WO2006090785A1 - 燃料電池用めっき部材並びにその製造方法及び製造装置 - Google Patents

燃料電池用めっき部材並びにその製造方法及び製造装置 Download PDF

Info

Publication number
WO2006090785A1
WO2006090785A1 PCT/JP2006/303287 JP2006303287W WO2006090785A1 WO 2006090785 A1 WO2006090785 A1 WO 2006090785A1 JP 2006303287 W JP2006303287 W JP 2006303287W WO 2006090785 A1 WO2006090785 A1 WO 2006090785A1
Authority
WO
WIPO (PCT)
Prior art keywords
plating
separator
dispersion
tank
hydrogen
Prior art date
Application number
PCT/JP2006/303287
Other languages
English (en)
French (fr)
Inventor
Hideaki Asai
Kazuhisa Fujii
Takabumi Nagai
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Publication of WO2006090785A1 publication Critical patent/WO2006090785A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/003Electroplating using gases, e.g. pressure influence
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • H01M8/0254Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form corrugated or undulated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0267Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2457Grouping of fuel cells, e.g. stacking of fuel cells with both reactants being gaseous or vaporised
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a fuel cell separator, a fuel cell, and a method for manufacturing a fuel cell separator.
  • the present invention relates to a fuel cell separator fitting device, a hydrogen separator, a hydrogen production device, a hydrogen separator production method, a hydrogen separator production device, a plating method, and a plating device.
  • a configuration called a flat plate stack There are several types of fuel cell configurations, for example, a configuration called a flat plate stack.
  • a configuration called a flat plate stack.
  • a plurality of cells 500 are stacked as shown in FIG.
  • These cells 500 as shown in Fig. 42, separate the combustible material and combustible material (fuel gas and air) so that they do not mix, and MEA (membrane electrode assembly)
  • MEA membrane electrode assembly
  • a separator for guiding the gas flow is provided so that the gas is uniformly supplied over the entire surface of the gas diffusion layer of the joined body).
  • This separator collects the current generated in ME A through the gas diffusion layer and also serves as a cell connection terminal.
  • separators include those that have a thermal fluid flow path inside and cool or heat the MEA during power generation.
  • the MEA is composed of a fuel electrode (first electrode) for taking in hydrogen, an air electrode (second electrode) for taking in oxygen from the air, and an electrolyte layer interposed between these electrodes.
  • the fuel electrode is composed of a fuel electrode catalyst layer and a gas diffusion layer.
  • the gas diffusion layer is made of, for example, carbon mesh, carbon cloth, or carbon paper, and has a structure having a plurality of voids to facilitate gas permeation. As this gas diffusion layer, for example, a fibrous conductive carbon nonwoven fabric is used.
  • the air electrode is composed of an air electrode catalyst layer and a gas diffusion layer. Then, hydrogen taken in from the fuel electrode and oxygen taken in from the air electrode undergo a chemical reaction via the electrolyte layer. As a result, a current flowing from the air electrode to the fuel electrode is generated.
  • Patent Document 1 discloses a technique for removing pinholes generated by plating in order to improve the corrosion resistance of a metal separator.
  • Patent Document 1 the pinhole is deleted by crushing or covering the pinhole generated by the plating process with an oxide film. For this reason, in the technique described in Patent Document 1, it is necessary to perform a processing step different from the plating process in order to eliminate the pinhole, and it has not been possible to improve the productivity of the fuel cell.
  • Hydrogen gas has attracted attention in various applications.
  • This hydrogen gas is also used in fuel cells that are attracting attention from the viewpoint of environmental protection.
  • a fuel such as hydrogen is supplied to the fuel electrode, and an oxidizing gas such as air is supplied to the oxygen electrode.
  • This battery is a hydrogen concentration cell, and ionized hydrogen ions move through the electrolyte membrane and combine with oxygen at the counter electrode to produce water (H0).
  • This hydrogen separator is a separation and purification step after hydrogen generation in a fuel reforming process. be introduced.
  • hydrogen is generated by a chemical reaction between fuel gas such as ethanol gas and methanol gas and water vapor.
  • fuel gas such as ethanol gas and methanol gas and water vapor.
  • propane, butane, gasoline and dimethyl ether are used as fuels, desulfurization is required before the reforming reaction.
  • the hydrogen separator is used, for example, in a hydrogen tank or a hydrogen supply line of a plant.
  • the hydrogen separator described in Patent Document 2 is, for example, a hydrogen selective permeation on the outer peripheral surface of a cylindrical porous support (the average pore diameter of the porous substrate: 1.2 to 2.5 zm).
  • a Pd film is formed as a metal film having the property.
  • the mixed gas is introduced to the outside of the hydrogen separator. In this case, the hydrogen gas is separated and purified by passing the fuel gas in the order from the hydrogen separator to the porous support.
  • Patent Document 1 JP 2001-68129 A
  • Patent Document 2 Japanese Patent Laid-Open No. 2000-317282
  • the present invention has been made in view of the above-described problems, and can suppress the occurrence of pinholes and the like, and can efficiently manufacture a fuel cell, a fuel cell separator, a fuel cell, and a fuel cell separator manufacturing method. It is another object of the present invention to provide a fuel cell separator fitting device.
  • the present invention also provides a hydrogen separator capable of efficiently separating and purifying hydrogen gas, a hydrogen production apparatus, a method for producing the hydrogen separator, and a hydrogen separator production apparatus capable of mass production. It is also intended to serve.
  • Another object of the present invention is to provide a plating method and a plating apparatus capable of efficiently performing good plating with few defects such as pinholes.
  • the present invention is applied to a fuel cell including a first electrode, an electrolyte layer, a second electrode, a first separator, and a second separator.
  • a fuel cell separator is provided.
  • the first separator has a gas supply path for supplying one of hydrogen gas and air to the first electrode and is in contact with the first electrode, and the second separator supplies the other of hydrogen gas and air to the second electrode. It has a gas supply path to supply to the electrode and contacts the second electrode.
  • a plating film is formed using a plating solution and a diffusion fluid that enhances the diffusing power of the plating solution.
  • a fuel cell in another aspect of the present invention, includes a first electrode, an electrolyte layer and a second electrode, a first separator, and a second separator.
  • the first separator has a gas supply path for supplying one of hydrogen gas and air to the first electrode
  • the second separator is a gas supply path for supplying the other of hydrogen gas and air to the second electrode.
  • a plating film is formed in the gas supply path of the first separator using a plating solution and a diffusion fluid that enhances the diffusion power of the plating solution. The first electrode is in contact with this plating film.
  • the plating film can be easily attached. Therefore, a good plating film free from cracks and pinholes that cause corrosion is formed on the surface of the gas supply path of the first separator, which is easily corroded.
  • a noble metal for example, gold
  • the base material is covered so that cracks and pinholes are not formed, generation of current due to corrosion of the base material made of metal is suppressed.
  • a first separator having a first gas supply path for supplying one of hydrogen gas and air to the electrode of the fuel cell, and hydrogen gas and air for the electrode of the fuel cell.
  • a method of manufacturing a fuel cell separator comprising a second separator having a second gas supply path for supplying the other.
  • a spacer that adjusts the clearance between the separators is disposed between the separators in a state where the first gas supply path and the second gas supply path are opposed to each other.
  • Each separator is stacked.
  • a plating dispersion containing a plating solution and a diffusion fluid that enhances the diffusion power of the plating solution is continuously supplied to the first or second gas supply path, and the plating film is applied to the first or second separator. Is formed.
  • a first separator having a first gas supply path for supplying one of hydrogen gas and air to the electrode of the fuel cell, and hydrogen gas and air of the fuel cell electrode
  • a fuel cell separator fitting device comprising a second separator having a second gas supply path for supplying the other.
  • This plating apparatus includes a laminated unit and a supply means, and forms a plating film on the first or second separator.
  • a spacer that adjusts the clearance between the separators is disposed between the separators in a state where the first gas supply path and the second gas supply path are opposed to each other.
  • Each separator is laminated.
  • the supply means continuously supplies a plating dispersion containing a plating solution and a diffusion fluid that enhances the diffusing power of the plating solution to the first or second gas supply path.
  • the surfaces of the plurality of separators constituting the fuel cell are plated together.
  • the separators are stacked in the order in which they are arranged, the fuel cell is efficiently assembled by inserting, for example, MEA after forming the eye coat.
  • the plating dispersion used for plating contains a plating solution and a diffusion fluid that enhances the diffusing power of the plating solution, the plating film is favorably applied. Therefore, a good plating coverage (coverage) can be obtained even when the plating film is thin. Also, since the plating dispersion is continuously supplied, hydrogen and impurities that cause pinholes caused by plating side reactions are quickly discharged. Therefore, a better plating film is formed.
  • a hydrogen separator that separates and purifies hydrogen gas from a mixed gas containing hydrogen gas.
  • the hydrogen separator includes a porous substrate having an introduction surface into which a mixed gas is introduced, and a metal layer.
  • the metal layer is formed on the porous substrate on the opposite side of the introduction surface, and is formed using a metal having hydrogen selective permeability based on the dissolution and diffusion mechanism.
  • the porous substrate is provided with a pore layer, and the pore layer permeates hydrogen gas preferentially over a gas contained in the mixed gas and degrading the performance of the metal layer.
  • the hydrogen gas contained in the mixed gas preferentially permeates the pore layer. That is, the amount of contact of gas other than hydrogen with the metal layer is reduced by the pore layer. For this reason, even if a gas that deteriorates the performance of the metal layer is contained in the mixed gas, the performance of the metal layer is easily maintained when the hydrogen gas is separated and purified from such a mixed gas. As a result, hydrogen gas can be separated and purified efficiently. Further, since hydrogen gas comes into more selective contact with the metal layer, the permeation amount of hydrogen gas that permeates the metal layer is increased, and the hydrogen gas can be efficiently separated and purified.
  • a hydrogen production apparatus including the above-described hydrogen separator is provided. According to this configuration, the generated hydrogen gas is efficiently separated and purified.
  • a method for producing a hydrogen separator comprising a porous substrate having a metal layer formed of a metal having hydrogen selective permeability based on a dissolution and diffusion mechanism and having a tubular structure.
  • the porous substrate is held in the plating tank.
  • a plating solution containing a metal having hydrogen selective permeability and a diffusion fluid that enhances the diffusing power of the plating solution are dispersed, so that the dispersion is continuously provided in the porous substrate.
  • the plating dispersion is continuously discharged from the opening at the other end of the porous substrate. Thereby, a metal layer is formed on the inner surface of the porous substrate.
  • a hydrogen separator manufacturing apparatus comprising a porous substrate having a metal layer formed of a metal having hydrogen selective permeability based on a dissolution and diffusion mechanism and having a tubular structure.
  • This manufacturing apparatus includes a nailing tank for forming a metal layer by plating, means for mounting the porous substrate to the plating tank, and supply / discharge means.
  • the supply / discharge means includes a plating solution containing a metal having hydrogen permselectivity and a diffusion fluid for increasing the diffusion power of the plating solution. And it is made to flow continuously along the axial direction of the porous substrate.
  • the metal layer is locally formed only inside the porous substrate having a tubular structure. For this reason, a metal layer is formed only in a necessary part. Furthermore, since a diffusion fluid that enhances the diffusion power of the solution is supplied, a metal layer with few defects such as pinholes is formed. According to the dissolution diffusion model, the thinning of the plating film increases the flow rate of hydrogen that permeates the metal film without increasing the concentration gradient, thereby improving the efficiency of hydrogen separation and purification. Further, since the deposited metal particles are refined by the diffusion fluid, the coating around the porous substrate is improved. Furthermore, since the metal penetrates deeply into the pores and precipitates, the adhesion to the ceramic porous body is increased and the mechanical strength of the metal layer is improved.
  • a method for producing a hydrogen separator comprising a porous substrate having a metal layer formed of a metal having hydrogen selective permeability based on a dissolution and diffusion mechanism and having a tubular structure.
  • the porous substrate is held in the plating tank.
  • a plating solution containing a metal having hydrogen selective permeability and a diffusion fluid that enhances the diffusing power of the plating solution are dispersed. Is continuously injected, and the plating dispersion is continuously discharged from the space. Thereby, a metal layer is formed on the outer surface of the porous substrate.
  • an apparatus for producing a hydrogen separator comprising a porous substrate having a metal layer formed of a metal having hydrogen selective permeability based on a dissolution and diffusion mechanism and having a tubular structure.
  • This manufacturing apparatus includes a nailing tank for forming a metal layer by plating, means for mounting the porous substrate in the plating tank, and supply / discharge means.
  • the supply / discharge means is formed as a dispersion between a plating tank and a porous substrate, in which a plating solution containing a metal having hydrogen selective permeability and a diffusion fluid that enhances the diffusivity of the plating solution are dispersed. Continuously flow along the axial direction of the porous substrate.
  • the metal layer is locally formed only outside the porous substrate having a tubular structure. For this reason, a metal layer is formed only in a necessary part. Further, since a diffusion fluid that enhances the diffusion power of the solution is supplied, a metal layer with few defects such as pinholes is formed. According to the dissolution diffusion model, the plating film becomes thinner, The flow rate of hydrogen passing through the metal membrane increases without increasing the concentration gradient, and the efficiency of hydrogen separation and purification is improved. Further, since the deposited metal particles are refined by the diffusion fluid, the coating around the porous substrate is improved. Furthermore, since the metal penetrates deeply into the pores and precipitates, the adhesion to the ceramic porous body is increased and the mechanical strength of the metal layer is improved.
  • a plating solution and a diffusion fluid that enhances the diffusing power of the plating solution are introduced into a plating tank equipped with an electrode for performing electroplating to perform plating.
  • This method includes a first step and a second step.
  • the first metal film is formed on the surface of the object by the electroless plating process in which the first plating solution is introduced into the plating tank.
  • the second metal film is formed on the first metal film by the electrolytic plating process in which the second plating solution and the diffusion fluid are introduced into the plating tank and voltage is applied to the electrodes.
  • a plating solution supply source a diffusion fluid supply source that enhances the diffusing power of the plating solution
  • a plating tank connected to each supply source, and an electrode for performing electrolytic plating
  • a plating apparatus provided with control means for controlling the voltage applied to the electrode and the supply power to the plating tank is also provided.
  • the control means is to supply each power source to the plating tank in order to execute the first step of forming the first metal film on the surface of the object by the electroless plating process in which the first plating solution is introduced into the plating tank. Control the supply.
  • the control means introduces a second plating solution and a diffusion fluid into the plating bath and performs a second step of forming a second metal film on the first metal film by electrolytic plating with voltage applied to the electrodes. To do so, it controls the supply from each source to the plating bath and the voltage applied to the electrodes.
  • electroless plating is performed using the first plating solution in the plating tank, and the first metal film is formed on the surface of the object.
  • electrolytic plating is performed using a second plating solution and a diffusion fluid that enhances the diffusing power of the second plating solution instead of the first plating solution.
  • a second metal film is formed by electrolytic plating in succession to the first metal film formed on the surface of the object.
  • the second metal film is formed by plating using a diffusion fluid, and a good plating with few defects such as pinholes around which the plating film is attached is formed.
  • electroplating cannot be performed because the object is non-conductive.
  • the first metal film is formed on the surface of the object by electroless plating.
  • the second metal film is formed by high-speed electrolytic plating. For this reason, the productivity of the film composed of the first metal film and the second metal film is improved.
  • a diffusion fluid is used when the second metal film is formed. Since the diffusion fluid for diffusing the plating solution has a high cleaning ability, the second metal film is formed after the first plating solution is washed away by the diffusion fluid flowing before the second plating solution.
  • FIG. 1 is a perspective view showing a cell of a fuel cell according to a first embodiment.
  • FIG. 2 is a perspective view showing a flow path plate used in a fuel cell.
  • FIG. 3 is a perspective view showing how to combine flow path plates used in a fuel cell.
  • FIG. 4 is a diagram showing a separator used in a fuel cell.
  • FIG. 5 is a perspective view showing how a gas or thermal fluid flows in the fuel cell.
  • FIG. 6 is a perspective view showing how the plating dispersion flows.
  • FIG. 7 is a perspective view showing a combination of an anode plate and a separator.
  • FIG. 8 (a) and (b) are sectional views showing the arrangement of the anode plate and the separator, and (c) and (d) are perspective views showing the arrangement of the anode plate and the separator. (E) And (f) is sectional drawing which expands and shows the principal part of an anode plate and a separator.
  • FIG. 9 is a perspective view showing a manufacturing process of the laminated unit.
  • FIG. 10 is a side view showing a laminated unit.
  • FIG. 11 is a schematic view showing a plating apparatus.
  • FIG. 12 is a diagram showing a cell manufacturing process.
  • FIG. 13 (a) is a schematic view showing a shell unit according to the second embodiment, and (b) is a schematic view showing a tube unit.
  • FIG. 14 is a cross-sectional view showing a hydrogen separator in a hydrogen separation unit.
  • FIG. 15 is a schematic view showing a plating apparatus.
  • FIG. 16 is a schematic view showing a plating tank.
  • FIG. 17 is an exploded view showing a plating tank.
  • FIG. 18 (a) is a cross-sectional view showing a hydrogen separator according to the third embodiment, and (b) is a hydrogen content. It is a front view which shows a separation body.
  • FIG. 20 is a schematic view showing a plating apparatus according to a fourth embodiment.
  • FIG. 21] is a diagram showing a processing procedure.
  • FIG. 22 is a schematic view showing a hydrogen separation structure according to embodiments 1 and 2.
  • Fig. 23 is a schematic diagram showing a plating tank.
  • FIG. 25 A schematic view showing a base tube in which a Pd film according to embodiment 1 is plated on the inner surface.
  • Fig. 26 is a schematic diagram showing a plating tank.
  • FIG. 27 A schematic view showing a base tube in which a Pd film according to embodiment 2 is plated on the outer surface. [28] It is a schematic diagram showing a plating tank.
  • FIG. 29 is a schematic view showing a plating apparatus according to a fifth embodiment.
  • FIG. 30 is a diagram showing a processing procedure.
  • FIG. 31 is a schematic view showing a plating apparatus according to a sixth embodiment.
  • FIG. 32 is a schematic view showing a mixing / dispersing part and a mating tank.
  • FIG. 34 is a schematic view showing a plating apparatus according to an eighth embodiment.
  • FIG. 35 (a) is a schematic view showing an upstream insulating portion, and (b) is a schematic view showing a fitting liquid separation tank.
  • FIG. 36 is a schematic diagram showing a buffer unit according to a first modification.
  • FIG. 37 (a) is a schematic diagram showing an upstream insulating portion according to a second modified example, and (b) is a schematic diagram showing a plating solution separation tank according to the second modified example.
  • FIG. 38 is a schematic view showing a plating solution separation tank according to a third modification.
  • FIG. 39 is a schematic diagram showing a dispersion mixing unit according to a fourth modification.
  • FIG. 40 (a) is a schematic diagram showing a case where C02 is introduced into the plating solution in the dispersion mixing section according to the fourth modification, and (b) is a fourth modification.
  • FIG. 7 is a schematic view showing a case where a plating solution is inserted into C02 in the dispersion mixing unit according to the example.
  • FIG. 41 is a perspective view showing a fuel cell.
  • FIG. 42 is a schematic view showing a cell of a conventional fuel cell.
  • FIG. 1 is a diagram illustrating a part of the main structure 40 of the power generation region at the center of the cell. As shown in FIG. 1, the main structure 40 is interposed between a fuel side separator 31 as a second separator, an air side separator 32 as a first separator, and these separators 31 and 32. It consists of MEA30.
  • the fuel side separator 31 and the air side separator 32 are made of a substrate made of, for example, stainless steel (SUS steel). On this substrate, trapezoidal convex portions and grooves are formed by, for example, pressing. A gold (Au) film is formed on the entire side surfaces of the fuel side separator 31 and the air side separator 32 facing the MEA 30. A groove formed between the fuel side separator 31 and the air side separator 32 and the MEA 30 constitutes a gas supply path for supplying hydrogen gas or air to the MEA 30.
  • an Au film is formed on the lower surface of the substrate in FIG.
  • fuel gas containing hydrogen gas passes through the space between the upwardly projecting portion and the MEA 30.
  • an Au film is formed on the upper surface of the substrate in FIG. In the air-side separator 32, air passes through a space between the downwardly projecting portion and the MEA 30.
  • the main structure 40 shown in FIG. 1 is configured so that the extending direction of the groove of the gas supply path of the fuel-side separator 31 and the extending direction of the groove of the gas supply path of the air-side separator 32 are orthogonal to each other.
  • This is a cross flow (orthogonal flow) type structure in which a side separator 31 and an air side separator 32 are arranged.
  • the extending direction of the groove of the gas supply passage of the fuel side separator 31 and Examples thereof include a parallel flow type structure and a counter flow type structure in which the extending direction of the groove of the gas supply path of the air-side separator 32 is parallel.
  • the MEA 30 includes an electrolyte layer 300, a fuel electrode catalyst layer 301 as a second electrode, an air electrode catalyst layer 302 as a first electrode, and a pair of gas diffusion layers 303 and 304.
  • a fuel electrode catalyst layer 301 and a gas diffusion layer 303 are sequentially stacked on one side surface of the electrolyte layer 300, and an air electrode catalyst layer 302 and a gas diffusion layer 304 are sequentially stacked on the other side surface of the electrolyte layer 300.
  • the electrolyte layer 300, the fuel electrode catalyst layer 301, the air electrode catalyst layer 302, and the gas diffusion layers 303 and 304 are integrated.
  • the fuel electrode catalyst layer 301 generates hydrogen ions from hydrogen gas.
  • a catalyst metal such as platinum (Pt) is supported on the fuel electrode catalyst layer 301.
  • the electrolyte layer 300 transmits hydrogen ions (protons) generated in the fuel electrode catalyst layer 301 to the air electrode catalyst layer 302.
  • the air electrode catalyst layer 302 generates water by reacting oxygen and hydrogen ions diffused through the electrolyte layer 300.
  • the gas diffusion layer 303 is in contact with the fuel electrode catalyst layer 301, and diffuses the fuel gas passing through the groove of the gas supply path of the fuel-side separator 31 over the entire surface of the MEA 30.
  • the gas diffusion layer 304 is in contact with the air electrode catalyst layer 302 and diffuses the air passing through the groove of the gas supply path of the air-side separator 32 over the entire surface of the MEA 30.
  • These gas diffusion layers 303 and 304 are made of, for example, carbon paper or carbon cloth.
  • the fuel side separator 31 and the air side separator 32 having the main part structure 40 as described above, and a mechanism for distributing gas and thermal fluid to the edge as will be described later. is provided.
  • a fuel cell stack is configured.
  • a separator end plate provided with an electric output terminal for taking out electricity generated by the stack is attached to the fuel side separator 31 and the air side separator 32 located at the end of the stack.
  • a cooling plate is inserted between the fuel side separator 31 and the air side separator 32 of adjacent cells. The cooling plate is pressed to form a passage through which a thermal fluid for cooling the heat generated by the chemical reaction is passed.
  • the fuel cell has a fuel gas for taking in the fuel gas supplied to the gas supply passage of the fuel separator 31 from the outside.
  • a gas intake is provided.
  • the fuel cell is provided with an air intake port for taking in air supplied to the gas supply path of the air-side separator 32 from the outside.
  • the air intake port is provided with a filter for removing dust in the air.
  • the separator Inside the fuel cell as described above, there are provided a gas supply path through which fuel gas (hydrogen gas) for generating electricity or air containing oxygen gas flows, and a flow path through which thermal fluid for cooling flows. ing.
  • the separator is composed of a combination of a plurality of types of flow path plates, and a manifold for distributing fuel, air, and thermal fluid is distributed to each flow path plate. It is provided. An example of this flow path plate will be described with reference to FIG.
  • the flow path plate 11a is provided with a fuel supply hole 101a, a thermal fluid supply hole 101b, and an air supply hole 101c. Further, corresponding to these supply holes 101a, 101b, and 101c, the flow path plate 11a is provided with a fuel discharge hole 104a, a thermal fluid discharge hole 104b, and an air discharge hole 104c. These supply holes 101a, 101b, 101c and discharge holes 104a, 104b, 104c are provided at the same position in all the flow path plates.
  • the flow path plate 11a is provided with a distribution path 102 connected to the fuel supply hole 101a and the fuel discharge hole 104a since fuel flows from the fuel supply hole 101a toward the fuel discharge hole 104a.
  • the distribution path 102 is provided with a flow path 103 composed of vertical grooves through which the fuel flows due to the unevenness produced by the press working described above.
  • a combination of flow path plates including supply holes 101a, 101b, 101c and discharge holes 104a, 104b, 104c, a distribution path 102, and a flow path provided in the distribution path 102 is used.
  • various separators are configured. How to combine these flow path plates will be explained using Fig. 3.
  • Each separator is configured by combining three or two flow path plates.
  • a separator constituted by a combination of three or two flow path plates will be described separately on the front side of the separator, the inside of the separator, and the back side of the separator. A case where fuel or thermal fluid flows on the front surface side of the separator and air or thermal fluid flows on the back surface side of the separator will be described.
  • a channel plate l ib with transverse groove force rotated 90 degrees can be used.
  • a flow path plate 11c in which a distribution path 102 is provided between the thermal fluid supply hole 101b and the thermal fluid discharge hole 104b can also be used.
  • supply holes 101a, 101b, 101c serving as inlets for fuel, thermal fluid, and air are provided.
  • Ll04a, 104b, 104c, and the electric output terminal and the sensor end plate l id provided with the power are used.
  • a separator metal frame ml and a flow path plate 12b in which a distribution path 102 is provided between the thermal fluid supply hole 101b and the thermal fluid discharge hole 104b are used inside the separator.
  • the flow path plate is not inserted into the separator.
  • a flow path plate 13a having a flow path made of vertical grooves for air to flow and a flow path plate 13b having horizontal grooves are used.
  • a distribution path 102 is provided between the air supply hole 101c and the air discharge hole 104c.
  • a flow path plate 13c in which a distribution path 102 is provided between the thermal fluid supply hole 101b and the thermal fluid discharge hole 104b can also be used.
  • supply holes 10 la, 101b, 101c serving as outlets for fuel, thermal fluid, and air, outlet holes 104a, 104b, 104c, electrical output terminals, and force S are provided.
  • Separator end plate 13d is used.
  • Various separators are configured by appropriately combining such flow path plates.
  • flow path plates in which flow paths in the same direction are formed on the front surface side and the back surface side of the separator are combined.
  • a unit 15a is constructed in which the separator metal frame ml is used inside and the flow path plate 13a is used on the back side.
  • a unit 15b used for cooling is configured.
  • a flow plate in which a longitudinal groove is formed and a flow in which a transverse groove is formed Combined with the road plate.
  • a unit 15c is constructed in which the separator metal frame ml is used inside and the flow path plate 13b is used on the back side.
  • a unit 15d used for cooling is configured.
  • one gas is supplied from the discharge hole and discharged through the supply hole.
  • the separator configuration may include, for example, "end plate + fuel”, “end plate + air”, “end plate + thermal fluid + end plate”, “end plate + thermal fluid + fuel”. And “end plate + thermal fluid + air”.
  • the end plate may have a current collecting function.
  • the force described in the example in which the fluid supply holes 10 la, 101b, and 101c are arranged in the horizontal direction during stacking is not limited to this.
  • the fluid supply holes 101a, 101b, and 101c are stacked in the vertical direction They can be arranged in
  • a guide is provided at the counter electrode of the separator.
  • a separator group and a counter electrode group are easily formed, and then these are stacked so as to cross each other alternately.
  • the unit end plates attached to both ends of the separator group are flanges, and each unit end plate is fixed from the outside by bolts and nuts. Since the entire laminated unit is placed in a tub, which is a high-pressure vessel, the end plates of each unit may be fixed so that they do not move.
  • This laminated unit is configured using each separator.
  • This embodiment is characterized in that electroplating is performed by using a flow path through which fuel and air flow, instead of each gas, and flowing a dispersion of adhesion described later. Therefore, in order to explain the configuration of the stacked unit, first, the arrangement of cells and the flow of fuel, thermal fluid, and air when an internal manifold type fuel cell is configured will be described. .
  • the fuel cell stack will be described using an internal laminated structure in which fuel and air flow in a cross flow (cross flow).
  • separator end plates l ld and 13d are provided at the end.
  • the MEA 30 is sandwiched between the units in which the flow path plate for fuel and the flow path plate for air are combined.
  • the flow path plate l On the surface side of each separator, the flow path plate l
  • the flow path of fuel by ib is configured.
  • an air flow path is formed by the flow path plate 13a. A unit for flowing the thermal fluid is inserted into each of the multiple sheets.
  • the thermal fluid flows in the flow path plate 12b between the flow path plate l ib and the flow path plate 13a.
  • each fluid is independently supplied from the supply holes 101a, 101b, and 101c shown in FIG. 2, and discharged from the discharge holes 104a, 104b, and 104c.
  • the fuel is supplied from the fuel supply hole 101a and discharged from the fuel discharge hole 104a.
  • the air is supplied from the air supply hole 101c and discharged from the air discharge hole 104c.
  • the thermal fluid is supplied from the thermal fluid supply hole 101b and discharged from the thermal fluid discharge hole 104b.
  • anode plate 16 is inserted so as to face the flow path through which the fuel, thermal fluid and air flow.
  • the anode plate 16 is composed of a counter electrode portion 16a and a packing portion 16b provided at the edge of the counter electrode portion 16a.
  • the anode plate 16 is provided with supply holes 101a, 101b, 101c and discharge holes 104a, 104b, 104c, similarly to the flow path plate.
  • the shape of the packing portion 16b is formed in accordance with the shape of the distribution path 102 of the opposed flow path plate.
  • the separator includes a type in which only the flow path portion of the separator is press-molded and a type in which the separator is distributed to the flow path (manifold) and the flow path portion is press-molded.
  • the edge of the press plate is configured to have the same height as the recess of the channel 103 as shown in FIG. 8 (a).
  • the edge of the press plate is configured to have the same height as the convex portion of the flow path 103 as shown in FIG.
  • the separator and MEA are laminated so that the MEA gas diffusion layer and the separator are in contact with each other.
  • the separator metal frame ml ensures surface contact between the laminated MEA and the separator.
  • the separator and the MEA are laminated via a thin packing so that the MEA gas diffusion layer and the separator are in contact with each other.
  • the separator and the counter electrode are stacked via the thick packing portion 16b so as to have a large clearance from the counter electrode.
  • This packing portion 16b functions as a spacer, and as shown in FIGS. 8 (e) and (f), a fluid flow path 16c through which a plating dispersion or the like flows is provided between the counter electrode section 16a and the flow path. It is formed.
  • the distance between the separator and the counter electrode is different between the concave area and the convex area of the flow path 103.
  • the packing portion 16b is formed of an insulating material, and the thickness of the packing portion 16b is determined so that the fluid flow path 16c can ensure a predetermined thickness.
  • PEEK polyether ether ketone
  • PTFE polytetrafluroethylene
  • PFA tetrafluoroethylene perfluoroalkoxyethylene ether copolymer or ffiJ'S; Tetrafluoroethylene perfluoroalkoxyvinyl ether copolymer
  • the packing partner is the anode plate 16
  • the packing distributes, controls, and seals the flow of the fluid, and adjusts the distance between the separator and the anode plate 16 to be suitable for the fitting.
  • the packing electrically insulates from the anode plate 16 and avoids an electrical short circuit due to contact between the anode plate 16 and the separator.
  • the packing partner is the MEA
  • the packing distributes, controls, and seals the fluid flow, and adjusts so that the separator and the MEA are in uniform contact with each other with low contact resistance.
  • the electrolyte membrane (ion exchange) membrane may be exposed at the exposed portion of the MEA that does not participate in power generation at the outer periphery of the MEA, and the packing is insulated so that this portion and the separator do not come into direct contact.
  • the electrolyte membrane is a strong acid, if the metal separator is in direct contact with the electrolyte membrane, corrosion will occur in the metal separator, In the electrolyte membrane, ion exchange occurs due to eluted metal ions, and proton conductivity is lost. For this reason, these can be suppressed by using packing. Furthermore, since the electrolyte membrane is wet, when the electrolyte membrane comes into contact with the separator, electricity is leaked from the contact portion, causing a short circuit inside. By using knocking, this short-circuit current can be suppressed.
  • a method for manufacturing a laminated unit will be described.
  • a guide is provided for each of the separator and the counter electrode.
  • a current collector rod is prepared and passed through a guide, whereby a separator group 17 and an anode plate group 18 are produced.
  • they are laminated so that they cross each other alternately.
  • the unit end plates 19 attached to both ends are flanges, and each unit end plate 19 is fixed from the outside by bolts and nuts.
  • the unit end plates are fixed to the extent that they do not move.
  • the separator group 17 is inserted into the anode plate group 18 so that the separator and the anode plate are arranged mutually. Furthermore, unit end plates 19 are arranged on both sides of these groups.
  • the unit end plate 19 is provided with fluid inlets communicating with the separator and anode plate supply holes 101a, 101b, 101c and the discharge holes 104a, 104b, 104c, respectively. Then, the unit end plate 19, the separator group 17, and the anode plate group 18 are laminated to form a laminated unit 20.
  • FIG. 10 is a view of the laminated unit 20 as viewed from the unit end plate 19 side.
  • the unit end plate 19 is formed with fluid inlets 19a, 19b, 19c and fluid outlets 19e, 19f, 19g.
  • the interference dispersion is introduced into the fluid introduction ports 19a and 19c, and the pressure balancer (for example, ion exchange water) is introduced into the fluid introduction port 19b.
  • the pressure balancer for example, ion exchange water
  • ion exchange water is supplied to the flow path of the thermal fluid and is developed in the laminated unit 20.
  • the fluid discharge port 19f is closed.
  • the fluid inlet 19b is opened inside the fitting tank 70 and maintains pressure conduction.
  • the pressure of the pressure balancer becomes equal to the pressure of the mesh dispersion introduced into the laminated unit 20.
  • the plating dispersion is a laminated unit through the supply holes 101a and 101c of each flow path plate. Expands to 20. Moreover, the pressure balancer prevents the plating dispersion from entering the thermal fluid flow path. This tight dispersion is discharged from the fluid discharge ports 19e and 19g of the opposing unit end plate 19 through the discharge holes 104a and 104c.
  • C02J carbon dioxide
  • the plating apparatus of the present embodiment includes a C02 tank 50, a high-purity C02 tank 51, a dispersion accelerator tank 52, an Au plating solution tank 54, and a pure water tank 55. ing . Further, this staking apparatus includes a mixing and dispersing unit 60, a plating tank 70, and a separation tank 80.
  • the C02 tank 50 contains C02 used in a supercritical state in a liquid state.
  • the C02 tank 50 is connected to the mixing and dispersing unit 60 via a supply pipe.
  • the supply pipe is provided with a liquid pump and a heating unit, and C02 is pressurized and heated by these to enter a supercritical state.
  • a switching valve is provided between the liquid pump of the supply pipe and the C02 tank 50, and a supply pipe provided with another switching valve is provided between the switching valve and the liquid pump.
  • a high purity C02 tank 51 is connected.
  • the high purity C02 tank 51 contains C02 having a higher purity than the C02 stored in the CO2 tank 50.
  • C02 from the C02 tank 50 or C02 from the high-purity C02 tank 51 can be selectively supplied to the mixing and dispersing unit 60.
  • a supply valve is provided in the supply pipe immediately before reaching the mixing and dispersing unit 60. By controlling the opening and closing of this supply valve, the C02 tank 50 or the high-purity C02 tank 51 is connected to or disconnected from the mixing / dispersing unit 60 to supply C02 to the mixing / dispersing unit 60 or Stop supply.
  • the dispersion accelerator tank 52 contains a dispersion accelerator for promoting the dispersion of the plating solution.
  • a fluorine-based compound is used as a dispersion accelerator.
  • Fluorine compounds Has a fluorine group and a hydrophilic group.
  • Preferred compounds as the fluorine compound used in the present invention include fluorine compounds having a nonionic hydrophilic group. This fluorine-based compound having a nonionic hydrophilic group exhibits a good dispersion promoting function in high-pressure C02.
  • Examples of the fluorine group include straight chain or branched perfluoroalkyl groups, and those containing heteroatoms in the carbon chain, including perfluoropolyether groups.
  • perfluoroalkyl groups having about 3 to 15 carbon atoms and those containing a hetero atom in the carbon chain having about 3 to 50 carbon atoms can be used.
  • hydrophilic group examples include polar groups such as ether, ester, alcohol, thioether, thioester, and amide.
  • polar groups such as ether, ester, alcohol, thioether, thioester, and amide.
  • fluorine group is a perfluoropolyether group
  • hydrophilic group is a short-chain polyethylene glycol group are particularly excellent.
  • the hydrocarbon-based surfactant that is a conventional dispersion accelerator has a long chain polyethylene glycol group, and thus there is a problem in chemical stability.
  • fluorine compounds are more stable and expected to be durable against repeated use over a long period of time.
  • the fluorine-based compound is less likely to be contaminated with foreign substances derived from decomposition products of hydrocarbon-based surfactants.
  • the plating solution having a short time (dispersion holding time) for maintaining a stable dispersion state of C02 and the staking solution (dispersion holding time) Separation is easy and operability is excellent.
  • this fluorine-based compound is used, after the dispersion operation is stopped, the plating dispersion is separated into C02 and the plating solution in about several seconds to several tens of seconds, for example.
  • the dispersion accelerator tank 52 is connected to the mixing and dispersing unit 60 through a supply pipe.
  • This supply pipe is provided with a liquid pump for pressurizing the dispersion accelerator, a heating part for heating, and a supply valve for supplying or stopping the supply of the dispersion accelerator to the mixing / dispersing part 60.
  • the Au plating solution tank 54 contains an Au plating solution. This Au plating solution tank 54 is provided with heating and heat retaining means, and heats the Au plating solution to a predetermined temperature to keep the temperature.
  • the Au plating solution tank 54 is connected to the mixing / dispersing unit 60 through an Au plating solution supply pipe. .
  • the Au plating solution supply pipe is provided with a liquid pump for pressurizing the Au plating solution and a supply valve for supplying or stopping the supply of the Au plating solution to the mixing and dispersing unit 60.
  • the Au plating solution supply pipe is always kept at a temperature above the temperature at which the components of the Au plating solution passing through it do not precipitate.
  • the pure water tank 55 stores pure water as a cleaning liquid.
  • the pure water tank 55 is connected to the mixing / dispersing unit 60 via a pure water supply pipe.
  • the pure water supply pipe is provided with a liquid pump for pressurizing pure water, a heating unit for heating, and a supply valve for supplying pure water to the mixing / dispersing unit 60 or stopping the supply.
  • ion-exchanged water can be used instead of pure water.
  • the mixing and dispersing unit 60 to which each tank 50 to 55 is connected, the plating solution, C02, and the dispersion accelerator are mixed to prepare a mixture solution for use in the plating process, which is in a dispersed state.
  • the dispersion is prepared with stirring.
  • the mixing / dispersing unit 60 includes a mixer located upstream and a disperser connected to the mixer and located downstream. In the mixer, when two or more of the supply valves are opened, either a cleaning mixed solution containing pure water or an Au plating mixed solution containing Au plating solution is prepared. During the cleaning and drying process, only water or C02 may flow.
  • the disperser is equipped with a stirrer that is rotated by an excited solenoid. By rotating the stirrer inside the container, the liquid mixture prepared in the mixer is dispersed and dispersed so that its components are uniform.
  • the body is prepared.
  • the mixing and dispersing unit 60 is connected to the plating tank 70.
  • the plating process is performed using the spatula dispersion prepared in the mixing and dispersing unit 60.
  • the plating tank 70 has a supply port 71 and a discharge port 72.
  • the supply port 71 supplies the metal dispersion from the mixing / dispersing part 60 to the laminated unit 20 in the plating tank 70.
  • the supply port 71 is connected to a cleaning liquid tank that stores various cleaning liquids used for public pre-cleaning.
  • the cleaning liquid include cleaning liquids such as alkalis and acids, several types of surfactants, and deionized water.
  • the discharge port 72 connected to the laminated unit 20 in the plating tank 70 is connected to the separation tank 80.
  • the separation tank 80 In this separation tank 80, the used dispersion is discharged. Furthermore, power is supplied from the power source to the laminated unit 20 in the plating tank 70 in order to perform electrolytic plating.
  • the separation tank 80 connected to the discharge port 72 of the plating tank 70, C02 and the mating liquid are separated from the sag dispersion used in the plating tank 70.
  • a dispersion accelerator is included in the plating dispersion, this dispersion accelerator is mixed with C02 and separated from the plating solution.
  • the separation tank 80 is connected to the C02 tank 50 and a not-shown nail solution discharge unit. C02 containing the separated dispersion accelerator is removed from the gas such as hydrogen and oxygen and impurities such as organic matter contained therein, and then the pressure is adjusted and refluxed to the C02 tank 50.
  • the plating solution discharger capable of storing the soaking solution discharged from the separation tank 80 can be communicated with the Au plating solution regeneration device or the waste solution tank.
  • the Au plating solution regenerator removes impurities from the Au plating solution, adjusts the components of the Au plating solution, and regenerates it so that it can be used again.
  • This plating solution regenerating apparatus is connected to the Au plating solution tank 54, and the regenerated Au plating solution is returned to the Au plating solution tank 54. For example, the cleaning liquid discharged from the separation tank 80 and the plating liquid that is not regenerated are discharged to the waste liquid tank.
  • the plating dispersion is circulated from the mixing / dispersing unit 60 to the mixing / dispersing unit 60 via the supply port 71, the discharge port 72, and the separation tank 80 of the plating tank 70.
  • the plating apparatus of this embodiment includes a control unit.
  • This control unit is composed of, for example, a CPU, a RAM, or a ROM. According to a program stored in the control unit, in addition to a liquid pump, a heating unit, and a supply valve provided in each supply pipe, for example, a catching tank Control 70 power supplies.
  • the substrate constituting the fuel side separator 31 and the air side separator 32 is pressed to produce a flow path plate in which grooves constituting the gas supply path are formed. Also formed a passage In order to do so, a pressed flow path plate is manufactured and a cooling plate is also manufactured.
  • the flow path plates are arranged in the order of arrangement in the fuel cell, and these flow path plates are fixed by the guide 17a to manufacture the separator group 17 (step S1 in Fig. 12). — 1).
  • step S 2 the separator group 17 fixed by the guide 17a and the anode plate group 18 connected by the guide 18a are combined to produce a laminated unit 20 (step S 2). ).
  • the laminated unit 20 is introduced into the plating tank 70 (step S 1-3).
  • ion exchange water is supplied from the fluid discharge port 19f in a state where the fluid introduction port 19b for the thermal fluid is opened so that air does not remain in the laminated unit 20.
  • the ion exchange water expands into the laminated unit 20 via the thermal fluid discharge hole 104b, and the laminated unit 20 is filled with the ion exchange water.
  • the fluid discharge port 19f is closed.
  • the open state of the fluid introduction port 19b is maintained inside the plating tank 70 in a state where ion exchange water is prevented from flowing out from the fluid introduction port 19b.
  • the fluid inlets 19a, 19b, 19c of the laminated unit 20 are connected to the supply port 71 via a pressure pipe.
  • the ion exchange water is filled with the fluid discharge port 19f closed, the plating dispersion is prevented from entering the flow path for the thermal fluid.
  • both the fluid inlet 19b and the fluid outlet 19f may be closed.
  • the fluid discharge ports 19e and 19g are connected to the discharge port 72 through a pressure pipe.
  • the guides 17a and 18a are respectively connected to the terminals of the power source so that the guide 17a of the separator group 17 becomes a cathode and the guide 18a of the anode plate group 18 becomes an anode.
  • step S2_l pre-cleaning of each flow path of the stacked unit 20 is performed. Specifically, for example, a cleaning liquid such as alkali and acid, several kinds of surfactants, and deionized water are sequentially supplied to the stacking unit 20 in the tub 70 through the supply port 71.
  • a cleaning liquid such as alkali and acid, several kinds of surfactants, and deionized water are sequentially supplied to the stacking unit 20 in the tub 70 through the supply port 71.
  • plating pretreatment is performed (step S2_2). Specifically, supercritical cleaning using supercritical C02 and pure water is performed.
  • the liquid pumps provided in the supply pipe of the high purity C02 tank 51 and the supply pipe of the pure water tank 55 are driven, respectively, in the heating section. Heating takes place and the supply valve opens.
  • the mixing / dispersing unit 60 C02 from the high purity C02 tank 51 is heated and pressurized to be in a supercritical state, and the pure water heated and pressurized from the pure water tank 55 is heated. And are supplied.
  • the mixing / dispersing unit 60 the supplied supercritical C02 and pure water are mixed and stirred, and this cleaning mixed solution is supplied to the lamination unit 20 in the plating tank 70.
  • step S2_3 a plating process is performed to form an Au film using supercritical C02. Specifically, the pure water supply valve is closed and the supply of pure water is stopped. Then, the switching valve is switched, and the C02 tank 50 is connected to the mixing and dispersing unit 60 instead of the high purity C02 tank 51. As a result, C02 from the C02 tank 50 is supplied to the mixing and dispersing unit 60, and pure water is discharged from the laminated unit 20 in the plating tank 70.
  • the supply valve provided in the supply pipe of the dispersion accelerator tank 52 and the supply pipe of the Au plating solution tank 54 is opened, and the liquid pump is driven so that the dispersion accelerator and the Au plating solution are pressurized and It is supplied to the mixing and dispersing unit 60 in a heated state.
  • C02 from the C02 tank 50 continues to be supplied in a supercritical state to the mixing / dispersing unit 60. Therefore, in the mixing / dispersing unit 60, the supercritical C02, the dispersion accelerator, and the Au plating solution are mixed.
  • a mixed dispersion is prepared by mixing and stirring, and is supplied to the lamination unit 20 in the plating tank 70.
  • the control unit is prepared in the mixer and the dispersion is kept within the time during which the dispersion is holding the dispersion.
  • the drive of each liquid pump in the supply pipe is controlled so as to pass through the flow path in the laminated unit 20.
  • the scooping dispersion supplied to the plating tank 70 is introduced into the inside of the multilayer unit 20 through the supply port 71. Then, the plating dispersion passes through the fluid flow path 16c and flows to the discharge port 72.
  • the fluid discharged from the discharge port 72 flows into the separation tank 80.
  • the separation tank 80 the plating solution is separated from C02 and the dispersion accelerator.
  • the separated C02 is returned to the C02 tank 50 after being regenerated such as removing unnecessary gas.
  • the separated Au plating solution is regenerated by passing through the Au plating solution regenerating apparatus, and then returned to the Au plating solution tank 54.
  • step S2-4 a post-treatment process for washing and drying is performed (step S2-4). Specifically, first, the supply valves of the supply pipes connected to the dispersion accelerator tank 52 and the Au plating solution tank 54 are closed. Then, the switching valve is switched, and C02 from the high purity C02 tank 51 is supplied to the mixing and dispersing unit 60 instead of the C02 tank 50. From the mixing and dispersing unit 60, the stacking unit 20 and the mating tank 70 are supplied. The dampening liquid remaining in each part of the slag is discharged and collected. Subsequently, the supply valve of the supply pipe connected to the pure water tank 55 is opened. In this case, pure water is supplied to the mixing and dispersing unit 60. As described above, the Au plating solution is discharged and recovered from the part from the mixing / dispersing part 60 to the plating tank 70 by C02, and cleaning with mixed pure water in which supercritical C02 and pure water are mixed is performed.
  • the supply valve of the supply pipe connected to the pure water tank 55 is closed in order to perform drying.
  • the supply of pure water from the pure water tank 55 is stopped.
  • only C02 is supplied to the plating tank 70 in a supercritical state, and flows on the surface on which the Au film is formed in each flow path of the multilayer unit 20.
  • This flow of C02 cleans the pure water adhering to the Au film formed on the surface, and dissolves and removes it in the supercritical C02.
  • the supply valve of the connecting pipe connected to the high purity C02 tank 51 is closed and the supply of C02 is stopped. Furthermore, driving of the liquid pump and heating of the heating unit are stopped, and C02 is exhausted from the plating tank 70.
  • the post-treatment for plating is completed.
  • the laminated unit 20 is taken out from the mating tank 70 and separated from the laminated unit 20.
  • Group 17 is removed (step S3-1).
  • the MEA 30 is inserted into a predetermined position of the separator group 17 (step S3-2).
  • an Au plating film is formed on the surface facing the ME A 30 in the fuel side separator 31 and the air side separator 32.
  • a tanning dispersion is used since the tanning liquid, supercritical C02, and a dispersion accelerator are mixed and dispersed.
  • supercritical C02 increases the diffusibility of the squeeze solution, and even if it is a thin film, cracking pinholes that cause corrosion are formed on the MEA30 side of the fuel side separator 31 and the air side separator 32. No good Au plating film is formed.
  • Au is used as the plating film, the generation of current due to corrosion of the base metal made of metal can be suppressed.
  • plating is performed by applying the fuel cell stack structure. That is, MEA is replaced with an anode plate, and plating is performed by flowing a plating dispersion instead of each gas using a flow path for flowing fuel or air.
  • anode plate 16 is inserted so as to face the flow path through which the fuel, heat fluid, and air flow.
  • the anode plate 16 is configured by force with the counter electrode portion 16a and the packing portion 16b provided at the edge thereof. This packing forms a clearance (thickness) suitable for supplying a tangled fluid between the anode plate and the channel plate.
  • the anode plate 16 is provided with supply holes (101a, 101b, 101c) and discharge holes (104a, 104b, 104c), similarly to the flow path plate.
  • the sparger dispersion introduced into the laminated unit 20 is expanded through the supply holes (101a, 101c) of each flow path plate, and then discharged through the discharge holes (104a, 104c). Is done. For this reason, contact resistance with MEA30 is reduced, and a plating film is efficiently formed only in areas where corrosion should be prevented. That power S.
  • the anode plate 16 is inserted so as to face the flow path through which the thermal fluid and air flow. Specifically, a separator group 17 in which a guide 17a is attached to each separator is produced. Further, an anode plate group 18 in which the guide 18a is attached to each anode plate 16 is produced. This guide functions as an electrode terminal for energizing the separator group 17 and the anode plate group 18 by applying a voltage. Then, the separator group 17 is inserted into the anode plate group 18 so that the separator and the anode plate are arranged mutually. Next, a laminated unit 20 in which the unit end plate 19, the separator group 17, and the anode plate group 18 are laminated is manufactured.
  • electroplating is performed between the channel plate and the anode plate 16 by applying a voltage to the guides (17a, 18a) while flowing the plating dispersion using the channel. For this reason, electrolysis can be efficiently performed in the flow path. Furthermore, a plating film can be formed at high speed by electrolytic plating.
  • the dispersion of the plating solution with respect to the diffusion fluid is promoted by the fluorine-based compound, so that the coating is further improved, and the formation of pinholes in the coating is further facilitated. Therefore, the surface of the plating film can be further smoothed, and a good plating film can be obtained.
  • a pressure balancer for example, ion exchange water
  • ion-exchanged water is supplied from the fluid discharge port 19f in a state where the fluid introduction port 19b is opened so that air does not remain in the laminated unit 20. Then, while the air inside the laminated unit 20 is expelled, it passes through the thermal fluid discharge hole 104b. As a result, the ion exchange water expands in the laminated unit 20. After filling the ion exchange water, the fluid outlet 19f for the heat fluid is closed. The open state of the fluid inlet 19b is maintained inside the plating tank 70, and the pressure conduction is maintained.
  • the pressure of the pressure balancer is equal to the pressure of the mesh dispersion introduced into the laminated unit 20.
  • the pressure balancer also serves as a plating mask.
  • both the fluid inlet 19b and the fluid outlet 19f may be closed after the inside of the separator is completely sealed with water.
  • the force S that prevents the deformation of the flow path plate can be achieved by the pressure equilibrium between the plating dispersion and the pressure balancer. Furthermore, it is possible to avoid the plating dispersion from being mixed into the thermal fluid flow path, and to suppress the adhesion to unnecessary areas.
  • the manufactured fuel cell is provided with an air intake port for taking in the air supplied to the gas supply path of the air-side separator 32 from the outside, and this air intake A filter is provided at the mouth. Therefore, when air passes through the filter, dust contained in the air can be removed. For this reason, air with less dust that causes erosion or corrosion is introduced into the gas supply path, and corrosion of the galvanized film due to erosion or corrosion can be suppressed.
  • the separator and the counter electrode are stacked via the thickness layer and the packing portion 16b so as to obtain a large clearance from the counter electrode.
  • the distance between the counter electrode is different between the concave area and the convex area of the flow path 103, and the convex area is closer to the anode plate 16 than the concave area. For this reason, during the plating process, the current flows more easily in the concave region than in the convex region, and a thicker plating film can be formed in the concave region than in the convex region.
  • the portions of the fuel separator 31 and the air separator 32 that are in contact with the electrodes may be repeatedly rubbed with the electrodes when subjected to vibration, and the plating film may be scraped off and corrosion may occur.
  • the plating film may be scraped off and corrosion may occur.
  • the first embodiment may be modified as follows.
  • the Au film may be adjusted such that the portion where 31 is in contact with the gas diffusion layer 303 and the portion where the air side separator 32 is in contact with the gas diffusion layer 304 are thickened. Also according to this, a thick plating film is formed in the convex region, and it is possible to suppress the occurrence of abrasion and peeling of the plating film in contact with the electrodes of the fuel side separator 31 and the air side separator 32.
  • the gas diffusion layers 303 and 304 may be formed by using, for example, a flexible carbon cloth. Good. Even in this case, the friction between the adhesive film and the gas diffusion layers 303 and 304 caused by the stacking load and the vibration of the internal components can be reduced, and the occurrence of corrosion can be effectively suppressed.
  • a cross flow type in which the extending direction of the groove of the gas supply path of the fuel side separator 31 and the extending direction of the groove of the gas supply path of the air side separator 32 are orthogonal to each other is used.
  • a fuel cell in which the fuel side separator 31 and the air side separator 32 are disposed is manufactured.
  • the configuration of the fuel cell is not limited to this, and the present embodiment may be applied when a fuel cell of another configuration (parallel flow type or counter flow type) is manufactured.
  • the plating film is formed by flowing the plating dispersion independently while using the first and second gas supply paths.
  • the fuel side separator 31 and the air side separator 32 are made of a metal material such as stainless steel (SUS steel), for example.
  • the material of the fuel side separator 31 and the air side separator 32 may be changed to a conductive resin material in which a resin material and a conductive material such as carbon are combined.
  • the gas flow paths of the fuel side separator 31 and the air side separator 32 are formed by pressing or the like.
  • the gas flow path may be formed by a processing method such as mold force check or cutting. According to the present embodiment, the fuel cell can be efficiently manufactured regardless of which method is used to form the gas flow path.
  • the plating film of the Au film is formed in the plating tank 70 by electrolytic plating.
  • electroless plating is performed in the plating tank 70, and the fuel side A plating film may be formed on the surfaces of the paralator 31 and the air-side separator 32 that form the gas supply path.
  • the first separator and the second separator are directly laminated through the spacer without using the anode plate.
  • the spacer may be used as long as it can be used to adjust the clearance for flowing the fluid between the separators and can secure the flow path.
  • the clasp dispersion is derived from the fluid discharge ports (19e, 19g).
  • the plating dispersion may be discharged directly from the distribution path 102 provided in each flow path plate.
  • the sealing material in the vicinity of the fluid discharge ports (19e, 19g) is removed, and the plating dispersion is discharged from this removal portion. Thereby, fluid resistance can be reduced and a plating dispersion can be supplied efficiently.
  • an Au plating film is formed on a separator made of a SUS material.
  • the above-described Au plating may be performed after the base strike plating of Nikkenore (Ni) or the like is performed.
  • the plating apparatus is provided with a Ni plating solution tank 53 that stores a Ni plating solution.
  • the Ni plating solution tank 53 is connected to the mixing / dispersing unit 60 via a Ni plating solution supply pipe. Then, using the Ni plating solution instead of the Au plating solution, the plating dispersion is formed and the plating treatment is performed in the same manner as in the above-described Au plating treatment, and then the Au plating is performed.
  • the Au film is excellent in corrosion resistance but expensive. Therefore, by forming a good Ni film with no pinholes as a base, even if the Au film is thin, it is possible to form a film with excellent corrosion resistance.
  • a noble metal Au film is formed as the plating film.
  • the plating film is not limited to this, and may be formed of a material capable of reducing contact resistance, for example, a platinum-based metal such as palladium (Pd).
  • a plating dispersion is used in which the C02 and sag solution are dispersed only for a short time via a fluorine-based compound.
  • the dispersion accelerator used to mix and disperse C02 and the solution is not limited to this.
  • a hydrocarbon surfactant may be used as a dispersion promoter.
  • a dispersion accelerator having a longer dispersion holding time than that of the present embodiment may be used. In this case, the speed of the plating dispersion flowing in the plating tank 70 for performing the plating treatment may be slower than that in the above embodiment. it can. Further, the dispersion accelerator may be omitted.
  • C02 in a supercritical state is used as the diffusion fluid.
  • subcritical C02 may be used.
  • the fluid is not limited to C02, and other fluids (supercritical fluids or subcritical fluids) in a supercritical state or a subcritical state (liquid phase state near the critical point) may be used.
  • an internal manifold type battery has been described.
  • the first embodiment may be applied to an external manifold type battery.
  • a plating dispersion or the like is introduced using an external manifold.
  • a spar dispersion is introduced into the fluid inlets (19a, 19c) from the same squeeze solution, and the swell dispersion is introduced from the fluid outlets (19e, 19g). It has been derived.
  • each linear velocity may be set so that the linear velocity of the plating dispersion in the first gas supply path is different from the linear velocity of the plating dispersion in the second gas supply path. When set in this way, the thickness of the adhesive film and the form of the film of each separator are different.
  • the first swell dispersion is introduced into the fluid introduction port 19a, and the second swell dispersion different from the first stake dispersion is introduced into the fluid introduction port 19c.
  • each mesh dispersion may be led out from the fluid discharge port (19e, 19g). Since the plating dispersion flows independently of each other while using the first and second gas supply paths, plating films of different metal types can be formed on the fuel side and the air side. Further, in this case, the thickness of the first separator and the second separator can be different from each other. The difference between the first dispersion and the second dispersion means that the chemical and physical properties of each dispersion are different.
  • the composition or dispersion state of the first squirrel dispersion is different from that of the second sme dispersion.
  • Each of the plating dispersions having different compositions is constituted, for example, by changing the type and blending amount of the dispersion accelerator and the type and blending amount of the diffusion fluid in addition to changing the composition of the plating solution.
  • the dispersions with different dispersion states are, for example, the mixer in the mixing and dispersing unit 60 and the structure of the stirrer provided in the dispersing unit or the shape of the stirrer, the rotation speed of the stirrer, and the retention of the plating dispersion in the mixing and dispersing unit 60. It can be prepared by changing the time or the like.
  • a plating film may be sequentially formed on each separator by one mixing and dispersing unit 60.
  • an Au film may be formed on the surface of the air-side separator 32, and only a Ni film may be formed on the surface of the fuel-side separator 31. Since the gas supply path of the fuel side separator 31 has a reducing atmosphere because the fuel passes therethrough, corrosion is less likely to occur than the gas supply path of the fuel side separator 31.
  • the thickness of the Au plating, the plating mode, etc. can be controlled separately on the fuel side and the air side.
  • the plating film can be formed efficiently and the amount of the precious metal Au film used can be reduced.
  • FIGS. 13 (a) and (b) schematically show a reformer 1010 in which a hydrogen separation unit is directly introduced into the modified catalyst layer.
  • the reformer 1010 includes a shell unit 1001 having a multi-tube structure, and a tube unit 1002 disposed in the shell unit 1001 and a force.
  • a combustion heating unit is installed at the center of the shell unit 1001, and the reforming catalyst is filled in the shell unit 1001.
  • the tube unit 1002 is a hydrogen separation unit that separates and recovers the hydrogen gas generated in the shell unit 1001 from the reformed gas.
  • FIG. 13 (a) shows the appearance of the shell unit 1001
  • FIG. 13 (b) shows the tube unit 1002.
  • the Chenole unit 1001 includes an outer wall 1001a, and a hollow cavity surrounded by an inner wall 1001b is provided inside the outer wall 1001a.
  • a space is formed between the outer wall 1001a and the inner wall 1001b, and reforming and generation of hydrogen are performed in this space as described later.
  • Fuel gas and water in this space In order to supply steam, the outer wall 1001a is provided with a supply hole 1001c.
  • Steam and fuel gas are supplied at a specified ratio and heated to about 500 ° C by internal heat exchange using a multi-tube structure, so that a reforming reaction is performed. This reaction is endothermic and equilibrium reaction. Since the generated hydrogen is taken out of the reaction system by the hydrogen separation unit, the reforming reaction is efficient even though the temperature of the reforming reaction is 500 ° C, which is lower than the original optimum temperature of the reforming reaction. Proceed well. A high hydrogen yield is maintained even at 500 ° C.
  • the remaining unreacted gas, unrecovered hydrogen gas, and generated CO are exhausted from the exhaust hole lOOld of the outer wall 1001a, and are used as fuel for PANA and are completely oxidized.
  • the inner wall 1001b is heated by the heat generated by the fuel gas reformer. Therefore, an air intake port 1001e and a fuel gas intake port 100 ⁇ are arranged in the middle cavity surrounded by the inner wall 1001b.
  • a tube unit 1002 is inserted into the space between the outer wall 1001a and the inner wall 1001b.
  • the tube unit 1002 includes a lower manifold 1002a and an upper manifold 1002b, and a plurality of hydrogen separators 1100 are provided between the manifolds 1002a and 1002b.
  • the lower manifold 1002a is provided with a sweep gas supply pipe 1002c
  • the upper manifold 1002b is provided with a hydrogen gas outlet pipe 1002d.
  • steam is circulated as a sweep gas in order to increase the recovery rate of the hydrogen produced in the reformer.
  • the apparent hydrogen partial pressure downstream of the permeation is lowered to increase the hydrogen concentration gradient between the upstream and downstream of the permeation, and the hydrogen separator of the permeated hydrogen is separated. Promotes desorption from 1100.
  • the hydrogen separator 1100 is embedded in a Ni packed bed 1103 of the reforming catalyst packed between the outer wall 1001a and the inner wall 1001b.
  • fuel gas for example, methane gas CH, propane gas C H or butane gas C H
  • methane gas CH methane gas CH
  • propane gas C H propane gas C H
  • butane gas C H butane gas
  • the fuel gas supplied from the supply hole 1001c is reformed by the Ni packed bed 1103. Then, high purity hydrogen gas is separated and purified through the hydrogen separator 1100.
  • a cylindrical tube-shaped hydrogen separator 1100 is used.
  • the hydrogen separator 1100 includes a substrate tube 1101 as a porous substrate.
  • the outer surface of the base tube 1101 constitutes a reformed gas introduction surface, and a hydrogen permeation layer 1102 as a metal layer having hydrogen selective permeability based on a dissolution and diffusion mechanism is formed on the inner surface opposite to the introduction surface.
  • the base tube 1101 is made of, for example, a force formed of a ceramic porous material (for example, alumina: A1O).
  • It may be formed of zeolite, mordenite, or dinoleconia.
  • the base tube 1101 includes a catalyst-supporting ceramic layer 1101a and a pore ceramic layer 1101b as a pore layer.
  • the catalyst-carrying ceramic layer 1101a has pores having a relatively large pore diameter, and a catalyst metal for removing carbon monoxide gas is carried in the pores.
  • the supported catalytic metal performs a shift reaction in which carbon monoxide gas and water are reacted to generate carbon dioxide gas, and a partial oxidation reaction of carbon monoxide gas.
  • Pt, Rh, Ru, Ni, or Cu / ZnO is used as the catalyst metal to cause the shift reaction
  • Pt or Pt— as the catalyst metal to cause the partial oxidation reaction of carbon monoxide gas.
  • Ru alloy catalyst is used.
  • the reformed gas contains, in addition to hydrogen gas, a gas that degrades the performance of the hydrogen permeable layer 1102.
  • the porous ceramic layer 1101b allows the hydrogen permeation layer 1102 to have a contact amount of a gas other than hydrogen by preferentially permeating the hydrogen gas over the gas that deteriorates the performance of the hydrogen permeation layer 1102. Decrease. That is, the porous ceramic layer 1101b includes pores that are included in the reformed gas and have the same size as the gas molecular size that degrades the performance of the hydrogen permeable layer 1102, and that have a size larger than the molecular size of the hydrogen gas. ing.
  • hydrogen gas is supplied to the hydrogen permeable layer 1102.
  • This molecular size sieving suppresses permeation of carbon monoxide gas and hydrocarbon gas through the porous ceramic layer 1101b.
  • the molecular size of hydrogen gas is about 0.3 nm, and the molecular size of carbon monoxide gas is larger than the molecular size of hydrogen gas.
  • the molecular size of methane gas is further It is about 0.4 nm.
  • the molecular sizes of nitrogen oxide gas, sulfur oxide gas, and hydrocarbon gas are also larger than the molecular size of hydrogen gas.
  • the pore size of the pore ceramic layer 1101b is set as described above, and the carbon monoxide gas, nitrogen oxide gas, sulfur oxide gas, hydrocarbon gas, hydrocarbon gas, and hydrogen gas are mixed.
  • the hydrogen selective permeability of the hydrogen permeable layer 1102 due to adsorption of carbon monoxide gas or the like is avoided.
  • the catalyst metal for the shift reaction and the partial oxidation reaction described above may be supported on the pore ceramic layer 1101b.
  • the hydrogen permeable layer 1102 is formed of a metal having hydrogen selective permeability.
  • the metal having hydrogen selective permeability diffuses hydrogen atoms into the metal by breaking the bonds of hydrogen molecules adsorbed on the surface of the hydrogen permeable layer 1102.
  • the hydrogen permeable layer 1102 of the present embodiment is composed of a Pd film having a thickness of about 1 ⁇ m by a plating method described later.
  • a base tube 1101 constituting the hydrogen separator 1100 is prepared.
  • the base tube 1101 includes a catalyst-supporting ceramic layer 1101a and a pore ceramic layer 1101b.
  • a porous ceramic layer having pores of a predetermined pore diameter is formed on the porous ceramic constituting the catalyst-supporting ceramic layer 1101a by a sol-gel method using a hydrolysis reaction of a metal organic molecule such as a metal alkoxide. 1101b is formed.
  • the porous ceramic layer 1101b may be formed by using a metal organic polymer method in which a metal organic polymer solution is applied to porous ceramics and solidified by high-temperature heat treatment.
  • a catalyst-supporting ceramic layer 1101a in which a catalyst metal is supported on porous ceramics is formed.
  • the porous ceramic is dried after the aqueous solution of the metal salt has soaked into the porous ceramic. Furthermore, by performing a hydrogen reduction treatment on the porous ceramic, a catalytic metal is supported in the pores of the porous ceramic.
  • a Pd film constituting the hydrogen permeable layer 1102 is formed on the pore ceramic layer 1101b by a plating method.
  • supercritical C02 is used as the diffusion fluid.
  • a trial is performed.
  • a plating apparatus used for this plating will be described with reference to FIGS.
  • the hydrogen permeable layer 1102 is formed by performing electroless plating and electrolytic plating using this plating apparatus.
  • the plating apparatus used in this embodiment includes a cleaning liquid tank 1011, a C 02 tank 1021, a high-purity C02 tank 1026, a dispersion accelerator tank 1031, an electroless plating liquid tank 1041, and an electrolytic solution. It has a priming liquid tank 1051. As will be described later, these tanks are connected to the tub 1061 through a mixing / dispersing section 1060. The above configuration will be described in detail below.
  • the cleaning liquid tank 1011 contains pure water or ion-exchanged water as the cleaning liquid.
  • the cleaning liquid tank 1011 is connected to the mixing / dispersing unit 1060 via a cleaning liquid supply pipe.
  • the cleaning liquid supply pipe is provided with a liquid pump 1012, a heating unit 1013, and a supply valve 1014.
  • the liquid pump 1012 pressurizes pure water or ion exchange water
  • the heating unit 1013 heats pure water or ion exchange water.
  • the cleaning liquid tank 1011 and the mixing / dispersing unit 1060 are connected to or disconnected from each other, and pure water or ion-exchanged water is supplied to or stopped from the mixing / dispersing unit 1060. .
  • the C02 tank 1021 contains C02 similar to that of the first embodiment as a diffusion fluid.
  • the C02 tank 1021 is connected to the mixing / dispersing unit 1060 via a C02 supply pipe.
  • the C02 supply pipe is provided with a switching valve 1021a, a liquid pump 1022, a heating unit 1023, and a supply valve 1024a.
  • a high purity C02 tank 1026 is connected to the C02 supply pipe between the switching valve 1021a and the liquid pump 1022 via a supply pipe provided with a switching valve 1026a.
  • High-purity C02 tank 1026 contains higher-purity C02 than C02 stored in C02 tank 1021.
  • High purity C02 in the C02 tank 1026 is supplied to the mixing / dispersing unit 1060 instead of C02 when the C02 in the C02 tank 1021 is contaminated, or for cleaning the piping system. Or used for By controlling the switching of the switching valves 1021a and 1026a, either C02 from the C02 tank 1021 or C02 from the high-purity C02 tank 1026 is supplied to the mixing and dispersing unit 1060.
  • the liquid pump 1022 pressurizes C02, and the caloric heat unit 1023 heats C02. With these, C 02 C02 supplied from the tank 1021 is supplied to the mixing and dispersing unit 1060 after reaching a high-pressure supercritical state.
  • the supply valve 1024a By controlling the opening and closing of the supply valve 1024a, the C02 tank 1021 and the mixing / dispersing unit 1060 are connected to or disconnected from each other, and the supply or stopping of the C02 to the mixing / dispersing unit 1060 is stopped. Do.
  • the dispersion accelerator tank 1031 contains the same dispersion accelerator as in the first embodiment.
  • the dispersion accelerator tank 1031 is connected to the mixing / dispersing part 1060 via a dispersion accelerator supply pipe.
  • the dispersion promoter supply pipe is provided with a liquid pump 1032, a heating unit 1033 and a supply valve 1034.
  • the liquid pump 1032 pressurizes the dispersion accelerator, and the heating unit 1033 heats the dispersion accelerator.
  • the supply valve 1034 is controlled to open and close, thereby connecting or blocking the dispersion accelerator tank 1031 and the mixing / dispersing unit 1060, and supplying or stopping the supply of the dispersion accelerator to the mixing / dispersing unit 1060. I do.
  • the electroless plating solution tank 1041 contains an electroless plating solution.
  • the electroless solution of this embodiment contains tetraamminepalladium dichloride as a metal salt, hydrazine as a reducing agent, ammonium hydroxide as a pH adjuster, and EDTA2 sodium salt as a complexing agent.
  • the electroless plating solution tank 1041 includes heating and heat retaining means, and heats and keeps the electroless plating solution to a predetermined temperature.
  • the electroless plating solution tank 1041 is connected to the mixing and dispersing unit 1060 via an electroless plating solution supply pipe.
  • the electroless plating liquid supply pipe is provided with a liquid pump 1042, a heating unit 1043, and a supply valve 1044.
  • the liquid pump 1042 pressurizes the electroless plating solution, and the heating unit 1043 heats the electroless plating solution.
  • the supply valve 1044 is controlled to open and close to connect or shut off the liquid tank 1041 and the mixing and dispersing unit 1060, and supply or stop supplying the electroless plating solution to the mixing and dispersing unit 1060. . In order to maintain the plating solution at a predetermined temperature, all lines through which the electroless plating solution flows are controlled to be heated and kept warm.
  • the electrolytic plating solution tank 1051 stores the electrolytic plating solution.
  • the electrolytic solution of the present embodiment contains palladium chloride, glycine, potassium nitrite, potassium bromide as a supporting electrolyte, and boric acid as a pH adjuster.
  • the electrolytic plating solution tank 1051 includes heating and heat retaining means, and heats the electrolytic plating solution to a predetermined temperature to keep the temperature.
  • This electrolytic plating solution tank 1051 is connected to the mixing and dispersing unit 1060 via an electrolytic plating solution supply pipe. ing.
  • the electrolytic plating solution supply pipe is provided with a liquid pump 1052, a heating unit 1053, and a supply valve 1054.
  • the liquid pump 1052 pressurizes the electrolytic plating solution, and the heating unit 1053 maintains the electrolytic plating solution at the reaction temperature by preventing the precipitation of the metal salt.
  • the electrolytic plating solution tank 1051 and the mixing / dispersing unit 1060 are connected to or disconnected from each other, and the supply of electrolytic plating solution to the mixing / dispersing unit 1060 is stopped or stopped.
  • the electrolytic plating solution supply pipe is always kept above the temperature at which the components of the plating solution do not precipitate. In order to prevent the metal salt from precipitating, the line through which the electrolytic plating solution flows is also heated and kept warm.
  • the mixing / dispersing part 1060 the ratio of the plating solution, C02, and the dispersion accelerator suitable for the plating treatment (additional ratio) with the temperature and pressure of C02 from the liquid to the critical point or higher, mainly in the appropriate temperature range for plating. And the mixed fluid is agitated to prepare a dispersion.
  • the mixing / dispersing unit 1060 of the present embodiment includes a mixer and a disperser. In the mixer, the components for plating are mixed to prepare a mixed solution. In the disperser, the plating mixture is dispersed to prepare a plating dispersion.
  • a rotor with a mesh attached to a permanent magnet is arranged inside the distributor, and a stator with a coil attached is arranged outside the distributor.
  • the strength of the magnetic field is adjusted by controlling the current flowing through the stator, and the rotational speed and direction of the rotor with mesh are controlled by the strength of the magnetic field.
  • the mixing and dispersing section 1060 is connected to the fitting tank 1061.
  • electroless plating and electrolytic plating are performed using the plating dispersion supplied from the mixing dispersion unit 1060.
  • a cylindrical electrode for performing electrolytic plating is disposed inside the plating tank 1061, and a power source 1062 is connected to the electrode. This electrode is arranged in parallel to the base tube 1101 so as to maintain a predetermined distance from the base tube 1101.
  • valve dispersion V3 is provided in the tight dispersion supplied from the mixing dispersion unit 1060. Flows into the tub 1061 through the inner supply line.
  • This inner supply line is connected to the outer supply line via valve V6, cylinder CY, and valve V7.
  • This outer supply line is used to fill the outside of the base tube 1101 with water that has been degassed so that no differential pressure is generated inside and outside the base tube 1101.
  • the cylinder CY adjusts the differential pressure between the fluid in the inner supply line and the fluid in the outer supply line.
  • a separation tank 1065 is connected to the plating tank 1061 via an inner discharge line equipped with a valve V2. This separation tank 1065 is used in the plating tank 1061 to discharge the dispersion.
  • the inner discharge line is connected to the outer discharge line via valve V5. This valve V5 regulates the differential pressure between the fluid in the inner discharge line and the fluid in the outer discharge line. Then, in the separation tank 1065, C02 and the mating liquid are separated. At this time, the dispersion accelerator is separated from the plating solution while being mixed with C02.
  • the separation tank 1065 is connected to the C02 tank 1021 and the plating liquid discharge unit 1070.
  • C02 (or C02 containing a dispersion accelerator) separated from the plating dispersion is subjected to pressure and pressure after removal of gases such as hydrogen and oxygen and organic substances dissolved in C02. Supplied to C02 tank 1021 in a liquid state with adjusted temperature.
  • the plating solution separated from the plating dispersion is discharged to the plating solution discharge unit 1070.
  • This plating liquid discharger 1070 can communicate with the electrolytic plating liquid regenerating device and the waste liquid tank via a discharge switching valve. In the electrolytic plating solution regeneration device, impurities are removed from the electrolytic plating solution discharged from the separation tank 1065, and the electrolytic plating solution is regenerated by adjusting the components.
  • the plating apparatus of the present embodiment includes a control unit 1080 as control means.
  • This control unit is composed of, for example, a CPU, RAM, or ROM. Then, according to the program stored in the control unit 1080, each f night pump 1012, 1022, 1032, 1042, 1052, A control force S is applied to the calorific heat sections 1013, 1023, 1033, 1043, 1053, the supply valves 1014, 1024a, 1034, 1044, 1054, the switching valves 1021a, 1026a, the power supply 1062, and the like.
  • the control unit 1080 is connected to a detection means for detecting the formation status of the Pd film formed on the base tube 1101.
  • a current sensor 1064 having a pair of terminals is used as this detection means.
  • the pair of terminals are installed in a state where they are in contact with the surface of the base tube 1101 at a predetermined distance from each other, and the current sensor 1064 measures a current that flows when a voltage is applied between the terminals. Since the base tube 1101 of this embodiment is a nonconductor made of alumina as described above, when a metal Pd film is formed on the surface of the base tube 1101, a pair of terminals of the current sensor 1064 is formed. The current value during the period changes. Using this, the current sensor 1064 detects the formation status of the Pd film formed on the surface of the base tube 1101.
  • the control unit 1080 is provided with a memory, and the memory stores a reference value for starting electroplating. As the reference value, the current value when the Pd film is formed over the entire surface of the base tube 1101 is used. Then, the control unit 1080 compares the current value acquired from the current sensor 1064 with the reference value stored in the memory, and if the current value acquired from the current sensor 1064 exceeds the reference value, the electroplating process is performed. Execute the process to do.
  • this tub 1061 includes a tubular casing 1110.
  • the housing 1110 accommodates a pair of support members 1111 and 1112.
  • the support member 1111 functions as a lid that can be detached from the housing 1110, and is fixed to the housing 1110 via the seal member 1113.
  • An annular groove is formed on the surfaces of the support members 1111 and 1112 facing each other.
  • a seal member 1114 is accommodated in this groove.
  • the support members 1111 and 1112 constitute means for mounting the base tube 1101 to be plated on the mating tub 1061, and support the base tube 1101 via the seal member 1114.
  • an inner supply pipe 1117 and an inner discharge pipe 1118 as supply / discharge means are provided. Is provided.
  • the inner supply pipe 1117 is provided on the support member 1111 and supplies a fluid to the inner region 1115.
  • the inner discharge pipe 1118 is provided on the support member 1112 and discharges fluid from the inner region 1115. Therefore, when the base tube 1101 is attached to the mating tub 1061, the fluid is discharged from the inner region 1115 after being supplied to the inner region 1115 independently of the outer region 1116.
  • the inner supply pipe 1117 is connected to the mixing and dispersing unit 1060, and the inner discharge pipe 1118 is separated. Connected to tank 1065. Then, after being supplied from the inner supply pipe 1117 to the inner area 1115 of the mating tub 1061, the soot dispersion prepared in the mixing and dispersing unit 1060 passes through the inner area 1115 and is separated from the inner discharge pipe 1118. Discharged into tank 1065
  • the casing 1110 is provided with an outer supply pipe 1119 for supplying fluid to the outer area 1116 and an outer discharge pipe 1120 for discharging this area force fluid. Therefore, the fluid is discharged from the outer region 1116 after being supplied to the outer region 1116 independently of the fluid flowing through the inner region 1115.
