WO2002003458A1 - Dispositif semi-conducteur et son procede de fabrication - Google Patents

Dispositif semi-conducteur et son procede de fabrication Download PDF

Info

Publication number
WO2002003458A1
WO2002003458A1 PCT/JP2001/005663 JP0105663W WO0203458A1 WO 2002003458 A1 WO2002003458 A1 WO 2002003458A1 JP 0105663 W JP0105663 W JP 0105663W WO 0203458 A1 WO0203458 A1 WO 0203458A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
insulating film
lower electrode
layer
forming
Prior art date
Application number
PCT/JP2001/005663
Other languages
English (en)
French (fr)
Inventor
Hirokazu Ejiri
Original Assignee
Sony Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corporation filed Critical Sony Corporation
Priority to US10/069,901 priority Critical patent/US6770974B2/en
Priority to JP2002507439A priority patent/JP4997682B2/ja
Priority to EP01945729.0A priority patent/EP1233450B1/en
Publication of WO2002003458A1 publication Critical patent/WO2002003458A1/ja

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/60Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/0805Capacitors only

Definitions

  • the present invention relates to a semiconductor device and a method of manufacturing the same, and more particularly, to a semiconductor device having a capacitor mounted on a semiconductor substrate and a method of manufacturing the same.
  • the semiconductor substrate 1 0 on is formed by laminating a first insulating film 1 2 and the second insulating film 1 6 consisting of S i-0 2 film or the like in order .
  • a Ti layer, a Ti ON layer, a Ti layer, an A 1 Si layer, and a Ti N layer are sequentially deposited from the bottom to form a Ti N / A 1 — Form a SiZTi / TiON / Ti multilayer film.
  • the upper electrode 22 is formed by Ti, TiN or the like.
  • the Ti NZ A 1 —Si / Ti / TiO'N / Ti laminated film 18 is selectively etched and removed to a predetermined shape. Patterning to form lower electrode 18 d of Ti N / A 1 _ S i / T i / T i ON / T i laminated film o '
  • the entire surface of the substrate including the upper electrode 22 and the lower electrode 18 d is formed by a plasma CVD method using, for example, TEOS (tetraeth o ⁇ ysi 1 ane; Si (0C 2 H 5 ) 4 ) as a raw material.
  • TEOS tetraeth o ⁇ ysi 1 ane; Si (0C 2 H 5 ) 4
  • a SiO2 film is deposited, and a S0G (Spin On Glass) film is coated on the Si02 film, and then the SOG film and the Si02 film are etched back.
  • Perform smoothing processing That is, the unevenness on the surface of the base is filled with the smoothing insulating film 24 composed of the SiO 2 film and the S 0 G film and smoothed.
  • the surface of the upper electrode 2 2 ′ formed on the lower electrode 18 d is located higher than the surface of the lower electrode 18 d.
  • an interlayer insulating film 27 is formed by the smoothing insulating film 24 and the insulating film 26.
  • the interlayer insulating film 27 on the upper electrode 22 is selectively etched away using a photolithography process and a dry (Dry) etching method, and the interlayer on the lower electrode 18 d is removed.
  • Insulation film 2 7 The first and second via holes 28d and 28e are opened by selective etching and removal, respectively.
  • the Tin of the surface of the lower electrode 18d is removed.
  • the A1 alloy layer After depositing an A1 alloy layer on the entire surface of the substrate, the A1 alloy layer is processed by photolithography and dry etching to form first and second via holes 28d, 2d. First and second A1 alloy upper wiring layers 30d and 3Oe connected to the upper electrode 22 and the lower electrode 18d via 8e, respectively, are formed.
  • first and second A1 alloy upper wiring layers 30d and 30e connected to the upper electrode 22 and the lower electrode 18d of the capacitive element, respectively, are formed by the first and second electrodes.
  • the via holes 28 d and 28 e are respectively opened, the thickness of the interlayer insulating film 27 on the upper electrode 22 etched to open the first via hole 28 d is reduced.
  • the first and second A1 alloy upper wiring layers 30 d and 30 d are formed from the opposing region of the upper electrode 22 and the lower electrode 18 d which effectively function as a capacitive element. Comparing the distances up to 30 e, the lower electrode side generally tends to be longer than the upper electrode side, resulting in a problem in that the impedance varies and the characteristics are asymmetric. .
  • a comparison of the first and second via holes 28d and 28e in the above-described conventional capacitive element shows that the depth of the second via hole 28e on the lower electrode side is higher.
  • the hole is deeper than the depth of 28 d. For this reason, the asymmetry of the conventional characteristics was further increased. Disclosure of the invention
  • the present invention has been made in view of the above problems, and in the manufacturing process of the capacitor element, the characteristics such as the capacitance value fluctuate due to the damage to the upper electrode and the dielectric film during the manufacturing process. Of the capacitor element is prevented from deteriorating. It is an object of the present invention to provide a semiconductor device capable of realizing good characteristics and high reliability and a method for manufacturing the same.
  • a semiconductor device includes a lower electrode having a concave cross-sectional shape formed on a semiconductor substrate with a first insulating film interposed therebetween, wherein a surface of a peripheral portion is higher than a surface of a central portion, and An upper electrode formed on the center of the electrode through a dielectric film whose surface is lower than the surface of the periphery of the lower electrode, and a second insulating film that fills the recess in the concave cross-sectional shape of the lower electrode It comprises.
  • the surface is at a high position” or “the surface is at a low position” is an expression that refers to the height of the front surface with respect to the flat surface of the front or back surface of the semiconductor substrate. is there. This definition applies hereinafter as well.
  • a third insulating layer is further formed on a peripheral portion of the lower electrode, the upper electrode, and the second insulating film to form an interlayer insulating film, and the opening is formed in the interlayer insulating film.
  • a first wiring layer connected to the upper electrode via the first via hole, and a second wiring layer connected to the peripheral portion of the lower electrode via a second via hole opened in the interlayer insulating film. are formed respectively.
  • a semiconductor device includes a lower electrode formed on a semiconductor substrate with a first insulating film interposed therebetween, and a lower electrode formed around the lower electrode.
  • a dummy electrode having a surface higher than the surface of the lower electrode; an upper electrode formed on the lower electrode via a dielectric film whose surface is lower than the uppermost surface of the dummy electrode; and a dummy electrode.
  • a second insulating film that fills the recess surrounded by the periphery.
  • a dummy electrode having a surface higher than the surface of the dielectric film means that the top surface of the dummy electrode is higher than the surface of the lower electrode with reference to the flat surface of the front or back surface of the semiconductor substrate. It means that the uppermost surface I of the dummy electrode is the surface of the dummy electrode. The surface at the highest position. This definition applies hereinafter as well.
  • the semiconductor device wherein a third insulating film is formed on the dummy electrode, the upper electrode, and the second insulating film to form an interlayer insulating film.
  • a semiconductor device includes a lower electrode having a concave cross-sectional shape formed on a semiconductor substrate with a first insulating film interposed therebetween, wherein a surface of a peripheral portion is higher than a surface of a central portion, and The upper electrode, which is formed on the center of the electrode via a dielectric film and whose surface is lower than the surface of the lower electrode, fills the recess of the lower electrode with a concave cross-sectional shape, and the surface of the upper electrode And a second insulating film covering the first insulating film.
  • a third insulating layer is formed on a peripheral portion of the lower electrode and on the second insulating film to form an interlayer insulating film, and the first via hole opened in the interlayer insulating film.
  • a first wiring layer connected to the upper electrode through the hole and a second wiring layer connected to the peripheral portion of the lower electrode through the second via hole opened in the interlayer insulating film are formed.
  • a semiconductor device includes: a lower electrode formed on a semiconductor substrate via a first insulating film; and a dummy electrode formed around the lower electrode and having a surface higher than the surface of the lower electrode. And an upper electrode formed on the lower electrode via a dielectric film and having a surface lower than the uppermost surface of the dummy electrode, and a hollow surrounded by the dummy electrode, and the lower electrode and the upper electrode. A second insulating film covering the surface of the electrode.
  • the “dummy electrode having a surface higher than the surface of the lower electrode” means that the uppermost surface of the dummy electrode is higher than the surface of the lower electrode on the basis of the flat surface of the front or back surface of the semiconductor substrate. It means that it is high, and the “top surface of the dummy electrode” means the surface at the highest position among the surfaces of the dummy electrodes. This definition applies hereinafter as well.
  • the present invention provides the semiconductor device according to the first aspect, wherein a third insulating film is formed on the dummy electrode, the upper electrode, and the second insulating film, an interlayer insulating film is formed, and an opening is formed in the interlayer insulating film.
  • a first wiring layer connected to the upper electrode through the via hole and a second wiring layer connected to the lower electrode through the second via hole opened in the interlayer insulating film are formed.
  • a dummy layer for a step is provided below the peripheral portion of the lower electrode, whereby the lower electrode has a concave cross-sectional shape.
  • a dummy layer for a step is provided below the dummy electrode, whereby the dummy electrode is formed at a position higher than the lower electrode.
  • Such a dummy layer for a step can be formed of the same material layer as an electrode or a resistance layer of another element in the semiconductor device.
  • the dummy layer for the step can be formed of an insulating layer.
  • the lower electrode has a concave cross-sectional shape in which the surface of the peripheral portion is higher than the surface of the central portion; Also, the surface of the dielectric film on the central portion of the lower electrode having the concave cross-sectional shape is the surface of the peripheral portion of the lower electrode.
  • the second insulating film serving as a smoothing insulating film is formed over the entire surface of the base, Even when a smoothing process for etching back an insulating film or the like deposited on the entire surface of the substrate is performed, the periphery of the lower electrode becomes an etching stopper, and it is possible to prevent the dielectric film from being damaged. Therefore, it is possible to obtain a highly reliable capacitive element with little change in characteristics.
  • a third insulating film is formed on a peripheral portion of the lower electrode, on the upper electrode, and on the second insulating film, and an interlayer insulating film is formed.
  • the formation of the second wiring layer connected to the periphery of the lower electrode via the second via hole allows the interlayer insulation on the upper electrode to be etched for the opening of the first via hole.
  • the thickness of the film is almost equal to the thickness of the interlayer insulating film on the periphery of the lower electrode to be etched for the opening of the second via holes.
  • Excessive overetch on top electrode surface The dielectric film under the Oconnection upper electrode grayed can be prevented from being useless one di. Therefore, in addition to the above effects, a change in characteristics is further reduced, and a highly reliable capacitor can be obtained. Also, comparing the first and second via holes
  • the depth of the second via hole opening on the periphery of the lower electrode is almost equal to the depth of the first via hole opening on the upper electrode, it effectively functions as a capacitive element Since the distance from the facing region between the upper electrode and the lower electrode to the first and second wiring layers is generally shorter on the lower electrode side, which tends to be longer than on the upper electrode side, the impedance is reduced. By reducing the difference, it is possible to suppress an increase in the asymmetry of the characteristic of the capacitor, and to improve the symmetry of the characteristic of the capacitor.
  • a lower electrode, a dummy electrode formed around the lower electrode and having a surface higher than the surface of the lower electrode, and a dielectric film formed on the lower electrode The upper surface of the dielectric film on the lower electrode is lower than the uppermost surface of the dummy electrode around the lower electrode, so that the entire surface of the substrate becomes a smooth insulating film.
  • the insulating film 2 even if a smoothing process is performed to etch back the insulating film deposited on the entire surface of the substrate, the dummy electrode becomes an etching stopper and the dielectric film is damaged. Can be prevented. Therefore, it is possible to obtain a highly reliable capacitive element with little change in characteristics.
  • a lower electrode having a concave cross-sectional shape in which the surface of the peripheral portion is higher than the surface of the central portion is formed through the dielectric film on the central portion of the lower electrode.
  • the periphery of the lower electrode will serve as an etching stopper, and the upper electrode and the dielectric under the upper electrode will also be etched.
  • Body membrane is damaged It is possible to prevent that receive. Therefore, it is possible to obtain a highly reliable capacitive element with little variation in characteristics.
  • the third insulating film is formed on the peripheral portion of the lower electrode and the second insulating film covering the surface of the upper electrode, and the interlayer insulating film is formed. Connected to the upper electrode via the first via hole opened in the interlayer insulating film on the upper electrode And a second wiring layer connected to the peripheral portion of the lower electrode through a second via hole opened in the interlayer insulating film on the peripheral portion of the lower electrode.
  • the interlayer insulating film on the upper electrode to be etched for the opening of the first via hole is etched for the opening of the second via hole.
  • the depth of the second via hole opening on the periphery of the lower electrode is greater than the depth of the first via hole opening on the upper electrode.
  • the lower part which generally tends to be longer than the upper electrode side, at the distance from the opposing region of the upper electrode and the lower electrode, which effectively functions as a capacitive element, to the first and second wiring layers due to the shallowness. Since the distance on the electrode side is shortened, the difference in impedance is reduced, the increase in the asymmetry of the characteristics of the capacitor is suppressed, and the symmetry of the characteristics of the capacitor can be improved.
  • the upper electrode on the lower electrode is lower than the top surface of the dummy electrode around the lower electrode, so that a smooth insulating film is formed on the entire surface of the substrate.
  • the insulating film is formed, it is possible to easily realize that the surface of the upper electrode is covered with the second insulating film, so that the insulating film deposited on the entire surface of the base is etched back.
  • the manufacturing can be simplified.
  • a method of manufacturing a semiconductor device includes the steps of: forming a step-forming dummy layer of a predetermined thickness in a peripheral portion of a region where a capacitor element is to be formed on a semiconductor substrate via a first insulating film; After depositing a conductive film on the first insulating film and the dummy layer, the conductive film is subjected to buttering so that the surface of the peripheral portion is higher than the surface of the central portion.
  • the present invention provides the method for manufacturing a semiconductor device, further comprising: forming a third insulating film on the entire surface of the substrate including the lower electrode, the upper electrode, and the second insulating film to form an interlayer insulating film. Opening a first via hole in the interlayer insulating film on the upper electrode, and opening a second via hole in the interlayer insulating film on the periphery of the lower electrode; Forming a first wiring layer connected to the upper electrode through the hole, and forming a second wiring layer connected to the peripheral portion of the lower electrode through the second via hole.
  • a method of manufacturing a semiconductor device includes the steps of: forming a step-forming dummy layer of a predetermined thickness around a region where a capacitor element is to be formed on a semiconductor substrate via a first insulating film; After a conductive film is deposited on the first insulating film and the dummy layer, the conductive film is patterned to form a lower electrode in a region where a capacitor is to be formed, and to cover one layer of the dummy. Forming a dummy electrode having a surface higher than the surface of the lower electrode around the region where the capacitive element is to be formed; and forming a dielectric on the lower electrode at a position lower than the uppermost surface of the dummy electrode. A step of forming an upper electrode through the film; and a step of forming a second insulating film on the entire surface of the base to fill a depression surrounded by the dummy electrode.
  • the present invention provides a method of manufacturing a semiconductor device, comprising: forming a third insulating film on the entire surface of the substrate including the dummy electrode, the upper electrode and the second insulating film to form an interlayer insulating film; Opening a first via hole in the interlayer insulating film and opening a second via hole in the interlayer insulating film on the lower electrode, and connecting to the upper electrode via the first via hole Forming a first wiring layer and forming a second wiring layer connected to the lower electrode via a second via-hole.
  • the method of manufacturing a semiconductor device includes a step of forming a step-like dummy layer having a predetermined thickness at a peripheral portion of a region where a capacitor element is to be formed on a semiconductor substrate via a first insulating film. After depositing a conductor film on the first insulating film and the dummy layer, the conductor film is patterned to form a lower portion having a concave cross-sectional shape in which the surface of the peripheral portion is higher than the surface of the central portion.
  • the present invention provides the method for manufacturing a semiconductor device according to the above method, further comprising: forming a third insulating film on a peripheral portion of the lower electrode and the entire surface of the substrate including the second insulating film to form an interlayer insulating film; Forming a first via hole in the interlayer insulating film, and opening a second via hole in the interlayer insulating film on the periphery of the lower electrode; and forming the first via hole through the first via hole. Forming a first wiring layer connected to the upper electrode, and forming a second wiring layer connected to the peripheral portion of the lower electrode via the second via hole.
  • a method of manufacturing a semiconductor device includes the steps of: forming a step-forming dummy layer of a predetermined thickness around a region where a capacitor element is to be formed on a semiconductor substrate via a first insulating film; After depositing a conductive film on the first insulating film and the dummy layer, the conductive film is patterned to form a lower electrode in a region where a capacitor is to be formed, and a dummy layer is formed. Forming a dummy electrode having a surface higher than the surface of the lower electrode around the area where the capacitive element is to be formed; and forming a dummy electrode on the lower electrode via a dielectric film from the uppermost surface of the dummy electrode. Forming a second insulating film over the entire surface of the substrate to fill the cavities surrounded by the dummy electrode, and to form a surface of the lower electrode and the upper electrode. Covering with o
  • the present invention provides the method of manufacturing a semiconductor device, further comprising forming a third insulating film on the entire surface of the substrate including the third insulating film on the entire surface of the substrate including the dummy electrode and the second insulating film, thereby forming an interlayer insulating film.
  • the step of forming the dummy layer for a step can also serve as the step of forming an electrode or a resistance layer of another element in the semiconductor device.
  • the dummy layer for the step can be formed of an insulating layer.
  • a dummy for a step having a predetermined thickness is formed at a peripheral portion of a region where a capacitive element is to be formed on a semiconductor substrate via a first insulating film.
  • the conductive film deposited on one layer is patterned to form a concave-shaped lower section where the peripheral surface is higher than the central surface, and the electrode is formed in the area where the capacitive element is to be formed.
  • the third insulating film is formed on the entire periphery of the base including the lower electrode, the upper electrode, and the second insulating film to form an interlayer insulating film.
  • a first wiring layer connected to the upper electrode through a first via hole opened in the interlayer insulating film on the upper electrode is formed, and an opening is formed in the interlayer insulating film on the peripheral portion of the lower electrode.
  • the over-etching of the upper electrode due to excessive over-etching to the surface of the upper electrode is performed because the film thickness is almost the same as the interlayer insulating film on the side. This can prevent the dielectric film from being damaged. Therefore, in addition to the effects described above, a highly reliable capacitive element with less variation in characteristics can be obtained.
  • the depth of the second via opening on the lower electrode is approximately equal to the depth of the first via hole opening on the upper electrode.
  • the distance from the lower electrode side, which generally tends to be longer than the upper electrode side, in the distance from the opposing region of the upper electrode and the lower electrode, which effectively functions as a capacitive element, to the first and second wiring layers is Therefore, the difference in impedance can be reduced to suppress an increase in the asymmetry of the characteristic of the capacitor, and the symmetry of the characteristic of the capacitor can be improved.
  • the method for manufacturing a semiconductor device after forming a step-forming single layer of a predetermined thickness around a region where a capacitor is to be formed on a semiconductor substrate via a first insulating film, The first insulating film and the dummy are patterned on the conductor film deposited on one layer to form a lower electrode in a region where a capacitive element is to be formed, and a dummy layer is coated, and a surface higher than the surface of the lower electrode is formed.
  • a dummy layer for a step having a predetermined thickness is formed at a peripheral portion of a region where a capacitor is to be formed on a semiconductor substrate with a first insulating film interposed therebetween.
  • a lower electrode having a concave cross-sectional shape in which the surface of the peripheral portion is higher than the surface of the central portion is formed in the capacitor element formation region.
  • the upper electrode is formed on the entire surface of the base by forming an upper electrode at a position lower than the surface of the peripheral portion of the lower electrode on the center of the lower electrode via a dielectric film.
  • the surface of the upper electrode can be easily covered with the second insulating film, even when the second insulating film serving as the smoothing insulating film is formed, even if the entire surface of the base is formed. Smoothing process to etch back the insulating film deposited on Even if the upper electrode is etched, the surface of the upper electrode is etched and the upper electrode and the dielectric film under the upper electrode are damaged. Can be prevented. Therefore, it is possible to obtain a highly reliable capacitive element with little change in characteristics.
  • a third insulating film is formed on the entire surface of the base including the peripheral portion of the lower electrode and the second insulating film covering the surface of the upper electrode, thereby forming an interlayer insulating film.
