) * 1995-11-15 1997-05-27 Hitachi Ltd 表面処理方法および装置ならびにこれにより得られた素子
JPH10321991A (ja) * 1997-05-21 1998-12-04 Fujitsu Ltd 回路基板の配線形成方法
WO1999010167A1 (fr) * 1997-08-27 1999-03-04 Kabushiki Kaisha Toyota Chuo Kenkyusho Objet enrobe et procede de fabrication de cet objet
JPH1187306A (ja) * 1997-09-12 1999-03-30 Nippon Telegr & Teleph Corp <Ntt> 超臨界乾燥装置
JPH1192990A (ja) * 1997-09-16 1999-04-06 Ebara Corp めっき前処理方法
JPH11216437A (ja) * 1998-01-30 1999-08-10 Sharp Corp 超臨界流体洗浄方法及び超臨界流体洗浄装置
JP2000063891A (ja) 1998-08-17 2000-02-29 Nippon Telegr & Teleph Corp <Ntt> 超臨界二酸化炭素による洗浄装置
JP2000226671A (ja) 1999-02-08 2000-08-15 Ebara Corp 無電解めっき装置
JP2000253572A (ja) 1999-03-01 2000-09-14 Okamura Kenkyusho:Kk 接続切り換え制御キャパシタ電源装置
JP3035594B1 (ja) * 1999-03-11 2000-04-24 工業技術院長 二酸化炭素媒体中で用いる界面活性剤

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1314799A4

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7323096B2 (en) 2001-11-14 2008-01-29 Hideo Yoshida Method for treating the surface of object and apparatus thereof
US7857952B2 (en) 2001-11-14 2010-12-28 Hideo Yoshida Method for treating the surface of object and apparatus thereof
WO2004081255A1 (ja) * 2003-01-27 2004-09-23 Tokyo Electron Limited 半導体装置
WO2005078161A1 (ja) * 2004-02-12 2005-08-25 Daikin Industries, Ltd. Co2存在下での電気めっき
JP2005248192A (ja) * 2004-03-01 2005-09-15 Nariyuki Uemiya 水素分離用薄膜の製造方法およびパラジウムめっき浴
JP4557570B2 (ja) * 2004-03-01 2010-10-06 成之 上宮 水素分離用薄膜の製造方法
WO2006090785A1 (ja) * 2005-02-23 2006-08-31 Daikin Industries, Ltd. 燃料電池用めっき部材並びにその製造方法及び製造装置
WO2006090775A1 (ja) * 2005-02-23 2006-08-31 Daikin Industries, Ltd. コーティング膜、コーティング膜で被覆された物品及び耐食性コーティング方法
JP2006265729A (ja) * 2005-02-23 2006-10-05 Daikin Ind Ltd 多層膜構造体の製造方法、多層膜構造体及びめっき装置
WO2007007617A1 (ja) * 2005-07-08 2007-01-18 Daikin Industries, Ltd. 有機溶媒存在下での表面処理
US8932440B2 (en) 2010-09-24 2015-01-13 Denso Corporation Plating apparatus and plating method
CN106801235A (zh) * 2015-05-12 2017-06-06 江苏理工学院 降低加工成本的超临界复合电铸体系回收利用装置

Also Published As

Publication number Publication date
US20030019756A1 (en) 2003-01-30
TW588119B (en) 2004-05-21
AU2001275795A1 (en) 2002-03-04
EP1314799A4 (en) 2007-03-07
EP1314799A1 (en) 2003-05-28
EP1314799B1 (en) 2013-10-16
US6793793B2 (en) 2004-09-21

Similar Documents

Publication Publication Date Title
WO2002016673A1 (en) Electrochemical treating method such as electroplating and electrochemical reaction device therefor
CN1262691C (zh) 采用电等离子体技术清洗和/或涂覆金属表面的改进方法和装置
CN110423995B (zh) 不锈钢产品滚镀方法及活化液
JP2002096066A (ja) 洗浄水の製造方法及び洗浄水
JP3571627B2 (ja) 電気化学的反応方法
CN103882492A (zh) 金属基体化学镀前处理方法
TWI232896B (en) Surface treating method of object to be treated and treatment apparatus thereof
JP3703132B2 (ja) 電気メッキ等の電気化学的処理方法およびその電気化学的反応装置
CN107190288B (zh) 一种hedp镀铜无孔隙薄层的制备方法
JP3841751B2 (ja) 電気化学的処理方法およびその電気化学的反応装置
JP2001158997A (ja) 電気化学処理の実施方法及び装置
JP4101261B2 (ja) 被処理物の表面処理方法及び表面処理装置
WO2005084831A1 (ja) アルカリ可溶型感光性樹脂の剥離方法
JP3613335B2 (ja) 電気メッキ等の電気化学的処理方法およびその電気化学的反応装置
JPH1171696A (ja) 二次成形品の電気亜鉛めっき法
CN104233296A (zh) 铝及铝合金镀银的方法
JP3791182B2 (ja) 二次成形品の電気亜鉛めっき法
JP4745571B2 (ja) 被処理物の表面処理方法およびその処理装置
JP4404884B2 (ja) 被処理物の表面処理装置
CN102465325A (zh) 一种恒电流密度在钨合金表面直接镀硬铬的方法
US7288170B2 (en) Process for producing a ready-to-use electrolyte
JP5256399B2 (ja) めっき処理物及びめっき処理方法
EP4299790A1 (en) Method for etching a plastic substrate including spraying and electrolytic regeneration
JP4440609B2 (ja) 被処理物の表面処理方法
JP2005290471A (ja) めっき処理物及びめっき処理方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 10070516

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2001953331

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2001953331

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642