  • the electrode serving as the counter electrode for plating is provided in the inner region 1115 so as to maintain an equal distance from the inner surface of the base tube 1101.
  • the current sensor 1064 measures a current flowing between both ends of the inner surface of the base tube 1101.
  • the supply / discharge means for flowing the fluid continuously along is provided.
  • FIG. 1100 In the production of the hydrogen separator 1100, activation treatment, chemical plating, and electrolytic plating are sequentially performed. In the activation process, the fine particles of Pd that become the adsorption precipitation nuclei are It is adsorbed by Mina and reduced. Next, in chemical plating, Pd reduction deposition is performed with Pd complexing agent and its reducing agent. In electrolytic plating, an acidic plating solution is supplied and energized to deposit Pd.
  • the base tube 1101 that has been subjected to the activation treatment is attached to the plating tank 1061, chemical plating and electrolytic plating are performed. Note that all of the activation treatment and electrolytic plating may be performed continuously in the plating tank 1061.
  • a base tube 1101 provided with a catalyst-supporting ceramic layer 1101a and a pore ceramic layer 1101b is prepared, and the base tube 1101 is activated.
  • the base tube 1101 is degreased. Specifically, the base tube 1101 is immersed in ethanol for 30 minutes. Here, C02 may be used instead of ethanol.
  • a sensitization process, an activation process, and a reduction process are performed.
  • an activation process is performed on the inner surface of the base tube 1101.
  • the sensitization treatment is a treatment for adsorbing easily reduced metal ions to the inner surface of the substrate tube 1101, and is performed, for example, by immersing the substrate tube 1101 in a stannous chloride aqueous solution for 1 minute.
  • an acidic aqueous solution of palladium chloride is used, and the substrate tube 1101 is immersed in an aqueous palladium chloride solution for 1 minute.
  • the reduction treatment is a treatment for reducing the adsorption catalyst nucleus Pd, and is performed by immersing the base tube 1101 in, for example, an aqueous hydrazine solution for 30 seconds. Then, the base tube 1101 is immersed in distilled water for 10 seconds for cleaning.
  • the base tube 1101 subjected to the activation treatment is attached to the plating tank 1061, and electroless plating is performed.
  • the support member 1111 is removed from the housing 1110.
  • the other end of the base tube 1101 is loosely fitted in the annular groove of the support member 1111.
  • the end surface of the support member 1111 comes into contact with the seal member 1113, and the support member 1111 is fixed to the housing 1110.
  • Nonolev V5 valve V6 and valve V7 are closed.
  • the valve VI and the valve V4 are opened, and water deaerated from the lower side to the upper side of the outer supply line is introduced.
  • the valve VI and the valve V4 are closed.
  • valve V5 valve V6 or valve V7 is opened (all three may be open)
  • valve V2 and valve V3 are opened and high pressure fluid begins to flow into the inner supply line.
  • pretreatment using supercritical C02 is performed.
  • a dispersion in which pure water or ion-exchanged water and C02 are mixed is used.
  • the supply valves 1014 and 1024a are opened, the calorie heat units 1013 and 1023 are operated, and the night pumps 1012 and 1022 are driven.
  • the switching valve 1021a is closed and the switching valve 1026a is opened, so that the high-purity C 02 tank 1026 and the mixing and dispersing unit 1060 are communicated with each other.
  • C02 is pressurized and heated from the high-purity C02 tank 1026 to become a supercritical state and supplied to the mixing and dispersing unit 1060.
  • the mixing and dispersing unit 1060 pure water or ion-exchanged water and C02 are mixed and stirred.
  • a cleaning dispersion in which C02 and pure water or ion-exchanged water are uniformly dispersed is prepared, and the cleaning dispersion is supplied from the mixing / dispersing unit 1060 to the mating tank 1061.
  • the cleaning dispersion is supplied to the inner region 1115 of the plating tank 1061 via the inner supply pipe 1117 connected to the mixing and dispersing unit 1060, and the inner surface of the base pipe 1101 is cleaned. Is done. The used cleaning dispersion is discharged from the inner region 1115 to the separation tank 1065 through the inner discharge pipe 11 18.
  • the washing dispersion used for washing is discharged into the separation tank 1065 and then separated into C02 and pure water or ion-exchanged water.
  • the separated C02 is regenerated and supplied to the C02 tank 1021 after unnecessary gas is removed.
  • the separated pure water or ion-exchanged water is discharged to a waste liquid tank through a discharge switching valve. After the cleaning dispersion is supplied to the plating tank 1061 for a predetermined time, the cleaning as the pretreatment process is completed.
  • an electroless plating process is performed.
  • the electroless plating process is performed under the conditions of temperature: 50 ° C. and pressure: 12 MPa.
  • the supply valve 1014 is closed, the supply valves 1034 and 1044 are opened.
  • the drive of the liquid pump 1012 stops and the liquid pumps 1032 and 1042 are driven.
  • Heating in the heating unit 1013 stops, Heating is performed in the heating units 1033 and 1043.
  • the dispersion promoter having a force of 1031 in the dispersion accelerator tank and the electroless plating solution from the electroless plating solution tank 1041 are supplied to the mixing and dispersing unit 1060.
  • the liquid pump 1022 and the heating unit 1023 are continuously driven and the supply valve 1024a is maintained in an open state, whereby the supply of C02 is continued.
  • the control unit 1080 switches the switching valves 1021a and 1026a to connect the C02 tank 1021 and the mixing / dispersing unit 1060.
  • the mixing and dispersing unit 1060 the supercritical C02 from the C02 tank 1021, the electroless plating solution, and the dispersion accelerator are mixed and stirred to obtain a more uniform dispersion state.
  • a plating dispersion containing an electroless plating solution is prepared. This swell dispersion is supplied from the mixing / dispersing part 1060 to the inner region 1115 of the staking tank 1061. Then, Pd supplied to the inner region 1115 starts to precipitate on the inner surface of the base tube 1101.
  • control unit 1080 of the present embodiment operates the horses in each of the pumps 1022, 1032, and 1042 each night so as to flow in the dispersion strength S plating tank 1061 within the dispersion holding time of the plating dispersion. Control.
  • the plating dispersion fluid may be reused (recycled).
  • the supply of the plating solution to the mixer is stopped, and instead, a bypass pipe connected to the disperser is provided in the middle of the pipe from the outlet of the plating tank 1061 to the separation tank 1065.
  • a recycle flow of dispersed fluid is formed.
  • the ratio of the plating fluid supply to the plating fluid recycling flow may be fixed between 0 and 100% or may be varied.
  • the control unit 1080 detects the current value that changes as the Pd film is formed so as to cover the surface of the base tube 1101 by the current sensor 1064.
  • electroless plating is stopped.
  • the supply valve 1044 is closed and the driving of the liquid pump 1042 is stopped, whereby the supply of the electroless plating liquid to the mixing and dispersing unit 1060 is stopped.
  • the supply valve 1014 is opened and the liquid pump 1012 is driven, pure water or ion exchange water is supplied from the cleaning liquid tank 1011 to the mixing and dispersing unit 1060. It is.
  • electrolytic plating is performed.
  • This electrolytic plating is performed under the conditions of temperature: 40 ° C, pressure: 12 MPa, current value: 0.01 A / cm 2 and time: 3 minutes.
  • the supply valve 1054 is opened, the liquid pump 1052 is driven, and the electrolytic plating solution is supplied from the electrolytic plating solution tank 1051 to the mixing and dispersing unit 1060.
  • the operation of the night pumps 1022, 1032 and the calorific heat units 1023, 1033, 1053 is continued and the supply valves 1024a, 1034 are kept open, so that the supply of C02 and the dispersion promoter is continued.
  • the mixing and dispersing unit 1060 the CO 2, the electrolytic plating solution, and the dispersion accelerator are mixed and stirred to prepare a more uniformly dispersed plating dispersion, and then the The plating dispersion is supplied to the plating tank 1061.
  • the control unit 1080 uses the power source 1062 to energize the electrodes disposed in the plating tank 1061.
  • the Pd film formed on the inner surface of the base tube 1101 functions as a cathode, and a Pd film is formed by electrolytic plating.
  • each liquid pump 1022, 1032, 1052 force S continues to be driven, and the dispersion liquid prepared in the mixing dispersion unit 1060 is continuously supplied to the plating tank 1061. Electrolytic plating is performed. Then, the control unit 1080 controls driving of the liquid pumps 1022, 1032, and 1052 so that the dispersion can flow through the plating tank 1061 within the dispersion holding time of the plating dispersion. As a result, the hydrogen gas dissolved in the plating dispersion and the impurities peeled off from the surface of the base tube 1101 by the plating process are quickly discharged from the plating tank 1061.
  • the dispersion accelerator After being discharged into the separation tank 1065, C02 containing the dispersion accelerator is separated and unnecessary gas is removed, and then the dispersion is returned to the C02 tank 1021.
  • the electrolytic plating solution separated from C02 and the dispersion accelerator is discharged to the electrolytic plating solution regenerator through the plating solution discharge section. Then, the electrolytic regenerated in this electrolytic plating regenerator
  • the plating solution is supplied to the electrolytic plating solution tank 1051.
  • the dispersion promoter may remain in two liquid phases on the plating solution side rather than the C02 side, or the dispersion promoter may dissolve in the plating solution.
  • the dispersion accelerator remains in two liquid phases, the dispersion accelerator is separated from the plating solution mainly by decantation.
  • Each night pump 1022, 1032, 1052 is operated at the same time and heated in the calorie heat sections 1023, 1033, 1053, and the prepared dispersion is supplied to the plating tank 1061 and the The discharge from the plating tank 1061 is continued, and the electrolytic plating process is continued for the time required to form a film having a predetermined thickness.
  • a cleaning process is performed after completion of the above steps. Specifically, the supply of a predetermined chemical solution is stopped, and the residual chemical solution in the plating tank 1061 is poured out from the plating tank 1061 at C02 in a gas to supercritical state. Then, a dispersion of C02 and water in a liquid to supercritical state is supplied, and the inside of the plating tank 1061 is cleaned (chemical solution recovery). Furthermore, the final cleaning is performed by the flow of ion-exchanged water. Finally, dry liquid to supercritical C02 is supplied to expel water from the plating tank 1061, and the inside of the plating tank 1061 is dried.
  • the supply valve 1014 and the switching valve 1026a are open.
  • pure water or ion-exchanged water and high-purity C02 are supplied to the mixing and dispersing unit 1060. Then, similarly to the cleaning in the pretreatment process, the cleaning dispersion in which C02 is mixed with pure water or ion-exchanged water is supplied from the mixing / dispersing unit 1060 to the mating tank 1061, and cleaning is performed.
  • the supply valve 1014 is closed to perform drying.
  • the supply of pure water or ion exchange water from the cleaning liquid tank 1011 is stopped, and C02 from the high-purity C02 tank 1026 is supplied to the messenger tank 1061 via the mixing and dispersing unit 1060. Drying is performed. Specifically, pure water or ion-exchanged water adhering to the inner wall of the plating tank 1061 and the base tube 1101 is washed away by the flow of C02, and dissolved and removed from the dried liquid to supercritical CO 2. Is done.
  • a hydrogen permeable layer 1102 for dissolving and diffusing hydrogen is laminated.
  • the base tube 1101 is composed of a catalyst-supporting ceramic layer 1101a and a pore ceramic layer 1101b. Then, hydrogen gas contained in the reformed gas as the mixed gas preferentially permeates through the fine ceramic layer 1101b. That is, the contact amount of the gas other than hydrogen with respect to the hydrogen permeable layer 1102 is reduced by the porous ceramic layer 1101b.
  • the performance of the hydrogen permeable layer 1102 is maintained when the hydrogen gas is separated and purified from such a reformed gas. It is easy to be done. As a result, it is possible to efficiently separate and purify hydrogen gas. Further, since the hydrogen gas is more selectively brought into contact with the hydrogen permeable layer 1102, the permeation amount of the hydrogen gas that permeates the hydrogen permeable layer 1102 is increased, and the hydrogen gas can be efficiently separated and purified.
  • the pore size of the pore ceramic layer 1101b is small enough to allow screening of carbon monoxide gas, hydrocarbon gas, and hydrogen gas.
  • the hydrogen gas can be filtered from the reformed gas to suppress the arrival of the carbon monoxide gas to the hydrogen permeable layer 1102. Therefore, adsorption of carbon monoxide gas or the like in the hydrogen permeable layer 1102 can be suppressed, and hydrogen gas can be efficiently separated and purified because high concentration hydrogen is brought into contact with the Pd membrane.
  • the fine pore ceramic layer 1101b selectively allows hydrogen gas to permeate from a mixed gas containing at least one of carbon monoxide gas, nitrogen oxide gas, sulfur oxide gas, and hydrocarbon gas. For this reason, for example, even when the hydrogen permeable layer 1102 also has a Pd membrane force, it is possible to suppress the adsorption of gas that degrades the performance of the hydrogen permeable layer 1102. Easy to maintain.
  • the pores of the catalyst-carrying ceramic layer 1101a of the present embodiment have a relatively large pore diameter, and a catalytic metal is carried in the pores. And with this catalytic metal, monoxide A shift reaction that generates carbon dioxide gas by reacting carbon gas with water and a partial oxidation reaction of carbon monoxide gas are performed. For this reason, in the catalyst-supporting ceramic layer 1101a, the arrival of carbon monoxide gas to the hydrogen permeable layer 1102 can be suppressed. Therefore, adsorption of hydrogen monoxide gas or the like in the hydrogen permeable layer 1102 of hydrogen gas can be suppressed, and the hydrogen gas can be efficiently separated and purified.
  • a Pd film as a hydrogen permeable layer 1102 is formed on the inner surface of the base tube 1101 of the present embodiment.
  • the temperature of the hydrogen separator 1100 needs to be raised.
  • the hydrogen separator 1100 is brought into close contact with the Ni-filled layer 1103 of the shell unit 1001 to improve heat conduction.
  • the Pd film does not deteriorate such as wear.
  • a reforming catalyst is disposed around the hydrogen separator 1100. In some cases, separation and purification of hydrogen gas may be performed. This reforming catalyst is used after being heated to a predetermined temperature (for example, 650 ° C.). Further, the hydrogen permeability of the hydrogen permeable layer 1102 is proportional to the temperature. For this reason, when the reforming catalyst is arranged in contact with the periphery of the hydrogen separator 1100, the heat of the reforming catalyst is conducted through the base tube 1101, so that the hydrogen permeable layer 1102 is efficiently formed. Heated.
  • the hydrogen permeable layer 1102 is formed on the outer peripheral surface of the base tube 1101 and the hydrogen permeable layer 1102 and the reforming catalyst are in contact with each other, the friction with the reforming catalyst or the reforming catalyst The hydrogen permeation layer 1102 may be damaged by the directly transmitted vibration.
  • the hydrogen separator 1100 of the present invention since the hydrogen permeable layer 1102 is formed on the inner surface of the base tube 1101, the hydrogen permeable layer 1102 can be appropriately protected by the base tube 1101, and the hydrogen permeable layer. 1102 can be efficiently heated from the outer surface of the base tube 1101. Therefore, in the hydrogen production apparatus equipped with such a hydrogen separator 1100, the temperature of the hydrogen permeable layer 1102 can be quickly raised, and the startup time of the apparatus can be shortened.
  • the inner peripheral surface of the base tube 1101 has smaller thermal expansion and contraction than the outer peripheral surface.
  • the hydrogen permeable layer 1102 formed on the inner surface of the base tube 1101 is The plastic deformation of the hydrogen permeable layer 1102, which is less affected by the dimensional change of the base tube 1101, is suppressed than when the hydrogen permeable layer 1102 is formed on the outer surface. Therefore, when the hydrogen separator 1 100 is used with heating and cooling, that is, when the hydrogen separator is repeatedly operated and stopped, plastic deformation of the hydrogen permeable layer 1102 is suppressed and deterioration is suppressed. Accordingly, the life of the hydrogen permeable layer 1102 can be extended.
  • the hydrogen separator 1100 is formed with the surface of the hydrogen permeable layer 1102 (the inner surface of the hydrogen separator 1100) exposed. used. For this reason, hydrogen discharged from the inner surface of the hydrogen separator 1100 can be diffused at high speed and force, and the hydrogen concentration gradient in the thickness direction of the hydrogen permeable layer 1102 can be maintained at an increased state and easily hydrogen. It is easy to increase the transmission speed.
  • the Pd film of this embodiment is formed to a thickness of about l z m by a plating method using supercritical C02.
  • a dense hydrogen permeable layer 1102 having no pinholes can be formed even if it is a thin film.
  • the time required for hydrogen dissolution and diffusion can be shortened, and the hydrogen separation and purification efficiency can be improved.
  • the thickness of the Pd film is about 10 ⁇ , a pressure of 8 atm is applied to the primary side, but by reducing the thickness of the Pd film, the thickness will be 10 / The same separation and purification efficiency as when m
  • the dispersion of the plating solution with respect to the diffusion fluid is promoted by the fluorine-based compound, so that the coating is further improved, and the formation of pinholes in the coating is further facilitated. Therefore, the surface of the Pd film can be further smoothed, and a Pd film having excellent smoothness can be obtained.
  • a plating dispersion containing supercritical C02, electroless plating solution and dispersion accelerator, or plating containing supercritical C02, electrolytic plating solution and dispersion promoter is supplied to the inner region 1115 of the substrate tube 1101. For this reason, the Pd contained in the sprinkled dispersion supplied to the inner region 1115 is deposited on the inner surface of the base tube 1101, and a Pd film is formed on the inner surface of the base tube 1101. That is, a plating process using supercritical C02 can be performed on a very local region of the base tube 1101.
  • the Pd film of this embodiment is formed by electroless plating using a plating dispersion containing supercritical C02 that enhances the diffusivity of the electroless plating solution.
  • electrolytic plating using a plating dispersion containing supercritical C02 and electrolytic plating solution is performed.
  • force S can be formed using electrolytic plating.
  • the plating film without pinholes is realized by electrolytic plating. Therefore, the productivity of the base tube 1101 on which the Pd film is formed can be improved. Therefore, the cost of the hydrogen separator 1100 and the fuel cell using the same can be reduced.
  • the control unit 1080 of the present embodiment changes the plating dispersion while maintaining the atmosphere formed by the supercritical C02 by controlling the opening and closing of the supply valves 1044 and 1054, and further, the power supply 1062 The energization control is performed. Therefore, electroless plating and electrolytic plating can be performed continuously with supercritical C02 supplied, and a Pd film can be formed efficiently.
  • the plating process is performed in a state where the plating dispersion is flowed into the base tube 1101.
  • the conventional plating using supercritical C02 it is necessary to mix and diffuse supercritical C02 and the sag solution in the sag tank 1061.
  • the base tube 110 1 of this embodiment has a cylindrical tube shape, even if a stirrer or the like is provided in the plating tank and the plating solution and the supercritical C02 are stirred, the plating solution and the supercritical C02 are dispersed. It ’s difficult to make it.
  • the inner region 1115 of the base tube 1101 is a narrow and limited space, the stirring bar cannot be rotated in the inner region 1115. In this embodiment, such Even in a space, good plating can be performed by flowing a plating dispersion in which supercritical C02 and the plating solution are dispersed.
  • the control unit 1080 controls the flow rate so that the plating dispersion passes through the plating tank 1061 before the plating solution and the supercritical C02 are separated. In order to form a good film in the plating tank 1061, it is necessary to use a dispersion accelerator capable of maintaining the dispersion state of C02 and the squeeze solution.
  • the type of the dispersion accelerator is limited, and such a dispersion accelerator does not always realize good film properties.
  • the present invention since plating is performed in the plating tank 1061 while maintaining the state where the plating dispersion is formed, it is possible to select a dispersion accelerator capable of performing more uniform plating on the base tube 1101. it can.
  • the plating treatment using the fluorine-based compound as the dispersion accelerator is a flatter film than the plating treatment using the conventional hydrocarbon surfactant as the dispersion accelerator. could be formed. Therefore, the Pd film formed on the base tube 1101 is satisfactorily
  • C02 in the supercritical state used as a diffusion fluid for enhancing the diffusive power of the plating solution dissolves hydrogen generated by the side reaction, it is possible to further suppress the generation of pinholes. .
  • valve V5, the valve V6, and the valve V7 are closed, and the banor valve VI and the valve V4 are opened to introduce degassed water into the outer supply line. Then, after the air is expelled from the outer region 1116 and sealed to the valve VI, the valve VI and the valve V4 are closed.
  • valve V5, valve V6 or valve V7 is opened, and valve V2 and valve V3 are opened, causing high-pressure fluid to flow into the inner supply line. In this case, all of the valves V5 to V7 can be opened. As a result, the outer region 1116 is close to the non-compressed fluid and filled with fluid (degassed water) and subjected to a water sealing process.
  • Adjust differential pressure from 1116 The power of trimming is S.
  • the inner region 1115 needs to be at a high pressure. Therefore, if the differential pressure between the inner region 1115 and the outer region 1116 of the base tube 1101 is not adjusted, the base tube 1101 that is the object to be plated may be distorted or broken.
  • plating can be performed while avoiding deformation and fracture of the base tube 1101 by adjusting the differential pressure between the inner region 1115 and the outer region 1116.
  • the film formation state of the Pd film on the surface of the base tube 1101 is determined. Be grasped. Therefore, based on the current value of the current sensor 1064, the control unit 1080 can quickly shift to the electrolytic plating after the surface of the base tube 1101 is formed by electroless plating. A film can be formed efficiently.
  • FIGS. 18 (a) and 18 (b) and FIG. the same components as those in the second embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • a Pd film constituting the hydrogen permeable layer 1102 is formed on the outer surface of the base tube 1101, and the base tube 1101 A Ni filling layer 1103 is arranged inside.
  • the introduction surface into which the mixed gas is introduced is constituted by the inner surface of the hydrogen separator 1100, and a Pd layer is formed on the outer surface of the hydrogen separator 1100 which is the opposite surface.
  • the force with which the reforming reaction catalyst layer is formed in the base tube 1101 is not limited to this, and the reformed gas may be simply supplied into the base tube 1101. .
  • the reformed gas force of the Ni packed bed 1103 catalyst-supporting ceramic layer 1101a, the porous ceramic layer 1101b, and the hydrogen permeable layer 1102 are sequentially permeated to separate and purify the hydrogen gas. Is done. In this case, in the hydrogen separator 1100, the reformed gas flows from the inside of the base tube 1101 to the outside.
  • the scale-up device described in the second embodiment is used.
  • the base tube 1101 is replaced by replacing the fluid supplied to the inner region 1115 and the fluid supplied to the outer region 1116.
  • a Pd film is formed on the outer surface of the film.
  • the outer supply pipe 1119 of the plating tank 1061 is connected to the mixing / dispersing section 1060, and the outer discharge pipe 1120 is connected to the separation tank 1065.
  • Supply / discharge means for supplying fluid continuously along the axial direction of 1101 is configured. Then, the spatula dispersion prepared in the mixing / dispersing unit 1060 flows through the outer region 1116 of the plating tank 1061 and is then discharged to the separation tank 1065. Thereby, the plating dispersion can be continuously supplied along the axial direction of the base tube 1101 to the space formed between the plating tank 1061 and the base tube 1101.
  • Valve V6, valve V7 and valve V5 are closed and valve V2 and valve V3 are opened to introduce water deaerated upward from below the inner supply line. Then, after air is expelled from the inner region 1115 and sealed to the valve V2, the valve V2 and the valve V3 are closed.
  • Valve V5, Valve V6 or Valve V7 opens, and further, Valve VI and Valve V4 open, and high pressure plating or cleaning fluid flows through the outer supply line.
  • all of valves V5 to V7 can be opened.
  • the outer supply pipe 1119 of the plating tank 1061 is connected to the mixing / dispersing part 1060, and the outer discharge pipe 1120 is connected to the separation tank 1065, whereby the base pipe 1101 is axially connected.
  • a supply / discharge means for continuously supplying a fluid along the line is configured.
  • the plating tank 1061 of the present embodiment is provided with a cylindrical positive electrode that maintains a predetermined distance from the outer surface of the base tube 1101 in the outer region 1116.
  • a base tube 1101 including a catalyst-carrying ceramic layer 1101a and a pore ceramic layer 1101b and subjected to an activation treatment is mounted in a plating tank 1061.
  • an activation process is performed on the outer surface of the base tube 1101.
  • a cleaning process as a pretreatment process is performed.
  • the cleaning dispersion containing pure water or ion-exchanged water prepared in the mixing and dispersing unit 1060 and C02 passes through the outer supply pipe 1119 and the outer region 1116 of the mating tub 1061.
  • the outer surface of the substrate tube 1101 is cleaned.
  • the cleaning dispersion used for cleaning is then removed from the outer region 1116. It is discharged to the separation tank 1065 through the side discharge pipe 1120.
  • an electroless plating process is performed. That is, the supercritical C02, the dispersion accelerator, and the electroless entrapping liquid are mixed and supplied from the dispersed dispersion force mixing / dispersing part 1060 to the outer region 1116 of the sag tank 1061. Then, the Pd in the dispersion supplied to the outer region 11016 is deposited on the outer surface of the base tube 1101, and a Pd film is formed on the outer surface of the base tube 11101 by electroless plating.
  • the control unit 1080 acquires the formation status of the Pd film by the current sensor 1064, and switches between the electroless plating liquid tank 1041 and the electrolytic plating solution tank 1051 as in the second embodiment.
  • the power supply 1062 is energized.
  • the plating dispersion containing the electrolytic plating solution is supplied from the mixing and dispersing unit 1060 to the plating tank 1061.
  • the Pd film formed by electroless plating on the surface of the substrate tube 1101 is used as a cathode, and Pd in the plating solution is deposited on this Pd film, and continues to the surface of the Pd film formed by electroless plating.
  • a Pd film is formed by electrolytic plating.
  • a Pd film constituting the hydrogen permeable layer 1102 is formed on the outer surface of the base tube 1101. Therefore, by allowing the gas to permeate from the inside to the outside of the hydrogen separator 1100, it is possible to suppress the adsorption of carbon monoxide gas or the like and efficiently separate and purify the hydrogen gas.
  • the plating process is performed while the plating dispersion flows in the axial direction and the circumferential direction of the base tube 1101. For this reason, even when the outer region 1116 is narrow, the supercritical C02 and the squeeze solution are dispersed, so that good plating can be performed while the clinging dispersion flows through the outer region 1116. Therefore, the volume of the plating tank 1061 can be reduced. [0209] (21) In this embodiment, the valve V6, the valve V7, and the valve V5 are closed, the valve V2 and the valve V3 are opened, and water deaerated upward from the lower side of the inner supply line is introduced.
  • valves V2 and V3 are closed.
  • Valve V5, valve V6, and nozzle V7 are opened, then valve VI and valve V4 are opened, and high pressure plating or cleaning fluid begins to flow on the outer supply line side.
  • all of valves V5 to V7 can be opened.
  • the inner region 1115 is filled with a fluid close to an incompressible fluid, so that the differential pressure between the inner region 1115 and the outer region 1116 can be adjusted.
  • the outer region 1116 needs to be at high pressure.
  • plating can be performed while avoiding deformation and fracture of the base tube 1101. Further, since the supercritical C02 is used to adjust the differential pressure between the inner region 1115 and the outer region 1116 of the base tube 1101, a diffusion fluid mixed with the plating solution can be used effectively.
  • the hydrogen separator 1100 includes a catalyst-supporting ceramic layer 1 101a, a pore ceramic layer 1101b, and a hydrogen permeable layer 1102.
  • a metal porous body for example, SUS porous body
  • the thermal conductivity of alumina is relatively low, the use of a metal porous body can increase the heat capacity of the hydrogen separator 1100 and improve the thermal conductivity, and promote the dissolution and diffusion of hydrogen. Can be achieved.
  • the base tube 1101 is held in the fitting tank 1061 by supporting the openings at both ends of the base tube 1101.
  • the substrate tube 1101 may be held on the surface of the substrate tube 1101 on which the Pd film is not formed.
  • the base tube 1101 may be held so as to be sandwiched from the outside.
  • the current sensor 1064 is used as detection means for detecting the formation status of the Pd film formed on the surface of the base tube 1101 by electroless plating.
  • the detection means is not limited to the electroless plating formed on the base tube 1101.
  • a device other than the current sensor 1064 may be used if the situation can be grasped.
  • a resistance measuring instrument that measures the resistance between the terminals of the base tube 1101 or a photometer that measures the amount of reflected light on the surface of the base tube 1101 may be used.
  • the base tube 1101 has a tubular structure.
  • the shape of the hydrogen separator 1100 may be, for example, a flat plate shape as long as the fuel gas permeates the base tube 1101 before permeating the hydrogen permeable layer 1102.
  • the Pd film constituting the hydrogen permeable layer 1102 is formed on one surface of the base tube 1101, and the Ni filling layer 1103 is provided in the space in contact with the other surface.
  • the supply of the mixed gas containing hydrogen gas is not limited to such a form, and the hydrogen gas may be separated and purified using a hydrogen-rich reformed gas generated by another process or apparatus.
  • a dispersion accelerator is used in each of the electroless plating process and the electrolytic plating process, but the dispersion accelerator may be omitted. Further, the dispersion accelerator is not limited to a fluorine compound, and a conventional hydrocarbon surfactant may be used as the dispersion accelerator.
  • C02 in a supercritical state is used as the diffusion fluid.
  • a diffusion fluid that is, high-temperature and high-pressure liquid C02 near the critical point may be used.
  • Other fluids may be used, as described in.
  • the hydrogen separator 1100 is applied to a hydrogen production apparatus.
  • the hydrogen separator 1100 is not limited to a hydrogen production apparatus, and may be applied to an apparatus that supplies the generated hydrogen gas, such as a hydrogen tank or a plant.
  • a cylindrical solid oxide fuel cell may be configured by providing a fuel electrode, an electrolyte, and an air electrode outside the hydrogen separator 1100 of the third embodiment.
  • a fuel gas containing hydrogen gas is introduced inside the solid oxide fuel cell, and air is introduced outside the cell.
  • adsorption of carbon monoxide gas or the like to the metal layer in the case of a fuel cell, the catalyst metal layer
  • the current collector and gas seal of the solid oxide fuel cell This plating method may be used for the base treatment of the joint portion between the ceramic and the metal in the portion.
  • a metal with a gas seal and a current collecting function by sticking Nikkenore to both ends of an alumina tube that forms a horizontal-striped cylindrical cell.
  • Caps can be connected in a cell stack. In this case, a metal film layer is formed on the ceramic surface when the metal penetrates deep into the pores of the ceramic surface and precipitates with a nano size.
  • the plating film follows the expansion and contraction behavior of ceramics. Ceramics and metal parts can be tightly (melted) joined via the plating layer and, at the same time, hermetically sealed.
  • a fluid close to an incompressible fluid is filled in a region where plating is not performed.
  • water or C02 having the same pressure as that in the region where plating is performed may flow in a state where the plating is performed in a region where plating is not performed.
  • the plating apparatus of this embodiment includes a cleaning liquid tank 2011, a C02 tank 2021 as a diffusion fluid supply source, a high-purity C02 tank 2026, a dispersion accelerator tank 2031, and a plating solution supply source.
  • Electroless plating liquid tank 2041, electrolytic plating liquid tank 2051, mixing / dispersing part 2060, and plating tank 2061 The above configuration will be described in detail below.
  • the cleaning liquid tank 2011 stores pure water as a cleaning liquid.
  • the cleaning liquid tank 201 1 is connected to the mixing / dispersing unit 2060 via a cleaning liquid supply pipe.
  • the cleaning liquid supply pipe is provided with a liquid pump 2012, a heating unit 2013, and a supply valve 2014.
  • the liquid pump 2012 pressurizes the cleaning liquid, and the heating unit 2013 heats the cleaning liquid.
  • Supply valve 2014 By controlling the opening / closing of the cleaning liquid tank, the cleaning liquid tank 2011 and the mixing / dispersing unit 2060 are connected to or disconnected from each other, and the cleaning liquid is supplied to the mixing / dispersing unit 2060 or stopped.
  • the C02 tank 2021 contains C02 in which supercritical C02 as a diffusion fluid is liquefied.
  • This C02 tank 2021 is connected to the mixing and dispersing unit 2060 via a C02 supply pipe.
  • This C02 supply pipe is provided with a switching valve 2021a, a liquid pump 2022, a heating unit 2023, and a supply valve 2024a force S.
  • a high purity C02 tank 2026 is connected between the switching valve 2021a and the f night pump 2022 through a supply pipe provided with a switching valve 2026a.
  • High-purity C02 tank 2026 contains higher-grade C02 than C02 stored in C02 tank 2021.
  • C02 in the high purity C02 tank 2026 is supplied to the mixing / dispersing unit 2060 instead of C02 when the C002 in the C002 tank 2021 is contaminated, or for cleaning the piping system. Or used for By controlling the opening and closing of the switching valves 2021a and 2026a, the C02 tank 2021 force, their C02 or C02 from the high-purity C02 tank 2026 is supplied to the mixing and dispersing unit 2060.
  • the liquid pump 2022 pressurizes C02, and the calorific heat unit 2023 calorically heats C02.
  • C02 supplied from the C02 tank 2021 is supplied to the mixing and dispersing unit 2060 after reaching a high pressure supercritical state.
  • the supply valve 2024a is controlled to open and close, thereby connecting or shutting off the C02 tank 2021 and the mixing / dispersing unit 2060, and stopping supplying or stopping the supply of C002 to the mixing / dispersing unit 2060. Do.
  • the C02 supply pipe is branched in the middle, and the branched C02 supply pipe is connected to the fitting tank 2061 via the supply valve 2024b.
  • This supply system is used when C02 is directly supplied to the tubing tank 2061.
  • This C02 supply system functions as a pressure adjusting fluid supply pipe used for adjusting the pressure during the plating process in modes 1 and 2 described later.
  • this pressure adjusting fluid supply pipe by controlling the opening and closing of the supply valve 3024b, the communication between the C02 tank 2021 and the mating tank 2061 or the shut-off force S is performed, and the supply or supply of C02 to the plating solution 2061 is performed. A stop is made.
  • C02 supplied from the pressure adjusting fluid supply pipe is returned to the C002 tank 2021 from the pressure adjusting fluid discharge pipe as described later.
  • the dispersion accelerator tank 2031 contains the same dispersion accelerator as in the first embodiment.
  • the dispersion accelerator tank 2031 is connected to the mixing / dispersing part 2060 via a dispersion accelerator supply pipe.
  • the dispersion promoter supply pipe is provided with a liquid pump 2032, a heating unit 2033, and a supply valve 2034.
  • the liquid pump 2032 pressurizes the dispersion accelerator, and the heating unit 2033 heats the dispersion accelerator.
  • the supply valve 2034 is controlled to open and close to communicate or block the dispersion accelerator tank 2031 and the mixing / dispersing part 2060, and to stop supplying or stopping the supply of the dispersion accelerator to the mixing / dispersing part 2060. Do.
  • the electroless plating solution tank 2041 contains an electroless plating solution as the first plating solution in the present embodiment.
  • the electroless plating solution tank 2041 includes heating and heat retaining means, and heats and keeps the electroless plating solution to a predetermined temperature.
  • the electroless plating liquid tank 2041 is connected to the mixing and dispersing unit 2060 via an electroless plating liquid supply pipe.
  • the electroless plating liquid supply pipe is provided with a liquid pump 2042 and a supply valve 2044.
  • the liquid pump 2042 pressurizes the electroless plating liquid.
  • the supply valve 2044 is connected to or disconnected from the liquid tank 2041 and the mixing / dispersing unit 2060 by controlling the opening / closing thereof, and supplies or stops the supply of the electroless plating solution to the mixing / dispersing unit 2060.
  • This electroless plating solution supply pipe is always kept at a temperature higher than the temperature at which the components of the plating solution are not deposited.
  • the electrolytic plating solution tank 2051 is a supply source of the second plating solution in the present embodiment, and stores the electrolytic plating solution as the second plating solution.
  • This electrolytic plating solution tank 2051 is provided with heating and heat retaining means, and heats the electrolytic plating solution to a predetermined temperature to keep the temperature.
  • This electrolytic plating solution tank 2051 is connected to the mixing and dispersing unit 2060 via an electrolytic plating solution supply pipe.
  • a liquid pump 2052 and a supply valve 2054 are provided in the electrolytic plating solution supply pipe. The liquid pump 2052 pressurizes the electrolyzing solution.
  • the supply valve 2054 is controlled to open and close so that the electrolytic plating solution tank 2051 communicates with or is disconnected from the mixing and dispersing unit 2060, and the supply or supply of the electrolytic plating solution to the mixing and dispersing unit 2060 is controlled. Stop.
  • the electrolytic plating solution supply pipe is always kept above the temperature at which the components of the plating solution do not precipitate.
  • the mixing and dispersing unit 2060 the plating solution, C02, and the dispersion accelerator are mixed at a ratio suitable for the plating treatment under conditions of temperature and pressure higher than the critical point of C02, and the mixed liquid is stirred. A dispersed plating dispersion is prepared.
  • the mixing and dispersing unit 2060 of the present embodiment includes a mixer located upstream and a disperser connected to the mixer and located downstream. Constructed and reviewed.
  • a cleaning dispersion containing a cleaning liquid, an electroless plating dispersion containing an electroless plating liquid, and Any of the electrolytic plating dispersions containing the electrolytic plating solution are prepared.
  • the dispersion device disperses the components of the plating dispersion in order to prepare a plating dispersion suitable for plating.
  • a mesh rotor attached to a permanent magnet is arranged inside the disperser, and a stator attached with a coil is arranged outside the disperser.
  • the strength of the magnetic field is adjusted by controlling the current flowing through the stator, and the rotational speed and direction of the rotor are controlled by the strength of the magnetic field.
  • the rotating rotor mesh provides mixing equipment force and shears the mixed liquid to prepare a dispersion suitable for plating.
  • the mixing and dispersing section 2060 is connected to the fitting tank 2061.
  • electroless plating and electrolytic plating are performed using the plating dispersion supplied from the dispersing machine of the mixing and dispersing unit 2060.
  • a pair of electrodes for performing electrolytic plating is disposed inside the plating tank 2061.
  • the pair of electrodes is connected to a power source 2062 having a switch.
  • a separation tank 2065 is connected to the plating tank 2061.
  • the dispersion used to be used in the plating tank 2061 is discharged, and in the separation tank 2065, C02 and the plating solution are separated.
  • the dispersion accelerator is included in the plating dispersion, the dispersion accelerator is separated from the plating solution in a mixed state with C02.
  • the separation tank 2065 is connected to the C02 tank 3021 and the plating liquid discharger 2070.
  • C02 or C02 containing a dispersion accelerator
  • C02 separated from the plating solution is supplied to the C02 tank 2021 after the gas such as hydrogen and oxygen is removed and the pressure is adjusted. It is.
  • the deposition solution is discharged to the plating solution discharge unit 2070.
  • This plating liquid discharger 2070 can communicate with the electrolytic plating liquid regenerating device and the waste liquid tank via a discharge switching valve.
  • impurities are removed from the electrolytic plating solution discharged from the separation tank 2065, and the components are adjusted and regenerated to supply the plating solution to the electrolytic plating solution tank 2051.
  • the plating apparatus of the present embodiment includes a control unit 2080 as control means.
  • This system The control unit 2080 includes, for example, a CPU, RAM, ROM, or the like.
  • the control ⁇ 2080 ⁇ the program in the thread [from here, each night pump 2012, 2022, 2032, 2042, 20 52, each hot heat 2013, 2023, 2033, each supply valve 2014, 2024a, 2024b, 2034, 204 4, 2054, each switching valve 2021a, 2026a, electric field 2062, etc.
  • the control unit 2080 is connected to detection means for detecting the formation state of the film formed on the substrate W.
  • a current sensor 2064 having a pair of terminals is used as the detection means.
  • the pair of terminals are installed in a state where they are in contact with the surface of the base W at a predetermined distance from each other, and the current sensor 2064 measures a current flowing when a voltage is applied between the terminals.
  • the substrate W of this embodiment is a non-conductor (for example, alumina). When a metal film is formed on the surface of the substrate W, the current value between the pair of terminals of the current sensor 2064 changes. Using this, the current sensor 2064 detects the formation state of the film formed on the surface of the substrate W.
  • the control unit 2080 includes a memory, and the memory stores a reference value for starting electroplating. As this reference value, the current value when the metal film is formed over the entire surface of the substrate W is used. Then, the control unit 2080 compares the current value acquired from the current sensor 2064 with the reference value stored in the memory, and if the current value acquired from the current sensor 2064 exceeds the reference value, the plating solution The power supply 2062 is switched on so that the formed metal film can function as a cathode.
  • a pretreatment process, a first plating process, a second plating process, and a post-treatment process are sequentially performed.
  • the substrate W is cleaned as a pretreatment step.
  • the supply valve 2014, 20 24a force S is opened and the heat pump 2013, 2023 is operated and the night pump 2012, 2022 is driven.
  • the switching valve 2021a is closed and the switching valve 2026a is opened, so that the high purity C02 tank 2026 and the mixing / dispersing unit 2060 are communicated with each other.
  • the cleaning liquid from the cleaning liquid tank 2011 is pressurized and heated
  • C02 from the high purity C02 tank 2026 is The mixture is pressurized and heated to be in a supercritical state and supplied to the mixing and dispersing unit 2060.
  • the mixing and dispersing unit 2060 the cleaning liquid and C02 are mixed and stirred.
  • a cleaning dispersion in which C 02 and the cleaning liquid are uniformly dispersed is prepared and supplied to the mixing / dispersing unit 206 0 force bath 2061 to clean the substrate W.
  • the cleaning dispersion used for cleaning in the slag tank 2061 is discharged into the separation tank 2065 and separated into C02 and cleaning liquid.
  • the separated C02 is recycled after unnecessary gas is removed and supplied to the C02 tank 2021.
  • the separated cleaning liquid is discharged to a waste liquid tank via a discharge switching valve. Then, after the cleaning dispersion is supplied to the plating tank 2061 for a predetermined time, the cleaning as the pretreatment process is completed.
  • electroless plating is performed as the first plating treatment step.
  • the supply valve 2014 is closed and the supply valves 2034 and 2044 are opened.
  • the drive of the liquid pump 2012 is stopped and the liquid pumps 2302 and 2042 are driven.
  • heating in the heating unit 2013 is stopped and heating in the heating unit 2033 is started.
  • the dispersion accelerator from the dispersion accelerator tank 2031 and the electroless plating liquid from the electroless plating liquid tank 2041 are supplied to the mixing and dispersing unit 2060.
  • the liquid pump 2022 and the heating unit 2023 continue to be driven, and the supply valve 2024a is maintained in an open state, whereby the supply of C02 is continued.
  • the switching valve 2021a, 2026a force S is switched, and the force S is communicated with the C02 tank 2021 and the mixing dispersion tank 2060.
  • the mixing and dispersing unit 2060 the supercritical C02 from the C02 tank 3021, the electroless plating solution, and the dispersion accelerator are mixed and further agitated to achieve a more uniform dispersion.
  • a plating dispersion containing an electroless plating solution is prepared. Then, this tsume dispersion is supplied from the mixing / dispersing unit 2060 to the mashing tank 2061.
  • the first metal film 2091 is formed by depositing on the surface of the metallic force base W of the electroless plating solution introduced into the plating dispersion inside the plating tank 2061.
  • control unit 2080 of the present embodiment operates each of the night pumps 2022, 2032, 2042 so that it can flow through the plating dispersion strength S plating tank 2061 within the dispersion holding time of the dispersion. Is controlled.
  • the first metal film 2091 is formed on the surface of the substrate W.
  • the controller 2080 uses the current sensor 2064 to form the first metal film 2091. A change in the current value is detected.
  • the control unit 2080 switches from the first plating process to the second plating process and performs electrolytic plating. Specifically, the supply valve 2044 is closed, the drive of the liquid pump 2042 is stopped, and the supply of the electroless plating liquid to the mixing and dispersing unit 2060 is stopped. Then, the supply valve 2054 is opened and the liquid pump 2052 is driven, and the electrolytic plating solution is supplied from the electrolytic plating solution tank 2051 to the mixing and dispersing unit 2060. Further, a voltage is applied to the electrodes provided in the plating tank 2061 with the switch force S of the power source 2062.
  • each liquid pump 2022, 2032, 2052 continues to be driven by force S, and is mixed and dispersed in the mixing and dispersing unit 2060, and the dispersion is continuously supplied to the plating tank 2061.
  • the electrolytic plating process is performed.
  • the control unit 2080 controls the driving of each liquid pump 2022, 2032, 2052 so that the plating dispersion can flow through the plating tank 2061 within the dispersion holding time of the dispersion.
  • the hydrogen gas dissolved in the plating dispersion and the impurities peeled off from the surface of the substrate W by the plating process are quickly discharged from the plating bath 2061.
  • Each night pump 2022, 2032, 2052 force S horse ward movement, power, hot heat heat parts 2023, 2033 and hot heat
  • the supply and discharge of the prepared dispersion is continued, and the electrolytic plating process is continued for the time required to form a film having a predetermined thickness.
  • a post-processing step is performed.
  • cleaning and drying are performed as post-processing steps.
  • the power supply 2062 is turned off, the supply valves 2034 and 2054 are closed, and the supply valve 2014 is opened again.
  • the switching valve 2021a is closed and the switching valve 2026a is opened.
  • the supply of the dispersion accelerator and the electrolytic plating solution is stopped, and the cleaning solution and high-purity C02 are supplied to the mixing and dispersing unit 2060.
  • the cleaning dispersion in which C02 and the cleaning liquid are mixed is supplied from the mixing / dispersing unit 2060 to the tub 2061, and cleaning is performed.
  • the supply valve 2014 is closed for drying.
  • the supply of the cleaning liquid from the cleaning liquid tank 2011 is stopped, and C02 from the high-purity C02 tank 2026 is supplied to the sag tank 2061 through the mixing and dispersing unit 2060, and drying is performed.
  • the cleaning liquid (water) attached to the inner wall of the plating tank 2061 and the substrate W is washed away by the flow of C02, and becomes supercritical and dissolved and removed in C02. .
  • a hydrogen permeable layer 2102 is formed on one surface of a base tube 2101, and a catalyst layer 2103 is disposed on the other surface.
  • a gas containing hydrogen is permeated through the catalyst layer 2103, the base tube 2101, and the hydrogen permeation layer 2102 in this order to purify it into high purity hydrogen gas.
  • the catalyst layer 2103 in order to remove carbon monoxide (CO) that hinders hydrogen separation, Reaction is performed.
  • a high-temperature iron-chromium catalyst and a low-temperature copper-zinc catalyst are used.
  • the base tube 2101 is a porous body, such as alumina (A10
  • the hydrogen permeable layer 2102 allows only hydrogen to pass through and is made of, for example, palladium (Pd). This hydrogen permeable layer 2102 is formed by plating.
  • a Pd film to be a hydrogen permeable layer 2102 is formed on the base tube 2101 as the base W.
  • a cylindrical base tube 2101 is used, and Pd films as first and second metal films 2091 and 2092 are formed on the surface of the base tube 2101. Therefore, the electroless plating solution tank 2041 contains a plating solution for forming a Pd film by electroless plating, and the electrolytic plating solution tank 2051 contains a plating solution for forming a Pd film by electrolytic plating. Accommodate.
  • the catalyst layer 2103 is formed on the surface opposite to the surface on which the Pd film is formed (the outer surface when the Pd film is formed on the inner surface, or the inner surface when the Pd film is formed on the outer surface). In the following embodiments, description of the catalyst layer 2103 is omitted.
  • the ferrule 2061 force S shown in FIGS. 23 and 24 is used.
  • the messenger 2061 is provided with a cylindrical casing 2110.
  • the casing 2110 accommodates a pair of support members 2111 and 2112.
  • the support member 2111 functions as a lid that can be detached from the housing 2110 and is fixed to the housing 2110 via a seal member 2113.
  • annular groove is formed on the surfaces of the support members 2111 and 2112 facing each other.
  • a seal member 2114 is accommodated in this groove.
  • the support members 2111 and 2112 support the base tube 2101 that is the object of the sticking process via the seal member 2114.
  • the inside of the plating bath 2061 includes an inner region 2115 located inside the base tube 2101, and the base It is divided into an outer region 2116 located outside the tube 2101.
  • the support member 2111 is provided with an inner supply pipe 2117 for supplying a fluid to the inner region 2115.
  • the support member 2112 is provided with an inner discharge pipe 2118 for discharging a fluid from the inner region 2115. Therefore, when the base tube 2101 is attached to the fitting tank 20 61, a specific fluid is allowed to flow inside the inner region independently of the outer region 2116. After being supplied to area 2115, it is discharged from inner area 2115.
  • the casing 2110 is provided with an outer supply pipe 2119 for supplying fluid to the outer area 2116 and an outer discharge pipe 2120 for discharging fluid from the outer area 2116. Accordingly, specific fluid flows through the outer region 2116 independently of the fluid flowing through the inner region 2115.
  • the plating tank 2061 is provided with a pressure gauge 2121.
  • This pressure gauge 2121 measures the difference between the pressure in the inner region 2115 and the pressure in the outer region 2116 and supplies the measured differential pressure value to the control unit 2080.
  • the control unit 2080 uses this differential pressure value to adjust the pressure of the fluid supplied to the inner region 2115 or the outer region 2116 so that the differential pressure between the inner region 2115 and the outer region 2116 does not increase.
  • the inner supply pipe 2117 of the plating tank 2061 is connected to the mixing / dispersing unit 2060.
  • the inner discharge pipe 2118 is connected to the separation tank 2065. Then, the sprinkled dispersion prepared in the mixing / dispersing unit 2060 is supplied from the inner supply pipe 2117 to the inner area 2115 of the mating tank 2061, passes through the inner area 2115, and is separated from the inner discharge pipe 2118. To be discharged.
  • the pressure supply fluid is supplied to the outer supply pipe 2119.
  • c02 is supplied to the outer supply pipe 21 19 through the pressure adjusting fluid supply pipe.
  • This pressure adjusting fluid supply pipe is connected to the outer supply pipe 2119 and is pressurized and heated from the C02 tank 2021.
  • C02 which is in a supercritical state, is supplied to the outer region 2116 of the plating tank 2061.
  • the outer discharge pipe 2120 is connected to the C02 tank 2021 described above via a pressure adjusting fluid discharge pipe. Therefore, C02 supplied to the outer region 2116 is discharged to the C02 tank 2021 through the outer discharge pipe 2120 and the pressure adjusting fluid discharge pipe.
  • a pressure regulating valve 2025 is provided in the pressure regulating fluid discharge pipe. The pressure adjusting valve 2025 is controlled by the control unit 2080 and adjusts the pressure in the outer region 2116 of the plating tank 2061 by cooperating with the supply valve 2024b of the pressure adjusting fluid supply pipe.
  • the positive electrode force inside region 2115 provided in the plating tank 2061 is provided in parallel with the axial direction of the base tube 2101.
  • the current sensor 2064 measures a current flowing between both ends of the inner surface of the casing 2110.
  • a cleaning process as a pretreatment process is performed.
  • a cleaning dispersion in which the cleaning liquid and C02 are mixed is prepared in the mixing and dispersing unit 2060.
  • the cleaning dispersion is supplied to the inner region 2115 of the plating tank 2061 through the inner supply pipe 2117 connected to the mixing / dispersing unit 2060, and the inner side of the base tube 2101 is cleaned.
  • the used cleaning dispersion is discharged from the inner region 2115 to the separation tank 2065 via the inner discharge pipe 2118.
  • the control unit 2080 controls the supply valve 2024b and the pressure adjustment valve 2025 so that the differential pressure between the inner region 2115 and the outer region 2116 of the base tube 2101 does not increase, and is supplied to the outer region 2116. Adjust the pressure.
  • electroless plating is performed as the first plating treatment step. That is, the supercritical C02, the dispersion accelerator, and the electroless plating solution are mixed, so that the dispersion is prepared in the mixing / dispersing unit 2060 and supplied to the inner region 2115 of the plating tank 2061. Then, the Pd in the dispersion attached to the inner region 2115 is deposited on the inner surface of the base tube 2101. As a result, a Pd film formed by electroless plating is formed on the inner surface of the base tube 2101 as the first metal film 2091.
  • the control unit 2080 detects that the Pd film is formed so as to cover the surface of the base tube 2101 by the current sensor 2064, the electroless plating liquid tank 2041 and the electrolytic plating liquid tank Switching to 2051, supercritical C02, dispersion promoter and electrolytic plating solution are mixed.
  • the sprinkled dispersion is supplied from the mixing / dispersing unit 2060 to the sag tank 2061. Further, the switch of the power source 2062 is turned on, and a voltage is applied to the electrode in the plating tank 2061.
  • the Pd film formed on the inner surface of the base tube 2101 functions as a cathode, and the Pd that is supplied to the plating tank 2061 and dissolved in the dispersion is attracted to and adhered to the Pd film. Then, a Pd film is formed as the second metal film 2092 continuously on the Pd film formed as the first metal film 2091.
  • FIG. 27 an embodiment relating to the hydrogen separation structure 2100 in which the Pd film constituting the hydrogen permeable layer 2102 is formed on the outer surface of the base tube 2101 will be described with reference to FIG.
  • This hydrogen separation structure 2100 is used when purifying hydrogen gas by flowing gas from the inside to the outside of the substrate tube 2101.
  • the Pd film is formed on the outer surface of the base tube 2101 by replacing the fluid supplied to the inner region 2115 and the fluid supplied to the outer region 2116 in the first aspect.
  • the outer supply pipe 2119 of the plating tank 2061 is connected to the mixing / dispersing part 2060, and the outer discharge pipe 2120 is connected to the separation tank 2065.
  • the spear dispersion prepared in the mixing / dispersing unit 2060 passes through the outer region 2116 of the plating tank 2061 and is then discharged to the separation tank 2065.
  • the pressurized supply C02 from the C02 tank 2021 is supplied to the inner supply pipe 2117 via the pressure adjusting fluid supply pipe. That is, C02 is supplied to the inner region 2115 of the plating tank 2061 independently of the outer region 2116.
  • the pressure adjusting fluid discharge pipe is provided with a pressure adjusting valve 2025 as in the first embodiment.
  • the controller 2080 adjusts the pressure in the inner region 2115 by controlling the supply valve 2024b and the pressure adjustment valve 2025.
  • a plus electrode is provided in the outer region 2116 in parallel with the axial direction of the base tube 2101.
  • a cleaning process as a pretreatment process is performed.
  • a cleaning dispersion containing the cleaning liquid and C02 is prepared in the mixing and dispersing unit 2060.
  • the cleaning dispersion is supplied to the outer region 2116 of the plating tank 2061 through the outer supply pipe 2119, and the outer side of the base tube 2101 is cleaned.
  • the cleaning dispersion used for cleaning is discharged from the outer region 2116 to the separation tank 2065 through the outer discharge pipe 2120.
  • the control unit 2080 controls the supply valve 2024b and the pressure adjustment valve 2025 so that a differential pressure does not occur between the inner region 2115 and the outer region 2116 of the base tube 2101. Do.
  • electroless plating is performed as the first plating treatment step. That is, the supercritical C02, the dispersion accelerator, and the electroless plating liquid are mixed, and the dispersion is supplied from the mixing / dispersing part 2060 to the outer region 2116 of the plating tank 2061. Then, the Pd in the dispersion attached to the outer region 2116 is deposited on the outer surface of the base tube 2101. As a result, a Pd film formed by electroless plating is formed as the first metal film 2091 on the outer surface of the base tube 2101.
  • the control unit 2080 acquires the formation status of the Pd film by the current sensor 2064, and switches between the electroless plating liquid tank 2041 and the electrolytic plating liquid tank 2051 as in the above-described aspect 1. Switch on the power supply 2062 and apply voltage to the electrodes in the plating tank 2061.
  • the plating dispersion containing the electrolytic plating solution is supplied from the mixing and dispersing unit 2060 to the plating bath 2061, and Pd dissolved in the plating dispersion is formed on the outer surface of the base tube 2101 by the first metal. Adheres to the Pd film of film 2091. Then, a Pd film as the second metal film 2092 is continuously formed on the Pd film formed as the first metal film 2091 by electrolytic plating.
  • electroless plating is performed using an electroless plating solution and a plating dispersion containing supercritical C02 that increases the diffusion power thereof.
  • a Pd film as the first metal film 2091 is formed on the surface of the base tube 2101.
  • electrolytic plating is performed using a plating dispersion containing supercritical C02 and electrolytic plating solution.
  • a Pd film as the second metal film 2092 can be formed by electrolytic plating in succession to the Pd film as the first metal film 2091 formed on the surface of the base tube 2101.
  • the first and second metal films 2091 and 2092 are formed by plating using supercritical C02, there are few defects such as pinholes in which the plating film is easily attached to the base tube 2101. Plating can be formed. Further, since electrolytic plating is performed on the base tube 2101 which is a nonconductor, the Pd film can be formed at a high speed, and productivity can be improved. Accordingly, the productivity of the base tube 2101 on which the Pd film to be the hydrogen permeable layer 2102 is formed can be improved, and the cost of the hydrogen separation structure 2100 and a structure using the same can be reduced.
  • supercritical C02 is used in the second step in which the second metal film 2092 is formed by electrolytic plating. Therefore, because of the cleaning ability of supercritical C02, the second metal film 2092 is formed after the previously introduced electroless plating solution is washed away, so that a good metal film is formed. be able to.
  • plating is known as one of the techniques for forming a metal film on the surface of a member.
  • electrolytic plating is widely used because of its high film formation rate.
  • a current is passed through an electrolyte solution (plating solution) to deposit a metal that is an electrolyte, and a metal film is formed on the surface of the member.
  • electrolyte solution plating solution
  • a technique has been disclosed in which plating is performed using a supercritical substance and an electrolyte solution in order to perform good plating (see, for example, Japanese Patent No. 3571627).
  • This Japanese Patent No. 3571627 discloses that the plating solution contains a supercritical substance, whereby ions are diffused to increase the reactivity and good plating is performed.
  • the surface of the object to be plated must be a conductor.
  • non-electrolytic tacking is performed (for example, see Japanese Patent Application Laid-Open No. 2004-122006).
  • a thin film of palladium or an alloy thereof is formed on a non-conductive inorganic porous material by an electroless plating method.
  • palladium The membrane is deposited by chemical vapor deposition to form a hydrogen separation membrane.
  • the chemical vapor deposition method used in Japanese Patent Application Laid-Open No. 2004-122006 has a drawback that the film formation rate is slow and the productivity is inferior compared with the semen treatment.
  • the film formed by this chemical vapor deposition method often has poor adhesion.
  • a metal film is formed using a plurality of processing steps, it takes time to switch the steps.
  • this embodiment it is possible to efficiently perform good plating with few defects such as pinholes.
  • the plating process is performed in the plating tank 2061 with the plating dispersion flowing.
  • plating is performed using a material in a supercritical state, it is necessary to mix and diffuse this material and the mating solution.
  • the plating is performed on the outer surface of the object to be plated, it is possible to stir with a stirrer or the like in the plating tank. It is difficult. In particular, the stirrer cannot be rotated in a narrow and limited space such as the inside of a tubular object. Accordingly, even in such a space, good plating can be performed by performing plating in a state where the plating dispersion flows as in the first aspect.
  • the plating tank is configured to match the shape of the tubular object, and the plating solution flows in the gap between the plating tank and the tubular object. Therefore, plating can be performed efficiently. For this reason, plating can be performed while discharging hydrogen, which is a cause of pinholes, and thus better plating can be performed.
  • the plating process is performed with the plating dispersion flowing. For this reason, impurities generated by plating can be quickly discharged from the plating tank 2061, and good plating can be performed. Further, the flow rate is controlled so that the plating dispersion passes through the plating tank 2061 before the plating solution and the supercritical C02 are separated. Therefore, mixed plating Since plating is performed in the plating tank 2061 while keeping the mixed solution stably dispersed, the substrate W can be more uniformly plated.
  • C02 in a supercritical state used as a diffusion fluid to enhance the diffusion power of the plating solution is
  • the support member 2111 provided with the inner supply pipe 2117 and the support member 2112 provided with the inner discharge pipe 2118 are used as a base.
  • Tube 2101 is supported.
  • the inside of the plating tank 2061 is partitioned into an inner region 2115 and an outer region 2116. Therefore, the fluid can be supplied independently to the inner region 2115 and the outer region 2116. Therefore, the inner surface or the outer surface of the base tube 2101 can be selectively plated.
  • plating is performed on the inner surface or outer surface of the base tube 2101, it is only necessary to supply the plating dispersion to the inner region 2115 or the outer region 2116 of the plating tank 2061.
  • the body can be plated.
  • C02 is supplied to the inner region 2115 or the outer region 2116 where the plating dispersion does not flow, and the outer region 2116 or the inner region 2115 where the plating dispersion flows.
  • the differential pressure is adjusted. In particular, when a material in a supercritical state is used, it is necessary to increase the pressure of the fluid, and when such a fluid is supplied to only one of the inner region 2115 and the outer region 2116, May be distorted or broken. Therefore, plating can be performed while avoiding deformation and fracture of the base tube 2101 due to the differential pressure between the inner region 2115 and the outer region 2116.
  • plating is performed in a state where the plating dispersion is continuously supplied. Done. For this reason, control of the opening and closing of the supply valves 2044 and 2054 The ability to change the plating dispersion can be achieved while the atmosphere formed by the critical C02 is maintained. Furthermore, the first plating process and the second plating process can be performed continuously by performing the switching control of the switch of the power supply 3062 and the switching control of the supply of electrolytic plating and electroless plating. A Pd film can be formed efficiently.
  • the current between the terminals installed on the surface of the base tube 2101 is measured using the current sensor 2064, so that the non-conductive alumina base tube 21 01 It is possible to grasp the film formation status of the Pd film on the surface. Therefore, based on the current value of the current sensor 2064, after the Pd film is formed on the surface of the base tube 2101 by electroless plating, the process is quickly transferred to the second step of electrolytic plating, and the Pd film is efficiently removed. Can be formed.
  • the voltage for the opposite side negative electrode is supplied to the supply side of the plating solution for electroless plating. For this reason, even when the film thickness on the supply side of the plating solution is increased in electroless plating, film formation is performed from the solution discharge side in electrolytic plating. Uniformity can be achieved.
  • the fourth embodiment may be modified as follows.
  • a current sensor 2064 is used as detection means for detecting the formation status of the first metal film 2091.
  • the present invention is not limited to this, and other devices may be used as detection means as long as the formation status of the first metal film 2091 formed on the substrate W can be grasped.
  • a resistance measuring instrument that measures the resistance between the terminals of the substrate W or a photometric instrument that measures the amount of reflected light on the surface of the substrate W may be used.
  • the substrate W to be plated is formed of a nonconductor such as alumina.
  • the substrate W is not limited to this, and may be formed of other non-conductors such as non-metals such as glass and ceramics, and is not limited to non-conductors, and may be formed of a conductor or a semiconductor. . Also in this case, the same effect as this embodiment can be obtained.
  • any fluorine compound having the above-described dispersion promoting function is not limited to the fluorine compounds exemplified above. Further, the dispersion accelerator may be omitted.
  • C02 in a supercritical state is used as the diffusion fluid.
  • C02 in a subcritical state may be used as the diffusion fluid, and is not limited to C02.
  • other fluids may be used as described in the first embodiment. Also good.
  • supercritical C02 is used in both the electroless plating process for forming the first metal film 2091 and the electrolytic plating process for forming the second metal film 2092.
  • the use of supercritical C02 is not limited to this.
  • supercritical C02 may not be used.
  • the electrolytic plating solution may be performed after only the supercritical C02 flows into the plating tank 2061 first. In this case, the electroless plating solution can be washed away with supercritical C02 before the second step, and the second metal film 2092 can be formed using the electrolytic plating solution. Therefore, a better metal film can be formed.
  • the present invention is applied to the case where the hydrogen permeable layer 2102 of the hydrogen separation structure 2100 is formed on the base tube 2101.
  • the present invention is not limited to this.
  • an electrode of an oxygen sensor used in an internal combustion engine, a gas combustion device, or the like is formed, and at the time of manufacturing a semiconductor wafer, the present invention is applied to a non-conductor by a contact method. It may be applied when a metal film is formed. Further, at least a part of the configuration of the plating apparatus of the present embodiment may be applied to the plating of any one of the first to third embodiments.
  • FIG. 29 a fifth embodiment in which the present invention is embodied in a multilayer film structure will be described with reference to FIGS. 29 and 30.
  • a nickel (Ni) film and a gold (Au) film are laminated on the substrate W by electrolytic plating using a diffusion fluid to form a multilayer film.
  • the diffusion fluid the same C02 as in the first embodiment is used.
  • the multilayer film structure include members used for fuel cells in addition to members used for thermoelectric semiconductors, magnetic heads, and sensors.
  • the plating apparatus of this embodiment includes a cleaning liquid tank 3011, a high-purity C02 tank 3021, a dispersion accelerator tank 3031, a first plating liquid tank 3041, and a second plating liquid tank 3051. It has.
  • the cleaning liquid tank 3011 contains the cleaning liquid. In this embodiment, pure water is used as the cleaning liquid.
  • the cleaning liquid tank 3011 is connected to the mixing / dispersing unit 3060 via a cleaning liquid supply pipe.
  • the cleaning liquid supply pipe is provided with a liquid pump 3012, a heating unit 3013, and a supply valve 3014.
  • the liquid pump 3012 pressurizes the cleaning liquid, and the heating unit 3013 heats the cleaning liquid.
  • the supply valve 3014 communicates or shuts off the cleaning liquid tank 3011 and the mixing / dispersing unit 3060, and supplies or stops the supply of the cleaning liquid to the mixing / dispersing unit 3060 by opening and closing the supply valve 3014.
  • High purity C02 tank 3021 contains C02 as a diffusion fluid.
  • the high-purity C 02 tank 3021 is connected to a mixing tank 3030, which will be described later, and is connected to a mixing / dispersing unit 3060 via a C02 supply pipe.
  • the C02 supply pipe is provided with a liquid pump 3022, a heating unit 3023, and a supply valve 3024.
  • the liquid pump 3022 pressurizes C02
  • the heating unit 3023 heats C02.
  • the supply valve 3024 communicates or blocks the high-purity C02 tank 3021 and the mixing / dispersing unit 3060 by opening and closing thereof, and stops supplying or supplying C02 to the mixing / dispersing unit 3060.
  • the dispersion accelerator tank 3031 contains the same dispersion accelerator as in the first embodiment.
  • the dispersion accelerator tank 3031 is connected to the mixing tank 3030.
  • the mixing tank 3030 stores the C02 mixed solution in which the C02 supplied from the high purity C02 tank 3021 and the dispersion accelerator supplied from the dispersion accelerator tank 3031 are mixed.
  • the mixing tank 3030 is connected to the mixing and dispersing unit 3060 through a supply pipe.
  • the supply pipe is provided with a liquid pump 3032, a heating unit 3033 and a supply valve 3034. Liquid pump 3032 pressurizes the C2 mixture, and heating unit 3033 heats the C2 mixture.
  • the supply valve 3034 opens or closes to connect or block the mixing tank 3030 and the mixing and dispersing unit 3060, and to supply or supply the C02 mixed solution of C02 and the dispersion accelerator to the mixing and dispersing unit 3060. Stop.
  • the first plating solution tank 3041 contains Ni plating solution.
  • This first plating solution tank 304 1 is provided with heating and heat retaining means, and the Ni plating solution is heated up to a predetermined temperature (eg, about 50 ° C.). Keep warm by heating.
  • the first plating solution tank 3041 is connected to the mixing / dispersing unit 3060 via a first plating solution supply pipe.
  • the first plating solution supply pipe is provided with a liquid pump 3042, a supply valve 3044, and a force S. Liquid pump 3042 pressurizes the Ni plating solution.
  • the supply valve 3044 communicates or blocks the first plating solution tank 3041 and the mixing / dispersing unit 3060 by opening and closing thereof, and controls the supply or stop of the supply of the Ni plating solution to the mixing / dispersing unit 3060.
  • the second plating solution tank 3051 contains an Au plating solution.
  • This second plating solution tank 3051 is provided with heating and heat retaining means, and keeps the Au plating solution warm by heating to a predetermined temperature (eg, about 50 ° C.).
  • the second plating solution tank 3051 is connected to the mixing / dispersing unit 3060 via a second plating solution supply pipe.
  • the second plating solution supply pipe is provided with a solution pump 3052, a supply valve 3054, and a force S.
  • the liquid pump 3052 pressurizes the Au plating solution.
  • the supply valve 3054 communicates or shuts off the second plating solution tank 3051 and the mixing and dispersing unit 3060 by opening and closing thereof, and stops supplying or supplying the Au plating solution to the mixing and dispersing unit 3060.
  • the mixing and dispersing unit 3060 the plating solution, C02, and the dispersion accelerator are mixed to prepare a plating mixture used for the plating treatment, and the plating mixture is stirred in a dispersed state to form a plating dispersion.
  • the mixing / dispersing unit 3060 includes a mixer located upstream and a disperser connected to the mixer and located downstream. In the mixer, when two forces S of the supply valves 3014, 3024, 3034, 3044, 3054 are opened, the cleaning mixture containing the cleaning solution, the plating mixture containing the Ni plating solution, and the Au plating solution are included. Either of the admixtures is prepared.
  • the disperser includes a stirrer that is rotated by an excited solenoid. By rotating the stirrer inside the container, the dispersion liquid prepared in the mixer is dispersed so that its components are uniform. A plating dispersion is prepared.
  • the mixing and dispersing unit 3060 is connected to the plating tank 3061.
  • electroplating is performed using the tanning dispersion supplied from the disperser of the mixing and dispersing unit 3060.
  • a pair of electrodes is disposed inside the plating tank 3061.
  • a conductive substrate W is connected to one of these electrodes.
  • the substrate W is connected to the negative electrode in order to coat the substrate W with Ni by electrolytic plating and to coat Au thereon.
  • the plating tank 3061 is provided with a block heater (not shown). . Using this block heater, the plating dispersion in the plating tank 3061 is set to a predetermined temperature (for example, 50 ° C.) so that C02 is in a supercritical state and can be attached.
  • the plating powder 3061 is connected to the separation tank 3065 and is released. For this reason, the plating dispersion released from the plating solution 3061 is discharged into the separation tank 3065.
  • C02 and the dispersion accelerator are separated from the plating solution.
  • the separation tank 3065 is connected to the mixing tank 3030 and the plating solution discharge unit 3068.
  • the C02 and dispersion accelerator separated in the separation tank 3065 are supplied to the mixing tank 3030 after adjusting the pressure after removing gas such as hydrogen and oxygen contained therein.
  • the plating solution discharge unit 3068 solid impurities are precipitated and removed from the depositing solution, and impurities such as organic substances dissolved in the plating solution are removed.
  • the plating solution discharge unit 3068 is connected to a first plating solution regenerator 3071, a second plating solution regenerator 3072, and a waste solution tank 3073 via a discharge switching valve 3070.
  • the discharge switching valve 3070 connects the plating solution discharge unit 3068 to the first and second plating solution regenerators 3071 and 3072 or the waste solution tank 3073. Specifically, when the Ni plating solution is regenerated, the discharge switching valve 3070 is switched so that the plating solution discharge unit 3068 and the first plating solution regenerating device 3071 communicate with each other.
  • the plating solution discharge unit 3068 and the solution regeneration device 3072 are switched so as to communicate with each other. Furthermore, when the plating solution is discharged, the discharge switching valve 3070 is switched so that the plating solution discharge unit 3068 and the waste liquid tank 3073 communicate with each other.
  • the first plating solution regenerator 3071 the components of the Ni plating solution are adjusted, and the Ni plating solution is regenerated so that it can be used again.
  • the first plating solution regenerator 3071 is connected to the first plating solution tank 3041, and the regenerated Ni plating solution is supplied to the first plating solution tank 3041.
  • the second plating solution regenerator 3072 the components of the Au plating solution are adjusted, and the Au plating solution is regenerated so that it can be used again.
  • the second plating solution regenerator 3072 is connected to the second plating solution tank 3051, and the regenerated Au plating solution is supplied to the second plating solution tank 3051.
  • the plating apparatus of the present embodiment includes a process control unit (not shown) as control means.
  • This process control unit is composed of CPU, RAM or ROM power.
  • each night pump 3012, 3022, 3032, 3 042, 3052, each calorie heat unit 3013, 3023, 3033, each supply valve 3014, 3024, 3034, 304 4, 3054, electrode Etc. are controlled.
  • the pretreatment process the first plating process for forming the Ni film as the first plating film, the replacement process, and the second plating film are used.
  • a second plating process and a post-treatment process for forming the Au film are sequentially performed.
  • the substrate W is cleaned as a pretreatment step. Specifically, the supply valves 3014 and 30 24 are opened. At this time, the cleaning liquid and C02 are heated in the calorific heat units 3013 and 3023, and the liquid pumps 3012 and 3022 are driven. In this case, the pressurized and heated cleaning liquid from the cleaning liquid tank 3011 and the pressurized and heated C02 from the high-purity C02 tank 3021 are supplied to the mixing and dispersing unit 3060 and mixed and cleaned in the mixer. A mixture is prepared. Here, by exciting the solenoid of the disperser of the mixing / dispersing unit 3060 and rotating the stirrer, the prepared cleaning liquid mixture is stirred, and the C02 and the cleaning liquid are uniformly dispersed.
  • the body is prepared.
  • the dispersed cleaning solution is supplied to the mixing / dispersing unit 3060 squeezing tank 3061 and the substrate W is cleaned.
  • the cleaning dispersion used for cleaning in the plating tank 3061 is discharged into the separation tank 3065 and separated into CO 2 and cleaning liquid. From the separated C02, organic substances dissolved in the C02 are further separated and exhausted.
  • the separated cleaning solution is discharged to the waste solution tank 3073 through the plating solution discharge unit 3068 and the discharge switching valve 3070. Then, the cleaning dispersion containing the cleaning liquid is supplied to the settling tank 3061 for a predetermined time, and the cleaning as the pretreatment process is completed.
  • a first plating process for forming a Ni film is performed. Specifically, after the supply valve 3014 is closed and the cleaning liquid is discharged, the supply valve 3024 is closed and the supply valves 3034 and 3044 are opened. In addition, the f night pumps 3012 and 3022 are powered off and the f night pumps 3032 and 3042 are driven. Further, heating in the heating unit 3013 is stopped. As a result, C02, which was pressurized and heated from the high-purity C 02 tank 3021 to become a supercritical state, was mixed with the heated and pressurized dispersion accelerator from the dispersion accelerator tank 3031.
  • Liquid is mixed It is supplied to the dispersion unit 3060 and mixed with the Ni plating solution from the first plating solution tank 3041 in the mixing / dispersing unit 3060. Then, in the mixing / dispersing unit 3060, the mixed mixture liquid is stirred and more uniformly dispersed to form a scattered dispersion and supplied to the plating tank 3061.
  • the tan dispersion prepared by the mixer can flow through the plating tank 30 61 within the dispersion retention time.
  • the drive of each liquid pump 3032, 3042 is controlled.
  • a voltage is applied to the electrodes, which are supplied to the plating tank 3061, so that electroplating is performed using a dispersion.
  • a Ni film 3101 is formed on the surface of the substrate W.
  • the liquid pumps 3032 and 3042 continue to be driven, and the dispersion prepared in the mixing and dispersing unit 3060 is continuously supplied to the plating tank 3061.
  • a plating process is performed.
  • the slag dispersion used in the plating process is discharged from the sag tank 3061 to the separation tank 3065 before the dispersion holding time elapses.
  • the hydrogen gas dissolved in the plating dispersion and the impurities peeled off from the surface of the substrate W by the plating process are quickly discharged from the plating tank 3061.
  • the dispersion dispersed in the tank 3065 is separated into C02 containing a dispersion accelerator and Ni plating solution. Among these, C02 is returned to the mixing tank 3030 after unnecessary gas is removed.
  • the Ni plating solution is discharged to the fitting solution discharge unit 3068 to remove impurities in the plating process.
  • the discharge switching valve 3070 is switched so that the plating solution discharge unit 3068 and the first plating solution regenerator 3071 communicate with each other. As a result, the Ni plating solution discharged to the plating solution discharge unit 3068 is discharged to the first plating solution regenerator 3071, regenerated, and supplied to the first plating solution tank 3041.
  • the liquid pumps 3032 and 3042 and the calorie heating unit 3033 are driven to continue the supply of the plating dispersion to the plating tank 3061 and the discharge from the plating tank 3061.
  • the time setting process required to form the Ni film 3101 (about 1 ⁇ m) is continued.
  • the replacement process of this embodiment includes a Ni plating solution discharge process and a cleaning process.
  • the C02 mixed solution of C02 and the dispersion accelerator is continuously supplied from the mixing tank 3030. Supplied.
  • the supply valve 3044 is closed, and the driving of the liquid pump 3042 is stopped.
  • the supply of the Ni plating solution to the mixing and dispersing unit 3060 is stopped, and only the C02 mixed solution is supplied to the plating tank 3061 through the mixing and dispersing unit 3060.
  • the discharge of the Ni plating solution in the plating tank 3061 is completed.
  • the supply valve 3014 is opened and the liquid pump 3012 is driven.
  • the cleaning liquid is supplied from the cleaning liquid tank 3011 to the mixing and dispersing unit 3060, and the cleaning dispersion prepared thereby cleans the inside of the plating tank 3061.
  • the supply valve 3014 is closed and the driving of the liquid pump 3012 is stopped, and the supply of the cleaning liquid is stopped.
  • the C02 liquid mixture containing the dispersion accelerator flows through the plating tank 3061, and the cleaning liquid is discharged from the plating tank 3061.
  • a second plating process for forming an Au film is performed. Specifically, the supply valve 3054 is opened and the liquid pump 3052 is driven. As a result, the CO 2 mixed solution from the mixing tank 3030 and the Au plating solution from the second plating solution tank 3051 are supplied to the mixing and dispersing unit 3060, and the plating dispersion is prepared and supplied to the plating tank 3061. In the plating tank 30 61, electrolytic plating using C02, a dispersion accelerator, and an Au plating solution is performed. As a result, an Au film 2102 is formed on the surface of the Ni film 3101 formed on the substrate W. Also in this case, the plating is performed in the state where the liquid pumps 3032 and 3052 are continuously driven and the dispersion is supplied to the plating tank 3061 in the same manner as when the Ni film 3101 is formed.
  • the sprinkling dispersion used in the plating process is discharged from the plating tank 3061 to the separation tank 3065 before the dispersion holding time elapses.
  • separation tank 3065 C02 and dispersion promoter are separated from the plating dispersion.
  • C02 and dispersion promoter are supplied to mixing tank 3030 after unnecessary gas is removed.
  • Au plating solution is discharged to the fitting solution discharge unit 3068.
  • the discharge switching valve 3070 is switched so that the plating solution discharge unit 3068 and the second plating solution regenerator 3072 communicate with each other.
  • the Au plating solution discharged to the plating solution discharge unit 3068 is discharged to the second plating solution regenerator 3072, regenerated, and supplied to the second plating solution tank 3051.
  • each pump is driven to supply the plating dispersion to the plating bath 3061
  • the discharge from the tank 3061 is continued, and the time-staking process required to form the Au film 3102 having a predetermined thickness is continued.
  • a post-treatment step is performed.
  • cleaning and drying are performed as post-processing steps. Specifically, after the supply valves 3034 and 3054 are closed and the supply valve 3024 is opened and the replacement process by C02 is performed, the supply valve 3 014 force S is opened. As a result, the supply of the C02 mixed solution and the Au plating solution is stopped, and after the plating solution is discharged, the cleaning solution and C02 are supplied to the mixing and dispersing unit 3060. Then, similarly to the cleaning in the pretreatment process, in the mixing and dispersing unit 3060, C02 and the cleaning liquid are mixed and supplied to the plating tank 3061 for cleaning.
  • the supply valve 3014 is closed to perform drying.
  • the supply of the cleaning liquid from the cleaning liquid tank 3011 is stopped, and only C02 from the high-purity C02 tank 3021 is supplied to the messenger tank 3061 via the mixing and dispersing unit 3060.
  • the C02 flows through the slag tank 3061 and is dried. Specifically, the cleaning liquid (water) attached to the substrate W and the Au film 3102 formed on this surface is washed away by the flow of C02 and becomes supercritical and dissolves in C02. Removed.
  • the Ni film 3101 is formed on the substrate W using a plating dispersion containing supercritical C02 and Ni plating solution. Is done. Furthermore, in the second plating process, an Au film 3102 is formed on the Ni film 3101 using a plating dispersion containing supercritical C02 and an Au plating solution. Therefore, Ni plating solution and Au plating solution can be diffused on the surface of the substrate W by the supercritical C02 diffusion force in the plating dispersion, and the coating of the Ni and Au coatings is improved. be able to . For this reason, it is possible to form an excellent plating film with suppressed pinholes, and it is possible to form a multilayer structure having thin layers by using a plating process.
