WO2004081255A1 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
WO2004081255A1
WO2004081255A1 PCT/JP2003/016989 JP0316989W WO2004081255A1 WO 2004081255 A1 WO2004081255 A1 WO 2004081255A1 JP 0316989 W JP0316989 W JP 0316989W WO 2004081255 A1 WO2004081255 A1 WO 2004081255A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
medium
substrate
processing
supercritical state
Prior art date
Application number
PCT/JP2003/016989
Other languages
English (en)
French (fr)
Inventor
Eiichi Kondoh
Vincent Vezin
Kenichi Kubo
Yoshinori Kureishi
Tomohiro Ohta
Original Assignee
Tokyo Electron Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Limited filed Critical Tokyo Electron Limited
Priority to AU2003292700A priority Critical patent/AU2003292700A1/en
Publication of WO2004081255A1 publication Critical patent/WO2004081255A1/ja
Priority to US11/190,127 priority patent/US20050260846A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76843Barrier, adhesion or liner layers formed in openings in a dielectric
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1851Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material
    • C23C18/1862Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by radiant energy
    • C23C18/1865Heat
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1851Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material
    • C23C18/1872Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by chemical pretreatment
    • C23C18/1875Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by chemical pretreatment only one step pretreatment
    • C23C18/1882Use of organic or inorganic compounds other than metals, e.g. activation, sensitisation with polymers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1851Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material
    • C23C18/1872Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by chemical pretreatment
    • C23C18/1886Multistep pretreatment
    • C23C18/1893Multistep pretreatment with use of organic or inorganic compounds other than metals, first
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/288Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • H01L21/76814Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics post-treatment or after-treatment, e.g. cleaning or removal of oxides on underlying conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76853Barrier, adhesion or liner layers characterized by particular after-treatment steps
    • H01L21/76861Post-treatment or after-treatment not introducing additional chemical elements into the layer
    • H01L21/76862Bombardment with particles, e.g. treatment in noble gas plasmas; UV irradiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76877Filling of holes, grooves or trenches, e.g. vias, with conductive material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • H01L21/76807Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics for dual damascene structures