  • a first wiring layer connected to the upper electrode through a first via opening in the interlayer insulating film on the upper electrode is formed, and an interlayer insulating film on a peripheral portion of the lower electrode is formed.
  • a second wiring layer connected to a peripheral portion of the lower electrode through a second via hole opened in the upper layer an interlayer insulation on the upper electrode etched for opening the first via hole is formed.
  • the film becomes thicker than the interlayer insulating film on the periphery of the lower electrode to be etched for the opening of the second via holes.
  • Excessive overshoot on top electrode surface I go-between the upper electrode and further that the etching It is possible to prevent the lower dielectric film from being damaged. Therefore, in addition to the above-described effects, a highly reliable capacitive element with less variation in characteristics can be obtained.
  • the depth of the second via hole opening on the lower electrode is smaller than the depth of the first via hole opening on the upper electrode.
  • the distance from the opposing region of the upper electrode and the lower electrode, which effectively functions as a capacitive element, to the first and second wiring layers is generally longer on the lower electrode side than on the upper electrode side. Since the separation is shortened, the difference in impedance can be reduced to suppress an increase in the asymmetry of the characteristic of the capacitive element, and the symmetry of the characteristic of the capacitive element can be improved.
  • a dummy layer for a step having a predetermined thickness through a first insulating film around a region where a capacitor is to be formed on a semiconductor substrate After forming a dummy layer for a step having a predetermined thickness through a first insulating film around a region where a capacitor is to be formed on a semiconductor substrate, The first insulating film and the conductive film deposited on one layer of the dummy are patterned to form a lower electrode in a region where a capacitive element is to be formed.
  • a dummy electrode having a high surface is formed around the area where the capacitive element is to be formed, and an upper electrode having a lower surface than the uppermost surface of the dummy electrode is formed on the lower electrode via a dielectric film.
  • the second insulating film By forming the second insulating film, it is possible to easily realize that the surface of the upper electrode is covered with the second insulating film formed on the entire surface of the base.
  • the upper electrode and the dielectric film below it may be damaged in harmony with that one electrode becomes the etching stopper. Can be prevented. Therefore, it is possible to obtain a highly reliable capacitive element with little change in characteristics.
  • the step —Since the step of forming a layer also serves as the step of forming an electrode or a resistive layer of another element in the semiconductor device, the manufacturing process can be simplified.
  • FIG. 1 is a schematic sectional view showing a capacitive element according to a first embodiment of the present invention.
  • FIG. 2 is a schematic process sectional view (part 1) for explaining a method of manufacturing the capacitive element shown in FIG.
  • FIG. 3 is a schematic process sectional view (part 2) for describing a method of manufacturing the capacitive element shown in FIG.
  • FIG. 4 is a schematic process sectional view (part 3) for describing a method of manufacturing the capacitive element shown in FIG.
  • FIG. 5 is a schematic process sectional view (part 4) for explaining a method of manufacturing the capacitive element shown in FIG.
  • FIG. 6 is a schematic process sectional view (part 5) for describing a method of manufacturing the capacitive element shown in FIG.
  • FIG. 7 is a schematic process sectional view (part 6) for describing a method of manufacturing the capacitive element shown in FIG.
  • FIG. 8 is a schematic process sectional view (part 7) for explaining the method of manufacturing the capacitive element shown in FIG.
  • FIG. 9 is a schematic process sectional view (part 8) for describing a method of manufacturing the capacitive element shown in FIG.
  • FIG. 10 is a schematic sectional view showing a capacitive element according to the second embodiment of the present invention.
  • FIG. 11 is a schematic process sectional view (part 1) for describing a method of manufacturing the capacitive element shown in FIG.
  • FIG. 12 is a view for explaining a method of manufacturing the capacitive element shown in FIG. 10.
  • FIG. 2 is a schematic process sectional view (No. 2).
  • FIG. 13 is a schematic sectional view showing a capacitive element according to the third embodiment of the present invention.
  • FIG. 14 is a schematic process cross-sectional view (part 1) for explaining the method of manufacturing the capacitive element shown in FIG.
  • FIG. 15 is a schematic process sectional view (part 2) for describing the method for manufacturing the capacitive element shown in FIG.
  • FIG. 16 is a schematic step-by-step cross-sectional view (part 3) for describing a method of manufacturing the capacitive element shown in FIG.
  • FIG. 17 is a schematic process sectional view (part 4) for explaining the method of manufacturing the capacitive element shown in FIG.
  • FIG. 18 is a schematic step-by-step cross-sectional view (part 5) for describing the method of manufacturing the capacitive element shown in FIG.
  • FIG. 19 is a schematic process sectional view (part 6) for describing the method of manufacturing the capacitive element shown in FIG.
  • FIG. 20 is a schematic sectional view showing a capacitive element according to the fourth embodiment of the present invention.
  • FIG. 21 is a schematic process cross-sectional view (part 1) for describing a method of manufacturing the capacitive element shown in FIG.
  • FIG. 22 is a schematic process sectional view (part 2) for explaining the method of manufacturing the capacitive element shown in FIG.
  • FIG. 23 is a schematic process sectional view (part 3) for describing the method of manufacturing the capacitive element shown in FIG.
  • FIG. 24 is a schematic step-by-step cross-sectional view (part 4) for explaining the method of manufacturing the capacitive element shown in FIG.
  • FIG. 25 is a schematic step-by-step cross-sectional view (part 5) for describing the method of manufacturing the capacitive element shown in FIG.
  • FIG. 26 is a view for explaining a method of manufacturing the capacitive element shown in FIG. 20.
  • FIG. 6 is a schematic process sectional view (No. 6).
  • FIG. 27 is a schematic step-by-step cross-sectional view (part 7) for describing the method of manufacturing the capacitive element shown in FIG.
  • FIG. 28 is a schematic process sectional view (part 8) for explaining the method of manufacturing the capacitive element shown in FIG.
  • FIG. 29 is a schematic sectional view showing a capacitive element according to the fifth embodiment of the present invention.
  • FIG. 30 is a schematic step-by-step cross-sectional view (No. 1) for describing the method of manufacturing the capacitive element shown in FIG.
  • FIG. 31 is a schematic step-by-step cross-sectional view (part 2) for describing the method of manufacturing the capacitive element shown in FIG.
  • FIG. 32 is a schematic sectional view showing a capacitor according to a sixth embodiment of the present invention.
  • FIGS. 33A and 33B are schematic process sectional views (No. 1) for explaining the method of manufacturing the capacitive element shown in FIG.
  • FIG. 34 is a schematic step-by-step cross-sectional view (part 2) for describing the method for manufacturing the capacitive element shown in FIG. 32.
  • FIG. 35 is a schematic step-by-step cross-sectional view (part 3) for describing a method of manufacturing the capacitive element shown in FIG.
  • FIG. 36 is a schematic step-by-step cross-sectional view (part 4) for describing a method of manufacturing the capacitive element shown in FIG.
  • FIG. 37 is a schematic step-by-step cross-sectional view (part 5) for describing the method of manufacturing the capacitive element shown in FIG.
  • FIG. 38 is a schematic process sectional view (part 6) for describing the method of manufacturing the capacitive element shown in FIG.
  • FIG. 39 is a schematic process sectional view (part 1) for explaining a conventional method of manufacturing a capacitive element.
  • FIG. 40 shows schematic steps for explaining a conventional method of manufacturing a capacitive element. It is sectional drawing (2).
  • FIG. 41 is a schematic process sectional view (part 3) for describing the conventional method of manufacturing a capacitive element.
  • FIG. 1 is a schematic sectional view showing a capacitive element according to a first embodiment of the present invention.
  • FIGS. 2 to 9 are schematic sectional views for explaining a method for manufacturing the capacitive element shown in FIG. is there.
  • the peripheral part of the capacitive element formation region on the semiconductor substrate 10 is provided via a first insulating film 12 made of, for example, a SiO 2 film.
  • a polycrystalline silicon layer 14 for a step made of a polysilicon (Po1ySi1icon) layer having a required thickness, for example, a thickness of about 100 to 500 nm is formed.
  • a second insulating film 16 is formed on the first insulating film 12 and the polysilicon dummy layer 14. Note that the second insulating film 16 can be omitted.
  • a Ti layer having a thickness of about 5 to 70 nm, a Ti 0 N layer having a thickness of about 10 to 20 nm, and a thickness of 5 to 7 nm are provided on the second insulating film 16.
  • a Ti layer with a thickness of about 0 nm, an A1-Si layer with a thickness of about 300 to 150 nm, and a TiN layer with a thickness of about 5 to 70 nm were deposited in order from the bottom.
  • the lower electrode 18a is formed by a TiNZAl-Si / Ti / TiONZTi laminated film, or by Cu, A1_Cu, or the like. In this example, the lower electrode 18a of the TiNZAl-Si / Ti / TiON / Ti stacked film is formed.
  • the surface of the peripheral part above the dummy layer 14 is, for example, about 100 to 500 nm higher It is in. .
  • the uppermost Ti ⁇ layer is formed by a film formed during the manufacturing process. It functions as an anti-reflection film and a lower anti-oxidation film of the A 1 —Si layer under the process of the trilithography, and the A 1 —S i layer functions as a main part of the electrode which needs to have a conductive property.
  • the ⁇ i 0 N / Ti laminated film functions as a barrier metal.
  • the dielectric film such as S i 0 2 or S i N 2 0, via the dielectric film of T a 2 0 5 in the present example, the thickness of 5 ⁇ 1 0 0 nm approximately T i, T i N or T i and T i N upper electrode 2 composed of a laminated film of 2 are formed.
  • the dielectric film 2 0 when formed by S i 0 2, S i N and the like, may be formed of a laminated film of the upper portion electrode 2 2 Ding 1, T i N or ⁇ ⁇ ⁇ and T i.
  • the surface of the upper electrode 22 formed on the central portion of the lower electrode 18a having the concave cross-sectional shape of the capacitive element is formed of a polysilicon layer of the lower electrode 18a having the concave cross-sectional shape. (4) The height is lower than the surface of the peripheral part above.
  • a smoothing process is performed on the irregularities on the surface of the substrate composed of the upper electrode 22 and the lower electrode 18a. That is, for example, Si 0 deposited on the entire surface of the substrate using a plasma CVD method using TE 0 S as a raw material.
  • a smoothing insulating film 24 made of a film and an S 0 G film coated thereon is formed, and the smoothing insulating film 24 fills the concave portion of the lower electrode 18 a having a concave cross-sectional shape.
  • the surface of the upper electrode 22 is covered.
  • an insulating film 26 made of, for example, a SiO film is deposited on the entire surface of the smoothed substrate, that is, on the periphery of the lower electrode 18a and on the smoothing insulating film 24.
  • An interlayer insulating film 27 is formed by the smoothing insulating film 24 and the insulating film 26.
  • a first upper wiring layer 30a made of one alloy layer is formed. Further, for example, an A1 alloy layer connected to the peripheral portion of the lower electrode 18a through a second via hole 28b opened in the interlayer insulating film 27 on the peripheral portion of the lower electrode 18a. A second upper wiring layer 30b is formed.
  • a first insulating film 12 made of, for example, a SiO film is formed on a semiconductor substrate 10, and then a first insulating film 12 is made of, for example, polysilicon. Make the silicon layer the required thickness, for example
  • the polysilicon layer is selectively etched and removed to form a predetermined shape.
  • a polysilicon layer having a thickness of about 100 to 500 nm is formed around the semiconductor element 10 on the periphery of the area where the capacitive element is to be formed, with the first insulating film 12 interposed therebetween.
  • Step dummy polysilicon layer 14 is formed.
  • the process of forming the polysilicon layer 14 is the same as that of the LSI.
  • Other elements such as MOS Gate (Mate Oxide Semiconductor Transistor) gate electrodes, resistive element resistance layers, and Bip Tr (Bipo 1 ar Transistor) electrodes. It can be used also as a process of forming a polysilicon layer to be used.
  • a second insulating film 16 is formed on the entire surface of the substrate including the polysilicon layer 14 for the step. Note that the formation of the second insulating film 16 can be omitted.
  • a conductive film having a required thickness for example, a Ti layer having a thickness of about 5 to 70 nm is formed on the second insulating film 16 by using, for example, a sputtering method.
  • T i 0 N layer with a thickness of about 10 to 20 O nm T i layer with a thickness of about 5 to 7 O nm
  • a TiN layer having a thickness of about 5 to 70 nm is sequentially deposited from the bottom to form a TiN / Al-Si / Ti / TiONZTi multilayer film 18.
  • the uppermost TiN layer functions as an antireflection film in the photolithography process during the manufacturing process and as an antioxidant film for the A1—Si layer thereunder.
  • the A 1 —S i layer functions as a main part of the electrode that requires conductive characteristics, and the underlying T i / T i 0 N / T i stacked film functions as a barrier metal.
  • the surface above the polysilicon / dummy layer 14 for a step having a thickness of about 100 to 500 nm is formed.
  • the height is about 100 to 500 nm higher than the surface in the region surrounded by the polysilicon layer 14.
  • the CVD method is used to form T a0, T i N / A 1 on the S i / T i / T i 0 N / T i laminated film 18.
  • S i 0, S i N, etc., in this example T a 2 0 5 dielectric Deposit the film to a required thickness, for example, about 10 to 300 nm
  • a conductor layer of a Ti layer, a TiN layer or a laminated film of Ti and TiN is deposited to a required thickness, for example, a thickness of about 5 to 100 nm.
  • the thus-stacked conductive layer and dielectric film are selectively etched away and patterned into a predetermined shape.
  • the thickness of the TiNNZAl—Si / Ti / TiON / Ti stacked film 18 in the area surrounded by the polysilicon layer 14 for the step is formed to a thickness of 10 Thickness 5 to 300 nm through dielectric film 20 of about 300 nm
  • An upper electrode 22 composed of a Ti layer, a TiN layer of about 100 nm, or a laminated film of Ti and TiN is formed.
  • the surface of the upper electrode 22 is lower in height than the surface above the polysilicon ⁇ dummy layer 14 of the laminated film 18.
  • the TiN / Al-Si / Ti / TiON / Ti stacked film 18 is selectively etched away and patterned into a predetermined shape.
  • the recessed cross-section T i N / is located at a position where the surface of the peripheral portion above the polysilicon for the step is higher than the surface of the central portion where the upper electrode 22 is formed.
  • the lower electrode 18a is formed by the Al-Si / Ti / TiONZTi multilayer film. Simultaneously with the formation of this lower electrode 18a, the lower wiring layer (not shown) of the other elements of the LSI is formed by the TiN / A1-Si / Ti / TiON / Ti stacked film.
  • a capacitive element composed of the upper electrode 22 and the lower electrode 18a sandwiching the dielectric film 20 is formed.
  • the surface of the upper electrode 22 of the constriction element is lower in height than the surface of the peripheral portion of the lower electrode 18a above the polysilicon layer 14 of the lower layer.
  • a smoothing process for smoothing unevenness on the entire surface of the substrate is performed. That is, for example, plasma using TEOS as a raw material
  • an SiO 2 film is deposited to a thickness of about 300 to 150 nm on the entire surface of the base including the upper electrode 22 and the lower electrode 18a. Further, an SOG film is coated on the SiO 2 film. Thereafter, the S 0 G film and the S i O 2 film are etched back.
  • a smoothing insulating film 24 for filling the surface of the upper electrode 22 and smoothing the entire surface of the base is formed while filling the recess of the concave cross-sectional shape of the lower electrode 18a.
  • the surface of the upper electrode 22 formed on the central portion of the lower electrode 18a having the concave cross section is The height of the lower electrode 18a of the concave cross-sectional shape is lower than the surface of the peripheral portion above the polysilicon.
  • S i 0 2 and T for etching rate between i and T i N does not change rather large, after the formation of the S 0 G film and S i 0 2 film During the etch back, the surface of the lower electrode 18a is exposed, but the surface of the upper electrode 22 is always covered with the smoothing insulating film 24. There is no exposure. That is, the upper electrode 22 and the dielectric film 20 thereunder are not damaged.
  • the insulating film 2 made of, for example, a SiO 2 film is formed on the entire base including the peripheral portion of the lower electrode 18 a and the smoothing insulating film 24. Deposit 6 smooth The insulating insulating film 24 and the insulating film 26 form an interlayer insulating film 27.
  • the interlayer insulating film 27 on the upper electrode 22 is selectively removed by etching using photolithography and dry etching, and the interlayer insulating film on the periphery of the lower electrode 18a is removed.
  • 2 7 is selectively etched away, and the first and second via holes 28 a
  • the TiN layer on the surface of the lower electrode 18a may be removed.
  • the upper portion to be etched to open the first via hole 28a The total thickness of the interlayer insulating film 7 on the electrode 22 is smaller than the thickness of the interlayer insulating film 27 on the periphery of the lower electrode 18a etched to open the second via ⁇ hole 28b. Since the first and second via holes 28a and 28b are opened, excessive overetching of the surface of the upper electrode 22 is not performed.
  • the A1 alloy layer is processed using a photolithography process and a drying method.
  • a first and second vias A first alloy layer made of an A1 alloy layer connected to the peripheral portions of the upper electrode 22 and the lower electrode 18a via the holes 28a and 28b, respectively.
  • First and second upper wiring layers 30a and 30b are formed.
  • upper wirings (not shown) of other elements of the LSI are formed.
  • a step formed of a polysilicon layer having a thickness of about 100 to 500 nm is formed on the semiconductor substrate 10 around a region where a capacitor element is to be formed, via a first insulating film 12.
  • ⁇ Dummy layer 14 is formed, and this polysilicon dummy shoulder 14
  • a second insulating film 16 is formed on the entire surface of the base including the semiconductor substrate, and the surface of the peripheral portion above the polysilicon / dummy layer 14 is higher on the second insulating film 16 than the surface of the central portion.
  • a lower electrode 18a having a concave cross-sectional shape is formed at the same time, and a required thickness, for example, a dielectric film 20 having a thickness of about 10 to 300 nm
  • An upper electrode 22 having a thickness of, for example, about 5 to 100 nm is formed, and the height of the surface of the upper electrode 22 is adjusted to a level above the polysilicon / dummy layer 14 of the lower electrode 18a.
  • the smoothing process is performed by depositing a SiO 2 film over the entire surface of the substrate, further coating the SOG film, and then etching back, the concave shape of the lower electrode 18 a
  • the smoothing insulating film 24 which fills the recesses of the cross-sectional shape and smoothes the entire surface of the substrate, always covers the surface of the upper electrode 22.
  • the by the etching in the smoothing processing connexion upper electrode 2 2 or more does not Yuden film 7.20 thereunder damaged. Accordingly, it is possible to obtain a capacitor having good characteristics and high reliability by suppressing fluctuations in characteristics such as the capacitance value of the capacitor and deterioration in reliability.
  • first and second vias are formed to form first and second upper wiring layers 30a and 30b connected to the upper electrode 22 and the lower electrode 18a of the capacitive element, respectively.
  • the holes 28a and 28b are respectively opened, the total thickness of the interlayer insulating film 27 on the upper electrode 22 etched to open the first via hole 28a is Step 2 ⁇ Since the thickness of the interlayer insulating film 27 on the periphery of the lower electrode 18 a to be etched to open the hole 28 b is larger than that of the upper electrode 22, it is excessively large. such over-etching is not be performed, the upper electrode 2 2 and the underlying T a 2 0 5 dielectric film 2
  • the depth of the second via hole 28 b opening on the lower electrode 18 a is higher than the upper electrode 22.
  • the first and second electrodes 18 a Since it is shallower than the depth of the first via hole 28 a that opens to the first electrode, the first and second electrodes 18 a from the opposing region between the upper electrode 22 and the lower electrode 18 a that function effectively as a capacitive element In the distance to the second upper wiring layer 30a, 3'0b, the distance on the lower electrode side, which generally tends to be longer than that on the upper electrode side, is reduced, so that the difference in impedance is reduced.
  • an increase in the asymmetry of the characteristics of the capacitor can be suppressed. That is, the symmetry of the characteristics of the capacitor can be improved.
  • FIG. 10 is a schematic cross-sectional view showing a capacitive element according to the second embodiment of the present invention.