  • the adhesion between the substrate as the underlayer and the plating film can be improved. Furthermore, since the deposition rate is faster than that of the CVD method and the PVD method, the productivity of the multilayer film can be improved.
  • the thickness of the Ni film 3101 or the Au film 3102 formed using C02 in the supercritical state is uniform compared to the thickness of the normal plating film . Therefore, according to the present embodiment, it is possible to form a multilayer film structure having a uniform film thickness even on the surface of a substrate having a complicated shape.
  • supercritical C02 is used as the diffusion fluid. Since hydrogen dissolves in supercritical C02, hydrogen that contributes to the generation of pinholes can be removed from the surface on which the Ni film 3101 or the Au film 3102 is formed. Furthermore, the volume of the generated hydrogen gas is small because the inside of the plating tank 3061 has a high pressure. Therefore, even if pinholes are generated, they are small, and the generated pinholes can be eliminated simply by depositing a thin plating layer. For this reason, generation of pinholes can be suppressed and a high-quality multilayer structure can be provided. Furthermore, a fluid in a supercritical state or a subcritical state can be used as the diffusion fluid. These diffusing fluids have a very high diffusing power and can provide a good plating film.
  • the first plating treatment step, the replacement step, and the second plating are performed in a state where the C02 mixed solution of C02 and the dispersion accelerator from the mixing tank 3030 is continuously supplied. Processing steps are performed. For this reason, in the mixing and dispersing unit 3060, the plating solution mixed in the C02 mixed solution is changed and supplied, so that plating under different conditions can be performed while maintaining a high-pressure atmosphere for achieving a supercritical state. Can do. Therefore, since it is possible to form a multilayer film that does not require time for replacing the plating solution, it is possible to further improve the productivity of the multilayer film.
  • the plating dispersion is continuously discharged, the impurities released from the surface of the C02 and the substrate W in which hydrogen generated by the plating process is dissolved are discharged from the tanning tank 3061 at high speed and force.
  • the force S can be avoided to prevent them from reattaching to the surface of the substrate W. Accordingly, hydrogen that is a cause of the generation of pinholes can be quickly discharged, and the generation of pinholes can be further suppressed.
  • a supercritical state C02 is mixed with Ni plating solution or Au plating solution.
  • a fluorine compound is used as a dispersion accelerator.
  • Experimental results show that plating using a fluorine compound as a dispersion accelerator is more flat than plating using a dispersion accelerator and conventional hydrocarbon surfactants as a dispersion accelerator.
  • a good film could be formed. Therefore, the surfaces of the Ni film 3101 and the Au film 3102 can be formed more uniformly, and good plating can be obtained.
  • the fluorine compound promotes the dispersion of the plating solution with respect to the diffusion fluid, so that the coating is further improved and the formation of pinholes in the coating is further facilitated. Therefore, the surface of the plating film can be further smoothed, and the ability to obtain a good plating multilayer film can be achieved.
  • the flow rate force of the plating dispersion liquid pump 30 22 so that the plating dispersion of C02, the dispersion accelerator and the plating solution can flow through the plating tank 3061 within the dispersion holding time. , 3032, 3042, 3052. Therefore, plating is performed in the plating tank 3061 while maintaining the state where the plating mixture is stably dispersed, and uniform plating can be performed by the substrate W.
  • the replacement step in which the supply of the Ni plating solution is stopped is further performed.
  • a second plating process is performed using a plating dispersion containing Au plating solution. Therefore, the Au film 3102 can be formed using the Au plating solution after the Ni plating solution used in the first plating process is completely discharged. Therefore, a multilayer film of the Ni film 3101 and the Au film 3102 in which a steep interface is formed can be formed.
  • the cleaning liquid is switched between C02 and the dispersion accelerator without lowering the pressure, and the first plating process
  • the replacement step and the second plating step are performed in a state where the C02 mixed solution of C02 and the dispersion accelerator is continuously supplied.
  • the C02 mixed solution is switched to C02 without decreasing the pressure, and the post-treatment process is washed and dried. Accordingly, good cleaning and drying can be performed by the diffusion power of C02 in a supercritical state, and these treatments can be performed quickly.
  • the Ni film 3101 formed using supercritical C02 has a thickness of 1 ⁇ m. m.
  • the thickness of the Ni film 3101 is set to lOnm or more and 4 / im or less. Since the grain size of a metal grain such as Ni is about several nanometers , if the thickness of the Ni film 3101 is 10 nm or more, a first plated film having no holes can be formed. In addition, since the size of the pinhole generated due to hydrogen bubbles is around 5 ⁇ m, it was difficult to form a film of 4 ⁇ m or less in the past. Even with a Ni film of m or less, it is possible to form a good Ni film 3101 having no pinholes, and consequently to form an Au film 3102.
  • the fifth embodiment may be modified as follows.
  • the multilayer film of this embodiment is composed of a Ni film 3101 and an Au film 3102.
  • the multilayer film is not limited to the Ni film 3101 and the Au film 3102 and may be formed by stacking three or more kinds of films. In this case, a plurality of plating processes are repeated through the replacement process. Further, in this case, from the first plating process to the last plating process, a C02 mixed solution of C02 and a dispersion accelerator is continuously supplied to the mixing and dispersing unit 3060. .
  • the plating film to be formed is changed by changing the plating solution mixed with C02.
  • a multilayer film composed of a plurality of films having different physical property values may be formed by changing the voltage applied to the electrode of the plating tank 3061 using the same plating solution.
  • the voltage is changed to form a multilayer film structure when a time when it is considered that a film having a predetermined thickness has been formed has elapsed. .
  • the multilayer film is composed of the Ni film 3101 and the Au film 3102 formed using a diffusion fluid that enhances the diffusive power, but only one of the films uses the diffusion fluid. It may be formed. Even in this case, productivity can be expected to be improved.
  • the multilayer Ni film 3101 and Au film 3102 are formed by electrolytic plating.
  • a multilayer film may be formed using electroless plating.
  • an electroless plating solution tank may be provided instead of the first and second plating solution tanks 3041 and 3051.
  • a part of the multilayer film is electrolyzed. The other part may be formed by electroless plating.
  • a plating dispersion containing a fluorine-based compound having a short dispersion retention time, C02, and a plating solution is used as a dispersion accelerator.
  • the dispersion accelerator used in the second treatment is not limited to this, and other fluorine-based compounds may be used in the second plating treatment, or conventional hydrocarbon surfactants may be used. It may be used in the second process.
  • a dispersion accelerator having a longer dispersion retention time than the dispersion accelerator of the present embodiment may be used. In this case, the speed of the plating dispersion flowing in the plating tank 3061 in which plating is performed can be made slower than in this embodiment. Further, the dispersion accelerator may be omitted.
  • the C02 liquid mixture supplied from the mixing tank 3030 and the plating liquid from the first and second plating liquid tanks 3041 and 3051 are mixed.
  • C02, a dispersion accelerator, and a plating solution may be mixed at the mixing and dispersing unit 3060 at the same time.
  • the C02 regeneration process is performed after the dispersion accelerator separation process, and the high purity C02 tank 3021 is used.
  • a configuration in which the exhaust gas is exhausted may be employed. As a result, the supply line of the liquid supplied to the plating tank 3061 can be separated, and the maintenance of the plating apparatus can be facilitated.
  • a replacement process including a Ni plating solution discharging process and a cleaning process is performed. If the sag solution used in the previous process is sufficiently removed from the plating tank 3061 by this replacement process, the cleaning process may be omitted.
  • C02 in a supercritical state is used as the diffusion fluid.
  • the diffusion fluid is not limited to this, and C02 in a subcritical state may be used, or another fluid may be used as described in the first embodiment, for example.
  • At least a part of the configuration of the plating apparatus of the present embodiment may be applied to the plating of any one of the first to fourth embodiments.
  • FIGS. 31 and 32 a sixth embodiment in which the present invention is embodied in a clasp device will be described with reference to FIGS. 31 and 32. And explain.
  • a plating apparatus that performs electrolysis using C02 of the first embodiment as a diffusion fluid will be described.
  • the plating apparatus of this embodiment includes a C02 tank 4021.
  • the C02 tank 4021 contains liquid C02, that is, liquid C02, and is connected to the mixing and dispersing unit 4060 via a C02 supply pipe.
  • the C02 supply pipe is provided with a liquid pump 4022, a heating unit 4023, and a supply valve 4024.
  • the liquid pump 4022 pressurizes C02, and the heating unit 4023 heats C02.
  • the supply valve 4024 is controlled to open and close, thereby connecting or shutting off the C02 tank 4021 and the mixing / dispersing unit 4060, and stopping the supply or stopping of CO 2 to the mixing / dispersing unit 4060. Do.
  • the plating apparatus of the present embodiment includes a high-purity C02 tank 4026 containing liquid C02 having a higher purity than C02 stored in C02 tank 4021.
  • the high purity C02 tank 40 26 is not provided with a recycling path for C02.
  • the high purity C02 tank 4026 is installed in parallel with the CO2 tank 4021 and connected to the liquid pump 4022.
  • An on-off valve 4027 force S is provided between the C02 tank 4021 and the night pump 4022, and an on-off valve 4028 is provided between the high purity C02 tank 4026 and the liquid pump 4022. Therefore, the line of the plating apparatus is configured so that the supplied liquid C02 can be switched.
  • liquid C02 is supplied from the C02 tank 4021, and the chemical solution supplied to the tub 4061 for degreasing, washing, plating, etc. can be switched, and the plated product and the entire recycle line are C ⁇
  • the on-off valve 4028 is opened and the on-off valve 4027 is closed, so that a high-purity liquid C02 is supplied to the line.
  • the plating apparatus of this embodiment includes a cleaning liquid tank 4031.
  • This cleaning liquid tank 4031 contains a cleaning liquid for cleaning the covering W, the mixing / dispersing part 4060 and the mounting tank 4061.
  • the cleaning liquid tank 4031 is connected to the mixing / dispersing unit 4060 via a cleaning liquid supply pipe.
  • the cleaning liquid supply pipe is provided with a liquid pump 4032, a heating unit 4033, and a supply valve 4034.
  • the supply valve 4034 communicates or blocks the cleaning liquid tank 4031 and the mixing / dispersing unit 4060. Accordingly, the cleaning liquid from the cleaning liquid tank 4031 is pressurized by the liquid pump 4032 and heated by the heating unit 4033, so that the mixing and dispersing unit 4060 and It is supplied to the tub 4061.
  • a dispersion accelerator tank 4041 is connected to the mixing and dispersing unit 4060 via a dispersion accelerator supply pipe.
  • the dispersion accelerator tank 4041 stores the same dispersion accelerator as in the first embodiment.
  • the dispersion promoter supply pipe is provided with a liquid pump 4042, a heating unit 4043, and a supply valve 4044.
  • the liquid pump 4042 pressurizes the dispersion accelerator, and the heating unit 4043 heats the dispersion accelerator.
  • the supply valve 4044 By controlling the opening and closing of the supply valve 4044, the dispersion accelerator tank 4041 and the mixing / dispersing unit 4060 are communicated or blocked, and the supply of the dispersion accelerator to the mixing / dispersing unit 4060 is stopped or stopped. Do.
  • a plating solution tank 4051 is connected to the mixing and dispersing unit 4060 via a fitting solution supply pipe.
  • the plating solution tank 4051 contains an aqueous solution (plating solution) containing metal atoms that forms a plating film.
  • the plating solution tank 4051 is provided with heating and heat retaining means, and heats the plating solution to a predetermined temperature to keep the temperature.
  • the plating solution supply pipe is provided with a solution pump 4052 and a supply valve 4054.
  • the liquid pump 4052 pressurizes the fitting liquid, and the supply valve 405 4 is controlled to be opened and closed, thereby supplying or stopping the supply of the plating liquid to the mixing and dispersing unit 4060.
  • the plating solution supply pipe is kept warm above the temperature at which the components of the plating solution do not precipitate.
  • the mixing and dispersing unit 4060 the plating solution, C02, and the dispersion accelerator are mixed at a ratio suitable for the plating treatment under conditions of temperature and pressure higher than the critical point of C02, and the mixed liquid is stirred. A metal dispersion has been prepared.
  • the mixing and dispersing unit 4060 is connected to the plating tank 4061.
  • plating is performed using the mesh dispersion supplied from the mixing / dispersing unit 4060.
  • a discharge pipe connected to the plating solution separation tank 4065 is provided.
  • the plating dispersion is separated into supercritical to subcritical C02 containing a dispersion accelerator and the plating liquid using their specific gravity difference.
  • the specific gravity of the solution is about 1.0 to 1.3 (g / cm 3 ), which is larger than the specific gravity of C02 including the dispersion accelerator. Therefore, in the plating solution separation tank 4065, the supercritical to subcritical C02 containing the dispersion accelerator is located in the upper layer, and the plating solution is located in the lower layer.
  • Plating solution separation tank 4 065 is connected to the C02 regenerator 4071 via a pipe provided at the top thereof, and is connected to a wet liquid discharge part 4066 via a pipe provided at the bottom. C02 is regenerated in the C 02 regenerator 4071, and the plating solution is discharged in the plating solution discharge unit 4066.
  • the plating solution discharge unit 4066 is connected to the plating solution regenerator 4068 and the waste solution tank 4069 via a discharge switching valve 4067.
  • the discharge switching valve 4067 is switched so that the plating solution discharge unit 4066 communicates with the mating solution regenerating device 4068, and when the plating solution is discharged, the plating solution is discharged.
  • the discharge unit 4066 and the waste liquid tank 4069 are switched so as to communicate with each other.
  • the impurities of the solid solution are precipitated and removed, and impurities such as organic substances dissolved in the plating solution are further removed.
  • each component of the plating solution is adjusted and the plating solution is regenerated so that it can be used again.
  • the plating solution regenerating apparatus 4068 is connected to the plating solution tank 4051 and is regenerated so that the attaching solution is supplied to the plating solution tank 4051.
  • the piping from the plating solution separation tank 4065 to the plating solution tank 4051 through the plating solution regenerator 4068 is always kept at a temperature at which the components of the plating solution do not precipitate.
  • a cooling unit 4070 is provided in a pipe connected from the plating solution separation tank 4065 to the C02 regenerator 4071.
  • the cooling unit 4070 cools C02 to a gas-liquid two-phase state that has deviated from the critical state.
  • a regeneration pipe communicating with the C02 tank 4021 is connected to the center of the C02 regeneration device 4071, and the liquid C002 is supplied to the C002 tank 4021 through this regeneration pipe.
  • the bottom part of the C02 regenerator 4071 has a funnel shape, and the heavy impurities having a specific gravity dissolved in C02 are precipitated at the bottom of the C02 regenerator 4071 and removed from the C02.
  • the C02 regeneration unit 4071 has a structure that allows gas to be exhausted from the top, and exhausts C002, which is a gas in which impurities such as hydrogen gas and oxygen gas are dissolved.
  • the mixing and dispersing unit 4060 of this embodiment includes a mixer 4060a and a disperser 4060b.
  • the mixer 4060a C02, the dispersion accelerator and the plating liquid are mixed, and in the dispersing machine 4060b, the mixed liquid is diffused to prepare a plating dispersion in which the C02 and the plating liquid are dispersed. Is done.
  • the mixer 4060a is connected to a supply pipe branched into four on the upstream side.
  • the supply valve 4024, 4034, 4044, 4054 force S described above is connected to each branch portion of the supply pipe.
  • each fluid (C02, cleaning liquid, dispersion accelerator and mesuring liquid) passing through the branch connected to each supply valve is fed to the mixer 4060a. Supplied.
  • the fluid supplied to the mixer 4060a is mixed by passing through the downstream supply pipe.
  • the supply valve 4034 is closed and the supply valve 4024, 4044, 4054 force S is opened to supply C02, the dispersion accelerator, and the messenger liquid to the mixer 4060a.
  • the At the time of cleaning the supply valve 4044 and the supply valve 4054 are closed and the supply valves 4024 and 4034 are opened to supply C02 and the cleaning liquid to the mixer 4060a.
  • the disperser 4060b has a pressure vessel structure. Inside the disperser 4060b, a mesh rotor attached to a permanent magnet is arranged, and outside the disperser 4060b, a stator with a coinole is arranged. The rotational speed and direction of the mesh rotor are controlled by controlling the current flowing through the stator. In the disperser 4060b, the sprinkled dispersion supplied from the mixer 4060a is stirred by the rotor to prepare the dispersion. The disperser 4060b is connected to the plating tank 4061, and the plating dispersion is supplied to the plating tank 4061. The volume of the disperser 4060b is set and the disperser 4060b is operated so that the temperature and pressure in the supercritical region and the residence time necessary for preparing a dispersion suitable for plating are secured.
  • a shutoff valve 4601 is provided between the disperser 4060b and the mating tank 4061. When the shut-off valve is opened, the mixing / dispersing part 4060 and the plating tank 4061 communicate with each other, and the plating dispersion of the mixing / dispersing part 40 60 is supplied to the plating tank 4061.
  • a shutoff valve 4602 force S is provided between the plating tank 4061 and the mating liquid separation tank 4065, and the plating tank 4061 is detachably attached to the plating apparatus. That is, the plating tank 4061 is attached to and detached from the plating apparatus while being shut off from the mixing / dispersing part 4060 by closing the shutoff valve 4601 and shut off from the plating liquid separation tank 4065 through the shutoff valve 4602. .
  • the plating treatment is performed on the surface of the covering material W accommodated in the plating if 4061, using the dispersion of plating supplied from the disperser 4060b.
  • Plating tank The 4061 is provided with a block heater (not shown), and the plating dispersion in the plating tank 4061 is maintained at a temperature suitable for maintaining the supercritical state of C02 contained therein and performing further fitting. Yes.
  • a pair of electrodes are disposed inside the plating tank 4061. One of these electrodes is connected to the covering material W, and the other is formed of a material specified for each plating and connected to the positive side of the power source. In the present embodiment, in order to reduce and deposit metal on the covering material W, the electrode connected to the covering material W is connected to the negative side of the power source.
  • shut-off valve 6601 and shut-off valve 6602 are closed, the covering material W is inserted into the plating apparatus, and the tacking tank 6061 is attached. Then, one of the pair of electrodes disposed in the plating tank 6061 is connected to the inserted covering material W. When the installation of the plating tank 6061 is completed, the shutoff valve 4601 and the shutoff valve 4602 are opened.
  • C02 and the dispersion accelerator are heated by the heating units 4023 and 4043, and the liquid pumps 4022, 4042, and 4052 are driven.
  • the driving of each pump is controlled so that the time is shorter than the dispersion holding time of the tan dispersion in which C02 and the tan liquid are dispersed via the dispersion accelerator.
  • the electrode disposed in the plating tank 4061 is energized, and electroplating is performed using the plating dispersion supplied to the plating tank 4061.
  • each pump continues to be driven, and the dispersion prepared in the mixing and dispersing unit 4060 is supplied to the plating tank 4061. There is a mess. As a result, the hydrogen gas dissolved in the plating dispersion and the impurities peeled off from the surface of the plating material W are discharged from the plating tank 4061 force at high speed and force.
  • the plating dispersion reaching the plating solution separation tank 4065 is separated into C02 containing a dispersion accelerator and the plating solution by specific gravity. Then, C02 is supplied to the C02 regeneration device 4071 via the cooling unit 4070. At this time, since C02 is cooled in the cooling unit 4070, it becomes a gas-liquid two-phase and is supplied to the C02 regenerator 4071. In the C02 regenerator 4071, impurities having a high specific gravity dissolved in the liquid C02 are precipitated and removed, and the gas C02 containing hydrogen gas, oxygen gas, etc. is exhausted. Then, the liquid C 02 from which impurities have been removed is returned to the C02 tank 4021 through the regeneration pipe.
  • the soaking solution separated in the plating solution separation tank 4065 is supplied to the plating solution regenerating apparatus 4068 via the plating solution discharge unit 4066.
  • Each component is adjusted and regenerated by the plating solution regenerator 4068 so that the coating solution is returned to the plating solution tank 4051.
  • each pump is driven and the prepared dispersion is continuously supplied and discharged in the plating tank 4061, and the time required for the plating process to form a predetermined plating film. Will continue.
  • the driving of the liquid pumps 4042 and 4052 is stopped and the on-off valve 4027 and the supply valves 4044 and 4054 are closed. This stops the supply of the C02 tank 4021, the dispersion accelerator tank 4041, the C02, the dispersion accelerator, and the plating liquid from the plating solution tank 4051 to the mixing and dispersing unit 4060. This completes the clinging process.
  • the dispersion of C02 and the cleaning liquid cleaned in the plating tank 4061 is discharged to the plating liquid separation tank 4065 and separated into C02 and the cleaning liquid.
  • the cleaning liquid is discharged to the waste liquid tank 4069 via the discharge switching valve 4067.
  • the separated C02 is regenerated through the C02 regenerator 4071 and supplied to the C02 tank 4021. Thus, the cleaning after plating is completed.
  • C02, a dispersion accelerator and a sag solution are mixed in a mixer 4060a and stirred in a disperser 4060b to form a plating dispersion, and then supplied to a plating tank 4061. Is done. In the plating tank 4061, voltage is applied to the electrodes to perform plating.
  • the plating solution is dispersed in the diffusion fluid in a good state and plating is performed by the plating dispersion in which the diffusion force of the plating solution is enhanced by the diffusion fluid, the wraparound is good.
  • a plating film can be formed.
  • a plating dispersion having a good dispersion state of the plating solution can be continuously injected into the plating tank. Plating can be performed.
  • the plating solution can be diffused efficiently.
  • the volume of hydrogen gas or the like generated when plating is performed is small because the inside of the plating tank 4061 has a high pressure. Hydrogen gas etc. dissolves from the surface of the covering material W into the supercritical C02 in the plating dispersion.
  • plating is performed in a state where the mixed and dispersed dispersion is continuously supplied to the plating tank 4061. For this reason, C02 in which hydrogen generated during plating is dissolved and impurities peeled off from the surface of the covering material W are discharged from the surface of the covering bath 4061 with the speed and force, and they are discharged from the surface of the covering material W. It is possible to avoid reattachment to the surface. Therefore, the generation of pinholes caused by hydrogen remaining in the covering material W is suppressed, and peeling and cracking of the covering film due to adhesion of dust, dirt, etc. are reduced, and a good covering is obtained. It can be formed on the adhesive material W. As a result, the plating can be made thinner.
  • the plating dispersion is continuously supplied, stirring in the plating tank 4061 becomes unnecessary. Furthermore, since the plating dispersion is continuously discharged from the plating tank 4061, it is quickly released from the plating tank 4061 together with the thermal power plating dispersion generated in the plating process. Therefore, the heat generated by the plating process is discharged, and the temperature of the plating tank 4061 is improved.
  • the plating tank 4061 can be made simple and small. Therefore, the pressure resistance design can be simplified and the plating tank 4061 can be manufactured at low cost.
  • the plating treatment is performed in a state where the plating solution is accumulated in the plating tank 4061. Unlike the conventional case where the plating tank 4061 is small, Thick plating can be formed.
  • the plating dispersion of C02, the dispersion accelerator and the plating solution passes through the plating tank 4061 and arrives at the plating solution separation tank 4065 within the dispersion holding time. It is controlled by the flow speed S of the plating dispersion and the movement of the night pumps 4022, 4042, 4052. That is, the plating dispersion of C02, the dispersion accelerator and the plating solution passes through the plating tank 4061 while maintaining the dispersion state. Therefore, uniform plating can be performed on the surface of the covering material W without depending on the dispersion holding time of the dispersion accelerator.
  • plating is performed in the plating tank 4061 using a plating dispersion in which supercritical C02 and staking solution are mixed.
  • C02 in the supercritical state not only acts as a diffusion fluid for diffusing the plating solution but also dissolves and removes the hydrogen gas from the surface of the covering material W. For this reason, removal of the hydrogen gas that causes pinholes from the covering material W is promoted, and better plating can be performed.
  • a fluorine-based compound is used as a dispersion accelerator in order to mix and disperse the supercritical C02 and the plating solution.
  • the experimental results show that plating using a fluorine-based compound as a dispersion accelerator is more effective than plating without using a dispersion accelerator and plating using a conventional hydrocarbon surfactant as a dispersion accelerator. A flat film could be formed. Therefore, better plating can be performed.
  • the mixing and dispersing unit 4060 of this embodiment has a function of mixing and dispersing the plating solution and C02, and is separated from the plating tank 4061. For this reason, the plating tank 4061 can be designed according to the size of the covering material W, and can reduce the dead volume. Therefore, the structure of the plating tank 4061 itself such as pressure resistance becomes simple, and the plating tank 4061 can be manufactured at low cost.
  • the time during which a uniform dispersion can be maintained is short and quickly.
  • a plating dispersion that can be easily separated into a nudging solution and C02 is used.
  • the C02 and plating solution used in the plating tank 40 61 are separated in the plating solution separation tank 4065 using the specific gravity difference. Further, the separated C02 is cooled in the cooling unit 4070 to become a gas-liquid two-phase and supplied to the C02 regenerator 4071.
  • the liquid C02 from which impurities have been removed in the C02 regenerator 4071 is returned to the C02 tank 4021. For this reason, the used C02 can be recovered and reused after removing impurities.
  • the sixth embodiment may be modified as follows.
  • the plating tank 4061 can be detached from the fitting device. For this reason, for example, the plating tank 4061 having the plating material W that has been plated is detached from the plating apparatus, and instead, the plating tank having the plating material W that has not yet been plated.
  • the 4061 may be attached to a mating device and plating may be performed. That is, the plating tank 4061 may have a cartridge structure that can be plated while fixing the covering material W with a jig and continuously flowing the plating dispersion. In this case, the dead volume of the plating tank 4061 can be reduced according to the size of the covering material W. Therefore, it is possible to reduce the size of the plating tank 4061.
  • a means for energizing this cartridge structure is provided in the plating apparatus.
  • the tub 4061 for detachment from the plating apparatus may be attached to the same plating apparatus where other metal plating is performed, so that the multi-layered plating may be performed on the covering material W. Les.
  • the plating tank 4061 since it is not necessary to take out the covering material W from the plating tank 4061, it is possible to continuously and efficiently perform multi-layer plating without having to lower the internal pressure of the plating tank 4061 to atmospheric pressure. .
  • the plating tank is detached from the plating apparatus, it is after the plating tank 4061 has been cleaned with inert C02 and a cleaning solution, so that the plating tank 4061 is transported in a state where these are filled. Also good.
  • the dispersion accelerator tank 4041 is connected to the mixing and dispersing unit 4060 so that the dispersion accelerator is supplied from the dispersion accelerator tank 4041 to the mixing and dispersing unit 4060.
  • a dispersion accelerator may be used as a plating solution or a fluid mixed with C02.
  • the dispersion accelerator tank 4041, the liquid pump 4042, the heating unit 4043, and the supply valve 4044 can be omitted.
  • the plating tank 4061 is provided with a pair of electrodes, and electroplating is performed in the plating tank 4061.
  • electroless plating may be performed in the plating tank 4061. In this case, for example, an electroless plating solution is stored in the plating solution tank 4051 instead of the electrolytic plating solution, and the electrode of the plating tank 4061 is omitted.
  • a plating dispersion is used in which the C02 and sag solution are dispersed only for a short period of time via a fluorine-based compound.
  • the dispersion promoter used to mix and disperse the C2 and the tackiness liquid is not limited to this.
  • a fluorine compound different from the present embodiment may be used, and a surfactant such as a hydrocarbon surfactant may be used as the dispersion accelerator.
  • a dispersion accelerator having a longer dispersion holding time than that of this embodiment may be used. In this case, the speed of the plating dispersion flowing in the plating tank 4061 in which plating is performed can be made slower than in this embodiment. Further, the dispersion promoting agent may be omitted.
  • a mixing and dispersing unit 4060 having a mixer 4060a and a disperser 4060b is used.
  • the present invention is not limited to this, and a micromixer may be used instead of the mixing / dispersing unit 4060.
  • C02 in a supercritical state is used as the diffusion fluid.
  • C02 in the subcritical state may be used, or other fluids may be used as described in the first embodiment.
  • a part or all of the mesh dispersion discharged from the plating tank 4061 is circulated with the plating solution and C02 separated.
  • a circulation pump is installed between the plating tank 4061 and the mating liquid separation tank 4065. By driving this circulation pump, the dispersion liquid discharged from the plating tank 4061 is dispersed with the mixer 4060a. The plating solution may be circulated and returned to the machine 4060b.
  • the supply valve that connects each tank (4021, 4041, 4051) on the supply side and the mixing / dispersing section 4060 is closed, and the liquid pump May stop.
  • pre-cleaning (degreasing, acid'alkali cleaning, washing with water, etc.) may be performed.
  • a tank connected to the plating tank 4061 and for supplying a chemical solution necessary for the pre-cleaning to the plating tank 4061 is installed.
  • supply to C02 and mixing and dispersing section By changing the combination, it is possible to supply the fluid containing the solution required in each process to the tub 4061. Therefore, all the steps can be carried out without taking the material W to be taken out of the metal bath 4061.
  • another series of steps of the plating step is performed using the dispersion to which C02 is added via the mixing and dispersing unit 4060.
  • C02 is not necessarily added to the dispersion.
  • the electrolytic plating process after the electroless plating process or a multi-stage The plating process (cleaning is required each time) can be carried out without removing the covering material W from the plating tank 4061.
  • At least a part of the configuration of the plating apparatus of the present embodiment may be applied to the plating of any one of the first to fifth embodiments.
  • a seventh embodiment in which the present invention is embodied in a metal fitting apparatus will be described with reference to FIG.
  • a plating apparatus that performs electroplating processing using C02 of the first embodiment as a diffusion fluid will be described.
  • the same components as those in the sixth embodiment are denoted by the same reference numerals as those in the sixth embodiment, and detailed description thereof is omitted.
  • the plating apparatus of this embodiment includes a C02 tank 4021, a high-purity C02 tank 4026, a cleaning liquid tank 4031, a dispersion accelerator tank 4041, a plating liquid tank 4051, and a mixing and dispersing section. 5060, a plating tank 5061, and a plating liquid separation tank 4065.
  • the mixing and dispersing unit 5060 the plating solution, C02, and the same dispersion accelerator as in the first embodiment are mixed at a ratio suitable for the plating treatment under a temperature and pressure condition equal to or higher than the critical point of C02.
  • the combined liquids are agitated to prepare a dispersion.
  • the mixing / dispersing unit 5 060 of this embodiment is composed of a mixer located upstream and a disperser located downstream from the mixer. In the mixer, when two or more of the supply valves 4024, 4034, 4044, and 4054 are opened, a cleaning dispersion containing a cleaning liquid or a plating dispersion containing a plating liquid is prepared.
  • the components of the plating dispersion are in a dispersed state in order to make the dispersible dispersion prepared in the mixer suitable for the adhesion.
  • a permanent magnet Inside the disperser is a permanent magnet.
  • a meshed rotor is placed, and a stator with coils is placed outside the disperser.
  • the strength of the magnetic field is adjusted by controlling the current flowing through the stator, and the rotational speed and direction of the rotor are controlled by the strength of the magnetic field.
  • the rotating rotor mesh shears the mixed liquid supplied from the mixer and prepares a dispersion suitable for plating.
  • the mixing / dispersing part 5060 is connected to the plating tank 5061.
  • plating is performed using the plating dispersion supplied from the mixing / dispersing unit 5060.
  • a covering material W for plating is accommodated.
  • a pair of electrodes are arranged inside the plating tank 5061, and the covering material W is connected to the negative electrode of these electrodes.
  • this tub 5061 is provided with a block heater (not shown). Using this block heater, the temperature of the mixing / dispersing part 5060 is set to a temperature (for example, about 50 ° C) at which the components of the plating solution do not precipitate.
  • a plating solution separation tank 4065 is connected to the plating tank 5061 via a discharge pipe.
  • the specific gravity of C02 containing the dispersion accelerator is smaller than the specific gravity of the plating solution smaller than 1.0 (g / cm 3 ). Therefore, in the plating solution separation tank 4065, the supercritical to subcritical C02 containing the dispersion accelerator is located in the upper layer, and the plating solution is located in the lower layer. Then, C02 located in the upper layer is discharged to the C02 regenerator 4071, and the plating solution located in the lower layer is discharged to the plating solution discharge tank 4066.
  • the piping connected to the C02 regenerator 4071 from the plating solution separation tank 4065 is provided with a cooling unit 40 70 force S.
  • the cooling unit 4070 cools C02 by a heat pump that exchanges heat with the calorific heat units 4023, 4033, and 4043.
  • a regenerative pipe communicating with the C02 tank 4021 is connected, and in this regenerative pipe, activated carbon that removes organic substances contained in the C02 is connected.
  • a packed column and a column that is filled with an adsorbing dehydrating material (not shown) and removes the water dissolved in C02 are provided.
  • each night pump 4022, 4042, 4052 is driven and the calo heat unit 402 3, 4043 and Metsuke Night Tank 4051, Calo heat S is applied and supply valve 4024, 404
  • the C02 from the C02 tank 4021 is supplied to the mixing and dispersing unit 5060 in a supercritical state under pressure and heating.
  • the dispersion accelerator from the dispersion accelerator tank 4041 and the plating solution from the plating solution tank 4051 are supplied to the mixing and dispersing unit 5060 in a state of being pressurized and heated.
  • the mixing / dispersing part 5060 the supplied supercritical C02, the dispersion accelerator and the messenger liquid are mixed.
  • the liquid pumps 4022, 4042, and 4052 are controlled so that they can flow through the plating dispersion force plating tank 5061 prepared in the mixing and dispersing unit 5060.
  • the stirring bar of the mixing unit rotates.
  • the plating dispersion containing C02, the dispersion accelerator and the plating solution is more uniformly dispersed and then supplied to the plating tank 5061.
  • the plating tank 5061 a voltage is applied to the electrode disposed therein. Accordingly, when the plating dispersion is supplied to the plating tank 5061, electrolytic plating is performed.
  • the scum dispersion used in the plating process is discharged from the plating tank 5061 to the plating liquid separation tank 4065.
  • the used plating dispersion discharged from the plating tank 5061 is separated by the specific gravity difference of each component as soon as it reaches the plating solution separation tank 4065 having a short dispersion holding time. As a result, the separated plating solution stays in the lower part of the plating solution separation tank 4065, and the supercritical C02 stays in the upper part of the plating solution separation tank 4065.
  • the plating solution retained in the lower part of the plating solution separation tank 4065 is supplied to the plating solution regenerator 4068 via the plating solution discharge unit 4066.
  • the plating solution regenerator 4068 each component of the plating solution is adjusted to regenerate the plating solution, and then returned to the plating solution tank 4051.
  • the supercritical C02 retained in the upper part of the plating solution separation tank 4065 is cooled in the cooling unit 4070 to become a gas-liquid two-phase and supplied to the C02 regeneration device 4071.
  • the C02 regenerator 4071 impurities with a high specific gravity dissolved in the liquid C02 are precipitated and removed, and the gas C02 containing hydrogen gas, oxygen gas, etc. is exhausted. Then, the liquid C02 from which impurities have been removed is returned to the C02 tank 4021 via the regeneration pipe.
  • the supply of the plating dispersion to the plating tank 5061 and the discharge from the plating tank 5061 are continued for the time required to form a predetermined plating film.
  • the power of the night pump 4042, 4052 is stopped and the supply valves 4024, 4044, 4054 are closed. This stops the supply of C02 tank 4021, dispersion-promoting simultaneous IJ tank 4041, and the nighttime tank 4051 force to the mixing / dispersing part 5060 of C02, dispersion accelerator, and liquid. This completes the plating process.
  • cleaning is performed as a post-process.
  • the on-off valve 4027 is closed, and the on-off valve 4028 and the supply valve 4024 are opened to supply high purity C02 to the mixing and dispersing unit 5060.
  • the mesh dispersion remaining in the plating tank 5061 is discharged.
  • the supply valve 4034 is opened and the liquid pump 4032 and the heating unit 4033 are driven, and the cleaning liquid is supplied from the cleaning liquid tank 4031 to the mixing and dispersing unit 5060.
  • the mixing and dispersing unit 5060 the supercritical C02 and the cleaning liquid are mixed and dispersed, and then supplied to the plating tank 5061.
  • the covering material W and the plating tank 5061 are cleaned.
  • the dispersion of C02 and the cleaning liquid cleaned in the plating tank 5061 is discharged into the plating liquid separation tank 4065 and separated into CO 2 and the cleaning liquid.
  • the cleaning liquid is discharged to the waste liquid tank 4069 through the discharge switching valve 4067.
  • the separated C02 is regenerated through the C02 regenerator 4071 and then supplied to the C02 tank 4021.
  • the cleaning after plating is completed.
  • a dispersion accelerator made of a fluorine compound is used in order to make C02 and the messy solution dispersed. For this reason, the dispersion dispersion time of the plating dispersion is short, and the plating dispersion discharged from the plating tank 5061 is laminated due to the difference in specific gravity between C02 and the plating liquid while it remains in the plating solution separation tank 4065. Naturally separates into a state. Therefore, unlike the conventional case, the plating apparatus of this embodiment does not need to vaporize and separate all of C02, so that compression (compression or cooling) for returning to the heating and storage state is unnecessary. is there. For this reason, energy can be saved and C02 can be efficiently regenerated.
  • the plating treatment using a fluorine-based compound as a dispersion accelerator is a flatter film than the plating treatment using a conventional hydrocarbon surfactant as a dispersion accelerator. could be formed. Therefore, good plating can be obtained by the plating treatment of this embodiment.
  • a plating solution, supercritical C02, and a dispersion accelerator are included.
  • the plating process is performed in the plating tank 5061 using the dispersion. Therefore, the diffusion of the plating solution is improved by the supercritical state C02 of the plating dispersion used in the plating process. You can.
  • plating is performed while the plating dispersion is continuously supplied to the plating tank 5061. For this reason, the hydrogen dissolved in the plating dispersion and the impurities separated from the surface of the covering material W are quickly discharged from the plating tank 5061, and these impurities are reattached to the surface of the covering material W. This can be avoided as much as possible.
  • C02 separated in the plating solution separation tank 4065 is introduced into the C02 regenerator 4071 through the cooling unit 4070.
  • C02 separated in the supercritical state in the plating solution separation tank 4065 is cooled to a two-phase state including a gas phase and a liquid phase.
  • the C02 regenerator 4071 returns C02 in the liquid phase to the C02 tank 4021 through the regenerative pipe among the C02 in the two-phase state. For this reason, gaseous C2 containing impurities of hydrogen gas and oxygen gas generated by side reaction in the plating process can be exhausted.
  • the supercritical C02 separated in the plating solution separation tank 4065 contains impurities such as plating additives having a specific gravity greater than that of the liquid phase C02, the impurities should be precipitated and removed. Power S can be. Therefore, C02 from which more impurities have been removed can be returned to the C002 tank 4021.
  • the C02, cleaning solution, and dispersion accelerator supplied to the plating solution 5061 are heated in the hot heat units 4023, 4033, and 4043, and the cooling unit 4070 is heated. Then, it is discharged from the plating tank 5 061 and the dispersion is cooled. These cooling and heating are performed by a single heat pump. Therefore, heating and cooling of the plating apparatus can be performed efficiently with energy saving.
  • the seventh embodiment may be modified as follows.
  • the temperature of the plating solution does not precipitate and the temperature (for example, about 50 ° C) is low.
  • C02 is separated in the plating solution separation tank 4065 in the supercritical state.
  • the supercritical fluid may be separated from the plating solution in a state where the critical state is lost.
  • a cooling unit is provided between the plating tank 5061 and the plating solution separation tank 4065. This cooling unit cools the supercritical C02 contained in the plating dispersion into a liquid phase and a gas phase two-phase state. In the plating liquid separation tank 4065, this two-phase C02 is separated from the plating liquid. In this case, C02 in the liquid phase may be returned to the C02 tank 4021 after being taken out from the plating solution separation tank 4065.
  • the dispersion accelerator is recirculated and reused together with C02 in a state where it is dissolved in C02.
  • the present invention is not limited to this, and the dispersion accelerator may be separated by the C02 regeneration device 4071 depending on the type of the dispersion accelerator. In this case, the dispersion accelerator may be recovered from the bottom of the C02 regenerator 4071 and reused.
  • the dispersion accelerator may be separated in the sticking liquid separation tank 4065 as a layer of dispersion accelerator different from C02. Since the dispersion accelerator is heavier than the plating solution, it is separated into a lower layer than the plating solution. In this case, the dispersion accelerator may be separated from the plating solution and C02 and reused. Since most of the dispersion accelerator is dissolved in C02, the amount of the dispersion accelerator to be separated is small. Therefore, by forming the plating solution separation tank 4065 into a mortar shape, a small amount of the dispersion accelerator can be efficiently discharged from the plating solution separation tank 4065. Further, the dispersion accelerator may be omitted.
  • a pair of electrodes is provided in the plating tank 5061, and electrolytic plating is performed in the plating tank 5061.
  • an electroless plating solution may be stored in the plating solution tank 4051 so that the electroless plating is performed in the plating tank 5061.
  • supercritical C02 is used as the diffusion fluid.
  • C02 in the subcritical state may be used.
  • the fluid is not limited to C02, and other fluids may be used as described in the first embodiment, for example.
  • At least a part of the configuration of the plating apparatus of the present embodiment may be applied to the plating of any one of the first to sixth embodiments.
  • FIG. 34 and 35 a plating apparatus that performs electroplating processing using C02 of the first embodiment as a diffusion fluid will be described.
  • the same components as those in the sixth embodiment are denoted by the same reference numerals as those in the sixth embodiment, and detailed description thereof is omitted.
  • the plating apparatus of the present embodiment includes a C02 tank 4021, a high-purity C02 tank 4026, a cleaning liquid tank 4031, a dispersion accelerator tank 4041, a plating liquid tank 6051, and a mixing and dispersing section.
  • 6060, a plating tank 6061, and a plating liquid separation tank 6065 are provided.
  • a supply pipe and a discharge pipe are connected to the plating tank 6061. The plating solution is continuously supplied to the metal bath 6061 through the supply pipe and is continuously discharged from the metal bath 6061 through the discharge pipe.
  • the plating solution tank 6051 contains an aqueous solution (plating solution) containing metal atoms forming a plating film.
  • the specific gravity of the plating solution of this embodiment is about 1.0 to about 1.3 (g / cm 3 ).
  • the plating solution tank 6051 is provided with heating and heat retaining means, and heats the plating solution to a predetermined temperature to keep it warm.
  • the plating solution tank 6051 is connected to the mixing / dispersing unit 6060 via a plating solution supply pipe.
  • the plating solution tank 6051 is connected to the upstream insulating portion 6055 via the solution pump 6052 and the heating portion 6053.
  • the liquid pump 6052 pressurizes the plating solution.
  • the plating solution from the plating solution tank 6051 is supplied into the upstream insulating portion 6055 through the upstream supply pipe.
  • the spray and tray method is used as the insulation method, and the tray 6 has an upstream insulation plate B6055f and a casing 6550 as shown in Fig. 35 (a).
  • This is a pressure-resistant container equivalent to this housing 6550 ⁇ mashed soda 60 61 and the mashing liquid separation tank 6065, and the inner surface of the housing 6550 is covered with a corrosion-resistant insulating material.
  • the insulating material include PEEK (polyether ether ketone), PTFE (polytetrafluoroethylene), and PFA (tetrafluoroethylene / perfluoroalkoxyethylene). ; Retrafluoroethvlene perfluoroalkoxvvinyl ether copolymer)
  • An upstream supply pipe 6551 is connected to the upper part of the upstream insulating portion 6055.
  • the upstream insulating portion 6055 and the upstream supply pipe 6551 are connected via a corrosion-resistant insulating material and are insulated from each other.
  • the upstream supply pipe 6551 is extended into the upstream insulating portion 6055.
  • the upstream supply pipe 6551 is formed with a plurality of holes for intermittently dropping the plating solution from the plating solution tank 6051 in the upstream insulating portion 6055.
  • a plurality of shelves 6550a are stacked in the vertical direction at a predetermined interval and arranged in the housing 6550.
  • Each shelf 6550a is constituted by a net-like shelf or a tray plate in which a large number of through holes are formed.
  • An upstream supply pipe 6551 is disposed above the upstream insulating portion 6055, and the nail solution is dropped from the upstream supply pipe 6551 onto each shelf 6550a.
  • a C02 gas introduction pipe connected to the C02 tank 4021 is connected to the upper part of the upstream insulating part 6055 via a valve in order to enclose high-pressure C02 gas in the upper space inside the upstream insulating part 6055. .
  • the flow of the plating solution becomes intermittent, and electrical conduction is interrupted.
  • a downstream supply pipe 6554 is connected to the lower part of the upstream insulating portion 6055.
  • the upstream supply pipe 6551 and the downstream supply pipe 6554 for dropping the nail solution to the upstream insulating portion 6055 are electrically insulated. That is, the casing 6550 of the upstream insulating portion 6055 is electrically connected to the upstream supply pipe 6551 and the downstream supply pipe 6554 serving as the discharge pipe of the casing 6550 in a part of the range where the plating solution is intermittently dropped. It has a corrosion-resistant insulating member that blocks conduction. As shown in FIG. 34, the downstream supply pipe 6554 is provided with a supply valve 6054.
  • the mixing / dispersing part 6060 the plating solution, C02, and the same dispersion accelerator as in the first embodiment are mixed at a ratio suitable for the plating treatment under a temperature and pressure condition equal to or higher than the critical point of C02.
  • the combined liquids are agitated to prepare a dispersion.
  • the mixing / dispersing part 6 060 of this embodiment is composed of a mixing part located upstream and a dispersing part connected to the mixer and located downstream.
  • two of the supply valves 4024, 4034, 4044, 6054 When the above is opened, a cleaning dispersion containing a cleaning solution or a plating dispersion containing a plating solution is prepared.
  • the components of the plating dispersion are in a dispersed state in order to make the dispersion of the tacking dispersion prepared in the mixing portion suitable for plating.
  • a rotor with a mesh attached to a permanent magnet is arranged inside the dispersion part, and a stator to which a coil is attached is arranged outside the dispersion part.
  • a magnetic field is generated by controlling the current flowing through the stator, and the rotational speed and direction of the rotor are controlled by the strength of the magnetic field. This rotating rotor with mesh rotates the shearing mixture supplied from the mixing section and prepares a dispersion suitable for plating.
  • the mixing and dispersing unit 6060 is connected to the plating tank 6061.
  • plating is performed using the plating dispersion supplied from the mixing / dispersing unit 6060.
  • This plating tank 6061 contains a covering material W to be plated.
  • a pair of electrodes is disposed inside the plating tank 6061. Of these electrodes, the negative electrode is connected to the material W to be plated.
  • the plating tank 6061 is provided with a block heater (not shown). Using this block heater, the liquid temperature in the plating bath 6061 is controlled so as to maintain the supercritical state of C02.
  • the liquid temperature in the plating tank 6061 is set to a temperature (for example, about 50 ° C) at which the components of the plating liquid do not precipitate.
  • the plating tank 6061 is made of a metal material having pressure resistance and corrosion resistance that can withstand this high pressure and strong acidity.
  • the metal material include conductive materials such as nickel-based heat-resistant alloys such as SUS316, SUS304, and Monenore 400 (trade name), and nickel-based heat-resistant alloys such as Inconel (trade name).
  • the plating tank 6061 is connected to the plating liquid separation tank 6065 via a discharge pipe.
  • This plating liquid separation tank 6065 is used in the plating tank 6061 and is separated into two liquids in a relatively short time and does not dissolve in each other.
  • the two liquid phase flow is supercritical to subcritical including a dispersion promoter. Using the specific gravity difference, it is separated into C02 in the state of No. 2 and the mating solution.
  • the plating solution separation tank 6065 also functions as an insulating device.
  • the plating solution separation tank 6065 has a housing 6650.
  • the housing 6650 is formed using a metal material having high pressure resistance and corrosion resistance, as with the plating tank 6061.
  • the metal material examples include nickel copper alloys such as SUS316, SU S304, and Monel 400 (trade name), and nickel such as Inconel (trade name).
  • nickel examples include conductive materials such as Kenole-based heat-resistant alloys.
  • the inner wall of the case 6650 is covered with an insulating material with high corrosion resistance. In the present embodiment, as this insulating material, the same material as the insulating material used in the upstream insulating portion 6055 is used.
  • a mixed liquid supply pipe 6651 is connected to the upper part of the casing 6650 via an insulating member, and the casing 6650 and the mixed liquid supply pipe 6651 are insulated.
  • the mixed solution supply pipe 6651 is extended into the housing 6650.
  • the mixed solution supply pipe 6651 is formed with a plurality of holes for intermittently dropping the squeezed solution that forms a two-liquid phase flow from the plating tank 6061 in the housing 6650.
  • a plurality of shelves 6650a are provided in layers in the casing 6650 below the mixed solution supply pipe 6651.
  • the shelf 6650a is formed using the same synthetic resin material as the inner wall of the housing 6650. Similar to the shelf 6550a of the upstream insulating portion 6055, the shelf 6650a is formed with a fine mesh-like shelf or a plurality of through holes. For this reason, the nail solution discharged from the mixed liquid supply pipe 6651, having a two-liquid phase flow, having conductivity and having a specific gravity of about 1.3 is in the form of droplets when passing through the shelf 6650a. After reaching the intermittent flow, it reaches the bottom of the case 6650. Since C02 in the supercritical state has a specific gravity of about 0.6, C02 moves above the housing 6650.
  • a C02 discharge pipe 6652 connected to the C02 regeneration device 4071 through the cooling unit 4070 is provided at the top of the housing 6650.
  • a secondary liquid discharge pipe 6654 connected to the plating liquid discharge part 4066.
  • the specific gravity of C02 containing the dispersion accelerator used in this embodiment is smaller than the specific gravity of the plating solution smaller than 1.0 (g / cm 3 ). Therefore, the dropped two-liquid phase flow is separated into an upper layer composed of C02 in a supercritical to subcritical state containing a dispersion accelerator and a lower layer composed of a plating solution.
  • the C02 discharge pipe 6652 is installed above the fitting liquid discharge pipe 6654, and C02 separated into the upper layer is discharged to the C02 regenerator 4071. Since the plating solution discharge pipe 6654 is separated at the bottom of the housing 6650, the plating solution is discharged to the plating solution discharge unit 4066.
  • the plating solution discharge pipe 6654 is connected to the housing 6650 via a corrosion-resistant insulating member.
  • the liquid mixture supply pipe 6651 and the metal liquid discharge pipe 6654 are connected to each other via an insulating member. It is connected to the body 6650, the inner wall of the housing 6650 is covered with a corrosion-resistant insulating member, and the shelf 6550a is formed of a synthetic resin material. Accordingly, the casing 6650 is in an insulated state in which electrical conduction is interrupted with respect to the mixed liquid supply pipe 6651 and the wet liquid discharge pipe 6654 in a range where the two liquid phase flows are formed into droplets by the shelf 6550a. .
  • the mixed solution supply pipe 6651 is formed of an insulating member
  • the plating tank 6061 and the night-separated night heat 6065 and the force S are insulated. Even if the liquid discharge pipe 6654 is not insulated, an insulation state in which electrical continuity is interrupted is formed.
  • the supply lines of C02, cleaning liquid (ion exchange water and pure water), and dispersion accelerator, which have high fluid resistance, are insulated only by the pipes in front of the mixing and dispersing unit 4060.
  • the plating solution discharge pipe 6654 is provided with a flow rate adjusting valve 6655, and the C02 discharge pipe 6652 is provided with a flow rate adjusting valve 6653.
  • the discharge amount of the plating solution and C02 can be controlled and adjusted according to the flow rate supplied to the plating solution separation tank 6065, and the steady state of the plating solution position level can be maintained.
  • the plating solution discharge section 4066 to which the plating solution discharge pipe 6654 is connected is connected to the plating solution regenerator 4068 or the waste solution tank 4069 via the discharge switching valve 4067 as shown in FIG. . All parts where the plating solution circulates are kept at a predetermined temperature (40 ° C in this embodiment).
  • the piping connected to the C02 regenerator 4071 from the plating solution separation tank 6065 is provided with a cooling unit 40 70 force S.
  • the cooling unit 4070 exchanges heat with the hot heat units 4023, 4033, and 4043 by using the heat source of the heat pump.
  • Regeneration of C02 after plating is performed by separating and removing various substances from C02 by manipulating the phase change and density of C02 and using the difference in solubility in C02.
  • C02 leaves the critical state and becomes a gas-liquid two-phase
  • various substances that were dissolved in the supercritical state cannot be dissolved in C02. It forms, precipitates and becomes a solid and settles.
  • the bottom of the C02 regenerator 4071 has a funnel shape, and the solid and liquid separated from the C02 are removed from the C02 by filtration and decantation methods.
  • the C02 regenerator 4071 communicates with the C02 tank 4021 at the center.
  • a regenerative tube is connected.
  • This regeneration pipe has a column filled with activated carbon that removes organic substances contained in C02, and a column that is filled with an adsorption dehydrating material (not shown) and dissolves in C02 to remove water And is provided.
  • the supply valves 4024, 4044, 6054 forces S open.
  • C02 from the C02 tank 4021 force, the dispersion accelerator from the dispersion accelerator tank 4041, and the adhesion liquid force S from the adhesion liquid tank 6051 are supplied to the mixing and dispersing unit 6060.
  • the plating solution supplied from the plating solution tank 6051 to the mixing / dispersing unit 6060 passes through the upstream insulating unit 6055.
  • the high-pressure C02 gas is sealed inside the upstream insulation 6055.
  • the plating solution dropped in the upstream insulating portion 6055 is introduced into the mixing and dispersing portion 6060 from the downstream supply pipe 6554 at the bottom of the upstream insulating portion 6055.
  • the nail solution is supplied to the upstream insulating portion 6055 through the upstream supply pipe 6551 provided at the upper portion of the upstream insulating portion 6055.
  • This plating solution is dropped by passing sequentially through the mesh-like mesh of the shelf 6550a in the upstream insulating portion 6055 or a number of through holes.
  • the plating solution is divided into droplets and electrical conduction is interrupted.
  • the casing 6550 of the upstream insulating portion 6055 is also formed of an insulating material, the electrical continuity between the piping and the fluid is interrupted at the same time.
  • the plating solution reaching the lower side of the housing 6550 is temporarily retained and supplied to the mixing and dispersing unit 6060 through the downstream supply pipe 6554.
  • the mixing and dispersing unit 6060 the supercritical C02, the dispersion accelerator and the plating solution are mixed in the mixing unit. Subsequently, the stirrer rotates in the dispersion section. In this way, a plating dispersion is prepared from a mixture of CO 2, a dispersion accelerator, and a plating solution. Supplied to 1. At this time, the liquid pumps 4022, 4042, and 4052 are controlled so that the nail dispersion prepared in the mixing and dispersing unit 6060 flows in the nail tank 6061 at a predetermined composition and flow rate.
  • electrolytic plating is performed by applying a voltage to the electrodes disposed in the plating tank 6061.
  • the dispersion (mixed dispersion) used for the plating process flows out of the plating tank 6061, the dispersion structure breaks down and becomes a two-liquid phase flow of C02 and the plating liquid. And flows into the plating solution separation tank 6065.
  • the two-liquid phase flow discharged from the plating tank 6061 is flown into the wet liquid separation tank 6065 through the mixed liquid supply pipe 6651 of the housing 6650.
  • the two-liquid phase flow is discharged from the plurality of holes of the mixed solution supply pipe 6651 of the casing 6650, and the plating solution falls on the uppermost shelf 665 Oa.
  • the plating solution dropped on the upper surface of the shelf 6650a is separated into droplets by the mesh or through holes of the shelf 6650a, and dropped through the shelf 6650a. By dropping the plating solution in this way, the plating solution is divided and the electrical continuity is interrupted.
  • the inner wall and the shelf 6650a are formed of an insulating material, and the mixed liquid supply pipe 6651 and the mating liquid discharge pipe 6654 are connected to the housing 6650 via the insulating member. It is connected. For this reason, the electrical continuity of the squeezing liquid can be interrupted simultaneously with the electrical continuity of the piping.
  • the nail solution discharged from the mixed solution supply pipe 6651 and having a two-liquid phase flow and having conductivity and having a specific gravity of about 1.3 is a droplet when passing through the shelf 6650a. After reaching a continuous intermittent flow, it reaches the bottom of the case 6650. Then, the plating solution that has been dropped intermittently and passed through the lowest shelf 6650a reaches the bottom of the housing 6650. In this way, the liquid for stagnation stays at the bottom of the housing 6650. C02 in the supercritical state is released from the mixed solution supply pipe 6651 and then moves upward of the housing 6650. C02 stays in the upper part of the case 6650.
  • the plating solution separation tank 6065 has a sufficient capacity for the piping, and can retain the plating waste solution for a predetermined time.
  • the plating solution discharge pipe 6654 is provided with a flow rate adjustment valve 6655, and the C02 discharge pipe 652 is provided with a flow rate adjustment valve 6653. Therefore, the discharge flow rate between the plating solution and C02 is reduced. Thus, the time can be adjusted so as to ensure a sufficient residence time for the separation.
  • a small amount of dispersion accelerator is included in the plating dispersion. So it is dissolved in C02.
  • the discharge rate of the plating solution and C02 is controlled by the flow rate adjustment valve 6655 of the plating solution discharge pipe 6654 and the flow rate adjustment valve 6653 of the CO 2 discharge tube 6652, and the steady state of the position level of the plating solution is maintained.
  • C02 separated into the upper layer of the plating solution separation tank 6065 is supplied to the cooling unit 4070 and the C02 regenerator 4071 through the C02 discharge pipe 6652.
  • the cooling unit 4070 the supercritical C02 is cooled to a gas-liquid two-phase state.
  • C02 regenerator 4071 C02 becomes liquid from the supercritical state, so it dissolves in C02, so that the by-product of the reaction is precipitated as a solid, or the hydrogen gas, oxygen gas, etc.
  • By-product gas during the reaction can be exhausted together with C02 gas.
  • the C02 from which the impurities have been removed is returned to the C02 tank 4021 through the regeneration pipe.
  • the plating solution separated in the lower layer of the plating solution separation tank 6065 is supplied to the plating solution discharge unit 4066 and the plating solution regenerator 4068 via the plating solution discharge pipe 6654.
  • each pump is driven and the prepared dispersion is continuously supplied to the plating tank 6061, and the plating process is continued for a time required to form a predetermined film thickness.
  • the voltage is applied to the electrodes and the power of the liquid pumps 4042, 6052 is stopped and the supply valves 4024, 4044, 6054 are closed.
  • the supply of C02, the dispersion accelerator and the plating solution from the C02 tank 4021, the dispersion accelerator tank 4041, and the plating solution tank 6051 to the mixing and dispersing unit 6060 is stopped.
  • the plating process is completed.
  • the on-off valve 4027 is closed, the on-off valve 4028 and the supply valve 4024 are opened, and high-purity C02 is supplied to the mixing and dispersing unit 6060.
  • the metal dispersion remaining in the plating tank 6061 is discharged.
  • the force S of the supply valve 4034 is opened and the liquid pump 4032 and the heating unit 4033 are driven to supply the cleaning liquid from the cleaning liquid tank 4031 to the mixing and dispersing unit 6060.
  • the supercritical C02 and the cleaning liquid are mixed and dispersed, and then supplied to the plating tank 6061.
  • the material W and the metal bath 6061 are cleaned.
  • the dispersion of C02 and the cleaning liquid cleaning the inside of the plating tank 6061 is discharged to the plating liquid separation tank 6065, and CO 2 2 is separated from the cleaning solution.
  • the cleaning liquid is discharged to the waste liquid tank 4069 through the discharge switching valve 4067.
  • the separated C02 is regenerated through the C02 regenerator 4071 and supplied to the C02 tank 4021.
  • the upstream insulating portion 6055 is provided in the plating solution supply pipe.
  • the casing 6550 of the upstream insulating portion 6055 is a pressure vessel, and its inner surface is covered with a corrosion-resistant insulating material.
  • the upstream insulating portion 6055 and the upstream supply pipe 6551 are insulated from each other by being connected via a corrosion-resistant insulating material. Then, the plating solution is dropped by each shelf 6550a. Therefore, it is possible to interrupt the electrical continuity of the plating solution by dropping the plating solution intermittently, and in this region, it is possible to shut off the electrical continuity of the pipe by the corrosion resistant insulating material.
  • the mixed solution supply pipe 6651 and the plating solution discharge pipe 6654 are connected to the housing 6650 via an insulating member, and the inner wall of the housing 6650 is covered with an edge material.
  • the shelf 6650a is made of a synthetic resin material. Accordingly, the casing 6650 is in an insulated state in which electrical continuity is interrupted with respect to the mixed liquid supply pipe 6651 and the matte liquid discharge pipe 6654 in a range where the two liquid phase flows are formed into droplets by the shelf 6650a. . In this case, since the two liquid phase flow is dropped, the electrical continuity between the fluid and the piping can be interrupted at the same time.
  • the upstream insulating portion 6055 and the plating solution separation tank 6065 simultaneously block conduction by the plating solution and conduction by the piping, leakage current from the plating tank 6061 to which voltage is applied can be suppressed. . Therefore, it is possible to ensure the safety and instrumentation of a plating apparatus in which a large current flows during plating, and to suppress metal deposition contamination and piping corrosion due to leakage current.
  • the plating solution used in the plating process flows through a circulation pipe configured to be regenerated and returned to the plating solution tank 4051 after the plating process.
  • Circulation In the case of piping, current may flow even if the whole is electrically floating. Therefore, the upstream insulating part 6055 and the sag liquid separation tank 6065 can cut off the electrical continuity in the circulation pipe and suppress the leakage current from the sag tank 6061 to which a voltage is applied.
  • an upstream insulating portion 6055 and a plating solution separation tank 6065 are provided upstream and downstream of the plating tank 6061. For this reason, the plating tank 6061 is cut off from the electrical continuity both upstream and downstream, so it is possible to safely apply the plating current to the plating tank 6061 and to remove electrical noise from the outside. Can do. Accordingly, the leakage current to the piping of the plating apparatus 6061 can be efficiently suppressed.
  • a plating process using CO 2 in a supercritical state as a diffusion fluid is performed in the plating tank 6061.
  • the supercritical state C02 promotes the diffusion of the plating solution, and the plating film is better attached to the covering material W, so that satisfactory plating can be performed.
  • it is necessary to use a high pressure so it is necessary to configure the plating tank 6061 using a metal material that can withstand this pressure.
  • an electrolytic plating process is performed in the plating tank 6061. In this case, since a voltage is applied to the fluid containing the plating solution, a leakage current may be generated through the fluid.
  • the upstream insulating portion 6055 and the plating liquid separation tank 6065 are provided as insulating means in part of the pipe connected to the plating tank 6061, leakage current in the pipe can be suppressed. Therefore, it is possible to suppress the deposition of metal in the circulating pipe and the corrosion of the pipe.
  • the plating treatment is performed in a state where the sprinkled dispersion formed in the mixing and dispersing unit 6060 is continuously supplied to the plating tank 6061. For this reason, the by-product generated by the side reaction of the plating and the impurities peeled off from the surface of the covering material W can be quickly discharged from the plating tank 6061, and they can be re-applied to the surface of the covering material W. Adhesion can be suppressed. In particular, since supercritical C02 is used as a diffusion fluid, hydrogen generated by the side reaction of plating can be dissolved in C02 and discharged. Therefore, it is possible to suppress the generation of pinholes caused by residual hydrogen and perform good galling.
  • the plating process can be realized while suppressing leakage current. Since plating is performed with the plating solution flowing continuously, the temperature, composition (concentration), and flow rate of the plating solution can be reliably controlled. Furthermore, the fine particles generated inside the plating tank 6061 are quickly discharged out of the plating tank 6061, so that precise plating that is difficult to contaminate the inside of the plating tank 6061 can be performed reliably.
  • the nail solution discharged from the mixed solution supply pipe 6651, having a two-liquid phase flow, having conductivity and having a specific gravity of about 1.3 is a shelf 6650a After passing through, it becomes a droplet-like intermittent flow and reaches the lower part of the housing 6650. Then, the plating solution that has been intermittently dropped repeatedly and passed through the lowest shelf 6650a reaches the bottom of the housing 6650. The plating solution stays at the bottom of the housing 6650. On the other hand, C02 in the supercritical state is released from the mixed solution supply pipe 6651 and then moves upward of the housing 6650. C02 stays in the upper part of the case 6650.
  • the plating dispersion is separated into C02 and dispersion solution containing a dispersion accelerator. Therefore, while separating the plating solution and C02, it is possible to cut off the electrical continuity of the piping and cut off the electrical continuity of the plating solution.
  • a fluorine-based compound is used as a dispersion accelerator in order to make C02 and the licking solution into a dispersed state. For this reason, the two-phase flow discharged from the plating tank 6061 and not dissolved in each other can be retained in the plating liquid separation tank 6065 and separated by the specific gravity difference between the plating liquid and C02 to form a laminated state. it can. Therefore, it is possible to recover the recycle liquid by making use of this laminated state, recycle it, and circulate it efficiently.
  • plating using a fluorine-based compound as a dispersion accelerator was able to form a flatter film than plating using a conventional hydrocarbon surfactant as a dispersion accelerator. . Therefore, a good plating film can be obtained.
  • a plating process is assumed.
  • the present invention is not limited to this, and the plating apparatus of the present embodiment can also be applied to a process in which a reaction is performed while energization is performed.
  • the plating apparatus can be applied to alkaline electrolytic degreasing and a cleaning process by applying voltage.
  • at least a part of the configuration of the plating apparatus of the present embodiment may be applied to the plating of any one of the first to seventh embodiments.
  • supercritical C02 is used as the diffusion fluid.
  • Diffusion fluid is not essential if a galvanic solution that is electrically conductive is used.
  • subcritical C02 which is not limited to C02 in the supercritical state, may be used, or other as described in the first embodiment. Other fluids may be used.
  • an upstream insulating portion 6055 and a plating solution separation tank 6065 are provided both upstream and downstream of the plating tank 6061.
  • the present invention is not limited to this, and electrical continuity can be interrupted even if only one of the upstream insulating part 6055 and the liquid separator 6060 is provided.
  • PEEK :, PTFE, and PFA are exemplified as the synthetic resin that covers the inner wall of the casing 6550 of the upstream insulating portion 6055 and the inner wall of the casing 6650 of the plating liquid separation tank 6065.
  • the force S is not limited to these.
  • PP polypropylene
  • PE polyethylene
  • the configuration of the plating apparatus can be realized at a low cost.
  • the inner wall of the casing 6650 of the plating solution separation tank 6065 and the shelf 6650a are formed of the same insulating material.
  • the material that covers the inner wall of the housing 6650 and the shelf 66 50a are not limited to this.
  • the shelf 6650a may be formed of a metal material.
  • the shelf 6650a is covered with an insulating material or a corrosion-resistant material having a lower ionization tendency than the inner wall of the housing 6650, so that the elution of metal ions on the surface of the shelf 6650a can be suppressed.
  • an upstream insulating portion 6055 and a plating solution separation tank 6065 are provided.
  • it may be formed of a lightning body 6650 force S insulating material between the corrugation 6650a and the corrugation 6650a.
  • a buffer part for accumulating the plating solution may be provided, and the accumulating liquid may be intermittently flowed because it is temporarily accumulated in the buffer part.
  • shut-off valves made of an insulating material are provided upstream and downstream of the buffer unit. Then, the downstream shutoff valve is closed and the upstream shutoff valve is opened, so that the plating solution is accumulated in the buffer portion. When the plating solution is accumulated in the buffer section, the upstream shutoff valve is closed and the downstream shutoff valve is opened, so that the accumulating solution flows.
  • shutoff valve 6111 made of an insulating material is provided upstream of the buffer portion 6101, and between the buffer portion 6101 and the buffer portion 6102.
  • a shutoff valve 6112 made of an insulating material may be provided.
  • the shutoff valve 6111 is closed and the shutoff valve 112 is opened, and the accumulated solution is stored in the buffer unit 6101 and supplied to the buffer unit 6102.
  • the spray and tray method is used as the insulation method.
  • the insulation method is not limited to this, and a water wheel method may be used.
  • a turbine 6700 is provided instead of the tray.
  • the plating solution is divided into droplets and electrical conduction is interrupted.
  • FIG. 37 (a) shows a configuration in which such a water wheel system is applied to the upstream insulating portion 6055 of the plating tank 6061, and the electrical conduction of the plating solution is interrupted.
  • C02 gas is sealed in the upstream insulating portion 6055.
  • FIG. 37 (b) shows the configuration when the water turbine method is applied to the plating solution separation tank 6065 and the electrical conduction of the plating solution is interrupted.
  • C02 is discharged from the C02 discharge pipe 6652 in the upper part of the plating solution separation tank 6065.
  • the dispersion accelerator is returned together with C02 in a state dissolved in C02. Recycled and reused.
  • it can be separated by the C02 regenerator 4071. In this case, it may be recovered from the bottom of the C02 regenerator 4071 and reused.
  • the dispersion accelerator may be separated as a dispersion accelerator layer in the plating solution separation tank 6065 independently of the C02 layer.
  • the dispersion accelerator When the dispersion accelerator is heavier than the solution, the dispersion accelerator separates into the lower layer than the solution.
  • the dispersion promoter may be separated from the plating solution and C02 and reused.
  • a deposit reservoir 6800 may be provided around the plating solution discharge pipe 6654.
  • the plating solution separation tank 6065 is formed in a mortar shape, so that a small amount of the dispersion accelerator can be efficiently separated using the sediment reservoir 6800.
  • the electrical conduction of the plating solution can be interrupted by dropping the plating solution.
  • the dispersion accelerator may be omitted.
  • the spray and tray method is used as the insulation method.
  • the plug flow is used.
  • a scheme may be used.
  • the conductive plating solution and C02 are alternately flowed by the pulsating flow in the mixing section to form a plug flow (plug flow), thereby interrupting the flow in the pipe. Is done.
  • the electrical continuity of the piping is cut off simultaneously. Specifically, as shown in FIG. 39, C02 and the dispersion accelerator are mixed in the Y-shaped pipe in the mixing section and guided to the C02 pipe 6602.
  • the plating solution flows through the plating tube 6603 by using a single cylinder plunger pump 6052a so that a pulsating flow is likely to occur.
  • the C02 self-pipe 6602 and the plating solution pipe 6603 are connected by a T-shaped Z2 double pipe 6604.
  • C02 is inserted into the gap of the plating solution in which the pulsating flow is generated.
  • This results in a plug flow in which the plating solution and C02 alternate.
  • the electrical continuity of the reaction fluid is interrupted.
  • the mixed fluid is guided to the dispersion section using the insulating pipe 6605.
  • PEEK pipe or PTFE pipe is used as the insulating pipe 6605, and metal pipe (for example, SUS pipe) is used for the other pipes.
  • the insulating pipe 6605 is made of an inner surface that is hydrophobic and difficult to wet with the plating solution.
  • step S1-1 to step S1-3, step S2-1 to step S2-4, and step S3-1 shown in FIG. 12 in this order an Au plating film was formed on the stainless steel separator.
  • a commercially available acidic gold plating bath (High Purity Chemical Laboratory, Au plating solution, K-24EA) was used as the Au plating solution, and supercritical C02 was used as the diffusion fluid.
  • the acidic gold plating bath contains F (CF (CF) CF O) CF (C
  • COOCH CH OCH was added in an amount of 0.5% by weight to C02.
  • the mixing ratio of supercritical CO2 and acidic gold bath is 7: 3 by volume.
  • the conditions for the Au plating process are: plating bath temperature 50 ° C, plating bath pressure 10 MPa, current density 0.5 A / dm 2 , and mating time 200 seconds.
  • the thickness of the formed Au film was about 1 am.
  • Ethylendiamine 0.08mol / L
  • Na HPO 0.02mol / L
  • Thiodiglycollic acid 30mg / L
  • pH pH:
  • the base tube 1101 was previously subjected to sensitization and activation treatment, and then subjected to Pd electroless plating for 10 minutes using the Pd electroless plating solution. After the base tube 1101 was attached to the plating tank 1061, supercritical C02 was supplied to the plating tank 1061 under the conditions of 50 ° C. and 12 MPa. Then, it was confirmed that the temperature and pressure in the plating tank 1061 were stable under the above conditions.
  • the above Pd electroless plating solution (excluding the reducing agent), ethyl perfluorotanote (F (CF) COOCH CH) as a fluorine compound, and the reducing agent are supplied to the mixing and dispersing unit 1060.
  • the Pd electroless plating process was started by supplying it from the mixing and dispersing section 1060 to the plating tank 1061.
  • the current sensor 1064 reaches the reference value
  • supply of Pd electroless plating solution (excluding the reducing agent), fluorine-based compounds, and reducing agent to the plating tank 1061 is performed. By stopping, the Pd non-wireless process was completed.
  • the residual liquid containing the Pd non-electrolyzing solution is discharged from the plating tank 1061, and then water and C02 are placed inside the plating tank 1061. By circulating, the inside of the plating tank 61 and the substrate tube 1101 were cleaned.
  • the composition of the palladium plating bath is PdCl: 0.10 mol / KBr: 4.00 mol / L,
  • the pH of the palladium plating bath is 6.6.
  • the mixing ratio of supercritical C02 and palladium plating solution was 4 to 6 in volume ratio.
  • the conditions of the electrolytic plating process are a temperature of 40 ° C, a pressure of 12 MPa, a current density of 1. OA / dm 2 , and a plating time of 3 minutes. As a result of observing the surface of the obtained Pd film with a scanning electron microscope, generation of pinholes was not confirmed.
  • Pd electroless plating solution (PdCl: 0.01 mol / L, Ethylendia mine: 0.08 mol / L, Na HPO: 0.02 mol / L, Thiodiglycollic acid: 30 mg / L, pH: 10.6) ) was used to form a Pd film as the first metal film on the substrate tube 2101 made of alumina.
  • the substrate tube 2101 was subjected to sensitization and activation treatment in advance, and then subjected to Pd electroless plating for 10 minutes using the Pd electroless plating solution.
  • COOCH CH COOCH CH
  • a reducing agent supplied to the mixing and dispersing unit 2060 and the mixing and dispersing unit 2
  • the Pd electroless plating process was started by feeding from 060 to the plating tank 2061. Continued Pd electroless plating until the current sensor 2064 reaches the reference value, and then stopped supplying Pd electroless plating solution (excluding reducing agent), fluorine-based compounds, and reducing agent to the plating tank 2061 By doing so, the Pd electroless plating process was completed. Subsequently, using C02 under the conditions of 50 ° C and 12 MPa, the residual liquid including Pd electroless plating solution is discharged from the plating tank 2061, and then the water and C02 are mixed in. The inside of the plating tank 2061 and the substrate tube 2101 were cleaned by circulating in the inside of the 2061.
  • Pd film as the second metal film was formed using OOCH 2 CH 3).
  • the composition of the palladium plating bath is PdCl: 0.10 mol / L, KBr: 4.00 mol, KNO: 0.10 mol / L, HBO: 0.49 mol / L, Glycine: 0.10 mol / L, and the pH of the palladium plating bath Is 6.6.
  • the mixing ratio of supercritical C02 and palladium plating solution was 4 to 6 in volume ratio.
  • the conditions for the second step are a temperature of 40 ° C, a pressure of 12 MPa, a current density of 1. OA / dm 2 , and a setting time of 3 minutes. As a result of observing the surface of the second metal film with a scanning electron microscope, the occurrence of pinholes was not confirmed.
  • Example 4 In the first plating process, a Ni film was formed on the surface of the brass plate that had been cleaned using a Ni plating solution as the plating solution and supercritical C02 as the diffusion fluid.
  • a Ni plating solution a Watt bath containing 280 g / L of nickel sulfate, 60 g / L of nickel chloride, 50 g / L of boric acid, and an appropriate amount of brightener was used.
  • a pressure-resistant plating tank (capacity 50 mL) was used.
  • a brass plate and a nickel plate, which have been cleaned, are disposed in the plating tank.
  • a supply pipe for supplying supercritical C02 and a discharge pipe having a pressure regulator for adjusting the pressure in the plating tank are connected to the plating tank.
  • the stirrer is arranged inside the plating tank and a stirrer is provided outside the plating tank, and the stirrer is rotated by this stirrer.
  • H 2 OCH was charged into a plating tank (capacity 50 mL), and then this plating tank was heated using a thermostatic bath kept at 50 ° C. Next, C02 in a supercritical state was supplied to the plating bath, and the pressure in the plating bath was adjusted to lOMPa.
  • the compounding amount of OCH is 0.5% by weight with respect to C02, and the compounding ratio of C02 and Ni plating solution in the supercritical state is 7: 3 by volume.
  • the Ni plating solution and the supercritical C02 were mixed and dispersed by rotating the stirring bar.
  • a nickel film was formed on the surface of the brass plate by energizing with the brass plate as the cathode and the nickel plate as the anode.
  • the energization conditions of the plating tank are a current density of 5 A / dm 2 and an energization time of 80 seconds.
  • the thickness of the formed Ni film was about 1 / m. As a result of observing the surface state of this Ni film with a scanning electron microscope (SEM), pinholes were not confirmed.
  • the second plating process an Au film was formed on the Ni film using an Au plating solution and supercritical C02, and the Au film was laminated on the Ni film.
  • the Ni plating solution in the first plating process was changed to an Au plating solution (Au plating solution, K-24EA10, manufactured by Kojundo Chemical Laboratory Co., Ltd.).
  • the current density was changed to 0.5 A / dm 2
  • the plating time was changed to 60 seconds
  • the cathode was changed to the brass plate with the Ni film plating
  • the anode was changed. Changed to platinum coated titanium plate.
  • the other conditions were the same as in the first plating process, and an Au film as a second adhesive film was formed. This In this way, the multilayered structure was obtained by washing and drying the plated brass plate.
  • the diffusion fluid was omitted and the plating process was performed without pressurizing the inside of the plating tank. Otherwise, in the same manner as in Example 4, a Ni film and an Au film were sequentially formed on the surface of the brass plate.
  • the brass plate plated in each example was subjected to a chemical resistance test by immersing in ImolZL sulfuric acid for 24 hours.
  • a chemical resistance test by immersing in ImolZL sulfuric acid for 24 hours.
  • the brass plate of Example 4 no change was observed in the multilayer film composed of the Ni film and the Au film. From this result, it can be seen that the brass plate of Example 4 has no occurrence of pinholes in the Au film and the Ni film.
  • corrosion was confirmed in the chemical resistance test. From this result, it can be seen that in the brass plate of Comparative Example 2, pinholes were generated in the Au film or Ni film.
  • the plating process was completed by setting the temperature inside the disperser 4060b and the inside of the plating tank 4061 to 50 ° C, the pressure to lOMPa, and energizing for 200 seconds at a current density of 0.5 A / dm 2. As a result, the thickness of the gold plating film formed on the brass plate was about 1 ⁇ m.
  • a brass plate was used for the cathode, and a titanium plate coated with platinum on the anode was used for ordinary gold plating.
  • As the gold plating solution a commercially available plating bath (Au-Plate Chemicals K-24EA10, High Purity Chemical Laboratory Co., Ltd.) was used. The temperature of the plated bath set at 50 ° C, by energizing 200 seconds at current densities 0. 5AZ dm 2, completing the plating process. This result As a result, the thickness of the gold plating film formed on the brass plate was about 1 ⁇ m.
  • the brass plate plated in each example was observed with a scanning electron microscope. In the brass plate of Example 5, no pinhole was confirmed. On the other hand, in the brass plate of Comparative Example 3, many pinholes were confirmed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Fuel Cell (AREA)