Definitions

  • the present invention relates to a processing method and a method for manufacturing a semiconductor device, and more particularly, to a method for forming a metal film.
  • the sputtering method, CVD method, plating method, etc. are generally known.However, when fine wiring is considered, the coverage is limited. It is extremely difficult to efficiently deposit Cu on a fine pattern with a high aspect ratio of 1 ⁇ m or less.
  • Non-Patent Document 1 a method of depositing Cu using a medium in a supercritical state has been proposed (for example, see Non-Patent Document 1).
  • a precursor compound (precursor) containing Cu for Cu film formation is dissolved using supercritical CO 2 to form a film of Cu.
  • the supercritical state means that when the temperature and pressure of a substance exceed a value (critical point) peculiar to the substance, the substance becomes a state having both characteristics of gas and liquid.
  • Non-Patent Document 1 introduces the embedding of Cu in a fine pattern.
  • Non-Patent Document 1 ⁇ Deposition of Conformal Copper and Nickel Films from Supercritical Carbon DioxideJ SC IENCE vo 1 294 2001 1 0 05 www.sciencemag.org
  • Cu is required to prevent diffusion of Cu into an insulating film between Cu wirings. It is necessary to form an anti-diffusion film of the cu between the insulating films in which is formed. Further, the diffusion prevention film also plays a role as an adhesion layer for improving the adhesion between the Cu film and the insulating film.
  • the above-mentioned C11 diffusion prevention film is a metal film, a metal nitride film or a laminated film of a metal film and a metal nitride film.
  • a metal film a metal nitride film or a laminated film of a metal film and a metal nitride film.
  • Ti, Ta, W, TiN, TaN, WN, etc. are used.
  • the sputtering method has been used to form the Cu diffusion barrier film as described above, but in recent years, the CVD method with good coverage has been often used.
  • the surface of the Cu diffusion prevention film is covered with, for example, the oxide film of the Cu diffusion prevention film, and the surface is not clean. If so, the following problems will occur. For example, when the adhesion between the diffusion prevention film and the Cu film is deteriorated, or when a disgusting Cu film is formed on the fine pattern on which the diffusion prevention film is formed, a cavity called a void is generated.
  • a cavity called a void is generated.
  • the Cu film in forming a Cu film on a fine pattern on which a Cu diffusion preventing film is formed, the Cu film is formed by a cleaning method using a medium in a supercritical state.
  • a cleaning method using a medium in a supercritical state.
  • the present invention solves the above problem by providing a first processing medium including a medium in a supercritical state on a substrate to be processed and cleaning a film containing metal on the surface of the substrate to be processed by a first method. And a second step of supplying a second processing medium including the medium in the supercritical state on the substrate to be processed to form a Cu film, thereby solving the problem. I do.
  • the cleaning method using a medium in a supercritical state is performed on the surface of the 3D plate to be treated.
  • FIG. 1 is a diagram (part 1) illustrating a process flow of a substrate processing method according to the present invention.
  • FIG. 2 is a diagram (part 1) illustrating a configuration of a substrate processing apparatus 3 for performing the substrate processing according to the present invention.
  • FIG. 3 is a diagram (part 2) illustrating a process flow of the substrate processing method according to the present invention.
  • FIG. 4 is a diagram (part 3) illustrating a process flow of the substrate processing method according to the present invention.
  • FIG. 5 is a diagram (part 4) illustrating a process flow of the substrate processing method according to the present invention. You.
  • FIG. 6A is a saturation vapor pressure curve of a Cu film forming precursor
  • FIG. 6B is a diagram showing a partial pressure of the Cu film forming precursor in CO 2 in a supercritical state.
  • FIG. 7 is a view (No. 5) showing a process flow of the substrate processing method according to the present invention.
  • FIG. 8 is a diagram (part 6) illustrating a process flow of the substrate processing method according to the present invention.
  • FIG. 9 is a view (No. 7) showing a process flow of the substrate processing method according to the present invention.
  • FIG. 10 is a diagram (part 2) illustrating a configuration of a substrate processing apparatus that performs substrate processing according to the present invention.
  • FIG. 11 is a diagram (part 3) illustrating a configuration of a substrate processing apparatus that performs substrate processing according to the present invention.
  • 12A to 12C are diagrams (part 1) illustrating a method for manufacturing a semiconductor device using the substrate processing method according to the present invention.
  • 12D to 12F are views (No. 2) showing a method for manufacturing a semiconductor device using the substrate processing method according to the present invention.
  • FIG. 1 is a process flow showing a substrate processing method according to the present invention.
  • the following processing is performed by using CO 2 in a supercritical state as described above.
  • the substrate processing method is roughly divided into a first step of cleaning the surface of the substrate to be processed (indicated by S100 in the figure) and a second step of C u film formation (indicated by S300 in the figure).
  • the co 2 in the supercritical state by using a processing «certain body dissolving etchant, an oxide film formed on C u diffusion preventing film on the substrate to be processed Remove.
  • a processing «certain body dissolving etchant By removing the oxide film, the Cu diffusion preventing film and
  • FIG. 2 shows a configuration of a substrate processing apparatus 500 capable of performing the processing method according to the present invention.
  • the substrate processing unit 500 is roughly divided into a processing vessel 501 having a substrate holding table 501 A having a built-in substrate heater 501 a and a substrate processing.
  • a gas exhaust system including an exhaust line 503 for evacuating the processing vessel 501 from the mixer 502 for supplying a processing medium including a medium in a supercritical state to the processing container.
  • a semiconductor wafer W to be processed is placed on the mounting table 501 A, and a processing medium including a medium in a supercritical state is supplied from the mixer 502 to the processing container 501.
  • Sickle processing is performed.
  • the processing medium after the consolidation processing is discharged from the exhaust line 503 by opening the valve 504, and the processing container 501 is brought to a substantially atmospheric pressure state.
  • the evacuating line 508 is evacuated by the vacuum pump 507 by opening the valve 506 and the valve 538. It is possible.
  • the mixer 502 forming the processing medium and supplying the processing medium to the processing container 501 is provided with a supply line 510 having a valve 509. Connected through.
  • a processing medium is formed by mixing a medium in a supercritical state with a predetermined additive, and the processing medium is supplied to the processing container 501.
  • the mixer 5 0 2 the liquid C_ ⁇ 2 source 5 1 2 connected to pressurizing line 5 1 1 are connected.
  • the valve 5 1 4 and the valve 5 1 6 is open, the C 0 2 from the liquid C 0 2 supply source 5 1 2 is supplied to the mixer 5 0 2.
  • C 0 2 supplied to the mixer 502 is pressurized by the pressurizing pump 5 17 installed in the knitting pressurizing line 5 11 to be brought into a supercritical state.
  • the pressurizing pump 5 1 7 a is, C 0 2 by suppressing the temperature rise during operation to allow Caro pressure in a liquid state, is cooled by the fliers scratch.
  • the mixer 502 the disgusting treatment vessel 501, the supply line 510, and A heater is installed in a part of the pressurizing line 511 and the like, and calorie heat is generated, so that CO 2 exceeds a critical point and enters a supercritical state.
  • area 501B an area in which a heater is installed and heated in the disgusting substrate processing apparatus 500 to generate a supercritical state is indicated by area 501B in the figure.
  • ⁇ mixer 502 is connected to liquid raw material supply line 518, solid raw material; ⁇ supply line 519, gas supply line 520, respectively; ⁇ night raw material
  • a solid raw material and a gas are dissolved or mixed in a medium in a supercritical state to prepare a processing medium, which is supplied to the processing container 501.
  • the liquid source supply / discharge line 5 18 will be described.
  • the liquid source supply line 518 is connected to a liquid source container 521 that holds a liquid source 523, and is connected.
  • the liquid source container 521 is pressurized by an inert gas supplied from a gas line 522 connected to an inert gas supply source (not shown), and the liquid source container 521 is opened by opening a valve 523.
  • the liquid raw material 5 23 is supplied to the mixer 502 from the difficult supply line 5 18. At this time, the supplied liquid raw material 523 is adjusted to a predetermined flow rate by the mass flow controller 524 provided in the liquid gas supply line 518.
  • the supplied liquid raw material 52 3 is mixed with the supercritical state medium in the mixture 502 and supplied to the processing container 501.
  • the solid material 5 2 6 to C 0 2 is the medium of the supercritical state you create a process medium that was sufficiently dissolved. Thereafter, the valve 527 is opened to supply the processing medium to the mixing vessel 502 previously filled with the medium in a supercritical state.
  • the processing medium supplied to the knitting mixer 5002 is supplied to the processing container 501 via the supply line 501 by opening Iff! Further, the it gas supply line 520 will be described.
  • the gas supply line 5 2 0 with H 2 supply line 5 2 9 denoted with the valve 5 3 0, valves 5 3 and 2 denoted E Tsuchingu agent supply line 5 3 1 is connected, respectively H 2
  • An etching agent can be supplied to the mixer 502. The supplied H 2 and the etching agent are mixed with a medium in a supercritical state in an anaerobic mixer and supplied to the processing vessel 501.
  • the tin self-consideration processing apparatus 500 performs substrate processing by using a processing medium in which a solid material, a liquid material, or a gas is mixed or dissolved in a supercritical medium. Is possible.
  • the pressurizing line 5 11 1 is connected to the processing vessel 5 1 1 via a pre-pressurizing line 5 3 5 equipped with a valve 5 4 0, and is connected through the pre-pressurizing line 5 3 5
  • the structure is such that the pressure of the disgusting treatment container 501 can be increased without passing through the mixer 502.
  • the mixer 502 and the pressurizing line 5111 are provided with a pressure release valve 536 and a pressure release valve 537, respectively.
  • the abnormal rise of is prevented.
  • the processing vessel 501 is adjusted to a predetermined pressure by the back pressure valve 504 through the exhaust line 503, so that an abnormal increase in pressure can be prevented.
  • the substrate processing method according to the present invention is roughly divided into the first step and the second step.
  • a detailed flow of each of the first step and the second step will be described with reference to the drawings.
  • the same reference numerals are used for the parts described above, and the description is omitted.
  • the first process includes Step 101 (indicated as S 101 in the figure; the same applies hereinafter) to: 107.
  • the pulp 506, 534, and 538 are opened, and the processing pump 501 and the mixer 502 are evacuated by the vacuum pump 507. After completion of the evacuation, the valves 506, 534 and 538 are closed. Alternatively, it is possible to open the valve 509 without opening the valve 534 and evacuate the mixer 502 through the processing container 501.
  • Step 1 0 2 supplies the C 0 2 in the Banorebu 5 1 4 and the Panorebu 5 4 0 by opening a disgusting himself processing container 5 0 1.
  • pressurization is performed using the pressurizing pump 5 17 a, and the area 5 0 1 B including the processing vessel 5 1 and the mixer 5 0 2 is heated by a heater. Therefore, co 2 in the processing vessel 501 is set to a condition exceeding the critical point of the co 2 .
  • the pressurizing pump 5 1 7 a because it is by connexion cooled to fliers of all, anti technique that C 0 2 is gaseous, the C 0 2 can be pressurized in the liquid state.
  • the critical point of the C ⁇ 2 is a temperature of 31.03 ° C and a pressure of 7.38 MPa
  • the processing vessel 501 is controlled to a temperature and a pressure higher than the critical point, wherein the processing vessel 5 0 1 is in a state of being filled with C 0 2 in the supercritical state.
  • the valve 514 and the tiff self-pulp 540a are closed.
  • Advance the processing container 5 0 1 like this by leaving filled with C 0 2 in the supercritical state, the processing medium containing a C 0 2 in a supercritical state after this is introduced into the processing chamber 5 0 1
  • the processing medium can maintain the supercritical state, and can maintain the processing medium dissolved in the supercritical state at a high concentration.
  • the wafer W is heated by the substrate heater 501 a to a temperature of 100 ° C. to 400 ° C. You.
  • step 103 by opening the valve 532, the etching agent is supplied from the etching agent supply line 531, to the mixer 502 in a reduced pressure state.
  • the inside of the! ft self-mixer 502 is filled with the etching agent, and after a predetermined time has elapsed, the self-pulp 5332 is closed.
  • step 104 the valve 516 is opened, and the CO 2 is introduced into the mixer 502 by the pressurizing pump 517, which has been cooled in advance by a chiller, and is brought into a supercritical state.
  • the etching agent sufficiently diffuses and mixes to form a processing medium.
  • the valve 516 is closed.
  • the valve 509 is opened in step 1 ⁇ 5, the processing ⁇ containing C 0 2 in the supercritical state is, Ru is introduced into the processing container 501 from the mixed 502.
  • the ttrf self-valve 516a is opened and closed for pressure adjustment as needed, and a substance in the mixer 502 is transported to the processing container 501.
  • step 106 substrate processing is performed by the processing medium.
  • the pre-pressurization of the processing vessel to the supercritical state in step 102 may be performed between step 104 and step 105.
  • a reaction occurs that removes the film.