  • FIGS. 11 and 12 are diagrams for explaining a method of manufacturing the capacitive element shown in FIG. 10. It is a schematic process sectional drawing.
  • the same components as those of the first embodiment shown in FIGS. 1 to 9 shown in FIGS. 1 to 9 are denoted by the same reference numerals, and description thereof is omitted.
  • an insulating dummy layer made of Si02 or the like, for example, a SiN dummy layer 32 for a step consisting of a SiN layer having a thickness of about 100 to 50 O nm is formed.
  • Other components are the same as those in the first embodiment.
  • step 1 This will be described with reference to a schematic sectional view of step 1 2.
  • a first insulating film 12 made of, for example, a SiO 2 film is formed on a semiconductor substrate 10
  • an insulating film different from the first insulating film 12 for example, a SiN film is formed to a thickness of about 100 to 500 nm.
  • the SiN film is selectively removed by etching, and patterned into a predetermined shape.
  • an S-N film having a thickness of about 100 to 50 O nm is formed around the semiconductor element 1 G around the area where the capacitor is to be formed, via the first insulating film 12.
  • An iN dummy layer 32 is formed.
  • a second insulating film is formed on the entire surface of the substrate including the SiN dummy layer 32. Then, a TiN / Al-Si / Ti / TiON / Ti laminated film 18 is formed on the second insulating film 16 and the TiNZA1 is formed.
  • An upper electrode 22 is formed on the S i / T i ZT i 0 NZT i laminated film 18 via a dielectric film 20, and a Ti N / A l is formed by a photolithography process and an RIE process.
  • T i / T i 0 NXT i laminated film 18 so that the surface of the peripheral part above the SiN dummy layer 32 is higher than the surface of the central part where the upper electrode 22 is formed.
  • a lower electrode 18a having a certain concave cross-sectional shape is formed.
  • the surface of the upper electrode 22 of the capacitive element is lower in height than the surface of the peripheral portion of the lower electrode 18a above the SiN dummy layer 32.
  • a smoothing process for etching back the S 0 G film and the SiO 2 film was performed, and the lower electrode 18 a was formed. Fill the recess of the concave cross section and The surface of the electrode 22 is covered to form a smoothing insulating film 24 for smoothing the entire surface of the substrate.
  • the surface of the upper electrode 22 formed on the center of the lower electrode 18a having the concave cross section is Lower electrode with concave cross section
  • the height is lower than the surface of the peripheral portion above the 18 Na dummy layer 32 of 18a.
  • the difference in etch rate between S i 0 2 and T i, T i N is not large. Therefore, even when the S 0 G film and the S i 0 film are etched back, the lower electrode 1 Although the surface of the periphery of 8a is exposed, the surface of the upper electrode 22 is always covered with the smoothing insulating film 24 and is not exposed by etching.
  • an insulating film 26 made of, for example, an Sio film is deposited on the entire surface of the base including the lower electrode 18a and the peripheral portion including the smoothing insulating film 24 to form the smoothing insulating film 24 and the insulating film 2. 6 to form an interlayer insulating film 2 7
  • the interlayer insulating film 27 on the upper electrode 22 is selectively etched and removed, and the interlayer insulating film 27 on the peripheral portion of the lower electrode 18a is selectively etched and removed. Open the second via and the holes 28a and 28b, respectively.
  • the TiN layer on the surface of the lower electrode 18a may be removed.
  • the total thickness of the interlayer insulating film 27 on the upper electrode 22 to be etched to open the first via hole 28 a is such that the second via hole 28 b is opened. Because the thickness of the interlayer insulating film 26 on the periphery of the lower electrode 18a to be etched is larger than that of the first and second via holes 28a and 28b, At this time, excessive overetching of the surface of the upper electrode 22 is not performed.
  • a required thickness for example, 100 to 50, is provided on the semiconductor substrate 10 at the peripheral portion of the region where the capacitor element is to be formed via the first insulating film 12.
  • a second insulating film 16 is formed on the entire surface of the substrate including the SiN dummy layer 32, and a second insulating film 16 is formed on the second insulating film 16 so as to be higher than the central surface.
  • the lower electrode 18a having a concave cross-sectional shape in which the surface of the peripheral portion above the N dummy layer 32 is located at a high position is formed, and the upper electrode 22 is formed on the central portion thereof via the dielectric film 20. Then, the height of the surface of the upper electrode 22 is made lower than the height of the surface of the peripheral portion of the lower electrode 18a above the SiN dummy layer 32, whereby the Si S2 film is formed on the entire substrate.
  • a smoothing insulating film 24 for filling the recesses of the concave cross-sectional shape of the lower electrode 18a and smoothing the entire surface of the substrate. Since the surface always covers the surface of the upper electrode 22, the etching at the time of this smoothing treatment induces the upper electrode 22 and further below the upper electrode 22. It does not receive the body film 2 0 Hurghada menu temporarily. Therefore, similarly to the case of the first embodiment, it is possible to suppress the fluctuation of the characteristics such as the capacitance value of the capacitance element and the deterioration of the reliability, and to obtain the capacitance element having good characteristics and high reliability. .
  • first and second via holes for forming first and second upper wiring layers 30a and 30b connected to the upper electrode 22 and the lower electrode 18a of the capacitive element, respectively.
  • the total thickness of the interlayer insulating film 27 on the upper electrode 22 etched to open the first via hole 28 a is the second thickness.
  • the lower electrode 18a to be etched to open the via hole 28b is thicker than the interlayer insulating film 27 on the periphery of the lower electrode 18a.
  • excessive over-etching on the surface of the upper electrode 22 is not performed, and the upper electrode 22 and the dielectric film 20 thereunder are not damaged. Therefore, as in the case of the first embodiment, fluctuations in characteristics such as the capacitance value of the capacitance element and deterioration in reliability are further suppressed, and a capacitance element having better characteristics and higher reliability is realized. Obtainable.
  • the depth of the second via hole 28 b opening on the lower electrode 18 a is shallower than the depth of the first via hole 28 a opening on the upper electrode 22.
  • the distance from the opposing region of the upper electrode 22 and the lower electrode 18a that effectively functions as a capacitive element to the first and second upper wiring layers 30a and 30b is from the upper electrode side. Therefore, as in the case of the first embodiment, the difference in impedance is reduced to increase the asymmetry of the characteristics of the capacitive element, as in the first embodiment. Thus, the symmetry of the characteristics of the capacitor can be improved.
  • a required thickness for example, a thickness of 100 to 100 ⁇ m, is provided on the semiconductor substrate 10 around the region where the capacitive element is to be formed, via the first insulating film 12.
  • the SiN dummy layer 32 for the step of about 500 nm is formed, instead of forming the SiN dummy layer 32, a photolithography process and an etching process are used.
  • the first insulating film 12 in the central portion of the region where the capacitor is to be formed on the semiconductor substrate 10 is selectively etched away to form a recess having a depth of about 100 to 500 nm. Good.
  • a final dummy layer is formed by a combination of the selective etching of the first insulating film 12 and the dummy layer 32 (or the dummy layer 14, which will be described later).
  • a depression having a depth of about 100 to 500 nm can also be formed.
  • a second insulating film 16 is formed in the same manner as in the second embodiment, and on the second insulating film 16, T i N / A l -S i ZT
  • the i / TiON / Ti laminated film 18 By forming the i / TiON / Ti laminated film 18 and patterning the TiN / A1—Si / Ti / Ti0N / Ti laminated film 18 It is possible to form the lower electrode 18a having a concave cross-sectional shape in which the surface of the peripheral portion is higher than the surface of the central portion above the depression formed in the first insulating film 12. Therefore, the same operation and effect as those of the second embodiment can be obtained. (Third embodiment)
  • FIG. 13 is a schematic cross-sectional view showing a capacitive element according to the third embodiment of the present invention.
  • FIGS. 14 to 19 are each for explaining a method of manufacturing the capacitive element shown in FIG. FIG.
  • the same elements as those of the first embodiment, which are not shown in FIGS. 1 to 9 and which are the same as those of the capacitive element, are denoted by the same reference numerals and description thereof is omitted. .
  • a polysilicon for a step is provided at a peripheral portion of the capacitor.
  • a polysilicon layer for the same thickness for example, a thickness of about 100 to 50 O nm.
  • a dummy layer 34 is formed around the capacitive element. There is a special feature in this.
  • the surface is flat.
  • the lower electrode 18 b of T i N / A l — S i / T i / T i O NZT i is formed, and is separated from the lower electrode 18 b to form a step around the capacitance element.
  • a dummy of Ti N / A 1 S i / T i / T i ONZT i having a surface higher than the surface of the upper electrode 22 above the polysilicon layer 34 for use
  • the electrode 18c is formed.
  • the smoothing insulating film 24 filling the recess of the concave cross-sectional shape of the lower electrode 18a covers the surface of the upper electrode 22.
  • the smoothing insulating film 24 filling the depression surrounded by the dummy electrode 18c is formed on the upper electrode 22 formed on the lower electrode 18b. The surface is covered.
  • the other components are substantially the same as those in the first embodiment.
  • a polysilicon layer is formed on the first insulating film 1 2. to a required thickness, for example, a thickness of about 100 to 500 nm. Subsequently, the polysilicon layer is selectively removed by etching and patterned into a predetermined shape by a photolithography process and a RIE process.
  • a polysilicon / dummy layer 34 for a step formed of a polysilicon layer having a thickness of about 100 to 50011 m is formed via the first insulating film 12.
  • the process of forming the polysilicon 'dummy layer 34 is performed by using the other elements of the LSI, for example, the gate electrode of the MOST r, the resistance layer of the resistance element, and the polysilicon used as the electrode of the Bip Tr. It can also be used as a silicon layer forming process.
  • the entire surface of the substrate including the polysilicon / dummy layer 34 for the step is A second insulating film 16 is formed. Insulating film 16 can also be omitted. Then, on this second insulating film 16, a TiN / A1_Si / Ti / TiON / Ti laminated film, or laminated by Cu, A1—Cu, or the like.
  • a Ti N / A 1 S i / T i / T i ONZT i laminated film 18 is formed, and this T i N / A l-S i / T i / T i ON / T i On the laminated film 18, T a 2 ⁇
  • the surface of the upper electrode 22 is made of polysilicon of the TiN / A 1 -SiZTi / Ti0N / Ti stacked film 18.
  • the height is lower than the top surface above.
  • the TiN / Al-Si / Ti / TiON / Ti stacked film 18 is selectively etched by a photolithography process and an RIE process. It is removed and buttered to a predetermined shape.
  • the lower electrode 18 b of Ti N / A l —S i / T i / T i ON / T i is formed in the area where the capacitive element is to be formed on the second insulating film 16.
  • a Ti Separately from the lower electrode 18b, a Ti having a top surface higher than the surface of the lower electrode 18b above the polysilicon / dummy layer 34 around the area where the capacitor is to be formed.
  • a new electrode 18 c is formed by NZ T i.
  • a lower wiring layer (not shown) is formed by a TiN / Al-SiZTiZTiON / Ti multilayer film of other elements of the LSI. .
  • the surface of the upper electrode 22 of the capacitive element is formed by the polysilicon of the dummy electrode 18 c around the capacitive element forming region. 4 Its height is lower than the top surface above.
  • the substrate entire surface including the upper electrode 2 2 and the lower electrode 1 8 b depositing a S i 0 2 film to a thickness of 3 0 0 ⁇ 1 5 0 0 nm extent . Furthermore, the S i 0 2 film, S 0 G film co Solo tee ring. Thereafter, a smoothing process for etching back the SOG film and the SiO 2 film is performed.
  • the hollow surrounded by the dummy electrode 18c is buried, and the surface of the upper electrode 22 and the lower electrode 18b is covered to smooth the entire surface of the substrate.
  • a film 24 is formed.
  • the surface of the upper electrode 22 formed on the lower electrode 18b is damaged by the dummy around the capacitive element formation region. Therefore height than the uppermost surface of the poly silicon-dummy layer 3 4 upper electrode 1 8 c is summer low, even when the etch-back of S 0 G film and S i 0 2 film, the lower electrode The surface of the upper electrode 22 together with the surface of 18b is always covered with the smoothing insulating film 24 and is not exposed by etching.
  • an insulating film 26 is deposited on the entire surface of the substrate including the dummy electrode 18c and the smoothing insulating film 24 by using, for example, a plasma CVD method.
  • the smoothing insulating film 24 and the insulating film 26 form an interlayer insulating film 27.
  • the interlayer insulating film 27 on the upper electrode 22 and the lower electrode 18b is selectively removed by etching using a photolithography process and a dry etching method, so that the first and second vias are formed. ⁇ Open holes 28a and 28c, respectively.
  • First First and second upper wiring layers 3 made of an A1 alloy layer connected to the periphery of the upper electrode 22 and the lower electrode 18b through the second and second via holes 28a and 28c, respectively. 0a and 30c are formed.
  • the upper wiring layers (not shown) of other elements of the LSI are formed.
  • a step having a thickness of about 100 to 500 nm is formed around the region where the capacitor element is to be formed on the semiconductor substrate 10 via the first insulating film 12.
  • a TiN / A 1 —S layer is formed on the entire surface of the substrate including the polysilicon layer 34 through a second insulating film 16.
  • i ZT i / T i ON / ⁇ i Multi-layer film 18 is formed and patterned into a predetermined shape, and Ti N / A l-S i / T i / T i ON / A lower electrode 18b of T i is formed, and the surrounding polysilicon is formed.
  • T i N having a surface above the surface of the lower electrode 18b above the dummy layer 34
  • the dummy electrode 18 c of ZT i ON / Ti is formed, and the upper electrode 22 is formed on the lower electrode 18 b via the dielectric film 20.
  • an SiO 2 film is deposited on the entire surface of the substrate.
  • a smoothing insulation for smoothing the entire surface of the substrate by filling the hollow surrounded by the dummy electrode 18c.
  • T is the lower electrode 18a, 18b of the capacitive element and is the second upper layer via the second via hole 28b, 28c.
  • the case where wiring is connected to wiring layers 30b and 30c is described, but the case where the lower electrodes 18a and 18b are used as wiring layers as they are and are connected to other elements in the LSI. There is also.
  • the first and second upper wiring layers 30a, 30b, and 30c are formed by using a CVD method instead of depositing and processing an A1 alloy layer.
  • etch back to form W plugs for filling the first and second via holes 28a, 28b, 28c, respectively.
  • the A1 alloy layer is processed to form the first and second via holes 28a, 2a.
  • a method of forming first and second upper wiring layers connected to the W plugs in 8b and 28c, respectively, may be used.
  • FIG. 20 is a schematic cross-sectional view showing a capacitive element according to the fourth embodiment of the present invention.
  • FIGS. 21 to 28 are each for explaining a method of manufacturing the capacitive element shown in FIG. 20.
  • FIG. 21 to 28 are each for explaining a method of manufacturing the capacitive element shown in FIG. 20.
  • a first insulating film 12 made of, for example, a SiO 2 film is provided on the periphery of the capacitance element formation region on the semiconductor substrate 10.
  • a dummy polysilicon layer 14 for a step formed of a polysilicon (PolySi 1 icon) layer having a required thickness, for example, a thickness of about 100 to 500 nm is formed.
  • the first insulating film 12 and the polysilicon —On the layer 14, a second insulating film 16 is formed. Note that the second insulating film 16 can be omitted.
  • this second insulating film 16 for example, a Ti layer having a thickness of about 5 to 70 nm, a Ti 0 N layer having a thickness of about 10 to 20 nm, and a thickness of 5 to 7 nm
  • a Ti layer with a thickness of about 0 nm, an A1-Si layer with a thickness of about 300 to 150 nm, and a TiN layer with a thickness of about 5 to 70 nm deposited in order from the bottom i N / A l — S i / T i / T i ON / T i laminated structure film, or lower electrode 18a of Cu, A 1 -Cu, etc. is formed.
  • the lower electrode 18a of the TiNZAl-SiZTi / TiON / Ti stacked film is formed.
  • the lower part of the polysilicon / dummy layer 14 for the step having a thickness of about 100 to 500 nm is more thicker than the surface of the central part.
  • the surface of the peripheral portion is located at a position higher by, for example, about 100 to 500 nm.
  • the uppermost T i N layer is an anti-reflection film in the photolithographic process during the manufacturing process and an anti-oxidation film of the A 1 — S i layer thereunder.
  • the A 1 —S i layer functions as the main part of the electrode that requires conductive characteristics, and the underlying Ti / Ti 0 N / Ti laminated film functions as a non-metal.
  • required thickness for example, a thickness of 1 0 ⁇ 3 0 O nm approximately T a 2 0 5, S i 0 2 or S i N dielectric film such as 2 0, via the dielectric film of T a 2 0 5 in the present example, the thickness of 5 ⁇ 1 0 0 nm approximately T i, T i N or T i and T i N upper electrode 2 composed of a laminated film of 2 is formed ...
  • the dielectric film 2 0 T a 2 0 5 is a laminated film upper electrode 2 2 2 oxygen or react with difficulty had T i N a deposited in this order a T i N and T i It is preferable to form it.
  • the upper The sub-electrode 22 can be formed of Ti, TiN or a laminated film of TiN and Ti.
  • a capacitive element is formed by the upper electrode 22 and the lower electrode 18a sandwiching the dielectric film 20 therebetween.
  • the surface of the dielectric film 20 formed on the central portion of the lower electrode 18a having the concave cross-sectional shape of the capacitive element is formed by the polysilicon of the lower electrode 18a having the concave cross-sectional shape.
  • One layer 14 above the periphery. Its height is lower than the surface. .
  • a smoothing process is performed on the irregularities on the surface of the S body composed of the upper electrode 22 and the lower electrode 18a. That is, for example, a smoothing insulating film 24 composed of a SiO 2 film deposited on the entire surface of the substrate and a S 0 G film coated thereon is formed using a plasma CVD method using TE 0 S as a raw material. The recess of the concave cross section of the lower electrode 18 a is filled with the smoothing insulating film 24. .
  • an insulating film 2 6 consisting of S i 0 2 film is deposited.
  • An interlayer insulating film 27 is formed by the smoothing insulating film 24 and the insulating film 26.
  • a first upper wiring layer 30a made of one alloy layer is formed. Further, for example, an A1 alloy layer connected to the peripheral portion of the lower electrode 18a through a second via hole 28b opened in the interlayer insulating film 27 on the peripheral portion of the lower electrode 18a.
  • a polysilicon layer is further formed on the first insulating film 12 to a required thickness, for example, 100 to 500 It is formed to a thickness of about nm. Subsequently, the polysilicon layer is selectively etched and removed by a photolithography process and an RIE process to pattern it into a predetermined shape.
  • a polysilicon layer having a thickness of about 100 to 500 nm is formed around the semiconductor element 10 on the periphery of the area where the capacitor is to be formed with the first insulating film 12 interposed therebetween.
  • a polysilicon / dummy layer 14 for a step is formed.
  • the process of forming the polysilicon 'dummy layer 14 is performed by using other elements of the LSI, for example, a gate electrode (gate) electrode of a metal oxide semiconductor transistor (M0STr) or a resistor. It can also be used as a process for forming a resistive layer of an element and a polysilicon layer used as an electrode of a BipTr (Bipoar transistor).
  • a gate electrode (gate) electrode of a metal oxide semiconductor transistor (M0STr) or a resistor can also be used as a process for forming a resistive layer of an element and a polysilicon layer used as an electrode of a BipTr (Bipoar transistor).
  • a second insulating film 16 is formed on the entire surface of the substrate including the polysilicon dummy layer 14 for the step. Note that the formation of the second insulating film 16 can be omitted.
  • a conductor film having a required thickness for example, Ti having a thickness of about 5 to 70 nm is formed on the second insulating film 16 by using, for example, a sputtering method.
  • a TiN layer having a thickness of about 5 to 7 O nm is sequentially deposited from the bottom to form a TiN / Al-Si / Ti / TiON / Ti multilayer film 18.
  • the uppermost T iN layer functions as an anti-reflection film in the photolithography process during the manufacturing process and as an anti-oxidation film for the A 1 -S i layer thereunder.