Abstract

 燃料側セパレータ及び空気側セパレータに対峙するように陽極板が各セパレータ間に挿入されて積層ユニット20が構成される。そして、積層ユニット20において燃料、熱流体、又は空気が流れる流路に、めっき液と、該めっき液の拡散力を高める超臨界CO2と、分散促進剤とが分散されためっき分散体が供給される。更に、積層ユニット20の陽極板と、セパレータとの間で通電が行われて電解めっきが行われる。これにより、流路板の凸部にめっき膜が形成される。更に、陽極板がMEAと差し替えられることにより、燃料電池スタックが製造される。

Description

明 細 書
燃料電池用めつき部材並びにその製造方法及び製造装置
技術分野
[0001] 本発明は、燃料電池用セパレータ、燃料電池、燃料電池用セパレータの製造方法
、燃料電池用セパレータのめつき装置、水素分離体、水素製造装置、水素分離体の 製造方法、水素分離体の製造装置、めっき方法、及びめつき装置に関する。
背景技術
[0002] 環境保護の観点から、大気汚染の原因となるものを排出することなく電力を発生さ せる技術が開発されつつある。この技術の 1つとして、エネルギー変換効率が高い燃 料電池が挙げられる。この燃料電池は、電気分解の逆反応により水素と酸素とが化 学反応して、水以外のものが排出されることなく発電が行われる。
[0003] 燃料電池の構成にはいくつか種類があり、例えば平板スタックと呼ばれる構成が挙 げられる。この平板スタックでは、図 41に示すように複数のセル 500が積層されてい る。これらのセル 500は、図 42に示すように、支燃性の物質と可燃性の物質 (燃料ガ スと空気)とが混合しないようにそれらを分離し、 MEA (membrane electrode assembly ;膜 ·電極接合体)のガス拡散層の全面にわたって均一にガスが供給されるようにガス の流れをガイドするセパレータを備える。このセパレータは、ガス拡散層を介して ME Aで発生する電流を集電するとともに、セル接続の端子も兼ねる。セパレータには、 内部に熱流体の流路を有し、発電時に MEAの冷却又は加熱を行うものが挙げられ る。 MEAは、水素を取り込む燃料極(第 1の電極)と、空気から酸素を取り込む空気 極(第 2の電極)と、これらの電極の間に介在される電解質層とから構成されている。 燃料極は、燃料極触媒層及びガス拡散層から構成されている。ガス拡散層は、例え ばカーボンメッシュ、カーボンクロス、又はカーボンぺーパからなり、ガスの透過を容 易にするために複数の空隙を有する構造を備える。このガス拡散層として、例えば繊 維状の導電性カーボンの不織布が用いられる。
[0004] 空気極は、空気極触媒層及びガス拡散層から構成されてレ、る。そして、燃料極から 取り込まれた水素と、空気極から取り込まれた酸素とが電解質層を介して化学反応 することにより、空気極から燃料極へと流れる電流が発生する。
[0005] 従来、燃料電池のセパレータには、緻密性カーボンセパレータが用いられていた。
しかし、低コストィ匕と小型及び軽量化とのために、金属セパレータが用いられてきてい る(例えば特許文献 1参照。)。この金属セパレータとして例えばステンレス鋼が用い られる場合には、金属セパレータの表面に不動態皮膜が形成されると、金属セパレ ータと電極との接触抵抗が大きくなつてエネルギー変換効率が低下する。そこで、金 属セパレータの耐食性の向上のために、金属セパレータのめっき処理が行われてい た。また、形成されためつき皮膜にピンホールが生じている場合には、このピンホール を介して金属セパレータに腐食が生じることがある。そこで、特許文献 1においては、 金属セパレータの耐食性の向上のために、めっき処理により生じたピンホールを削除 する技術が開示されている。
[0006] し力、しながら、特許文献 1においては、めっき処理により生じたピンホールを押し潰 したり酸化膜で覆ったりすることにより、ピンホールが削除されている。このため、特許 文献 1に記載された技術では、ピンホールの削除のために、めっき処理とは別の処理 工程を行う必要があり、燃料電池の生産性の向上を図ることができなかった。
[0007] また、多様な用途において水素ガスが着目されている。この水素ガスは、環境保護 の観点から注目されている燃料電池においても利用される。例えば、固体高分子形 燃料電池においては、燃料極に水素等の燃料が供給されるとともに、酸素極に空気 等の酸化ガスが供給される。この電池は水素の濃淡電池であり、イオン化された水素 イオンが電解質膜を移動し、対極で酸素と結合して水 (H〇)が生成されると同時に
2
エネルギーが生成される。このような電気化学的反応を利用して、燃料の化学エネル ギ一が電気エネルギーに直接変換されて取り出される。低い温度において、触媒上 で電気化学的反応により高いエネルギーを生み出すために、純度の高い水素ガスが 用レ、られる。炭化水素から水素が得られる場合は、炭化水素の改質反応後に、シフト 反応、転化反応等の多段の工程により電池電極に吸着する成分が改質ガスから取り 除かれた後、改質ガスから水素を高純度で取り出す水素分離体が用いられる(例え ば、特許文献 2参照。)。
[0008] この水素分離体は、燃料の改質プロセスにおける水素生成後の分離精製工程で 導入される。燃料の改質プロセスでは、エタノールガス、メタノールガス等の燃料ガス と水蒸気等とが化学反応して水素が発生する。燃料として天然ガス、プロパン、ブタ ン、ガソリン及びジメチルエーテルが用いられる場合には、改質反応の前に脱硫処理 が必要になる。水素分離体は、燃料電池の他にも、例えば水素タンク又はプラントの 水素供給ラインに用いられる。
[0009] 特許文献 2に記載された水素分離体は、例えば、円筒形状の多孔質支持体 (多孔 質基体の平均細孔径:1. 2〜2. 5 z m)の外周面に、水素選択透過性を有する金属 膜としての Pd膜が形成されている。そして、特許文献 2の図 3の説明によれば、水素 分離体の外側に混合ガスが導入される。この場合、燃料ガスが水素分離体から多孔 質支持体の順に通過することにより、水素ガスが分離精製される。
[0010] しかしながら、白金系金属には、窒素酸化物ガス(NOx )、硫黄酸化物ガス(SOx ) 、一酸化炭素ガス(C〇)等が吸着し易い。金属表面への選択的な吸着が生じると、 その吸着箇所には水素が接触できなくなって水素の金属への溶解が阻害される。特 許文献 2においても、混合ガスに一酸化炭素ガスが含まれる場合、水素が透過する P d膜で COの選択的な吸着が低い温度で発生し、水素分離体の水素透過に有効な 表面積が低下して水素選択透過性能が低下する。従って、水素分離体は、効率よく 水素ガスを分離精製し難くなる。この水素ガスの透過性の低下の問題は、混合ガス に上述の吸着し易いガス又は炭化水素ガス(Cm Hn )が含まれる場合も同様に起き る。
特許文献 1 :特開 2001— 68129号公報
特許文献 2:特開 2000— 317282号公報
発明の開示
[0011] 本発明は上述の課題に鑑みてなされ、ピンホールなどの発生を抑制し、効率的に 燃料電池を製造することができる燃料電池用セパレータ、燃料電池、燃料電池用セ パレータの製造方法及び燃料電池用セパレータのめつき装置を提供することを目的 とする。
[0012] 本発明はまた、効率的に水素ガスを分離精製することができる水素分離体、水素 製造装置、水素分離体の製造方法及び量産が可能な水素分離体の製造装置を提 供することも目的とする。
[0013] 本発明はまた、ピンホールなどの欠陥が少ない良好なめっきを効率的に行うことが できるめっき方法及びめつき装置を提供することも目的とする。
[0014] 本発明では、上記課題を解決するための一態様として、第 1の電極、電解質層及 び第 2の電極と、第 1のセパレータと、第 2のセパレータとを備える燃料電池に用いら れる燃料電池用セパレータが提供される。第 1のセパレータは、水素ガス及び空気の 一方を第 1の電極に供給するガス供給路を有するとともに第 1の電極に接触し、第 2 のセパレータは、水素ガス及び空気の他方を第 2の電極に供給するガス供給路を有 するとともに第 2の電極に接触する。第 1のセパレータのガス供給路の表面には、め つき液と、該めっき液の拡散力を高める拡散流体とを用いてめっき皮膜が形成されて いる。
[0015] 本発明の別の態様では、第 1の電極、電解質層及び第 2の電極と、第 1のセパレー タと、第 2のセパレータとを備える燃料電池が提供される。第 1のセパレータは、水素 ガス及び空気の一方を第 1の電極に供給するガス供給路を有し、第 2のセパレータ は、水素ガス及び空気の他方を第 2の電極に供給するガス供給路を有するとともに 第 2の電極に接触する。第 1のセパレータのガス供給路には、めっき液と、該めっき液 の拡散力を高める拡散流体とを用いてめっき皮膜が形成されている。このめつき皮膜 には、第 1の電極が接触している。
[0016] これらの構成によれば、拡散流体が用いられることにより、めっき液の拡散力が高く なることから、めっき皮膜の付き回りが良好になる。従って、腐食され易い第 1のセパ レータのガス供給路の表面に、腐食の原因となるクラック及びピンホールが形成され ていない良好なめっき皮膜が形成される。例えば、めっき皮膜として貴金属(例えば 金)が用いられ、クラック及びピンホールが形成されないように母材が覆われると、金 属からなる母材の腐食に起因する電流の発生が抑制される。更に、貴金属自体はィ オンになり難ぐ母材の金属のイオン溶出が抑制されることから、電極及び電解質膜 の金属イオンによる汚染、及び内部抵抗の増加が回避される。カロえて、母材の表面 を覆う貴金属は酸化され難ぐセパレータ表面に酸化皮膜が形成されないことから、 電気抵抗の増加が抑制される。従って、高効率の燃料電池の製造が可能である。 [0017] 本発明の更に別の態様では、燃料電池の電極に水素ガス及び空気の一方を供給 する第 1のガス供給路を有する第 1のセパレータと、燃料電池の電極に水素ガス及び 空気の他方を供給する第 2のガス供給路を有する第 2のセパレータとを備える燃料電 池用セパレータの製造方法が提供される。この方法では、第 1のガス供給路と第 2の ガス供給路とを対向させて配置した状態の各セパレータ間に、当該各セパレータ間 のクリアランスを調整するスぺーサが配置されることにより、各セパレータが積層され る。第 1又は第 2のガス供給路に、めっき液と、該めっき液の拡散力を高める拡散流 体とを含むめっき分散体が連続的に供給され、第 1又は第 2のセパレータにめっき皮 膜が形成される。
[0018] 本発明の更に別の態様では、燃料電池の電極に水素ガス及び空気の一方を供給 する第 1のガス供給路を有する第 1のセパレータと、燃料電池の電極に水素ガス及び 空気の他方を供給する第 2のガス供給路を有する第 2のセパレータとを備える燃料電 池用セパレータのめつき装置が提供される。このめつき装置は、積層ユニットと、供給 手段とを備え、第 1又は第 2のセパレータにめっき皮膜を形成する。積層ユニットでは 、第 1のガス供給路と第 2のガス供給路とを対向させて配置した状態の各セパレータ 間に、当該各セパレータ間のクリアランスを調整するスぺーサが配置されることにより 、各セパレータが積層されている。供給手段は、第 1又は第 2のガス供給路に、めっき 液と、該めっき液の拡散力を高める拡散流体とを含むめっき分散体を連続的に供給 する。
[0019] これらの構成によれば、燃料電池を構成する複数のセパレータの表面が一括して めっきされる。また、複数のセパレータが配置される順番に積層されることから、めつ き皮膜が形成された後に、例えば MEAなどが揷入されることにより、効率よく燃料電 池の組み立てが行われる。更に、めっきに用いられるめっき分散体は、めっき液と、 該めっき液の拡散力を高める拡散流体とを含むことから、めっき皮膜の付き回りが良 好になる。従って、めっき皮膜が薄い場合にも、良好なめっき被覆率 (カバレッジ)が 得られる。また、めっき分散体が連続的に供給されることから、めっきの副反応により 生じる、ピンホールの原因となる水素及び不純物が迅速に排出される。従って、更に 良好なめっき皮膜が形成される。 [0020] 本発明の更に別の態様では、水素ガスを含む混合ガスから水素ガスを分離精製す る水素分離体が提供される。水素分離体は、混合ガスが導入される導入面を有する 多孔質基体と、金属層とを備える。金属層は、多孔質基体において導入面の対面上 に形成され、溶解拡散機構に基づいた水素選択透過性を有する金属を用いて形成 される。多孔質基体は細孔層を備え、該細孔層は、混合ガスに含まれるとともに金属 層の性能を低下させるガスに比べて水素ガスを優先的に透過させる。
[0021] この構成によれば、混合ガス中に含まれる水素ガスが細孔層を優先的に透過する 。すなわち、細孔層によって、金属層に対する水素以外のガスの接触量が減少され る。このため、金属層の性能を低下させるガスが混合ガス中に含有していたとしても、 このような混合ガスから水素ガスが分離精製される際に、金属層の性能が維持され易 レ、。この結果、水素ガスを効率的に分離精製することができる。また、金属層には水 素ガスがより選択的に接触することから、該金属層を透過する水素ガスの透過量が 高められ、水素ガスを効率的に分離精製することができる。
[0022] 本発明の更に別の態様では、上述の水素分離体を備える水素製造装置が提供さ れる。この構成によれば、生成された水素ガスが効率的に分離精製される。
[0023] 本発明の更に別の態様では、溶解拡散機構に基づいた水素選択透過性を有する 金属から形成される金属層を備えるとともに管状構造を有する多孔質基体からなる水 素分離体の製造方法が提供される。この方法では、めっき槽内に多孔質基体が保持 される。そして、多孔質基体の一端の開口から、水素選択透過性を有する金属を含 むめつき液と、該めっき液の拡散力を高める拡散流体とが分散されためつき分散体が 多孔質基体内に連続的に注入され、多孔質基体の他端の開口からめっき分散体が 連続的に排出される。これにより、多孔質基体の内表面に金属層が形成される。
[0024] 本発明の更に別の態様では、溶解拡散機構に基づいた水素選択透過性を有する 金属から形成される金属層を備えるとともに管状構造を有する多孔質基体からなる水 素分離体の製造装置が提供される。この製造装置は、金属層をめつきにより形成す るめつき槽と、多孔質基体をめつき槽に装着する手段と、供給排出手段とを備えてい る。供給排出手段は、水素選択透過性を有する金属を含むめっき液と、該めっき液 の拡散力を高める拡散流体とが分散されためつき分散体を、多孔質基体の内部に、 且つ多孔質基体の軸方向に沿って連続的に流す。
[0025] これらの構成によれば、管状構造を有する多孔質基体の内部のみに、局所的に金 属層が形成される。このため、必要な部分にのみに金属層が形成される。更に、めつ き液の拡散力を高める拡散流体が供給されることから、ピンホールなどの欠陥が少な い金属層が形成される。溶解拡散モデルによれば、めっき皮膜が薄くなることにより、 濃度勾配が増加することなく金属膜を透過する水素の流量が増加し、水素の分離精 製効率が向上される。そして、析出する金属粒子が拡散流体により微細化されること から、多孔質基体への皮膜のつき回りが向上される。更に、金属は孔内部深くまで侵 入して析出することから、セラミクス多孔体への付着力が高まり、金属層の機械的強 度が向上する。
[0026] 本発明の更に別の態様では、溶解拡散機構に基づいた水素選択透過性を有する 金属から形成される金属層を備えるとともに管状構造を有する多孔質基体からなる水 素分離体の製造方法が提供される。この方法では、めっき槽内に多孔質基体が保持 される。そして、めっき槽と多孔質基体との間に形成された空間に、水素選択透過性 を有する金属を含むめっき液と、該めっき液の拡散力を高める拡散流体とが分散さ れためつき分散体が連続的に注入され、空間からめっき分散体が連続的に排出され る。これにより、多孔質基体の外表面に金属層が形成される。
[0027] 本発明の更に別の態様では、溶解拡散機構に基づいた水素選択透過性を有する 金属から形成される金属層を備えるとともに管状構造を有する多孔質基体からなる水 素分離体の製造装置が提供される。この製造装置は、金属層をめつきにより形成す るめつき槽と、多孔質基体をめつき槽に装着する手段と、供給排出手段とを備えてい る。供給排出手段は、水素選択透過性を有する金属を含むめっき液と、該めっき液 の拡散力を高める拡散流体とが分散されためつき分散体を、めっき槽と多孔質基体 との間に形成された空間に、多孔質基体の軸方向に沿って連続的に流す。
[0028] これらの構成によれば、管状構造を有する多孔質基体の外部のみに、局所的に金 属層が形成される。このため、必要な部分にのみに金属層が形成される。更に、めつ き液の拡散力を高める拡散流体が供給されることから、ピンホールなどの欠陥が少な い金属層が形成される。溶解拡散モデルによれば、めっき皮膜が薄くなることにより、 濃度勾配が増加することなく金属膜を透過する水素の流量が増加し、水素の分離精 製効率が向上される。そして、析出する金属粒子が拡散流体により微細化されること から、多孔質基体への皮膜のつき回りが向上される。更に、金属は孔内部深くまで侵 入して析出することから、セラミクス多孔体への付着力が高まり、金属層の機械的強 度が向上する。
[0029] 本発明の更に別の態様では、めっき液と、該めっき液の拡散力を高める拡散流体と を、電解めつきを行うための電極を備えためっき槽に導入してめっきを行う方法が提 供される。この方法は、第 1工程および第 2工程を含む。第 1工程では、第 1めっき液 がめつき槽に導入された無電解めつき処理により、対象物の表面に第 1金属膜が形 成される。第 2工程では、第 2めっき液と拡散流体とがめつき槽に導入され、電極に電 圧が印加された電解めつき処理により、第 1金属膜に対して第 2金属膜が形成される
[0030] 本発明の更に別の態様では、めっき液の供給源、めっき液の拡散力を高める拡散 流体の供給源、各供給源に接続されるめつき槽、電解めつきを行うための電極、並び に該電極に印加する電圧と各供給源力 めっき槽への供給とを制御する制御手段を 備えためっき装置が提供される。制御手段は、第 1めっき液をめつき槽に導入した無 電解めつき処理により、対象物の表面に第 1金属膜を形成する第 1工程を実行する ために各供給源力 めっき槽への供給を制御する。制御手段は、第 2めっき液と拡散 流体とをめつき槽に導入し、電極に電圧を印加した電解めつき処理により、第 1金属 膜に対して第 2金属膜を形成する第 2工程を実行するために、各供給源からめっき槽 への供給と電極に印加する電圧とを制御する。
[0031] これらの構成によれば、めっき槽において、第 1めっき液を用いて無電解めつきが 行われ、第 1金属膜が対象物の表面に形成される。次に、第 1めっき液の代わりに第 2めっき液と該第 2めっき液の拡散力を高める拡散流体とを用いて電解めつきが行わ れる。このため、対象物の表面に形成された第 1金属膜に連続して、電解めつきによ り第 2金属膜が形成される。このとき、第 2金属膜は、拡散流体を用いためっきにより 形成されること力 、めっき皮膜の付き回りがよぐピンホールなどの欠陥の少ない良 好なめっきが形成される。また、対象物が不導体であることから電解めつきが行えな い場合であっても、対象物の表面に、無電解めつきにより第 1金属膜が形成される。 そして、この第 1金属膜が形成された後は、高速の電解めつきにより、第 2金属膜が 形成される。このため、第 1金属膜と第 2金属膜とから構成される膜の生産性が向上さ れる。更に、第 2金属膜が形成されるときには拡散流体が用いられる。めっき液を拡 散させる拡散流体は高い洗浄能力を有することから、第 2めっき液より先に拡散流体 が流れることにより、第 1めっき液が洗い流された上で第 2金属膜が形成される。 図面の簡単な説明
[図 1]第 1の実施形態に係る燃料電池のセルを示す斜視図である。
[図 2]燃料電池に用いられる流路板を示す斜視図である。
[図 3]燃料電池に用いられる流路板の組み合わせ方を示す斜視図である。
[図 4]燃料電池に用いられるセパレータを示す図である。
[図 5]燃料電池におけるガス又は熱流体の流れ方を示す斜視図である。
[図 6]めっき分散体の流れ方を示す斜視図である。
[図 7]陽極板とセパレータとの組み合わせを示す斜視図である。
[図 8] (a)及び (b)は、陽極板とセパレータとの配置を示す断面図であり、 (c)及び(d) は、陽極板とセパレータとの配置を示す斜視図であり、(e)及び (f)は、陽極板とセパ レータとの要部を拡大して示す断面図である。
[図 9]積層ユニットの製造工程を示す斜視図である。
[図 10]積層ユニットを示す側面図である。
[図 11]めっき装置を示す概略図である。
[図 12]セルの製造工程を示す図である。
[図 13] (a)は第 2の実施形態に係るシェルユニットを示す概略図であり、 (b)はチュー ブユニットを示す概略図である。
[図 14]水素分離ユニットにおける水素分離体を示す断面図である。
[図 15]めっき装置を示す概略図である。
[図 16]めっき槽を示す概略図である。
[図 17]めっき槽を示す分解図である。
[図 18] (a)は第 3の実施形態に係る水素分離体を示す断面図であり、 (b)は水素分 離体を示す正面図である。
園 19]めっき装置を示す概略図である。
[図 20]第 4の実施形態に係るめっき装置を示す概略図である。
園 21]処理手順を示す図である。
[図 22]態様 1及び 2に係る水素分離構造を示す概略図である。
園 23]めっき槽を示す概略図である。
園 24]めっき槽を示す分解図である。
園 25]態様 1に係る Pd膜が内表面にめっきされた基体管を示す概略図である。 園 26]めっき槽を示す概略図である。
園 27]態様 2に係る Pd膜が外表面にめっきされた基体管を示す概略図である。 園 28]めっき槽を示す概略図である。
[図 29]第 5の実施形態に係るめっき装置を示す概略図である。
[図 30]処理手順を示す図である。
園 31]第 6の実施形態に係るめっき装置を示す概略図である。
[図 32]混合分散部及びめつき槽を示す概略図である。
園 33]第 7の実施形態に係るめっき装置を示す概略図である。
[図 34]第 8の実施形態に係るめっき装置を示す概略図である。
[図 35] (a)は上流絶縁部を示す概略図であり、 (b)はめつき液分離槽を示す概略図 である。
園 36]第 1の変更例に係るバッファ部を示す概略図である。
[図 37] (a)は第 2の変更例に係る上流絶縁部を示す概略図であり、 (b)は第 2の変更 例に係るめっき液分離槽を示す概略図である。
園 38]第 3の変更例に係るめっき液分離槽を示す概略図である。
園 39]第 4の変更例に係る分散混合部を示す概略図である。
[図 40] (a)は、第 4の変更例に係る分散混合部において、めっき液中に C〇2が揷入 される場合を示す概略図であり、(b)は、第 4の変更例に係る分散混合部において、 C02中にめっき液が挿入される場合を示す概略図である。
[図 41]燃料電池を示す斜視図である。 [図 42]従来に係る燃料電池のセルを示す概略図である。
発明を実施するための最良の形態
[0033] (第 1の実施形態)
以下、本発明を燃料電池用セパレータに具体化した第 1の実施形態を、図 1〜図 1 2を用いて説明する。
[0034] <燃料電池の構成 >
まず、燃料電池としての内部マニフォ一ルド型電池を構成する 1つのセルの要部構 造 40について説明する。この内部マニフォ一ルド型電池のセパレータには、発電領 域の他に、後述するようにガス及び熱流体を分配する機構(内部マニフォ一ルド)が 設けられている。図 1は、セルの中央部の発電領域の要部構造 40の一部を切り出し て説明した図である。図 1に示すように、要部構造 40は、第 2のセパレータとしての燃 料側セパレータ 31と、第 1のセパレータとしての空気側セパレータ 32と、これらのセ パレータ 31, 32の間に介在される MEA30とから構成されている。
[0035] 燃料側セパレータ 31及び空気側セパレータ 32は、例えばステンレス鋼(SUS鋼) で構成される基板からなる。この基板には、例えばプレス加工により台形形状の凸部 と溝とが形成されている。燃料側セパレータ 31及び空気側セパレータ 32の MEA30 に対向する側面には、その全面にわたって金 (Au)膜が形成されている。燃料側セ パレータ 31及び空気側セパレータ 32と、 MEA30との間に形成される溝は、水素ガ ス又は空気を MEA30に供給するガス供給路を構成する。
[0036] 詳述すると、燃料側セパレータ 31においては、図 1における基板の下面に Au膜が 形成される。この燃料側セパレータ 31において、上に凸となった部分と MEA30との 間の空間には、水素ガスを含む燃料ガスが通過する。一方、空気側セパレータ 32に おいては、図 1における基板の上面に Au膜が形成される。この空気側セパレータ 32 において、下に凸となった部分と MEA30との間の空間には、空気が通過する。
[0037] 図 1に示す要部構造 40は、燃料側セパレータ 31のガス供給路の溝の延在方向と、 空気側セパレータ 32のガス供給路の溝の延在方向とが直交するように燃料側セパレ ータ 31及び空気側セパレータ 32が配置されている十字流(直交流)型構造である。 この他に、要部構造 40として、燃料側セパレータ 31のガス供給路の溝の延在方向と 、空気側セパレータ 32のガス供給路の溝の延在方向とが平行である並流型構造及 び向流型構造が挙げられる。
[0038] MEA30は、電解質層 300、第 2の電極としての燃料極触媒層 301、第 1の電極と しての空気極触媒層 302、及び一対のガス拡散層 303, 304を備えている。電解質 層 300の一側面上には、燃料極触媒層 301及びガス拡散層 303が順次積層され、 電解質層 300の他側面上には、空気極触媒層 302及びガス拡散層 304が順次積層 されている。電解質層 300、燃料極触媒層 301、空気極触媒層 302、及び各ガス拡 散層 303, 304は一体化されている。
[0039] 燃料極触媒層 301は、水素ガスから水素イオンを生成する。燃料極触媒層 301に は、白金 (Pt)等の触媒金属が担持されている。電解質層 300は、燃料極触媒層 30 1で発生した水素イオン (プロトン)を空気極触媒層 302に伝達する。空気極触媒層 3 02は、酸素と、電解質層 300を介して拡散された水素イオンとを反応させて水を生成 する。
[0040] ガス拡散層 303は燃料極触媒層 301に接しており、燃料側セパレータ 31のガス供 給路の溝を通過する燃料ガスを MEA30の全面にわたって拡散させる。ガス拡散層 304は空気極触媒層 302に接しており、空気側セパレータ 32のガス供給路の溝を通 過する空気を MEA30の全面にわたって拡散させる。これらのガス拡散層 303及び 3 04は、例えば、カーボンぺーパ又はカーボンクロスにより構成される。
[0041] 以上のような要部構造 40を備えた燃料側セパレータ 31と空気側セパレータ 32とに ぉレ、ては、後述するように縁部におレ、てガス及び熱流体を分配する機構が設けられ ている。このように構成されたセルが積層されることにより、燃料電池のスタックが構成 される。スタックの端に位置する燃料側セパレータ 31及び空気側セパレータ 32には 、このスタックにより発生した電気を取り出すための電気出力端子が設けられたセパ レータエンド板が取り付けられている。また、スタック内には、例えばセルの数個毎に 、隣り合ったセルの燃料側セパレータ 31と空気側セパレータ 32との間に冷却板が揷 入されている。この冷却板は、化学反応により生じる熱を冷却するための熱流体を流 通させる通路を形成するためにプレス加工されている。更に、燃料電池には、燃料側 セパレータ 31のガス供給路に供給される燃料ガスを外部から取り込むための燃料ガ ス取込口が設けられている。また、この燃料電池には、空気側セパレータ 32のガス供 給路に供給される空気を外部から取り込むための空気取込口が設けられている。こ の空気取込口には、空気中の塵埃を除去するためのフィルタが設けられている。
[0042] <セパレータを構成する流路板の組み合わせ >
次に、セパレータの構成について説明する。上述のような燃料電池の内部には、発 電のための燃料ガス (水素ガス)、又は酸素ガスを含む空気が流れるガス供給路と、 冷却のための熱流体が流れる流路とが設けられている。この場合、セパレータは複 数種類の流路板の組み合わせにより構成され、内部フォールド型電池にぉレ、ては、 燃料、空気、及び熱流体を分配するためのマニフォ一ルドが、各流路板に設けられ ている。この流路板の一例を、図 2を用いて説明する。
[0043] 図 2に示すように、流路板 11aには、燃料供給孔 101a、熱流体供給孔 101b、及び 空気供給孔 101cが設けられている。更に、これらの供給孔 101a、 101b, 101cに対 応して、流路板 11aには、燃料排出孔 104a、熱流体排出孔 104b、及び空気排出孔 104cが設けられている。これらの供給孔 101a、 101b, 101c及び排出孔 104a、 10 4b、 104cは、すべての流路板において同じ位置に設けられる。この流路板 11aには 、燃料供給孔 101aから燃料排出孔 104aに向かって燃料が流れることから、燃料供 給孔 101a及び燃料排出孔 104aに接続された分配路 102が設けられている。この分 配路 102には、前述のプレス加工で作製された凹凸により、燃料が流れるための縦 溝からなる流路 103が設けられている。
[0044] 燃料電池においては、供給孔 101a、 101b, 101c及び排出孔 104a、 104b, 104 cと、分配路 102と、分配路 102に設けられた流路とを備えた流路板の組み合わせに より、各種セパレータが構成される。この流路板の組み合わせ方を、図 3を用いて説 明する。各セパレータは、 3枚又は 2枚の流路板が組み合わされて構成される。ここで は、 3枚又は 2枚の流路板の組み合わせにより構成されたセパレータを、便宜上、セ パレータの表面側、セパレータの内部、及びセパレータの裏面側に分けて説明する 。そして、セパレータの表面側を燃料又は熱流体が流れ、セパレータの裏面側を空 気又は熱流体が流れる場合を説明する。
[0045] セパレータの表面側においては、上述の流路板 11aの他に、燃料が流れる流路が 90度回転された横溝力 なる流路板 l ibが用いられ得る。また、熱流体供給孔 101 bと熱流体排出孔 104bとの間に分配路 102が設けられた流路板 11cも用いられ得る 。更に、セルの最表面側には、燃料、熱流体、及び空気の入口となる供給孔 101a、 101b, 101cと、お出? Ll04a、 104b, 104cと、電気出力端子とカ設けられたセノ レ ータエンド板 l idが用いられる。
[0046] セパレータの内部においては、セパレータ用金属枠 ml、及び熱流体供給孔 101b と熱流体排出孔 104bとの間に分配路 102が設けられた流路板 12bが用いられる。ま た、 2枚の流路板の組み合わせによりセパレータが構成される場合には、セパレータ の内部には流路板が挿入されない。
[0047] セパレータの裏面側には、空気が流れるための縦溝からなる流路を備えた流路板 1 3a、及び横溝を備えた流路板 13bが用いられる。これらの流路板 13a、 13bには、空 気供給孔 101cから空気排出孔 104cに向かって空気が流れることから、空気供給孔 101cと空気排出孔 104cと間に分配路 102が設けられている。また、熱流体供給孔 1 01bと熱流体排出孔 104bとの間に分配路 102が設けられた流路板 13cも用いられ 得る。更に、セルの最裏面側には、燃料、熱流体、及び空気の出口となる供給孔 10 la、 101b, 101cと、お出孔 104a、 104b, 104cと、電気出力端子と力 S設けられたセ パレータエンド板 13dが用いられる。
[0048] このような流路板が適宜組み合わされることにより、多様なセパレータが構成される 。例えば、燃料及び空気が同じ方向に流れる並流の場合には、セパレータの表面側 と裏面側とにおいて同一方向の流路が形成された流路板が組み合わされる。図 4に 示すように、流路板 11aとの組み合わせの場合、内部にセパレータ用金属枠 mlが用 いられ、裏面側に流路板 13aが用いられたユニット 15aが構成される。また、内部に 熱流体が流れる流路板 12bが用いられた場合、冷却に用いられるユニット 15bが構 成される。
[0049] また、燃料及び空気が 90度回転した方向から流れる十字流(直交流)の場合には、 縦溝の流路が形成された流路板と、横溝の流路が形成された流路板とが組み合わさ れる。図 4に示すように、流路板 11aとの組み合わせの場合、内部にセパレータ用金 属枠 mlが用いられ、裏面側に流路板 13bが用いられたユニット 15cが構成される。 内部に熱流体が流れる流路板 12bが用いられた場合、冷却に用いられるユニット 15 dが構成される。燃料及び空気が互いの反対方向から流れる向流の場合には、一方 のガスが排出孔から供給され、供給孔を介して排出される。
[0050] 上記の組み合わせの他、セパレータの構成には、例えば「エンドプレート +燃料」、 「エンドプレート +空気」、「エンドプレート +熱流体 +エンドプレート」、「エンドプレー ト +熱流体 +燃料」、及び「エンドプレート +熱流体 +空気」が考えられる。また、この エンドプレートは集電機能を有してもよい。ここでは、スタック時に、流体の供給孔 10 la、 101b, 101cが水平方向に並べられた例を説明した力 これに限られるものでは なぐスタック時に、流体の供給孔 101a、 101b, 101cが垂直方向に並べられてもよ レ、。
[0051] <積層ユニットの構成 >
以下に、めっき処理に用いられる積層ユニットの構成を説明する。この積層ユニット では、セパレータの対極にガイドが設けられる。集電棒がガイドに通されることにより、 セパレータ群、及び対極群が簡便に形成され、次に、これらが交互に交錯する様に 合わされて積層される。セパレータ群の両端に装着されるユニット端板はフランジに なっており、ボルト及びナットにより、外方から各ユニット端板が固定される。積層ュニ ット全体は高圧容器であるめつき槽に入れられることから、各ユニット端板の固定は、 それらが動かない程度でもよい。この積層ユニットは、各セパレータを用いて構成さ れる。本実施形態は、燃料及び空気が流れる流路を用いて、各ガスの代わりに、後 述するめつき分散体を流すことにより電解めつきが行われることを特徴とする。このた め、積層ユニットの構成を説明するために、まず、内部マニフォ一ルド型の燃料電池 が構成された場合のセルの配置と、燃料、熱流体、及び空気の流れ方とについて説 明する。
[0052] ここでは、図 5に示すように、燃料と空気とが十字流(直交流)で流れる燃料電池ス タックの内部積層構造を用いて説明するが、溝が平行に配置された並流及び向流に おいても同様に構成される。まず、最端部には、セパレータエンド板 l ld、 13dが設 けられる。そして、 MEA30が、燃料用の流路板と空気用の流路板とが組み合わされ た各ユニットに挟み込まれる。本実施形態では、各セパレータの表面側では、流路板 l ibによる燃料の流路が構成されている。一方、各セパレータの裏面側には、流路 板 13aによる空気の流路が構成されている。複数枚毎に熱流体を流すためのュニッ トが挿入される。このユニットにおいては、流路板 l ibと流路板 13aとの間の流路板 1 2bにおいて熱流体が流れる。ここで、各流体は、図 2に示した供給孔 101a、 101b, 101cから独立して供給され、排出孔 104a、 104b, 104cから排出される。具体的に は、燃料は、燃料供給孔 101aから供給されて燃料排出孔 104aから排出される。空 気は、空気供給孔 101cから供給されて空気排出孔 104cから排出される。熱流体は 、熱流体供給孔 101 bから供給され熱流体排出孔 104bから排出される。
[0053] 次に、図 5に示す燃料電池スタックの配置に対して、めっき処理時に用いられる積 層ユニットの構成を、図 6を用いて説明する。ここでは、燃料、熱流体及び空気が流 れる流路に対峙するように陽極板 16が揷入される。この陽極板 16は、図 7に示すよう に、対向電極部 16aと、該対向電極部 16aの縁部に設けられたパッキング部 16bとか ら構成されている。更に、陽極板 16には、流路板と同様に、供給孔 101a、 101b, 1 01c及び排出孔 104a、 104b, 104cが形成されている。このパッキング部 16bの形 状は、対峙する流路板の分配路 102の形状に合わせて形成されている。
[0054] 次に、図 8を用いて、めっき処理時の陽極板 16とセパレータとの位置関係を説明す る。セパレータには、セパレータの流路部分のみがプレス成形されたタイプと、セパレ ータの流路への分配(マニフォ一ルド)及び流路部分がプレス成形されたタイプとが ある。前者のタイプでは、プレス板の縁部が、図 8 (a)に示すように流路 103の凹部と 同じ高さになるように構成される。また、後者のタイプでは、プレス板の縁部が、図 8 ( b)に示すように流路 103の凸部と同じ高さになるように構成される。燃料電池におい ては、 MEAのガス拡散層とセパレータとが接するようにセパレータと MEAとが積層さ れることから、図 8 (a)に示すセパレータが製造される場合には、金属板に流路 103 のみがプレス加工された後にプレスによって一対の金属板が張り合わされ、パッキン グ piが流路 103の凸部と同じ高さである内部マニフォ一ルドが形成される。一方、図 8 (b)に示すセパレータが製造される場合には、金属板に流路 103及びマニフォ一 ルド部分がプレス加工により形成され、マニフォ一ルド部分がセパレータ用金属枠 m 1により強化される。セパレータ用金属枠 mlは、プレスにより合体されたセパレータに 強度を与えて各流路のシールを確実にし、積層プレート間の高さを調整することで各 セパレータの内部の流路の寸法を確実にする。さらに、セパレータ用金属枠 mlは、 積層 MEAとセパレータとの面接触を確実にする。このようなセパレータを用いて燃料 電池が構成される場合は、 MEAのガス拡散層とセパレータとが接するように、薄いパ ッキングを介してセパレータと MEAとが積層される。
[0055] 次に、上述の両タイプのセパレータのめつき処理における配置を以下に説明する。
めっきの際には、図 8 (c)及び (d)に示すように、対極とのクリアランスを大きく取るよう に、厚いパッキング部 16bを介して、セパレータと対極とが積層される。このパッキン グ部 16bはスぺーサとして機能し、図 8 (e)及び (f)に示すように、対向電極部 16aと 流路との間に、めっき分散体等が流れる流体流路 16cが形成される。この流体流路 1 6cにおいては、流路 103の凹部領域と凸部領域とで、セパレータと対極との距離が 異なる。パッキング部 16bは絶縁材料により形成され、パッキング部 16bの厚みは、 流体流路 16cが所定の厚さを確保することができるように定められる。本実施形態で は、この絶縁材料として、 PEEK (ポリエーテルエーテルケトン; poly Ether Ether Ket one )が用いられる。この他、例えば、 PTFE (ポリテトラフルォロエチレン; polytetraflu oroethylene )、及び PFA (四フッ化工チレン'パーフルォロアルコキシエチレン共重 合や ffiJ'S旨; Tetrafluoroethylene perfluoroalkoxyvinyl ether copolymer) 用いられ守る。
[0056] ここで、めっき処理時のパッキングの役割と、燃料電池におけるパッキングの役割と を詳述する。めっき処理の場合は、パッキングの相手は陽極板 16であり、パッキング は、流体の流れを分配、制御、及びシールし、セパレータと陽極板 16との間の距離 をめつきに適するように調整する。そして、パッキングは、陽極板 16に対して電気的 に絶縁し、陽極板 16とセパレータとの接触による電気の短絡を回避する。
[0057] 一方、燃料電池の場合は、パッキングの相手は MEAであり、パッキングは、流体の 流れを分配、制御、及びシールし、セパレータと MEAとが均一に低い接触抵抗で接 するように調整する。更に、 MEAの外周部分で発電に関与しない電解質膜露出部 分では、電解質 (イオン交換)膜が露出する場合があり、パッキングは、この部分とセ パレータとが直接接触しないように絶縁する。電解質膜は強酸であることから、金属 セパレータが電解質膜に直接接触すると、金属セパレータにおいて腐食が生じたり、 電解質膜において溶出金属イオンによりイオン交換が起きてプロトン導電性の喪失 が生じたりする。このため、パッキングが用いられることにより、これらを抑制することが できる。さらに、電解質膜は濡れていることから、電解質膜がセパレータと接触すると 、その接触部分から電気が漏電して内部で短絡が生じる。ノ ノキングが用いられるこ とにより、この短絡電流を抑制することができる。
[0058] 次に、積層ユニットの作製方法にっレ、て説明する。この場合、セパレータと対極に それぞれガイドが設けられる。集電棒が用意されてガイドに通されることで、セパレー タ群 17、及び陽極板群 18が作製される。次に、これらが交互に交錯するように合わさ れて積層される。この両端に装着されるユニット端板 19はフランジになっており、ボル ト及びナットにより、外方から各ユニット端板 19が固定される。上述のように、本実施 形態では、積層ユニット全体が高圧容器であるめつき槽 70に入れられることから、各 ユニット端板は、それらが動かない程度に固定される。
[0059] そして、図 9に示すように、セパレータと陽極板とが相互に配置されるように、陽極板 群 18にセパレータ群 17が挿入される。更に、これらの群の両側には、ユニット端板 1 9が配置される。このユニット端板 19には、セパレータ及び陽極板の供給孔 101a、 1 01b、 101cと排出孔 104a、 104b, 104cとにそれぞれ連通する流体導入口が設け られている。そして、ユニット端板 19、セパレータ群 17、及び陽極板群 18が積層され て積層ユニット 20が形成される。
[0060] 図 10は、この積層ユニット 20をユニット端板 19側から見た図である。このユニット端 板 19には、流体導入口 19a、 19b、 19c、及び流体排出口 19e、 19f、 19gが形成さ れている。本実施形態では、流体導入口 19a、 19cにはめつき分散体が導入され、流 体導入口 19bには圧カバランサ(例えば、イオン交換水)が導入される。具体的には 、後述するように、熱流体の流路にはイオン交換水が供給されて積層ユニット 20内に 展開される。そして、イオン交換水の充填後、流体排出口 19fが閉じられる。流体導 入口 19bはめつき槽 70の内部で開放されており、圧力の導通を保持する。これにより 、この圧カバランサの圧力は、積層ユニット 20に導入されるめつき分散体と同等の圧 力になる。
[0061] この場合、各流路板の供給孔 101a、 101cを介して、めっき分散体が積層ユニット 20に展開される。また、圧カバランサにより、めっき分散体の熱流体流路への混入が 抑止される。このめつき分散体は、排出孔 104a、 104cを介して、対向するユニット端 板 19の流体排出口 19e、 19gから排出される。
[0062] (めっき装置の構成)
次に、セパレータの製造に使用されるめつき装置について、図 11を参照して説明 する。ここで、本実施形態では、拡散流体として、超臨界流体の二酸化炭素 (以下、「 C02Jと記載する)を用いて電解めつきを行うめっき装置を想定して説明する。なお、 C02の臨界点は、 31°Cで 7. 4MPaである。
[0063] 図 11に示すように、本実施形態のめっき装置は、 C〇2タンク 50、高純度 C02タン ク 51、分散促進剤タンク 52、 Auめっき液タンク 54、及び純水タンク 55を備えている 。更に、このめつき装置は、混合分散部 60、めっき槽 70及び分離槽 80を備えている
[0064] 次に、このめつき装置の配管について詳述する。
[0065] C02タンク 50は、超臨界状態で用いられる C02を液体状態で収容している。この C02タンク 50は、混合分散部 60に供給管を介して接続されている。この供給管には 液ポンプ及び加熱部が設けられており、これらにより C02が加圧及び加熱されて超 臨界状態となる。また、この供給管の液ポンプと C02タンク 50との間には切換弁が設 けられており、この切換弁と液ポンプとの間には、別の切換弁が設けられた供給管を 介して、高純度 C02タンク 51が接続されている。この高純度 C〇2タンク 51には、 CO 2タンク 50に収容されている C〇2に比べて高純度の C02が収容されている。これら の切換弁の開閉が制御されることにより、 C〇2タンク 50からの C02又は高純度 C02 タンク 51からの C〇2が選択的に混合分散部 60に供給可能になっている。更に、混 合分散部 60に至る直前の供給管には、供給弁が設けられている。この供給弁は、そ の開閉が制御されることにより、 C02タンク 50又は高純度 C02タンク 51と混合分散 部 60との連通又は遮断を行って、混合分散部 60への C〇2の供給又は供給の停止 を行う。
[0066] 分散促進剤タンク 52は、めっき液の分散を促進する分散促進剤を収容している。
本実施形態では、分散促進剤としてフッ素系化合物が用いられる。フッ素系化合物 は、フッ素基と親水性基とを有する。本発明で使用されるフッ素系化合物として好まし い化合物には、非イオン性親水性基を有するフッ素系化合物が挙げられる。この非ィ オン性親水性基を有するフッ素系化合物は、高圧の C〇2中で良好な分散促進機能 を発現する。
[0067] フッ素基としては、直鎖或いは枝分かれを有するペルフルォロアルキル基、及びぺ ルフルォロポリエーテル基を始めとした炭素鎖中にヘテロ原子を含むものが挙げられ る。これらのうちでも、ペルフルォロアルキル基では炭素数が 3〜: 15程度のもの、炭 素鎖中にヘテロ原子を含むものでは炭素数が 3〜50程度のものが使用可能である。
[0068] 親水性基としては、エーテル、エステル、アルコール、チォエーテル、チォエステル 、アミド等の極性基が挙げられる。これらのうちでも、フッ素基がペルフルォロポリエー テル基であり、且つ親水性基が短鎖のポリエチレングリコール基であるものが特に優 れている。
[0069] ここで、従来の分散促進剤である炭化水素系の界面活性剤は長鎖のポリエチレン グリコール基を有していることから、化学的な安定性に課題があった。これに比べて、 フッ素系化合物はより安定であり、長期間の繰り返し使用に対する耐久性が期待され る。加えて、フッ素系化合物は、炭化水素系の界面活性剤の分解物由来の異物混 入の可能性も少なくなる。
[0070] フッ素系化合物は、フッ素基が疎水性を有することから、 C〇2とめつき液との安定し た分散状態を維持している時間(分散保持時間)が短ぐめっき液と C02との分離が 容易であり操作性の面でも優れている。このフッ素系化合物が用いられた場合、分散 操作の停止後、例えば数秒〜数十秒程度で、めっき分散体は C02とめつき液に分 離する。
[0071] 分散促進剤タンク 52は、混合分散部 60に供給管を介して接続されている。この供 給管には、分散促進剤を加圧する液ポンプ及び加熱する加熱部と、混合分散部 60 への分散促進剤の供給又は供給の停止を行う供給弁とが設けられている。
[0072] Auめっき液タンク 54は、 Auめっき液を収容している。この Auめっき液タンク 54は 加熱及び保温手段を備え、 Auめっき液を所定の温度まで加熱して保温する。この A uめっき液タンク 54は、混合分散部 60に Auめっき液供給管を介して接続されている 。この Auめっき液供給管には、 Auめっき液を加圧する液ポンプと、混合分散部 60 への Auめっき液の供給又は供給の停止を行う供給弁とが設けられている。 Auめっき 液供給管は、それを通過する Auめっき液の成分が析出しなレ、温度以上に常時保温 されている。
[0073] 純水タンク 55は、洗浄液としての純水を収容している。この純水タンク 55は、混合 分散部 60に純水供給管を介して接続されている。この純水供給管には、純水を加圧 する液ポンプ及び加熱する加熱部と、混合分散部 60への純水の供給又は供給の停 止を行う供給弁とが設けられている。ここで、純水の代わりにイオン交換水も利用され 得る。
[0074] 各タンク 50〜55が接続されている混合分散部 60では、めっき液、 C〇2及び分散 促進剤が混合され、めっき処理に使用されるめつき混合液が調製され、これが分散 状態に攪拌されてめつき分散体が調製される。本実施形態では、混合分散部 60は、 上流に位置する混合器と、該混合器に接続されて下流に位置する分散機とから構成 されている。混合器では、各供給弁のうちの 2つ以上が開くと、純水を含む洗浄混合 液、又は Auめっき液を含む Auめっき混合液のいずれかが調製される。洗浄乾燥ェ 程には、水あるいは C〇2だけが流れる場合もある。分散機は、励磁されたソレノイド によって回転する攪拌子を備え、この攪拌子が容器内部で回転することにより、混合 器で調製された混合液が、その成分が均一になるように分散されて分散体が調製さ れる。
[0075] 混合分散部 60は、めっき槽 70に接続されている。めっき槽 70では、混合分散部 6 0において調製されためつき分散体を用いて、めっき処理が行われる。具体的には、 めっき槽 70は、供給口 71と排出口 72とを有する。供給口 71は、混合分散部 60から めっき槽 70内の積層ユニット 20にめつき分散体を供給する。この供給口 71には、公 知の前洗浄に用いられる各種洗浄液が収容された洗浄液タンクが接続されている。 ここで、洗浄液としては、例えば、アルカリ、酸などの洗浄液、数種の界面活性剤、及 び脱イオン水が挙げられる。めっき槽 70内の積層ユニット 20に接続された排出口 72 は、分離槽 80に接続されている。この分離槽 80には、使用されためつき分散体が排 出される。 [0076] 更に、めっき槽 70内の積層ユニット 20には、電解めつきを行うために、電源から電 力が供給される。
[0077] めっき槽 70の排出口 72に接続されている分離槽 80では、めっき槽 70において使 用されためつき分散体から、 C02とめつき液とが分離される。めっき分散体に分散促 進剤が含まれている場合には、この分散促進剤は C〇2に混在して、めっき液から分 離される。分離槽 80は、 C〇2タンク 50及び図示しないめつき液排出部に接続されて いる。分離された分散促進剤を含む C02は、これに含まれている水素、酸素などの ガス及び有機物などの不純物が除去された後、圧力が調整されて C02タンク 50に 還流される。
[0078] 分離槽 80から排出されためつき液を貯蓄可能なめっき液排出部は、 Auめっき液再 生装置又は廃液タンクに連通され得る。 Auめっき液再生装置では、 Auめっき液から 不純物が除去され、 Auめっき液の成分が調整されて再び使用可能となるように再生 される。このめつき液再生装置は Auめっき液タンク 54に接続され、再生された Auめ つき液が Auめっき液タンク 54に還流される。廃液タンクには、例えば、分離槽 80から 排出された洗浄液、及び再生されないめっき液が排出される。
[0079] 分離槽 80から混合分散部 60において循環ポンプを備えたリサイクルパスが設置さ れることにより、めっき槽 70から排出されるめつき流体の一部力 Sリサイクルされてもよ レ、。この場合、めっき分散体は、混合分散部 60から、めっき槽 70の供給口 71、排出 口 72、分離槽 80を介して、混合分散部 60に循環される。
[0080] 更に、本実施形態のめっき装置は制御部を備える。この制御部は、例えば CPU、 R AM、又は ROMから構成され、制御部に格納されたプログラムにより、各供給管に設 けられた液ポンプ、加熱部及び供給弁の他に、例えばめつき槽 70の電源の制御を 実行する。
[0081] (燃料電池の製造)
次に、本実施形態における燃料電池を構成するセルの製造方法について、図 12 を用いて説明する。
[0082] まず、燃料側セパレータ 31及び空気側セパレータ 32を構成する基板がプレス加工 され、ガス供給路を構成する溝が形成された流路板が製造される。また、通路を形成 するためにプレス加工された流路板が製造されて冷却板も製造される。
[0083] 次に、上述のように、流路板が燃料電池内の配置順に配置され、これらの流路板が ガイド 17aで固定されてセパレータ群 17が製造される(図 12のステップ S l— 1)。
[0084] そして、図 9に示すように、ガイド 17aで固定されたセパレータ群 17と、ガイド 18aで 連結された陽極板群 18とが組み合わされ、積層ユニット 20が作製される (ステップ S ト 2)。
[0085] 次に、図 11に示すように、積層ユニット 20が、めっき槽 70に導入される(ステップ S 1— 3)。ここでは、まず、積層ユニット 20の内部に空気が残留しないように熱流体の ための流体導入口 19bが開放された状態で、流体排出口 19fからイオン交換水が供 給される。そして、積層ユニット 20の内部の空気が追い出されながら、熱流体排出孔 104bを介してイオン交換水が積層ユニット 20内に展開して、積層ユニット 20の内部 にイオン交換水が充填される。イオン交換水の充填後、流体排出口 19fが閉じる。そ して、流体導入口 19bからイオン交換水が流出しないようにした状態で、めっき槽 70 の内部で流体導入口 19bの開放状態が維持される。更に、積層ユニット 20の流体導 入口 19a、 19b、 19cが、圧力管を介して供給口 71に接続される。但し、流体排出口 19fが閉じた状態でイオン交換水が充填されていることから、めっき分散体の熱流体 のための流路への侵入が抑止される。ここで、セパレータの内部が完全に水封され た後に、流体導入口 19bと流体排出口 19fとの両方が閉じられてもよい。また、流体 排出口 19e、 19gが、圧力管を介して排出口 72に接続される。更に、セパレータ群 1 7のガイド 17aが陰極になり、且つ陽極板群 18のガイド 18aが陽極になるように、各ガ イド 17a、 18aが電源の端子にそれぞれ接続される。
[0086] そして、めっき槽 70において、積層ユニット 20の各流路の前洗浄が行われる(ステ ップ S2 _ l)。具体的には、例えば、アルカリ、酸などの洗浄液、数種の界面活性剤、 及び脱イオン水が順次、供給口 71を介してめつき槽 70内の積層ユニット 20に供給さ れる。
[0087] 次に、めっき前処理が行われる(ステップ S2 _ 2)。具体的には、超臨界 C〇2と純 水とを用いた超臨界洗浄処理が行われる。ここで、高純度 C〇2タンク 51の供給管及 び純水タンク 55の供給管にそれぞれ設けられた液ポンプが駆動し、加熱部において 加熱が行われるとともに供給弁が開く。これにより、混合分散部 60には、高純度 C02 タンク 51からの C〇2が加熱及び加圧されて超臨界状態となった C02と、純水タンク 55からの加熱及び加圧された純水とが供給される。混合分散部 60では、供給された 超臨界 C02と純水とが混合及び攪拌され、この洗浄混合液がめっき槽 70内の積層 ユニット 20に供給される。
[0088] 次に、超臨界 C02を用いて Au膜を形成するためのめっき処理が行われる(ステツ プ S2_ 3)。具体的には、純水の供給弁が閉じて純水の供給が停止される。そして、 切換弁が切り換えられ、高純度 C02タンク 51の代わりに C02タンク 50が混合分散 部 60に接続される。これにより、 C02タンク 50からの C〇2が混合分散部 60に供給さ れて、めっき槽 70内の積層ユニット 20から純水が排出される。その後、分散促進剤タ ンク 52の供給管及び Auめっき液タンク 54の供給管に設けられた供給弁が開くととも に液ポンプが駆動して、分散促進剤及び Auめっき液が、加圧及び加熱された状態 で混合分散部 60に供給される。このとき、混合分散部 60には C02タンク 50からの C 02が超臨界状態となって供給され続けていることから、混合分散部 60において、超 臨界 C02と分散促進剤と Auめっき液とが混合及び攪拌されためつき分散体が調製 され、めっき槽 70内の積層ユニット 20に供給される。本実施形態では、超臨界 C02 、分散促進剤及び Auめっき液の分散状態の分散保持時間が短いことから、制御部 は、混合器で調製されためつき分散体が分散を保持している時間内に積層ユニット 2 0内の流路を通過するように、供給管の各液ポンプの駆動を制御する。
[0089] めっき槽 70に供給されためつき分散体は、供給口 71を介して積層ユニット 20の内 部に導入される。そして、めっき分散体は、流体流路 16cを通過して排出口 72に流 れる。
[0090] このとき、積層ユニット 20においては、セパレータ群 17、及び陽極板 16に電圧が印 カロされている。このため、ガイド 17aを介して陰極となっているセパレータ群 17には、 めっき分散体が通過する面に電解めつきが行われて Au膜が形成される。このとき、 A uめっき液を含むめっき分散体は、分散保持時間が経過する前に積層ユニット 20か ら分離槽 80に排出される。これにより、めっき処理によりめつき分散体中に溶解した 水素ガス、及び各流路板の表面から剥離した不純物は、速やかに積層ユニット 20か ら排出される。
[0091] そして、排出口 72から排出された流体は分離槽 80に流入する。分離槽 80におい ては、めっき液と、 C02及び分散促進剤とが分離される。分離された C02は、不要な ガスが除去される等の再生処理が行われた後、 C〇2タンク 50に戻される。また、分 離された Auめっき液は、 Auめっき液再生装置を通過することにより再生された後、 A uめっき液タンク 54に戻される。
[0092] その後、各液ポンプの駆動、及び加熱部における加熱が継続され、めっき分散体 が積層ユニット 20に連続的に供給される。そして、所定の厚さの Au膜を形成するの に要する時間のめっき処理が行われる。
[0093] 次に、洗浄及び乾燥の後処理工程が行われる (ステップ S2—4)。具体的には、は じめに分散促進剤タンク 52及び Auめっき液タンク 54にそれぞれ接続されている供 給管の供給弁が閉じる。そして、切換弁が切り換えられ、高純度 C〇2タンク 51からの C02が、 C〇2タンク 50の代わりに混合分散部 60に供給されて、混合分散部 60から 積層ユニット 20及びめつき槽 70の各部分に残留するめつき液が排出されて回収され る。続いて、純水タンク 55に接続されている供給管の供給弁が開く。この場合、純水 が混合分散部 60に供給される。以上により、 C〇2によって Auめっき液が混合分散 部 60からめつき槽 70に至る部分より排出及び回収されるとともに、超臨界 C02と純 水とが混合された混合純水による洗浄が行われる。
[0094] その後、洗浄が完了すると、乾燥を行うために、純水タンク 55に接続されている供 給管の供給弁が閉じる。これにより、純水タンク 55からの純水の供給が停止される。 そして、 C02だけが超臨界状態でめっき槽 70に供給され、積層ユニット 20の各流路 に Au膜が形成された表面を流れる。この C〇2の流れにより、表面に形成された Au 膜に付着した純水が洗い流されるとともに、超臨界状態となっている C02に溶解して 除去される。そして、 C02のみが所定時間供給されて乾燥が完了すると、高純度 C〇 2タンク 51に接続されている接続管の供給弁が閉じて C02の供給が停止される。更 に、液ポンプの駆動及び加熱部の加熱が停止され、めっき槽 70から C02が排気さ れる。以上により、めっきの後処理が完了する。
[0095] そして、積層ユニット 20がめつき槽 70から取り出され、積層ユニット 20からセパレー タ群 17が取り外される(ステップ S3— 1)。
[0096] 次に、セパレータ群 17の所定の位置に MEA30が挿入される(ステップ S3— 2)。
更に、各セパレータの周囲にシール部材が設けられた後、密着されて全体が一体化 される。以上により、燃料電池に用いる平板スタック構造のセルが完成する。
[0097] 第 1の実施形態によれば、以下のような効果を得ることができる。
[0098] (1)本実施形態では、燃料側セパレータ 31、空気側セパレータ 32において、 ME A30と対向する面に Auのめつき皮膜が形成される。このめつき皮膜の形成には、め つき液と、超臨界 C〇2と、分散促進剤とが混合及び分散されためつき分散体が用い られる。このため、超臨界 C〇2によりめつき液の拡散力が高くなり、燃料側セパレータ 31及び空気側セパレータ 32の MEA30側に、薄膜であっても腐食の原因となるクラ ックゃピンホールのない良好な Auめっき皮膜が形成される。めっき皮膜として Auが 用いられた場合、金属からなる母材の腐食に起因する電流の発生を抑制することが できる。更に、 Au自体はイオンになり難ぐ母材の金属のイオン溶出が抑制されるこ とから、金属イオンによる電極及び電解質膜の汚染、並びに内部抵抗の増加を回避 すること力 Sできる。更に、母材の表面を覆う Auは酸化され難ぐセパレータ表面に酸 化皮膜が形成されないことから、電気抵抗の増加を抑制することができる。従って、 高性能な燃料電池を実現する平板スタック構造を製造することができる。
[0099] (2)本実施形態では、燃料電池スタック構造を応用してめっきが行われる。即ち、 MEAが陽極板に代えられ、燃料又は空気を流す流路を用いて、各ガスの代わりに、 めっき分散体が流されることによりめっきが行われる。具体的には、まず、燃料、熱流 体及び空気が流れる流路に対峙するように陽極板 16が挿入される。この陽極板 16 は、対向電極部 16aと、その縁部に設けられたパッキング部 16bと力 構成される。こ のパッキングは、陽極板と流路板との間にめつき流体を供給するのに適したクリアラン ス (厚さ)を形成する。更に、陽極板 16には、流路板と同様に、供給孔(101a、 101b 、 101c)及び排出孔(104a、 104b, 104c)が形成されている。この場合、積層ュニ ット 20に導入されためつき分散体は、各流路板の供給孔(101a、 101c)を介して展 開された後、排出孔(104a、 104c)を介して排出される。このため、 MEA30との接 触抵抗を低減し、腐食を防止すべき領域にのみに、効率的にめっき皮膜を形成する こと力 Sできる。
[0100] (3)本実施形態では、熱流体及び空気が流れる流路に対峙するように陽極板 16が 挿入される。具体的には、各セパレータにガイド 17aが取り付けられたセパレータ群 1 7が作製される。また、各陽極板 16にガイド 18aが取り付けられた陽極板群 18が作製 される。このガイドは、セパレータ群 17及び陽極板群 18に電圧を印加して通電する ための電極端子として機能する。そして、セパレータと陽極板とが相互に配置される ように、陽極板群 18にセパレータ群 17が揷入される。次いで、ユニット端板 19、セパ レータ群 17、及び陽極板群 18が積層された積層ユニット 20が作製される。そして、 流路を用いてめっき分散体を流しながら、ガイド(17a、 18a)に電圧を印加することに より、流路板と陽極板 16との間で電解めつきが行われる。このため、流路内において 、効率的に電解めつきを行うことができる。更に、電解めつきにより、高速にめっき皮 膜を形成することができる。
[0101] (4)本実施形態では、燃料側セパレータ 31及び空気側セパレータ 32の表面にめ つき皮膜が形成される場合には、めっき分散体が連続的に供給される。このため、め つき処理中に発生した水素が溶解した C〇2及び表面から剥離した不純物は、速や かにめつき槽 70から排出され、これらがめっき槽 70内で再付着することを抑制するこ とができる。従って、めっき皮膜に残留する水素が原因となっていたピンホールの発 生を抑制し、ゴミゃ汚れ等の付着に起因するめつき皮膜の剥離及び割れを低減する こと力 Sできる。この結果、めっき皮膜が薄い場合にも、良好なめっき被覆率 (カバレツ ジ)を得ること力 Sできる。
[0102] 更に、フッ素系化合物により、拡散流体に対するめっき液の分散が促進されること で、皮膜の付き回りが更に良好となり、皮膜におけるピンホールの形成を抑制するこ とが更に容易になる。従って、めっき膜の表面を更に平滑にすることが可能であり、良 好なめっき皮膜を得ることができる。
[0103] (5)本実施形態では、流体導入口 19bには圧カバランサ (例えば、イオン交換水) が導入される。具体的には、積層ユニット 20の内部に空気が残留しないように、流体 導入口 19bが開放された状態で流体排出口 19fからイオン交換水が供給される。そ して、積層ユニット 20の内部の空気が追い出されながら、熱流体排出孔 104bを介し て、イオン交換水が積層ユニット 20の内に展開する。イオン交換水の充填後、熱流 体のための流体排出口 19fが閉じる。流体導入口 19b開放状態は、めっき槽 70の内 部で維持され、圧力の導通を保持する。これにより、この圧カバランサの圧力と、積層 ユニット 20に導入されるめつき分散体の圧力とが同等になる。しかも、積層ユニット 2 0の内部は水封されることから、圧カバランサは、めっきのマスクにもなる。ここで、完 全にセパレータ内部が水封された後に、流体導入口 19bと流体排出口 19fとの両方 が閉じられてもよい。燃料電池において、この熱流体供給孔 101bに接続される流路 には熱流体が流れることから、該流路にめつきを行う必要はなレ、。従って、めっき処 理時には、めっき分散体と圧カバランサとの圧力平衡により、流路板の変形を防止す ること力 Sできる。更に、めっき分散体の熱流体流路への混入を回避し、不必要な領域 へのめつきを抑制することができる。
[0104] (6)本実施形態では、製造される燃料電池には、空気側セパレータ 32のガス供給 路に供給される空気を外部から取り込むための空気取込口が設けられ、この空気取 込口にはフィルタが設けられている。従って、このフィルタを空気が通過することにより 、空気中に含まれる塵埃を除去することができる。このため、ガス供給路には、エロー ジョンゃコロージヨンなどの原因となる塵埃が少ない空気が導入され、エロージョンや コロージヨンによるめつき皮膜の腐食を抑制することができる。
[0105] (7)本実施形態では、めっきの際には、対極とのクリアランスを大きく取るように、厚 レ、パッキング部 16bを介して、セパレータと対極とが積層される。この場合、この流体 流路 16cにおいては、流路 103の凹部領域と凸部領域とで対極との距離が異なり、 凸部領域が凹部領域より陽極板 16に近くなる。このため、めっき処理時には、凹部 領域の方が凸部領域より電流が流れ易くなり、凹部領域に凸部領域より厚いめっき 皮膜を形成することができる。燃料側セパレータ 31及び空気側セパレータ 32の電極 に接触する部分(凸部領域)は、振動を受けると、電極と繰り返し擦りあわされることが あり、めっき皮膜が削れて腐食が生じる可能性がある。このような部分のめっき皮膜を 厚くすることにより、磨耗及び剥離の発生を抑制することができる。
[0106] 第 1の実施形態は以下のように変更されてもよい。
[0107] 本実施形態においては、流路 103の凹部領域又は凸部領域と対極との距離により 、それぞれの領域に形成されるめつき皮膜の膜厚が調節されている。この場合、めつ き処理時に、めっき液の流量及び電気量の操作条件が調整され、燃料側セパレータ
31がガス拡散層 303と接触する部分及び空気側セパレータ 32がガス拡散層 304と 接触する部分の Au膜が厚くなるように調節されてもよい。これによつても、凸部領域 に厚いめっき皮膜が形成され、燃料側セパレータ 31及び空気側セパレータ 32の電 極に接触する部分のめっき皮膜の磨耗及び剥離の発生を抑制することができる。ま た、燃料側セパレータ 31及び空気側セパレータ 32の電極に接触する部分の膜厚に かかわらず、ガス拡散層 303及び 304を、例えば、柔軟なカーボンクロスを用いて燃 料電池を構成してもよい。この場合でも、スタツキング荷重及び内部構成部材の振動 を原因とするめつき皮膜とガス拡散層 303, 304との摩擦を軽減することができ、腐食 の発生を効果的に抑制することができる。
[0108] 本実施形態においては、燃料側セパレータ 31のガス供給路の溝の延在方向と、空 気側セパレータ 32のガス供給路の溝の延在方向とが直交する十字流型を用いて、 燃料側セパレータ 31及び空気側セパレータ 32が配置された燃料電池が製造されて いる。燃料電池の構成はこれに限られるものではなぐ他の構成(並行流型や向流型 )の燃料電池が製造される場合に本実施形態が適用されてもよい。この場合にも、第 1、第 2のガス供給路を利用しながら、それぞれ独立してめっき分散体を流すことによ り、めっき皮膜が形成される。
[0109] 本実施形態においては、燃料側セパレータ 31及び空気側セパレータ 32は、例え ば、ステンレス鋼(SUS鋼)等の金属材料から形成されている。例えば、燃料側セパ レータ 31及び空気側セパレータ 32の材質を、樹脂材料とカーボン等の導電性材料 とを複合化した導電性樹脂材料に変更してもよレ、。
[0110] 本実施形態においては、燃料側セパレータ 31及び空気側セパレータ 32のガス流 路は、プレス加工等により形成されている。ガス流路は、モールド力卩ェ、切削加工等 の加工方法によって形成されてもよい。本実施形態によれば、いずれの方法でガス 流路が形成された場合であっても、効率的に燃料電池を製造することができる。
[0111] 本実施形態においては、めっき槽 70において電解めつきにより Au膜のめっき皮膜 が形成されている。これに代えて、めっき槽 70内で無電解めつきを行って、燃料側セ パレータ 31及び空気側セパレータ 32のガス供給路を形成する表面にめっき皮膜が 形成されてもよい。この場合には、第 1のセパレータと第 2のセパレータとが、陽極板 を用いずにスぺーサを介して直接積層される。この場合、スぺーサは、両セパレータ 間に流体を流すためのクリアランスを調整するために用いられ、流路を確保できるも のであればよい。
[0112] 本実施形態においては、流体排出口(19e、 19g)からめつき分散体が導出される。
これに代えて、各流路板に設けられた分配路 102から直接、外部にめっき分散体が 排出されてもよい。この場合には、流体排出口(19e、 19g)近傍のシール材が除去さ れ、この除去部からめっき分散体が排出される。これにより、流体抵抗を低減すること ができ、めっき分散体を効率的に供給することができる。
[0113] 本実施形態においては、 SUS材からなるセパレータに Auのめつき皮膜が形成され ている。これに代えて、ニッケノレ (Ni)等の下地ストライクめっきが行われてから、上述 の Auめっきが行われてもよい。この場合には、めっき装置に、 Niめっき液を収容する Niめっき液タンク 53が設けられる。この Niめっき液タンク 53は、混合分散部 60に Ni めっき液供給管を介して接続される。そして、 Auめっき液に代えて Niめっき液を用い て、上述の Auめっき処理時と同様に、めっき分散体を形成してめっき処理が行われ た後、 Auめっきが行われる。 Au膜は、耐食性に優れているが高価である。従って、 ピンホールのない良好な Ni膜を下地として形成することにより、 Au膜が薄くても、耐 食性に優れためつき皮膜を形成することができる。
[0114] 本実施形態においては、めっき皮膜として、貴金属の Au膜が形成されている。これ に限らず、めっき皮膜は、接触抵抗を低減できる材料、例えば、パラジウム(Pd)など の白金系金属により形成されてもよい。
[0115] 本実施形態においては、フッ素系化合物を介して、 C〇2とめつき液とは短い時間 だけ分散状態となるめっき分散体が用レ、られている。 C02とめつき液とを混合分散さ せるために用いられる分散促進剤は、これに限られるものではなレ、。例えば、分散促 進剤として炭化水素系の界面活性剤が用レ、られてもよい。更に、本実施形態に比べ て分散保持時間が長い分散促進剤が用レ、られてもよい。この場合には、めっき処理 を行うめっき槽 70を流れるめっき分散体の速度を上記実施形態よりも遅くすることも できる。また、分散促進剤が省略されてもよい。
[0116] 本実施形態においては、拡散流体として超臨界状態の C〇2が用いられている。こ れに限らず、亜臨界状態の C〇2が用いられてもよレ、。更に、 C〇2に限らず、超臨界 状態又は亜臨界状態(臨界点近傍で液相状態)の他の流体 (超臨界流体又は亜臨 界流体)が用いられてもよい。
[0117] 本実施形態においては、内部マニフォ一ルド型電池について説明されているが、 外部マニフォ一ルド型電池に第 1の実施形態が適用されてもよい。この場合には、外 部マニフォ一ルドを用いてめっき分散体等が導入される。
[0118] 本実施形態においては、流体導入口(19a、 19c)には、同じめつき液から調製され ためつき分散体が導入され、そのめつき分散体は流体排出口(19e、 19g)から導出 されている。このとき、第 1のガス供給路におけるめっき分散体の線速と、第 2のガス 供給路におけるめっき分散体の線速とが異なるように各線速が設定されてもよい。こ のように設定された場合、各セパレータのめつき皮膜の厚さ及び皮膜の形態が異な るものとなる。
[0119] また、流体導入口 19aには、第 1のめつき分散体が導入され、流体導入口 19cに第 1のめつき分散体とは異なる第 2のめつき分散体が導入されるとともに、流体排出口( 19e、 19g)から各めつき分散体が導出されてもよい。第 1、第 2のガス供給路を利用 しながら、それぞれ独立してめっき分散体が流れることから、燃料側と空気側で異な る金属種のめっき皮膜を形成することができる。またこの場合では、第 1のセパレータ のめつき皮膜と、第 2のセパレータのめつき皮膜との厚さを異なる厚さにすることがで きる。第 1のめつき分散体と、第 2のめつき分散体とが異なるとは、各めつき分散体の 化学的性質や物理的性質が異なることをいう。すなわち、第 1のめつき分散体と、第 2 のめつき分散体とにおいて、それらの組成又は分散状態が異なる。組成の異なる各 めっき分散体は、例えばめつき液の組成を変更することに加え、分散促進剤の種類 及び配合量、並びに拡散流体の種類及び配合量等を変更することにより構成される 。分散状態の異なる各めつき分散体は、例えば混合分散部 60における混合器及び 分散部に備えられた攪拌機の構造又は攪拌機の形状、その攪拌機の回転数、混合 分散部 60におけるめっき分散体の滞留時間等が変更されることにより調製され得る。 このように異なるめっき分散体が用いられるとともに複数の混合分散部 60が設けられ ることにより、各セパレータに異なるめっき皮膜を同時に形成することができる。また、 一つの混合分散部 60によって各セパレータにめっき皮膜を逐次に形成してもよい。 各セパレータのめつき皮膜は、例えば、空気側セパレータ 32の表面には Au膜が形 成され、燃料側セパレータ 31の表面には Ni膜のみが形成されてもよい。燃料側セパ レータ 31のガス供給路は、燃料が通過することから還元性雰囲気となるので、燃料 側セパレータ 31のガス供給路よりも腐食が生じ難い。また、流体導入口 19a、流体導 入口 19cに異なる流量でめっき分散体を流すことで、 Auめっきの膜厚、めっき形態 等を燃料側と空気側で別々に制御することができる。これにより、めっき皮膜の形成 を効率よく行うことができるとともに、貴金属である Au膜の使用量を抑えることができ る。