  • the etching agent a chelating agent, a halogen compound, an acid, an amine and the like can be used.
  • H hexafluoroacetyl acetate
  • the following reaction occurs to remove the oxide film on the Ta or TaN film surface.
  • HC 1 can be used as the acid
  • the oxide film is similarly removed by the reaction represented by.
  • C 1 F 3 can be used as the halogen.
  • the valve 530 is opened, H 2 is further introduced into the mixer, and H 2 is introduced into the processing medium. 2 by adding
  • the adhesion between the Cu film formed in the subsequent second step and the Ta or TaN film can be improved.
  • voids during Cu film formation due to the oxide film Prevention of generation and good film formation of Cu film on fine patterns are advantageous.
  • acetylacetone 1,1,1,1-trifluoro-1, pentane-1,2,4 _Dione, 2,6-dimethinolepentane-1,3,5-dione, 2,2,7-trimethylotatan _2,4 dione, 2,2,6,6-tetramethylheptane-1,3,5-dione, EDTA (Ethylenediaminetetraacetic acid), NTA (nitrotriacetic acid), acetic acid, formic acid, oxalic acid, maleic acid, glyconoleic acid, citric acid, lingoic acid, lactic acid, amino acid, triethanolamine and the like can be used.
  • step 107 the valves 504 and 538 are opened to discharge the processing medium in the processing container 501 and the mixer 502, and the first step is performed. finish.
  • the example of removing the oxide film formed on the surface of Ta or TaN was shown.
  • Ti, TiN, W, Wi The present invention can also be applied to a method of etching an oxide film or the like formed on the surface of N, and the same effects as those of the Ta and TaN fields described in the embodiment can be obtained.
  • a rinsing step may be performed as shown in FIG.
  • FIG. 4 is a modification of the third embodiment shown in FIG.
  • the parts described above are denoted by the same reference numerals, and description thereof will be omitted.
  • steps 101 to 107 are the same as those in the third embodiment shown in FIG.
  • step 108 the valve 504 is closed and the valve 516 is opened to fill the mixer and the processing vessel 501 with supercritical CO 2 . Then, the pulp 516 is closed.
  • step 110 the pulp 504 is opened again to discharge the supercritical CO 2 from the processing vessel 501 and the mixer 502.
  • the unreacted processing medium and by-products adhering to the inner wall of the processing container 501 and the wafer W are processed. It becomes possible to discharge to the outside of the physical container 501.
  • the process is returned to the step 107 from the step 108 by the step 109, and the rinsing step from the step 107 to the step 108 is repeated a plurality of times. The above-mentioned residue and reaction by-product can be removed.
  • FIG. 5 shows the contents of the process flow of the second step.
  • the second step is a step of forming a Cu film after cleaning the substrate to be processed in the first step.
  • a solid material is used as a Cu film forming precursor and a case where a liquid material is used.
  • FIG. 5 shows a process flow of using a solid material
  • steps 301 and 302 are the same as steps 101 and 102 described above. However, the wafer W is kept at 150 ° C. to 400 ° C. by the knitting heater 501 a.
  • step 303 the valve 530 is opened to introduce a predetermined amount of H2 from the H2 supply line 529 into the mixer 502, and then the valve 530 is closed. Eds yourself mixer 5 0 2 is filled with the H 2.
  • step 304 the solid raw material 526, which is a Cu film forming precursor held in the solid raw material container 525, is introduced into the mixture 502.
  • pressure in advance the valve 5 1 4 and 5 2 8 In the process proceeds to the Step 3 0 4 is opened, also the solid material container 5 2 5 using the pressure pump 5 1 7 C 0 2 State.
  • the processing vessel 5 2 5 ranges of the Eria 5 0 1 B, because it is heated by the heater, wherein the solid material container 5 2 within 5 C 0 2 in the supercritical state is created.
  • C 0 2 of the supercritical state is high solubility of the precursor
  • the C 0 2 in the supercritical state the C u deposition (Kisafuruo port ⁇ cetyl ⁇ Seth sulfonate to) a is for example C u + 2 precursor
  • the solid raw material 5 2 6 which is 2 is sufficiently dissolved to form a treatment medium. Therefore, in step 304, the valve 527 is opened to supply the processing medium to the mixer 502. At that time, the return pulp 528 is opened and closed as necessary in order to maintain the pressure of the solid raw material container 525. After the bus revs 527 are opened for a predetermined time, the pan revs 527 are closed.
  • step 305 the ttff self-pulp 509 is opened, and the processing medium containing supercritical C 0 2 is introduced into the self-processing container 501 from the kneading mixer 502 from the mixing: 502. Is done. Also, opening and closing of the valve 5 16 is made for pressure adjustments as needed, the supercritical state of the C0 2 is maintained.
  • the wafer W is approximately 150 by the substrate heater 50 la. Maintained between C and 400 ° C.
  • Co 2 in the supercritical state as Fujionore a very high fluidity, because rich in diffusibility, for example, be the bottom or side wall of 0. 1 ⁇ following fine pattern efficiently the Cu film formed Since the surface of the Ta or TaN film on which the Cu film is formed is removed in the first step, an oxide film is removed and a clean surface is obtained. It has good adhesion to the Cu film and no voids are formed, and good coverage characteristics can be obtained.
  • step 307 is the same as step 107 described above.
  • Cu deposition precursor has been used 2 (hexa full O b acetyl Asetoneto to) Cu in the present embodiment, other CU ( ⁇ cetyl ⁇ Seth sulfonate) 2, and CU +2 (2, 2, 6 , 6-tetramethyl-1,3,5-heptanedione) 2 can be used to obtain similar results.
  • the Cu film formation precursor is an example that shows high solubility to the C0 2 in the supercritical state, shown in FIG. 6A, FIG. 6 B.
  • Figure 6A RESievers and JESadlowski, Science 201 (1978) 217, Figure 6B, A. RLagalante, BNHansen, TJBruno, Inorg.Chem, 34 (1995)
  • FIG. 6A shows a saturated vapor pressure curve of Cu + 2 (hexafluoroacetylacetonate) 2 , which is a Cu deposition precursor.
  • the saturated vapor pressure at 40 ° C is about 0.01 To rr.
  • FIG. 6B at 313.
  • 15K (40 ° C) in a supercritical state in the C0 2 It shows the partial pressure of C-2 (hexafluoroacetylacetonate) 2 .
  • the partial pressure is about 100 OPa or more, and a very high density Cu + 2 ( to Kisa full O b acetyl ⁇ Seth sulphonate) 2 is present in C 0 2 in the supercritical state, it can be seen that shows ie, high solubility.
  • the fine pattern has a good power balance while maintaining the film formation rate.
  • Film formation can be performed.
  • the fifth embodiment can be modified as in the sixth embodiment shown in FIG. However, in the figure, the same reference numerals are given to the parts described above, and the description is omitted.
  • steps 308 to 310 are added. This is the same rinsing step as in steps 108 to 110, and has the effect of removing residues and by-products inside the processing vessel 501 and on the wafer W.
  • FIG. 8 is a view showing a process flow of the second step when a liquid material is used for a Cu film forming precursor.
  • the same reference numerals are given to the parts described above, and the description is omitted.
  • steps 311 and 312 are the same as steps 301 and 302, respectively.
  • the wafer W is maintained at 100 ° C. to 350 ° C. by the substrate heater 50la.
  • step 313 for example, Cu + i of the Cu film forming precursor extruded by an inert gas such as Ar supplied from the gas line 522.
  • step 3 1 4 the valve 5 1 6 is open C 0 2 in the supercritical state is introduced into the mixer 502, the C0 2 and the liquid source 52 3 is sufficiently diffused in the supercritical state ⁇ Mix to form processing media. After a predetermined time has elapsed, the valve 516 is closed.
  • Step 3 1 5 the process medium containing C 0 2 in the supercritical state is, Ru is introduced into the processing container 501 from the mixer 502.
  • # 3 valve 5 16 is opened and closed for pressure adjustment as needed, and the supercritical state of Co 2 is maintained.
  • step 3 16 the following processing is performed on the wafer
  • the wafer W is maintained at about 100 ° C. to 35 ° C. by the substrate heater 501 a.
  • Co 2 in the supercritical state as described above high very fluid, because rich in diffusibility, for example, be the bottom and sidewalls of the following fine pattern 0. 1 mu m, efficiently the C u film A film can be formed, and good coverage characteristics can be obtained.
  • step 317 is the same as step 307 described above.
  • Cu + i hexafluoroacetylacetonate
  • Cu + i hexafluroacetylacetonate
  • silyl olefin ligands wherein the silyl olefin ligands are lyloxytrimethylsilyl (aotms), dimethylacetylene (2-butyne), 2-methyl-1-hexin-13-yne (MHY), Using a precursor selected from the group consisting of 3-hexyne-1,2,5-dimethoxy (HDM), 1,5-cyclooctadiene (1,5-COD), and butyltrimethoxylen (VTMOS) However, a similar result can be obtained.
  • HDM 3-hexyne-1,2,5-dimethoxy
  • VTMOS butyltrimethoxylen
  • first step and the second step have been described so far, but the first step and the second step are also performed in the processing apparatus 500 in the case where the first step and the second step are performed.
  • first step and the second step can be performed in different substrate processing apparatuses or processing containers.
  • an example of the substrate processing apparatus 500A performing the first step and an example of the substrate processing apparatus 500B performing the second step will be described below.
  • FIG. 10 shows the substrate processing apparatus 500A.
  • the parts described above are denoted by the same reference numerals, and description thereof is omitted.
  • the Cu film forming step in the second step is not performed when compared with the substrate processing apparatus 500,
  • the solid raw material supply line 5 19 and the solid raw material container 5 25 5 S are omitted.
  • the substrate processing apparatus 500 OA only the first step described in the third and fourth embodiments is performed, and the substrate processing apparatus 500 B is used to perform the next second step. C W is transported.
  • FIG. 11 shows a self-fabricated substrate processing apparatus 500B in which the disgusting second step is performed.
  • the same reference numerals are given to the parts described above, and the description is omitted.
  • the knitting etching agent supply line since the first step is not performed when compared with the substrate processing apparatus 500, the knitting etching agent supply line
  • the wafer W subjected to the first process in the substrate processing apparatus 500A is subjected to the second processing described in the fifth to eighth embodiments. Is performed.
  • the first step and the second step can be performed in different countermeasures, and the first step and the second step can be performed by the substrate processing apparatus 500. It is possible to obtain the same result as when the above is executed.
  • an insulating film for example, a silicon oxide film 61 is formed so as to cover an element (not shown) such as a MOS transistor formed on a semiconductor substrate made of silicon.
  • an element such as a MOS transistor formed on a semiconductor substrate made of silicon.
  • a wiring layer (not shown) made of, for example, W electrically connected to the element, and a wiring layer made of, for example, Cu connected thereto.
  • a first insulating layer 603 is formed on the silicon oxide film 601 so as to cover the Cu layer 602.
  • the disgusting insulating layer 603 has a groove 604a and a hole 604b.
  • a Cu layer 604 serving as a wiring layer is formed in the groove portion 604a and the hole portion 604b, and the Cu layer 604 is electrically connected to the aforementioned Cu layer 602. I have.
  • the parasite layer is provided on the contact surface between the first insulating layer 603 and the Cu layer 604 and the contact surface between the Cu layer 602 and the Cu layer 604.
  • the barrier layer 604 c prevents the Cu layer 604 from disturbing the diffusion of Cu into the first insulating layer 603 and the Cu layer 604 and It functions as an adhesion layer for improving the adhesion of the first insulating layer 603.
  • the barrier layer 604c is made of a metal and a configuration of the metal nitride film, for example, Ta and TaN force.
  • a second insulating layer 606 is formed so as to cover the knitting Cu layer 604 and the first insulating layer 603.
  • a Cu layer and a barrier layer are formed by applying the substrate processing method according to the present invention to the second insulating layer 606.
  • a groove portion 607a and a hole portion 607b are formed in the second insulating layer by dry etching.
  • a film of a non-aluminum layer 607 c is formed on the exposed surface of the Cu layer 604 on the second insulating film 606.
  • the barrier layer 607 c includes, for example, a Ta film and a TaN film in this case, a TaN film is formed after forming a Ta film, and a barrier layer formed of TaTaN is formed. To form 6 07 c.
  • the first step of the substrate processing method according to the present invention is applied.
  • the first step of the substrate processing method according to the present invention is applied.
  • a second step according to the present invention is applied to form a Cu layer 607 on the barrier layer 607c.
  • supercritical since state are used C 0 2 of, for having C 0 2 is good diffusion of the supercritical C u deposition precursor is dissolved, fine the hole portion
  • the Cu layer 607 can be formed with good coverage also on the bottom and side walls of the 607b and the groove 607a.
  • the upper portion of the Cu layer 607 and the barrier film 607 c are subjected to S grinding by, for example, a CMP method, so that the Cu of the second insulating layer Wiring is completed.
  • a second + n (n is a natural number) insulating layer is further formed on the second insulating layer, and the substrate processing method according to the present invention is applied to each of the insulating layers.
  • Replacement Paper '(Rule 26) It can be applied to form Cu wiring.
  • the present invention can be applied to the formation of the clean Cu layer 604 of the disgusting barrier film 604 c formed on the first insulating layer of the tiff.
  • the Cu film on the surface of the substrate to be processed is subjected to a tallying method using a medium in a supercritical state.
  • a film of Cu is formed with good adhesion to the fine pattern, void-free and with good power barrier. It becomes possible.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Chemically Coating (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Electrodes Of Semiconductors (AREA)