  • a 1 — S i The layer functions as the main part of the electrode that needs to be conductive, and the underlying Ti
  • the ZTi0N / Ti stacked film functions as a barrier metal.
  • the surface above the polysilicon polysilicon dam layer 14 having a thickness of about 100 to 500 nm is the surface in the region surrounded by the polysilicon polysilicon layer 14. 1 0 0
  • the CVD method is used to form Ta 2 0 5 , Ta 2 0 5 , on this Ti N / Al —Si ZTi i / Ti ON / Ti laminated film 18.
  • S i 0 2, S i N but the present embodiment the T a 2 0 5 dielectric film required thickness, for example, you deposited to a thickness of about 1 0 ⁇ 3 0 0 nm.
  • a conductor layer of, for example, a Ti layer, a TiN layer, or a laminated film of Ti and TiN is formed on this dielectric film to a required thickness, for example, 20 to Deposit to a thickness of about 500 nm.
  • the conductive layer and the dielectric film thus laminated are selectively etched away and patterned into a predetermined shape.
  • the thickness 10 to 3 is formed on the TiNZAl-SiZTi / TiONZTi laminated film 18 in the area surrounded by the polysilicon / dummy layer 14 for the step.
  • Thickness 20 through dielectric film 20 of about 0 nm
  • An upper electrode 22 composed of a Ti layer, a TiN layer or a laminated film of Ti and TiN of about 500 nm is formed.
  • the surface of the upper electrode 22 is the same as or higher than the surface of the laminated film 18 above the dummy layer 14.
  • the surface of the dielectric film 20 is lower than the surface of the laminated film 18 above the polysilicon / dummy layer 14.
  • the photolithography process and In the RIE process the Ti i / A 1 -Si / Ti / Ti ON / Ti stacked film 18 is selectively etched away and patterned into a predetermined shape.
  • the lower electrode 18a is formed of the TiN / A1-Si / Ti / Ti0N / Ti laminated film.
  • a lower wiring layer (not shown) is formed by a TiNZAl-SiZTi / TiON / Ti stacked film of other elements of the LSI. .
  • the surface of the dielectric film 20 of the capacitive element is lower in height than the surface of the peripheral portion of the lower electrode 18a above the polysilicon 'dummy layer 14.
  • a smoothing process for smoothing irregularities on the entire surface of the substrate is performed. That is, for example, an SiO 2 film is applied to the entire surface of the substrate including the upper electrode 22 and the lower electrode 18 a by using the plasma CVD method using TE 0 S Deposit to a thickness of about 100 nm. Further, an SOG film is coated on the SiO 2 film. Thereafter, the S 0 G film and the S i O 2 film are etched back.
  • a smoothing insulating film 24 for smoothing the entire surface of the substrate while filling the recesses of the concave cross section of the lower electrode 18a is formed.
  • the surface of the dielectric film 20 formed on the central portion of the lower electrode 18a having the concave cross section is formed.
  • the surface of the peripheral portion above the lower electrode 18 a of the lower electrode 18 a having a concave cross-sectional shape The height is lower than that.
  • the etching rate of the S i 0 2 and T i and T i N does not change rather large, after the formation of the SOG film and S i 0 2 film E Tsu During the chipback, the surface of the periphery of the lower electrode 18a is exposed, but the surface of the dielectric film 20 is not exposed by etching. That is, the periphery of the lower electrode 18a becomes an etching stopper, and the dielectric film 20 below the upper electrode 22 is not damaged.
  • an insulating film made of, for example, a SiO 2 film is formed on the entire substrate including the lower electrode 18 a and the smoothing insulating film 24 by using, for example, a plasma CVD method.
  • Deposit film 26 deposit film 26.
  • An interlayer insulating film 27 is formed by the smoothing insulating film 24 and the insulating film 26.
  • the interlayer insulating film 27 on the upper electrode 22 is selectively removed by etching using a photolithography process and a dry etching method, and the interlayer insulating film on the peripheral portion of the lower electrode 18a. 27 is selectively removed by etching to open first and second via holes 28a and 28b, respectively. At this time, in order to reduce the contact resistance, only the TiN layer on the surface of the lower electrode 18a may be removed.
  • the thickness of the interlayer insulating film 27 on the upper electrode 22 to be etched to open the first via hole 28 a opens the second via hole 28 b. Because the thickness of the interlayer insulating film 27 on the periphery of the lower electrode 18a to be etched is substantially equal to that of the first and second via holes 28a and 28b, At this time, the surface of the upper electrode 22 is not excessively over-etched.
  • the upper wiring layers (not shown) of other elements of LSI are formed.
  • a thickness of about 100 to 500 nm is provided around the semiconductor element 10 on the periphery of the capacitor element forming area through the first insulating film 12.
  • Forming a polycrystalline silicon dummy layer 14 for a step composed of a polycrystalline silicon layer forming a second insulating film 16 on the entire surface of the substrate including the polycrystalline silicon dummy layer 14;
  • On the second insulating film 16 there is formed a lower electrode 18 a having a concave cross section in which the surface of the peripheral portion above the polysilicon dummy layer 14 is higher than the surface of the central portion.
  • a required thickness for example, a dielectric film 20 having a thickness of about 10 to 300 nm (that is, a dielectric film thinner than the dummy layer 14) 20 is formed on the central portion thereof, An upper electrode 22 having a thickness of, for example, about 5 to 100 nm is formed, and the height of the surface of the dielectric film 20 is reduced to a polysilicon layer of the lower electrode 18a.
  • the interlayer insulation on the upper electrode 22 is etched to open the first via hole 28a. Since the film thickness of the film 27 is substantially equal to the film thickness of the interlayer insulating film 27 on the periphery of the lower electrode 18a to be etched to open the second via hole 28b, not Rukoto done excessive over one etching to the upper electrode 2 second surface, never upper electrode 2 2 and T a 2 0 5 dielectric film 2 0 thereunder damaged. Therefore, it is possible to further suppress the fluctuation of the characteristics such as the capacitance value of the capacitance element and the deterioration of the reliability, and to obtain the capacitance element having better characteristics and higher reliability.
  • the depth of the second via hole 28 b opening on the lower electrode 18 a is higher than the upper electrode 22.
  • the first via hole 28a is located at a position closer to the upper electrode 22 and the lower electrode 18a that effectively function as a capacitive element.
  • the distance on the lower electrode side which generally tends to be longer than that on the upper electrode side, is shortened, so that the difference in impedance is reduced.
  • an increase in the asymmetry of the characteristics of the capacitor can be suppressed. That is, the symmetry of the characteristics of the capacitance element can be improved.
  • FIG. 29 is a schematic cross-sectional view showing a capacitive element according to the fifth embodiment of the present invention.
  • FIGS. 30 and 31 are diagrams for explaining a method of manufacturing the capacitive element shown in FIG. It is a schematic process sectional drawing.
  • the same reference numerals are given to the same components as those of the capacitive element shown in FIGS. 21 to 28 of the fourth embodiment, and description thereof will be omitted.
  • no-dummy layer 14 for the step insulation by a required thickness of SIN, Sio, or the like is used.
  • dummy layer for example, is characterized in that S i 0 2 dummy layer 3 2 for steps having a thickness of 1 0 0 ⁇ 5 0 0 nm approximately S i 0 layers are formed.
  • Other components are the same as those in the above-described fourth embodiment.
  • a first insulating film 12 made of, for example, a SiO 2 film on a semiconductor substrate 10
  • an insulating film for example, a SiO film is formed to a thickness of about 100 to 500 nm. Subsequently, the SiO 2 film is selectively etched and removed by a photolithography process and an etching process to pattern it into a predetermined shape ′.
  • the Si0 film having a thickness of about 100 to 50011 m is formed on the semiconductor substrate 10 in the peripheral portion of the region where the capacitor is to be formed, with the first insulating film 12 interposed therebetween. forming an S i 0 2 dummy layer 3 2.
  • the second surface including the SiO 3 dummy layer 32 is An insulating film 16 is formed on the second insulating film 16, and a Ti N / A l -Si / Ti / Ti ONZT i laminated film 18 is formed on the second insulating film 16.
  • a l — An upper electrode 22 is formed on the S i / T i / T i ON / T i laminated film 18 via a dielectric film 20, and a photolithography process and an RIE process are used to form the T i.
  • N / A 1 ⁇ S i ZT i / T i ON / T i Multilayered film 18 is patterned to be above Si 0 2 dummy layer 3 above the surface of the center where upper electrode 22 is formed. Then, a lower electrode 18a having a concave cross-sectional shape in which the surface of the peripheral portion is high is formed. In this way, a capacitive element composed of the upper electrode 22 and the lower electrode 18a sandwiching the dielectric film 20 is formed.
  • the dielectric film 2 0 of the surface of the capacitor element at this time its height from the surface of the peripheral portion of the S i 0 2 dummy layer 3 2 above the lower electrode 1 8 a is low.
  • the surface of the dielectric film 20 formed on the central portion of the lower electrode 18a having the concave cross section is formed.
  • the height of the lower electrode 18a having the concave cross-sectional shape is lower than the surface of the peripheral portion above the SiO 2 dummy layer 32.
  • T i N Since the difference in etch rate between S i ⁇ 2 and T i, T i N is not large under general smoothing touchback conditions, even when etching back the S 0 G film and the S i 0 film, The periphery of the lower electrode 18a functions as an etching stopper, and the surface of the dielectric film 20 is not exposed by etching, even if the surface of the periphery of the lower electrode 18a is exposed. .
  • an insulating film 26 made of, for example, a Si02 film is deposited on the entire surface of the base including the lower electrode 18a and the peripheral portion including the smoothing insulating film 24 to form the smoothing insulating film 24 and the insulating film 2. 6 to form an interlayer insulating film 27.
  • the interlayer insulating film 27 on the upper electrode 22 is selectively removed by etching, and the interlayer insulating film 27 on the peripheral portion of the lower electrode 18a is selectively removed by etching.
  • the second via holes 28a and 28b are opened. Bottom electrode 18 N Layers may be removed.
  • the film thickness of the interlayer insulating film 27 on the upper electrode 22 to be etched to open the first via-hole 28 a is set to be such that the second via-hole 28 b is opened. Since the thickness of the interlayer insulating film 26 on the periphery of the lower electrode 18a to be etched is almost equal to that of the first and second via holes 28a and 28b, At this time, excessive overetching of the surface of the upper electrode 22 is not performed.
  • a required thickness for example, 100 to 50, is provided on the semiconductor substrate 10 at the peripheral portion of the region where the capacitor element is to be formed via the first insulating film 12.
  • the S i 0 2 a second insulating film 1 6 is formed on a substrate the entire surface including the dummy layer 3 2 of the second
  • a lower electrode 18 a having a concave cross section in which the surface of the peripheral portion above the Si 0 2 dummy layer 32 is higher than the surface of the central portion is formed, and the central portion of the lower electrode 18 a is formed.
  • An upper electrode 22 is formed thereon via a dielectric film 20, and the height of the surface of the dielectric film 20 is adjusted to the S i 0 2 thickness of the lower electrode 18 a.
  • the height lower than the height of the lower electrode 18a when performing a smoothing process of depositing a SiO 2 film on the entire surface of the substrate, coating the S 0 G film, and then etching back the film.
  • a Etsuchingusu door wrapper go-between dielectric film 2 0 by the etching will not be subject to no good time.
  • the thickness of the interlayer insulating film 27 on the upper electrode 22 etched to open the first via ⁇ hole 28 a is Since the thickness of the interlayer insulating film 27 on the periphery of the lower electrode 18 a to be etched to open the via hole 28 b is almost equal to that of the lower electrode 18 a, excessive Etching is not performed, and the upper electrode 22 and the dielectric film 20 thereunder are not damaged. Accordingly, as in the case of the first embodiment, the variation in the characteristics such as the capacitance value of the capacitive element and the deterioration of the reliability are further suppressed, and the capacitive element having better characteristics and higher reliability is obtained. Can be obtained.
  • the depth of the second via hole 28 b opening on the lower electrode 18 a is substantially equal to the depth of the first via hole 28 a opening on the upper electrode 22.
  • the distance between the upper electrode 22 and the lower electrode 18a, which effectively function as a capacitive element, to the first and second upper wiring layers 30a and 30b is generally smaller than the distance between the upper electrode 22 and the lower electrode 18a. Since the distance on the lower electrode side, which tends to be longer, is reduced, the impedance is reduced as in the case of the first embodiment.
  • a required thickness for example, a thickness of 100 to 100 ⁇ m, is formed on the semiconductor substrate 10 around the region where the capacitor is to be formed, via the first insulating film 12.
  • 5 0 0 forms a S i 0 2 dummy layer 3 2 for nm order of the step, but instead of forming such S i 0 2 dummy more 3 2, the Photo Li lithography step and Etchingu step As a result, the central portion of the region where the capacitive element is to be formed on the semiconductor substrate 10
  • the first insulating film 12 may be selectively etched away to form a recess having a depth of about 100 to 500 nm.
  • a final dummy layer is formed by a combination of the selective etching of the first insulating film 12 and the dummy layer 32 (or the dummy layer 14, 'a dummy layer 34 described later). It is possible to form a depression with a depth of about 100 to 500 nm o
  • the second embodiment of the second embodiment is formed on the first insulating film 12 in which a recess having a depth of about 100 to 500 nm is formed at the center of the area where the capacitor is to be formed.
  • the second insulating film 16 is formed, and the TiN / Al—Si / Ti / TiON / Ti laminated film 1 is formed on the second insulating film 16. 8 and patterning the TiN / A1SiZTi / TiON / Ti laminated film 18 to form the upper portion of the recess formed in the first insulating film 12 It is possible to form the lower electrode 18a having a concave cross-sectional shape in which the surface of the peripheral portion is higher than the surface of the central portion. Therefore, the same operations and effects as those of the fifth embodiment can be obtained.
  • FIG. 32 is a schematic cross-sectional view showing a capacitor according to a sixth embodiment of the present invention.
  • FIGS. 33 to 38 are each for explaining a method of manufacturing the capacitor shown in FIG. 32.
  • FIG. Here, the same reference numerals are given to the same components as those of the capacitance element shown in FIGS. 20 to 28 of the fourth embodiment, and description thereof will be omitted.
  • a polysilicon for a step is provided around the capacitance element.
  • a polysilicon layer for a step having the same thickness, for example, a thickness of about 100 to 500 nm ⁇
  • the dummy layer 34 is formed around the capacitance element. There is a special feature in that it is formed in the surrounding area.
  • a flat surface for example, a lower electrode 18 b of T i N / A 1 S i / T i / ⁇ i 0 ⁇ / ⁇ i is formed, and is separated from the lower electrode 18 b to surround the capacitive element.
  • T i N / A 1 S i / T i / T i 0 N / T i having a surface higher than the surface of the upper electrode 22 above the polysilicon dummy layer 34 for the step
  • the characteristic of this is that the electrode 18 c is formed.
  • the other components are substantially the same as those in the fourth embodiment.
  • a polysilicon layer is formed to a required thickness, for example, a thickness of about 100 to 500 nm. Subsequently, the polysilicon layer is selectively etched away by a photolithography step and a RIE step to pattern it into a predetermined shape.
  • a polysilicon dummy layer 34 for a step formed of a polysilicon layer having a thickness of about 100 to 500 nm is formed.
  • the process of forming the polysilicon 'dummy layer 34 is used as another element of the LSI, for example, a gate electrode of M0STr, a resistance layer of a resistance element, or an electrode of BipTr. It can also be used as a polysilicon layer forming process.
  • FIG. 34 In the same manner as in the steps shown in FIGS. 2 to 24, a second insulating film 16 is formed on the entire surface of the substrate including the polysilicon dummy layer 34 for steps.
  • the insulating film 16 can be omitted.
  • a L-S i XT i / T i ON / T i laminated film 18 is formed, and T i N / A l -S i / T i / T i ON / T i laminated film 18 a 0 5 , S 10, S i N, etc.
  • the upper electrode is made of T i, T i N or a laminated film of T i and T i N via the Ta 2 0 3 dielectric film 10.
  • the surface of the dielectric film 20 is located above the polysilicon / dummy layer 3.4 of the TiN / A 1 -Si / Ti / TiON / Ti stacked film 18. Its height is lower than the top surface.
  • the TiN / Al-Si / Ti / TiON / Ti stacked film 18 is selectively etched by a photolithography process and an RIE process. It is removed and buttered to a predetermined shape.
  • the lower electrode 18 b of Ti N / A 1 S i / T i / T i ⁇ N / T i is formed in the region where the capacitor is to be formed on the second insulating film 16.
  • a Ti having a top surface higher than the surface of the lower electrode 18b is provided above the polysilicon layer 34 around the area where the capacitor is to be formed.
  • N / A 1 — S i / ⁇ i / T i 0 Dummy electrode 18 c is formed by N / T i.
  • a lower wiring layer (not shown) is formed by a TiNZAl-Si / Ti / TiOSNZTi laminated film of other elements of LSI.
  • a capacitive element composed of the upper electrode 22 and the lower L 8 b sandwiching the dielectric film 20 is formed.
  • the surface of the dielectric film 20 of the capacitive element is lower than the uppermost surface of the dummy electrode 18c around the capacitive element forming region above the polysilicon layer ⁇ ⁇ ⁇ dummy layer 34. I'm sorry.
  • a SiO 2 film is deposited on the entire surface of the substrate including the upper electrode 22 and the lower electrode 18 b to a thickness of about 300 to 150 nm. I do. Further, an SOG film is coated on the SiO 2 film. Thereafter, a smoothing process for etching back the SOG film and the SiO 2 film is performed. .
  • the surface of the dielectric film 20 formed on the lower electrode 18b is damaged by the dielectric around the capacitor element forming region.
  • the height of the electrode 18c is lower than the uppermost surface above the polysilicon-dummy layer 34.
  • the etching rate difference between T i, d 1 and 3 i 0 2 is not large, so even when etching back the SOG film and S i 0 2 film, the surface of the dielectric film 20 is not affected. Is not exposed by etching.
  • an insulating film 26 is deposited on the entire surface of the substrate including the dummy electrode 18c and the smoothing insulating film 24 by using, for example, a plasma CVD method.
  • the smoothing insulating film 24 and the insulating film 26 form an interlayer insulating film 27.
  • the interlayer insulating film 27 on the upper electrode 22 and the lower electrode 18b is selectively removed by etching using a photolithography process and a dry etching method, and the first and second vias are removed.
  • the upper wiring layers (not shown) of other elements of the LSI are formed.
  • a polysilicon layer for a step having a thickness of about 100 to 500 nm is formed through a first insulating film 12.
  • a TiN / Al—SiZTi / TiON ⁇ i laminated film is formed on the entire surface of the substrate including the polysilicon / dummy layer 34 via a second insulating film 16.
  • An upper electrode 22 is formed on the dielectric film 20 via a dielectric film 20, and the height of the surface of the dielectric film 20 is reduced to the uppermost surface above the polysilicon / dummy layer 34 of the electrode 18c.
  • the dummy electrode 18 c is etched.
  • the dielectric film 20 below the upper electrode 22 does not suffer damage due to etching. Therefore, similarly to the case of the fourth embodiment, it is possible to obtain a capacitance element having good characteristics and high reliability by suppressing fluctuations in characteristics such as the capacitance value of the capacitance element and deterioration in reliability. .
  • the lower part of the capacitive element The electrodes 18a and 18b are connected to the second upper wiring layers 30b and 30c via the second via holes 28b and 28c, respectively.
  • the lower electrodes 18a and 18b may also serve as wiring layers and be connected to other elements of the LSI.