(第 2の実施形態)
以下、本発明を水素分離体に具体化した第 2の実施形態を、図 13〜図 17を用い て説明する。本実施形態では、改質器に水素分離ユニットが導入され、水素ガスを 含む混合ガスである燃料ガスとしての天然ガスから高純度の水素ガスが水素分離ュ ニットに直接供給される燃料供給プロセスについて説明する。この場合、従来では必 要であったシフト反応、転化反応等による改質ガス中からの CO除去に用いられる装 置が改質器に設けられる必要が無い。図 13 (a)及び (b)は、水素分離ユニットが改 質触媒層に直接導入されたリフォーマ 1010を模式的に示す。このリフォーマ 1010 は、多重管構造を有するシェルユニット 1001と、該シェルユニット 1001内に配置さ れたチューブユニット 1002と力も構成されている。シェルユニット 1001の中心には燃 焼加熱部が設置されているとともに、シェルユニット 1001の内部には改質触媒が充 填されている。チューブユニット 1002は、シェルユニット 1001内で発生する水素ガス を改質ガスから分離して回収する水素分離ユニットである。図 13 (a)はシェルユニット 1001の外観を示し、図 13 (b)はチューブユニット 1002を示す。シェノレユニット 1001 は外壁 1001aを備え、この外壁 1001aの内側には、内壁 1001bにより囲まれた中空 洞が設けられている。この外壁 1001aと内壁 1001bとの間には空間が形成され、後 述するようにこの空間で改質及び水素の生成が行われる。この空間に燃料ガスと水 蒸気とを供給するために、外壁 1001aには供給孔 1001cが設けられている。水蒸気 及び燃料ガスが定められた比率で供給されて多重管構造による内部熱交換により 5 00°C程度まで加熱されることにより、改質反応が行われる。この反応は吸熱及び平 衡反応である。生成された水素が水素分離ユニットにより反応系から取り出されること から、改質反応の温度が該改質反応の本来の最適温度よりも低い 500°Cであるにも 関わらず、改質反応が効率よく進行する。そして、 500°Cにおいても高い水素の収率 が維持される。残存する未反応のガス、回収されていない水素ガス、及び生成された COは外壁 1001aの排出孔 lOOldから排出され、パーナの燃料に用いられて完全 に酸化される。内壁 1001bは、燃料ガスの改質用パーナでの発生熱により加熱され る。このため、内壁 1001bで囲まれた中空洞には、空気取込口 1001eと燃料ガス取 込口 100Πとが配置されている。
[0121] 外壁 1001aと内壁 1001bとの間の空間には、チューブユニット 1002が揷入されて いる。チューブユニット 1002は下部マニフォ一ルド 1002aと上部マニフォ一ルド 100 2bとを備え、各マニフォ一ルド 1002a, 1002bの間には、複数の水素分離体 1100 が設けられている。下部マニフォ一ルド 1002aにはスイープガス供給管 1002cが設 けられ、上部マニフォ一ルド 1002bには水素ガス導出管 1002dが設けられている。 チューブユニット 1002においては、改質器で生成された水素の回収率を上げるため に、水蒸気がスイープガスとして循環されている。そして、水素が透過する水素分離 体 1100において、透過の下流における見かけの水素分圧を下げて透過の上流と下 流との間の水素の濃度勾配を大きくするとともに、透過した水素の水素分離体 1100 からの脱離を促進する。
[0122] 水素分離体 1100は、図 14に示すように、外壁 1001aと内壁 1001bとの間に充填 された改質触媒の Ni充填層 1103中に埋め込まれてレ、る。 Ni充填層 1103におレ、て は、燃料ガス(例えば、メタンガス CH、プロパンガス C H又はブタンガス C H )と
4 3 8 4 10 水蒸気とが反応して、水素リッチな改質ガスが生成される。この場合、水素ガスの他 に、二酸化炭素ガス及び一酸化炭素ガスも発生する。以上のことから、水素分離体 1 100を用いた水素ガスの分離精製が行われる。
[0123] 本実施形態では、供給孔 1001cから供給された燃料ガスが Ni充填層 1103で改質 され、水素分離体 1100を通じて高純度の水素ガスが分離精製される。次に、高純度 の水素ガスを分離精製するために用いられる水素分離体 1100の構造を説明する。 図 14に示すように、本実施形態においては、円筒管形状の水素分離体 1100が用 レ、られる。この水素分離体 1100は、多孔質基体としての基体管 1101を備えている。 基体管 1101の外表面は改質ガスの導入面を構成し、該導入面の対面である内表面 上に、溶解拡散機構に基づいた水素選択透過性を有する金属層としての水素透過 層 1102が積層されている。この基体管 1101は、例えばセラミックス多孔材料 (例え ばアルミナ: A1〇)により形成されている力 これに限定されるものではなぐシリカ、
2 3
ゼォライト、モルデナイト、又はジノレコニァにより形成されてもよい。
[0124] 基体管 1101は、触媒担持セラミックス層 1101aと、細孔層としての細孔セラミックス 層 1101bとから構成されている。触媒担持セラミックス層 1101aは比較的大きな孔径 を有する細孔を備え、この細孔内に、一酸化炭素ガスを除去するための触媒金属が 担持されている。この担持された触媒金属により、一酸化炭素ガスと水とを反応させ て二酸化炭素ガスを生成するシフト反応、及び一酸化炭素ガスの部分酸化反応が行 われる。シフト反応を生じさせるために、触媒金属として Pt、 Rh、 Ru、 Ni又は Cu/Z n〇が用いられ、一酸化炭素ガスの部分酸化反応を生じさせるために、触媒金属とし て Pt又は Pt— Ru合金触媒が用いられる。
[0125] 改質ガスには、水素ガスの他に、水素透過層 1102の性能を低下させるガスを含ん でいる。細孔セラミックス層 1101bは、そのような水素透過層 1102の性能を低下させ るガスに比べて、水素ガスを優先的に透過させることにより、水素透過層 1102に対 する水素以外のガスの接触量を減少させる。すなわち、細孔セラミックス層 1101bは 、改質ガスに含まれるとともに水素透過層 1102の性能を低下させるガスの分子サイ ズと同等であり、且つ水素ガスの分子サイズより大きいサイズを有する細孔を備えて いる。この細孔のサイズによって水素ガスが優先的に透過するフィルタリングが行わ れた後、水素ガスが水素透過層 1102に供給される。この分子サイズでのふるい分け により、一酸化炭素ガス及び炭化水素ガスの細孔セラミックス層 1101bの透過が抑 制される。具体的には、水素ガスの分子サイズは約 0. 3nmであり、一酸化炭素ガス の分子サイズは水素ガスの分子サイズよりも大きレ、。メタンガスの分子サイズは更に 大きぐ約 0. 4nmである。そして、窒素酸化物ガス、硫黄酸化物ガス、及び炭化水素 ガスの分子サイズも、水素ガスの分子サイズに比べて大きい。そして、細孔セラミック ス層 1101bの細孔のサイズを上述のように設定して、一酸化炭素ガス、窒素酸化物 ガス、硫黄酸化物ガス、炭化水素ガス及び炭化水素ガスと、水素ガスとのふるい分け を行うことにより、一酸化炭素ガス等の吸着による水素透過層 1102の水素選択透過 性の低下が回避される。上述のシフト反応及び部分酸化反応のための触媒金属が、 細孔セラミックス層 1101bに担持されてもよい。
[0126] 水素透過層 1102は、水素選択透過性を有する金属により形成されている。水素選 択透過性を有する金属は、水素透過層 1102の表面に吸着した水素分子の結合の 切断により、水素原子を金属内に拡散させる。本実施形態の水素透過層 1102は、 後述するめつき法により、厚さが約 1 μ mである Pd膜により構成されている。
[0127] <水素分離体 1100の製造 >
次に、上述の構成を備えた水素分離体 1100の製造方法について説明する。
[0128] まず、水素分離体 1100を構成する基体管 1101が準備される。この基体管 1101 は、触媒担持セラミックス層 1101aと細孔セラミックス層 1101bとを備えている。本実 施形態では、触媒担持セラミックス層 1101aを構成する多孔質セラミックスに、金属ァ ルコキシドなどの金属有機分子の加水分解反応を利用したゾルゲル法により、所定 の孔径の細孔を有する細孔セラミックス層 1101bが形成される。ゾルゲル法の他に、 多孔質セラミックスに金属有機ポリマー溶液を塗布して高温熱処理により固化させる 金属有機ポリマー法を用いることにより、細孔セラミックス層 1101bが形成されてもよ レ、。
[0129] 次に、多孔質セラミックスに触媒金属が担持された触媒担持セラミックス層 1101a が形成される。本実施形態では、多孔質セラミックスに金属塩の水溶液が染み込ん だ後に、多孔質セラミックスが乾燥される。更に、この多孔質セラミックスに対する水 素還元処理が行われることにより、多孔質セラミックスの細孔内に触媒金属が担持さ れる。
[0130] そして、細孔セラミックス層 1101b上に、水素透過層 1102を構成する Pd膜がめつ き法により形成される。本実施形態では、超臨界状態の C02を拡散流体として用い ためつきが行われる。このめつきに用いられるめっき装置について、図 15〜図 17を 用いて説明する。本実施形態では、このめつき装置を用いて無電解めつき及び電解 めっきが行われることにより、水素透過層 1102が形成される。
[0131] <めっき装置の全体構成 >
図 15に示すように、本実施形態に用いられるめっき装置は、洗浄液タンク 1011、 C 02タンク 1021、高純度 C〇2タンク 1026、分散促進剤タンク 1031、無電解めつき液 タンク 1041及び電解めつき液タンク 1051を備えている。これらのタンクは、後述する ように混合分散部 1060を介してめつき槽 1061に接続されている。以下に、上記の 構成を詳述する。
[0132] 洗浄液タンク 1011は、洗浄液としての純水あるいはイオン交換水を収容している。
この洗浄液タンク 1011は、混合分散部 1060に洗浄液供給管を介して接続されてレヽ る。この洗浄液供給管には、液ポンプ 1012、加熱部 1013及び供給弁 1014が設け られている。液ポンプ 1012は純水あるいはイオン交換水を加圧し、加熱部 1013は 純水あるいはイオン交換水を加熱する。供給弁 1014は、その開閉が制御されること により、洗浄液タンク 1011と混合分散部 1060との連通又は遮断を行い、混合分散 部 1060への純水あるいはイオン交換水の供給又は供給の停止を行う。
[0133] C02タンク 1021は、拡散流体として第 1の実施形態と同様の C〇2を収容している 。この C02タンク 1021は、混合分散部 1060に C02供給管を介して接続されている 。この C02供給管には、切換弁 1021a、液ポンプ 1022、加熱部 1023及び供給弁 1 024aが設けられている。切換弁 1021aと液ポンプ 1022との間の C〇2供給管には、 切換弁 1026aが設けられた供給管を介して高純度 C02タンク 1026が接続されてい る。高純度 C〇2タンク 1026は、 C02タンク 1021に収容された C02よりも高純度の C02を収容している。高純度 C02タンク 1026内の高純度の C02は、 C〇2タンク 10 21内の C〇2が汚れた場合に該 C〇2の代わりに混合分散部 1060に供給されたり、 配管系の洗浄のために使用されたりする。切換弁 1021a, 1026aの開閉の制御によ り、 C02タンク 1021からの C〇2又は高純度 C〇2タンク 1026からの C〇2のいずれ 力、が、混合分散部 1060に供給される。
[0134] 液ポンプ 1022は C02を加圧し、カロ熱部 1023は C02をカロ熱する。これらにより、 C 02タンク 1021から供給される C〇2は、高圧の超臨界状態となった後に混合分散部 1060に供給される。供給弁 1024aは、その開閉が制御されることにより、 C〇2タンク 1021と混合分散部 1060との連通又は遮断を行レ、、混合分散部 1060への C〇2の 供給又は供給の停止を行う。
[0135] 分散促進剤タンク 1031は、第 1の実施形態と同様の分散促進剤を収容している。
分散促進剤タンク 1031は、混合分散部 1060に分散促進剤供給管を介して接続さ れている。分散促進剤供給管には、液ポンプ 1032、加熱部 1033及び供給弁 1034 が設けられている。液ポンプ 1032は分散促進剤を加圧し、加熱部 1033は分散促進 剤を加熱する。供給弁 1034は、その開閉が制御されることにより、分散促進剤タンク 1031と混合分散部 1060との連通又は遮断を行レ、、分散促進剤の混合分散部 106 0への供給又は供給の停止を行う。
[0136] 無電解めつき液タンク 1041は無電解めつき液を収容している。本実施形態の無電 解めつき液は、金属塩としてのテトラアンミンパラジウムジクロライド、還元剤としてのヒ ドラジン、 pH調整剤としての水酸化アンモニゥム、及び錯化剤としての EDTA2ナトリ ゥム塩を含有する。無電解めつき液タンク 1041は加熱及び保温手段を備え、無電解 めっき液を所定の温度にまで加熱して保温する。この無電解めつき液タンク 1041は 、無電解めつき液供給管を介して混合分散部 1060に接続されている。この無電解め つき液供給管には、液ポンプ 1042、加熱部 1043及び供給弁 1044が設けられてい る。液ポンプ 1042は無電解めつき液を加圧し、加熱部 1043は無電解めつき液を加 熱する。供給弁 1044は、その開閉が制御されることにより、液タンク 1041と混合分 散部 1060との連通又は遮断を行い、混合分散部 1060への無電解めつき液の供給 又は供給の停止を行う。めっき液を所定の温度に保持するため、無電解めつき液が 流れるラインはすべて加熱及び保温制御されている。
[0137] 電解めつき液タンク 1051は電解めつき液を収容している。本実施形態の電解めつ き液は、塩化パラジウム、グリシン、亜硝酸カリウム、支持電解質としての臭化カリウム 、及び pH調整剤としてのホウ酸を含有する。この電解めつき液タンク 1051は加熱及 び保温手段を備え、電解めつき液を所定の温度にまで加熱して保温する。この電解 めっき液タンク 1051は、混合分散部 1060に電解めつき液供給管を介して接続され ている。この電解めつき液供給管には、液ポンプ 1052、加熱部 1053及び供給弁 10 54が設けられている。液ポンプ 1052は電解めつき液を加圧し、加熱部 1053は、金 属塩の析出を防止して電解めつき液を反応温度に維持する。供給弁 1054は、その 開閉が制御されることにより、電解めつき液タンク 1051と混合分散部 1060との連通 又は遮断を行い、電解めつき液の混合分散部 1060への供給又は供給の停止を行う 。電解めつき液供給管は、めっき液の成分が析出しない温度以上に常時保温されて いる。金属塩の析出を防止するため、電解めつき液が流れるラインも加熱及び保温 制御されている。
[0138] 混合分散部 1060では、めっきの適正温度範囲を中心に、 C02が液〜臨界点以上 の温度及び圧力の条件で、めっき液、 C02及び分散促進剤がめっき処理に適した 比率 (添加されない場合も含む)で混合され、該混合された流体が攪拌されて分散体 が調製される。本実施形態の混合分散部 1060は、混合器と分散機とから構成され ている。混合器では、めっきを行うための各成分が混合されてめつき混合液が調製さ れる。分散機では、めっき混合液が分散状態となってめっき分散体が調製される。分 散機の内部には、永久磁石に取り付けられたメッシュ付きロータが配置され、分散機 の外部には、コイルが取り付けられたステータが配置されている。このステータに流れ る電流の制御によって磁場の強さが調整され、この磁場の強さでメッシュ付きロータ の回転速度及び回転方向が制御される。メッシュ付きロータの回転により、混合器か ら供給されためつき混合液がせん断され、めっきに適した分散体が調製される。
[0139] 混合分散部 1060はめつき槽 1061に接続されている。このめつき槽 1061では、混 合分散部 1060から供給されるめつき分散体を用いて、無電解めつき及び電解めつき が行われる。このめつき槽 1061の内部には、電解めつきを行うための円筒形の電極 が配設されており、この電極には電源 1062が接続されている。この電極は、基体管 1 101と所定の距離を保つように、基体管 1101に対して並行して配置される。
[0140] 基体管 1101の内表面又は外表面に、高圧の流体を用いた洗浄及びめつきの各処 理が行われる際に、それらの処理が行われない表面が面する空間の圧力が大気圧 と同等であると、基体管 1101の内外に大きな差圧が発生して基体管 1101が破損す ること力 Sある。従って、洗浄及びめつき処理の際に、基体管 1101の内外に差圧が発 生しないように処理が施される。具体的には、基体管 1101の内外の空間においてめ つき及び洗浄が行われない空間に、非圧縮流体に近ぐ且つめつき操作で使用され る流体 (本実施形態では脱気された水)が封入されて、該空間における圧縮性ガスの 残留が 0に近づけられる。
[0141] 本実施形態では、めっき槽 1061内に設置された基体管 1101の内表面にめっきが 行われることから、混合分散部 1060から供給されるめつき分散体は、バルブ V3が設 けられた内側供給ラインを介してめつき槽 1061内へ流れる。この内側供給ラインは、 バルブ V6、シリンダ CY、バルブ V7を介して外側供給ラインに接続されている。この 外側供給ラインは、基体管 1101の内外に差圧が発生しないように脱気された水を基 体管 1101の外側に充填するために用いられる。シリンダ CYは、内側供給ライン内の 流体と外側供給ライン内の流体との差圧を調整する。
[0142] めっき槽 1061には、バルブ V2を備えた内側排出ラインを介して分離槽 1065が接 続されている。この分離槽 1065には、めっき槽 1061において使用されためつき分散 体が排出される。内側排出ラインは、バルブ V5を介して外側排出ラインに接続され ている。このバルブ V5は、内側排出ライン内の流体と外側排出ライン内の流体との 差圧を調整する。そして、分離槽 1065では、 C〇2とめつき液とが分離される。このと き、分散促進剤は、 C〇2に混合された状態でめっき液から分離される。
[0143] 分離槽 1065は、 C02タンク 1021及びめつき液排出部 1070に接続されている。め つき分散体から分離された C02 (又は分散促進剤を含む C〇2)は、これに含まれて いる水素、酸素などのガス及び C〇2に溶解した有機物が除去された後、圧力及び温 度が調整された液状態で C〇2タンク 1021に供給される。めっき分散体から分離され ためつき液は、めっき液排出部 1070に排出される。このめつき液排出部 1070は、排 出切換弁を介して、電解めつき液再生装置及び廃液タンクと連通可能である。電解 めっき液再生装置では、分離槽 1065から排出された電解めつき液から不純物が除 去され、成分が調整されることにより電解めつき液が再生される。
[0144] 本実施形態のめっき装置は、制御手段としての制御部 1080を備えている。この制 御部は、例えば CPU、 RAM又は ROMから構成されている。そして、制御部 1080 に格糸内されたプログラムにより、各 f夜ポンプ 1012, 1022, 1032, 1042, 1052、各 カロ熱部 1013, 1023, 1033, 1043, 1053、各供給弁 1014, 1024a, 1034, 104 4, 1054、各切換弁 1021a, 1026a,電源ヽ 1062等の制御力 S行われる。
[0145] 制御部 1080には、基体管 1101に形成される Pd膜の形成状況を検出する検出手 段が接続されている。本実施形態では、この検出手段として、一対の端子を備えた電 流センサ 1064が用いられる。一対の端子は、互いに所定の距離だけ離れて基体管 1101の表面に接触した状態で設置されており、電流センサ 1064は、各端子の間に 電圧が印加されたときに流れる電流を計測する。本実施形態の基体管 1101は、上 述したようにアルミナで構成される不導体であることから、基体管 1101の表面に金属 の Pd膜が形成されると、電流センサ 1064の 1対の端子の間の電流値が変化する。こ れを利用して、電流センサ 1064は、基体管 1101の表面に形成される Pd膜の形成 状況を検出する。
[0146] 制御部 1080にはメモリが備えられており、該メモリには、電解めつきを開始するた めの基準値が記憶されている。この基準値としては、 Pd膜が基体管 1101の表面全 体にわたって形成された場合の電流値が用いられる。そして、制御部 1080は、電流 センサ 1064から取得した電流値と、メモリに記憶されている基準値とを比較し、電流 センサ 1064から取得した電流値が基準値を超えた場合、電解めつき処理を行うため のプロセスを実行する。
[0147] くめつき槽 1061の構造〉
次に、図 16及び図 17を用いてめっき槽 1061の構造を詳述する。図 16に示すよう に、このめつき槽 1061は管状の筐体 1110を備えている。この筐体 1110には、 1対 の支持部材 1111, 1112が収容されている。支持部材 1111は、筐体 1110から脱着 可能な蓋として機能し、シール部材 1113を介して筐体 1110に固定される。
[0148] 支持部材 1111, 1112の互いに対向する面には、円環状の溝が形成されている。
この溝にはシール部材 1114が収容されている。支持部材 1111 , 1112は、めっき処 理の対象である基体管 1101をめつき槽 1061に装着する手段を構成し、シール部材 1114を介して基体管 1101を支持する。
[0149] このような構成により、基体管 1101がめつき槽 1061に装着されると、図 16に示す ように、めっき槽 1061内は、基体管 1101の内側に位置する内側領域 1115と、基体 管 1101の外側に位置する外側領域 1116とに区画される。
[0150] 支持部材 1111、 1112には、内側領域 1115において軸方向に沿って連続的に流 体を供給するために、供給排出手段としての内側用供給管 1117と内側用排出管 11 18とが設けられている。内側用供給管 1117は支持部材 1111に設けられ、内側領 域 1115に流体を供給する。内側用排出管 1118は支持部材 1112に設けられ、内側 領域 1115から流体を排出する。従って、基体管 1101がめつき槽 1061に装着され た場合には、外側領域 1116とは独立して、流体が内側領域 1115に供給された後に 内側領域 1115から排出される。
[0151] 本実施形態では、基体管 1101の内表面上に Pd膜が形成されることから、内側用 供給管 1117が混合分散部 1060に接続されており、且つ内側用排出管 1118が分 離槽 1065に接続されている。そして、混合分散部 1060において調製されためつき 分散体は、内側用供給管 1117からめつき槽 1061の内側領域 1115に供給された後 に内側領域 1115内を通過して、内側用排出管 1118から分離槽 1065に排出される
[0152] 筐体 1110には、外側領域 1116に流体を供給するための外側用供給管 1119と、 この領域力 流体を排出するための外側用排出管 1120とが設けられている。従って 、内側領域 1115を流れる流体とは独立して、流体が外側領域 1116に供給された後 に外側領域 1116から排出される。
[0153] 本実施形態では、内側領域 1115内に、めっきの対極である前記電極が、基体管 1 101の内面から等距離を保持するように設けられている。電流センサ 1064は、基体 管 1101の内表面の両端部間に流れる電流を測定する。
[0154] 上述のように、本実施形態では、混合分散部 1060に接続された内側用供給管 11 17と、分離槽 1065に接続された内側用排出管 1118とから、基体管 1101の軸方向 に沿って連続的に流体を流すための供給排出手段が構成されている。
[0155] <水素分離体 1100の製造方法 >
次に、基体管 1101に Pd膜が形成された水素分離体 1100を製造するためのめつ き処理を説明する。水素分離体 1100の製造では、活性化処理、化学めつき、及び 電解めつきが順次行われる。活性化処理では、吸着析出核となる Pdの微粒子がアル ミナに吸着されて還元される。次に、化学めつきにおいて、 Pdの錯化剤とその還元剤 とで Pd還元析出が行われる。そして、電解めつきにおいて、酸性めつき液が供給され るとともに通電されて Pdが析出される。本実施形態では、活性化処理が施された基 体管 1101がめつき槽 1061に装着された後、化学めつき及び電解めつきが行われる 。なお、活性化処理〜電解めつきのすべてが、めっき槽 1061で連続して行われても よい。
[0156] 以下に、上述の処理を詳述する。まず、触媒担持セラミックス層 1101aと細孔セラミ ックス層 1101 bとが設けられた基体管 1101が準備され、この基体管 1101に対して 活性化処理が行われる。
[0157] <活性化処理 >
活性化処理では、基体管 1101の脱脂が行われる。具体的には、基体管 1101が エタノールに 30分間浸漬される。ここで、エタノールの代わりに C〇2が用いられても よレ、。次に、感応化処理、活性化処理及び還元処理が行われる。本実施形態では、 基体管 1101の内表面に活性化処理が施される。感応化処理は、還元しやすい金属 イオンを基体管 1101の内表面に吸着させる処理であり、例えば塩化第一スズ水溶 液に基体管 1101を 1分間浸漬させることにより行われる。活性化処理では塩酸酸性 の塩化パラジウム水溶液が用レ、られ、基体管 1101を塩化パラジウム水溶液に 1分間 浸漬させることにより行われる。還元処理は吸着触媒核 Pdを還元する処理であり、基 体管 1101を例えばヒドラジン水溶液に 30秒間浸漬することにより行われる。そして、 基体管 1101が蒸留水に 10秒間浸漬されて洗浄が行われる。
[0158] くィ匕学めつき >
次に、活性化処理が行われた基体管 1101がめつき槽 1061に装着されて無電解 めっきが行われる。具体的には、図 17に示すように、支持部材 1111が筐体 1110か ら取り外される。そして、支持部材 1112の円環状の溝に基体管 1101の一端部が遊 嵌された後、基体管 1101の他端部が支持部材 1111の円環状の溝に遊嵌される。 そして、この状態で、支持部材 1111の端面がシール部材 1113に接触して、支持部 材 1111が筐体 1110に固定される。
[0159] 以降の工程では、図 16に示すように、ノノレブ V5,バルブ V6及びバルブ V7が閉じ るとともに、バルブ VI及びバルブ V4が開いて、外側供給ラインの下方から上方へ脱 気された水が導入される。外側領域 1116から空気が追い出されてバルブ VIまで水 封されたことを確認したところで、バルブ VI及びバルブ V4が閉じる。バルブ V5,バ ルブ V6又はバルブ V7が開くとともに(3つすべてが開いてもよい)、更にバルブ V2 及びバルブ V3が開いて、内側供給ラインに高圧の流体が流れ始める。
[0160] そして、超臨界 C〇2を用いた前処理が行われる。ここでは、純水あるいはイオン交 換水と C02とが混合された分散体が用いられる。この場合、供給弁 1014, 1024aが 開き、カロ熱部 1013, 1023におレヽてカロ熱力 S行われるとともに夜ポンプ 1012, 1022 が駆動する。更に、切換弁 1021aが閉じるとともに切換弁 1026aが開いて、高純度 C 02タンク 1026と混合分散部 1060とが連通される。この場合、洗浄液タンク 1011か らの純水あるいはイオン交換水とともに、高純度 C02タンク 1026から、 C〇2が加圧 及び加熱されて超臨界状態となって混合分散部 1060に供給される。そして、混合分 散部 1060において、純水あるいはイオン交換水と C〇2とが混合されて攪拌される。 この結果、 C02と純水あるいはイオン交換水とが均一に分散された状態の洗浄分散 体が調製され、該洗浄分散体が混合分散部 1060からめつき槽 1061に供給される。
[0161] めっき槽 1061では、混合分散部 1060に接続されている内側用供給管 1117を介 して、めっき槽 1061の内側領域 1115に洗浄分散体が供給され、基体管 1101の内 表面が洗浄される。使用された洗浄分散体は、内側領域 1115から内側用排出管 11 18を介して分離槽 1065に排出される。
[0162] 洗浄に用いられた洗浄分散体は、分離槽 1065に排出された後、 C〇2と純水ある いはイオン交換水とに分離される。この分離された C〇2は、不要なガスが除去された 後、再生されて C02タンク 1021に供給される。分離された純水あるいはイオン交換 水は、排出切換弁を介して廃液タンクに排出される。洗浄分散体がめっき槽 1061に 所定時間供給された後、前処理工程としての洗浄が終了する。
[0163] 次に、無電解めつき処理工程が行われる。ここでは、温度: 50°C及び圧力: 12MP aの条件で無電解めつき処理工程が行われる。具体的には、供給弁 1014が閉じると ともに供給弁 1034, 1044が開く。液ポンプ 1012の駆動が停止するとともに液ボン プ 1032, 1042が駆動する。カロえて、加熱部 1013における加熱が停止するとともに 加熱部 1033, 1043において加熱が行われる。これにより、分散促進剤タンク 1031 力 の分散促進剤と、無電解めつき液タンク 1041からの無電解めつき液とが混合分 散部 1060に供給される。液ポンプ 1022及び加熱部 1023の駆動が継続されるととも に供給弁 1024aの開状態が維持されることにより、 C02の供給が継続される。このと き、制御部 1080は、切換弁 1021a, 1026aを切り換えて、 C02タンク 1021と混合 分散部 1060とを連通させる。この結果、混合分散部 1060においては、 C〇2タンク 1 021からの超臨界 C02と、無電解めつき液と、分散促進剤とが混合されるとともに攪 拌されて、より均一な分散状態となり、無電解めつき液を含むめっき分散体が調製さ れる。このめつき分散体は、混合分散部 1060からめつき槽 1061の内側領域 1115 に供給される。そして、この内側領域 1115に供給されためつき分散体中の Pdが、基 体管 1101の内表面に析出し始める。
[0164] この場合、本実施形態の制御部 1080は、めっき分散体の分散保持時間内に分散 体力 Sめっき槽 1061内を流れきるように、各夜ポンプ 1022, 1032, 1042の馬区動を制 御する。
[0165] このようにして無電解めつきが継続されることにより、基体管 1101の内表面の全体 にわたつて、無電解めつきによる Pd膜が形成される。無電解めつきの析出速度が遅 い場合には、めっき分散流体が再利用(リサイクル)されてもよい。この場合、めっき液 の混合器への供給が停止され、これに代えて、めっき槽 1061の出口から分離槽 10 65への配管の途中に、分散器に接続されるバイパス配管が設けられてめっき分散流 体のリサイクルフローが形成される。そして、めっき分散流体が再度分散された後に、 めっき槽 1061に供給される。この場合のめっき流体供給とめっき流体リサイクルフロ 一との比は、 0〜: 100%の間で固定されてもよいし可変されてもよい。
[0166] その後、制御部 1080は、電流センサ 1064により、基体管 1101の表面を覆うように Pd膜が形成されたことに伴って変化する電流値を検出する。この電流値が基準値を 超えた場合、無電解めつきが中止される。具体的には、供給弁 1044が閉じて液ボン プ 1042の駆動が停止することにより、無電解めつき液の混合分散部 1060への供給 が停止される。そして、供給弁 1014が開くとともに液ポンプ 1012が駆動することによ り、純水あるいはイオン交換水が洗浄液タンク 1011から混合分散部 1060に供給さ れる。このとき、液ポンプ 1022, 1032及びカロ熱部 1023, 1033の駆動が継続される とともに供給弁 1024a, 1034の開状態が維持されることにより、 C〇2と分散促進剤と の供給が継続される。そして、純水あるいはイオン交換水が流れて無電解めつき液が 洗い流される。次いで、所定時間経過後に純水あるいはイオン交換水の供給が停止 される。
[0167] <電角早めつき >
次に、電解めつきが行われる。この電解めつきは、温度: 40°C、圧力: 12Mpa、電 流値: 0. 01A/cm2及び時間: 3分間の条件で行われる。供給弁 1054が開くととも に液ポンプ 1052が駆動し、電解めつき液が電解めつき液タンク 1051から混合分散 部 1060に供給される。 ί夜ポンプ 1022, 1032及びカロ熱部 1023, 1033, 1053の馬区 動が継続されるとともに供給弁 1024a, 1034の開状態が維持されることにより、 C02 と分散促進剤との供給が継続される。これにより、混合分散部 1060においては、 CO 2と電解めつき液と分散促進剤とが混合されるとともに攪拌されて、より均一に分散さ れた状態のめっき分散体が調製された後、該めっき分散体がめっき槽 1061に供給 される。そして、制御部 1080は、電源 1062を用いて、めっき槽 1061内に配設され た電極に通電する。めっき槽 1061では、基体管 1101の内表面に形成された Pd膜 が陰極として機能し、電解めつきにより Pd膜が形成される。
[0168] この電解めつき処理が行われている間、各液ポンプ 1022, 1032, 1052力 S駆動し 続け、混合分散部 1060において調製されためつき分散体がめっき槽 1061に継続 的に供給されて電解めつき処理が行われる。そして、制御部 1080は、めっき分散体 の分散保持時間内に分散体がめっき槽 1061内を流れきるように、各液ポンプ 1022 、 1032、 1052の駆動を制御する。これにより、めっき処理によりめつき分散体中に溶 解した水素ガス及び基体管 1101の表面から剥離した不純物は、速やかにめっき槽 1061から排出される。
[0169] 分離槽 1065に排出されためつき分散体は、分散促進剤を含む C02が分離される とともに不要なガスが除去された後、 C〇2タンク 1021に還流される。一方、 C〇2と分 散促進剤とから分離された電解めつき液は、めっき液排出部を介して電解めつき液 再生装置に排出される。そして、この電解めつき再生装置において再生された電解 めっき液は、電解めつき液タンク 1051に供給される。分散促進剤の種類によっては、 分散促進剤が C〇2側よりもめっき液側に 2液相で残留する場合、又は分散促進剤が めっき液に溶解する場合がある。分散促進剤が 2液相で残留する場合には、主にデ カンテーシヨンによって、分散促進剤がめっき液と分離される。
[0170] 各 ί夜ポンプ 1022, 1032, 1052力 S馬区動するとともにカロ熱部 1023, 1033, 1053に おいて加熱が行われ、調製されためつき分散体のめっき槽 1061への供給及び該め つき槽 1061からの排出が継続されて、所定の厚さの膜を形成するのに要する時間 だけ電解めつき処理が継続される。
[0171] ぐ洗浄工程 >
上述の各工程の終了後に洗浄処理が行われる。具体的には、所定の薬液の供給 が停止され、ガス〜超臨界状態の C02でめつき槽 1061内の残留薬液がめっき槽 1 061から流し出される。そして、液〜超臨界状態の C〇2と水との分散体が供給されて 、めっき槽 1061内部の洗浄 (薬液の回収)が行われる。更に、イオン交換水が流れる ことにより仕上げの洗浄が行われる。最後に、乾燥した液体〜超臨界 C〇2が供給さ れて、めっき槽 1061から水が追い出されるとともに、めっき槽 1061の内部が乾燥さ れる。
[0172] 本実施形態の洗浄工程において、供給弁 1014及び切換弁 1026aは開いている。
この場合、純水あるいはイオン交換水と高純度 C02とが混合分散部 1060に供給さ れる。そして、前処理工程の洗浄と同様に、 C〇2と純水あるいはイオン交換水とが混 合された洗浄分散体が、混合分散部 1060からめつき槽 1061に供給されて洗浄が 行われる。
[0173] そして、純水あるいはイオン交換水を含む洗浄分散体がめっき槽 1061に所定時間 供給された後、乾燥を行うために供給弁 1014が閉じる。この場合、洗浄液タンク 101 1からの純水あるいはイオン交換水の供給が停止され、高純度 C〇2タンク 1026から の C〇2が、混合分散部 1060を介してめつき槽 1061に供給されて乾燥が行われる。 具体的には、めっき槽 1061の内壁及び基体管 1101に付着した純水あるいはイオン 交換水が、 C〇2の流れにより洗い流されるとともに、乾燥した液〜超臨界状態の CO 2に溶解して除去される。 [0174] そして、 C〇2のみが所定時間供給された後に乾燥が終了し、供給弁 1024aが閉じ て C02の供給が停止される。更に、液ポンプ 1012の駆動及び加熱部 1013の加熱 が停止する。以上により、水素透過層 1102としての Pd膜を形成するためのめっき処 理が完了する。
[0175] 第 2の実施形態によれば、以下のような効果を得ることができる。
[0176] (8)本実施形態の基体管 1101の内表面上に、水素の溶解拡散を行う水素透過層 1102が積層されている。この基体管 1101は、触媒担持セラミックス層 1101aと細孔 セラミックス層 1101bとから構成されている。そして、混合ガスとしての改質ガス中に 含まれる水素ガスが、細孔セラミックス層 1101bを優先的に透過する。すなわち、細 孔セラミックス層 1101bによって、水素透過層 1102に対する水素以外のガスの接触 量が減少される。このため、水素透過層 1102の性能を低下させるガスが改質ガス中 に含有されていても、このような改質ガスから水素ガスが分離精製される際に、水素 透過層 1102の性能が維持され易い。この結果、水素ガスを効率的に分離精製する こと力 Sできる。また、水素透過層 1102には水素ガスがより選択的に接触することから 、該水素透過層 1102を透過する水素ガスの透過量が高められ、水素ガスを効率的 に分離精製することができる。また、細孔セラミックス層 1101bの細孔のサイズは、一 酸化炭素ガス及び炭化水素ガスと水素ガスとのふるい分けを行うことができる程度に 小さい。このため、改質ガスから水素ガスをフィルタリングして、一酸化炭素ガスの水 素透過層 1102への到達を抑制することができる。従って、水素透過層 1102におけ る一酸化炭素ガス等の吸着を抑制することができ、しかも高濃度の水素を Pd膜へ接 触させることから効率的に水素ガスを分離精製することができる。
[0177] 更に、細孔セラミックス層 1101bは、一酸化炭素ガス、窒素酸化物ガス、硫黄酸化 物ガス、及び炭化水素ガスの少なくとも一種を含む混合ガスから水素ガスを選択的 に透過させる。このため、例えば水素透過層 1102が Pd膜力も構成される場合にお レ、ても、水素透過層 1102の性能を低下させるガスの吸着を抑制することができること から、水素透過層 1102の性能が維持され易い。
[0178] (9)本実施形態の触媒担持セラミックス層 1101aの細孔は比較的大きな孔径を有 し、この細孔内に触媒金属が担持されている。そして、この触媒金属により、一酸化 炭素ガスと水とを反応させて二酸化炭素ガスを生成するシフト反応、及び一酸化炭 素ガスの部分酸化反応が行われる。このため、触媒担持セラミックス層 1101aにおい て、一酸化炭素ガスの水素透過層 1102への到達を抑制することができる。従って、 水素ガスの水素透過層 1102における一酸化ガス等の吸着を抑制することができ、 効率的に水素ガスを分離精製することができる。
[0179] (10)本実施形態の基体管 1101の内表面上には、水素透過層 1102としての Pd膜 が形成されている。水素の透過を促進させるためには、水素分離体 1100の温度を 上げる必要がある。このため、水素分離体 1100がシェルユニット 1001の Ni充填層 1 103に密接して熱伝導が向上される。この場合においても、水素透過層 1102は基 体管 1101の内表面上に形成されていることから、 Pd膜には磨耗等の劣化が起きな レ、。
[0180] 更に、水素透過層 1102が基体管 1101の内表面上に形成された水素分離体 110 0が水素ガスの分離精製に使用される場合、水素分離体 1100の周囲に改質触媒が 配置されて水素ガスの分離精製が行われることがある。この改質触媒は所定の温度( 例えば 650°C)まで加熱されて使用される。また、水素透過層 1102の水素の透過率 は、温度と比例関係にある。このため、改質触媒を水素分離体 1100の周囲に接触し た状態で配置されると、改質触媒の熱が基体管 1101を介して伝導することにより、水 素透過層 1102が効率的に加熱される。一方、水素透過層 1102が基体管 1101の 外周面に形成され、該水素透過層 1102と改質触媒とが接触する構成が採用された 場合には、改質触媒との摩擦又は改質触媒から直接伝わる振動によって、水素透過 層 1102が破損するおそれがあった。本発明の水素分離体 1100では、基体管 1101 の内表面に水素透過層 1102が形成されていることから、該水素透過層 1102を基体 管 1101によって適切に保護することができるとともに、水素透過層 1102を基体管 1 101の外面から効率的に加熱することができる。よって、こうした水素分離体 1100を 備えた水素製造装置では、水素透過層 1102を速やかに昇温することができ、装置 の立ち上げ時間を短縮することができる。
[0181] カロえて、基体管 1101の内周面は、その外周面よりも熱膨張及び熱収縮が小さい。
従って、基体管 1101の内表面に形成された水素透過層 1102は、基体管 1101の 外表面に水素透過層 1102が形成される場合よりも、基体管 1101の寸法変化による 影響を受け難ぐ水素透過層 1102の塑性変形が抑制される。従って、水素分離体 1 100の昇温及び冷却を伴った使用、すなわち水素分離装置の運転及び停止を繰り 返した場合において、水素透過層 1102の塑性変形が抑制されて劣化が抑制される こと力ら、水素透過層 1102の寿命を延ばすことができる。
[0182] 更に、基体管 1101の内表面に水素透過層 1102が形成されていることから、水素 透過層 1102の表面(水素分離体 1100の内表面)が露出した状態で水素分離体 11 00が使用される。このため、水素分離体 1100の内表面から排出される水素を速や 力、に拡散させることができ、水素透過層 1102の厚さ方向における水素の濃度勾配を 高めた状態に維持され易ぐ水素の透過速度を高めることが容易である。
[0183] (11)本実施形態の Pd膜は、超臨界 C02を用いためっき法により約 l z mの厚さに 形成されている。このように、超臨界 C02が用いられることにより、薄膜であってもピン ホールのない緻密な水素透過層 1102を形成することができる。特に、水素透過層 1 102を薄膜にすることにより、水素の溶解及び拡散に要する時間を短くすることがで き、水素の分離精製効率を向上させることができる。この場合、 Pd膜の厚さが 10 μ ΐη 程度であると、 1次側に 8気圧の圧力が印加されるが、 Pd膜を薄膜化することにより、 圧力を下げても厚さが 10 / m程度のときと同じ分離精製効率を確保することができる
[0184] 更に、フッ素系化合物により、拡散流体に対するめっき液の分散が促進されること で、皮膜の付き回りが更に良好となり、皮膜におけるピンホールの形成を抑制するこ とが更に容易になる。従って、 Pd膜の表面を更に平滑にすることが可能であり、平滑 性に優れる Pd膜を得ることができる。
[0185] (12)本実施形態では、超臨界 C02と無電解めつき液と分散促進剤とを含むめっき 分散体、又は超臨界 C〇2と電解めつき液と分散促進剤とを含むめっき分散体が基体 管 1101の内側領域 1115に供給される。このため、内側領域 1115に供給されため つき分散体中の Pdが基体管 1101の内表面に析出し、基体管 1101の内表面に Pd 膜が形成される。すなわち、基体管 1101という極めて局所的な領域に、超臨界 C〇2 を用いためっき処理を行うことができる。特に、めっき液の拡散力を高める超臨界 CO 2が用いられることから、めっき皮膜の付き回りがよぐピンホールなどの欠陥の少な い良好なめっきを形成することができる。そして、細孔の孔径が小さい細孔セラミック ス層 1101bに対しても、確実に Pd膜の付き回りを確保することができ、アンカー効果 により、基体管 1101に対する Pd膜の密着性を向上させることができる。更に、金属 は細孔の内部深くまで侵入して析出することから、基体管 1101への Pd膜の付着力 を高め、水素透過層 1102の機械的強度を向上させることができる。
[0186] (13)本実施形態の Pd膜は、無電解めつき液の拡散力を高める超臨界 C〇2を含む めっき分散体を用いた無電解めつきにより形成される。そして、無電解めつきによる P d膜の形成に連続して、超臨界 C〇2と電解めつき液とを含むめっき分散体を用いた 電解めつきが行われる。このため、非導電性のセラミックス多孔材料力 構成されて レ、る基体管 1101の表面に形成される Pd膜の一部を、電解めつきを用いて形成する こと力 Sできる。通常の無電解めつきの場合、ピンホールのないめっき皮膜を得るため には、数時間のめっき処理が必要であるが、本願発明においては、ピンホールのな レ、めっき皮膜を電解めつきにより実現することができることから、 Pd膜が形成された基 体管 1101の生産性を向上させることができる。従って、水素分離体 1100及びこれを 用いた燃料電池等のコストを低減することができる。
[0187] (14)本実施形態の制御部 1080は、供給弁 1044, 1054の開閉の制御により、超 臨界 C02によって形成される雰囲気を維持しながら、めっき分散体を変更し、更に、 電源 1062の通電の制御を行う。従って、超臨界 C02が供給された状態で無電解め つき及び電解めつきを連続的に行うことができ、 Pd膜を効率よく形成することができる
[0188] (15)本実施形態では、基体管 1101の内部にめっき分散体が流された状態でめつ き処理が行われる。従来の超臨界 C02を用いためっきでは、超臨界 C02とめつき液 とをめつき槽 1061内部で混合して拡散させる必要がある。本実施形態の基体管 110 1は円筒管形状であることから、めっき槽内に攪拌子などが設けられてめっき液及び 超臨界 C02が攪拌されても、めっき液と超臨界 C02とを分散状態にすることは難し レ、。また、基体管 1101の内側領域 1115は狭く限られた空間であることから、この内 側領域 1115内で攪拌子を回転させることはできなレ、。本実施形態では、このような 空間においても、超臨界 C02とめつき液とを分散させためっき分散体を流すことによ り、良好なめっきを行うことができる。
[0189] (16)本実施形態では、めっき分散体が流された状態でめっき処理が行われること から、めっきにより発生する不純物を迅速にめっき槽 1061から排出することができる 。従って、不純物によるピンホールの発生を抑制することができ、良好なめっき皮膜を 得ること力 Sできる。更に、制御部 1080は、めっき液と超臨界 C02とが分離する前に、 めっき分散体がめっき槽 1061を通過するように流速を制御する。めっき槽 1061内 において、良好な皮膜を形成するためには、 C〇2とめつき液との分散状態を維持す ることができる分散促進剤を用いる必要がある。この場合、分散促進剤の種類が限定 され、このような分散促進剤が良好な皮膜特性を実現するとは限らない。本発明では 、めっき分散体が形成された状態を保ったまま、めっき槽 1061においてめっきが行 われることから、基体管 1101に、より均一なめっきを施すことができる分散促進剤を 選択すること力できる。
[0190] また、実験結果では、分散促進剤としてフッ素系化合物を用いためっき処理は、分 散促進剤として従来の炭化水素系の界面活性剤を用いためっき処理に比べてより平 坦な皮膜を形成することができた。従って、基体管 1101に形成された Pd膜を良好に
、かつ均一に形成することができる。
[0191] 更に、めっき液の拡散力を高める拡散流体として用いられた超臨界状態の C02が 、副反応によって発生した水素を溶解することから、ピンホールの発生を更に抑制す ること力 Sできる。
[0192] (17)本実施形態では、バルブ V5,バルブ V6及びバルブ V7が閉じるとともにバノレ ブ VI及びバルブ V4が開いて外側供給ラインに脱気された水が導入される。そして、 外側領域 1116から空気が追い出されてバルブ VIまで水封された後、バルブ VI及 びバルブ V4が閉じる。加えて、バルブ V5、バルブ V6又はバルブ V7が開き、更にバ ルブ V2及びバルブ V3が開いて、内側供給ラインに高圧の流体が流れる。この場合 、バルブ V5〜バルブ V7のすベてのバルブが開いてもよレ、。これにより、めっき及び 洗浄が行われなレ、外側領域 1116には非圧縮流体に近レ、流体 (脱気した水)が充填 されて水封処理が行われることから、内側領域 1115と外側領域 1116との差圧を調 整すること力 Sできる。特に、超臨界 C02を含むめっき分散体が用いられる場合、内側 領域 1115を高圧にする必要がある。従って、基体管 1101の内側領域 1115と、外 側領域 1116との差圧が調節されない場合には、めっき対象物である基体管 1101が 歪んだり破断したりする可能性がある。これに対して本実施形態では、内側領域 111 5と外側領域 1116との差圧を調整することにより基体管 1101の変形及び破断を回 避しながら、めっきを行うことができる。
[0193] (18)本実施形態では、電流センサ 1064を用いて基体管 1101の表面に設置され た端子間の電流を測定することにより、基体管 1101の表面上の Pd膜の成膜状況が 把握される。従って、制御部 1080は、電流センサ 1064の電流値に基づいて、基体 管 1101の表面が、無電解めつきにより Pd膜が形成された後には迅速に電解めつき に移行することができ、 Pd膜を効率よく形成することができる。
[0194] (第 3の実施形態)
以下、本発明を水素分離体に具体化した第 3の実施形態について、図 18 (a)及び (b)と図 19とを用いて説明する。本実施形態において、第 2の実施形態と同様の部 分については、同一の符号を付し、その詳細な説明は省略する。本実施形態の水素 分離体 1100は、図 18 (a)及び (b)に示すように、基体管 1101の外表面上に水素透 過層 1102を構成する Pd膜が形成され、基体管 1101の内側に Ni充填層 1103が配 置されている。この場合、混合ガスが導入される導入面は水素分離体 1100の内表 面によって構成され、その対面である水素分離体 1100の外表面上に Pd層が形成さ れる。図 18 (a)及び (b)では、基体管 1101の内部に改質反応触媒層が形成されて いる力 これに限らず、改質されたガスが基体管 1101内に単に供給されてもよい。 本実施形態の水素分離体 1100においても、 Ni充填層 1103の改質ガス力 触媒担 持セラミックス層 1101 a、細孔セラミックス層 1101 b及び水素透過層 1102の順に透 過し、水素ガスが分離精製される。この場合、水素分離体 1100では、改質ガスは基 体管 1101の内方から外方へ流れる。
[0195] 本実施形態では、第 2の実施形態で説明されためつき装置が用いられる。また、本 実施形態では、第 2の実施形態のめっき装置において、内側領域 1115に供給され る流体と、外側領域 1116に供給される流体とを入れ替えることにより、基体管 1101 の外表面上に Pd膜が形成される。
[0196] 具体的には、本実施形態では、めっき槽 1061の外側用供給管 1119が混合分散 部 1060に接続され、外側用排出管 1120が分離槽 1065に接続されることにより、基 体管 1101の軸方向に沿って連続的に流体を供給するための供給排出手段が構成 される。そして、混合分散部 1060において調製されためつき分散体が、めっき槽 10 61の外側領域 1116を流れた後に分離槽 1065に排出される。これにより、めっき分 散体を、めっき槽 1061と基体管 1101との間に形成された空間に、基体管 1101の 軸方向に沿って連続的に供給することができる。
[0197] バルブ V6,バルブ V7及びバルブ V5が閉じるとともにバルブ V2及びバルブ V3が 開いて内側供給ラインの下方から上方へ脱気された水が導入される。そして、内側 領域 1115から空気が追い出されてバルブ V2まで水封された後、バルブ V2及びバ ルブ V3が閉じる。バルブ V5、バルブ V6又はバルブ V7が開き、更にバルブ VI及び バルブ V4が開いて外側供給ラインに高圧のめっき又は洗浄のための流体が流れる 。ここで、バルブ V5〜バルブ V7の全部が開いてもよレ、。
[0198] 従って、本実施形態では、めっき槽 1061の外側用供給管 1119を混合分散部 106 0に接続し、外側用排出管 1120を分離槽 1065に接続することにより、基体管 1101 の軸方向に沿って連続的に流体を供給するための供給排出手段が構成される。
[0199] また、本実施形態のめっき槽 1061には、外側領域 1116に、基体管 1101の外面と 所定の距離を保持した円筒形のプラス電極が設けられる。
[0200] 次に、本実施形態のめっき処理について、図 15、及び図 17〜図 19を用いて説明 する。
[0201] 第 2の実施形態と同様に、触媒担持セラミックス層 1101aと細孔セラミックス層 1101 bとを備えるとともに活性化処理が行われた基体管 1101が、めっき槽 1061に装着さ れる。本実施形態の場合には、基体管 1101の外表面に活性化処理が施される。
[0202] 次に、前処理工程としての洗浄工程が行われる。このとき、混合分散部 1060にお レ、て調製された純水あるいはイオン交換水と C〇2とを含む洗浄分散体が、外側用供 給管 1119を介してめつき槽 1061の外側領域 1116に供給され、基体管 1101の外 表面が洗浄される。そして、洗浄に使用された洗浄分散体が、外側領域 1116から外 側用排出管 1120を介して分離槽 1065に排出される。
[0203] 次に、無電解めつき工程が行われる。すなわち、超臨界 C02と分散促進剤と無電 解めつき液とが混合されためつき分散体力 混合分散部 1060からめつき槽 1061の 外側領域 1116に供給される。そして、この外側領域 11016に供給されためつき分散 体中の Pdが、基体管 1101の外表面に析出して、基体管 11101の外表面に無電解 めっきによる Pd膜が形成される。
[0204] そして、制御部 1080は、電流センサ 1064により Pd膜の形成状況を取得し、第 2の 実施形態と同様に、無電解めつき液タンク 1041と電解めつき液タンク 1051とを切り 替えて、更に電源 1062を用いて通電を行う。この場合、電解めつき液を含むめっき 分散体が、混合分散部 1060からめつき槽 1061に供給される。そして、基体管 1101 の表面に無電解めつきで形成された Pd膜を陰極として、この Pd膜にめっき液中の Pd が析出し、無電解めつきにより形成された Pd膜の表面に連続して、電解めつきによる Pd膜が形成される。
[0205] その後、この電解めつきにより所定の厚さの Pd膜が形成されると、後処理工程が行 われる。そして、 Pd膜が外表面に形成された基体管 1101の内側に、改質触媒として の Ni充填層 1103が充填されることにより、水素分離ユニットの内側から改質されたガ スが水素分離ユニットに接触する。
[0206] 第 3の実施形態によれば、第 2の実施形態の(8)〜(: 16)及び(18)に記載の効果と 同様な効果に加えて、以下のような効果を得ることができる。
[0207] (19)本実施形態では、基体管 1101の外表面に水素透過層 1102を構成する Pd 膜が形成されている。このため、水素分離体 1100の内側から外側へガスを透過させ ることにより、一酸化炭素ガス等の吸着を抑制して、効率的に水素ガスを分離精製す ること力 Sできる。
[0208] (20)本実施形態では、外側領域 1116において、基体管 1101の軸方向及び円周 方向にめっき分散体が流れながらめっき処理が行われる。このため、外側領域 1116 が狭い場合であっても、超臨界 C02とめつき液とが分散されためつき分散体が外側 領域 1116を流れながら、良好なめっきを行うことができる。従って、めっき槽 1061の 容積を小さくすることができる。 [0209] (21)本実施形態では、バルブ V6,バルブ V7,バルブ V5が閉じて、ノくノレブ V2,バ ルブ V3が開いて内側供給ラインの下方から上方へ脱気された水が導入される。基 体管 1101の内部の空気が追い出され、バルブ V2までの水封が確認されたところで バルブ V2,バルブ V3が閉じる。バルブ V5あるいはバルブ V6, ノ · レブ V7が開き、 続いてバルブ VI ,バルブ V4が開いて外側供給ライン側に高圧なめっき又は洗浄の ための流体が流れ始める。ここで、バルブ V5〜バルブ V7の全部が開いてもよレ、。こ の場合、内側領域 1115には非圧縮流体に近い流体が充填されることから、内側領 域 1115と外側領域 1116との差圧を調整することができる。特に、超臨界 C〇2を含 むめつき分散体が用いられる場合、外側領域 1116を高圧にする必要がある。従って 、内側領域 1115と外側領域 1116との差圧を調整することにより基体管 1101の変形 及び破断を回避しながら、めっきを行うことができる。また、基体管 1101の内側領域 1115と外側領域 1116との差圧を調整するために超臨界 C02が用いられることから 、めっき液と混合される拡散流体を有効に利用することができる。
[0210] 第 2及び第 3の記実施形態は以下のように変更されてもよい。
[0211] 第 2及び第 3の実施形態において、水素分離体 1100は、触媒担持セラミックス層 1 101aと、細孔セラミックス層 1101bと、水素透過層 1102とを備えている。これに加え て、触媒担持セラミックス層 1101aの外表面に金属多孔体 (例えば、 SUS多孔体)が 密着してもよい。アルミナの熱伝導率は比較的低レ、が、金属多孔体が用いられること により、水素分離体 1100の熱容量が増大して熱伝導性を向上させることができ、水 素の溶解及び拡散の促進を図ることができる。
[0212] 第 2及び第 3の実施形態において、基体管 1101の両端の開口部が支持されること により、基体管 1101はめつき槽 1061内に保持されている。これに限らず、基体管 11 01の Pd膜が形成されない表面で、基体管 1101が保持されてもよい。例えば、第 2の 実施形態のように基体管 1101の内表面に Pd膜が形成される場合には、基体管 110 1が、その外方から挟持されるように保持されてもよい。
[0213] 第 2及び第 3の実施形態においては、無電解めつきにより基体管 1101の表面に形 成された Pd膜の形成状況を検出する検出手段として、電流センサ 1064が用いられ ている。これに限らず、検出手段は、基体管 1101に形成される無電解めつきの形成 状況が把握できれば、電流センサ 1064以外の機器でもよい。例えば、基体管 1101 の端子間の抵抗を測定する抵抗計測器、基体管 1101の表面の反射光量を計測す る光度計測器などが用いられてもよい。
[0214] 第 2及び第 3の実施形態においては、基体管 1101は管状構造を有している。これ に限らず、水素分離体 1100の形状は、水素透過層 1102を透過する前に基体管 11 01に燃料ガスが透過する構成であれば、例えば平板形状でもよレ、。
[0215] 第 2及び第 3の実施形態においては、基体管 1101の一表面に水素透過層 1102 を構成する Pd膜が形成され、他表面が接する空間に Ni充填層 1103が設けられて いる。水素ガスを含む混合ガスの供給はこのような形態に限られるものではなぐ他の プロセス、装置等で生成された水素リッチな改質ガスを用いて水素ガスを分離精製し てもよい。
[0216] 第 2及び第 3の実施形態においては、無電解めつき及び電解めつきの各処理工程 において、分散促進剤が使用されているが、この分散促進剤が省略されてもよい。ま た、分散促進剤としては、フッ素系化合物に限らず、従来の炭化水素系の界面活性 剤が分散促進剤として使用されてもよい。
[0217] 第 2及び第 3の実施形態においては、拡散流体として超臨界状態の C02が用いら れている。これに限らず、拡散流体として、亜臨界状態、すなわち、臨界点近傍で高 温及び高圧な液状の C〇2が用いられてもよいし、 C〇2に限らず、例えば第 1の実施 形態に記載されたように他の流体が用いられてもよレ、。
[0218] 第 2及び第 3の実施形態においては、水素分離体 1100は水素製造装置に適用さ れている。この水素分離体 1100は、水素製造装置に限らず、生成された水素ガスを 供給するような装置、例えば水素タンク又はプラントに適用されてもよい。また、第 3の 実施形態の水素分離体 1100の外側に燃料極、電解質、空気極が設けられることに より、円筒形の固体酸化物燃料電池が構成されてもよい。この場合、固体酸化物燃 料電池の内部に水素ガスを含む燃料ガスが導入され、該電池の外部に空気が導入 される。この場合も、細孔層及び触媒担持層により、金属層 (燃料電池の場合は触媒 金属層)への一酸化炭素ガス等の吸着を抑制することができる。
[0219] 第 2及び第 3の実施形態においては、固体酸化物燃料電池の集電及びガスシール 部分におけるセラミックスと金属との接合部分の下地処理に、本めつき方法が用いら れてもよい。 SOFC (Solid Oxide Fuel Cell )セルを構成するセラミックスに本方法を 用いて、例えば横縞型円筒セルを形成するアルミナ管等の両端にニッケノレをめつき することにより、ガスシールと集電機能をもつ金属キャップとをセルスタック接続するこ とができる。この場合、セラミックス表面の細孔の奥深くまで金属が侵入してナノサイ ズで析出することにより、金属皮膜層がセラミックス表面に形成される。従って、セラミ ッタスが室温と 1000°Cとの厳しいヒートサイクルで用いられても剥離し難く緻密でガス も透過しにくい金属皮膜が得られる。セラミックスの膨張及び収縮の挙動に、めっき皮 膜は追随する。めっき層を介してセラミックスと金属パーツとをタイトに (メルト)接合し 、同時に、気密にシールすることができる。
[0220] 第 2及び第 3の実施形態においては、めっきが行われない領域に非圧縮流体に近 い流体が充填される。これに代えて、めっきが行われない領域に、連結管で接続され た状態で、めっきが行われている領域と同じ圧の水又は C02が流れてもよい。これに より、処理が行われる領域と、その他の領域との差圧を抑制することができる。
[0221] (第 4の実施形態)
以下、本発明をめつき装置に具体化した第 4の実施形態を図 20〜図 28に基づい て説明する。本実施形態では、第 1の実施形態と同様の C〇2を拡散流体として用い て電解めつきを行うめっき装置について説明する。
[0222] <めっき装置の全体構成 >
図 20に示すように、本実施形態のめっき装置は、洗浄液タンク 2011、拡散流体の 供給源としての C〇2タンク 2021、高純度 C02タンク 2026、分散促進剤タンク 2031 、めっき液の供給源としての無電解めつき液タンク 2041、電解めつき液タンク 2051、 混合分散部 2060、及びめつき槽 2061を備えている。以下に、上記の構成を詳述す る。
[0223] 洗浄液タンク 2011は、洗浄液としての純水を収容している。この洗浄液タンク 201 1は、混合分散部 2060に洗浄液供給管を介して接続されている。この洗浄液供給 管には、液ポンプ 2012、加熱部 2013及び供給弁 2014が設けられている。液ボン プ 2012は洗浄液を加圧し、加熱部 2013は洗浄液を加熱する。供給弁 2014は、そ の開閉が制御されることにより、洗浄液タンク 2011と混合分散部 2060との連通又は 遮断を行い、混合分散部 2060への洗浄液の供給又は供給の停止を行う。
[0224] C02タンク 2021は、拡散流体としての超臨界 C02が液化された C02を収容して いる。この C〇2タンク 2021は、混合分散部 2060に C〇2供給管を介して接続されて いる。この C〇2供給管には、切換弁 2021a、液ポンプ 2022、加熱部 2023及び供給 弁 2024a力 S設けられてレヽる。切換弁 2021aと f夜ポンプ 2022との間には、切換弁 20 26aが設けられた供給管を介して高純度 C02タンク 2026が接続されている。高純度 C02タンク 2026は、 C02タンク 2021に収容された C〇2よりも高純度の C〇2を収容 してレ、る。高純度 C〇2タンク 2026内の C〇2は、 C〇2タンク 2021中の C〇2が汚れ た場合に該 C〇2の代わりに混合分散部 2060に供給されたり、配管系の洗浄のため に使用されたりする。切換弁 2021a, 2026aの開閉の制卸により、 C02タンク 2021 力、らの C02又は高純度 C02タンク 2026からの C〇2のレ、ずれかが、混合分散部 20 60に供給される。
[0225] 液ポンプ 2022は C02を加圧し、カロ熱部 2023は C02をカロ熱する。これらにより、 C 02タンク 2021から供給される C〇2は、高圧の超臨界状態となった後に混合分散部 2060に供給される。供給弁 2024aは、その開閉が制御されることにより、 C〇2タンク 2021と混合分散部 2060との連通又は遮断を行レ、、混合分散部 2060への C〇2の 供給又は供給の停止を行う。
[0226] 更に、 C02供給管は途中で分岐されており、分岐された C02供給管は供給弁 20 24bを介してめつき槽 2061に接続されている。この供給系は、 C02がめつき槽 206 1に直接供給される場合に用いられる。この C〇2の供給系は、後述する態様 1及び 2 において、めっき処理中における圧力の調整に用いられる圧力調整用流体供給管と して機能する。この圧力調整用流体供給管において、供給弁 3024bの開閉の制御 により、 C02タンク 2021とめつき槽 2061との連通又は遮断力 S行われ、めっきネ曹 206 1への C〇2の供給又は供給の停止が行われる。圧力調整用流体供給管から供給さ れた C〇2は、後述するように圧力調整用流体排出管から C〇2タンク 2021に還流さ れる。
[0227] 分散促進剤タンク 2031は、第 1の実施形態と同様の分散促進剤を収容している。 分散促進剤タンク 2031は、混合分散部 2060に分散促進剤供給管を介して接続さ れている。分散促進剤供給管には、液ポンプ 2032、加熱部 2033、及び供給弁 203 4が設けられている。液ポンプ 2032は分散促進剤を加圧し、加熱部 2033は分散促 進剤を加熱する。供給弁 2034は、その開閉が制御されることにより、分散促進剤タン ク 2031と混合分散部 2060との連通又は遮断を行い、分散促進剤の混合分散部 20 60への供給又は供給の停止を行う。
[0228] 無電解めつき液タンク 2041は、本実施形態における第 1めっき液としての無電解め つき液を収容している。この無電解めつき液タンク 2041は加熱及び保温手段を備え 、無電解めつき液を所定の温度にまで加熱して保温する。この無電解めつき液タンク 2041は、無電解めつき液供給管を介して混合分散部 2060に接続されている。この 無電解めつき液供給管には、液ポンプ 2042及び供給弁 2044が設けられている。液 ポンプ 2042は無電解めつき液を加圧する。供給弁 2044は、その開閉が制御される ことにより、液タンク 2041と混合分散部 2060との連通又は遮断を行い、混合分散部 2060への無電解めつき液の供給又は供給の停止を行う。この無電解めつき液供給 管は、めっき液の成分が析出しなレ、温度以上に常時保温されてレ、る。
[0229] 電解めつき液タンク 2051は、本実施形態における第 2めっき液の供給源であり、第 2めっき液としての電解めつき液を収容する。この電解めつき液タンク 2051は加熱及 び保温手段を備え、電解めつき液を所定の温度まで加熱して保温する。この電解め つき液タンク 2051は、混合分散部 2060に電解めつき液供給管を介して接続されて いる。この電解めつき液供給管には、液ポンプ 2052及び供給弁 2054が設けられて いる。液ポンプ 2052は電解めつき液を加圧する。供給弁 2054は、その開閉が制御 されることにより、電解めつき液タンク 2051と混合分散部 2060との連通又は遮断を 行レ、、混合分散部 2060への電解めつき液の供給又は供給の停止を行う。電解めつ き液供給管は、めっき液の成分が析出しない温度以上に常時保温されている。
[0230] 混合分散部 2060では、 C02の臨界点以上の温度及び圧力の条件で、めっき液、 C02及び分散促進剤がめっき処理に適した比率で混合され、該混合された液体が 攪拌されて分散状態のめっき分散体が調製される。本実施形態の混合分散部 2060 は、上流に位置する混合器と、該混合器に接続されて下流に位置する分散機とから 構成されてレヽる。 昆合器では、各供給弁 2014, 2024a, 2034, 2044, 2054のうち の 2つ以上が開くと、洗浄液を含む洗浄分散体、無電解めつき液を含む無電解めつ き分散体、及び電解めつき液を含む電解めつき分散体のいずれかが調製される。分 散機は、めっきに適するめっき分散体を調製するために、めっき分散体の成分を分 散状態にする。分散機の内部には、永久磁石に取り付けられたメッシュのロータが配 置され、分散機の外部には、コイルが取り付けられたステータが配置されている。この ステータに流れる電流の制御によって磁場の強さが調整され、この磁場の強さでロー タの回転速度及び回転方向が制御される。回転されるロータのメッシュにより、混合 機器力 供給されためつき混合液がせん断され、めっきに適した分散体が調製される
[0231] 混合分散部 2060はめつき槽 2061に接続されている。めっき槽 2061では、混合分 散部 2060の分散機から供給されるめつき分散体を用いて、無電解めつき及び電解 めっきが行われる。具体的には、めっき槽 2061の内部には、電解めつきを行うため の一対の電極が配設されている。これら一対の電極は、スィッチを有する電源 2062 に接続されている。
[0232] めっき槽 2061には分離槽 2065が接続されている。この分離槽 2065には、めっき 槽 2061において使用されためつき分散体が排出され、分離槽 2065では C〇2とめ つき液とが分離される。めっき分散体に分散促進剤が含まれている場合には、この分 散促進剤は C〇2に混合された状態でめっき液から分離される。
[0233] 分離槽 2065は、 C02タンク 3021及びめつき液排出部 2070に接続されている。め つき液から分離された C02 (又は分散促進剤を含む C〇2)は、これに含まれている 水素、酸素などのガスが除去された後、圧力が調整されて C02タンク 2021に供給さ れる。一方、 C02が分離されためつき液は、めっき液排出部 2070に排出される。こ のめつき液排出部 2070は、排出切換弁を介して、電解めつき液再生装置及び廃液 タンクと連通可能である。電解めつき液再生装置では、分離槽 2065から排出された 電解めつき液から不純物が除去され、成分が調整されて再生されためつき液が電解 めっき液タンク 2051に供給される。
[0234] 本実施形態のめっき装置は、制御手段としての制御部 2080を備えている。この制 御部 2080は、例えば CPU、 RAM又は ROM等から構成されている。そして、制御 咅 2080ίこ格糸内されたプログラム【こより、各夜ポンプ 2012, 2022, 2032, 2042, 20 52、各カロ熱部 2013, 2023, 2033、各供給弁 2014, 2024a, 2024b, 2034, 204 4, 2054、各切換弁 2021a, 2026a,電原 2062等の制卸力《行われる。
[0235] 制御部 2080には、基体 Wに形成される膜の形成状況を検出する検出手段が接続 されている。本実施形態では、この検出手段として、一対の端子を備えた電流センサ 2064が用いられる。一対の端子は、互いに所定の距離だけ離れて基体 Wの表面に 接触した状態で設置されており、電流センサ 2064は、各端子の間に電圧が印加さ れたときに流れる電流を計測する。本実施形態の基体 Wは不導体 (例えばアルミナ など)であり、基体 Wの表面に金属膜が形成されると、電流センサ 2064の 1対の端子 の間の電流値が変化する。これを利用して、電流センサ 2064は、基体 Wの表面に 形成される膜の形成状況を検出する。
[0236] 制御部 2080にはメモリが備えられており、該メモリには、電解めつきを開始するた めの基準値が記憶されている。この基準値としては、金属膜が基体 Wの表面全体に わたって形成された場合の電流値が用いられる。そして、制御部 2080は、電流セン サ 2064から取得した電流値と、メモリに記憶されている基準値とを比較し、電流セン サ 2064から取得した電流値が基準値を超えた場合、めっき液の供給を切り替えると ともに、形成した金属膜を陰極として機能させるために電源 2062のスィッチを入れる
[0237] <めっき処理工程 >
次に、上述しためっき装置を用いた本実施形態のめっき方法について、図 20及び 図 21を参照して説明する。本実施形態においては、図 21に示すように、前処理工程 、第 1めっき工程、第 2めっき工程及び後処理工程が順次行われる。