Description

明細書 半導体装置 技術分野
本発明は本発明は¾¾処理方法および半導体装置の製造方法に係り、 更には金 属膜の成膜方法に関する。 背景技術
近年、 半導体装置の高性能化に伴い、 半導体デバイスの高集積化が進んで微細 化の要求が著しくなつており、 配線ルールは 0 . 1 3 ju mから 0 . 1 0 μ m以下 の領域へと開発が進んでいる。 また、 锒材料は従来の A 1から、 配線遅延の影 響の少ない、 抵抗値の低い C uに置き換えられてきている。
そのため、 C u成膜技術と微細配線技術の組み合わせが、 近年の微細化した多 層酉 技術の重要なキーテクノロジーとなっている。
tiff己した C uの成膜方法に関しては、 スパッタ法、 C VD法、 メツキ法などが 一般に知られているが、 レ、ずれも微細配線を考えた場合にはカバレッジに限界が あり、 0 . 1 μ m以下の高ァスぺクト比の微細パターンに効率よく C uを成膜す ることは非常に困難である。
そこで、 微細パターンに C uを効率よく成膜する方法として超臨界状態の媒体 を用いた C uの成膜方法が提案されている (例えば、 非特許文献 1参照。)。 前記 非特許文献 1によると、超臨界状態の C O2を用いて C u成膜のための C uを含む 前駆体化合物 (プリカーサ) を溶解し、 C uの成膜を行っている。 超臨界状態と は、 物質の温度 ·圧力が当該物質固有の値 (臨界点) 以上となったときに、 当該 物質が気体と液体の特徴を併せ持つ状態になることをいう。
例えば、前記した C〇2の超臨界状態の媒体においては、 C uを含む前駆体化合 物である C u成膜プリ力ーサの溶解度が高レ、一方で粘性が低く、 拡散性が高レ、た めに前記したようなァスぺクト比が高レ、微細なパターンに C u成膜が可能となる 。 前記非特許文献 1では、 微細パターンへの C uの埋め込みが紹介されている。 [非特許文献 1] 「Deposition of Conformal Copper and Nickel Films from Supercritical Carbon DioxideJ SC IENCE v o 1 294 2001 1 0月 5日 www.sciencemag.org
しかし、 前記したような C u成膜によつて実際に半導体デバィスを作成する際 には、 例えば Cu配線間の絶縁膜中への Cuの拡散を防止するために Cuと、 当 該 c u酉 a が形成される絶縁膜の間に当該 c uの拡散防止膜を形成する必要があ る。 また、 前記拡散防止膜は当該 Cu膜と当該絶縁膜の密着性を向上させるため の密着層としての役割も果たしている。
前記したような C 11の拡散防止膜は、 金属膜、 金属窒化膜または金属膜と金属 窒化膜の積層膜などが用いられることが知られており、 例えば T i, Ta, W, T iN, TaN, WNなどが用いられる。
前記したような C u拡散防止膜の形成には従来スパッタ法が用いられてきが、 近年ではカバレッジのよい CVD法も多く用いられるようになってきている。 し力し、 維己拡散防止膜を形成後、 Cu膜を成膜する際に、 Cu拡散防止膜表 面が例えば当該 C u拡散防止膜の酸化膜によつて覆われ、 清浄な表面でなくなつ ている場合、 以下の問題が生じる。 例えば、 前記拡散防止膜と前記 Cu膜の密着 性が悪くなる、 もしくは前記拡散防止膜が形成された微細パターンに嫌己 C u膜 を成膜する際に、 ポイドと呼ばれる空洞部分が発生して、 前記 Cu膜の埋め込み 不良が生じてしまう問題があった。 また、 このような酸化膜の除去を、 ドライエ ツチング法やスパッタリング法により除去しようとすると、 減圧処理が必要とな り、 カロ圧処理である超臨界状態の媒体を用いた C u膜の埋め込みとは形式の異な る装置を用意する必要がある。 さらに、 形式の異なる装置間で基板の搬入と搬出 を行う必要が有り、 生産性に問題があった。 発明の開示
そこで、 本発明では上記の問題を角军決した、 新規で有用な基板処理方法を することを統括的目的としている。
本発明のより具体的な,は、 C u拡散防止膜が成膜された微細パターンへの C u膜の形成の において、 超臨界状態の媒体を用いたクリ一ユング方法で被 処«板上の当該 C u拡散防止膜表面をクリ一ユングし、 さらに超臨界状態の媒 体を用いた C uの成膜を行うことで微細パターンに密着性良く、 ボイドフリーで C u膜の成膜をおこなうことである。
本発明は、 上記の課題を、 超臨界状態の媒体を含む第 1の処理媒体を被処理基 板上に供給して被処3¾板表面の金属を含む膜をクリ一二ングする第 1の工程と、 前記被処理基板上に前記超臨界状態の媒体を含む第 2の処理媒体を供給して C u 膜を成膜する第 2の工程を含むことを特徴とする基板処理方法により、解決する。 本発明によれば、 C u拡散防止膜が成膜された微細パターンへの C u膜の形成 の において、 超臨界状態の媒体を用いたクリーニング方法で被処3¾板の表 面の当該 C u拡散防止膜をタリーエングし、 さらに超臨界状態の媒体を用いた C uの成膜を行うことで、 当該微細パターンに密着性良く、 ボイドフリ一で力バレ ッジ良く C u膜の成膜をおこなうことが可能となる。
また、 また、 上記の基板処理方法を半導体装置の製造方法に適用すると、 C u 拡散防止膜が成膜された半導体装置の微細パターンへの C u膜の形成の場合にお いて、 超臨界状態の媒体を用いたクリ一二ング方法で被処理基板の表面の当該 C u拡散防止膜をクリ一ユングし、 さらに超臨界状態の媒体を用いた C uの成膜を 行うことで、 半導体装置の微細パターンに密着性良く、 ボイドフリ一でカバレッ ジ良く C u膜の成膜をおこなうことが可能となる。 図面の簡単な説明
図 1は、 本発明による基板処理方法のプロセスフローを示す図 (その 1 ) であ る。
図 2は、 本発明による基板処理をおこなう基板処3¾置の構成を示す図 (その 1 ) である。
図 3は、 本発明による基板処理方法のプロセスフローを示す図 (その 2 ) であ る。
図 4は、 本発明による基板処理方法のプロセスフローを示す図 (その 3 ) であ る。
図 5は、 本発明による基板処理方法のプロセスフローを示す図 (その 4 ) であ る。
図 6 Aは、 C u成膜プレカーサの飽和蒸気圧曲線であり、 図 6 Bは超臨界状態 の C O2中の C u成膜プレカーサの分圧を示した図である。
図 7は、 本発明による基板処理方法のプロセスフローを示す図 (その 5 ) であ る。
図 8は、 本発明による基板処理方法のプロセスフローを示す図 (その 6 ) であ る。
図 9は、 本発明による基板処理方法のプロセスフローを示す図 (その 7 ) であ る。
図 1 0は、 本発明による基板処理をおこなう基板処理装置の構成を示す図 (そ の 2 ) である。
図 1 1は、 本発明による基板処理をおこなう基板処理装置の構成を示す図 (そ の 3 ) である。
図 1 2 A〜1 2 Cは、 本発明による基板処理方法を用いた半導体装置の製造方 法を示す図 (その 1 ) である。
図 1 2 D〜1 2 Fは、 本発明による基板処理方法を用いた半導体装置の製造方 法を示す図 (その 2 ) である。 発明を実施するための最良の形態
次に、 本発明の実施の形態を図面に基づき、 以下に説明する。
[第 1実施例]
図 1は、 本発明による基板処理方法を示すプロセスフローである。 本プロセス では前記したような超臨界状態の C O2を用いることにより、 以下の処理を行う。 図 1を参照するに、 前記基板処理方法は、 大別して、 第 1の工程である被処理 基板表面のクリ一ユング (図中 S 1 0 0で示す) およぴ第 2の工程である C u膜 の成膜 (図中 S 3 0 0で示す) カ らなる。
まず、前記第 1の工程においては、超臨界状態の co2に、エッチング剤を溶解 した処«某体を用いることにより、 被処理基板上の C u拡散防止膜上に形成され た酸化膜を除去する。 当該酸化膜を除去することで、 前記 C u拡散防止膜と、 次
羞替 え用 紙(規則 26) の第 2の工程で形成される C uの密着性が向上し、 さらに当該酸化膜の影響によ る C u膜中のボイドの形成を防止して、 良好な成膜を行うことができる。
[第 2実施例]
図 2は、 本発明による 処理方法を実施可能な基板処«置 5 0 0の構成を 示す。
図 2を参照するに、 前記基板処3¾置 5 0 0は、 大別すると、 基板ヒータ 5 0 1 aを内蔵した基板保持台 5 0 1 Aを有する処理容器 5 0 1と、 基板処理を行う ための超臨界状態の媒体を含む処理媒体を嫌己処理容器に供給する混合器 5 0 2 と、 前記処理容器 5 0 1を排気する排気ライン 5 0 3を含む排気系からなる。 前記載置台 5 0 1 Aには、 被処 as板である半導体ウェハ Wが載置され、 前記 混合器 5 0 2より超臨界状態の媒体を含む処理媒体が前記処理容器 5 0 1に供給 され、 鎌処理がなされる。 纏処理後の当該処理媒体は、 バルブ 5 0 4を開放 することで前記排気ライン 5 0 3より排出されて、 前記処理容器 5 0 1は、 略大 気圧状態となる。 前記処理容器 5 0 1内を大気圧以下に排気する場合は前記バル プ 5 0 6およびバルブ 5 3 8を開放することで真空ポンプ 5 0 7により、 真空排 気ライン 5 0 8より真空排気することが可能である。
前記処理容器 5 0 1には、 前記処理媒体を形成して当該処理媒体を前記処理容 器 5 0 1に供給する前記混合器 5 0 2が、 バルブ 5 0 9を付した供給ライン 5 1 0を介して接続されている。 前記混合器 5 0 2においては超臨界状態の媒体と所 定の添加物を混合することによつて処理媒体を形成して前記処理容器 5 0 1に供 給する。
前記混合器 5 0 2には、液体 C〇2供給源 5 1 2が接続された加圧ライン 5 1 1 が接続されている。 前記加圧ライン 5 1 1において、 バルブ 5 1 4およびバルブ 5 1 6が開放されて、 前記液体 C 02供給源 5 1 2より C 02が前記混合器 5 0 2 に供給される。 その際、 編己加圧ライン 5 1 1に設置された加圧ポンプ 5 1 7に よって、前記混合器 5 0 2に供給される C 02が加圧されて超臨界状態にまでされ る。前記加圧ポンプ 5 1 7 aは、運転中の温度上昇を抑えて C 02が液体の状態で カロ圧可能なように、 チラ一で冷やされる。