  • the first and second upper wiring layers 30a, 30b, and 30c are formed by using a W (tungsten) layer using a CVD method instead of depositing and processing an A1 alloy layer. After depositing, etch back to form W plugs to fill the first and second vias. Holes 28a, 28b, and 28c, respectively. After depositing the layers, the A1 alloy layer is processed using a photolithography process and a dry etching method to form first and second via holes 28a, 28b, 28 A method of forming first and second upper wiring layers respectively connected to the W plugs in c may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Description

明 細 書
半導体装置及びその製造方法
技術分野
本発明は、 半導体装置及びその製造方法に係り、 特に半導体基 板上に容量素子が搭載されている半導体装置及びその製造方法に 関するものである。 ' 背景技術
従来の L S I (大規模集積回路) の製造プロセスにおいて、 半 導体基板上に容量素子を形成する場合を、 図 3 9〜図 4 1の概略 工程断面を用いて説明する。
先ず、 図 3 9に示されるように、 半導体基板 1 0上に、 例えば S i- 02 膜等からなる第 1の絶縁膜 1 2及び第 2の絶縁膜 1 6を 順に積層して形成する。
^いて、 例えばスパッタ ( S p u t t e r i n g ) 法を用いて
、 この第 2の絶縁膜 1 6上に、 T i層、 T i ON層、 T i層、 A 1 一 S i層、 T i N層を下から順に堆積して、 T i N/A 1 — S i ZT i /T i ON/T i積層膜を形成する。
続いて、 例えば C VD (C h e m i c a l V a o r D e o s i t i o n ;化学的気相成長) 法を用いて、 この T i N/
A l — S i /T i /T i O N/T i積層膜上に S i 02 , S i N , T a 2 05 等の誘電体膜を堆積し、 更に例えばスパッタ法を用 いて、 この誘電体膜上に T i層、 T i N層等の導電体層を堆積す る o
そして、 フォ ト リ ソグラフィ (P h o t o L i t h 0 g r a
P h y ) 工程及び R I E (R e a c t i v e I o n E t c h i n g ; 反応性イオンエッチング) 工程'により、 これら積層され た導電体層及び誘電体膜を選択的にエツチング除去して所定の形 状にパターニングし、 T i NZA l — S i /T i /T i ON/T i積層膜上に S i 02 , S i N又は T a 2 05 等の誘電体膜 2 0 を介して T i , T i N等による上部電極 2 2を形成する。
続いて、 フォ ト リ ソグラフイエ程及び R I E工程により、 T i NZ A 1 — S i / T i / T i O'N/T i積層膜 1 8を選択的にェ ッチング除去して所定の形状にパターニングし、 T i N/A 1 _ S i /T i /T i ON/T i積層膜による下部電極 1 8 dを形成 す o '
このようにして、 誘電体膜 2 0を間に挟む上部電極 2 2 と下部 電極 1 8 dとから構成される容量素子を形成する。
続いて、 例えば T E O S ( t e t r a e t h ο χ y s i 1 a n e ; S i ( 0 C 2 H 5 ) 4 ) を原料とするプラズマ C V D法を 用いて、 上部電極 2 2及び下部電極 1 8 dを含む基体全面に、 S i 02 膜を堆積し、 更にこの S i 02 膜上に S 0 G (S p i n O n G l a s s ) 膜をコ一ティ ングした後、 これらの S O G膜 及び S i 02 膜をエッチバックする平滑化処理を行う。 即ち、 S i 02 膜及び S 0 G膜からなる平滑化絶縁膜 2 4によって基体表 面の凹凸を埋めて平滑化する。
なお、 このとき、 下部電極 1 8 d上に形成されている上部電極 2 2 'の表面は、 下部電極 1 8 dの表面より も高い位置にあるため
、 上部電極 2 2の表面は露出した状態になる場合があった。
次いで、 図 4 0に示されるように、 例えばプラズマ C V D法を 用いて、 上部電極 2 2及び平滑化絶縁膜 2 4を含む基体全面に、 例えば S i 02 膜からなる絶縁膜 2 6を堆積する。 ここで、 平滑 化絶縁膜 2 4 と絶縁膜 2 6で層間絶縁膜 2 7が形成される。
続いて、 フォ ト リ ソグラフィ工程及びドライ (D r y) エッチ ング法を用いて、 上部電極 2 2上の層間絶縁膜 2 7を選択的にェ ッチング除去すると共に、 下部電極 1 8 d上の層間絶縁膜 2 7を 選択的にエッチング除去して、 第 1及び第 2のビア · ホ一ル 2 8 d, 2 8 eをそれぞれ開口する。 ここで、 コンタク ト抵抗を低減 するために、 下部電極 1 8 dの表面の T i Nを除去する場合もあ o
次いで、 図 4 1 に示されるように、 例えばスパッタ法を用いて
、 基体全面に、 A 1合金層を堆積した後、 フォ ト リ ソグラフィェ 程及びドライエッチング法を用いて、 この A 1合金層を加工し、 第 1及び第 2 のビア ' ホール 2 8 d, 2 8 eを介して上部電極 2 2及び下部電極 1 8 dにそれぞれ接続する第 1及び第 2の A 1合 金上層配線層 3 0 d, 3 O eを形成する。
しかしながら、 上記従来の容量素子の形成プロセスにおいては 、 誘電体膜 2 0を間に挟む上部電極 2 2 と下部電極 1 8 dとから 構成される容量素子を形成した後、 S i 0 2 膜及び S O G膜から なる平滑化絶縁膜 2 4によつて基体表面の凹凸を埋めて平滑化す る平滑化処理を行う際に、 下部電極 1 8 d上に形成されている上 部電極 2 2 の表面は下部電極 1 8 dの表面より も高い位置にある ため、 この平滑化処理工程のエッチバックによって上部電極 2 2 や更にはその下の誘電体膜 2 0 までもがエッチングされていた。 即ち、 平滑化処理工程において、 上部電極 2 2や更にはその下の 誘電体膜 2 0がダメージを受けていた。
従って、 容量素子の容量値等の特性が変動したり、 信頼性が劣 化したり して、 良好な特性と高い信頼性をもつ容量素子が得られ ないという問題があつた。
また、 容量素子の上部電極 2 2及び下部電極 1 8 dにそれぞれ 接続する第 1及び第 2 の A 1合金上層配線層 3 0 d, 3 0 eを形 成するために第 1及び第 2 のビア · ホール 2 8 d , 2 8 eをそれ ぞれ開口する際、 第 1 のビア · ホール 2 8 dを開口するためにェ ッチングする上部電極 2 2上の層間絶縁膜 2 7の膜厚が、 第 2の ビア · ホール 2 8 eを開口するためにエツチングする下部電極 1 8 d上の層間絶縁膜 2 7膜厚より も厚くなつているため、 これら 第 1及び第 2 のビア ' ホール 2 8 d , 2 8 eを共に良好に開口し よう とすると、 止むなく上部電極 2 2 の表面に対する過大なォー バーエッチングが行われることになる。 そして、 このオーバ一ェ ッチングによつて上部電極 2 2やその下の誘電体膜 2 0がダメ一 ジを受けることになる。
従って、 この点からも、 容量素子の容量値等の特性が変動した り、 信頼性が劣化したり して、 良好な特性と高い信頼性をもつ容 量素子が得られないという問題があつた。
更に、 次のような問題も生じた。
即ち'、 従来の容量素子においては、 容量素子として実効的に機 能する上部電極 2 2 と下部電極 1 8 d との対向領域から第 1及び 第 2 の A 1合金上層配線層 3 0 d, 3 0 e までの距離を比較する と、 一般に下部電極側が上部電極側より も長くなる傾向にあり、 結果的にイ ンピーダンスに ^異が生じ、 特性に非対称性が発生す るという問題があった。
そして、 上記従来の容量素子における第 1及び第 2のビア · ホ ール 2 8 d, 2 8 eを比較すると、 下部電極側の第 2のビア . ホ —ル 2 8 eの深さが上部電極側の第 1のビア . ホ一ル 2 8 dの深 さより深く なつている。 このため、 従来からの特性の非対称性を 更に増大させることになつた。 発明の開示
本発明は、 上記の問題点を鑑みてなされたものであり、 容量素 子の製造プロセスにおいて上部電極や誘電体膜がダメ―ジを受け て、 容量値等の特性が変動したり、 信頼性が劣化したりすること を防止し、 更に特性の非対称性の増大を抑制して、 容量素子の良 好な特性と高い信頼性を実現することが可能な半導体装置及びそ の製造方法を提供するこ とを目的とする。
本発明に係る半導体装置は、 半導体基板上に第 1 の絶縁膜を介 して形成され、 中央部の表面より も周辺部の表面が高い位置にあ る凹型断面形状の下部電極と、 この下部電極の中央部上に下部電 極の周辺部の表面より も表面が低い位置にある誘電体膜を介して 形成された上部電極と、 下部電極の凹型断面形状の窪みを埋める 第 2 の絶縁膜とを具備して成る。
なお、 ここで、 「表面が高い位置にある」 又は 「表面が低い位 置にある」 とは、 半導体基板の表面又は裏面の平坦面を基準とし て、 表面の高さの高低をいう表現である。 この定義は、 これ以降 においても同様に適用する。
本発明は、 上記の半導体装置において、 さらに下部電極の周辺 部、 上部電極及び第 2 の絶縁膜上に第 3の絶縁層が形成されて層 間絶縁膜が形成され、 層間絶縁膜に開口された第 1 のビア · ホ— ルを介して上部電極に接続する第 1の配線層、 及び層間絶縁膜に 開口された第 2のビア · ホールを介して下部電極の周辺部に接続 する第 2の配線層がそれぞれ形成される。
本発明に係る半導体装置は、 半導体基板上に第 1 の絶縁膜を介 して形成されている下部電極と、 この下部電極の周囲に形成され
、 下部電極の表面より も高い表面を有するダミ ー電極と、 下部電 極上にダミ一電極の最上表面より も表面が低い位置にある誘電体 膜を介して形成された上部電極と、 ダミー電極に周囲を囲まれた 窪みを埋める第 2 の絶縁膜とを具備して成る。
なお、 ここで、 「誘電体膜の表面よりも高い表面を有するダミ 一電極」 とは、 半導体基板の表面又は裏面の平坦面を基準として 、 ダミ —電極の最上表面が下部電極の表面より も高いことをいい 、 「ダミ ー電極の最上表面 I とは、 ダミー電極の表面のうちで、 最も高い位置にある表面をいう。 この定義は、 これ以降において も同様に適用する。
本発明は、 上記半導体装置において、 ダミ ー電極、 上部電極及 び第 2 の絶縁膜上に第 3 の絶縁膜が形成されて層間絶縁膜が形成 され、 層間絶縁膜に'開口された第 1 のビア ' · ホールを介して上部 電極に接続する第 1 の配線層、 及び層間絶縁膜に開口された第 2 のビア · ホールを介して下部電極に接続する第 2の配線層がそれ ぞれ形成される。
本発明に係る半導体装置は、 半導体基板上に第 1 の絶縁膜を介 して形成され、 中央部の表面より も周辺部の表面が高い位置にあ る凹型断面形状の下部電極と、 この下部電極の中央部上に誘電体 膜を介して形成され、 下部電極の周辺部の表面より も表面が低い 位置にある上部電極と、 下部電極の凹型断面形状の窪みを埋める と共に、 上部電極の表面を被覆している第 2の絶縁膜とを具備し て成る。
本発明は、 上記半導体装置において、 下部電極の周辺部及び第 2 の絶縁膜上に第 3 の絶縁層が形成されて層間絶縁膜が形成され 、 層間絶縁膜に開口された第 1のビア · ホールを介して上部電極 に接続する第 1の配線層、 及び層間絶縁膜に開口された第 2のビ ァ · ホールを介して下部電極の周辺部に接続する第 2の配線層が それぞれ形成される。
本発明に係る半導体装置は、 半導体基板上に第 1 の絶縁膜を介 して形成されている下部電極と、 この下部電極の周囲に形成され 、 下部電極の表面より も高い表面を有するダミー電極と、 下部電 極上に誘電体膜を介して形成され、 ダミー電極の最上表面より も 表面が低い位置にある上部電極と、 ダミ—電極に周囲を囲まれた 窪みを埋めると共に、 下部電極及び上部電極の表面を被覆してい る第 2 の絶縁膜とを具備して成る。 なお、 こ こで、 「下部電極の表面より も高い表面を有するダミ —電極」 とは、 半導体基板の表面又は裏面の平坦面を基準として 、 ダミ—電極の最上表面が下部電極の表面より も高いことをいい 、 「ダミー電極の最上表面」 とは、 ダミー電極の表面のうちで、 最も高い位置にある表面をいう。 この定義は、 これ以降において も同様に適用する。
本発明は、 上記半導体装置において、 ダミ ー電極、 上部電極及 び第 2の絶縁膜上に第 3 の絶縁膜が形成されて層間絶縁膜が形成 され、 層間絶縁膜に開口された第 1のビア · ホールを介して上部 電極に接続する第 1 の配線層、 及び層間絶縁膜に開口された第 2 のビア · ホールを介して下部電極に接続する第 2 の配線層がそれ ぞれ形成される。
上述の半導体装置においては、 下部電極の周辺部の下方に段差 用のダミ ー層が設けられ、 これによつて下部電極が凹型断面形状 に形成される。
また、 上記半導体装置においては、 ダミ—電極の下方に段差用 のダミ—層が設けられ、 これによつてダミ一電極が下部電極より 高い位置に形成される。
このような段差用のダミ 一層は、 半導体装置における他の素子 の電極又は抵抗層と同じ材料層で形成することができる。 段差用 のダミー層は、 絶縁層で形成することもできる。
本発明に係る半導体装置によれば、 中央部の表面より も周辺部 の表面が高い位置にある凹型断面形状の下部電極と、 この下部電 極の中央部上に下部電極の周辺部の表面より も表面が低い位置に ある誘電体膜を介して形成された上部電極とを有することにより 、 即ち、 凹型断面形状の下部電極の中央部上の誘電体膜の表面は 下部電極の周辺部の表面より も低くなつていることにより、 基体 全面に平滑化絶縁膜となる第 2 の絶縁膜を形成する際に、 たとえ 基体全面に堆積した絶縁膜などをエツチバックする平滑化処理を 行っても、 下部電極の周辺部がエッチングス ト ッパーとなり、 誘 電体膜がダメ一ジを受けることを防止することができる。 従って 、 特性の変動が少なく、 信頼性の高い容量素子を得ることができ る。
また、 本発明によれば、 この半導体装置において、 下部電極の 周辺部、 上部電極及び第 2 の絶縁膜上に、 第 3 の絶縁膜が形成さ れて層間絶縁膜が形成され、 上部電極上の層間絶縁膜に開口され た第 1 のビア · ホールを介して上部電極に接続する第 1の配線層 が形成されていると共に、 下部電極の周辺部上の層間絶縁膜に開 口された第 2のビア · ホールを介して下部電極の周辺部に接続す る第 2 の配線層が形成されていることにより、 第 1 のビア · ホー ルの開口のためにエツチングする上部電極上の層間絶縁膜が第 2 のビア · ホールの開口のためにエッチングする下部電極の周辺部 上の層間絶縁膜とほぼ等しい膜厚となっているため、 第 1及び第 2のビア · ホールを開口する際に、 上部電極の表面に対する過大 なオーバーエッチングによつて上部電極の下の誘電体膜がダメ一 ジを受けることを防止することができる。 従って、 上記の効果に 加えて、 更に特性の変動が少なく、 信頼性の高い容量素子を得る ことができる。 また、 第 1及び第 2 のビア · ホールを比較すると
、 下部電極の周辺部上に開口する第 2のビア · ホールの深さが上 部電極上に開口する第 1 のビア · ホールの深さとほぼ等しく なる ことから、 容量素子として実効的に機能する上部電極と下部電極 との対向領域から第 1及び第 2 の配線層までの距離において一般 に上部電極側より も長く なる傾向にある下部電極側の距離が短縮 されることになるため、 インピーダンスの差異を減少させて容量 素子の特性の非対称性の増大を抑制し、 容量素子の特性の対称性 を向上することができる。 本発明に係る半導体装置によれば、 下部電極と、 この下部電極' の周囲に形成され、 下部電極の表面より も高い表面を有するダミ —電極と、 下部電極上に誘電体膜を介して形成された上部電極と を有し、 下部電極上の誘電体膜の表面が下部電極の周囲のダミ一 電極の最上表面より も低く なつていることにより、 基体全面に平 滑化絶縁膜となる第 2 の絶縁膜を形成する際に、 たとえ基体全面 に堆積した絶縁膜をエツチバックする平滑化処理を行っても、 ダ ミ 一電極がエツチングス 卜ッパーとなり、 誘電体膜がダメ一ジを 受けることを防止するこ とができる。 従って、 特性の変動が少な く、 信頼性の高い容量素子を得ることができる。
本発明に係る半導体装置によれば、 中央部の表面より も周辺部 の表面が高い位置にある凹型断面形状の下部電極と、 この下部電 極の中央部上に誘電体膜を介して形成され、 下部電極の周辺部の 表面より も表面が低い位置にある上部電極とを有することにより 、 即ち、 凹型断面形状の下部電極の中央部上の上部電極の表面が 下部電極の周辺部の表面より も低くなつていることにより、 基体 全面に平滑化絶縁膜となる第 2 の絶縁膜を形成する際に、 この第 2の絶縁膜によって上部電極の表面が常に被覆された状態となつ ているため、 たとえ基体全面に堆積した絶縁膜などをエッチバッ クする平滑化処理を行っても、 下部電極の周辺部がエッチングス ト ッパーとなることと相侯って、 上部電極や更にはその下の誘電 体膜がダメ一ジを受けることを防止することができる。 従って、 特性の変動が少なく、 信頼性の高い容量素子を得ることができる o
また、 本発明によれば、 この半導体装置において、 下部電極の 周辺部、 及び上部電極の表面を被覆する第 2の絶縁膜上に、 第 3 の絶縁膜が形成されて層間絶縁膜が形成され、 上部電極上の層間 絶縁膜に開口された第 1 のビア · ホールを介して上部電極に接続 する第 1の配線層が形成されていると共に、 下部電極の周辺部上 の層間絶縁膜に開口された第 2のビア · ホールを介して下部電極 の周辺部に接続する第 2の配線層が形成されていることにより、 第 1 のビア · ホールの開口のためにエッチングする上部電極上の 層間絶縁膜が第 2のビア · ホールの開口のためにエツチングする 下部電極の周辺部上の層間絶縁膜より も厚い膜厚となっているた め、 第 1及び第 2のビア · ホールを開口する際に、 上部電極の表 面に対する過大なオーバーエッチングによつて上部電極や更には その下の誘電体膜がダメ一ジを受けることを防止することができ る。 従って、 上記の効果に加えて、 更に特性の変動が少なく、 信 頼性の高い容量素子を得ることができる。 また、 第 1及び第 2の ビア ♦ ホールを比較すると、 下部電極の周辺部上に開口する第 2 のビア * ホールの深さが上部電極上に開口する第 1 のビア · ホー ルの深さより浅くなることから、 容量素子として実効的に機能す る上部電極と下部電極との対向領域から第 1及び第 2の配線層ま での距離において一般に上部電極側より も長くなる傾向にある下 部電極側の距離が短縮されることになるため、 インピーダンスの 差異を減少させて容量素子の特性の非対称性の増大を抑制し、 容 量素子の特性の対称性を向上することができる。
本発明に係る半導体装置によれば、 下部電極と、 この下部電極 の周囲に形成され、 下部電極の表面より も高い表面を有するダミ —電極と、 下部電極上に誘電体膜を介して形成された上部電極と を有し、 下部電極上の上部電極の表面が下部電極の周囲のダミ ― 電極の最上表面より も低く なつていることにより、 基体全面に平 滑化絶縁膜となる第 2 の絶縁膜を形成する際に、 この第 2 の絶縁 膜によつて上部電極の表面を被覆することを容易に実現すること が可能になるため、 たとえ基体全面に堆積した絶縁膜をエツチバ ックする平滑化処理を行つても、 ダミ ー電極がェッチングス ト ツ パーとなることと相侯って、 上部電極の表面がェツチングされて 上部電極や更にはその下の誘電体膜がダメ一ジを受けることを防 止することができる。 従って、 特性の変動が少なく、 信頼性の高 い容量素子を得ることができる。