[0238] まず、前処理工程として基体 Wの洗浄が行われる。具体的には、供給弁 2014, 20 24a力 S開き、カロ熱部 2013, 2023におレヽてカロ熱力 S行われるとともに夜ポンプ 2012, 2 022が駆動する。更に、切換弁 2021aが閉じるとともに切換弁 2026aが開いて、高 純度 C02タンク 2026と混合分散部 2060とが連通される。この場合、洗浄液タンク 2 011からの洗浄液が加圧及び加熱され、且つ高純度 C〇2タンク 2026からの C02が 加圧及び加熱されて超臨界状態となって、混合分散部 2060に供給される。そして、 混合分散部 2060において、洗浄液と C〇2とが混合されて攪拌される。この結果、 C 02と洗浄液とが均一に分散された状態の洗浄分散体が調製され、混合分散部 206 0力 めつき槽 2061に供給されて基体 Wの洗浄が行われる。このめつき槽 2061に おいて洗浄に用いられた洗浄分散体は、分離槽 2065に排出されて C〇2と洗浄液と に分離される。この分離された C〇2は、不要なガスが除去された後、再生されて C〇 2タンク 2021に供給される。また、分離された洗浄液は、排出切換弁を介して廃液タ ンクに排出される。そして、洗浄分散体がめっき槽 2061に所定時間供給された後、 前処理工程としての洗浄が終了する。
[0239] 次に、第 1めっき処理工程として無電解めつきが行われる。具体的には、供給弁 20 14が閉じるとともに供給弁 2034, 2044が開く。更に、液ポンプ 2012の駆動が停止 するとともに液ポンプ 2302, 2042が駆動する。そして、加熱部 2013における加熱 が停止されて加熱部 2033における加熱が開始される。これにより、分散促進剤タン ク 2031からの分散促進剤と、無電解めつき液タンク 2041からの無電解めつき液とが 混合分散部 2060に供給される。カロえて、液ポンプ 2022及び加熱部 2023の駆動が 継続し、供給弁 2024aの開状態が維持されることにより C〇2の供給が継続される。こ のとき、切換弁 2021a, 2026a力 S切り換えられて、 C02タンク 2021と混合分散咅 20 60と力 S連通される。この結果、混合分散部 2060においては、 C〇2タンク 3021から の超臨界 C〇2と、無電解めつき液と、分散促進剤とが混合されるとともに更に攪拌さ れて、より均一な分散状態となり、無電解めつき液を含むめっき分散体が調製される 。そして、このめつき分散体は、混合分散部 2060からめつき槽 2061に供給される。 めっき槽 2061では、内部に導入されためつき分散体中の無電解めつき液の金属力 基体 Wの表面に析出して第 1金属膜 2091が形成される。
[0240] この場合、本実施形態の制御部 2080は、分散体の分散保持時間内にめっき分散 体力 Sめっき槽 2061内を流れきるように、各 f夜ポンプ 2022、 2032、 2042の馬区動を制 御する。
[0241] このように無電解めつきが継続されることにより、基体 Wの表面に第 1金属膜 2091 が形成される。制御部 2080は、電流センサ 2064により、第 1金属膜 2091の形成に 伴う電流値の変化を検出する。この電流値が基準値を超えた場合、制御部 2080は 、第 1めっき工程から第 2めっき工程に切り替えて、電解めつきを行う。具体的には、 供給弁 2044が閉じて液ポンプ 2042の駆動が停止し、無電解めつき液の混合分散 部 2060への供給が停止される。そして、供給弁 2054が開くとともに液ポンプ 2052 が駆動し、電解めつき液が電解めつき液タンク 2051から混合分散部 2060に供給さ れる。更に、電源 2062のスィッチ力 S入り、めっき槽 2061内に配設された電極に電圧 が印加される。
[0242] このとき、液ポンプ 2022, 2032及びカロ熱部 2023, 2033の駆動力継続されるとと もに、供給弁 2024a, 2034の開状態が維持されることにより、 C02と分散促進剤と の供給が継続される。これにより、混合分散部 2060においては、超臨界 C02と、電 解めつき液と、分散促進剤とが混合されるとともに攪拌されて、より均一に分散された 状態のめっき分散体となり、めっき槽 2061に供給される。めっき槽 2061では、第 1 金属膜 2091が陰極として機能することから、導入されためつき分散体中の電解めつ き液の金属が基体 Wに引き寄せられ、第 1金属膜 2091の上に第 2金属膜 2092が形 成される。
[0243] この電解めつき処理が行われている間、各液ポンプ 2022, 2032, 2052力 S駆動し 続け、混合分散部 2060において混合分散されためつき分散体がめっき槽 2061に 継続的に供給された状態で電解めつき処理が行われる。そして、制御部 2080は、分 散体の分散保持時間内にめっき分散体がめっき槽 2061内を流れきるように、各液ポ ンプ 2022、 2032、 2052の駆動を制 ί卸する。これにより、めっき処理によりめつき分 散体中に溶解した水素ガス及び基体 Wの表面から剥離した不純物は、速やかにめ つき槽 2061から排出される。
[0244] 分離槽 2065に排出されためつき分散体は、分散促進剤を含む C02が分離される とともに不要なガスが除去された後、 C〇2タンク 2021に還流される。一方、 C〇2と分 散促進剤とが分離された電解めつき液は、めっき液排出部を介して電解めつき液再 生装置に排出される。そして、この電解めつき再生装置において再生された電解め つき液は、電解めつき液タンク 2051に供給される。
[0245] 各 ί夜ポンプ 2022, 2032, 2052力 S馬区動し、力、つカロ熱部 2023, 2033におレヽてカロ熱 が行われることにより、調製されためつき分散体の供給及び排出が継続され、所定の 厚さの膜を形成するのに要する時間電解めつき処理が継続される。
[0246] そして、所定の時間が経過すると、後処理工程が行われる。本実施形態では、後処 理工程として洗浄及び乾燥が行われる。具体的には、電源 2062のスィッチが切られ るとともに供給弁 2034, 2054が閉じ、再び供給弁 2014が開く。更に、切換弁 2021 aが閉じるとともに切換弁 2026aが開く。この場合、分散促進剤及び電解めつき液の 供給が停止され、洗浄液と高純度 C〇2とが混合分散部 2060に供給される。そして、 前処理工程の洗浄と同様に、 C02と洗浄液とが混合された洗浄分散体が、混合分 散部 2060からめつき槽 2061に供給されて洗浄が行われる。
[0247] 洗浄液を含む洗浄分散体がめっき槽 2061に所定時間供給された後、乾燥のため に供給弁 2014が閉じる。この場合、洗浄液タンク 2011からの洗浄液の供給が停止 され、高純度 C02タンク 2026からの C〇2が混合分散部 2060を介してめつき槽 206 1に供給され、乾燥が行われる。具体的には、めっき槽 2061の内壁及び基体 Wに付 着した洗浄液 (水)が、 C〇2の流れにより洗い流されるとともに、超臨界状態となって レ、る C02に溶解して除去される。
[0248] そして、 C〇2のみが所定時間供給された後に乾燥が終了し、供給弁 2024aが閉じ て C02の供給が停止される。更に、液ポンプ 2012の駆動及び加熱部 2013の加熱 が停止する。以上により、処理が完了する。
[0249] <水素分離構造への応用 >
次に、上述した第 4の実施形態を更に具体化した態様について、以下説明する。以 下の各態様において、第 4の実施形態と同様の部分については、同一の符号を付し 、その詳細な説明は省略する。
[0250] 以下の各態様においては、第 4の実施形態が水素分離構造 2100に適用された場 合について説明する。この水素分離構造 2100は、図 22に示すように、基体管 2101 の一方の表面上に水素透過層 2102が形成され、他方の表面上に触媒層 2103が 配置されている。この水素分離構造 2100は、水素を含むガスを触媒層 2103、基体 管 2101及び水素透過層 2102の順に透過させて、高純度の水素ガスに精製する。 触媒層 2103では、水素分離の妨げとなる一酸化炭素(CO)を除去するために、シフ ト反応が行われる。このシフト反応には、例えば高温用鉄'クロム系触媒及び低温用 銅 ·亜鉛系触媒が用いられる。基体管 2101は多孔体であり、例えばアルミナ (A1〇
2 3
)などから構成される。水素透過層 2102は水素のみを透過させ、例えばパラジウム( Pd)から構成される。この水素透過層 2102は、めっきにより形成される。
[0251] 以下の態様では、基体 Wとしての基体管 2101に、水素透過層 2102となる Pd膜が 形成されている。ここでは、円筒状の基体管 2101が用いられ、この基体管 2101の 表面に第 1及び第 2金属膜 2091, 2092としての Pd膜が形成される。そこで、無電解 めっき液タンク 2041は、無電解めつきにより Pd膜を形成するためのめっき液を収容 し、電解めつき液タンク 2051は、電解めつきにより Pd膜を形成するためのめっき液を 収容する。触媒層 2103は、 Pd膜が形成される表面の反対側の表面 (Pd膜が内表面 に形成される場合には外表面、又は Pd膜が外表面に形成される場合には内表面) に形成され、以下の態様においては触媒層 2103の説明を省略する。
[0252] <水素分離構造の製造用のめっき槽の構造 >
本態様では、基体管 2101に Pd膜を形成するために、図 23及び図 24に示すめつ き槽 2061力 S用レヽられる。このめつきネ曹 2061は、図 23に示すように、円筒体の筐体 2 110を備えている。この筐体 2110には、 1対の支持部材 2111 , 2112が収容されて いる。支持部材 2111は筐体 2110から脱着可能な蓋として機能し、シール部材 211 3を介して筐体 2110に固定される。
[0253] 支持部材 2111 , 2112の互いに対向する面には、円環状の溝が形成されている。
この溝にはシール部材 2114が収容されている。支持部材 2111 , 2112は、このシー ル部材 2114を介してめつき処理の対象である基体管 2101を支持する。
[0254] このような構成により、基体管 2101がめつき槽 2061に取り付けられると、図 23に示 すように、めっき槽 2061内は、基体管 2101の内側に位置する内側領域 2115と、基 体管 2101の外側に位置する外側領域 2116とに区画される。
[0255] 支持部材 2111には、内側領域 2115に流体を供給するための内側用供給管 211 7が設けられている。一方、支持部材 2112には、内側領域 2115から流体を排出す るための内側用排出管 2118が設けられている。従って、基体管 2101がめつき槽 20 61に取り付けられた場合には、外側領域 2116とは独立して、特定の流体が内側領 域 2115に供給された後に内側領域 2115から排出される。
[0256] 筐体 2110には、外側領域 2116に流体を供給するための外側用供給管 2119と、 外側領域 2116から流体を排出するための外側用排出管 2120とが設けられている。 従って、内側領域 2115に流れる流体とは独立して、特定の流体が外側領域 2116を 流れる。
[0257] 図 26及び図 28に示すように、めっき槽 2061には圧力計 2121が設けられている。
この圧力計 2121は、内側領域 2115内の圧力と外側領域 2116内の圧力との差を測 定し、測定された差圧値を制御部 2080に供給する。制御部 2080は、この差圧値を 用いて、内側領域 2115と外側領域 2116との差圧が大きくならないように、内側領域 2115又は外側領域 2116に供給される流体の圧力を調整する。
[0258] めっき槽 2061に基体管 2101が取り付けられる場合には、図 24に示すように、支 持部材 2111が筐体 2110から取り外される。そして、支持部材 2112の円環状の溝 に基体管 2101の一端部が遊嵌された後、基体管 2101の他端部が支持部材 2111 の円環状の溝に遊嵌される。そして、この状態で支持部材 2111の端面がシール部 材 2113に接触して、支持部材 2111が筐体 2110に固定される。
[0259] <水素分離構造のめっきの態様 1 >
次に、図 25に示すように、水素透過層 2102を構成する Pd膜が基体管 2101の内 表面上に形成された水素分離構造 2100に関する態様について、図 26を用いて説 明する。この水素分離構造 2100は、基体管 2101の外方から内方へガスを流して水 素ガスを精製する場合に用いられる。
[0260] 本態様では、めっき槽 2061の内側用供給管 2117が混合分散部 2060に接続され ている。また、内側用排出管 2118は分離槽 2065に接続されている。そして、混合分 散部 2060で調製されためつき分散体は、内側用供給管 2117からめつき槽 2061の 内側領域 2115に供給され、内側領域 2115内を通過して内側用排出管 2118から 分離槽 2065に排出される。
[0261] 外側用供給管 2119には圧力調整用流体が供給される。具体的には、圧力調整用 流体供給管を介して、外側用供給管 21 1 9に c〇2が供給される。この圧力調整用流 体供給管は外側用供給管 2119に接続され、 C02タンク 2021から加圧及び加熱さ れて超臨界状態となった C〇2が、めっき槽 2061の外側領域 2116に供給される。外 側用排出管 2120は、圧力調整用流体排出管を介して、上述した C〇2タンク 2021 に接続されている。このため、外側領域 2116に供給された C02は、外側用排出管 2 120及び圧力調整用流体排出管を介して、 C02タンク 2021に排出される。圧力調 整用流体排出管には圧力調整弁 2025が設けられている。この圧力調整弁 2025は 制御部 2080により制御され、圧力調整用流体供給管の供給弁 2024bと協働するこ とにより、めっき槽 2061の外側領域 2116の圧力を調整する。
[0262] 本態様では、めっき槽 2061に設けられているプラス電極力 内側領域 2115内に、 且つ基体管 2101の軸方向と並行して設けられている。電流センサ 2064は、筐体 21 10の内表面の両端部間に流れる電流を測定する。
[0263] 次に、本態様のめっき処理について、図 20及び図 26を用いて説明する。
[0264] まず、前処理工程としての洗浄工程が行われる。このとき、混合分散部 2060にお いて、洗浄液と C02とが混合された洗浄分散体が調製される。そして、この混合分散 部 2060に接続されている内側用供給管 2117を介して、めっき槽 2061の内側領域 2115に洗浄分散体が供給されて、基体管 2101の内側が洗浄される。ここで、使用 された洗浄分散体は、内側領域 2115から内側用排出管 2118を介して分離槽 206 5に排出される。この工程以降、制御部 2080は、基体管 2101の内側領域 2115と外 側領域 2116との差圧が大きくならないように供給弁 2024b及び圧力調整弁 2025を 制御し、外側領域 2116に供給される C02の圧力を調整する。
[0265] 次に、第 1めっき処理工程として無電解めつきが行われる。即ち、超臨界 C02と、 分散促進剤と、無電解めつき液とが混合されためつき分散体が混合分散部 2060に おいて調製され、めっき槽 2061の内側領域 2115に供給される。そして、この内側領 域 2115に供給されためつき分散体中の Pdが、基体管 2101の内表面に析出する。 これにより、無電解めつきによる Pd膜が、基体管 2101の内表面に第 1金属膜 2091と して形成される。
[0266] その後、制御部 2080は、電流センサ 2064により基体管 2101の表面を覆うように P d膜が形成されたことを検出した場合、無電解めつき液タンク 2041と電解めつき液タ ンク 2051とを切り替えて、超臨界 C〇2と、分散促進剤と、電解めつき液とが混合され ためつき分散体を、混合分散部 2060からめつき槽 2061に供給する。更に、電源 20 62のスィッチが入り、めっき槽 2061内の電極に電圧が印加される。この場合、基体 管 2101の内表面に形成された Pd膜が陰極として機能し、めっき槽 2061に供給され ためつき分散体に溶解している Pdが Pd膜に引き寄せられて付着する。そして、第 1 金属膜 2091として形成された Pd膜上に連続して、第 2金属膜 2092として Pd膜が形 成される。
[0267] その後、めっき分散体の供給及び電圧の印加が継続されることにより、所定時間電 解めつきが行われる。所定の厚さの第 2金属膜 2092が形成された場合、めっき処理 が終了して、後処理工程が行われる。このようにして、基体管 2101の内表面に、第 1 及び第 2金属膜 2091 , 2092から構成される Pd膜が形成される。
[0268] <水素分離構造のめっきの態様 2 >
次に、図 27に示すように、水素透過層 2102を構成する Pd膜が基体管 2101の外 表面上に形成された水素分離構造 2100に関する態様について、図 28を用いて説 明する。この水素分離構造 2100は、基体管 2101の内方から外方へガスを流して水 素ガスを精製する場合に用いられる。本態様では、上記態様 1において、内側領域 2 115に供給される流体と、外側領域 2116に供給される流体とが入れ替えられること により、基体管 2101の外表面に Pd膜が形成される。
[0269] 具体的には、本態様では、めっき槽 2061の外側用供給管 2119が混合分散部 20 60に接続され、外側用排出管 2120が分離槽 2065に接続されている。そして、混合 分散部 2060で調製されためつき分散体は、めっき槽 2061の外側領域 2116を通過 した後に分離槽 2065に排出される。
[0270] 内側用供給管 2117には、圧力調整用流体供給管を介して、 C02タンク 2021から の加圧された C〇2が供給される。即ち、外側領域 2116とは独立して、めっき槽 206 1の内側領域 2115に C02が供給される。
[0271] 圧力調整用流体排出管には、態様 1と同様に圧力調整弁 2025が設けられている。
制御部 2080は、供給弁 2024bと圧力調整弁 2025とを制御することにより、内側領 域 2115の圧力を調整する。本態様では、めっき槽 2061において、外側領域 2116 内に、基体管 2101の軸方向と並行してプラス電極が設けられている。 [0272] 次に、本態様のめっき処理について、図 20及び図 28を用いて説明する。
[0273] まず、前処理工程としての洗浄工程が行われる。このとき、混合分散部 2060にお いて、洗浄液と C02とを含む洗浄分散体が調製される。そして、外側用供給管 2119 を介して、めっき槽 2061の外側領域 2116に洗浄分散体が供給されて、基体管 210 1の外側が洗浄される。洗浄に使用された洗浄分散体は、外側領域 2116から外側 用排出管 2120を介して分離槽 2065に排出される。本態様においても上記態様 1と 同様に、制御部 2080は、基体管 2101の内側領域 2115と外側領域 2116との間で 差圧が生じないように、供給弁 2024b及び圧力調整弁 2025の制御を行う。
[0274] 次に、第 1めっき処理工程として無電解めつきが行われる。すなわち、超臨界 C02 と、分散促進剤と、無電解めつき液とが混合されためつき分散体が、混合分散部 206 0からめつき槽 2061の外側領域 2116に供給される。そして、この外側領域 2116に 供給されためつき分散体中の Pdが、基体管 2101の外表面に析出する。これにより、 無電解めつきによる Pd膜が、基体管 2101の外表面に第 1金属膜 2091として形成さ れる。
[0275] その後、制御部 2080は、電流センサ 2064により Pd膜の形成状況を取得し、上述 した態様 1と同様に、無電解めつき液タンク 2041と電解めつき液タンク 2051とを切り 替えるとともに電源 2062のスィッチを入れて、めっき槽 2061内の電極に電圧を印加 する。この場合、電解めつき液を含むめっき分散体が混合分散部 2060からめつき槽 2061に供給され、めっき分散体に溶解している Pdが、基体管 2101の外表面に形 成された第 1金属膜 2091の Pd膜に付着する。そして、第 1金属膜 2091として形成さ れた Pd膜上に連続して、第 2金属膜 2092としての Pd膜が電解めつきにより形成され る。
[0276] その後、この電解めつきにより所定の厚さの第 2金属膜 2092が形成されると、後処 理工程が行われる。このようにして、基体管 2101の外表面に、第 1及び第 2金属膜 2 091 , 2092から構成される Pd膜が形成される。
[0277] 第 4の実施形態によれば、以下のような効果を得ることができる。
[0278] (22)本実施形態の各態様では、めっき槽 2061において、無電解めつき液及びこ れの拡散力を高める超臨界 C〇2を含むめっき分散体を用いて無電解めつきが行わ れ、第 1金属膜 2091としての Pd膜が基体管 2101の表面に形成される。そして、無 電解めつきによる Pd膜の形成に連続して、超臨界 C02と電解めつき液とを含むめつ き分散体を用いた電解めつきが行われる。このため、基体管 2101の表面に形成され た第 1金属膜 2091としての Pd膜に連続して、電解めつきにより第 2金属膜 2092とし ての Pd膜を形成することができる。このとき、第 1及び第 2金属膜 2091, 2092は、超 臨界 C02を用いためっきにより形成されることから、基体管 2101に対するめっき皮 膜の付き回りがよぐピンホールなどの欠陥の少ない良好なめっきを形成することが できる。また、不導体である基体管 2101に電解めつきが行われることにより、 Pd膜を 高速で形成することができ、生産性を向上させることができる。従って、水素透過層 2 102となる Pd膜が形成された基体管 2101の生産性を向上することができ、水素分 離構造 2100及びこれを用いた構造物のコストを低減することができる。
[0279] 更に、電解めつきにより第 2金属膜 2092の形成が行われる第 2工程において、超 臨界 C02が用いられる。このため、超臨界 C02の洗浄能力により、先に導入されて レ、た無電解めつき液が洗い流された後で第 2金属膜 2092が形成されることから、良 好な金属膜を形成することができる。
[0280] ここで、部材の表面に金属膜を形成する技術の一つとして、めっきが知られている。
このめつきの中でも、成膜速度が速いという理由などから電解めつきが広く用いられ ている。この電解めつきでは、電解質溶液(めっき液)に電流を流して、電解質である 金属を析出させて部材の表面に金属膜が形成される。近年、良好なめっきを行うた めに、超臨界状態の物質と電解質溶液とを用いてめっき処理を行う技術が開示され ている(例えば、特許第 3571627号公報参照。)。この特許第 3571627号公報は、 めっき液中に超臨界状態の物質が含まれることにより、イオンが拡散されて反応性が 高まり、良好なめっきが行われることを開示している。
[0281] し力、し、この電解めつきが行われる場合、めっき対象物の表面が導電体でなければ ならない。そこで、絶縁物であるセラミックなどの表面にめっきを行う方法として、無電 解めつきが行われている(例えば、特開 2004— 122006号公報参照。)。この特開 2 004— 122006号公報においては、非導電性の無機多孔体に、無電解めつき法によ りパラジウム又はその合金の薄膜が形成される。そして、この薄膜の上に、パラジウム 膜を化学蒸着法により堆積させて水素分離膜が形成される。これにより、膜厚が薄い 場合であっても、欠陥のない薄膜を比較的簡易な方法で製造される。
[0282] ところが、特開 2004— 122006号公報において用いられる化学蒸着方法は、めつ き処理に比べて成膜速度が遅ぐ生産性が劣るという欠点があった。また、通常、化 学蒸着法が行われる場合、減圧される必要があり、真空引きなどの処理が必要であ る。更に、この化学蒸着方法によって形成される膜は密着性が悪いことが多い。加え て、複数の処理工程を用いて金属膜が形成される場合には、工程の切り替えに時間 を要する。また、上述の超臨界状態の物質を利用しためっき処理においては、物質 を超臨界状態にするために高圧の雰囲気を形成する必要がある。このため、めっき 雰囲気の形成に時間を要し、効率的にめっきを行うことはできていなかった。これに 対して、本実施形態では、ピンホールなどの欠陥が少ない良好なめっきを効率的に 行うことができる。
[0283] (23)本実施形態では、めっき槽 2061において、めっき分散体が流れた状態でめ つき処理が行われる。超臨界状態の物質を用いてめっきが行われる場合、この物質 とめつき液とを混合拡散させる必要がある。めっき対象物の外表面に対してめつきが 行われる場合には、めっき槽内に攪拌子などを設けて攪拌させることも可能であるが 、本態様にあるような長物の表面にめっきを行うことは困難である。特に、管状物の内 部のように、狭く限られた空間では、攪拌子を回転させることはできない。従って、こ のような空間においても、本態様 1のように、めっき分散体が流れた状態でめっきが 行われることにより、良好なめっきを行うことができる。
[0284] また、管状物の外表面にめっきが行われる場合には、めっき槽がこの管状物の形 状に合わせて構成され、このめつき槽と管状物との隙間にめっき液が流れることによ り、効率的にめっきを行うことができる。このため、ピンホール発生の要因となる水素を 排出しながらめっきを行うことができ、より良好なめっきを行うことができる。
[0285] (24)本実施形態では、めっき分散体が流れた状態でめっき処理が行われる。この ため、めっきにより発生する不純物が迅速にめっき槽 2061から排出されることができ 、良好なめっきを行うことができる。更に、めっき液と超臨界 C〇2とが分離する前に、 めっき分散体がめっき槽 2061を通過するように流速が制御される。従って、めっき混 合液が安定して分散された状態を保ったまま、めっき槽 2061においてめっきが行わ れることから、基体 Wに、より均一なめっきを施すことができる。
[0286] また、実験結果では、分散促進剤としてフッ素系化合物を用いためっきは、分散促 進剤を用いないめっき、及び分散促進剤として従来の炭化水素系の界面活性剤を 用いためっきに比べてより平坦な皮膜を形成することができた。従って、第 1及び第 2 金属膜 2091 , 2092として良好な Pd膜を均一に形成することができる。
[0287] 更に、めっき液の拡散力を高める拡散流体として用いられた超臨界状態の C02が
、副反応によって発生した水素を溶解することから、ピンホールの発生を一層抑える こと力 Sできる。
[0288] (25)本実施形態の各態様では、めっき槽 2061において、内側用供給管 2117が 設けられた支持部材 2111と、内側用排出管 2118が設けられた支持部材 2112とに より、基体管 2101が支持されている。これにより、めっき槽 2061内が内側領域 2115 及び外側領域 2116に区画される。このため、内側領域 2115と外側領域 2116とに 対して独立して流体を供給することができる。従って、基体管 2101の内表面又は外 表面に選択的にめっきを行うことができる。基体管 2101の内表面又は外表面にめつ きが行われる場合には、めっき槽 2061の内側領域 2115又は外側領域 2116にめつ き分散体が供給されるだけでよいことから、少ないめっき分散体でめっきを行うことが できる。
[0289] (26)本実施形態の各態様では、めっき分散体が流れない内側領域 2115又は外 側領域 2116に C〇2が供給され、めっき分散体が流れる外側領域 2116又は内側領 域 2115との差圧が調整される。特に、超臨界状態の物質が用いられる場合には流 体の圧力を高める必要があり、内側領域 2115又は外側領域 2116のいずれか一方 にのみ、このような流体が供給されると、めっき対象物が歪んだり破断したりする可能 性がある。このため、内側領域 2115と外側領域 2116との差圧による基体管 2101の 変形及び破断を回避しながら、めっきを行うことができる。
[0290] (27)本実施形態の各態様では、第 1めっき工程における無電解めつき処理及び第 2めっき工程における電解めつき処理において、めっき分散体が連続的に供給され た状態でめっきが行われる。このため、供給弁 2044, 2054の開閉の制御により、超 臨界 C02によって形成される雰囲気が維持された状態で、めっき分散体が変更され ること力 Sできる。更に、電源 3062のスィッチの切換制御と電解めつき及び無電解めつ きの供給の切換制御とが行われることにより、第 1めっき工程と第 2めっき工程とを連 続的に行うことができ、 Pd膜を効率よく形成することができる。
[0291] (28)本実施形態の各態様では、電流センサ 2064を用いて基体管 2101の表面に 設置された端子間の電流が測定されることにより、不導体であるアルミナの基体管 21 01の表面上の Pd膜の成膜状況を把握することができる。従って、電流センサ 2064 の電流値に基づいて、基体管 2101の表面に、無電解めつきにより Pd膜が形成され た後には、迅速に電解めつきの第 2工程に移行され、 Pd膜を効率よく形成することが できる。
[0292] (29)本実施形態では、態様 1のように基体管 2101の内表面に Pd膜が形成される 場合、及び態様 2のように基体管 2101の外表面に Pd膜が形成される場合にも、流 体の供給方法を変更するだけで、図 24に示すめっき槽 2061を用いて Pd膜を形成 すること力 Sできる。
[0293] (30)本実施形態では、無電解めつきのためのめっき溶液の供給側に対して、反対 側力 陰極のための電圧の供給が行われる。このため、無電解めつきにおいて、めつ き溶液の供給側の皮膜の膜厚が厚くなつた場合においても、電解めつきにおいては 溶液の排出側から成膜が行われることから、膜厚の均一化を図ることができる。
[0294] 第 4の実施形態は以下のように変更されてもょレ、。
[0295] 本実施形態においては、第 1金属膜 2091の形成状況を検出する検出手段として、 電流センサ 2064が用いられている。これに限らず、基体 Wに形成される第 1金属膜 2091の形成状況が把握することができれば、他の機器が検出手段として用いられて もよレ、。例えば、基体 Wの端子間の抵抗を測定する抵抗計測器、又は基体 Wの表面 の反射光量を計測する光度計測器が用いられてもよい。
[0296] 本実施形態においては、めっきが行われる基体 Wは、アルミナなどの不導体により 形成されている。これに限らず、基体 Wは、例えば、ガラス、陶器などの非金属などの 他の不導体で形成されてもよいし、不導体に限らず、導電体又は半導体で形成され てもよレ、。この場合にも、本実施形態と同様の効果を得ることができる。 [0297] 本実施形態においては、上述の分散促進機能を有するフッ素化合物であれば、上 述において例示されたフッ素系化合物に限定されない。また、分散促進剤が省略さ れてもよい。
[0298] 本実施形態においては、拡散流体として超臨界状態の C〇2が用いられている。こ れに限らず、拡散流体として、亜臨界状態の C〇2が用いられてもよいし、 C02に限 らず、例えば第 1の実施形態に記載されたように他の流体が用いられてもよい。
[0299] 本実施形態においては、第 1金属膜 2091を形成する無電解めつき工程及び第 2 金属膜 2092を形成する電解めつき工程の両方において、超臨界 C〇2が用いられて いる。超臨界 C〇2の利用は、これに限定されるものではなぐ例えば、第 1金属膜 20 91を形成する無電解めつき工程では、超臨界 C02が用いられなくてもよい。例えば 、第 1金属膜 2091の無電解めつき工程の終了後、超臨界 C〇2のみが先にめつき槽 2061に流れた後に電解めつき液が行われてもよい。この場合には、第 2工程を行う 前に無電解めつき液を超臨界 C02で洗い流すことができ、電解めつき液を用いて第 2金属膜 2092を形成することができる。従って、より良好な金属膜を形成することが できる。
[0300] 本実施形態においては、本発明が水素分離構造 2100の水素透過層 2102が基体 管 2101に形成される場合に適用されている。これに限らず、本発明は、例えば、内 燃機関、ガス燃焼装置等において使用される酸素センサの電極が形成される場合、 及び半導体ウェハの製造時などにおいてめつき法によって不導体の上に金属膜が 形成される場合に適用されてもよい。また、本実施形態のめっき装置の構成の少なく とも一部が、第 1〜第 3のいずれか一つの実施形態のめっきに適用されてもよい。
[0301] (第 5の実施形態)
以下、本発明を多層膜構造体に具体化した第 5の実施形態について、図 29及び 図 30に基づいて説明する。本実施形態では、拡散流体を用いた電解めつきによって 、ニッケル (Ni)膜と金 (Au)膜とが基板 Wの上に積層されて多層膜が形成される。拡 散流体として、第 1の実施形態と同様の C〇2が用レ、られる。多層膜構造体としては、 例えば熱電半導体、磁気ヘッド及びセンサに用いられる部材の他に、燃料電池に用 レ、られる部材が挙げられる。 [0302] 図 29に示すように、本実施形態のめっき装置は、洗浄液タンク 3011、高純度 C〇2 タンク 3021、分散促進剤タンク 3031、第 1めっき液タンク 3041及び第 2めっき液タ ンク 3051を備えている。
[0303] 洗浄液タンク 3011は洗浄液を収容してレ、る。本実施形態では、洗浄液として純水 が用いられる。この洗浄液タンク 3011は、洗浄液供給管を介して混合分散部 3060 に接続されている。この洗浄液供給管には、液ポンプ 3012、加熱部 3013及び供給 弁 3014が設けられている。液ポンプ 3012は洗浄液を加圧し、加熱部 3013は洗浄 液を加熱する。供給弁 3014は、洗浄液タンク 3011と混合分散部 3060との連通又 は遮断を行い、供給弁 3014の開閉により、混合分散部 3060への洗浄液の供給又 は供給の停止を行う。
[0304] 高純度 C02タンク 3021は、拡散流体としての C02を収容している。この高純度 C 02タンク 3021は、後述する混合タンク 3030に接続されているとともに、混合分散部 3060に C〇2供給管を介して接続されている。この C〇2供給管には、液ポンプ 3022 、加熱部 3023及び供給弁 3024が設けられている。液ポンプ 3022は C〇2を加圧し 、加熱部 3023は C〇2を加熱する。供給弁 3024は、その開閉により高純度 C02タン ク 3021と混合分散部 3060との連通又は遮断を行い、混合分散部 3060への C02 の供給又は供給の停止を行う。
[0305] 分散促進剤タンク 3031は、第 1の実施形態と同様の分散促進剤を収容している。
分散促進剤タンク 3031は混合タンク 3030に接続されている。混合タンク 3030は、 高純度 C02タンク 3021から供給される C〇2と、分散促進剤タンク 3031とから供給さ れる分散促進剤とが混合された C〇2混合液を保存する。この混合タンク 3030は、供 給管を介して混合分散部 3060に接続されている。この供給管には、液ポンプ 3032 、加熱部 3033及び供給弁 3034が設けられている。液ポンプ 3032は C〇2混合液を 加圧し、加熱部 3033は C〇2混合液を加熱する。供給弁 3034は、その開閉により混 合タンク 3030と混合分散部 3060との連通又は遮断を行レ、、 C〇2と分散促進剤との C02混合液の混合分散部 3060への供給又は供給の停止を行う。
[0306] 第 1めっき液タンク 3041は Niめっき液を収容している。この第 1めっき液タンク 304 1は加熱及び保温手段を備え、 Niめっき液を所定の温度(例えば 50°C程度)まで加 熱して保温する。この第 1めっき液タンク 3041は、第 1めっき液供給管を介して混合 分散部 3060に接続されている。この第 1めっき液供給管には、液ポンプ 3042と供給 弁 3044と力 S設けられてレ、る。液ポンプ 3042は Niめっき液を加圧する。供給弁 3044 は、その開閉により第 1めっき液タンク 3041と混合分散部 3060との連通又は遮断を 行い、混合分散部 3060への Niめっき液の供給又は供給の停止を制御する。
[0307] 第 2めっき液タンク 3051は Auめっき液を収容している。この第 2めっき液タンク 305 1は加熱及び保温手段を備え、 Auめっき液を所定の温度(例えば 50°C程度)までカロ 熱して保温する。この第 2めっき液タンク 3051は、第 2めっき液供給管を介して混合 分散部 3060に接続されている。この第 2めっき液供給管には、液ポンプ 3052と供給 弁 3054と力 S設けられてレ、る。液ポンプ 3052は Auめっき液を加圧する。供給弁 305 4は、その開閉により第 2めっき液タンク 3051と混合分散部 3060との連通又は遮断 を行い、混合分散部 3060への Auめっき液の供給又は供給の停止を行う。
[0308] 混合分散部 3060では、めっき液、 C02及び分散促進剤が混合され、めっき処理 に使用されるめつき混合液が調製され、該めっき混合液が分散状態に攪拌されてめ つき分散体が調製される。本実施形態では、この混合分散部 3060は、上流に位置 する混合器と、該混合器に接続されて下流に位置する分散機とから構成されている。 混合器では、供給弁 3014, 3024, 3034, 3044, 3054のうちの 2つ力 S開くと、洗净 液を含む洗浄混合液、 Niめっき液を含むめっき混合液、及び Auめっき液を含むめ つき混合液のいずれかが調製される。分散機は、励磁されたソレノイドによって回転 する攪拌子を備え、この攪拌子を容器内部で回転させることにより、混合器で調製さ れためつき混合液をその成分が均一になるように分散させて、めっき分散体を調製す る。
[0309] 混合分散部 3060は、めっき槽 3061に接続されている。めっき槽 3061では、混合 分散部 3060の分散機から供給されるめつき分散体を用いて、電解めつきが行われる 。具体的には、めっき槽 3061の内部には一対の電極が配設されている。これらの電 極の一方には、導電体の基板 Wが接続されている。本実施形態では、電解めつきに よって基板 Wに Niを被覆させ、その上に Auを被覆させるために、基板 Wはマイナス 電極に接続される。めっき槽 3061には、図示しないブロックヒータが設けられている 。このブロックヒータを用いて、 C〇2が超臨界状態、且つめつき可能な温度となるよう に、めっき槽 3061内のめっき分散体が所定の温度(例えば 50°C)に設定される。
[0310] めっきネ曹 3061は分離槽 3065に接続されてレヽる。このため、めっきネ曹 3061力ら ί非 出されためっき分散体は、分離槽 3065に排出される。分離槽 3065では、 C〇2及び 分散促進剤と、めっき液とが分離される。この分離槽 3065は、混合タンク 3030及び めっき液排出部 3068に接続されている。分離槽 3065において分離された C〇2及 び分散促進剤は、これらに含まれている水素、酸素などのガスが除去された後、圧力 が調整されて混合タンク 3030に供給される。
[0311] めっき液排出部 3068では、排出されためつき液から固体の不純物が沈殿して除去 されるとともに、めっき液に溶解した有機物などの不純物が除去される。このめつき液 排出部 3068は、排出切換弁 3070を介して、第 1めっき液再生装置 3071、第 2めつ き液再生装置 3072及び廃液タンク 3073に接続されている。排出切換弁 3070は、 めっき液排出部 3068と、第 1及び第 2めっき液再生装置 3071, 3072又は廃液タン ク 3073とを接続する。具体的には、排出切換弁 3070は、 Niめっき液が再生される 場合には、めっき液排出部 3068と第 1めっき液再生装置 3071とが連通するように切 り換えられ、 Auめっき液が再生される場合には、めっき液排出部 3068と液再生装置 3072とが連通するように切り換えられる。更に、排出切換弁 3070は、めっき液が排 出される場合には、めっき液排出部 3068と廃液タンク 3073とが連通するように切り 換えられる。
[0312] 第 1めっき液再生装置 3071では、 Niめっき液の成分が調整され、 Niめっき液が再 び使用可能となるように再生される。第 1めっき液再生装置 3071は第 1めっき液タン ク 3041に接続されており、再生された Niめっき液が第 1めっき液タンク 3041に供給 される。第 2めっき液再生装置 3072では、 Auめっき液の成分が調整され、 Auめっき 液が再び使用可能となるように再生される。第 2めっき液再生装置 3072は第 2めっき 液タンク 3051に接続されており、再生された Auめっき液が第 2めっき液タンク 3051 に供給される。
[0313] 本実施形態のめっき装置は、制御手段としてのプロセス制御部(図示せず)を備え ている。このプロセス制御部は、 CPU、 RAM又は ROM力、ら構成されている。そして 、プロセス制御部に格納されたプログラムにより、各夜ポンプ 3012, 3022, 3032, 3 042, 3052、各カロ熱部 3013, 3023, 3033、各供給弁 3014, 3024, 3034, 304 4, 3054、電極等の制御が行われる。
[0314] 次に、上述しためっき装置を用いためっき方法について、図 29及び図 30を参照し て説明する。本実施形態においては、図 30に示すように、前処理工程、第 1のめつき 膜としての Ni膜を形成するための第 1めっき処理工程、置換工程、第 2のめつき膜と しての Au膜を形成するための第 2めっき処理工程、及び後処理工程が順次行われ る。
[0315] まず、前処理工程として基板 Wの洗浄が行われる。具体的には、供給弁 3014, 30 24が開く。このとき、カロ熱部 3013, 3023において洗浄液及び C〇2の加熱が行われ るとともに、液ポンプ 3012, 3022が駆動する。この場合、洗浄液タンク 3011からの 加圧及び加熱された洗浄液と、高純度 C〇2タンク 3021からの加圧及び加熱された C02とが混合分散部 3060に供給され、混合器において混合されて洗浄混合液が 調製される。ここで、混合分散部 3060の分散機のソレノイドを励磁して攪拌子を回転 させることにより、調製された洗浄混合液が攪拌されて、 C〇2と洗浄液とが均一に分 散された洗浄分散体が調製される。この分散状態の洗浄混合液が混合分散部 3060 力 めつき槽 3061に供給されて、基板 Wの洗浄が行われる。このめつき槽 3061に ぉレ、て洗浄に使用された洗浄分散体は、分離槽 3065に排出されて CO 2と洗浄液と に分離される。分離された C02は、該 C〇2に溶けている有機物が更に分離されて排 気される。また、分離された洗浄液は、めっき液排出部 3068及び排出切換弁 3070 を介して廃液タンク 3073に排出される。そして、洗浄液を含む洗浄分散体が所定時 間めつき槽 3061に供給され、前処理工程としての洗浄が完了する。
[0316] 次に、 Ni膜を形成する第 1めっき処理工程が行われる。具体的には、供給弁 3014 が閉じて洗浄液が排出された後、供給弁 3024が閉じるとともに供給弁 3034, 3044 力開く。また、 f夜ポンプ 3012, 3022の馬区動力停止するとともに f夜ポンプ 3032, 304 2が駆動する。更に、加熱部 3013における加熱が停止される。これにより、高純度 C 02タンク 3021からの加圧及び加熱されて超臨界状態となった C〇2と、分散促進剤 タンク 3031からの加熱及び加圧された分散促進剤とが混合された混合液が混合分 散部 3060に供給され、混合分散部 3060において第 1めっき液タンク 3041からの N iめっき液と混合される。そして、混合分散部 3060において、混合されためつき混合 液が攪拌されて、より均一に分散されためつき分散体となって、めっき槽 3061に供給 される。本実施形態では、 C02、分散促進剤及び Niめっき液の分散状態の保持時 間が短いことから、混合器で調製されるめつき分散体が分散保時間内にめっき槽 30 61を流れきるように、各液ポンプ 3032, 3042の駆動が制御される。同時に、めっき 槽 3061においては、電極に電圧が印加され、めっき槽 3061に供給されためつき分 散体を用いて電解めつきが行われる。これにより、基板 Wの表面に Ni膜 3101が形成 される。
[0317] 本実施形態では、めっき処理が行われている間、各液ポンプ 3032, 3042が駆動 し続け、混合分散部 3060において調製されためつき分散体がめっき槽 3061に継続 的に供給された状態で、めっき処理が行われる。そして、めっき処理に用いられため つき分散体が、分散保持時間が経過する前にめつき槽 3061から分離槽 3065に排 出される。これにより、めっき処理によってめつき分散体中に溶解した水素ガス及び 基板 Wの表面から剥離した不純物等は、速やかにめっき槽 3061から排出される。
[0318] 分離槽 3065に排出されためつき分散体は、分散促進剤を含む C02と、 Niめっき 液とに分離される。このうち、 C〇2は、不要なガスが除去された後、混合タンク 3030 に還流される。一方、 Niめっき液はめつき液排出部 3068に排出されて、めっき処理 における不純物が除去される。このとき、排出切換弁 3070は、めっき液排出部 3068 と第 1めっき液再生装置 3071とが連通するように切り換えられる。この結果、めっき液 排出部 3068に排出された Niめっき液は第 1めっき液再生装置 3071に排出され、再 生されて第 1めっき液タンク 3041に供給される。
[0319] その後、各液ポンプ 3032, 3042及びカロ熱部 3033力駆動して、めっき分散体のめ つき槽 3061への供給及びめつき槽 3061からの排出が継続され、所定の厚さ(例え ば 1 μ m程度)の Ni膜 3101を形成するのに要する時間めつき処理が継続される。
[0320] そして、第 1めっき処理工程が完了すると、めっき分散体の置換工程が行われる。
本実施形態の置換工程は、 Niめっき液の排出工程及び洗浄工程を含む。この場合 、置換工程の間、 C02と分散促進剤との C02混合液は、混合タンク 3030から連続 して供給される。
[0321] 具体的には、まず、供給弁 3044が閉じて液ポンプ 3042の駆動が停止する。これ により、 Niめっき液の混合分散部 3060への供給が停止され、 C〇2混合液のみが、 混合分散部 3060を介してめつき槽 3061に供給される。この C02混合液の供給が 所定時間実行されることにより、めっき槽 3061中の Niめっき液の排出が完了する。
[0322] 次に、洗浄を行うために、供給弁 3014が開いて液ポンプ 3012が駆動する。これに より、洗浄液タンク 3011から洗浄液が混合分散部 3060に供給され、これにより調製 される洗浄分散体がめっき槽 3061内を洗浄する。そして、この洗浄液の供給が所定 時間実行されると、供給弁 3014が閉じるとともに液ポンプ 3012の駆動が停止し、洗 浄液の供給が停止される。これにより、分散促進剤を含む C02混合液がめっき槽 30 61内を流れて、めっき槽 3061から洗浄液が排出される。
[0323] その後、 Au膜を形成する第 2めっき処理工程が行われる。具体的には、供給弁 30 54が開くとともに液ポンプ 3052が駆動する。これにより、混合タンク 3030からの CO 2混合液及び第 2めっき液タンク 3051からの Auめっき液が混合分散部 3060に供給 され、めっき分散体が調製されて、めっき槽 3061に供給される。そして、めっき槽 30 61では、 C〇2、分散促進剤及び Auめっき液を用いた電解めつきが行われる。これ により、基板 Wに形成された Ni膜 3101の表面に Au膜 2102が形成される。この場合 も、 Ni膜 3101が形成されるときと同様に、液ポンプ 3032, 3052が駆動し続け、めつ き分散体がめっき槽 3061に供給された状態で、めっきが行われる。
[0324] そして、めっき処理に使用されためつき分散体が、分散保持時間が経過する前に めっき槽 3061から分離槽 3065に排出される。分離槽 3065では、 C〇2及び分散促 進剤が、めっき分散体から分離される。 C〇2及び分散促進剤は、不要なガスが除去 された後、混合タンク 3030に供給される。 Auめっき液はめつき液排出部 3068に排 出される。この場合には、排出切換弁 3070は、めっき液排出部 3068と第 2めっき液 再生装置 3072とが連通するように切り換えられる。この結果、めっき液排出部 3068 に排出された Auめっき液は、第 2めっき液再生装置 3072に排出され、再生されて第 2めっき液タンク 3051に供給される。
[0325] その後、各ポンプが駆動して、めっき分散体のめっき槽 3061への供給及びめつき 槽 3061からの排出が継続され、所定の厚さの Au膜 3102を形成するのに要する時 間めつき処理が継続される。
[0326] そして、第 2めっき処理工程が完了すると、後処理工程が行われる。本実施形態で は、後処理工程として洗浄及び乾燥が行われる。具体的には、供給弁 3034, 3054 が閉じるとともに供給弁 3024が開いて C02による置換工程が行われた後、供給弁 3 014力 S開く。これにより、 C〇2混合液及び Auめっき液の供給が停止され、めっき液 の排出が行われた後、洗浄液と C〇2とが混合分散部 3060に供給される。そして、前 処理工程の洗浄と同様に、混合分散部 3060において、 C〇2と洗浄液とが混合され 、これらがめっき槽 3061に供給されて洗浄が行われる。
[0327] この洗浄液を含む洗浄分散体が所定時間、めっき槽 3061に供給されて洗浄が完 了すると、乾燥を行うために供給弁 3014が閉じる。これにより、洗浄液タンク 3011か らの洗浄液の供給が停止され、高純度 C〇2タンク 3021から C〇2だけが混合分散部 3060を介してめつき槽 3061に供給される。更に、この C02がめつき槽 3061を流れ て乾燥が行われる。具体的には、基板 W及びこの表面に形成された Au膜 3102に付 着した洗浄液 (水)が、 C〇2の流れにより洗い流されるとともに、超臨界状態となって レ、る C02に溶解して除去される。
[0328] そして、 C〇2のみが所定時間供給されて乾燥が完了すると、供給弁 3014が閉じて C02の供給が停止される。更に、液ポンプ 3012の駆動及び加熱部 3013の加熱が 停止して C02が排気される。以上により、めっき後の洗浄が完了する。
[0329] 第 5の実施形態によれば、以下のような効果を得ることができる。
[0330] (31)本実施形態では、第 1めっき処理工程において、超臨界状態の C〇2と Niめ つき液とを含むめっき分散体を用いて、基板 Wの上に Ni膜 3101が形成される。更に 、第 2めっき処理工程において、超臨界状態の C02と Auめっき液とを含むめっき分 散体を用いて、 Ni膜 3101上に Au膜 3102が形成される。従って、めっき分散体にお ける超臨界状態の C〇2の拡散力によって、 Niめっき液及び Auめっき液を基板 Wの 表面で拡散させることができ、 Ni及び Auの皮膜の付き回りを向上させることができる 。このため、ピンホールを抑制した良好なめっき膜の形成を行うことができ、各層が薄 い多層膜構造体を、めっき処理を用いて形成することができる。また、めっき液の付き 回りが向上することから、下地層となる基板等とめっき膜との密着性を高めることがで きる。更に、 CVD法及び PVD法よりも成膜速度が速いことから、多層膜の生産性を 向上することができる。
[0331] (32)本実施形態では、超臨界状態の C〇2を用いて形成された Ni膜 3101又は A u膜 3102の膜厚は、通常のめっき膜の膜厚に比べて均一である。従って、本実施形 態では、複雑な形状の基板の表面においても、膜厚が均一である多層膜構造体を 形成すること力 Sできる。
[0332] (33)本実施形態では、拡散流体として超臨界状態の C〇2が用いられる。超臨界 状態の C〇2に水素が溶解することから、ピンホールの発生の一因である水素を Ni膜 3101又は Au膜 3102が形成される表面から除去することができる。更に、発生した 水素ガスの体積は、めっき槽 3061の内部が高圧であることから小さい。従って、ピン ホールが発生したとしても小さいものであることから、めっきの層を薄く堆積させるだけ で、発生したピンホールを消失させることができる。このため、ピンホールの発生を抑 制し、良質な多層膜構造体を提供することができる。更に、拡散流体として、超臨界 状態又は亜臨界状態の流体を用いられる。これらの拡散流体は拡散力が非常に高く 、良好なめっき皮膜を得ることができる。
[0333] (34)本実施形態では、混合タンク 3030からの C〇2と分散促進剤との C02混合液 が連続的に供給された状態で、第 1めっき処理工程、置換工程及び第 2めっき処理 工程が行われる。このため、混合分散部 3060において、 C02混合液に混在される めっき液が変更されて供給されることにより、超臨界状態にするための高圧の雰囲気 を保ったまま、異なる条件のめっきを行うことができる。従って、めっき液交換に時間 を要することなぐ多層膜を形成することができることから、多層膜の生産性を更に向 上すること力 Sできる。更に、めっき分散体が継続して排出されることから、めっき処理 により発生した水素が溶解した C〇2及び基板 Wの表面から剥離した不純物を、速や 力、にめつき槽 3061から排出して、それらが基板 Wの表面に再付着することを回避す ること力 Sできる。従って、ピンホールの発生の一因である水素を迅速に排出することが でき、ピンホールの発生を更に抑制することができる。
[0334] (35)本実施形態では、超臨界状態の C〇2と、 Niめっき液又は Auめっき液とを混 合及び分散させるために、分散促進剤としてフッ素系化合物が用いられる。実験結 果では、分散促進剤としてフッ素系化合物を用いためっきは、分散促進剤を用いな いめつき、及び分散促進剤として従来の炭化水素系の界面活性剤を用いためっきに 比べてより平坦な皮膜を形成することができた。従って、 Ni膜 3101及び Au膜 3102 の表面をより均一に形成することができ、良好なめっきを得ることができる。更に、フッ 素系化合物により、拡散流体に対するめっき液の分散が促進されることで、皮膜の付 き回りが更に良好となり、皮膜におけるピンホールの形成を抑制することが更に容易 になる。従って、めっき膜の表面を更に平滑にすることが可能であり、良好なめっき多 層膜を得ること力 Sできる。
[0335] (36)本実施形態では、 C02、分散促進剤及びめつき液のめっき分散体が、分散 保持時間内でめっき槽 3061を流れきるように、めっき分散体の流速力 液ポンプ 30 22, 3032, 3042, 3052の駆動により制御される。従って、めっき混合液が安定して 分散された状態を保ったまま、めっき槽 3061においてめっきが行われ、基板 Wにより 均一なめっきを施すことができる。
[0336] (37)本実施形態では、 Niめっき液を含むめっき分散体を用いた第 1めっき処理工 程が行われた後、 Niめっき液の供給が停止された置換工程が行われ、更に Auめつ き液を含むめっき分散体を用いた第 2めっき処理工程が行われる。このため、第 1め つき処理工程で用いられた Niめっき液が完全に排出されてから、 Auめっき液を用い て Au膜 3102の形成を行うことができる。従って、急峻な界面が形成された Ni膜 310 1と Au膜 3102との多層膜を形成することができる。
[0337] (38)本実施形態では、 C02を用いた前処理工程の洗浄が行われた後、圧力が低 下することなく洗浄液が C02と分散促進剤とに切り替えられ、第 1めっき工程、置換 工程、第 2めっき工程が、 C02と分散促進剤との C02混合液が連続的に供給された 状態で行われる。そして、圧力が低下することなく C02混合液が C02に切り替えられ 、後処理工程の洗浄及び乾燥が行われる。従って、超臨界状態の C02の拡散力に より、良好な洗浄及び乾燥を行うことができるとともに、これらの処理を迅速に行うこと ができる。
[0338] (39)本実施形態では、超臨界 C02を用いて形成された Ni膜 3101の膜厚は 1 μ m程度である。このように Ni膜 3101の膜厚が lOnm以上 4 /i m以下に設定される。 N i等の金属のグレインの粒径は数 nm程度であることから、 Ni膜 3101の厚さが 10nm 以上であれば、孔のない第 1のめつき膜を形成することができる。また、水素の気泡 が原因となって発生するピンホールの大きさが 5 μ m前後であることから、従来では 4 μ m以下の膜を形成することが困難であった力 膜厚が 1 μ m以下の Ni膜であっても 、ピンホールがない良好な Ni膜 3101を形成することができ、ひいては Au膜 3102を 形成すること力 Sできる。
[0339] 第 5の実施形態は以下のように変更されてもょレ、。
[0340] 本実施形態の多層膜は、 Ni膜 3101と Au膜 3102とから構成されている。多層膜は Ni膜 3101及び Au膜 3102に限定されるものではなぐ 3種類以上の膜の積層によつ て形成されてもよい。この場合、複数のめっき処理工程が、置換工程を介して繰り返 される。また、この場合には、最初に行われるめっき処理工程から、最後に行われる めっき処理工程まで、 C〇2と分散促進剤との C02混合液が混合分散部 3060に連 続して供給される。
[0341] 本実施形態おいては、 C〇2に混合されるめつき液が変更されることにより、形成さ れるめっき膜が変更されている。これに代えて、同じめつき液を用いて、めっき槽 306 1の電極に印加する電圧を変えることにより、その物性値の異なる複数の膜からなる 多層膜が形成されてもよい。この場合には、めっき分散体がめっき槽 3061に供給さ れてから、所定厚さの膜が形成されたと考える時間が経過したときに、電圧が変更さ れて多層膜構造体が形成される。
[0342] 本実施形態においては、多層膜は、拡散力を高める拡散流体を用いて形成された Ni膜 3101と Au膜 3102とから構成されているが、各膜の一方のみが拡散流体を用 レ、て形成されてもよい。この場合でも、生産性を向上することが期待できる。
[0343] 本実施形態においては、多層膜の Ni膜 3101及び Au膜 3102は、電解めつきによ り形成されている。これに代えて、無電解めつきを用いて多層膜が形成されてもよい。 この場合も、ピンホールの発生を抑制することができることから、ピンホールのない薄 膜を形成することができる。具体的には、第 1及び第 2めっき液タンク 3041 , 3051の 代わりに無電解めつき液タンクが設けられてもよい。また、多層膜の一部が電解めつ きで形成されるとともに、他の一部が無電解めつきで形成されてもよい。
[0344] 本実施形態の第 2のめつき処理では、分散促進剤として分散保持時間が短いフッ 素系化合物と、 C〇2とめつき液とを含むめっき分散体が用いられている。第 2のめつ き処理で用いられる分散促進剤はこれに限定されず、他のフッ素系化合物が第 2の めっき処理で用いられてもよいし、従来の炭化水素系の界面活性剤が第 2のめつき 処理で用いられてもよい。また、第 1及び第 2のめつき処理において、本実施形態の 分散促進剤に比べて分散保持時間が長い分散促進剤が用いられてもよい。この場 合、めっきが行われるめっき槽 3061を流れるめっき分散体の速度を本実施形態より も遅くすることもできる。さらに、分散促進剤が省略されてもよい。
[0345] 本実施形態の混合分散部 3060では、混合タンク 3030から供給される C02混合 液と、第 1及び第 2めっき液タンク 3041 , 3051からのめつき液とが混合されている。こ れに代えて、 C02と、分散促進剤と、めっき液とが、混合分散部 3060で同時に混合 されてもよい。この場合には、分散促進剤の分離工程の後で C02再生工程が行わ れ、高純度 C〇2タンク 3021に供給される構成が採用されたり、分散促進剤の分離 工程の後で C〇2が排気される構成が採用されたりする。これにより、めっき槽 3061 に供給される液体の供給ラインを分離することができることから、めっき装置のメンテ ナンスを容易にすることができる。
[0346] 本実施形態においては、第 1のめつき処理及び第 2のめつき処理が行われる場合 に、 Niめっき液の排出工程及び洗浄工程を含む置換工程が行われている。前のェ 程で使用されためつき液がこの置換処理でめっき槽 3061から十分に除去されれば、 洗浄工程が省略されてもょレ、。
[0347] 本実施形態においては、拡散流体として超臨界状態の C〇2が用いられている。こ れに限らず、拡散流体として、亜臨界状態の C〇2が用いられてもよいし、例えば第 1 の実施形態に記載されたように他の流体が用いられてもよい。
[0348] 本実施形態のめっき装置の構成の少なくとも一部が、第 1〜第 4のいずれか一つの 実施形態のめっきに適用されてもよい。
[0349] (第 6の実施形態)
以下、本発明をめつき装置に具体化した第 6の実施形態を図 31及び図 32に基づ いて説明する。本実施形態では、第 1の実施形態の C02を拡散流体として用いて電 解めつきを行うめっき装置について説明する。
[0350] まず、本実施形態のめっき装置の配管について、図 31を用いて説明する。
[0351] 図 31に示すように、本実施形態のめっき装置は、 C〇2タンク 4021を備えている。こ の C〇2タンク 4021は液状の C02、即ち液体 C02を収容し、 C〇2供給管を介して 混合分散部 4060に接続されている。この C02供給管には、液ポンプ 4022、加熱部 4023及び供給弁 4024が設けられている。液ポンプ 4022は C〇2を加圧し、加熱部 4023は C〇2をカロ熱する。供給弁 4024は、その開閉が制御されることにより、 C〇2タ ンク 4021と混合分散部 4060との連通又は遮断を行レ、、混合分散部 4060への CO 2の供給又は供給の停止を行う。
[0352] 本実施形態のめっき装置は、 C02タンク 4021に収容された C〇2に比べて高純度 の液体 C〇2を収容した高純度 C02タンク 4026を備えている。高純度 C〇2タンク 40 26には、 C02のリサイクルパスが設けられていない。高純度 C〇2タンク 4026は CO 2タンク 4021と並歹 IJに設けられており、液ポンプ 4022に接続されている。 C〇2タンク 4021と ί夜ポンプ 4022との間には開閉弁 4027力 S設けられ、高純度 C〇2タンク 4026 と液ポンプ 4022との間には開閉弁 4028が設けられている。そのため、めっき装置の ラインは、供給される液体 C02が切り替え可能に構成されている。通常のめっき操作 では C〇2タンク 4021から液体 C〇2が供給され、脱脂、洗浄、めっきなどのめつき槽 4061に供給される薬液が切り替えられる場合、また、めっき物及びリサイクルライン 全体が C〇2で洗浄される場合、開閉弁 4028が開くとともに開閉弁 4027が閉じること により、高純度の液体 C〇2がラインに供給される。
[0353] 本実施形態のめっき装置は、洗浄液タンク 4031を備えている。この洗浄液タンク 4 031は、被めつき W、混合分散部 4060及びめつき槽 4061を洗浄するための洗浄 液を収容している。洗浄液タンク 4031は、洗浄液供給管を介して混合分散部 4060 に接続されている。この洗浄液供給管には、液ポンプ 4032、加熱部 4033及び供給 弁 4034が設けられている。供給弁 4034は、洗浄液タンク 4031と混合分散部 4060 との連通又は遮断を行う。従って、洗浄液タンク 4031からの洗浄液は、液ポンプ 403 2により加圧されるとともに加熱部 4033により加熱されて、混合分散部 4060及びめ つき槽 4061に供給される。
[0354] 混合分散部 4060には、分散促進剤タンク 4041が分散促進剤供給管を介して接 続されている。分散促進剤タンク 4041は、第 1の実施形態と同様の分散促進剤を収 容している。
[0355] 分散促進剤供給管には、液ポンプ 4042、加熱部 4043及び供給弁 4044が設けら れている。液ポンプ 4042は分散促進剤を加圧し、加熱部 4043は分散促進剤をカロ 熱する。供給弁 4044は、その開閉が制御されることにより、分散促進剤タンク 4041 と混合分散部 4060との連通又は遮断を行レ、、分散促進剤の混合分散部 4060への 供給又は供給の停止を行う。
[0356] 混合分散部 4060には、めっき液タンク 4051がめつき液供給管を介して接続されて いる。このめつき液タンク 4051には、めっき皮膜を形成する金属原子を含む水溶液( めっき液)が収容されている。めっき液タンク 4051は加熱及び保温手段を備え、めつ き液を所定の温度にまで加熱して保温する。めっき液供給管には、液ポンプ 4052及 び供給弁 4054が設けられている。液ポンプ 4052はめつき液を加圧し、供給弁 405 4は、その開閉が制御されることにより、めっき液の混合分散部 4060への供給又は 供給の停止を行う。めっき液供給管は、めっき液の成分が析出しない温度以上に常 時保温されている。
[0357] 混合分散部 4060では、 C02の臨界点以上の温度及び圧力の条件で、めっき液、 C02及び分散促進剤がめっき処理に適した比率で混合され、該混合された液体が 攪拌されてめつき分散体が調製されている。
[0358] 混合分散部 4060は、めっき槽 4061に接続されている。めっき槽 4061では、混合 分散部 4060から供給されるめつき分散体を用いためっきが行われる。このめつき槽 4 061には、めっき液分離槽 4065に接続される排出管が設けられている。
[0359] このめつき液分離槽 4065では、めっき分散体が、分散促進剤を含む超臨界〜亜 臨界の状態の C02とめつき液とにそれらの比重差を用いて分離される。ここで、めつ き液の比重は 1. 0〜: 1. 3 (g/cm3)程度であり、分散促進剤を含む C〇2の比重より も大きレ、。従って、めっき液分離槽 4065においては、上層に分散促進剤を含む超臨 界〜亜臨界の状態の C02が位置し、下層にめっき液が位置する。めっき液分離槽 4 065は、その上部に設けられた配管を介して C〇2再生装置 4071に接続されている とともに、底部に設けられた配管を介してめつき液排出部 4066に接続されている。 C 02再生装置 4071では C02が再生され、めっき液排出部 4066ではめつき液が排出 される。
[0360] めっき液排出部 4066は、排出切換弁 4067を介して、めっき液再生装置 4068及 び廃液タンク 4069に接続されている。排出切換弁 4067は、めっき液が再生される 場合には、めっき液排出部 4066とめつき液再生装置 4068とが連通するように切り換 えられ、めっき液が排出される場合には、めっき液排出部 4066と廃液タンク 4069と が連通するように切り換えられる。めっき液再生装置 4068では、排出されためつき液 力 固体の不純物が沈殿して除去され、更にめつき液に溶解した有機物などの不純 物が除去される。カロえて、めっき液再生装置 4068では、めっき液の各成分が調整さ れ、めっき液が再び使用可能となるように再生される。このめつき液再生装置 4068は 、めっき液タンク 4051に接続されており、再生されためつき液がめっき液タンク 4051 に供給される。めっき液分離槽 4065からめつき液再生装置 4068を介してめつき液タ ンク 4051に到る配管は、めっき液の成分が析出しない温度で常時保温されている。
[0361] めっき液分離槽 4065から C02再生装置 4071に接続される配管には、冷却部 40 70が設けられている。この冷却部 4070は C02を冷却し、臨界状態を脱した気液の 2 相状態にする。 C02再生装置 4071の中央部には C〇2タンク 4021に連通する再生 管が接続されており、この再生管を介して液体 C〇2が C〇2タンク 4021に供給される 。 C02再生装置 4071の底部は漏斗状になっており、 C〇2に溶解していた比重の重 い不純物は、 C02再生装置 4071の底部に沈殿して C02から除去される。 C〇2再 生装置 4071は、その上部から気体を排気可能な構造を有しており、水素ガス、酸素 ガスなどの不純物のガスが溶解している気体の C〇2を排気する。
[0362] 次に、図 32を用いて、混合分散部 4060及びめつき槽 4061の構成を詳述する。
[0363] 本実施形態の混合分散部 4060は、混合器 4060aと分散機 4060bとを有している 。混合器 4060aでは、 C〇2、分散促進剤及びめつき液が混合され、分散機 4060b では、混合された液体が拡散されて、 C〇2とめつき液とが分散しためっき分散体が調 製される。 [0364] 詳述すると、混合器 4060aは、上流側が四つに分岐した供給管に接続されている 。この供給管の各分岐部には、上述した供給弁 4024, 4034, 4044, 4054力 S接続 されてレヽる。このため、供給弁 4024, 4034, 4044, 4054力 S開くことにより、各供給 弁に接続される分岐部を通過する各流体 (C02、洗浄液、分散促進剤及びめつき液 )が混合器 4060aに供給される。そして、混合器 4060aに供給される流体は、下流の 供給管を通過することにより混合される。
[0365] 例えば、めっきが行われる場合には、供給弁 4034が閉じるとともに供給弁 4024, 4044, 4054力 S開くことにより、 C〇2、分散促進剤及びめつき液が混合器 4060aに 供給される。また、洗浄時には、供給弁 4044及び供給弁 4054が閉じるとともに供給 弁 4024, 4034力 S開くことにより、 C02及び洗浄液が混合器 4060aに供給される。
[0366] 分散機 4060bは圧力容器構造を有している。分散機 4060bの内部には、永久磁 石に取り付けられたメッシュのロータが配置され、分散機 4060bの外部には、コィノレ が取り付けられたステータが配置されている。このステータに流れる電流の制御によ つて、メッシュのロータの回転速度及び回転方向が制御される。分散機 4060bでは、 混合器 4060aから供給されためつき分散体がロータにより攪拌されて分散体が調製 される。この分散機 4060bは、めっき槽 4061に接続されており、めっき分散体がめつ き槽 4061に供給される。めっきに適した分散体を調製するのに必要な超臨界域の 温度及び圧力と、滞留時間とが確保されるように、分散機 4060bの容積が設定され るとともに分散機 4060bが操作される。
[0367] 分散機 4060bとめつき槽 4061との間には、遮断弁 4601が設けられている。この遮 断弁の開弁時には、混合分散部 4060及びめつき槽 4061が連通し、混合分散部 40 60力 のめつき分散体がめっき槽 4061に供給される。めっき槽 4061とめつき液分 離槽 4065との間には遮断弁 4602力 S設けられ、めっき槽 4061は、めっき装置に着 脱可能に取り付けられている。即ち、めっき槽 4061は、遮断弁 4601が閉じられるこ とによって混合分散部 4060から遮断され、且つ遮断弁 4602を介してめつき液分離 槽 4065から遮断された状態で、めっき装置に着脱される。
[0368] めっき槽 4061では、分散機 4060bから供給されるめつき分散体を用いて、めっき if 4061の内部に収容される被めつき材 Wの表面にめっき処理が行われる。めっき槽 4061には図示しないブロックヒータが設けられており、めっき槽 4061内のめっき分 散体は、それに含まれる C02が超臨界状態を維持し、更にめつきを行うために適し た温度に維持されている。めっき槽 4061の内部には、一対の電極が配設されている 。これらの電極の一方は被めつき材 Wに接続されており、他方は、めっき毎に指定さ れる材質で形成され、電源のプラス側に接続されている。本実施形態では、被めつき 材 Wに金属を還元析出させるために、被めつき材 Wに接続された電極は電源のマイ ナス側に接続されている。
[0369] 次に、上述しためっき装置を用いためっき方法について、図 31及び図 32を参照し て説明する。
[0370] まず、遮断弁 6601及び遮断弁 6602が閉じられた状態で、めっき装置に、被めつき 材 Wが揷入されためつき槽 6061が取り付けられる。そして、めっき槽 6061に配設さ れた一対の電極の一方が、揷入された被めつき材 Wに接続される。めっき槽 6061の 取り付けが完了すると、遮断弁 4601及び遮断弁 4602が開く。
[0371] 次に、開閉弁 4027及び供給弁 4024, 4044, 4054力 S開く。これにより、 C〇2タン ク 4021力 の C〇2、分散促進剤タンク 4041からの分散促進剤及びめつき液タンク 4 051からのめつき液力 所定の割合で混合器 4060aに供給される。
[0372] このとき、 C02及び分散促進剤が加熱部 4023, 4043においてカロ熱されるとともに 、各液ポンプ 4022, 4042, 4052が駆動する。ここで、本実施形態では、分散促進 剤を介して C〇2とめつき液とが分散するめつき分散体の分散保持時間よりも短い時 間となるように、各ポンプの駆動が制御される。
[0373] 次に、分散機 4060bのステータに電流が流れてロータが回転する。これにより、混 合器 4060aにおいて混合された C〇2、分散促進剤及びめつき液が、分散機 4060b において、攪拌されて分散される。そして、分散機 4060bにおいて調製されためつき 分散体がめっき槽 4061に供給される。
[0374] そして、めっき槽 4061に配設された電極が通電され、めっき槽 4061に供給された めっき分散体を用いた電解めつきが行われる。
[0375] 本実施形態では、めっき処理が行われている間、各ポンプが駆動し続けて、混合 分散部 4060において調製されためつき分散体がめっき槽 4061に供給された状態 でめつきが行われる。これにより、めっき処理によってめつき分散体中に溶解した水 素ガス及び被めつき材 Wの表面から剥離した不純物は、速や力にめつき槽 4061力 ら排出される。
[0376] そして、めっき液分離槽 4065に至っためっき分散体は、比重によって、分散促進 剤を含む C〇2と、めっき液とに分離される。そして、 C02は、冷却部 4070を介して C 02再生装置 4071に供給される。このとき、 C02は、冷却部 4070において冷却され ることから、気液 2相となって C02再生装置 4071に供給される。 C02再生装置 407 1では、液体 C〇2に溶解している比重の重い不純物が沈殿して除去され、水素ガス 、酸素ガス等を含む気体の C〇2が排気される。そして、不純物が除去された液体 C 02は、再生管を介して C02タンク 4021に戻される。