また、 前記混合器 5 0 2、 嫌己処理容器 5 0 1、 供給ライン 5 1 0、 およぴ前 記加圧ライン 5 1 1の一部などにはヒータが設置されてカロ熱され、 C O2が臨界点 を超えて超臨界状態となるようにしている。 なお、 嫌己基板処¾¾置 5 0 0にお いてヒータが設置されて加熱され、 超臨界状態を生成するェリァを本図中ェリァ 5 0 1 Bにて示す。
. さらに、 ΙίίΙΒ混合器 5 0 2には、 液体原料供給ライン 5 1 8、 固体原;^給ラ イン 5 1 9、 ガス供給ライン 5 2 0が接続されており、 それぞ; ^夜体原料、 固体 原料、 およぴガスを超臨界状態の媒体に溶解または混合して処理媒体を作成して 前記処理容器 5 0 1に供給する構造となっている。
まず、 前記液体原離給ライン 5 1 8につレ、て説明する。 前記液体原難給ラ イン 5 1 8は、 液体原料 5 2 3を保持する液体原料容器 5 2 1に接続されてレヽる 。 前記液体原料容器 5 2 1は、 図示しない不活性ガス供給源に接続するガスライ ン 5 2 2から供給される不活性ガスによつて加圧され、 バルブ 5 2 3を開 る ことで前記液体原難給ライン 5 1 8より当該液体原料 5 2 3が前記混合器 5 0 2に供給される。 その際、 前記液体ガス供給ライン 5 1 8に設置された質量流量 コントローラ 5 2 4によって、 供給される前記液体原料 5 2 3が、所定の流量に 調整される。 供給された当該液体原料 5 2 3は、 前記混 5 0 2において超臨 界状態の媒体と混合されて前記処理容器 5 0 1へと供給される。
次に、 前記固体原難給ライン 5 1 9について説明する。 嫌己固体原料供給ラ イン 5 1 9は、超臨界状態の媒体である C 02に溶解した固体原料 5 2 6を当該超 臨界状態の媒体と共に前記混合器 5 0 2に以下の方法で供給する。 予めバルブ 5 2 8 aおよび前記バルブ 5 1 4を開放し、 前記加圧ライン 5 1 1を介して前記液 体 C 02供給源 5 1 2より C 02が固体原料容器 5 2 5に供給される。 その際、 前 記加圧ライン 5 1 1に設置された加圧ポンプ 5 1 7によって、 前記固体原料容器 5 2 5に供給される C 02が加圧されて超臨界状態にまでされる。この超臨界状態 の媒体である C 02に前記固体原料 5 2 6を十分溶解させた処理媒体を作成して おく。 その後、 バルブ 5 2 7を開放して、 予め超臨界状態の媒体に満たされた前 記混合容器 5 0 2に当該処理媒体を供給する。 編己混合器 5 0 2に供給された当 該処理媒体は、 Iff!己パルプ 5 0 9を開¾1~ることで ΙίίΙΒ供給ライン 5 1 0より前 記処理容器 5 0 1に供給される。 さらに、 it己ガス供給ライン 5 2 0に関して説明する。 前記ガス供給ライン 5 2 0は、バルブ 5 3 0を付する H2供給ライン 5 2 9と、バルブ 5 3 2を付するェ ツチング剤供給ライン 5 3 1が接続されており、それぞれ H2とエッチング剤を前 記混合器 5 0 2に供給することが可能となっている。供給された H2やエッチング 剤は、 嫌己混合器において超臨界状態の媒体と混合されて前記処理容器 5 0 1へ と供給される。
このように、 tin己勘反処理装置 5 0 0は、 超臨界状態の媒体に、 固体原料、 液 体原料、 またはガスなどを混合または溶解させた処理媒体を用いることで基板処 理を行うことが可能である。
さらに、 前記加圧ライン 5 1 1は、 バルブ 5 4 0を付した予備加圧ライン 5 3 5を介して ΙίίΐΗ処理容器 5 0 1に接続されており、 当該予備加圧ライン 5 3 5を 介して、 前記混合器 5 0 2を通さずに嫌己処理容器 5 0 1の圧力を上昇させるこ とが可能な構造となっている。
また、 危険防止のために、 前記混合器 5 0 2と前記加圧ライン 5 1 1にはそれ ぞれ圧力開放弁 5 3 6、 およぴ圧力開放弁 5 3 7が設置されており、 圧力の異常 上昇を防止している。 前記処理容器 5 0 1は排気ライン 5 0 3を通じて、 背圧弁 5 0 4で所定の圧力に調整されるので圧力の異常上昇を防止できる。
次に、 前記基板処3¾置 5 0 0を用いて、 本努明による基板処理方法を行う際 のプロセスの流れに関して以下に説明する。
[第 3実施例]
前記したように、 本発明による基板処理方法は大別して前記第 1の工程および 第 2の工程からなる。 次に、 それぞれの第 1の工程おょぴ第 2の工程についての 詳細な流れを、 図面に基づき、 説明する。 ただし、 先に説明した部分には同一の 参照符号を使用して、 説明を省略する。
はじめに、 第 3実施例として、 前記第 1の工程の内容のプロセスフローを図 3 に示す。
図 3を参照するに、 前記第 1の工程はステップ 1 0 1 (図中 S 1 0 1と示す。 以下同様) 〜: 1 0 7よりなる。
まず、 前記基板保持台 5 0 1 Αに載置されたウェハ Wの処理にあたり、 ステツ プ 1 0 1において前記パルプ 5 0 6、 5 3 4および 5 3 8を開放して前記真空ポ ンプ 5 0 7によって、 前記処理容器 5 0 1および前記混合器 5 0 2の真空 気を 行う。 当該真空排気終了後、 前記バルブ 5 0 6 , 5 3 4および 5 3 8を閉じる。 または、 前記バルブ 5 3 4を開放せず前記バルブ 5 0 9を開放して前記混合器 5 0 2は処理容器 5 0 1を通じて真空排気を行うことが可能である。
次に、 ステップ 1 0 2において、 前記バノレブ 5 1 4および前記パノレブ 5 4 0 a を開放して嫌己処理容器 5 0 1に C 02を供給する。その際前記加圧ポンプ 5 1 7 aを用いて加圧を行い、 さらに前記処理容器 5 0 1および前記混合器 5 0 2を含 む前記エリア 5 0 1 Bはヒータによってカ卩熱されているために前記処理容器 5 0 1内の co2は、 当該 co2の臨界点を超える条件にされる。 また、 前記加圧ポン プ 5 1 7 aはチラ一によつて冷却されているため、 C 02がガス状になることを防 ぎ、 C 02を液体状態で加圧できる。 なお、 当該 C〇2の臨界点は、 温度 3 1 . 0 3 °C、 圧力 7 . 3 8 MP aであり、 前記処理容器 5 0 1は当該臨界点以上の温度 、圧力に制御されて、前記前記処理容器 5 0 1は超臨界状態の C 02で満たされた 状態となる。 その後、 前記バルブ 5 1 4および tiff己パルプ 5 4 0 aは閉じる。 こ のように予め前記処理容器 5 0 1内を超臨界状態の C 02で満たしておくことで、 この後で超臨界状態の C 02を含む処理媒体が前記処理容器 5 0 1に導入された 場合に当該処理媒体が超臨界状態を維持でき、 超臨界状態の高濃度に溶解した処 理媒体が保持できる。 また、 当該処理容器 5 0 1が所定の圧力となった状態で、 前記基板ヒータ 5 0 1 aによつて前記ゥェハ Wが加熱されて 1 0 0 °C〜 4 0 0 °C の温度にされる。
次にステップ 1 0 3において、 前記バルブ 5 3 2を開 ¾T ることで、 前記ェッ チング剤供給ライン 5 3 1力ら、 エッチング剤が減圧状態の前記混合器 5 0 2に 供給され、 t!ft己混合器 5 0 2内は当該エッチング剤で満たされ、 所定の時間経過 後編己パルプ 5 3 2が閉じられる。
次にステップ 1 0 4において、 前記バルブ 5 1 6が開放されて予めチラ一で冷 却された前記加圧ポンプ 5 1 7によって前記 C O2が前記混合器 5 0 2に導入さ れ超臨界状態まで加圧されることにより前記エッチング剤は十分に拡散 ·混合し て処理媒体を形成する。 所定の超臨界圧力で前記バルブ 5 1 6が閉じられる。 次にステップ 1◦ 5において前記バルブ 509が開放されて、 超臨界状態の C 02を含む当該処纖体が、前記混 502より前記処理容器 501に導入され る。 また、 必要に応じて圧力調整のために ttrf己バルブ 516 aの開閉がなされ、 前記混合器 502内の処 某体が前記処理容器 501に輸送される。
次に、 ステップ 106においては当該処理媒体によって、 基板処理がなされる 。 また、 ステップ 102の前記処理容器の超臨界状態への予備加圧はステツプ 1 04とステップ 105の間で行ってもよい。超臨界状態の CO2およぴェツチング 剤によって、 被処理勘反表面の、 金属膜または金属窒化膜、 例えば T a膜または T a N膜表面に形成された当該 T aまたは T a Nの酸化膜を除去する反応が生じ る。 前記エッチング剤としては、 キレート剤、 ハロゲン化合物、 酸、 ァミンなど が使用可能である。
具体的には、 たとえばキレート剤としては H (へキサフルォロァセチルァセト ネート) が使用可能であり、 以下の反応が生じて T aもしくは T a N膜表面の酸 化膜を除去する。
TaOx+2 XH (h f a c) →T a (h f a c) X + H20
TaNOx+2 XH (h f a c) →T a (h f a c) x + H20 + N2
また、 酸としては HC 1が使用可能であり、
T a Ox + HC 1→T a C 1 X + H20
TaNOx + HC l→Ta C 1 x + H20 + N2
で表される反応により、 同様に酸化膜を除去する。
また、ハロゲンとしては C 1 F3を用いることが可能であり、その場合図 3のス テツプ 103において、前記バルブ 530を開放して前記混合器にさらに H2を導 入して処理媒体に H2を添加することによつて以下の
T aOx + C 1 F3+H2— >Ta C 1 xFy + H20 + O2
T aNOx + C 1 F3+H2→Ta C 1 XF y + H20 + N2+02
で示す反応によっても同様の効果を得ることができる。