上述の本発明の半導体装置において、 下部電極の周辺部の下方 に設けられた段差用のダミ ー層が、 半導体装置の他の素子の電極 又は抵抗層と同じ材料層で形成するときは、 製造の簡素化を図る ことができる。 また、 ダミー電極の下方に設けられた段差用のダ ミー層が、 半導体装置の他の素子の配線層と同じ導電体層で形成 するときは、 製造の簡素化を図ることができる。
本発明に係る半導体装置の製造方法は、 半導体基板上の容量素 子形成予定領域の周辺部に、 第 1 の絶縁膜を介して、 所定の厚さ の段差用のダミ 一層を形成する工程と、 これら第 1 の絶縁膜及び ダミ 一層上に導電体膜を堆積した後、 この導電体膜をバタ一ニン グして、 中央部の表面より も周辺部の表面が高 ·い位置にある凹型 断面形状の下部電極を容量素子形成予定領域に形成する工程と、 この下部電極の中央部上に、 下部電極の周辺部の'表面より も表面 が低い位置にある誘電体膜を介して、 上部電極を形成する工程と 、 基体全面に第 2の絶縁膜を形成して、 下部電極の凹型断面形状 の窪みを埋める工程とを有する。
本発明は、 上記半導体装置の製造方法において、 さらに下部電 極の周辺部、 上部電極及び第 2 の絶縁膜を含む基体全面に第 3の 絶縁膜を形成して層間絶縁膜を形成する工程と、 上部電極上の層 間絶縁膜に第 1 のビア · ホールを開口すると共に、 下部電極の周 辺部上の層間絶縁膜に第 2 のビア · ホールを開口する工程と、 第 1 のビア · ホールを介して上部電極に接続する第 1 の配線層を形 成すると共に、 第 2のビア ' ホールを介して下部電極の周辺部に 接続する第 2 の配線層を形成する工程とを有する。 本発明に係る半導体装置の製造方法は、 半導体基板上の容量素 子形成予定領域の周囲に、 第 1の絶縁膜を介して、 所定の厚さの 段差用のダミ 一層を形成する工程と、 これら第 1の絶縁膜及びダ ミ ー層上に、 導電体膜を堆積した後、 この導電体膜をパターニン グして、 下部電極を容量素子形成予定領域に形成すると共に、 ダ ミ 一層を被覆し、 下部電極の表面より も高い表面を有するダミ ー 電極を容量素子形成予定領域の周囲に形成する工程と、 下部電極 上に、 ダミ 一電極の最上表面より も表面が低い位置にある誘電体 膜を介して、 上部電極を形成する工程と、 基体全面に第 2の絶縁 膜を形成して、 ダミ ー電極によって周囲を囲まれた窪みを埋める 工程とを有する。
本発明は、 上記半導体装置の製造方法において、 ダミー電極、 上部電極及び第 2 の絶縁膜を含む基体全面に第 3の絶縁膜を形成 して層間絶縁膜を形成する工程と、 上部電極上の層間絶縁膜に第 1 のビア · ホールを開口すると共に、 下部電極上の層間絶縁膜に 第 2 のビア · ホールを開口する工程と、 第 1 のビア · ホールを介 して上部電極に接続する第 1の配線層を形成すると共に、 第 2 の ビア · ホールを介して下部電極に接続する第 2 の配線層を形成す る工程とを有する。
本発明に係る半導体装置の製造方法は、 半導体基板上の容量素 子形成予定領域の周辺部に、 第 1の絶縁膜を介して、 所定の厚さ の段差用のダミ 一層を形成する工程と、 これら第 1の絶縁膜及び ダミ一層上に導電体膜を堆積した後、 この導電体膜をパターニン グして、 中央部の表面より も周辺部の表面が高い位置にある凹型 断面形状の下部電極を容量素子形成予定領域に形成する工程と、 この下部電極の中央部上に、 誘電体膜を介して、 下部電極の周辺 部の表面より も表面が低い位置にある上部電極を形成する工程と 、 基体全面に第 2の絶縁膜を形成して、 下部電極の凹型断面形状 の窪みを埋めると共に、 上部電極の表面を被覆する工程とを有す る o
本発明は、 上記半導体装置の製造方法において、 下部電極の周 辺部及び第 2の絶縁膜を含む基体全面に第 3の絶縁膜を形成して 層間絶縁膜を形成する工程と、 上部電極上の層間絶縁膜に第 1の ビア · ホールを開口す'ると共に、 下部電極の周辺部上の層間絶縁 膜に第 2 のビア ' ホールを開口する工程と、 第 1のビア ' ホール を介して上部電極に接続する第 1の配線層を形成すると共に、 第 2 のビア · ホールを介して下部電極の周辺部に接続する第 2の配 線層を形成する工程とを有する。
本発明に係る半導体装置の製造方法は、 半導体基板上の容量素 子形成予定領域の周囲に、 第 1の絶縁膜を介して、 所定の厚さの 段差用のダミ 一層を形成する工程と、 これら第 1の絶縁膜及びダ ミ ー層上に、 導電体膜を堆積した後、 この導電体膜をバタ一ニン グして、 下部電極を容量素子形成予定領域に形成すると共に、 ダ ミ 一層を被覆し、 下部電極の表面より も高い表面を有するダミ ー 電極を容量素子形成予定領域の周囲に形成する工程と、 下部電極 上に、 誘電体膜を介して、 ダミ 一電極の最上表面よりも表面が低 い位置にある上部電極を形成する工程と、 基体全面に第 2の絶縁 膜を形成して、 ダミ ー電極によって周囲を囲まれた窪みを埋める と共に、 下部電極及び上部電極の表面を被覆する工程とを有する o
本発明は、 上記半導体装置の製造方法において、 さらにダミ ー 電極及び第 2 の絶縁膜を含む基体全面に第 3の絶縁膜を含む基体 全面に第 3の絶縁膜を形成して層間絶縁膜を形成する工程と、 上 部電極上の層間絶縁膜に第 1のビア · ホールを開口すると共に、 下部電極上の層間絶縁膜に第 2 のビア · ホールを開口する工程と 、 第 1のビア · ホールを介して上部電極に接続する第 1の配線層 を形成すると共に、 第 2 のビア · ホールを介して下部電極に接続 する第 2 の配線層を形成する工程とを有する。
上述の半導体装置の製造方法において、 段差用のダミ—層の形 成工程は、 半導体装置における他の素子の電極又は抵抗層の形成 工程を兼ねることができる。 段差用のダミー層は絶縁層で形成す ることもできる。
本発明に係る半導体装置の製造方法によれば、 半導体基板上の 容量素子形成予定領域の周辺部に、 第 1の絶縁膜を介して所定の 厚さの段差用のダミ 一層を形成し、 ダミ一層上に堆積した導電体 膜をパターユングして、 中央部の表面よりも周辺部の表面が高い 位置にある凹型断面形状の下部.電極を容量素子形成予定領域に形 成し、 更にこの下部電極の中央部上に、 下部電極の周辺部の表面 より も表面が低い位置にある誘電体膜を介して、 上部電極を形成 することにより、 平滑化絶縁膜となる第 2の絶縁膜の形成の際に 、 たとえ基体全面に堆積した絶縁膜をエッチバックする平滑化処 理を行つても、 下部電極の周辺部がェッチングス ト ッパ一として 働き、 誘電体膜がダメ一ジを受けることを防止することができる 。 従って、 特性の変動が少なく、 信頼性の高い容量素子を得るこ とができる。
また、 本発明によれば、 この半導体装置の製造方法において、 下部電極の周辺部、 上部電極及び第 2の絶縁膜を含む基体全面に 第 3の絶縁膜を形成して層間絶縁膜を形成した後、 上部電極上の 層間絶縁膜に開口する第 1 のビア · ホールを介して上部電極に接 続する第 1 の配線層を形成すると共に、 下部電極の周辺部上の層 間絶縁膜に開口する第 2 のビア · ホールを介して下部電極の周辺 部に接続する第 2 の配線層を形成することにより、 第 1のビア · ホールの開口のためにエッチングする上部電極上の層間絶縁膜が 第 2 のビア · ホールの開口のためにエッチングする下部電極の周 辺部上の層間絶縁膜とほぼ等しい膜厚となるため、 第 1及び第 2 のビア · ホールを開口する際に、 上部電極の表面に対する過大な ォ一バ―ェッチングによつて上部電極の下の誘電体膜がダメ一ジ を受けることを防止することができる。 従って、 上記の効果に加 えて、 更に特性の変動が少なく、 信頼性の高い容量素子を得るこ とができる。 また、 第 1及び第 2のビア , ホールを比較すると、 下部電極上に開口する第 2 のビア ♦ ホールの深さが上部電極上に 開口する第 1 のビア · ホールの深さとほぼ等しく なることから、 容量素子として実効的に機能する上部電極と下部電極との対向領 域から第 1及び第 2 の配線層までの距離において一般に上部電極 側より も長く なる傾向にある下部電極側の距離が短縮されること になるため、 ィ ンピ一ダンスの差異を減少させて容量素子の特性 の非対称性の増大を抑制し、 容量素子の特性の対称性を向上する ことができる。
本発明に係る半導体装置の製造方法によれば、 半導体基板上の 容量素子形成予定領域の周囲に、 第 1の絶縁膜を介して所定の厚 さの段差用のダミ 一層を形成した後、 これら第 1の絶縁膜及びダ ミ 一層上に堆積した導電体膜をパターニングして、 下部電極を容 量素子形成予定領域に形成すると共に、 ダミー層を被覆し、 下部 電極の表面より も高い表面を有するダミ —電極を容量素子形成予 定領域の周囲に形成し、 更にこの下部電極上に、 ダミー電極の最 上表面より も表面が低い位置にある誘電体膜を介して、 上部電極 を形成するこ とにより、 平滑化絶縁膜となる第 2の絶縁膜の形成 の際に、 たとえ基体全面に堆積した絶縁膜をエツチバックする平 滑化処理を行っても、 ダミ ー電極がエッチングス ト ッパーとして 働き、 誘電体膜がダメ 一ジを受けることを防止することができる 。 従って、 特性の変動が少なく、 信頼性の高い容量素子を得るこ とができる。 本発明に係る半導体装置の製造方法によれば、 半導体基板上の 容量素子形成予定領域の周辺部に、 第 1の絶縁膜を介して'所定の 厚さの段差用のダミ 一層を形成し、 これらの第 1の絶縁膜及びダ ミ一層上に堆積した導電体膜をパターニングして、 中央部の表面 より も周辺部の表面が高い位置にある凹型断面形状の下部電極を 容量素子形成予定領域に形成し、 更にこの下部電極の中央部上に 、 誘電体膜を介して、 下部電極の周辺部の表面より も表面が低い 位置にある上部電極を形成することにより、 基体全面に形成する 第 2 の絶縁膜によつて上部電極の表面を被覆することを容易に実 現することが可能になるため、 この平滑化絶縁膜となる第 2の絶 縁膜の形成の際に、 たとえ基体全面に堆積した絶縁膜をエツチバ ックする平滑化処理を行っても、 下部電極の周辺部がエッチング ス ト ツパ一となることと相侯つて、 上部電極の表面がェッチング されて上部電極や更にはその下の誘電体膜がダメ一ジを受けるこ とを防止することができる。 従って、 特性の変動が少なく、 信頼. 性の高い容量素子を得ることができる。
また、 本発明によれば、 この半導体装置の製造方法において、 下部電極の周辺部及び上部電極の表面を被覆する第 2の絶縁膜を 含む基体全面に第 3の絶縁膜を形成して層間絶縁膜を形成した後 、 上部電極上の層間絶縁膜に開口する第 1のビア ♦ ホールを介し て上部電極に接続する第 1 の配線層を形成すると共に、 下部電極 の周辺部上の層間絶縁膜に開口する第 2のビア · ホールを介して 下部電極の周辺部に接続する第 2の配線層を形成することにより 、 第 1のビア · ホールの開口のためにエッチングする上部電極上 の層間絶縁膜が第 2のビア · ホールの開口のためにエツチングす る下部電極の周辺部上の層間絶縁膜より も厚い膜厚となるため、 第 1及び第 2のビア · ホールを開口する際に、 上部電極の表面に 対する過大なオーバーェッチングによつて上部電極や更にはその 下の誘電体膜がダメ一ジを受けることを防止することができる。 従って、 上記の効果に加えて、 更に特性の変動が少なく、 信頼性 の高い容量素子を得ることができる。 また、 第 1及び第 2のビア • ホールを比較すると、 下部電極上に開口する第 2のビア · ホー ルの深さが上部電極上に開口する第 1 のビア · ホールの深さより 浅くなることから、 容量素子として実効的に機能する上部電極と 下部電極との対向領域から第 1及び第 2の配線層までの距離にお いて一般に上部電極側より も長くなる傾向にある下部電極側の距 離が短縮されることになるため、 ィンピ一ダンスの差異を減少さ せて容量素子の特性の非対称性の増大を抑制し、 容量素子の特性 の対称性を向上するこ とができる。
本発明に係る半導体装置の製造方法によれば、 半導体基板上の 容量素子形成予定領域の周囲に、 第 1の絶縁膜を介して所定の厚 さの段差用のダミ ー層を形成した後、 これら第 1の絶縁膜及びダ ミ 一層上に堆積した導電体膜をパターニングして、 下部電極を容 量素子形成予定領域に形成すると'共に、 ダミ ー層を被覆し、 下部 電極の表面より も高い表面を有するダミ—電極を容量素子形成予 定領域の周囲に形成し、 更にこの下部電極上に、 誘電体膜を介し て、 ダミ 一電極の最上表面よりも表面が低い位置にある上部電極 を形成することにより、 基体全面に形成する第 2の絶縁膜によつ て上部電極の表面を被覆することを容易に実現することが可能に なるため、 この平滑化絶縁膜となる第 2の絶縁膜の形成の際に、 たとえ基体全面に堆積した絶縁膜をエツチバックする平滑化処理 を行っても、 ダミ 一電極がエッチングス ト ッパ一となることと相 侯って、 上部電極や更にはその下の誘電体膜がダメージを受ける ことを防止することができる。 従って、 特性の変動が少なく、 信 頼性の高い容量素子を得ることができる。
上述の本発明の半導体装置の製造方法において、 段差用のダミ —層の形成工程を、 半導体装置における他の素子の電極又は抵抗 層の形成工程を兼ねることにより、 製造工程の簡素化を図ること ができる。 図面の簡単な説明
図 1 は本発明の.第 1の実施形態に係る容量素子を示す概略断面 図である。
図 2 は図 1 に示される容量素子の製造方法を説明するための概 略工程断面図 (その 1 ) である。
図 3は図 1 に示される容量素子の製造方法を説明するための概 略工程断面図 (その 2 ) である。
図 4 は図 1 に示される容量素子の製造方法を説明するための概 略工程断面図 (その 3 ) である。
図 5 は図 1 に示される容量素子の製造方法を説明するための概 略工程断面図 (その 4 ) である。
図 6 は図 1 に示される容量素子の製造方法を説明するための概 略工程断面図 (その 5 ) である。
図 7 は図 1 に示される容量素子の製造方法を説明するための概 略工程断面図 (その 6 ) である。
図 8 は図 1 に示される容量素子の製造方法を説明するための概 略工程断面図 (その 7 ) である。
図 9 は図 1 に示される容量素子の製造方法を説明するための概 略工程断面図 (その 8 ) である。
図 1 0 は本発明の第 2の実施形態に係る容量素子を示す概略断 面図である。
図 1 1 は図 1 0 に示される容量素子の製造方法を説明するため の概略工程断面図 (その 1 ) である。
図 1 2 は図 1 0 に示される容量素子の製造方法を説明するため の概略工程断面図 (その 2 ) である。
図 1 3 は本発明の第 3の実施形態に係る容量素子を示す概略断 面図である。
図 1 4 は図 1 3に示される,容量素子の製造方法を説明するため の概略工程断面図 (その 1 ) である。
. 図 1 5 は図 1 3に示される容量素子の製造方法を説明するため の概略工程断面図 (その 2 ) である。
図 1 6 は図 1 3に示される容量素子の製造方法を説明するため の概略工程断面図 (その 3 ) である。
図 1 7 は図 1 3に示される容量素子の製造方法を説明するため の概略工程断面図 (その 4 ) である。
図 1 8 は図 1 3に示される容量素子の製造方法を説明するため の概略工程断面図 (その 5 ) である。
図 1 9 は図 1 3に示される容量素子の製造方法を説明するため の概略工程断面図 (その 6 ) である。
図 2 0 は本発明の第 4の実施形態に係る容量素子を示す概略断 面図である。
図 2 1 は図 2 0に示される容量素子の製造方法を説明するため の概略工程断面図 (その 1 ) である。
図 2 2 は図 2 0 に示される容量素子の製造方法を説明するため の概略工程断面図 (その 2 ) である。
図 2 3 は図 2 0に示される容量素子の製造方法を説明するため の概略工程断面図 (その 3 ) である。
図 2 4 は図 2 0に示される容量素子の製造方法を説明するため の概略工程断面図 (その 4 ) である。
図 2 5 は図 2 0に示される容量素子の製造方法を説明するため の概略工程断面図 (その 5 ) である。
図 2 6 は図 2 0に示される容量素子の製造方法を説明するため の概略工程断面図 (その 6 ) である。
図 2 7 は図 2 0に示される容量素子の製造方法を説明するため の概略工程断面図 (その 7 ) である。
図 2 8 は図 2 0 に示される容量素子の製造方法を説明するため の概略工程断面図 (その 8 ) である。
図 2 9 は本発明の第 5の実施形態に係る容量素子を示す概略断 面図である。
図 3 0 は図 2 9に示される容量素子の製造方法を説明するため の概略工程断面図 (その 1 ) である。
図 3 1 は図 2 9に示される容量素子の製造方法を説明するため の概略工程断面図 (その 2 ) である。
図 3 2 は本発明の第 6の実施形態に係る容量素子を示す概略断 面図である。
図 3 3 ·は図 3 2 に示される容量素子の製造方法を説明するため の概略工程断面図 (その 1 ) である。
図 3 4 は図 3 2に示される容量素子の製造方法を説明するため の概略工程断面図 (その 2 ) である。
図 3 5 は図 3 2に示される容量素子の製造方法を説明するため の概略工程断面図 (その 3 ) である。
図 3 6 は図 3 2 に示される容量素子の製造方法を説明するため の概略工程断面図 (その 4 ) である。
図 3 7 は図 3 2に示される容量素子の製造方法を説明するため の概略工程断面図 (その 5 ) である。
図 3 8 は図 3 2に示される容量素子の製造方法を説明するため の概略工程断面図 (その 6 ) である。
図 3 9 は従来の容量素子の製造方法を説明するための概略工程 断面図 (その 1 ) である。
図 4 0 は従来の容量素子の製造方法を説明するための概略工程 断面図 (その 2 ) である。
図 4 1 は従来の容量素子の製造方法を説明するための概略工程 断面図 (その 3 ) である。 発明を実施するための最良の形態
以下、 添付図面を参照しながら、 本発明の実施の形態を説明す o
(第 1の実施形態)
図 1は本発明の第 1の実施形態に係る容量素子を示す概略断面 図であり、 図 2〜図 9はそれぞれ図 1に示される容量素子の製造 方法を説明するための概略工程断面図である。
図 1に示されるように、 本実施形態に係る容量素子においては 、 半導体基板 1 0上の容量素子形成領域の周辺部に、 例えば S i 02 膜からなる第 1の絶縁膜 1 2介して、 所要の厚さ、 例えば厚 さ 1 0 0〜 5 0 0 n m程度のポリ シリ コン ( P o 1 y S i 1 i c o n ) 層からなる段差用のポリ シリ コン · ダミ 一層 1 4が形成 されている。 また、 第 1の絶縁膜 1 2及びポリ シリ コン · ダミ ー 層 1 4上には、 第 2の絶縁膜 1 6が形成されている。 なお、 第 2 の絶縁膜 1 6については、 省略することも可能である。
また、 この第 2の絶縁膜 1 6上には、 例えば厚さ 5〜 7 0 n m 程度の T i層、 厚さ 1 0〜 2 0 O n m程度の T i 0 N層、 厚さ 5 〜 7 0 n m程度の T i層、 厚さ 3 0 0〜 1 5 0 0 η m程度の A 1 一 S i層、 厚さ 5〜 7 0 n m程度の T i N層が下から順に堆積さ れた T i NZA l - S i /T i /T i ONZT i積層構造膜、 あ るいは C u, A 1 _ C u等による下部電極 1 8 aが形成されてい る。 本例では T i NZA l — S i /T i /T i ON/T i積層膜 の下部電極 1 8 aが形成される。
即ち、 この凹型断面形状の下部電極 1 8 aにおいては、 その中 央部の表面より も厚さ 1 0 0〜 5 0 0 nm程度の段差用のポリ シ リ コン ♦ ダミ ー層 1 4上方における周辺部の表面が例えば 1 0 0 〜 5 0 0 nm程度高い位置にある。 .