[0377] 一方、めっき液分離槽 4065において分離されためつき液は、めっき液排出部 406 6を介してめつき液再生装置 4068に供給される。めっき液再生装置 4068で各成分 が調整されて再生されためつき液は、めっき液タンク 4051に戻される。
[0378] その後、各ポンプが駆動して、調製されためつき分散体が、めっき槽 4061におい て継続して供給及び排出され、めっき処理が、所定のめっき膜を形成するのに要す る時間継続される。めっき処理の完了時には、液ポンプ 4042, 4052の駆動が停止 するとともに、開閉弁 4027及び供給弁 4044, 4054力 S閉じる。これにより、 C02タン ク 4021、分散促進剤タンク 4041、めっき液タンク 4051からの C〇2、分散促進剤及 びめつき液の混合分散部 4060への供給が停止する。以上によりめつき処理が完了 する。
[0379] 次に、後工程としての洗浄が行われる。まず、開閉弁 4028が開いて高純度 C02に よる置換工程が行われた後、更に供給弁 4034が開くとともに液ポンプ 4032及びカロ 熱部 4033が駆動し、洗浄液タンク 4031から洗浄液が混合分散部 4060に供給され る。これにより、 C〇2と洗浄液とが混合分散部 4060において混合及び分散された後 、めっき槽 4061に供給されて被めつき材 Wが洗浄される。被めつき材 Wが十分に洗 浄されると、供給弁 4024, 4034力 S閉じる。そして、めっき槽 4061内を洗浄した C〇2 及び洗浄液の分散体は、めっき液分離槽 4065に排出され、 C〇2と洗浄液とに分離 される。洗浄液は、排出切換弁 4067を介して廃液タンク 4069に排出される。一方、 分離された C02は、 C〇2再生装置 4071を介して再生されて C02タンク 4021に供 給される。以上により、めっき後の洗浄が完了する。
[0380] 第 6の実施形態によれば、以下のような効果を得ることができる。
[0381] (40)本実施形態では、 C02、分散促進剤及びめつき液が混合器 4060aで混合さ れるとともに分散機 4060bで攪拌されて、めっき分散体となった後に、めっき槽 4061 に供給される。めっき槽 4061では、電極に電圧が印加されて、めっきが行われる。本 実施形態では、拡散流体に対するめっき液の分散状態が良好であり、かつ拡散流体 によってめっき液の拡散力が高められためっき分散体によって、めっきが行われるこ とから、付き回りがよい良好なめっき皮膜を形成することができる。このため、めっき分 散体の分散安定性が維持される時間が短い場合であっても、めっき液の分散状態が 良好なめっき分散体を、めっき槽に継続して注入することができ、良好なめっきを行う ことができる。加えて、拡散流体として超臨界流体及び亜臨界流体を用いることにより 、めっき液の拡散を効率よく行うことができる。
[0382] 更に、めっきが行われるときに発生する水素ガス等の体積は、めっき槽 4061の内 部が高圧であることから小さくなる。カロえて、水素ガス等は、被めつき材 Wの表面から めっき分散体中の超臨界状態の C02に溶解する。
[0383] また、本実施形態では、混合分散されためつき分散体が、めっき槽 4061に継続し て供給された状態でめっきが行われる。このため、めっき中に発生した水素が溶解し た C02及び被めつき材 Wの表面から剥離した不純物は、速や力にめつき槽 4061力 ら排出され、それらが被めつき材 Wの表面に再付着することを回避することができる。 従って、被めつき材 Wに残留する水素が原因となっていたピンホールの発生を抑制 し、ゴミ、汚れ等の付着が起因するめつき皮膜の剥離及び割れを低減して、良好なめ つきを被めつき材 Wに形成することができる。ひいては、めっきを更に薄く形成するこ とも可能となる。
[0384] また、めっき分散体が連続的に供給されることから、めっき槽 4061内での攪拌が不 要になる。更に、めっき分散体がめっき槽 4061から連続的に排出されることから、め つき処理において発生した熱力 めっき分散体とともに、めっき槽 4061から速やかに 放出される。従って、めっき処理に伴う発熱を排出し、めっき槽 4061の温度を効率 的に調整することができ、めっき槽 4061を簡単にして小形にすることができる。よつ て、耐圧設計を簡単することができ、めっき槽 4061を安価に製造することができる。
[0385] また、めっき分散体が連続的に供給されることから、めっき液がめっき槽 4061に蓄 積された状態でめっき処理が行われる従来とは異なり、めっき槽 4061が小さい場合 にも、厚いめっきを形成することができる。
[0386] (41)本実施形態では、 C02、分散促進剤及びめつき液のめっき分散体が、その 分散保持時間内でめっき槽 4061を通過してめっき液分離槽 4065に到着するように 、めっき分散体の流速力 S、夜ポンプ 4022, 4042, 4052の馬区動により制 ί卸される。す なわち、 C02、分散促進剤及びめつき液のめっき分散体が分散状態を維持したまま 、めっき槽 4061を通過する。従って、分散促進剤の分散保持時間に左右されること なぐ被めつき材 Wの表面により均一なめっきを施すことができる。
[0387] (42)本実施形態では、めっき槽 4061において、超臨界状態の C02とめつき液と を混合しためっき分散体を用いためっきが行われている。超臨界状態の C〇2は、め つき液を拡散する拡散流体として作用するだけでなぐ水素ガスを溶解して、被めつ き材 Wの表面から除去する作用も有する。このため、ピンホール発生の原因となる水 素ガスを被めつき材 Wから除去することが促進され、より良好なめっきを行うことがで きる。
[0388] (43)本実施形態では、超臨界状態の C〇2と、めっき液とを混合分散させるために 、分散促進剤としてフッ素系化合物が用いられている。実験結果では、分散促進剤と してフッ素系化合物を用いためっきは、分散促進剤を用いないめっき、及び分散促 進剤として従来の炭化水素系の界面活性剤を用いためっきに比べてより平坦な皮膜 を形成することができた。従って、より良好なめっきを行うことができる。
[0389] (44)本実施形態の混合分散部 4060は、めっき液と C〇2とを混合して分散させる 機能を有するとともに、めっき槽 4061から分離されている。このため、めっき槽 4061 は、被めつき材 Wの大きさに合わせて設計されることができ、デッドボリュームを小さく すること力 Sできる。そのため、耐圧などのめつき槽 4061自体の構成が簡便となり、め つき槽 4061を安価に製造することができる。
[0390] (45)本実施形態では、均一な分散体を保持することができる時間が短ぐ速やか にめつき液と C〇2とに分離され易いめっき分散体が用いられる。そして、めっき槽 40 61において使用された C〇2及びめつき液は、めっき液分離槽 4065において比重 差を利用して分離される。また、分離された C02は、冷却部 4070において冷却され て気液 2相となって C02再生装置 4071に供給される。 C02再生装置 4071におい て不純物が除去された液体 C〇2は、 C02タンク 4021に戻される。このため、使用さ れた C〇2を、不純物を除去した上で回収して再利用することができる。
[0391] 第 6の実施形態は以下のように変更されてもよい。
[0392] 本実施形態では、めっき槽 4061はめつき装置から着脱可能である。このため、例 えば、めっき処理が行われた被めつき材 Wを有するめっき槽 4061がめつき装置から 離脱され、この代わりに、まだめつきが行われていない被めつき材 Wを有するめっき 槽 4061がめつき装置に取り付けられて、めっきが行われてもよい。即ち、めっき槽 40 61は、被めつき材 Wを治具で固定し、めっき分散体を連続で流しながらめっき可能 なカートリッジ構造を有してもよい。この場合には、被めつき材 Wの大きさに合わせて めっき槽 4061のデッドボリュームを小さくすることができる。従って、めっき槽 4061を 小さくすること力 Sできる。電解めつきの場合には、このカートリッジ構造に通電を行う手 段がめっき装置に設けられる。
[0393] また、めっき装置から離脱されためつき槽 4061が、他の金属のめっきが施される同 様のめっき装置に取り付けられて、被めつき材 Wに多層めつきが行われてもよレ、。こ の場合、めっき槽 4061から被めつき材 Wを取り出す必要がないことから、めっき槽 40 61の内圧を大気圧まで低下させる必要がなぐ多層めつきを連続して効率よく行うこ とができる。また、めっき装置から離脱される場合には、不活性な C〇2と洗浄液とで めっき槽 4061が洗浄された後であることから、これらが充填された状態でめっき槽 4 061が搬送されてもよい。
[0394] 本実施形態にぉレ、ては、分散促進剤タンク 4041から分散促進剤が混合分散部 40 60に供給されるように分散促進剤タンク 4041が混合分散部 4060に接続されている 。これに代えて、分散促進剤がめっき液又は C〇2に混合した流体が用いられてもよ レ、。この場合には、分散促進剤タンク 4041、液ポンプ 4042、加熱部 4043及び供給 弁 4044を省略することができる。 [0395] 本実施形態においては、めっき槽 4061に一対の電極が設けられ、めっき槽 4061 内で電解めつきが行われている。これに代えて、めっき槽 4061内で無電解めつきが 行われてもよレ、。この場合には、例えば、めっき液タンク 4051に、電解めつき液に代 わりに無電解めつき液が収容され、めっき槽 4061の電極の配設が省略される。
[0396] 本実施形態においては、フッ素系化合物を介して、 C〇2とめつき液とが短い時間だ け分散状態となるめっき分散体が用レ、られている。 C〇2とめつき液を混合分散させる ために用いられる分散促進剤は、これに限られなレ、。例えば、本実施形態とは異なる フッ素系化合物が用いられてもよいし、炭化水素系の界面活性剤等の界面活性剤が 分散促進剤として用いられてもよい。更に、分散保持時間が本実施形態に比べて長 い分散促進剤が用いられてもよレ、。この場合には、めっきが行われるめっき槽 4061 を流れるめっき分散体の速度を本実施形態よりも遅くすることもできる。また、分散促 進剤が省略されてもよい。
[0397] 本実施形態においては、混合器 4060aと分散機 4060bとを有する混合分散部 40 60が用いられている。これに限らず、混合分散部 4060に代えて、マイクロミキサが用 レ、られてもよい。
[0398] 本実施形態においては、拡散流体として超臨界状態の C〇2が用いられている。こ れに限らず、亜臨界状態の C〇2が用いられてもよいし、第 1の実施形態に記載され たように他の流体が用いられてもよレ、。
[0399] 本実施形態においては、めっき槽 4061から排出されるめつき分散体の一部又は全 部が、めっき液と C〇2とを分離されて循環されている。これに代えて、めっき槽 4061 とめつき液分離槽 4065との間に循環ポンプが設置され、この循環ポンプの駆動によ つて、めっき槽 4061から排出されためつき分散液を、混合器 4060aと分散機 4060b の間に戻して、めっき液を循環使用してもよい。めっき槽 4061から排出されるめつき 分散体の全部が循環される場合には、供給側の各タンク (4021, 4041 , 4051)と混 合分散部 4060とを連通する供給弁が閉じて液ポンプが停止してもよい。
[0400] 本実施形態においては、前洗浄 (脱脂、酸'アルカリ洗浄、水洗等)が行われてもよ レ、。この場合には、めっき槽 4061に接続され、前洗浄に必要な薬液を、めっき槽 40 61に供給するためのタンクが設置される。これにより、 C02と混合分散部とへの供給 の組合せを変えることで、各工程で必要な溶液を含む流体をめつき槽 4061に供給 すること力 Sできる。従って、被めつき材 Wをめつき槽 4061の外に取り出すことなぐす ベての工程を実施することができる。
[0401] 本実施形態においては、めっき工程の他の一連の工程が、混合分散部 4060を介 して C02が加えられた分散体を用いて実施される。この場合に、分散体に C02が必 ずしも加えられなくてもよレ、。また、下地めつきと本めつきとが行われる多様な形状の 被めつき材 Wにおいても、めっき槽 4061に収まるものであれば、無電解めつき工程 後の電解めつき工程、あるいは多段のめっき工程 (洗浄がその都度必要)を、被めつ き材 Wをめつき槽 4061から取り出すことなく実施することができる。
[0402] 本実施形態のめっき装置の構成の少なくとも一部が、第 1〜第 5のいずれか一つの 実施形態のめっきに適用されてもよい。
[0403] (第 7の実施形態)
以下、本発明をめつき装置に具体化した第 7の実施形態を図 33に基づいて説明す る。本実施形態では、第 1の実施形態の C〇2を拡散流体として用いて電解めつき処 理を行うめっき装置について説明する。第 7の実施形態において、第 6の実施形態と 同一の構成部材については第 6の実施形態と同様の符号を付し、その詳細な説明に ついては省略する。
[0404] 図 33に示すように、本実施形態のめっき装置は、 C〇2タンク 4021、高純度 C02タ ンク 4026、洗浄液タンク 4031、分散促進剤タンク 4041、めっき液タンク 4051、混 合分散部 5060、めっき槽 5061、及びめつき液分離槽 4065を備えている。
[0405] 混合分散部 5060では、 C02の臨界点以上の温度圧力条件で、めっき液、 C02及 び第 1の実施形態と同様の分散促進剤がめっき処理に適した比率で混合され、該混 合された液体が攪拌されてめつき分散体が調製される。本実施形態の混合分散部 5 060は、上流に位置する混合器と、該混合器に接続されて下流に位置する分散機と 力、ら構成されてレヽる。混合器では、供給弁 4024, 4034, 4044, 4054のうちの 2つ 以上が開くと、洗浄液を含む洗浄分散体、又はめつき液を含むめっき分散体が調製 される。分散機では、混合器で調製されためつき分散体をめつきに適したものとする ために、めっき分散体の成分が分散状態となる。分散機の内部には、永久磁石に取 り付けられたメッシュのロータが配置され、分散機の外部には、コイルが取り付けられ たステータが配置されている。このステータに流れる電流の制御によって磁場の強さ が調整され、この磁場の強さによってロータの回転速度及び回転方向が制御される。 この回転するロータのメッシュにより、混合器から供給されためつき混合液がせん断さ れ、めっきに適した分散体が調製される。
[0406] 混合分散部 5060は、めっき槽 5061に接続されている。このめつき槽 5061では、 混合分散部 5060から供給されるめつき分散体を用いためっきが行われる。このめつ き槽 5061には、めっきを行う被めつき材 Wが収容されている。めっき槽 5061の内部 には一対の電極が配設され、これらのうちのマイナス電極に被めつき材 Wが接続され ている。更に、このめつき槽 5061には、図示しないブロックヒータが設けられている。 このブロックヒータを用いて、混合分散部 5060の温度が、めっき液の成分が析出しな レ、温度(例えば 50°C程度)に設定されてレ、る。
[0407] めっき槽 5061には、めっき液分離槽 4065が排出管を介して接続されている。分散 促進剤を含む C〇2の比重は 1. 0 (g/cm3)よりも小さぐめっき液の比重よりも小さい 。従って、めっき液分離槽 4065においては、分散促進剤を含む超臨界〜亜臨界の 状態の C〇2が上層に位置し、めっき液が下層に位置する。そして、上層に位置する C02が C02再生装置 4071に排出され、下層に位置するめつき液がめっき液排出 咅 4066に ί非出される。
[0408] めっき液分離槽 4065から C02再生装置 4071に接続される配管には、冷却部 40 70力 S設けられてレヽる。この冷却部 4070は、カロ熱部 4023, 4033, 4043と熱交換を 行うヒートポンプによって C02を冷却する。
[0409] C02再生装置 4071の中央部には、 C〇2タンク 4021に連通する再生管が接続さ れており、この再生管には、 C〇2に含まれている有機物を除去する活性炭が充填さ れたカラムと、図示しない吸着脱水材が充填されて C02に溶存している水分を除去 するカラムとが設けられてレ、る。
[0410] 次に、上述しためっき装置を用いためっき方法について、図 33を参照して説明する
[0411] めっき処理の開女合時には、各 f夜ポンプ 4022, 4042, 4052力駆動し、カロ熱部 402 3, 4043及びめつき夜タンク 4051におレヽてカロ熱力 S行われ、且つ供給弁 4024, 404
4, 4054力 S開く。これにより、 C02タンク 4021からの C〇2が、加圧及び加熱された 超臨界状態となって混合分散部 5060に供給される。これとともに、分散促進剤タンク 4041からの分散促進剤と、めっき液タンク 4051からめつき液と力 加圧及び加熱さ れた状態で、混合分散部 5060に供給される。混合分散部 5060では、供給された超 臨界状態の C〇2、分散促進剤及びめつき液が混合される。各液ポンプ 4022, 4042 , 4052は、混合分散部 5060において調製されるめつき分散体力 めっき槽 5061を 流れきるように制御される。次いで、混合部の攪拌子が回転する。これにより、 C〇2、 分散促進剤及びめつき液を含むめっき分散体が、より均一に分散された後、めっき槽 5061に供給される。
[0412] めっき槽 5061においては、その内部に配設された電極に電圧が印加される。従つ て、めっき槽 5061にめつき分散体が供給されると、電解めつきが行われる。そして、 めっき処理に使用されためつき分散体は、めっき槽 5061からめつき液分離槽 4065 に排出される。ここで、めっき槽 5061から排出された使用後のめっき分散体は分散 保持時間が短ぐめっき液分離槽 4065に至るとすぐに、各成分の比重差により分離 する。これにより、分離しためっき液は、めっき液分離槽 4065の下部に停留し、超臨 界状態の C〇2は、めっき液分離槽 4065の上部に停留する。
[0413] めっき液分離槽 4065の下部に停留しためっき液は、めっき液排出部 4066を介し てめつき液再生装置 4068に供給される。めっき液再生装置 4068では、めっき液の 各成分が調整されてめつき液が再生された後、めっき液タンク 4051に戻される。
[0414] めっき液分離槽 4065の上部に停留した超臨界状態の C02は、冷却部 4070で冷 却されて気液 2相となり、 C〇2再生装置 4071に供給される。 C〇2再生装置 4071で は、液体 C〇2に溶解している比重の重い不純物が沈殿して除去され、水素ガス、酸 素ガス等を含む気体の C〇2が排気される。そして、不純物の除去された液体 C02が 、再生管を介して C02タンク 4021に戻される。
[0415] その後、めっき分散体のめっき槽 5061への供給及びめつき槽 5061からの排出が 、所定のめっき膜を形成するのに要する時間継続される。めっき処理の完了時には、 ί夜ポンプ 4042, 4052の馬区動力 S停止し、且つ供給弁 4024, 4044, 4054カ閉じる。 これにより、 C〇2タンク 4021、分散促進斉 IJタンク 4041、及びめつき夜タンク 4051力 らの C〇2、分散促進剤及びめつき液の混合分散部 5060への供給が停止する。以 上により、めっき処理が完了する。
[0416] 次に、後工程として洗浄が行われる。この洗浄では、まず開閉弁 4027が閉じるとと もに、開閉弁 4028及び供給弁 4024が開いて高純度 C02が混合分散部 5060に供 給される。これにより、めっき槽 5061に残留するめつき分散体の排出が行われる。そ の後、供給弁 4034が開くとともに液ポンプ 4032及び加熱部 4033が駆動し、洗浄液 タンク 4031から洗浄液が混合分散部 5060に供給される。混合分散部 5060におい て、超臨界状態の C〇2と洗浄液とが混合および分散された後、めっき槽 5061に供 給される。この超臨界状態の C02と洗浄液との混合分散体により、被めつき材 W及 びめつき槽 5061が洗浄される。被めつき材 Wが十分に洗浄されると、めっき槽 5061 内を洗浄した C02及び洗浄液の分散体は、めっき液分離槽 4065に排出されて CO 2と洗浄液とに分離される。洗浄液は、排出切換弁 4067を介して廃液タンク 4069に 排出される。分離された C〇2は、 C02再生装置 4071を介して再生された後、 C02 タンク 4021に供給される。以上により、めっき後の洗浄が完了する。
[0417] 第 7の実施形態によれば、以下のような効果を得ることができる。
[0418] (46)本実施形態では、 C02及びめつき液を分散状態にするために、フッ素系化合 物からなる分散促進剤が用いられる。このため、めっき分散体の分散保持時間が短く 、めっき槽 5061から排出されるめつき分散体は、めっき液分離槽 4065に停留してい る間に、 C02及びめつき液の比重差により、積層状態となつて自然に分離する。従つ て、本実施形態のめっき装置では、従来とは異なり C02のすベてを気化させて分離 する必要がないことから、加熱及び保存状態に戻すための圧縮 (圧縮又は冷却)が 不要である。このため、省エネルギーで、且つ C〇2を効率よく再生することができる。
[0419] また、実験結果では、分散促進剤としてフッ素系化合物を用いためっき処理は、分 散促進剤として従来の炭化水素系の界面活性剤を用いためっき処理に比べてより平 坦な皮膜を形成することができた。従って、本実施形態のめっき処理によって、良好 なめつきを得ることができる。
[0420] (47)本実施形態では、めっき液、超臨界状態の C〇2、及び分散促進剤を含むめ つき分散体を用いて、めっき槽 5061でめつき処理が行われる。従って、めっき処理で 使用されるめつき分散体の超臨界状態の C02によってめっき液の拡散がよくなること から、めっき液の被めつき材 Wへの付き回りがよくなり、良好なめっきを行うことができ る。また、本実施形態では、めっき分散体を、めっき槽 5061に継続して供給しながら めっきが行われる。このため、めっき分散体中に溶解した水素及び被めつき材 Wの表 面から剥離した不純物が、速やかにめっき槽 5061から排出され、これらの不純物が 被めつき材 Wの表面に再付着することを極力回避することができる。従って、被めつ き材 Wに残留する水素が原因となっていたピンホールの発生を抑制して、被めつき 材 Wに良好なめっきを行うことができる。また、拡散流体として超臨界状態の C〇2が 用いられる。この C02は、めっきの副反応によって発生した水素を溶解することから、 ピンホールの発生を抑えて、いっそう良好なめっきを行うことができる。
[0421] (48)本実施形態では、めっき液分離槽 4065において分離された C〇2は、冷却部 4070を介して C02再生装置 4071に導入される。冷却部 4070では、めっき液分離 槽 4065において超臨界状態で分離された C〇2を冷却して、気相及び液相を含む 2 相状態とする。 C02再生装置 4071は、 2相状態の C02のうち、再生管を介して液相 の C〇2を C02タンク 4021に戻す。このため、めっき処理において副反応により生成 された水素ガス、酸素ガスの不純物を含む気相の C〇2を排気することができる。また 、めっき液分離槽 4065で分離された超臨界状態の C02が、この液相の C02よりも 比重の大きいめっき添加物などの不純物を含む場合には、その不純物を沈殿して除 去すること力 Sできる。従って、不純物がより多く除去された C〇2を C〇2タンク 4021に 戻すことができる。
[0422] (49)本実施形態では、カロ熱部 4023, 4033, 4043におレヽて、めっきネ曹 5061に供 給される C〇2、洗浄液、分散促進剤が加熱され、冷却部 4070において、めっき槽 5 061から排出されためつき分散体が冷却される。これら冷温及び加温は、 1台のヒート ポンプで行われている。従って、めっき装置の加熱及び冷却をいつそう省エネルギー で効率よく行うことができる。
[0423] 第 7の実施形態は以下のように変更されてもょレ、。
[0424] 本実施形態にぉレ、ては、めっき液の成分が析出しなレ、温度(例えば 50°C程度)で 、めっき液と超臨界 C〇2とを分離するため、めっき液分離槽 4065において C02が 超臨界状態のままで分離されている。超臨界流体の臨界温度以下でも、めっき液の 成分が析出しないようなめっき液が用いられる場合には、超臨界流体が、臨界状態 力 脱した状態で、めっき液と分離されてもよい。具体的には、めっき槽 5061とめつ き液分離槽 4065との間に、冷却部が設けられる。この冷却部により、めっき分散体に 含まれる超臨界状態の C〇2が、液相及び気相の 2相状態に冷却される。そして、め つき液分離槽 4065において、この 2相状態の C〇2がめつき液から分離される。この 場合、液相の C〇2が、めっき液分離槽 4065から取り出された後に C02タンク 4021 に戻されてもよい。
[0425] 本実施形態においては、分散促進剤は、その大部分が C〇2に溶解した状態で C〇 2とともに還流されて再利用されている。これに限らず、分散促進剤の種類によっては 、分散促進剤が C〇2再生装置 4071で分離されてもよい。この場合、分散促進剤が C02再生装置 4071の底部より回収されて再利用されてもよい。
[0426] また、分散促進剤は、その混合比率によっては、 C02とは異なる分散促進剤の層と してめつき液分離槽 4065において分離されてもよい。分散促進剤は、めっき液よりも 重レ、ことから、めっき液よりも下層に分離される。この場合、分散促進剤が、めっき液 及び C02とから分離されて再利用されてもよい。分散促進剤のほとんどが C〇2に溶 解していることから、分離される分散促進剤の量は少ない。従って、めっき液分離槽 4 065の形状をすり鉢状にすることにより、少量の分散促進剤を効率よくめつき液分離 槽 4065から排出することができる。更に、分散促進剤が省略されてもよい。
[0427] 本実施形態においては、めっき槽 5061に一対の電極が設けられ、めっき槽 5061 内で電解めつきが行われている。これに代えて、めっき槽 5061内で無電解めつきが 行われるように、めっき液タンク 4051に無電解めつき液が収容されてもよい。
[0428] 本実施形態においては、拡散流体として超臨界状態の C〇2が用いられている。こ れに限らず、亜臨界状態の C〇2が用いられてもよい。更に、 C〇2に限らず、例えば 第 1の実施形態に記載されたように他の流体が用いられてもよい。
[0429] 本実施形態のめっき装置の構成の少なくとも一部が、第 1〜第 6のいずれか一つの 実施形態のめっきに適用されてもよい。 [0430] (第 8の実施形態)
以下、本発明をめつき装置に具体化した第 8の実施形態を図 34及び図 35に基づ いて説明する。本実施形態では、第 1の実施形態の C02を拡散流体として用いて電 解めつき処理を行うめっき装置について説明する。第 8の実施形態において、第 6の 実施形態と同一の構成部材については第 6の実施形態と同様の符号を付し、その詳 細な説明については省略する。
[0431] 図 34に示すように、本実施形態のめっき装置は、 C〇2タンク 4021、高純度 C02タ ンク 4026、洗浄液タンク 4031、分散促進剤タンク 4041、めっき液タンク 6051、混 合分散部 6060、めっき槽 6061、及びめつき液分離槽 6065を備えている。めっき槽 6061には、供給配管及び排出配管が接続されている。めっき液は、供給配管によつ てめつき槽 6061に連続的に供給されるとともに、排出配管によってめつき槽 6061か ら連続的に排出される。
[0432] めっき液タンク 6051は、めっき皮膜を形成する金属原子を含む水溶液(めっき液) を収容している。本実施形態のめっき液の比重は、 1. 0〜: 1. 3 (g/cm3)程度である 。めっき液タンク 6051は加熱及び保温手段を備え、めっき液を所定の温度まで加熱 して保温する。めっき液タンク 6051は、混合分散部 6060にめつき液供給管を介して 接続される。
[0433] めっき液タンク 6051は、液ポンプ 6052、加熱部 6053を介して上流絶縁部 6055 に接続されている。液ポンプ 6052は、めっき液を加圧する。この液ポンプ 6052が駆 動すると、めっき液タンク 6051からのめつき液が上流供給管を介して上流絶縁部 60 55内に供給される。
[0434] 本実施形態では、絶縁方式としてスプレイ &トレイ方式が用いられ、図 35 (a)に示 すよう ίこ、上流絶縁咅 B6055fま筐体 6550を有してレヽる。この筐体 6550ίまめつきネ曹 60 61及びめつき液分離槽 6065と同等の耐圧容器であり、筐体 6550の内表面は耐食 性絶縁材料で覆われている。この絶縁材料として、例えば、 PEEK (ポリエーテルエ ーテルケトン; poly Ether Ether Ketone )、 PTFE (ポリテトラフルォロエチレン; polyte trafluoroethylene )、及び PFA (四フッ化工チレン'パーフルォロアルコキシエチレン 共直合 fej脂; retrafluoroethvlene perfluoroalkoxvvinyl ether copolymer)力 S用レヽりれ る。
[0435] 上流絶縁部 6055の上部には、上流供給管 6551が接続されている。上流絶縁部 6 055と上流供給管 6551とは耐食性絶縁材料を介して接続されており、相互に絶縁さ れている。上流供給管 6551は、上流絶縁部 6055内まで延長されている。上流供給 管 6551には、上流絶縁部 6055内において、めっき液タンク 6051からのめつき液を 断続的に滴下させるための複数の孔が形成されている。
[0436] 本実施形態の上流絶縁部 6055には、複数の棚段 6550aが、所定の間隔お置い て垂直方向に積層されて筐体 6550内に配置されている。各棚段 6550aは、網状の 棚段又は多数の貫通孔が形成されたトレイ板で構成されている。上流絶縁部 6055 の上部には上流供給管 6551が配置されており、該上流供給管 6551からめつき液 が各棚段 6550aに滴下される。上流絶縁部 6055内の上部には、上流絶縁部 6055 の内部における上方空間に高圧の C02ガスを封入するために、 C02タンク 4021に 接続された C02ガス導入管がバルブを介して接続されている。これにより、めっき液 の流れが断続的となり、電気的導通の遮断が図られる。
[0437] 上流絶縁部 6055の下部には下流供給管 6554が接続されている。ここで、上流絶 縁部 6055にめつき液を滴下する上流供給管 6551と、下流供給管 6554とは電気的 に絶縁されている。即ち、上流絶縁部 6055の筐体 6550は、めっき液が断続的に滴 下される範囲の一部において、上流供給管 6551と、筐体 6550の排出管となる下流 供給管 6554との電気的導通を遮断する耐食性絶縁部材を有する。下流供給管 655 4には、図 34に示すように供給弁 6054が設けられており、この供給弁 6054の開閉 が制御されることにより、めっき液の混合分散部 6060への供給又は供給の停止が行 われる。めっき液供給管は、めっき液の成分が析出しない温度以上に常時保温され ている。
[0438] 混合分散部 6060では、 C02の臨界点以上の温度圧力条件で、めっき液、 C02及 び第 1の実施形態と同様の分散促進剤がめっき処理に適した比率で混合され、該混 合された液体が攪拌されてめつき分散体が調製される。本実施形態の混合分散部 6 060は、上流に位置する混合部と、該混合機に接続されて下流に位置する分散部と 力、ら構成されてレヽる。混合部では、供給弁 4024, 4034, 4044, 6054のうちの 2つ 以上が開くと、洗浄液を含む洗浄分散体、又はめつき液を含むめっき分散体が調製 される。分散部では、混合部で調製されためつき分散体をめつきに適したものとする ために、めっき分散体の成分が分散状態となる。分散部の内部には、永久磁石に取 り付けられたメッシュ付きのロータが配置され、分散部の外部には、コイルが取り付け られたステータが配置されている。このステータに流れる電流の制御によって磁場が 発生し、この磁場の強さによってロータの回転速度及び回転方向が制御される。この 回転するメッシュ付きのロータにより、混合部から供給されためつき混合液がせん断さ れ、めっきに適した分散体が調製される。
[0439] 混合分散部 6060は、めっき槽 6061に接続されている。このめつき槽 6061では、 混合分散部 6060から供給されるめつき分散体を用いためっきが行われる。このめつ き槽 6061には、めっきが行われる被めつき材 Wが収容されている。めっき槽 6061の 内部には、一対の電極が配設されている。これらの電極のうちのマイナス電極は、被 めっき材 Wに接続されている。更に、めっき槽 6061には、図示しないブロックヒータ が設けられている。このブロックヒータを用いて、 C〇2の超臨界状態を維持するように 、めっき槽 6061内の液温が制御されている。めっき槽 6061内の液温は、めっき液の 成分が析出しなレ、温度(例えば 50°C程度)に設定されてレ、る。
[0440] めっき槽 6061は、超臨界状態の C〇2が供給されることから、この高圧及び強酸性 に耐えられる耐圧性及び耐腐食性を有する金属材料からなる。この金属材料として は、 ί列えば、 SUS316、 SUS304、モネノレ 400 (商標名)などのニッケノレ ί同合金、イン コネル (商標名)などのニッケル基耐熱合金等の導電性材料が挙げられる。
[0441] めっき槽 6061は、排出管を介してめつき液分離槽 6065に接続されている。このめ つき液分離槽 6065では、めっき槽 6061で使用され、比較的短時間で 2液に分離し て相互に溶解しなレ、 2液相流が、分散促進剤を含む超臨界〜亜臨界の状態の C〇2 とめつき液とに、これらの比重差を用いて分離される。めっき液分離槽 6065は、絶縁 装置としても機能する。図 35 (b)に示すように、めっき液分離槽 6065は筐体 6650を 有している。この筐体 6650は、めっき槽 6061と同様に、耐圧性及び耐食性が高い 金属材料を用いて形成されている。この金属材料としては、例えば、 SUS316、 SU S304、モネル 400 (商標名)などのニッケル銅合金、インコネル(商標名)などのニッ ケノレ基耐熱合金等の導電性材料が挙げられる。筐体 6650の内壁は、耐食性が高い 絶縁材料により被覆されている。本実施形態では、この絶縁材料として、上流絶縁部 6055で用いられた絶縁材料と同じ材料が用いられている。
[0442] 筐体 6650の上部には、絶縁部材を介して混合液供給管 6651が接続されており、 筐体 6650と混合液供給管 6651とが絶縁されている。この混合液供給管 6651は、 筐体 6650内まで延長されている。混合液供給管 6651には、筐体 6650内において めっき槽 6061からの 2液相流をなすめつき液を断続的に滴下させるための複数の孔 が形成されている。
[0443] 筐体 6650内において混合液供給管 6651の下方には、複数の棚段 6650aが層状 に設けられている。本実施形態では、棚段 6650aは筐体 6650の内壁と同じ合成樹 脂材料を用いて形成されている。棚段 6650aには、上流絶縁部 6055の棚段 6550a と同様に、 目が細かい網状の棚段、又は多数の貫通孔が形成されている。このため、 混合液供給管 6651から放出され、 2液相流をなすとともに導電性を有し、且つ比重 が 1. 3程度であるめつき液は、棚段 6650aを通過する際に液滴状の断続流となった 後に、筐体 6650の下部に到る。超臨界状態の C02の比重は 0. 6程度であることか ら、 C〇2は筐体 6650の上方へ移動する。
[0444] 筐体 6650の最上部には、冷却部 4070を介して C〇2再生装置 4071に接続される C02排出管 6652が設けられている。最下部の棚段 6650aより下方の筐体 6650の 底部には、めっき液排出部 4066に接続されためつき液排出管 6654が設けられてい る。本実施形態で用いられる分散促進剤を含む C02の比重は、 1. 0 (g/cm3)よりも 小さぐめっき液の比重よりも小さい。従って、滴下された 2液相流は、分散促進剤を 含む超臨界〜亜臨界の状態の C02からなる上層と、めっき液からなる下層とに分離 される。これらに対応して、 C〇2排出管 6652はめつき液排出管 6654よりも上方に設 けられ、上層に分離された C02が C02再生装置 4071に排出される。めっき液排出 管 6654は、筐体 6650の底部に分離されためつき液をめつき液排出部 4066に排出 する。
[0445] めっき液排出管 6654は、耐食性絶縁部材を介して筐体 6650に接続されている。
上述のように混合液供給管 6651及びめつき液排出管 6654は絶縁部材を介して筐 体 6650に接続され、筐体 6650の内壁には耐食性絶縁部材が被覆され、且つ棚段 6550aが合成樹脂材料で形成されている。従って、棚段 6550aによって 2液相流が 液滴状となる範囲において、筐体 6650は、混合液供給管 6651及びめつき液排出 管 6654に対して電気的導通が遮断された絶縁状態となる。
[0446] 本実施形態では、混合液供給管 6651が絶縁部材により形成される場合、めっき槽 6061とめつき夜分離ネ曹 6065と力 S絶縁されること力、ら、めっき夜分離ネ曹 6065とめつき 液排出管 6654とが絶縁されていなくても、電気的導通が遮断された絶縁状態が形 成される。
[0447] 更に、流体の抵抗が高い C〇2、洗浄液 (イオン交換水や純水)、及び分散促進剤 の各供給ラインは、混合分散部 4060の手前の配管でのみ絶縁が施される。
[0448] めっき液排出管 6654には流量調整弁 6655が設けられ、 C02排出管 6652には 流量調整弁 6653が設けられている。これにより、めっき液分離槽 6065に供給される 流量に対応して、めっき液と C〇2の排出量を制御調整し、めっき液の位置レベルの 定常状態を維持することができる。
[0449] めっき液排出管 6654が接続されているめっき液排出部 4066は、図 34に示すよう に、排出切換弁 4067を介して、めっき液再生装置 4068又は廃液タンク 4069に接 続されている。めっき液が循環して流れる部分には、すべて所定の温度(本実施形 態では 40°C)に保温されている。
[0450] めっき液分離槽 6065から C02再生装置 4071に接続される配管には、冷却部 40 70力 S設けられてレヽる。この冷却部 4070は、カロ熱部 4023, 4033, 4043とともに、ヒ ートポンプの冷温熱源を用いて熱交換を行う。
[0451] めっき後の C〇2の再生は、 C〇2の相変化及び密度を操作して C02への溶解度差 を利用することにより、種々の物質が C02から分離及び除去されて行われる。 C02 が臨界状態を脱して気液の 2相になると、超臨界時に溶解していた種々の物質が C 02に溶解することができず、ガスとして気相に、また、ある成分は液相を形成したり、 析出して固体となったりして沈降する。 C02再生装置 4071の底部は漏斗状になつ ており、 C02から分離された固体及び液体は、濾過及びデカンテーシヨン法によって C02から除去される。 C02再生装置 4071の中央部には、 C02タンク 4021に連通 する再生管が接続されている。この再生管には、 C〇2に含まれている有機物を除去 する活性炭が充填されたカラムと、図示しない吸着脱水材が充填されて C〇2に溶存 してレ、る水分を除去するカラムとが設けられてレ、る。
[0452] 次に、上述しためっき装置を用いためっき方法について、図 34及び図 35を参照し て説明する。
[0453] めっき処理の開始時には、供給弁 4024, 4044, 6054力 S開く。これにより、 C02タ ンク 4021力らの C〇2、分散促進剤タンク 4041からの分散促進剤、及びめつき液タ ンク 6051からのめつき液力 S、混合分散部 6060に供給される。
[0454] このとき、めっき液タンク 6051から混合分散部 6060に供給されるめつき液は、上流 絶縁部 6055を通過する。この場合、上流絶縁部 6055の内部には高圧 C〇2ガスが 封入されている。そして、上流絶縁部 6055内を滴下しためっき液は、上流絶縁部 60 55の底部の下流供給管 6554から混合分散部 6060に導入される。具体的には、上 流絶縁部 6055の上部に設けられた上流供給管 6551を介してめつき液が上流絶縁 部 6055に供給される。このめつき液は、上流絶縁部 6055内の棚段 6550aの網状の 目又は多数の貫通孔を順次通過して滴下される。これにより、上流絶縁部 6055にお いて、めっき液が液滴状に分断されて電気的導通が遮断される。この場合、この上流 絶縁部 6055の筐体 6550も絶縁材料で形成されてレ、ることから、配管及び流体の電 気的導通が同時に遮断される。筐体 6550の下方に至っためっき液は、一時的に滞 留して、下流供給管 6554を介して混合分散部 6060に供給される。
[0455] 流体自身からの漏電が生じにくいと判断される、めっき液以外で導電性が低レ、(比 抵抗の大きレ、)流体が流れる C02供給ライン、洗浄液 (イオン交換水や純水)供給ラ イン、及び分散促進剤供給ラインにおいても、上述のように、混合分散部 6060に接 続される手前の配管に絶縁が施されることにより、めっき槽 6061の手前のラインにお いて絶縁が確実に行われる。さらに、必要に応じて各ラインに上流絶縁部 6055が設 置されてもよい。
[0456] 混合分散部 6060では、混合部において、超臨界状態の C02、分散促進剤及び めっき液が混合される。続いて分散部において、攪拌子が回転する。これにより、 CO 2、分散促進剤及びめつき液の混合物からめっき分散体が調製されて、めっき槽 606 1に供給される。このとき、混合分散部 6060において調製されるめつき分散体が、め つき槽 6061を定めた組成及び流量で流れるように、各液ポンプ 4022, 4042, 405 2が制御される。
[0457] 本実施形態では、めっき槽 6061の内部に配設された電極に電圧を印加して電解 めっきが行われる。そして、めっき処理に使用されためつき分散体 (混合分散体)は、 めっき槽 6061から流出する頃には、分散体構造が壊れて C02とめつき液との 2液相 流となりつつ、めっき槽 6061から排出され、めっき液分離槽 6065に流入する。
[0458] 具体的には、めっき槽 6061から排出された 2液相流は、筐体 6650の混合液供給 管 6651を介してめつき液分離槽 6065に流入される。この場合、 2液相流は、筐体 6 650の混合液供給管 6651の複数の孔から放出され、めっき液は最上部の棚段 665 Oaに落下する。棚段 6650aの上面に落下しためっき液は、棚段 6650aの網状の目 又は貫通孔によって液滴状に分離され、棚段 6650aを通過して滴下される。このよう にめつき液が滴下されることにより、めっき液が分断されて電気的導通が遮断される。 このとき、上述のように、筐体 6650において、内壁及び棚段 6650aが絶縁材料で形 成されるとともに、混合液供給管 6651及びめつき液排出管 6654が絶縁部材を介し て筐体 6650に接続されている。このため、配管の電気的導通と同時にめつき液の電 気的導通を遮断することができる。
[0459] 混合液供給管 6651から放出され、 2液相流をなすとともに導電性を有し、且つ比 重が 1. 3程度であるめつき液は、棚段 6650aを通過する際に液滴状の断続流となつ た後に、筐体 6650の下部に到る。そして、断続的に滴下が繰り返されて最下部の棚 段 6650aを通過しためっき液は、筐体 6650の底部に到達する。このようにして、めつ き液が筐体 6650の底部に滞留する。超臨界状態の C〇2は、混合液供給管 6651か ら放出された後、筐体 6650の上方へ移動する。そして、 C02は筐体 6650の上部に 滞留する。めっき液分離槽 6065は配管に対して十分な容積を持っており、めっき排 液を所定時間滞留させることができる。めっき液排出管 6654には流量調整弁 6655 が設けられ、 C〇2排出管 652には流量調整弁 6653が設けられていることから、めつ き液と C〇2との排出流量を絞ることにより、分離に十分な滞留時間を確保するように 該時間を調整することができる。めっき分散体に含まれている分散促進剤は少量で あることから、 C02に溶存する。めっき液排出管 6654の流量調整弁 6655、及び CO 2排出管 6652の流量調整弁 6653により、めっき液と C02との排出量が制御され、 めっき液の位置レベルの定常状態が維持される。
[0460] めっき液分離槽 6065の上層に分離した C〇2は、 C〇2排出管 6652を介して冷却 部 4070及び C02再生装置 4071に供給される。冷却部 4070において、超臨界状 態の C〇2が冷却されて気液 2相状態となる。 C〇2再生装置 4071では、 C02が超臨 界から液状になることにより、 C〇2に溶解していためつき反応の副生成物が固体で 析出したり、水素ガス、酸素ガスなどのめつき反応時の副生成ガスが C〇2ガスと共に 排気されたりすることができる。そして、不純物が除去された C02は、再生管を介して C02タンク 4021に戻される。
[0461] めっき液分離槽 6065の下層に分離されためつき液は、めっき液排出管 6654を介 して、めっき液排出部 4066及びめつき液再生装置 4068に供給される。
[0462] 以上のように、各ポンプを駆動して、調製されためつき分散体が連続的にめっき槽 6 061に供給され、所定の膜厚を形成するのに要する時間のめっき処理が継続される 。このめつき処理の完了時には、電極への電圧の印加、及び液ポンプ 4042, 6052 の馬区動力 亭止し、供給弁 4024, 4044, 6054力 S閉じる。これにより、 C〇2タンク 402 1、分散促進剤タンク 4041、及びめつき液タンク 6051からの C02、分散促進剤及び めっき液の混合分散部 6060への供給が停止される。以上により、めっき処理が完了 する。
[0463] 次に、後工程として洗浄が行われる。この洗浄では、開閉弁 4027が閉じるとともに 開閉弁 4028及び供給弁 4024が開いて、高純度 C02が混合分散部 6060に供給さ れる。これにより、めっき槽 6061に残留するめつき分散体の排出が行われる。その後 、供給弁 4034力 S開くとともに、液ポンプ 4032及び加熱部 4033が駆動し、洗浄液タ ンク 4031から洗浄液が混合分散部 6060に供給される。混合分散部 6060では、超 臨界状態の C〇2と洗浄液とが混合及び分散された後、めっき槽 6061に供給される 。この超臨界状態の C〇2と洗浄液との混合分散体により、被めつき材 W及びめつき 槽 6061が洗浄される。その後、被めつき材 Wが十分に洗浄されると、めっき槽 6061 内を洗浄した C02及び洗浄液の分散体は、めっき液分離槽 6065に排出され、 CO 2が洗浄液と分離される。洗浄液は、排出切換弁 4067を介して廃液タンク 4069に排 出される。分離された C〇2は、 C02再生装置 4071を介して再生されて C〇2タンク 4 021に供給される。以上により、めっき処理後の洗浄が完了する。
[0464] これらの処理シーケンスは、めっきの前工程にも応用される。供給薬液のラインに 塩酸、硫酸、アルカリ脱脂浴ラインが増設されることで、アルカリ脱脂、電解脱脂、酸 洗い、酸活性処理等の一連の処理を行うこともできる。この場合、めっき装置に被め つき材 Wが設置され、前処理、(多段)めっき、後処理が順次行われる。
[0465] 第 8の実施形態によれば、以下のような効果を得ることができる。
[0466] (50)本実施形態では、めっき液の供給配管に上流絶縁部 6055が設けられる。上 流絶縁部 6055の筐体 6550は耐圧容器であり、その内表面は耐食性絶縁材料で覆 われている。上流絶縁部 6055と上流供給管 6551とは、耐食性絶縁材料を介して接 続されることにより相互に絶縁されている。そして、めっき液は各棚段 6550aにより滴 下される。よって、めっき液を断続的に滴下させることによりめっき液の電気的導通を 遮断し、更にこの領域において耐食性絶縁材料により配管の電気的導通を遮断する こと力 Sできる。
[0467] また、めっき液分離槽 6065においては、混合液供給管 6651及びめつき液排出管 6654が絶縁部材を介して筐体 6650に接続され、且つ筐体 6650の内壁は縁材料 で被覆されているとともに、棚段 6650aが合成樹脂材料で形成されている。従って、 棚段 6650aによって 2液相流が液滴状となる範囲において、筐体 6650は、混合液 供給管 6651及びめつき液排出管 6654に対して電気的導通が遮断された絶縁状態 となる。この場合、 2液相流が滴下されることから、流体と配管との電気的導通の遮断 を同時に行うことができる。従って、上流絶縁部 6055及びめつき液分離槽 6065は、 めっき液による導通と配管による導通とを同時に遮断することから、電圧が印加され るめつき槽 6061からの漏洩電流を抑制することができる。よって、めっき時に大電流 が流れるめっき装置の安全と計装を確保し、漏洩電流による配管中の金属の析出汚 染、配管の腐食などを抑制することができる。
[0468] (51)本実施形態において、めっき処理で使用されるめつき液は、めっき処理後に は再生されてめつき液タンク 4051に戻るように構成された循環配管を流れる。循環 配管の場合、全体が電気的にフローティングされていても電流が流れる可能性があ る。従って、上流絶縁部 6055及びめつき液分離槽 6065は、循環配管における電気 的導通を遮断し、電圧が印加されるめつき槽 6061からの漏洩電流を抑制することが できる。
[0469] (52)本実施形態では、めっき槽 6061の上流及び下流に、上流絶縁部 6055及び めっき液分離槽 6065が設けられている。このため、めっき槽 6061は、上流及び下流 の両方で電気的導通が遮断されることから、安全にめっき電流をめつき槽 6061に印 加することができ、外界からの電気ノイズも除去することができる。従って、めっき装置 6061の配管への漏電電流を効率的に抑制することができる。
[0470] (53)本実施形態では、めっき槽 6061において、拡散流体として超臨界状態の CO 2を用いためっき処理が行われる。超臨界状態の C02によってめっき液の拡散が促 進されること力 、めっき皮膜の被めつき材 Wへの付き回りがよくなり、良好なめっきを 行うことができる。超臨界状態を維持するためには高圧にする必要があるので、この 圧力に耐えることができる金属材料を用いてめっき槽 6061を構成する必要がある。 そして、このめつき槽 6061において電解めつき処理が行われる。この場合、めっき液 を含む流体に電圧が印加されることから、流体を介して漏洩電流が生じることがある。 この場合、めっき槽 6061に接続される配管の一部に、絶縁手段として上流絶縁部 6 055及びめつき液分離槽 6065が設けられていることから、配管における漏洩電流を 抑制することができる。よって、循環配管中の金属の析出、配管の腐食などを抑制す ること力 Sできる。
[0471] (54)本実施形態では、混合分散部 6060において形成されためつき分散体がめつ き槽 6061に連続的に供給された状態でめっき処理が行われる。このため、めっきの 副反応によって発生する副生成物及び被めつき材 Wの表面から剥離した不純物を 速やかにめっき槽 6061から排出することができ、それらの被めつき材 Wの表面への 再付着を抑制することができる。特に、拡散流体として超臨界状態の C02が用いら れることから、めっきの副反応によって発生する水素を C〇2に溶解させて排出するこ とができる。従って、残留水素によって生じるピンホールの発生を抑制して、良好なめ つきを行うことができる。このように、めっき液が連続的に流れる場合においても、流体 と配管との電気的導通を同時に遮断することにより漏洩電流を抑制しながら、めっき 処理を実現することができる。連続にめっき液が流れた状態でめっきが実施されるこ とから、めっき液の温度、組成 (濃度)、及び流量の制御を確実に行うことができる。更 に、めっき槽 6061の内部で発生する微粒子を迅速にめっき槽 6061外に排出するこ とにより、めっき槽 6061内が汚染され難ぐ精密なめっきを確実に実施することがで きる。
[0472] (55)本実施形態では、混合液供給管 6651から放出され、 2液相流をなすとともに 導電性を有し、且つ比重が 1. 3程度であるめつき液は、棚段 6650aを通過する際に 液滴状の断続流となった後に、筐体 6650の下部に到る。そして、断続的な滴下が繰 り返されて最下部の棚段 6650aを通過しためっき液は、筐体 6650の底部に到達す る。めっき液は筐体 6650の底部に滞留する。一方、超臨界状態の C〇2は、混合液 供給管 6651から放出された後、筐体 6650の上方へ移動する。 C〇2は筐体 6650 の上部に滞留する。以上により、めっき分散体は、分散促進剤を含む C02とめつき 液とに分離される。従って、めっき液及び C02を分離させながら、配管の電気的導通 を遮断するとともにめっき液の電気的導通を遮断することができる。
[0473] (56)本実施形態では、 C02及びめつき液を分散状態にするために、分散促進剤 としてフッ素系化合物が用いられる。このため、めっき槽 6061から排出されて相互に 溶解しなレ、 2液相流を、めっき液分離槽 6065に滞留させ、めっき液と C02との比重 差により分離させて積層状態とすることができる。従って、この積層状態を活かしてめ つき液を回収し、再生して、効率的に循環させることができる。特に、実験結果では、 分散促進剤としてフッ素系化合物を用いためっきは、分散促進剤として従来の炭化 水素系の界面活性剤を用いためっきに比べてより平坦な皮膜を形成することができ た。従って、良好なめっき皮膜を得ることができる。
[0474] (57)めっき後の後工程として洗浄が行われる際、まず、開閉弁 4027が閉じるととも に、開閉弁 4028及び供給弁 4024が開いて高純度 C02が混合分散部 6060に供 給される。これにより、めっき槽 6061に残留するめつき分散体の排出が行われること から、 C〇2により高価な貴金属めつき液を回収することができ、外部への持ち出し損 失をゼロに近づけることが可能となる。 [0475] 第 8の記実施形態は以下のように変更されてもょレ、。
[0476] 本実施形態では、めっき処理が想定されているが、これに限られるものではなぐ本 実施形態のめっき装置は、通電を行いながら反応を行う処理にも適用され得る。例え ば、めっき装置は、アルカリ電解脱脂、及び電圧の印加による洗浄処理工程にも適 用され得る。また、本実施形態のめっき装置の構成の少なくとも一部が、第 1〜第 7の いずれか一つの実施形態のめっきに適用されてもよい。
[0477] 本実施形態においては、拡散流体として超臨界状態の C〇2が用いられている。電 気的に導電性があるめつき液が用いられる場合には、拡散流体は必須でない。また 、拡散流体が用いられる場合にも、超臨界状態の C02に限定されるものではなぐ亜 臨界状態の C〇2が用いられてもよいし、第 1の実施形態に記載されたように他の流 体が用いられてもよい。
[0478] 本実施形態では、めっき槽 6061の上流と下流との両方に、上流絶縁部 6055及び めっき液分離槽 6065が設けられている。これに限らず、上流絶縁部 6055及びめつ き液分離槽 6065のいずれか一方のみが設けられても、電気的導通を遮断すること ができる。
[0479] 本実施形態においては、上流絶縁部 6055の筐体 6550の内壁及びめつき液分離 槽 6065の筐体 6650の内壁を被覆する合成樹脂として、 PEEK:、 PTFE、 PFAが例 示されている力 S、これらに限られるものではない。例えば、めっき液の PH及び含有添 加物の種類、 C〇2の温度圧力の条件によっては、合成樹脂として PP (ポリプロピレン )、 PE (ポリエチレン)が用いられてもよい。この場合には、めっき装置の構成を安価 に実現することができる。
[0480] 本実施形態においては、めっき液分離槽 6065の筐体 6650の内壁と棚段 6650a とが同じ絶縁材料で形成されている。筐体 6650の内壁を被覆する材料及び棚段 66 50a形成する材料は、これに限られるものではなレ、。例えば、棚段 6650aが金属材 料で形成されてもよい。この場合、棚段 6650aが、絶縁材料又は筐体 6650の内壁よ りもイオン化傾向が低い耐食性材料で被覆されることにより、棚段 6650aの表面での 金属イオンの溶出を抑制することができ、棚段 6650aの腐食を抑制することができる [0481] 本実施形態においては、上流絶縁部 6055と、めっき液分離槽 6065とが設けられ てレヽる。これに代えて、 ί列えば、、ネ朋段 6650aとネ朋段 6650aとの間の雷体 6650力 S絶縁 材料で形成されてもよい。また、めっき液を蓄積するバッファ部が設けられ、このバッ ファ部に一時的に蓄積されためつき液が間欠的に流されてもよい。具体的には、バッ ファ部の上流及び下流に、絶縁材料からなる遮断弁が設けられる。そして、下流の遮 断弁が閉じるとともに上流の遮断弁が開くことにより、バッファ部にめっき液が蓄積さ れる。バッファ部にめっき液が蓄積された場合には、上流の遮断弁が閉じるとともに 下流の遮断弁が開くことにより、蓄積されためつき液が流される。
[0482] また、図 36に示すように、 2つのノ ッファ部 6101 , 6102力 S設けられ、バッファ部 61 01の上流に絶縁材料からなる遮断弁 6111と、バッファ部 6101とバッファ部 6102の 間に絶縁材料からなる遮断弁 6112とが設けられてもよい。この場合、最初にバッファ 部 6102にめつき液が蓄積された後、遮断弁 6112が閉じて、遮断弁 6111を介して バッファ部 6101にめつき液が蓄積される。バッファ部 6102の内部のめっき液の量が 少ない場合には、遮断弁 6111が閉じるとともに遮断弁 112が開いて、バッファ部 61 01に蓄積されためつき液がバッファ部 6102に供給される。これにより、バッファ部 61 02からめつき液が常に供給された状態で、めっき液の電気的導通の遮断と配管の絶 縁とを行う部分を設けることができる。
[0483] 本実施形態においては、絶縁方式としてスプレイ &トレイ方式が用いられている。
絶縁方式はこれに限られるものではなぐ水車方式が用いられてもよい。例えば、図 3 7 (&)及び( ))に示すように、水車方式では、トレイの代わりに水車 6700が設けられる 。この水車 6700では、棚段(6550a、 6650a)と同様に、めっき液が液滴状に分断さ れて電気的導通が遮断される。ここで、図 37 (a)は、このような水車方式がめっき槽 6 061の上流絶縁部 6055に適用され、めっき液の電気的導通が遮断される場合の構 成を示す。この場合には、図 35 (a)の場合と同様に、上流絶縁部 6055内に C〇2ガ スが封入されている。図 37 (b)は、水車方式がめっき液分離槽 6065に適用され、め つき液の電気的導通が遮断される場合の構成を示す。この場合には、めっき液分離 槽 6065の上部の C02排出管 6652から C〇2が排出される。
[0484] 本実施形態においては、分散促進剤は C〇2に溶解している状態で C〇2とともに還 流して再利用される。分散促進剤の種類によっては、 C02再生装置 4071で分離さ れ得る。この場合、 C02再生装置 4071の底部より回収されて再利用されてもよい。
[0485] また、分散促進剤は、その混合比率によっては、めっき液分離槽 6065において C 02の層とは独立して分散促進剤の層として分離する場合がある。分散促進剤がめつ き液よりも重い場合、分散促進剤はめつき液よりも下層に分離する。この場合、分散 促進剤は、めっき液及び C〇2から分離されて再利用されてもよい。例えば、水車方 式が用いられためっき液分離槽 6065においては、図 38に示すように、めっき液排出 管 6654の周囲に沈殿物溜り部 6800が設けられてもよい。分散促進剤の分離量が 少ない場合には、めっき液分離槽 6065がすり鉢状形状に形成されることにより、沈 殿物溜り部 6800を用いて少量の分散促進剤を効率よく分離することができる。この 場合も、めっき液の滴下によって、めっき液の電気的導通を遮断することができる。更 に、分散促進剤が省略されてもよい。
[0486] 本実施形態においては、絶縁方式としてスプレイ &トレイ方式が用いられているが 、これに代えて、めっき槽 6061の前段でめっき液の電気的導通が遮断される場合に は、プラグフロー方式が用いられてもよい。このプラグフロー方式では、混合部で、導 電性のめっき液と、 C〇2とが脈流により交互に流されてプラグフロー(栓流)が形成さ れることにより、配管中の流れが断続される。更に、このプラグフロー(栓流)が生じて いる領域で、同時に配管の電気的導通が遮断される。具体的には、図 39に示すよう に、混合部内において、 C02と分散促進剤とが Y字管にて混合され、 C02配管 660 2に導かれる。一方、めっき液は、脈流が生じ易いように単筒のプランジャーポンプ 6 052aを用レ、ることにより、めっき夜酉己管 6603内を流れる。そして、 C〇2酉己管 6602と めっき液配管 6603とは、 T字 Z2重管 6604により結合される。この場合、図 40 (a)に 示すように、脈流が生じためっき液の隙間に C02が揷入される。この結果、めっき液 と C02とが交互になったプラグフロー(栓流)になる。これにより、反応流体の電気的 導通が遮断される。更に、「栓」が形成された後に、絶縁性配管 6605を用いて混合 流体が分散部に導かれる。絶縁性配管 6605として PEEK管又は PTFE管が用いら れ、他の配管には金属性配管(例えば SUS管)が用いられる。また、絶縁性配管 66 05は、その内表面が疎水性であり、めっき液により濡れにくいものが用いられる。これ により、供給配管又は排出配管の少なくとも一箇所において、配管の電気的導通と 同時に反応流体の電気的導通とを遮断することができる。また、このプラグフロー形 式の場合、 C〇2中に脈流が生じためっき液が導入されてもよい。この場合も、図 40 ( b)に示すように、めっき液と C02とが交互になったプラグフロー(栓流)になり、反応 流体の電気的導通を遮断することができる。
実施例
[0487] 次に、実施例及び比較例を挙げて前記実施形態をさらに具体的に説明する。
[0488] <第 1の実施形態 >
(実施例 1)
図 12に示されるステップ S1— 1からステップ S1— 3、ステップ S2— 1からステップ S 2— 4、及びステップ S3— 1を順に行うことにより、ステンレス鋼製セパレータに Auめ つき皮膜を形成した。 Auめっき液として、市販の酸性金めつき浴((株)高純度化学 研究所、 Auメツキ液、 K—24EA)を使用し、拡散流体として超臨界状態の C〇2を使 用した。また、酸性金めつき浴には、フッ素系化合物としての F(CF(CF )CF O) CF(C
F )COOCH CH OCHを C02に対して 0· 5重量%加えた。超臨界 C〇2と酸性金め つき浴との配合比は、体積比率で 7対 3である。 Auめっき処理の条件は、めっき槽の 温度 50°C、めっき槽の圧力 10MPa、電流密度 0. 5A/dm2、及びめつき時間 200 秒である。形成された Au膜の厚さは約 1 a mであった。
[0489] (比較例 1)
拡散流体を省略するとともにめっき槽内を加圧せずにめつき処理工程を行った。そ れ以外は、実施例 1と同様にして、ステンレス鋼製セパレータに Auめっき皮膜を形成 した。
[0490] 各例によってめっき処理が施されたステンレス鋼製セパレータを、走查型電子顕微 鏡で観察した。実施例 1のステンレス鋼製セパレータでは、ピンホールが確認されな 力つた。これに対し、比較例 1のステンレス鋼製セパレータでは、多数のピンホールが 確認された。
[0491] <第 2及び第 3の実施形態 >
(実施例 2) 無電解めつき処理工程では、めっき液としての Pd無電解めつき液 (PdCl :0.01mol/L
、 Ethylendiamine: 0.08mol/L, Na HPO :0.02mol/L、 Thiodiglycollic acid:30mg/L、 pH:
10.6)を用いて、アルミナ製の基体管 1101に対して Pd膜を形成した。基体管 1101に は、予め、感受性化(sensitization)及び活性化(activation)処理を施した後、上記 Pd 無電解めつき液を用いて、 10分間、 Pd無電解めつき処理を施した。その基体管 110 1を、めっき槽 1061に装着した後、そのめつき槽 1061に、 50°C、 12MPaの条件で 、超臨界 C02を供給した。そして、めっき槽 1061内の温度及び圧力が、前記条件に て安定したことを確認した。その後、上記 Pd無電解めつき液 (還元剤を除く)、フッ素 系化合物としてのェチルパーフルォロォクタノート(F(CF ) COOCH CH )、及び還元 剤を、混合分散部 1060へ供給するとともに混合分散部 1060からめつき槽 1061へ 供給することにより、 Pd無電解めつき処理を開始した。電流センサ 1064が基準値と なるまで Pd無電解めつき処理を継続した後、 Pd無電解めつき液 (還元剤を除く)、フ ッ素系化合物、及び還元剤のめっき槽 1061への供給を停止することにより、 Pd無電 解めつき処理を終了した。続いて、 50°C、 12MPaの条件の C〇2を用いて、 Pd無電 解めつき液等を含む残留液を、めっき槽 1061から排出した後、水と C02をめつき槽 1061の内部に流通させることによって、めっき槽 61の内部及び基体管 1101の洗浄 を行った。
[0492] 電解めつき処理工程では、パラジウムめっき浴と、拡散流体としての超臨界状態の C02と、フッ素系化合物としてのェチルパーフルォロォクタノート(F(CF ) COOCH C
H )とを用いて、上記無電解めつき処理工程で形成された Pd膜を陰極として、さらに
Pd膜を形成した。パラジウムめっき浴の組成は、 PdCl :0.10mol /し、 KBr:4.00mol/L、
KNO :0.10mol/L、 H BO :0.49mol/L、 Glycine:0.10mol/Lであり、パラジウムめっき浴 の pHは 6. 6である。また、超臨界状態の C02とパラジウムめっき液との配合比は、 体積比率で 4対 6とした。電解めつき処理工程の条件としては、温度 40°C、圧力 12M Pa、電流密度 1. OA/dm2,及びめつき時間 3分である。得られた Pd膜の表面を走 查型電子顕微鏡で観察した結果、ピンホールの発生は確認されなかった。
[0493] ぐ第 4の実施形態 >
(実施例 3) 第 1工程では、第 1めっき液として Pd無電解めつき液(PdCl :0.01mol/L、 Ethylendia mine:0.08mol/L、 Na HPO :0.02mol/L、 Thiodiglycollic acid:30mg/L、 pH: 10.6)を用 いて、アルミナ製の基体管 2101に対して第 1金属膜としての Pd膜を形成した。基体 管 2101には、予め、感受性化(sensitization)及び活性化(activation)処理を施した 後、上記 Pd無電解めつき液を用いて、 10分間、 Pd無電解めつき処理を施した。その アルミナ製の基体管 2101を、めっき槽 2061に装着した後、そのめつき槽 2061に、 50°C、 12MPaの条件で、超臨界 C〇2を供給した。そして、めっき槽 2061内の温度 及び圧力が、前記条件にて安定したことを確認した。その後、上記 Pd無電解めつき 液(還元剤を除く)、フッ素系化合物としてのェチルパーフルォロォクタノート(F(CF )
COOCH CH )、及び還元剤を、混合分散部 2060へ供給するとともに混合分散部 2
060からめつき槽 2061へ供給することにより、 Pd無電解めつき処理を開始した。電 流センサ 2064が基準値となるまで、 Pd無電解めつき処理を継続した後、 Pd無電解 めっき液 (還元剤を除く)、フッ素系化合物、及び還元剤のめっき槽 2061への供給を 停止することにより、 Pd無電解めつき処理を終了した。続いて、 50°C、 12MPaの条 件の C〇2を用いて、 Pd無電解めつき液等を含む残留液を、めっき槽 2061から排出 した後、水と C〇2とをめつき槽 2061の内部に流通させることによって、めっき槽 206 1の内部及び基体管 2101の洗浄を行った。
[0494] 第 2工程では、第 2めっき液としてのパラジウムめっき浴と、拡散流体としての超臨 界状態の C〇2と、フッ素系化合物としてのェチルパーフルォロォクタノート(F(CF ) C
OOCH CH )とを用いて、第 2金属膜としての Pd膜を形成した。パラジウムめっき浴の 組成は、 PdCl :0.10mol/L、 KBr:4.00molん、 KNO :0.10mol/L、 H BO :0.49mol/L、 Gl ycine:0.10mol/Lであり、パラジウムめっき浴の pHは 6. 6である。また、超臨界状態の C02とパラジウムめっき液との配合比は、体積比率で 4対 6とした。第 2工程の条件と しては、温度 40°C、圧力 12MPa、電流密度 1. OA/dm2,及びめつき時間 3分であ る。第 2金属膜の表面を走查型電子顕微鏡で観察した結果、ピンホールの発生は確 認、されなかった。
[0495] ぐ第 5の実施形態 >
(実施例 4) 第 1めっき処理工程では、めっき液としての Niめっき液と、拡散流体としての超臨界 状態の C〇2とを用いて、洗浄処理が完了した真鍮板の表面に Ni膜を形成した。 Ni めっき液には、硫酸ニッケル 280g/L、塩化ニッケル 60g/L、ホウ酸 50g/L、及び 適量の光沢剤を含有するワット浴を使用した。また、第 1めっき処理工程では、耐圧 性のめっき槽 (容量 50mL)を使用した。
[0496] このめつき槽内には、洗浄処理が完了した真鍮板と、ニッケル板とが配置されてい る。さらに、このめつき槽には超臨界状態の C〇2を供給する供給管と、めっき槽内の 圧力を調整する圧力調整器を有する排出管とが接続されている。カロえて、めっき槽 内には攪拌子が配置されるとともに、めっき槽の外部にはスターラーが備えられ、こ のスターラーによって攪拌子が回転される。
[0497] まず、 Niめっき液と、フッ素系化合物としての F(CF(CF )CF O) CF(CF )COOCH C
H OCHとを、めっき槽(容量 50mL)に投入した後、このめつき槽を 50°Cに保温され た恒温槽を用いて加温した。次に、超臨界状態の C02をめつき槽に供給するととも に、めっき槽内の圧力を lOMPaに調整した。 F(CF(CF )CF O) CF(CF )COOCH CH
OCHの配合量は、 C〇2に対して 0. 5重量%であり、超臨界状態の C〇2と Niめっき 液との配合比は、体積比率で 7対 3である。次いで、攪拌子を回転させることによって 、 Niめっき液と、超臨界状態の C〇2とを混合及び分散した。続いて、真鍮板を陰極と するとともにニッケル板を陽極として、通電することにより、真鍮板の表面に Ni膜を形 成した。めっき槽の通電条件は、電流密度 5A/dm2、及び通電時間 80秒である。形 成された Ni膜の厚さは約 1 / mであった。この Ni膜の表面状態を走査型電子顕微鏡 (SEM)によって観察した結果、ピンホールが確認されなかった。
[0498] 第 2めっき処理工程では、 Auめっき液と、超臨界状態の C〇2とを用いて、前記 Ni 膜上に Au膜を形成し、その Au膜を Ni膜に積層した。第 2めっき処理工程では、第 1 めっき処理工程の Niめっき液を、 Auめっき液((株)高純度化学研究所製、 Auメツキ 液、 K— 24EA10)に変更した。さらに、第 2めっき処理工程では、電流密度を 0. 5A /dm2に変更し、めっき時間を 60秒に変更し、陰極を、前記 Ni膜めつきを形成した 真鍮版に変更し、陽極を白金のコーティングされたチタン板に変更した。他の条件は 、第 1めっき処理工程と同様にして、第 2のめつき膜としての Au膜を形成した。このよ うにして、めっき処理が施された真鍮板を洗浄及び乾燥することにより、多層膜構造 体を得た。
[0499] (比較例 2)
拡散流体を省略するとともにめっき槽内を加圧せずにめつき処理工程を行った。そ れ以外は、実施例 4と同様にして、真鍮板の表面に Ni膜、及び Au膜を順に形成した
[0500] (耐薬品性試験)
各例でめっき処理された真鍮板について、 ImolZL硫酸に 24時間浸漬することに より、耐薬品性試験を行った。この試験の結果、実施例 4の真鍮板では、 Ni膜及び A u膜からなる多層膜に変化が見られなかった。この結果から、実施例 4の真鍮板では 、Au膜及び Ni膜におけるピンホールの発生がないことがわかる。これに対して、比 較例 2の真鍮板では、耐薬品性試験において、腐食が確認された。この結果から、比 較例 2の真鍮板では、 Au膜又は Ni膜にピンホールが発生していたことがわかる。
[0501] <第 6の実施形態 >
(実施例 5)
図 31に示されるめっき装置を用いるとともに、陰極に真鍮板、陽極に白金がコーテ イングされたチタン板を用いて金めつきを行った。拡散流体には C〇2、めっき液には 市販の酸性金めつき浴((株)高純度化学研究所 Auメツキ液 K 24EA10)を用 いた。フッ素系化合物として F(CF(CF )CF O) CF(CF )COOCH CH OCHを用い、
C02に対して 0. 5重量%の濃度になるように加えた。分散機 4060bの内部及びめ つき槽 4061の内部の温度を 50°C、圧力を lOMPaに設定し、電流密度 0. 5A/dm 2で 200秒間通電することにより、めっき処理を完了した。この結果、真鍮板に形成さ れた金めつき皮膜の厚さは、約 1 μ mであった。
[0502] (比較例 3)
陰極に真鍮板を用いるとともに、陽極に白金がコーティングされたチタン板を用レ、、 通常の金めつきを行った。金めつき液には、市販のめっき浴((株)高純度化学研究 所 Auメツキ液 K—24EA10)を用いた。このめつき浴の温度を 50°Cに設定し、電 流密度 0. 5AZ dm2で 200秒間通電することにより、めっき処理を完了した。この結 果、真鍮板に形成された金めつき皮膜の厚さは、約 1 μ mであった。
各例によってめっき処理が施された真鍮板を、走査型電子顕微鏡で観察した。実 施例 5の真鍮板では、ピンホールが確認されなかった。これに対し、比較例 3の真鍮 板では、多数のピンホールが確認された。