このように T aもしくは T a N膜表面の酸化膜を除去することで、 この後の第 2の工程において形成される Cu膜と、 当該 Taもしくは TaN膜との密着性を 向上させることができ、 さらに当該酸化膜の影響による C u膜形成時のボイドの 発生を防止して、 微細パターンへの C u膜の良好な成膜を行うことが可能となる 他にもエッチング剤としては、 ァセチルアセトン、 1 , 1, 1一トリフルォロ 一ペンタン一 2, 4 _ジオン、 2 , 6—ジメチノレペンタン一 3, 5—ジオン、 2 , 2 , 7—トリメチロタタン _ 2, 4ージオン、 2, 2, 6, 6—テトラメチル ヘプタン一 3 , 5—ジオン、 E D TA (エチレンジァミン四酢酸)、 NT A (ニト リロ三酢酸)、 酢酸、 蟻酸、 シユウ酸、 マレイン酸、 グリコーノレ酸、 クェン酸、 リ ンゴ酸、 乳酸、 アミノ酸、 トリエタノールァミンなどが使用可能である。
次にステップ 1 0 7において、 前記バルブ 5 0 4および 5 3 8を開放して前記 処理容器 5 0 1および前記混合器 5 0 2内の処理媒体を排出して、 前記第 1のェ 程を終了する。
また、 本実施例においては、 T aもしくは T a N表面に形成された酸化膜の除 去の例を示したが、 本実施例と同じ方法で、 T i、 T i N、 W、 W i Nの表面に 形成された酸化膜などをェツチングする方法にも適用することが可能であり、 実 施例中に記述した T a、 T a Nの場' と同様の効果を得ることができる。
なお、 前記ステップ 1 0 7の後に、 さらに図 4で示すようにリンス工程を'付カロ してもよい。
[第 4実施例]
図 4は、 図 3で示した前記第 3実施例の変形例である。 ただし図中、 先に説明 した部分には同一の参照符号を付し、 説明を省略する。
図 4を参照するに、 ステップ 1 0 1〜ステップ 1 0 7までは図 3で示した第 3 実施例の場合と同一である。
ステップ 1 0 8において、 前記バルブ 5 0 4を閉じて、 前記バルブ 5 1 6を開 放して前記混合器および前記処理容器 5 0 1内を超臨界状態の C O2で満たす。そ の後前記パルプ 5 1 6を閉じる。
その後、 ステップ 1 1 0におレ、て再ぴ前記パルプ 5 0 4を開放することで前記 処理容器 5 0 1および前記混合器 5 0 2から前記超臨界状態の C O2を排出する。 このステップ 1 0 8からステップ 1 1 0の工程を設けることで、 前記処理容器 5 0 1内壁や、 前記ウェハ Wに付着していた未反応の処理媒体や副生成物を前記処 理容器 5 0 1の外へと排出することが可能となる。 また、 必要に応じてステップ 1 0 9によって前記ステップ 1 0 8より前記ステップ 1 0 7に工程を戻して、 こ のステップ 1 0 7からステップ 1 0 8のリンス工程を複数回繰り返すことにより 、 さらに前記したような残留物や反応副生成物を取り除くことができる。
[第 5実施例]
次に、 第 5実施例として、 前記第 2の工程のプロセスフローの内容を図 5に示 す。 前記第 2の工程は、 前記第 1の工程による被処理基板のクリーニングの後で 、 C u膜を形成する工程である。 当該 C u膜を形成するには、 C u成膜プリカ一 サとして固体原料を用いる場合と液体原料を用いる があるが、 まず、 図 5に は固体原料を用いる;^のプロセスフローを示す。
図 5を参照するに、 まずステップ 3 0 1および 3 0 2は、 前記ステップ 1 0 1 および 1 0 2と同一である。 但しウェハ Wは、 編己 ヒータ 5 0 1 aによって 1 5 0 °C〜4 0 0 °Cに保持される。
次にステップ 3 0 3において、 前記バルブ 5 3 0を開放して H2を前記 H2供給 ライン 5 2 9より前記混合器 5 0 2に所定量導入した後、 前記バルブ 5 3 0を閉 じる。 編己混合器 5 0 2は、 当該 H2で満たされる。
次にステップ 3 0 4において、 前記固体原料容器 5 2 5に保持された C u成膜 プリカーサである前記固体原料 5 2 6を前記混 5 0 2に導入する。 まず、 本 ステップ 3 0 4に移行するにあたって予め前記バルブ 5 1 4および 5 2 8を開放 し、また前記加圧ポンプ 5 1 7を用いて前記固体原料容器 5 2 5を C 02で加圧状 態とする。 また前記処理容器 5 2 5は前記ェリア 5 0 1 Bの範囲であり、 ヒータ で加熱されているため、前記固体原料容器 5 2 5内では超臨界状態の C 02が生成 される。 さらに当該超臨界状態の C 02はプリカーサの溶解度が高いため、当該超 臨界状態の C 02に、前記 C u成膜プリカーサである例えば C u+2 (へキサフルォ 口ァセチルァセトネート) 2である固体原料 5 2 6が十分に溶解して処理媒体が形 成される。 そこで本ステップ 3 0 4において前記バルブ 5 2 7を開放して当該処 理媒体を前記混合器 5 0 2に供給する。 その際、 前記固体原料容器 5 2 5の圧力 を維持するために、 必要に応じて歸己パルプ 5 2 8を開閉する。 所定の時間前記 バスレブ 5 2 7を開放した後、 前記パノレブ 5 2 7を閉じる。 次にステップ 305において、 ttff己パルプ 509が開放されて、 前記混^: 5 02から超臨界状態の C 02を含む当該処理媒体が、編己混合器 502より廳己処 理容器 501に導入される。 また、 必要に応じて圧力調整のために前記バルブ 5 16の開閉がなされ、 C02の超臨界状態が維持される。
次のステップ 306におレ、て、 被処3¾板である編己ゥェハ W上に、 以下 Cu++ (h f a c) 2+H2→Cu + 2H (h f a c)
で示す反応が生じて Cu膜の成膜が行われる。 但し、 式中、 h f a cはへキサフ ルォロアセチルァセトネートを示す。 所定時間経過後、 次のステップ 307に移 行する。 なお、 本ステップにおいて、 前記ウェハ Wは、 前記基板ヒータ 50 l a によっておよそ 150。C〜400°Cに維持される。
藤己したように超臨界状態の co2は、非常に流動性が高く、拡散性に富むため 、 例えば 0. 1 μηι以下の微細なパターンの底部や側壁にも、 効率よく当該 Cu 膜を成膜することができ、 さらに当該 Cu膜が形成される前記 T aまたは T a N 膜表面は前記第 1の工程にぉレ、て酸化膜が除去されて清浄な表面となっているた め、 当該 Cu膜との密着性がよく、 さらにボイドの形成が無く良好なカバレッジ 特性を得ることができる。
次のステップ 307は、 前記ステップ 107と同じである。
また、 Cu成膜プリカーサは、 本実施例では Cu (へキサフルォロアセチル ァセトネート) 2を用いたが、他に CU (ァセチルァセトネート) 2、および CU +2 (2, 2, 6, 6—テトラメチル一 3, 5—ヘプタンジオン) 2などを用いても 同様の結果を得ることが可能である。
また、前記 Cu成膜プリカーサが、超臨界状態の C02に高い溶解性を示す例を 、 図 6A、 図 6 Bに示す。 (図 6 A、 R.E.Sievers and J.E.Sadlowski, Science 201(1978)217、 図 6 B、 A.RLagalante, B.N.Hansen, T.J.Bruno, Inorg.Chem, 34(1995))
図 6 Aは、 Cu成膜プリカーサである、 Cu+2 (へキサフルォロアセチルァセ トネート) 2の飽和蒸気圧曲線である。例えば、 40°Cの際の飽和蒸気圧はおよそ 0. 01 To r rであることがわかる。
一方、 図 6Bは、 313. 15K (40°C) において、超臨界状態の C02中の C -2 (へキサフルォロアセチルァセトネート) 2の分圧を示したものである。 例 えば、 超臨界領域である 1 5 MP a時において、 当該分圧はおよそ 1 0 0 O P a 以上であり、 前記した通常の飽和状態の場合に比較して非常に高密度の C u+2 ( へキサフルォロアセチルァセトネート) 2が超臨界状態の C 02中に存在する、 す なわち、 高い溶解性を示していることがわかる。
このように、 高い溶解性を持ちながら、 流動性と拡散性が良好である超臨界状 態の媒体をもちいることで、 成膜レートを維持しながら、 微細パターンの力バレ ッジが良好な成膜を行うことが可能となっている。
[第 6実施例]
また、 前記第 5実施例は以下図 7に示す、 第 6実施例のように変更が可能であ る。 ただし図中、 先に説明した部分には同一の参照符号を付し、 説明を省略する 図 7を参照するに、 図 7ではステツプ 3 0 8〜 3 1 0が付加されてレ、るが、 こ れは前記ステツプ 1 0 8〜 1 1 0と同一のリンス工程であり、 同様に、 前記処理 容器 5 0 1内部や前記ウェハ W上の残留物や副生成物を取り除く効果がある。
[第 7実施例]
次に、 前記第 2の工程のプロセスフローの例として、 C u成膜プリカーサに液 体原料を用レヽた場合の例を示す。
図 8は、 C u成膜プリカーサに液体原料を用いた場合の前記第 2の工程のプロ セスフローを示す図である。 ただし図中、 先に説明した部分には同一の参照符号 を付し、 説明を省略する。
図 8を参照するに、 ステップ 3 1 1およびステップ 3 1 2は、 前記ステップ 3 0 1およびステップ 3 0 2と同一である。 但し、 ウェハ Wは前記基板ヒータ 5 0 l aによって 1 0 0 °C〜3 5 0 °Cに維持される。
次にステップ 3 1 3において、 前記ガスライン 5 2 2から供給される例えば A rなどの不活性ガスによって押し出された、 C u成膜プリカーサの例えば C u+i
(へキサフルォロアセチルァセトネート) (トリメチルビニルシラン)である前記 液体原料 5 2 3力 嫌己液体原;^給ライン 5 1 8から Mffi状態の前記混合器 5 0 2に供給され、 所定の時間経過後前記バルブ 5 3 2が閉じられる。 次にステップ 3 1 4において、 前記バルブ 5 1 6が開放されて超臨界状態の C 02が前記混合器 502に導入され、 当該超臨界状態の C02と前記液体原料 52 3が十分に拡散 ·混合して処理媒体を形成する。 所定の時間経過後前記バルブ 5 1 6が閉じられる。
次にステップ 3 1 5において前記バルブ 509が開放されて、 超臨界状態の C 02を含む当該処理媒体が、前記混合器 502より前記処理容器 501に導入され る。 また、 必要に応じて圧力調整のために ΙίΠ3バルブ 5 1 6の開閉がなされ、 C o2の超臨界状態が維持される。
ステップ 3 1 6において、 彼処 板である編己ウェハ W上に、 以下