なお、 このような積層構造の T i N/ A 1 - S i ZT i /T i 0 N/T iの下部電極 1 8 aにおいては、 最上層の T i Ν層が、 製造プロセス中のフォ ト リ ソグラフイエ程における反射防止膜及 びその下の A 1 — S i層の酸化防止膜として機能し、 A 1 — S i 層が、 導電特性を要する電極の主要部として機能し、 下層の T i κτ i 0 N/T i積層膜が、 バリアメタルとして機能する。
また、 下部電極 1 8 aの中央部上には、 所要の厚さ、 例えば厚 さ 1 0〜 3 0 0 n m程度の T a 2 0 ε , S i 02 又は S i N等の 誘電体膜 2 0、 本例では T a 2 05 の誘電体膜を介して、 厚さ 5 〜 1 0 0 n m程度の T i, T i N又は T i と T i Nの積層膜から なる上部電極 2 2が形成されている。 誘電体膜 2 0を T a 2 05 で形成するときは、 上部電極 2 2を酸素と反応しにく い T i N又 は T i Nと T iをこの順で堆積させた積層膜で形成するのが好ま しい。 誘電体膜 2 0を S i 02 , S i N等で形成するときは、 上 部電極 2 2を丁 1, T i N又は Τ ί Νと T iの積層膜で形成する ことができる。
こう して、 誘電体膜 2 0を間に挟む上部電極 2 2 と下部電極 1
8 aとから容量素子が構成されている。
そして、 この容量素子の凹型断面形状の下部電極 1 8 aの中央 部上に形成されている上部電極 2 2の表面は、 凹型断面形状の下 部電極 1 8 aのポリ シリ コン · ダミ 一層 1 4上方における周辺部 の表面より もその高さが低くなっている。
また、 上部電極 2 2や下部電極 1 8 aからなる基体表面の凹凸 部に対する平滑化処理がなされている。 即ち、 例えば TE 0 Sを 原料とするプラズマ C V D法を用いて基体全面に堆積した S i 0 膜やその上にコーティ ングした S 0 G膜からなる平滑化絶縁膜 2 4が形成され、 この平滑化絶縁膜 2 4によつて下部電極 1 8 a の凹型断面形状の窪みが埋められていると共に、 上部電極 2 2の 表面が被覆されている。
また、 平滑化されている基体全面、 即ち下部電極 1 8 aの周辺 都及び平滑化絶縁膜 2 4上には、 例えば S i 0 膜からなる絶縁 膜 2 6が堆積されている。 平滑化絶縁膜 2 4 と絶縁膜 2 6 で層間 絶縁膜 2 7が形成される。
そして、 上部電極 2 2上の層間絶縁膜 2 7 に開口された第 1の ビア · ホール 2 8 aを介して、 上部電極 2 2 に接続する例えば A
1合金層からなる第 1 の上層配線層 3 0 aが形成されている。 また、 下部電極 1 8 aの周辺部上の層間絶縁膜 2 7に開口され た第 2 のビア · ホール 2 8 bを介して、 下部電極 1 8 aの周辺部 に接続する例えば A 1合金層からなる第 2 の上層配線層 3 0 bが 形成されている。
次に、 図 1 に示される容量素子の製造方法、 図 2〜図 9の概略 工程断面図を用いて説明する。
先ず、 図 2 に示されるように、 半導体基板 1 0上に、 例えば S i 0 膜からなる第 1 の絶縁膜 1 2を形成した後、 更にこの第 1 の絶縁膜 1 2上に、 例えばポリ シリ コン層を所要の厚さ、 例えば
1 0 0〜 5 0 0 n m程度の厚さに形成する。 続いて、 フォ ト リ ソ グラフィ工程及び R I E工程により、 このポリ シリ コン層を選択 的にエツチング除去して所定の形状にバタ一ニングする。
こう して、 半導体基板 1 0上の容量素子形成予定領域の周辺部 に、 第 1 の絶縁膜 1 2を介して、 厚さ 1 0 0 〜 5 0 0 n m程度の ポリ シリ コ ン層からなる段差用のポリ シリ コン . ダミー層 1 4を 形成する。
なお、 このポリ シリ コン ' ダミ 一層 1 4の形成工程は、 L S I の他の素子、 例えば MO S T r (M e t a l O x i d e S e m i c o n d u c t o r T r a n s i s t o r) のアー ト G a t e ) 電極や、 抵抗素子の抵抗層や、 B i p T r (B i p o 1 a r T r a n s i s t o r ) の電極と して用いるポリ シリ コ ン 層の形成工程と兼用することが可能である。
次いで、 図 3に示されるように、 この段差用のポリ シリ コン . ダミ一層 1 4を含む基体全面に、 第 2の絶縁膜 1 6を形成する。 なお、 第 2の絶縁膜 1 6の形成は省略できる。
次いで、 図 4に示されるように、 例えばスパッタ法を用いて、 この第 2の絶縁膜 1 6上に、 所要の厚さの導電体膜、 例えば厚さ 5〜 7 0 n m程度の T i層、 厚さ 1 0〜 2 0 O n m程度の T i 0 N層、 厚さ 5〜 7 O nm程度の T i層、 厚さ 3 0 0〜 1 5 0 O n m程度の A 1 - S i層、 厚さ 5〜 7 0 nm程度の T i N層を下か ら順に堆積して、 T i N/A l — S i /T i /T i ONZT i積 層膜 1 8を形成する。
なお、 このような積層構造においては、 最上層の T i N層が、 製造プロセス中のフォ ト リ ソグラフイエ程における反射防止膜及 びその下の A 1 — S i層の酸化防止膜と して機能し、 A 1 — S i 層が、 導電特性を要する電極の主要部として機能し、 下層の T i /T i 0 N/T i積層膜がバリアメ タルとして機能する。
また、 この T i NZA l — S i /T i ZT i ONZT i積層膜 1 8において、 厚さ 1 0 0〜 5 0 0 n m程度の段差用のポリ シリ コン · ダミ ー層 1 4上方における表面は、 このポリ シリ コン · ダ ミ 一層 1 4に囲まれた領域における表面より もその高さが 1 0 0 〜 5 0 0 n m程度高く なつている。
次いで、 図 5に示されるように、 例えば C V D法を用いて、 こ の T i N / A 1 一 S i /T i /T i 0 N/T i積層膜 1 8上に、 T a 0 , S i 0 , S i N等、 本例では T a 2 05 の誘電体 膜を所要の厚さ、 例えば 1 0〜 3 0 0 n m程度の厚さに堆積する
。 更に、 例えばスパッタ法を用いて、 この誘電体膜上に、 例えば
T i層、 T i N層又は T i と T i Nの積層膜による導電体層を所 要の厚さ、 例えば 5〜 1 0 0 nm程度の厚さに堆積する。
続いて、 フォ ト リ ソグラフィ工程及び R I E工程により、 これ ら積層された導電体層及び誘電体膜を選択的にエッチング除去し て所定の形状にパター二ングする。
こう して、 段差用のポリ シリ コン · ダミ一層 1 4に囲まれた領 域の T i NZA l — S i /T i /T i ON/T i積層膜 1 8上に 、 厚さ 1 0〜 3 0 0 n m程度の誘電体膜 2 0を介して、 厚さ 5〜
1 0 0 n m程度の T i層、 T i N層、 又は T i と T i Nの積層膜 からなる上部電極 2 2を形成する。
なお、 このときの上部電極 2 2の表面は、 積層膜 1 8のポリ シ リ コン ♦ ダミ ー層 1 4上方における表面より もその高さが低く な つている。
次いで、 図 6に示されるように、 フォ ト リ ソグラフィ工程及び
R I E工程により、 T i N/A l - S i /T i /T i ON/T i 積層膜 1 8を選択的にエッチング除去して所定の形状にパター二 ングする。
こ う して、 上部電極 2 2が形成されている中央部の表面より も 段差用のポリ シリ コン . ダミ 一層 1 4上方の周辺部の表面が高い 位置にある凹型断面形状の T i N/A l - S i /T i /T i ON ZT i積層膜による下部電極 1 8 aを形成する。 また、 この下部 電極 1 8 aの形成と同時に、 L S Iの他の素子の T i N/ A 1 - S i /T i /T i ON/T i積層膜による下層配線層 (図示せず
) を形成する。
このようにして、 誘電体膜 2 0を間に挟む上部電極 2 2 と下部 電極 1 8 aとから構成される容量素子を形成する。 なお、 このときの容釁素子の上部電極 2 2の表面は、 下部電極 1 8 aのポリ シリ コン · ダミ 一層 1 4上方における周辺部の表面 より もその高さが低くなっている。
次いで、 図 7 に示されるように、 基体全面の凹凸を平滑化する 平滑化処理を行う。 即ち、 例えば T E 0 Sを原料とするプラズマ
C V D法を用いて、 上部電極 2 2及び下部電極 1 8 aを含む基体 全面に、 例えば、 S i 0 2 膜を 3 0 0〜 1 5 0 0 n m程度の厚さ に堆積する。 更に、 この S i 0 2 膜上に、 S O G膜をコ一ティ ン グする。 その後、 これらの S 0 G膜及び S i 0 2 膜をエッチバッ クする。
こう して、 下部電極 1 8 aの凹型断面形状の窪みを埋めると共 に、 上部電極 2 2 の表面を被覆して、 基体全面を平滑化する平滑 化絶縁膜 2 4を形成する。
なお、 この基体全面の平滑化工程、 即ち平滑化絶縁膜 2 4の形 成工程においては、 凹型断面形状の下部電極 1 8 aの中央部上に 形成されている上部電極 2 2 の表面が、 凹型断面形状の下部電極 1 8 aのポリ シリ コン . ダミ ー層 1 4上方における周辺部の表面 より もその高さが低くなつている。 また、 一般的な平滑化工ッチ ノ ックでは、 S i 0 2 と T i及び T i Nとのエッチングレー トは 大き く変わらないため、 S 0 G膜及び S i 0 2 膜の形成後のェッ チバックの際にも、 下部電極 1 8 aの周辺部の表面は露出するも のの、 上部電極 2 2 の表面は常に平滑化絶縁膜 2 4によって被覆 された状態であり、 エッチングによって露出することはない。 即 ち、 上部電極 2 2やその下の誘電体膜 2 0がダメージを受けるこ とはない。
次いで、 図 8に示されるように、 例えばプラズマ C V D法を用 いて、 下部電極 1 8 aの周辺部及び平滑化絶縁膜 2 4を含む基体 全体に、 例えば S i 0 2 膜からなる絶縁膜 2 6を堆積する。 平滑 化絶縁膜 2 4 と絶縁膜 2 6で層間絶縁膜 2 7が形成される。
続いて、 フォ ト リ ソグラフイエ程及びドライエッチング法を用 いて、 上部電極 2 2上の層間絶縁膜 2 7を選択的にエッチング除 去すると共に、 下部電極 1 8 aの周辺部上の層間絶縁膜 2 7を選 択的にエツチング除去して、 第 1及び第 2 のビア · ホール 2 8 a
, 2 8 bをそれぞれ開口する。 このとき、 コンタク ト抵抗低減の ために、 下部電極 1 8 a表面の T i N層のみ除去することもある なお、 このとき、 第 1のビア · ホール 2 8 aを開口するために エッチングする上部電極 2 2上の層間絶縁膜 7の合計膜厚が、 第 2 のビア ♦ ホール 2 8 bを開口するためにエッチングする下部 電極 1 8 aの周辺部上の層間絶縁膜 2 7の膜厚より も厚く なつて いるため、 これら第 1及び第 2 のビア . ホール 2 8 a, 2 8 bの 開口の際に、 上部電極 2 2の表面に対する過大なオーバーエッチ ングが行われることはない。
次いで、 図 9 に示されるように、 例えばスパッ夕法を用いて、 例えば A 1合金層を堆積した後、 フォ ト リ ソグラフィ工程及びド ライエツチング法を用いて、 この A 1合金層を加工し、 第 1及び 第 2 のビア . ホール 2 8 a , 2 8 bを介して上部電極 2 2及び下 部電極 1 8 aの周辺部にそれぞれ接続する A 1合金層からなる第
1及び第 2 の上層配線層 3 0 a, 3 0 bを形成する。
また、 この第 1及び第 2 の上層配線層 3 0 a, 3 0 bの形成と 同時に、 L S I の他の素子の上層配線尋 (図示せず) を形成する 以上のように本実施形態によれば、 半導体基板 1 0上の容量素 子形成予定領域の周辺部に、 第 1 の絶縁膜 1 2を介して厚さ 1 0 0〜 5 0 0 n m程度のポリ シ リ コ ン層からなる段差用のポリ シリ コ ン ♦ ダミ ー層 1 4を形成し、 このポリ シリ コン · ダミー肩 1 4 を含む基体全面に第 2 の絶縁膜 1 6を形成し、 この第 2の絶縁膜 1 6上に、 中央部の表面より もポリ シリ コン · ダミー層 1 4上方 の周辺部の表面が高い位置にある凹型断面形状の下部電極 1 8 a を形成すると共に、 その中央部上に、 所要の厚さ、 例えば厚さ 1 0〜 3 0 0 n m程度の誘電体膜 2 0を介して、 所要の厚さ、 例え ば厚さ 5〜 1 0 0 n m程度の上部電極 2 2を形成して、 上部電極 2 2の表面の高さを下部電極 1 8 aのポリ シリ コン . ダミ ー層 1 4上方における周辺部の表面の高さより も低くすることにより、 基体全面に S i 0 2 膜を堆積し更に S O G膜をコーティ ングした 後にェッチバックする平滑化処理を行う際に、 下部電極 1 8 aの 凹型断面形状の窪みを埋めて基体全面を平滑化する平滑化絶縁膜 2 4が上部電極 2 2 の表面を常に被覆しているため、 この平滑化 処理の際のエッチングによつて上部電極 2 2や更にはその下の誘 電体膜 .2 0がダメージを受けることはない。 従って、 容量素子の 容量値等の特性の変動及び信頼性の劣化を抑制して、 良好な特性 と高い信頼性をもつ容量素子を得ることができる。
また、 容量素子の上部電極 2 2及び下部電極 1 8 aにそれぞれ 接続する第 1及び第 2の上層配線層 3 0 a, 3 0 bを形成するた めに第 1及び第 2 のビア · 'ホール 2 8 a , 2 8 bをそれぞれ開口 する際に、 第 1のビア ' ホール 2 8 aを開口するためにエツチン グする上部電極 2 2上の層間絶縁膜 2 7の合計膜厚が、 第 2 のビ 了 · ホール 2 8 bを開口するためにエッチングする下部電極 1 8 aの周辺部上の層間絶縁膜 2 7の膜厚より も厚く なつているため 、 上部電極 2 2 の表面に対する過大なオーバーエッチングが行わ れることはなく、 上部電極 2 2やその下の T a 2 0 5 誘電体膜 2
0がダメージを受けることはない。 従って、 容量素子の容量値等 の特性の変動及び信頼性の劣化を更に抑制して、 より良好な特性 とより高い信頼性をもつ容量素子を得ることができる。 また、 第 1及び第 2 のビア ' ホール 2 8 a, 2 8 bを比較する と、 下部電極 1 8 a上に開口する第 2 のビア · ホール 2 8 bの深 さが上部電極 2 2上に開口する第 1 のビア · ホール 2 8 aの深さ より浅く なつていることにより、 容量素子として実効的に機能す る上部電極 2 2 と下部電極 1 8 a との対向領域から第 1及び第 2 の上層配線層 3 0 a, 3 ' 0 bまでの距離において一般に上部電極 側よりも長くなる傾向にある下部電極側の距離を短縮することに なるため、 イ ンピ一ダンスの差異を減少させて容量素子の特性の 非対称性の増大を抑制することができる。 即ち、 容量素子の特性 の対称性を向上することができる。
(第 2の実施形態)
図 1 0 は本発明の第 2 の実施形態に係る容量素子を示す概略断 面図であり、 図 1 1及び図 1 2 はそれぞれ図 1 0 に示される容量 素子の製造方法を説明するための概略工程断面図である。 なお、 ここで、 上記第 1 の実施形態の図 1〜図 9 に示す容量素子の構成 要素と同一の要素には同一の符号を付して説明を省略する。
図 1 0 に示されるように、 本実施形態に係る容量素子において は、 上記第 1の実施形態の図 1 に示す容量素子における段差用の ポリ シリ コン · ダミ ー層 1 4の代わりに、 所要の厚さの S i N,
S i 0 2 等による絶縁ダミ ー層、 例えば、 厚さ 1 0 0〜 5 0 O n m程度の S i N層からなる段差用の S i Nダミー層 3 2が形成さ れている点に特徴がある。 そして、 その他の構成要素は上記第 1 の実施形態の場合と同様である。
次に、 図 1 0に示される容量素子の製造方法を、 図 1 1及び図
1 2 の概略工程断面図を用いて説明する。
先ず、 図 1 1に示されるように、 半導体基板 1 0上に、 例えば S i 0 2 膜からなる第 1の絶縁膜 1 2を形成した後、 更にこの第 1の絶縁膜 1 2上に、 この第 1の絶縁膜 1 2 とは異なる種類の絶 縁膜、 例えば S i N膜を 1 0 0〜 5 0 0 n m程度の厚さに形成す る。 続いて、 フォ ト リ ソグラフィ工程及びエツチング工程により 、 この S i N膜を選択的にエッチング除去して、 所定の形状にパ ターニングする。
こう して、 半導体基板 1 G上の容量素子形成予定領域の周辺部 に、 第 1の絶縁膜 1 2を介して、 厚さ 1 0 0〜 5 0 O n m程度の S i N膜からなる S i Nダミー層 3 2を形成する。
次いで、 図 1 2 に示されるように、 上記第 1の実施形態の図 3 〜図 9 に示す工程と同様にして、 この S i Nダミ 一層 3 2を含む 基体全面に、 第 2の絶縁膜 1 6を形成し、 この第 2の絶縁膜 1 6 上に、 T i N/A l — S i /T i /T i O N/T i積層膜 1 8を 形成し、 この T i NZ A 1 — S i /T i ZT i 0 NZT i積層膜 1 8上に、 誘電体膜 2 0を介して上部電極 2 2を形成し、 フォ ト リ ソグラフィ工程及び R I E工程により、 T i N/A l — S i /
T i /T i 0 NXT i積層膜 1 8をパターニングして、 上部電極 2 2が形成されている中央部の表面より も S i Nダミー層 3 2上 方の周辺部の表面が高い位置にある凹型断面形状の下部電極 1 8 aを形成する。
こう して、 誘電体膜 2 0を間に挟む上部電極 2 2 と下部電極 1
8 a とから構成される容量素子を形成する。
なお、 このときの容量素子の上部電極 2 2の表面は、 下部電極 1 8 aの S i Nダミ ー層 3 2上方における周辺部の表面より もそ の高さが低く なっている。
続いて、 上部電極 2 2及び下部電極 1 8 aを含む基体全面に、
S i 02 膜を堆積し、 更に S O G膜をコ一ティ ングした後、 これ らの S 0 G膜及び S i 02 膜をエッチバックする平滑化処理を行 い、 下部電極 1 8 aの凹型断面形状の窪みを埋めると共に、 上部 電極 2 2 の表面を被覆して、 基体全面を平滑化する平滑化絶縁膜 2 4を形成する。
なお、 この基体全面の平滑化工程、 即ち平滑化絶縁膜 2 4の形 成工程においては、 凹型断面形状の下部電極 1 8 aの中央部上に 形成されている上部電極 2 2の表面が、 凹型断面形状の下部電極
1 8 aの S i Nダミ ー層 3 2上方における周辺部の表面より もそ の高さが低く なっている。 一般的な平滑化工ツチバック条件では S i 0 2 と T i, T i Nとのエッチレー トの差は大きくないため 、 S 0 G膜及び S i 0 膜のエッチバックの際にも、 下部電極 1 8 aの周辺部の表面は露出するものの、 上部電極 2 2の表面は常 に平滑化絶縁膜 2 4によって被覆された状態であり、 エッチング によって露出することはない。