Claims

請求の範囲
[1] 第 1の電極、電解質層及び第 2の電極と、水素ガス及び空気の一方を前記第 1の電 極に供給するガス供給路を有するとともに第 1の電極に接触する第 1のセパレータと 、前記水素ガス及び空気の他方を前記第 2の電極に供給するガス供給路を有すると ともに第 2の電極に接触する第 2のセパレータとを備えた燃料電池に用いられるセパ レータであって、
前記第 1のセパレータのガス供給路の表面には、めっき液と、該めっき液の拡散力 を高める拡散流体とを用いてめっき皮膜が形成されていることを特徴とする燃料電池 用セパレータ。
[2] 前記第 1のセパレータのガス供給路は、前記第 1の電極に接触する凸部と、水素ガ ス又は空気を第 1の電極に供給する溝とを有し、前記凸部に形成されためつき皮膜 の膜厚が前記溝に形成されためつき皮膜の膜厚より厚いことを特徴とする請求項 1に 記載の燃料電池用セパレータ。
[3] 前記第 2のセパレータのガス供給路の表面には、めっき液と、該めっき液の拡散力 を高める拡散流体とを用いてめっき皮膜が形成されていることを特徴とする請求項 1 又は請求項 2に記載の燃料電池用セパレータ。
[4] 前記第 2のセパレータのガス供給路は、前記第 2の電極に接触する凸部と、水素ガ ス又は空気を第 2の電極に供給する溝とを有し、前記凸部に形成されためつき皮膜 の膜厚が前記溝に形成されためつき皮膜の膜厚より厚レ、ことを特徴とする請求項 3に 記載の燃料電池用セパレータ。
[5] 前記めつき皮膜の形成において、フッ素系化合物からなり、めっき液の分散を促進 する分散促進剤を更に用いることを特徴とする請求項 1から請求項 4のいずれか一項 に記載の燃料電池用セパレータ。
[6] 第 1の電極、電解質層及び第 2の電極と、
水素ガス及び空気の一方を前記第 1の電極に供給するガス供給路を有する第 1の セパレータと、
前記水素ガス及び空気の他方を前記第 2の電極に供給するガス供給路を有すると ともに第 2の電極に接触する第 2のセパレータとを備え、 前記第 1のセパレータのガス供給路には、めっき液と、該めっき液の拡散力を高め る拡散流体とを用いてめっき皮膜が形成され、該めっき被膜に前記第 1の電極が接 触することを特徴とする燃料電池。
[7] 前記第 1のセパレータのガス供給路は第 1の電極に空気を供給し、
前記燃料電池は、前記第 1のセパレータのガス供給路に空気を供給するための空 気取込口を備え、該空気取込口にはフィルタが設けられていることを特徴とする請求 項 6に記載の燃料電池。
[8] 前記めつき皮膜の形成において、フッ素系化合物からなり、めっき液の分散を促進 する分散促進剤を更に用いることを特徴とする請求項 6又は請求項 7に記載の燃料 電池。
[9] 燃料電池の電極に水素ガス及び空気の一方を供給する第 1のガス供給路を有する 第 1のセパレータと、前記燃料電池の電極に水素ガス及び空気の他方を供給する第 2のガス供給路を有する第 2のセパレータとを備える燃料電池用セパレータの製造方 法であって、
前記第 1のガス供給路と前記第 2のガス供給路とを対向させて配置した状態の前記 各セパレータ間に、当該各セパレータ間のクリアランスを調整するスぺーサを配置す ることにより、前記各セパレータを積層し、
前記第 1又は第 2のガス供給路に、めっき液と、該めっき液の拡散力を高める拡散 流体とを含むめっき分散体を連続的に供給することにより、前記第 1又は第 2のセパ レータにめっき皮膜を形成することを特徴とする燃料電池用セパレータの製造方法。
[10] 前記第 1のセパレータと第 2のセパレータとの間に陽極板を設け、前記第 1又は第 2 のセパレータを陰極板として用いて、前記第 1又は第 2のセパレータと前記陽極板と の間に通電することにより、前記第 1又は第 2のセパレータにめっき皮膜を形成するこ とを特徴とする請求項 9に記載の燃料電池用セパレータの製造方法。
[11] 前記第 1のガス供給路に第 1のめつき分散体を導入し、
前記第 2のガス供給路に、前記第 1のめつき分散体を導入するとともにめっきの条 件を変更すること、又は前記第 1のめつき分散体と異なる第 2のめつき分散体を導入 することを特徴とする請求項 9又は請求項 10に記載の燃料電池用セパレータの製造 方法。
[12] 前記めつき分散体には、フッ素系化合物からなり、めっき液の分散を促進する分散 促進剤が更に含まれることを特徴とする請求項 9から請求項 11のいずれか一項に記 載の燃料電池用セパレータの製造方法。
[13] 燃料電池の電極に水素ガス及び空気の一方を供給する第 1のガス供給路を有する 第 1のセパレータと、前記燃料電池の電極に水素ガス及び空気の他方を供給する第 2のガス供給路を有する第 2のセパレータとを備える燃料電池用セパレータのめつき 装置であって、
前記第 1のガス供給路と前記第 2のガス供給路とを対向させて配置した状態の前記 各セパレータ間に、当該各セパレータ間のクリアランスを調整するスぺーサを配置す ることにより、前記各セパレータを積層した積層ユニットと、
前記第 1又は第 2のガス供給路に、めっき液と、該めっき液の拡散力を高める拡散 流体とを含むめっき分散体を連続的に供給する供給手段とを備え、前記第 1又は第 2のセパレータにめっき皮膜を形成することを特徴とする燃料電池用セパレータのめ つき装置。
[14] 前記第 1のセパレータと第 2のセパレータとの間に陽極板を設け、前記第 1又は第 2 のセパレータを陰極とする通電手段を備えることを特徴とする請求項 13に記載の燃 料電池用セパレータのめつき装置。
[15] 前記供給手段は、
前記第 1のガス供給路に第 1のめつき分散体を導入する第 1導入手段と、 前記第 1のめつき分散体とは異なる第 2のめつき分散体を前記第 2のガス供給路に 導入する第 2導入手段とから構成されていること、又は、
前記供給手段は、
前記第 1及び第 2のガス供給路に第 1のめつき分散体を導入する導入手段を有し、 第 1のガス供給路におけるめっき条件と、第 2のガス供給路におけるめっき条件とを 変えることによって、第 1のセパレータと第 2のセパレータとに異なるめっき皮膜を形 成することを特徴とする請求項 13又は請求項 14に記載の燃料電池用セパレータの めっき装置。
[16] 前記めつき分散体には、フッ素系化合物からなり、めっき液の分散を促進する分散 促進剤が更に含まれることを特徴とする請求項 13から請求項 15のいずれか一項に 記載の燃料電池用セパレータのめつき装置。
[17] 水素ガスを含む混合ガスから水素ガスを分離精製する水素分離体であって、 前記水素分離体は、前記混合ガスが導入される導入面を有する多孔質基体と、該 多孔質基体において前記導入面の対面上に形成され、溶解拡散機構に基づいた水 素選択透過性を有する金属を用いて形成される金属層とを備え、
前記多孔質基体は細孔層を備え、該細孔層は、前記混合ガスに含まれるとともに 前記金属層の性能を低下させるガスに比べて水素ガスを優先的に透過させることを 特徴とする水素分離体。
[18] 前記金属層の性能を低下させるガスが、一酸化炭素ガス、窒素酸化物ガス、硫黄 酸化物ガス、及び炭化水素ガスから選ばれる少なくとも一種を含むことを特徴とする 請求項 17に記載の水素分離体。
[19] 前記多孔質基体には、ガスのシフト反応又は部分酸化反応を促進させる触媒金属 が担持されていることを特徴とする請求項 18に記載の水素分離体。
[20] 前記多孔質基体が管状構造を有しており、
前記金属層が前記多孔質基体の内表面に形成されていることを特徴とする請求項
17から請求項 19のいずれか一項に記載の水素分離体。
[21] 前記多孔質基体の導入面には、更に金属多孔体が密着されていることを特徴とす る請求項 17から請求項 20のいずれか一項に記載の水素分離体。
[22] 請求項 17から請求項 21のいずれか一項に記載の水素分離体を備えることを特徴 とする水素製造装置。
[23] 溶解拡散機構に基づいた水素選択透過性を有する金属から形成される金属層を 備えるとともに管状構造を有する多孔質基体力 なる水素分離体の製造方法であつ て、
めっき槽内に前記多孔質基体を保持し、
前記多孔質基体の一端の開口から、水素選択透過性を有する金属を含むめっき 液と、該めっき液の拡散力を高める拡散流体とが分散されためつき分散体を多孔質 基体内に連続的に注入し、前記多孔質基体の他端の開口からめっき分散体を連続 的に排出することにより、前記多孔質基体の内表面に前記金属層を形成することを 特徴とする水素分離体の製造方法。
[24] 溶解拡散機構に基づいた水素選択透過性を有する金属から形成される金属層を 備えるとともに管状構造を有する多孔質基体力 なる水素分離体の製造方法であつ て、
めっき槽内に前記多孔質基体を保持し、
前記めつき槽と前記多孔質基体との間に形成された空間に、水素選択透過性を有 する金属を含むめっき液と、該めっき液の拡散力を高める拡散流体とが分散された めっき分散体を連続的に注入し、前記空間からめっき分散体を連続的に排出するこ とにより、前記多孔質基体の外表面に前記金属層を形成することを特徴とする水素 分離体の製造方法。
[25] 前記めつき分散体には、フッ素系化合物からなり、めっき液の分散を促進する分散 促進剤が更に分散されていることを特徴とする請求項 23又は請求項 24に記載の水 素分離体の製造方法。
[26] 溶解拡散機構に基づいた水素選択透過性を有する金属から形成される金属層を 備えるとともに管状構造を有する多孔質基体力 なる水素分離体の製造装置であつ て、
前記金属層をめつきにより形成するめつき槽と、
前記多孔質基体をめつき槽に装着する手段と、
水素選択透過性を有する金属を含むめっき液と、該めっき液の拡散力を高める拡 散流体とが分散されためつき分散体を、前記多孔質基体の内部に、且つ前記多孔 質基体の軸方向に沿って連続的に流すための供給排出手段と
を備えることを特徴とする水素分離体の製造装置。
[27] 溶解拡散機構に基づいた水素選択透過性を有する金属から形成される金属層を 備えるとともに管状構造を有する多孔質基体力 なる水素分離体の製造装置であつ て、
前記金属層をめつきにより形成するめつき槽と、 前記多孔質基体をめつき槽に装着する手段と、
水素選択透過性を有する金属を含むめっき液と、該めっき液の拡散力を高める拡 散流体とが分散されためつき分散体を、前記めつき槽と前記多孔質基体との間に形 成された空間に、前記多孔質基体の軸方向に沿って連続的に流すための供給排出 手段と
を備えることを特徴とする水素分離体の製造装置。
[28] 前記めつき分散体には、フッ素系化合物からなり、めっき液の分散を促進する分散 促進剤が更に分散されていることを特徴とする請求項 26又は請求項 27に記載の水 素分離体の製造装置。
[29] めっき液と、該めっき液の拡散力を高める拡散流体とを、電解めつきを行うための電 極を備えためっき槽に導入してめっきを行う方法であって、
第 1めっき液を前記めつき槽に導入した無電解めつき処理により、対象物の表面に 第 1金属膜を形成する第 1工程と、
第 2めっき液と前記拡散流体とを前記めつき槽に導入し、前記電極に電圧を印加し た電解めつき処理により、前記第 1金属膜に対して第 2金属膜を形成する第 2工程と を含むことを特徴とするめつき方法。
[30] 前記第 1工程は、前記第 1めっき液とともに、該第 1めっき液の拡散力を高める拡散 流体を用いてめっきを行い、
前記第 1工程及び第 2工程において同一の拡散流体が用いられ、
前記第 1工程から前記第 2工程への移行時においても、前記拡散流体がめっき槽 に連続的に供給されることを特徴とする請求項 29に記載のめっき方法。
[31] 前記第 1工程から前記第 2工程への移行は、第 1金属膜の形成状況を検出する検 出手段の出力に基づいて行われることを特徴とする請求項 29又は請求項 30に記載 のめつき方法。
[32] 少なくとも前記第 2工程において、フッ素系化合物からなり、めっき液の分散を促進 する分散促進剤が前記めつき槽に更に導入されることを特徴とする請求項 29から請 求項 31のいずれか一項に記載のめっき方法。
[33] めっき液の供給源、めっき液の拡散力を高める拡散流体の供給源、前記各供給源 に接続されるめつき槽、電解めつきを行うための電極、並びに該電極に印加する電 圧と各供給源からめっき槽への供給とを制御する制御手段を備えためっき装置であ つて、
前記制御手段が、
第 1めっき液を前記めつき槽に導入した無電解めつき処理により、対象物の表面に 第 1金属膜を形成する第 1工程を実行するために各供給源からめっき槽への供給を 制御し、
第 2めっき液と前記拡散流体とを前記めつき槽に導入し、前記電極に電圧を印加し た電解めつき処理により、前記第 1金属膜に対して第 2金属膜を形成する第 2工程を 実行するために、各供給源からめっき槽への供給と電極に印加する電圧とを制御す ることを特徴とするめつき装置。
[34] 前記制御手段が、
前記第 1工程においても、前記第 1めっき液とともに前記拡散流体を前記めつき槽 に導入するように各供給源力 めっき槽への供給を制御し、
前記第 1工程及び第 2工程において同一の拡散流体が用いられ、前記第 1工程か ら前記第 2工程への移行時においても、前記拡散流体を連続的に流すように各供給 源からめっき槽への供給を制御することを特徴とする請求項 33に記載のめっき装置
[35] 前記めつき槽が、第 1金属膜の形成状況を検出する検出手段を備え、
前記制御手段が、前記検出手段の出力に基づいて、第 1工程から第 2工程に移行 させるように各供給源からめっき槽への供給と電極に印加する電圧とを制御すること を特徴とする請求項 33又は請求項 34に記載のめっき装置。
[36] 前記拡散流体が、超臨界状態又は亜臨界状態の二酸化炭素であることを特徴とす る請求項 33から請求項 35のいずれか一項に記載のめっき装置。
[37] 前記めつき装置が、フッ素系化合物からなり、めっき液の分散を促進する分散促進 剤の供給源を更に備え、
前記制御手段が、
少なくとも前記第 2工程において、前記第 2めっき液と拡散流体とともに前記分散促 進剤をめつき槽に導入するように各供給源からめっき槽への供給を制御することを特 徴とする請求項 33から請求項 36のいずれか一項に記載のめっき装置。
PCT/JP2006/303287 2005-02-23 2006-02-23 燃料電池用めっき部材並びにその製造方法及び製造装置 WO2006090785A1 (ja)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2005048082 2005-02-23
JP2005-048082 2005-02-23
JP2005168115 2005-06-08
JP2005-168115 2005-06-08
JP2005-205979 2005-07-14
JP2005205979 2005-07-14

Publications (1)

Publication Number Publication Date
WO2006090785A1 true WO2006090785A1 (ja) 2006-08-31

Family

ID=36927423

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/303287 WO2006090785A1 (ja) 2005-02-23 2006-02-23 燃料電池用めっき部材並びにその製造方法及び製造装置

Country Status (1)

Country Link
WO (1) WO2006090785A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115003864A (zh) * 2020-01-31 2022-09-02 富士胶片株式会社 金属填充微细结构体的制造方法
CN115365083A (zh) * 2021-05-17 2022-11-22 亨泰光学股份有限公司 双向阳极电浆化学气相沉积镀膜设备
CN115365083B (zh) * 2021-05-17 2024-06-11 亨泰光学股份有限公司 双向阳极电浆化学气相沉积镀膜设备

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62160121A (ja) * 1985-12-28 1987-07-16 Ngk Insulators Ltd 多孔質隔膜
JPH1112791A (ja) * 1997-06-26 1999-01-19 Hashimoto Kinzoku Kogyo Kk 金属パイプの内面めっき装置
JP2000126776A (ja) * 1998-10-20 2000-05-09 Adept Technologies As 液体浄化用リアクタ―
JP2001120969A (ja) * 1999-10-29 2001-05-08 Kyocera Corp 水素ガス分離フィルタおよびその製造方法
WO2002016673A1 (en) * 2000-08-24 2002-02-28 Hideo Yoshida Electrochemical treating method such as electroplating and electrochemical reaction device therefor
JP2004344731A (ja) * 2003-05-21 2004-12-09 Toyota Motor Corp 水素透過膜
JP2005028248A (ja) * 2003-07-09 2005-02-03 Toyota Central Res & Dev Lab Inc 流体分離フィルタおよびその製造方法と燃料電池システム
JP2005058822A (ja) * 2003-08-13 2005-03-10 Ngk Insulators Ltd 選択透過膜型反応器
JP2005100933A (ja) * 2003-08-19 2005-04-14 Daido Steel Co Ltd 燃料電池用金属セパレータ、燃料電池用金属セパレータの製造方法及び燃料電池

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62160121A (ja) * 1985-12-28 1987-07-16 Ngk Insulators Ltd 多孔質隔膜
JPH1112791A (ja) * 1997-06-26 1999-01-19 Hashimoto Kinzoku Kogyo Kk 金属パイプの内面めっき装置
JP2000126776A (ja) * 1998-10-20 2000-05-09 Adept Technologies As 液体浄化用リアクタ―
JP2001120969A (ja) * 1999-10-29 2001-05-08 Kyocera Corp 水素ガス分離フィルタおよびその製造方法
WO2002016673A1 (en) * 2000-08-24 2002-02-28 Hideo Yoshida Electrochemical treating method such as electroplating and electrochemical reaction device therefor
JP2004344731A (ja) * 2003-05-21 2004-12-09 Toyota Motor Corp 水素透過膜
JP2005028248A (ja) * 2003-07-09 2005-02-03 Toyota Central Res & Dev Lab Inc 流体分離フィルタおよびその製造方法と燃料電池システム
JP2005058822A (ja) * 2003-08-13 2005-03-10 Ngk Insulators Ltd 選択透過膜型反応器
JP2005100933A (ja) * 2003-08-19 2005-04-14 Daido Steel Co Ltd 燃料電池用金属セパレータ、燃料電池用金属セパレータの製造方法及び燃料電池

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115003864A (zh) * 2020-01-31 2022-09-02 富士胶片株式会社 金属填充微细结构体的制造方法
CN115365083A (zh) * 2021-05-17 2022-11-22 亨泰光学股份有限公司 双向阳极电浆化学气相沉积镀膜设备
CN115365083B (zh) * 2021-05-17 2024-06-11 亨泰光学股份有限公司 双向阳极电浆化学气相沉积镀膜设备

Similar Documents

Publication Publication Date Title
US20240145745A1 (en) Electrolyzer and method of use
JP2022143987A (ja) 二酸化炭素電解装置および二酸化炭素電解装置の運転方法
JP6192669B2 (ja) 高純度の一酸化炭素を製造するための装置
JP6450636B2 (ja) 電解方法
JP2018154901A (ja) 二酸化炭素電解装置および二酸化炭素電解方法
US20050058875A1 (en) Mixed reactant molecular screen fuel cell
WO2009072838A2 (en) Hydrogen and oxygen generator for internal combustion engines
JP2024507368A (ja) 酸化炭素電解槽の回復プロシージャ
EP3800279A1 (en) Process water gas management of inert gas generation electrolyzer system with gas-activated valve
JP4009300B2 (ja) 燃料電池及びそれを備えた電気自動車並びに燃料電池の運転方法
KR20090059214A (ko) 정수용 산소발생기 및 산소용해기와 이들을 구비한 고농도산소수 정수장치
JP3897052B2 (ja) 水素分離体、水素製造装置、水素分離体の製造方法及び水素分離体の製造装置
JP4144628B2 (ja) 燃料電池用セパレータの製造方法及び燃料電池用セパレータのめっき装置
WO2006090785A1 (ja) 燃料電池用めっき部材並びにその製造方法及び製造装置
JP4290454B2 (ja) ガス拡散電極の製造方法、電解槽及び電解方法
JP4007405B2 (ja) 水素分離体及び水素製造装置
JP2007253152A (ja) 水素分離体及び水素製造装置
US20140242478A1 (en) Redox device
CN107208283A (zh) 用于产生并分离气体的装置、方法及系统
KR20100062983A (ko) 정수용 산소발생기 및 이를 구비한 고농도 산소수 정수장치
WO2020064241A1 (en) Method for removing non-proton cationic impurities from an electrochemical cell and an electrochemical cell
WO2023119779A1 (ja) 水溶液電解方法
JP2006282458A (ja) 水素生成装置及び燃料電池システム
JP2006265729A (ja) 多層膜構造体の製造方法、多層膜構造体及びめっき装置
JP2007123049A (ja) 電極触媒担持体、電極触媒担持体の製造方法、電極触媒担持体の製造装置、燃料電池用の膜電極接合体及び燃料電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06714427

Country of ref document: EP

Kind code of ref document: A1