C u+ (h f a c) ( t m v s ) →C u+ (h f a c) + t m v s
•2 Cu+ (h f a c) →Cu + Cu++ (h f a c) 2
で示す反応が生じて Cu膜の成膜が行われる。 但し式中、 h f a cはへキサフル ォロアセチルァセトネートを示し、 t mv sはトリメチルビ-ルシランを示して いる。 所定時間経過後、 次のステップ 3 1 7に移行する。 なお、 本ステップにお いて、 前記ウェハ Wは、 維己基板ヒータ 50 1 aによっておよそ 1 00°C〜3 5 o°cに維持される。
前記したように超臨界状態の co2は、非常に流動性が高く、拡散性に富むため 、 例えば 0. 1 μ m以下の微細なパターンの底部や側壁にも、 効率よく当該 C u 膜を成膜することができ、 良好なカバレッジ特性を得ることができる。
次のステップ 3 1 7は、 前記ステップ 30 7と同じである。
また、 Cu成膜プリカーサは、 本実施例では Cu+i (へキサフルォロアセチル ァセトネート) (トリメチノレビニノレシラン) を用いたが、他に C u+i (へキサフル 才ロアセチルァセトネート) とシリロレフインリガンドを含み、 前記シリロレフ インリガンドは、了リルォキシトリメチルシリル( a o t m s)、 ジメチルァセチ レン (2—ブチン)、 2—メチル一1—へキシン一 3—イン (MHY)、 3—へキ シン一 2, 5—ジメトキシ (HDM)、 1, 5—シクロォクタジェン (1, 5— C OD)、およびビュルトリメトキシレン (VTMOS)からなる群から選択される プリカーサを用いても同様の結果を得ることが可能である。
さらに、 本実施例にて用いる処理媒体に、 以下のような添加物をカ卩えて成膜さ れる C u膜の膜質を改善しても良レ、。
例えば、前記処理媒体に H20を添 することで、第 3〜4実施例で ΜΙΒした C u拡散防止膜上に C u膜を成長させる際のインキュベーションタイムを »して 実質的な成膜速度を向上させることができる。
また、 例えば (CH3) Iや (C2H5) Iを添加することで、 微細パターンに C u膜を形成する際、 例えば 0 . Ι μ ΐη以下のビアホールでもボイドが発生するこ となく高品質の C u膜が成膜できる。 ( Kew-Chan Shim, Hyun-Bae Lee, Oh-Kyum won, Hyung-Sang Park, Wonyong Koh and Sang-Won Kang, "Bottom-up Filling of Submicrometer Features in Catalyst-Henhanced Chemical Vapor Deposition ", J.Electorochem.Soc. 149(2) (2002)G109-G113) [第 8実施例] ' また、 前記第 7実施例は以下図 9に示す、 第 8実施例のように変更が可能であ る。 ただし図中、 先に説明した部分には同一の参照符号を付し、 説明を省略する 図 9を参照するに、 図 9ではステップ 3 1 8〜3 2 0のリンス工程が付加され ているが、 これは前記ステップ 1 0 8〜1 1 0と同一であり、 同様に、 前記処理 容器 5 0 1内部や前記ウェハ W上の残留物や副生成物を取り除く効果がある。
[第 9実施例]
また、 ここまで前記第 1の工程および第 2の工程に関して説明したが、 前記第 1の工程および第 2の工程はレ、ずれも 処理装置 5 0 0にお 、て行われる。 しかし、 以下に示すように、 例えば前記第 1の工程と前記第 2の工程をそれぞ れ別の基板処理装置または処理容器で行うようにすることが可能である。 例えば 、 前記第 1の工程を行う基板処理装置 5 0 O A, 前記第 2の工程を行う基板処理 装置 5 0 0 Bの例を以下に示す。
図 1 0には、 前記基板処理装置 5 0 0 Aを示す。 ただし図中、 先に説明した部 分には同一の参照符号を付し、 説明を省略する。
図 1 0を参照するに、 鎌処理装置 5 0 0 Aでは、 前記基板処職置 5 0 0と 比較した場合に、 前記第 2の工程における C uの成膜工程が行われないため、 前 記固体原難給ライン 5 1 9および前記固体原料容器 5 2 5力 S省略されている。 前記基板処理装置 5 0 O Aにおいては、 第 3および第 4実施例で前記した前記第 1の工程のみが行われ、 次の第 2の工程を行うために基板処理装置 5 0 0 Bにゥ ェハ Wが輸送される。
図 1 1には、 嫌己第 2の工程が行われる編己基板処理装置 5 0 0 Bを示す。 た だし図中、 先に説明した部分には同一の参照符号を付し、 説明を省略する。 図 1 1を参照するに、 処理装置 5 0 0 Bでは、 前記基板処3¾置 5 0 0と 比較した場合に、 前記第 1の工程を行わないため、 編己エッチング剤供給ライン
5 3 1が省略されている。 前記基板処3¾置 5 0 0 Bでは、 前記基板処理装置 5 0 O Aにおレ、て前記第 1の工程が施されたゥェハ Wに対して、 第 5〜 8実施例で 前記した前記第 2の工程が行われる。
このように、 前記第 1の工程と第 2の工程を別の ¾|反処¾¾置で行うことが可 能であり、 前記第 1の工程と第 2の工程を基板処理装置 5 0 0にお 、て実行した 場合と同様の結果を得ることができる。
また、 被処理基板を輸送する際は酸素を含む大気に曝さないことが重要であり 、 下もしくは不活性ガス中を搬送する必要がある。
[第 1 0実施例] ■
次に、 本発明の基板処理方法を用いた半導体装置の製造工程について、 以下図
1 2 A〜1 2 Fにおいて手順を追って説明する。
まず、 図 1 2 Aを参照するに、 シリコンからなる半導体基板上に形成された M O S卜ランジスタなどの素子 (図示せず) を覆うように絶縁膜、 例えばシリコン 酸化膜 6 0 1が形成されている。 当該素子に電気的に接続されている、 例えば W からなる配線層 (図示せず) と、 これに接続された、 例えば C uからなる配線層
6 0 2が形成されている。
また、 前記シリコン酸化膜 6 0 1上には、 C u層 6 0 2を覆うように、 第 1の 絶縁層 6 0 3が形成されている。 嫌己絶縁層 6 0 3には、 溝部 6 0 4 aおよぴホ ール部 6 0 4 bが形成されている。 前記溝部 6 0 4 aおよびホール部 6 0 4 bに は、 配線層である C u層 6 0 4が形成され、 これが前述の C u層 6 0 2と電気的 に接続された構成となっている。 ここで前記第 1の絶縁層 6 0 3と前記 C u層 6 0 4の撤虫面おょぴ前記 C u層 6 0 2と前記 C u層 6 0 4の接触面にはパリァ層
羞替 え用 紙(規則 26) 6 0 4 cが形成されている。 前記バリア層 6 0 4 cは、 嫌己 C u層 6 0 4力、ら前 記第 1の絶縁層 6 0 3へ C uが拡散するのを防止すると共に、 前記 C u層 6 0 4 と ΙίίΙ己第 1絶縁層 6 0 3の密着性を向上させる密着層の機能をはたしている。 ま た、 前記バリア層 6 0 4 cは、 金属と、 当該金属窒化膜の構成、 例えば T aと T a N力、らなる。 さらに、 編己 C u層 6 0 4および前記第 1の絶縁層 6 0 3の上を 覆うように第 2の絶縁層 6 0 6が形成されている。 本実施例では、 前記第 2の絶 縁層 6 0 6に、 本発明による基板処理方法を適用して、 C u層およびバリア層を 形成する。
次に、 図 1 2 Bを参照するに、 編己第 2の絶縁層には、 溝部 6 0 7 aおよぴホ ール部 6 0 7 bがドライエッチング法によって形成される。
次に、 図 1 2 Cにおいて、 前記第 2の絶縁膜 6 0 6上おょぴ前記 C u層 6 0 4 の露出面に、 ノ リア層 6 0 7 cの成膜を行う。 前記バリア層 6 0 7 cは、 例えば この場合 T a膜と T a N膜からなり、 T a膜を成膜した後 T a N膜を成膜して、 T a T a Nからなるバリア層 6 0 7 cを形成する。
次に図 1 2 Dにおいて、 例えば ¾R処理装置 5 0 0において、 本発明による基 板処理方法の前記第 1の工程を適用する。 前記したように、 超臨界状態の co2 とエッチング剤を用いることにより、 処理勘反表面をクリーニングして、 図 1 2 Cにおいて成膜された T a Z'T a N表面の酸化膜を除去して、 前記バリア層 6 0
7 cと、 次の工程にて形成される C u層との密着性を向上させると共に、 ボイド の発生を防止する。
次に図 1 2 Eにおいて、 本発明による第 2の工程を適用し、 前記バリア層 6 0 7 cの上に C u層 6 0 7を形成する。 ここで、 前記したように、 超臨界状態の C 02を用いているため、 C u成膜プリカーサが溶解した超臨界状態の C 02が良好 な拡散性を有するため、 微細な前記ホール部 6 0 7 bおよび溝部 6 0 7 a部の底 部や側壁部にも良好なカバレッジで前記 C u層 6 0 7を形成することができる。 次に、 図 1 2 Fにおいて、 例えば CMP法により、 前記 C u層 6 0 7上部およ ぴ前記バリア膜 6 0 7 c力 S研削されて、 前記第 2の絶縁層 6 0 6の C u配線が完 成する。 また、 この工程の後に、 さらに前記第 2の絶縁層の上部に第 2 + n (n は自然数) の絶縁層を形成し、 それぞれの絶縁層に本発明による基板処理方法を
差替え用 紙 '(規則 26) 適用して C u配線を形成することが可能である。 また、 tiff己第 1の絶縁層に形成 された嫌己バリア膜 6 0 4 cのクリ一ユングおょぴ C u層 6 0 4の形成にも本発 明を適用することが可能である。
以上、 本発明を好ましい実施例について説明したが、 本発明は上記の特定の実 施例に限定されるものではなく、 特許請求の範囲に記載した要旨内において様々 な変形 '変更が可能である。 産業上の利用可能性
本発明によれば、 C u拡散防止膜が成膜された微細パターンへの C u膜の形成 の場合において、 超臨界状態の媒体を用いたタリーエング方法で被処理基板の表 面の当該 C u拡散防止膜をクリーニングし、 さらに超臨界状態の媒体を用いた C uの成膜を行うことで、 当該微細パターンに密着性良く、 ボイドフリーで力バレ ッジ良く C u膜の成膜をおこなうことが可能となる。

Claims

請求の範囲
1 . 超臨界状態の媒体を含む第 1の処理媒体を被処理基板上に供給して被処理基 板表面の金属を含む膜をクリーニングする第 1の工程と、
lift己被処理基板上に前記超臨界状態の媒体を含む第 2の処理媒体を供給して C u膜を成膜する第 2の工程を含むことを特徴とする基板処理方法。
2. 前記金属を含む膜は、 C u拡散防止膜であることを特徴とする請求項 1記載 の纖処理方法。
3. 前記金属は T i, T aおよ のレ、ずれかであることを特徴とする請求項 2 記載の鎌処理方法。
4. 前記第 1の処理媒体は、 前記超臨界状態の媒体にエッチング剤を添加したも のであることを特徴とする請求項 1記載の基板処理方法。
5. 前記ェツチング剤はキレート剤、 ハ口ゲン化合物および酸のレ、ずれかである ことを特徴とする請求項 4記載の S«処理方法。
6 . 前記キレート剤は、 H (へキサフルォロアセチルァセトネート) であること を特徴とする請求項 5記載の基板処理方法。
7.前記ハロゲン化合物は、 C 1 F 3であることを特徴とする請求項 5記載の基板 処理方法。
8. 前記酸は、 HC 1であることを特徴とする請求項 5記載の基板処理方法。
9. 前記第 1の工程は、 前記第 1の処理媒体による前記クリーニングを行った後 で、 前記超臨界状態の媒体によつて前記被処理基板表面の前記第 1の処理媒体お ょぴ副生成物を除去する工程をさらに含むことを特徴とする請求項 1〜8のうち、 ヽずれか 1項記載の S¾処理方法。
10. 編己第 2の処理媒体は、 前記超臨界状態の媒体に銅を含む前駆体化合物を 添加したものであることを特徴とする請求項 1記載の基板処 ¾fr法。
11. 前記銅を含む前駆体化合物は、 Cu+2 (へキサフルォロアセチルァセトネ ート) 2、 Cu+2 (ァセチルァセトネート) 2、 および Cu+2 (2, 2, 6, 6—テ 卜ラメチノレー 3, 5一へプタンジオン) 2のレ、ずれかであることを特徴とする請求 項 10記載の基板処 法。
12. 前記銅を含む前駆体化合物は、 Cu+1 (へキサフルォロアセチルァセトネ ート) とシリロレフインリガンドを含み、 前記シリロレフィンリガンドは、 トリ メチノレビニノレシラン ( t m V s )、ァリルォキシトリメチノレシ'リル(a o t m s )、 ジメチルアセチレン (2—プチン)、 2ーメチル一 1一へキシン一 3一^ {ン (MH Y)、 3 キシン一 2, 5—ジメ トキシ (HDM)、 1, 5—シクロォクタジェ ン (1, 5— COD)ゝおよびビュルトリメトキシレン (VTMOS) からなる群 から選択されることを特徴とする請求項 10記載の 処理方法。
13. 前記第2の工程は、 前記 Cu膜を形成した後で、 前記超臨界状態の媒体に よって tfff己被処理基板表面の第 2の処理媒体おょぴ副生成物を除去する工程をさ らに含むことを特徴とする請求項 1記載の基板処理方法。
14.前記超臨界状態の媒体は、超臨界状態である C〇2であることを特徴とする 請求項 1記載の基板処理方法。
15. 被処«板を処理する処理容器において、 前記第 1の工程および前記第 2 の工程が行われることを特徴とする請求項 1記載の 処理方法。
16. 編己第 1の工程が觸己被処纏板を処理する処理容器で行われ、 前記第 2 の工程が別の処理容器で行われることを特徴とする請求項 1記載の基板処 »法。
1 7. 請求項 1記載の基板処理方法を含むことを特徴とする半導体装置の製造方 法。
PCT/JP2003/016989 2003-01-27 2003-12-26 半導体装置 WO2004081255A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2003292700A AU2003292700A1 (en) 2003-01-27 2003-12-26 Semiconductor device
US11/190,127 US20050260846A1 (en) 2003-01-27 2005-07-27 Substrate processing method, semiconductor device production method, and semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-17949 2003-01-27
JP2003017949A JP2004225152A (ja) 2003-01-27 2003-01-27 基板処理方法および半導体装置の製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/190,127 Continuation US20050260846A1 (en) 2003-01-27 2005-07-27 Substrate processing method, semiconductor device production method, and semiconductor device

Publications (1)

Publication Number Publication Date
WO2004081255A1 true WO2004081255A1 (ja) 2004-09-23

Family

ID=32904961

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/016989 WO2004081255A1 (ja) 2003-01-27 2003-12-26 半導体装置

Country Status (6)

Country Link
US (1) US20050260846A1 (ja)
JP (1) JP2004225152A (ja)
KR (1) KR20050094053A (ja)
CN (1) CN1745193A (ja)
AU (1) AU2003292700A1 (ja)
WO (1) WO2004081255A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100734713B1 (ko) 2004-10-19 2007-07-02 동경 엘렉트론 주식회사 성막 방법

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004228526A (ja) * 2003-01-27 2004-08-12 Tokyo Electron Ltd 基板処理方法および半導体装置の製造方法
JP4815603B2 (ja) 2004-06-04 2011-11-16 国立大学法人山梨大学 超臨界流体又は亜臨界流体を用いた酸化物薄膜、又は金属積層薄膜の成膜方法、及び成膜装置
JP2006061862A (ja) 2004-08-30 2006-03-09 Univ Of Yamanashi 超臨界流体中に連続的に低圧の気体を添加する方法およびそのための装置
US7008853B1 (en) * 2005-02-25 2006-03-07 Infineon Technologies, Ag Method and system for fabricating free-standing nanostructures
CN106733945B (zh) * 2016-12-30 2022-11-29 上海颐柏热处理设备有限公司 一种超临界状态清洗系统及方法
JP7362300B2 (ja) 2019-06-04 2023-10-17 東京エレクトロン株式会社 基板処理装置及びその制御方法
TW202325416A (zh) * 2021-08-05 2023-07-01 日商東京威力科創股份有限公司 基板處理方法及基板處理裝置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02209729A (ja) * 1989-02-09 1990-08-21 Matsushita Electric Ind Co Ltd 半導体装置の製造方法及び異物除去装置
JPH09139374A (ja) * 1995-11-15 1997-05-27 Hitachi Ltd 表面処理方法および装置ならびにこれにより得られた素子
JPH10321991A (ja) * 1997-05-21 1998-12-04 Fujitsu Ltd 回路基板の配線形成方法
WO1999010167A1 (fr) * 1997-08-27 1999-03-04 Kabushiki Kaisha Toyota Chuo Kenkyusho Objet enrobe et procede de fabrication de cet objet
JPH1187306A (ja) * 1997-09-12 1999-03-30 Nippon Telegr & Teleph Corp <Ntt> 超臨界乾燥装置
EP0913497A1 (en) * 1997-09-16 1999-05-06 Ebara Corporation Method and apparatus for plating a substrate
JPH11216437A (ja) * 1998-01-30 1999-08-10 Sharp Corp 超臨界流体洗浄方法及び超臨界流体洗浄装置
JP2000063891A (ja) * 1998-08-17 2000-02-29 Nippon Telegr & Teleph Corp <Ntt> 超臨界二酸化炭素による洗浄装置
WO2001063005A1 (fr) * 2000-02-22 2001-08-30 Cosmo Research Institute Procede de pretraitement de plastique pour revetement et procede de revetement
WO2002016673A1 (en) * 2000-08-24 2002-02-28 Hideo Yoshida Electrochemical treating method such as electroplating and electrochemical reaction device therefor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5789027A (en) * 1996-11-12 1998-08-04 University Of Massachusetts Method of chemically depositing material onto a substrate
US6066196A (en) * 1998-09-18 2000-05-23 Gelest, Inc. Method for the chemical vapor deposition of copper-based films and copper source precursors for the same
CN1216415C (zh) * 2000-04-25 2005-08-24 东京毅力科创株式会社 沉积金属薄膜的方法和包括超临界干燥/清洁组件的金属沉积组合工具
US7357138B2 (en) * 2002-07-18 2008-04-15 Air Products And Chemicals, Inc. Method for etching high dielectric constant materials and for cleaning deposition chambers for high dielectric constant materials

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02209729A (ja) * 1989-02-09 1990-08-21 Matsushita Electric Ind Co Ltd 半導体装置の製造方法及び異物除去装置
JPH09139374A (ja) * 1995-11-15 1997-05-27 Hitachi Ltd 表面処理方法および装置ならびにこれにより得られた素子
JPH10321991A (ja) * 1997-05-21 1998-12-04 Fujitsu Ltd 回路基板の配線形成方法
WO1999010167A1 (fr) * 1997-08-27 1999-03-04 Kabushiki Kaisha Toyota Chuo Kenkyusho Objet enrobe et procede de fabrication de cet objet
JPH1187306A (ja) * 1997-09-12 1999-03-30 Nippon Telegr & Teleph Corp <Ntt> 超臨界乾燥装置
EP0913497A1 (en) * 1997-09-16 1999-05-06 Ebara Corporation Method and apparatus for plating a substrate
JPH11216437A (ja) * 1998-01-30 1999-08-10 Sharp Corp 超臨界流体洗浄方法及び超臨界流体洗浄装置
JP2000063891A (ja) * 1998-08-17 2000-02-29 Nippon Telegr & Teleph Corp <Ntt> 超臨界二酸化炭素による洗浄装置
WO2001063005A1 (fr) * 2000-02-22 2001-08-30 Cosmo Research Institute Procede de pretraitement de plastique pour revetement et procede de revetement
WO2002016673A1 (en) * 2000-08-24 2002-02-28 Hideo Yoshida Electrochemical treating method such as electroplating and electrochemical reaction device therefor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BLACKBURN J.M. ET AL.: "Deposition of conformal copper and nickel films from supercritical carbon dioxide", SCIENCE, vol. 294, 5 October 2001 (2001-10-05), pages 141 - 145, XP002977531 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100734713B1 (ko) 2004-10-19 2007-07-02 동경 엘렉트론 주식회사 성막 방법

Also Published As

Publication number Publication date
CN1745193A (zh) 2006-03-08
KR20050094053A (ko) 2005-09-26
US20050260846A1 (en) 2005-11-24
AU2003292700A1 (en) 2004-09-30
JP2004225152A (ja) 2004-08-12

Similar Documents

Publication Publication Date Title
US7615486B2 (en) Apparatus and method for integrated surface treatment and deposition for copper interconnect
JP5489717B2 (ja) 金属堆積のために基板表面を調整する方法および統合システム
KR100644005B1 (ko) 기판 처리 방법 및 반도체 장치의 제조 방법
KR102053517B1 (ko) 루테늄 배선의 제조 방법
WO2008053625A1 (fr) Procédé de dépôt de film et appareillage pour traiter des substrats
US8562743B2 (en) Method and apparatus for atomic layer deposition
TWI374951B (en) Integrated electroless deposition system
WO2007046204A1 (ja) 基板処理装置,基板処理方法,プログラム,プログラムを記録した記録媒体
TWI745427B (zh) 成膜方法、成膜系統及其記憶媒體
US20080124924A1 (en) Scheme for copper filling in vias and trenches
KR101094125B1 (ko) 배리어와 구리 금속화물 간에 낮은 계면 산화물 접촉을 위한 방법 및 시스템
US6179925B1 (en) Method and apparatus for improved control of process and purge material in substrate processing system
WO2004081255A1 (ja) 半導体装置
US8034403B2 (en) Method for forming copper distributing wires
US20060099348A1 (en) Deposition method
JP2006120713A (ja) 成膜方法
US20120040085A1 (en) METHOD FOR FORMING Cu FILM AND STORAGE MEDIUM
US20060121307A1 (en) Film deposition method
US7846839B2 (en) Film forming method, semiconductor device manufacturing method, semiconductor device, program and recording medium
JP4959122B2 (ja) バナジウム含有膜の形成方法
JP4911583B2 (ja) Cvd装置
JP2006093551A (ja) チタン含有膜の形成方法
JP2006148089A (ja) 成膜方法
JP2009044056A (ja) 銅膜作製方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020057013741

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20038A93041

Country of ref document: CN

Ref document number: 11190127

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020057013741

Country of ref document: KR

WWR Wipo information: refused in national office

Ref document number: 1020057013741

Country of ref document: KR

122 Ep: pct application non-entry in european phase

Ref document number: 03768345

Country of ref document: EP

Kind code of ref document: A1