続いて、 下部電極 1 8 aの周辺部及び平滑化絶縁膜 2 4を含む 基体全面に、 例えば S i 0 膜からなる絶縁膜 2 6を堆積して平 滑化絶縁膜 2 4 と絶縁膜 2 6 とによる層間絶縁膜 2 7を形成する
。 そして、 上部電極 2 2上の層間絶縁膜 2 7を選択的にエツチン グ除去すると共に、 下部電極 1 8 aの周辺部上の層間絶縁膜 2 7 を選択的にエツチング除去して、 第 1及び第 2のビア , ホール 2 8 a , 2 8 bをそれぞれ開口する。 下部電極 1 8 a表面の T i N 層が除去されることもある。
なお、 このとき、 第 1 のビア . ホール 2 8 aを開口するために エッチングする上部電極 2 2上の層間絶縁膜 2 7の合計膜厚が、 第 2のビア · ホール 2 8 bを開口するためにエッチングする下部 電極 1 8 aの周辺部上の層間絶縁膜 2 6の膜厚より も厚くなつて いるため、 これら第 1及び第 2のビア ' ホール 2 8 a , 2 8 bの 開口の際に、 上部電極 2 2の表面に対する過大なオーバーエッチ ングが行われることはない。
続いて、 第 1及び第 2 のビア · ホール 2 8 a, 2 8 bを介して 上部電極 2 2及び下部電極 1 8 aの周辺部にそれぞれ接続する第 1及び第 2 の上層配線層 3' 0 a, 3 0 bを形成する。
以上のように本実施形態によれば、 半導体基板 1 0上の容量素 子形成予定領域の周辺部に、 第 1 の絶縁膜 1 2を介して所要の厚 さ、 例えば 1 0 0〜 5 0 0 n m程度の段差用の S i Nダミ ー層 3
2を形成し、 この S i Nダミ 一層 3 2を含む基体全面に第 2の絶 縁膜 1 6 を形成し、 この第 2の絶縁膜 1 6上に、 中央部の表面よ り も S i Nダミー層 3 2上方の周辺部の表面が高い位置にある凹 型断面形状の下部電極 1 8 aを形成すると共に、 その中央部上に 誘電体膜 2 0 を介して上部電極 2 2を形成して、 上部電極 2 2の 表面の高さを下部電極 1 8 aの S i Nダミ ー層 3 2上方における 周辺部の表面の高さより も低くすることにより、 基体全面に S i 〇 2 膜を堆積し更に S 0 G膜をコーティ ングした後にエッチバッ クする平滑化処理を行う際に、 下部電極 1 8 aの凹型断面形状の 窪みを埋めて基体全面を平滑化する平滑化絶縁膜 2 4が上部電極 2 2の表面を常に被覆しているため、 この平滑化処理の際のエツ チングによつて上部電極 2 2や更にはその下の誘電体膜 2 0がダ メ一ジを受けることはない。 従って、 上記第 1の実施形態の場合 と同様に、 容量素子の容量値等の特性の変動及び信頼性の劣化を 抑制して、 良好な特性と高い信頼性をもつ容量素子を得ることが できる。
また、 容量素子の上部電極 2 2及び下部電極 1 8 aにそれぞれ 接続する第 1及び第 2の上層配線層 3 0 a , 3 0 bを形成するた めに第 1及び第 2のビア . ホール 2 8 a, 2 8 bをそれぞれ開口 する際に、 第 1のビア . ホール 2 8 aを開口するためにエツチン グする上部電極 2 2上の層間絶縁膜 2 7の合計膜厚が、 第 2のビ ァ · ホール 2 8 bを開口するためにエツチングする下部電極 1 8 aの周辺部上の層間絶縁膜 2 7の膜厚より も厚くなつているため 、 上部電極 2 2の表面に対する過大なオーバ—エッチングが行わ れることはなく、 上部電極 2 2やその下の誘電体膜 2 0がダメ一 ジを受けることはない。 従って、 上記第 1の実施形態の場合と同 様に、 容量素子の容量値等の特性の変動及び信頼性の劣化を更に 抑制して、 より良好な特性とより高い信頼性をもつ容量素子を得 ることができる。
また、 下部電極 1 8 a上に開口する第 2 のビア · ホール 2 8 b の深さが上部電極 2 2上に開口する第 1のビア · ホール 2 8 aの 深さより浅く なつていることにより、 容量素子として実効的に機 能する上部電極 2 2 と下部電極 1 8 a との対向領域から第 1及び 第 2の上層配線層 3 0 a, 3 0 bまでの距離において一般に上部 電極側より も長くなる傾向にある下部電極側の距離を短縮するこ とになるため、 上記第 1の実施形態の場合と同様に、 インピーダ ンスの差異を減少させて容量素子の特性の非対称性の増大を抑制 し、 容量素子の特性の対称性を向上することができる。
なお、 上記第 2の実施形態においては、 半導体基板 1 0上の容 量素子形成予定領域の周辺部に、 第 1の絶縁膜 1 2を介して所要 の厚さ、 例えば厚さ 1 0 0 〜 5 0 0 n m程度の段差用の S i Nダ ミ ー層 3 2を形成しているが、 このような S i Nダミー層 3 2 を 形成する代わりに、 フォ ト リ ソグラフィ工程及びェッチング工程 により、 半導体基板 1 0上の容量素子形成予定領域の中央部の第 1 の絶縁膜 1 2を選択的にエツチング除去して、 深さ 1 0 0〜 5 0 0 n m程度の窪みを形成してもよい。 さ らには、 第 1の絶縁膜 1 2の選択ェッチングと、 ダミ ー層 3 2 (又はダミ一層 1 4、 後 述するダミ ー層 3 4 ) の組み合わせで最終的なダミ一層を形成し て深さ 1 0 0〜 5 0 0 n m程度の窪みを形成することもできる。
これらの場合においても、 この容量素子形成予定領域の中央部 に深さ 1 0 0〜 5 0 0 n m程度の窪みが形成された第 1の絶縁膜 1 2上に、 上記第 2の実施形態の場合と同様にして、 第 2の絶縁 膜 1 6を形成し、 この第 2の絶縁膜 1 6上に、 T i N/A l - S i ZT i /T i ON/T i積層膜 1 8を形成し、 この T i N/A 1 — S i / T i / T i 0 N / T i積層膜 1 8をパタ一ニングする ことにより、 第 1の絶縁膜 1 2に形成された窪みの上方の中央部 の表面より も周辺部の表面が高い位置にある凹型断面形状の下部 電極 1 8 aを形成することが可能になる。 従って、 上記第 2の実 •施形態の場合と同様の作用 · 効果を奏することができる。 (第.3の実施形態)
図 1 3は本発明の第 3の実施形態に係る容量素子を示す概略断 面図であり、 図 1 4〜図 1 9はそれぞれ図 1 3に示される容量素 子の製造方法を説明するための概略工程断面図である。 なお、 こ こで、 上記第 1の実施形態の図 1〜図 9に示ず容量素子の構成要 素と同一の要素には同一の符号を付して説明を省略する。 .
図 1 3に示されるように、 本実施形態に係る容量素子において は、 上記第 1の実施形態の図 1に示す容量素子と比較すると、 そ の容量素子の周辺部に段差用のポリ シリ コン · ダミ ー層 1 4が形 成されている代わりに、 同じ厚さ、 例えば厚さ 1 0 0〜 5 0 O n m程度の段差用のポリ シリ コン . ダミー層 3 4が容量素子の周囲 に形成されている点に特徵がある。
また、 上記第 1の実施形態の図 1に示す凹型断面形状の例えば T i N/A l — S i /T i / T i ΟΝ/Τ iの下部電極 1 8 aの 代わりに、 表面が平坦な例えば T i N/A l — S i /T i /T i O NZT i の下部電極 1 8 bが形成されていると共に、 この下部 電極 1 8 bと分離して、 容量素子の周囲の段差用のポリシ リ コン • ダミ ー層 3 4上方に、 上部電極 2 2の表面より も高い表面を有 する例えば T i N/A 1 一 S i / T i /T i ONZT iのダミー 電極 1 8 cが形成されている点に特徵がある。
' このため、 上記第 1の実施形態においては、 下部電極 1 8 aの 凹型断面形状の窪みを埋めている平滑化絶縁膜 2 4が上部電極 2 2 の表面を被覆しているのに対して、 本実施形態においては、 ダ ミ 一電極 1 8 cによつて周囲を囲まれた窪みを埋めている平滑化 絶縁膜 2 4が下部電極 1 8 b上に形成されている上部電極 2 2 の 表面を被覆している。
そして、 その他の構成要素は上記第 1の実施形態の場合と略同 様である。
次に、 図 1 3に示される容量素子の製造方法を、 図 1 4〜図 1
9 の概略工程断面図を用いて説明する。
先ず、 図 1 4に示されるように、 半導体基板 1 0上に、 例えば
S i 0 2 膜からなる第 1 の絶縁膜 1 2を形成した後、 更にこの第
1 の絶縁膜 1 2.上に、 例えばポリ シリ コン層を所要の厚さ、 例え ば 1 0 0〜 5 0 0 n m程度の厚ざに形成する。 続いて、 フォ ト リ ソグラフイエ程及び R I E工程により、 このポリ シリ コン層を選 択的にエッチング除去して所定の形状にパターニングする。
こう して、 半導体基板 1 0上の容量素子形成予定領域の周囲に
、 第 1の絶縁膜 1 2 を介して、 厚さ 1 0 0〜5 0 0 11 m程度のポ リ シリ コン層からなる段差用のポリ シリ コン · ダミー層 3 4を形 成する。
なお、 このポリ シリ コン ' ダミー層 3 4の形成工程は、 L S I の他の素子、 例えば M O S T rのゲ— ト電極や、 抵抗素子の抵抗 層や、 B i p T rの電極と して用いるポリ シリ コン層の形成工程 と兼用することが可能である。
次いで、 図 1 5 に示されるように、 上記第 1の実施形態の図 3 〜図 5に示す工程と同様にして、 段差用のポリ シリ コン · ダミ一 層 3 4を含む基体全面に、 第 2 の絶縁膜 1 6を形成する。 絶縁膜 1 6は省略すること もできる。 そして、 この第 2の絶縁膜 1 6上 に、 T i N/A l _ S i /T i /T i ON/T i積層構造膜、 あ るいは C u, A 1 — C u等による積層膜、 本例では T i N/ A 1 一 S i /T i /T i ONZT i積層膜 1 8を形成し、 この T i N /A l - S i /T i /T i ON/T i積層膜 1 8上に、 T a 2
5 , S i 02 , S i N等、 本例では T a 2 03 の誘電体膜 1 0を 介'して T i, T i N又は T. i と T i Nの積層膜による上部電極 2 2を形成する。
なお、 このときの上部電極 2 2の表面は、 T i N/ A 1 - S i Z T i / T i 0 N / T i積層膜 1 8のポリ シリ コ ン . ダミー層 3
4上方における最上表面より もその高さが低くなつている。
次いで、 図 1 6に示されるように、 フォ ト リ ソグラフィ工程及 び R I E工程により、 T i N/A l — S i /T i /T i ON/T i積層膜 1 8を選択的にエツチング除去して所定の形状にバタ一 ニングする。
こ う して、 第 2の絶縁膜 1 6上の容量素子形成予定領域に、 T i N/A l — S i /T i /T i ON/T i による下部電極 1 8 b を形成すると共に、 この下部電極 1 8 bと分離して、 容量素子形 成予定領域の周囲のポリ シリ コン · ダミ—層 3 4上方に、 下部電 極 1 8 bの表面より も高い最上表面を有する T i N/ A 1 — S i
Z T i /T i 〇 NZ T i によるダミ一電極 1 8 cを形成する。
また、 この下部電極 1 8 bの形成と同時に、 L S Iの他の素子 の T i N/A l — S i ZT i ZT i ON/T i積層膜による下層 配線層 (図示せず) を形成する。
このようにして、 誘電体膜 2 0を間に挟む上部電極 2 2 と下部 電極 1 8 bとから構成される容量素子を形成する。
なお、 このときの容量素子の上部電極 2 2の表面は、 容量素子 形成領域の周囲のダミ ー電極 1 8 cのポリ シリ コ ン ♦ ダミー層 3 4上方における最上表面より もその高さが低くなっている。
次いで、 図 1 7に示されるように、 上部電極 2 2及び下部電極 1 8 bを含む基体全面に、 S i 0 2 膜を 3 0 0〜 1 5 0 0 n m程 度の厚さに堆積する。 更に、 この S i 0 2 膜上に、 S 0 G膜をコ 一ティ ングする。 その後、 これらの S O G膜及び S i 0 2 膜をェ ッチバックする平滑化処理を行う。
こ う して、 ダミ一電極 1 8 c によって周囲を囲まれた窪みを埋 めると共に、 上部電極 2 2及び下部電極 1 8 bの表面を被覆して 、 基体全面を平滑化する平滑化絶縁膜 2 4を形成する。
なおこの基体全面の平滑化工程、 即ち平滑化絶縁膜 2 4の形成 工程においては、 下部電極 1 8 b上に形成されている上部電極 2 2 の表面が、 容量素子形成領域の周囲のダミ—電極 1 8 cのポリ シリ コン · ダミ ー層 3 4上方における最上表面より もその高さが 低く なつているため、 S 0 G膜及び S i 0 2 膜のエッチバックの 際にも、 下部電極 1 8 bの表面と共に上部電極 2 2 の表面は常に 平滑化絶縁膜 2 4 によって被覆された状態であり、 エッチングに よって露出することはない。
次いで、 図 1 8に示されるように、 例えばプラズマ C V D法を 用いて、 ダミ —電極 1 8 c及び平滑化絶縁膜 2 4を含む基体全面 に、 絶縁膜 2 6を堆積する。 この平滑化絶縁膜 2 4 と絶縁膜 2 6 で層間絶縁膜 2 7が形成される。
続いて、 フォ ト リ ソグラフィ工程及びドライエッチング法を用 いて、 上部電極 2 2及び下部電極 1 8 b上の層間絶縁膜 2 7を選 択的にエッチング除去して、 第 1及び第 2のビア · ホール 2 8 a , 2 8 cをそれぞれ開口する。
次いで、 図 1 9 に示されるように、 例えばスパッタ法を用いて 、 例えば A 1合金層を堆積した後、 フォ ト リ ソグラフィ工程及び ドライエツチング法を用いて、 この A 1合金層を加工し、 第 1及 び第 2 のビア · ホール 2 8 a, 2 8 cを介して上部電極 2 2及び 下部電極 1 8 bの周辺部にそれぞれ接続する A 1合金層からなる 第 1及び第 2 の上層配線層 3 0 a, 3 0 cを形成する。
また、 この第 1及び第 2の上層配線層 3 0 a, 3 0 cの形成と 同時に、 L S I の他の素子の上層配線層 (図示せず) を形成する o ,
以上のように本実施形態によれば、 半導体基板 1 0上の容量素 子形成予定領域の周囲に、 第 1の絶縁膜 1 2を介して厚さ 1 0 0 〜 5 0 0 n m程度の段差用のポリ シリ コン · ダミ一層 3 4を形成 し、 このポリ シ リ コ ン . ダミ一層 3 4を含む基体全面に、 第 2の 絶縁膜 1 6 を介して例えば T i N/ A 1 — S i ZT i /T i O N /Ύ i積層膜 1 8を形成して所定の形状にバタ一ニングし、 容量 素子形成予定領域に T i N/A l - S i /T i /T i O N/T i の下部電極 1 8 bを形成し、 その周囲のポリ シリ コン . ダミー層 3 4上方に下部電極 1 8 bの表面よりも高い表面を有する T i N
Z A 1 — S i /T i ZT i O N/T i のダミ—電極 1 8 cを形成 すると共に、 下部電極 1 8 b上に誘電体膜 2 0を介して上部電極 2 2を形成して、 上部電極 2 の表面の高さをダミ—電極 1 8 c のポリ シリ コ ン · ダミ ー層 3 4上方における最上表面の高さより も低くするこ とにより、 基体全面に S i 02 膜を堆積し更に S 0 G膜をコ一ティ ングした後にエッチバックする平滑化処理を行う 際に、 ダミ 一電極 1 8 cによって周囲を囲まれた窪みを埋めて基 体全面を平滑化する平滑化絶縁膜 2 4が上部電極 2 2の表面を常 に被覆しているため、 この平滑化処理の際のエッチングによって 上部電極 2 2や更にはその下の誘電体膜 2 0がダメ一ジを受ける ことはない。 従って、 上記第 1の実施形態の場合と同様に、 容量 素子の容量値等の特性の変動及び信頼性の劣化を抑制して、 良好 な特性と高い信頼性をもつ容量素子を得ることができる。 なお、 上記第 1〜第 3の実施形態におい Tは、 容量素子の下部 電極 1 8 a, 1 8 bは、 第 2のビア . ホール 2 8 b, 2 8 cを介 して第 2 の上層配線層 3 0 b, 3 0 cに接続されている場合につ いて説明しているが、 下部電極 1 8 a, 1 8 bがそのまま配線層 を兼ねて、 L S I の他の素子に接続する場合もある。
そして、 この場合には、 下部電極 1 8 a , 1 8 b上の層間絶縁 膜 2 7 を選択的にエツチング除去して、 第 2のビア · ホール 2 8 b , 2 8 cを開口する必要はなく なる。
ま'た、 第 1及び第 2の上層配線層 3 0 a , 3 0 b , 3 0 cの形 成は、 A 1合金層を堆積し加工する代わりに、 C V D法を用いて
、 W (タングステン) 層を堆積した後、 エッチバック して、 第 1 及び第 2 のビア ' ホール 2 8 a, 2 8 b , 2 8 cをそれぞれ埋め 込む Wプラグを形成し、 更にスパッタ法を用いて、 A 1合金層を 堆積した後、 フォ ト リ ソグラフィ工程及びドライエッチング法を 用いて、 この A 1合金層を加工して、 第 1及び第 2のビア · ホー ル 2 8 a, 2 8 b , 2 8 c内の Wプラグにそれぞれ接続する第 1 及び第 2 の上層配線層を形成する方法を用いてもよい。
(第 4の実施形態)
図 2 0 は本発明の第 4の実施形態に係る容量素子を示す概略断 面図であり、 図 2 1〜図 2 8 はそれぞれ図 2 0 に示される容量素 子の製造方法を説明するための概略工程断面図である。
図 2 0 に示されるように、 本実施形態に係る容量素子において は、 半導体基板 1 0上の容量素子形成領域の周辺部に、 例えば S i 02 膜からなる第 1の絶縁膜 1 2介して、 所要の厚さ、 例えば 厚さ 1 0 0〜 5 0 0 n m程度のポリ シリ コ ン (P o l y S i 1 i c o n ) 層からなる段差用のポリ シリ コン ' ダミー層 1 4が形 成されている。 また、 第 1の絶縁膜 1 2及びポリ シリ コン · ダミ —層 1 4上には、 第 2の絶縁膜 1 6が形成されている。 なお、 第 2の絶縁膜 1 6については、 省略することも可能である。
また、 この第 2の絶縁膜 1 6上には、 例えば厚さ 5〜 7 0 n m 程度の T i層、 厚さ 1 0 ~ 2 0 O n m程度の T i 0 N層、 厚さ 5 〜 7 0 n m程度の T i層、 厚さ 3 0 0〜 1 5 0 0 n m程度の A 1 一 S i層、 厚さ 5〜 7 0 n m程度の T i N層が下から順に堆積さ れた T i N/A l — S i /T i /T i ON/T i積層構造膜、 あ るいは C u, A 1 - C u等による下部電極 1 8 aが形成されてい る。 本例では T i NZA l - S i ZT i /T i ON/T i積層膜 の下部電極 1 8 aが形成される。
即ち、 この凹型断面形状の下部電極 1 8 aにおいては、 その中 央部の表面より も厚さ 1 0 0〜 5 0 0 n m程度の段差用のポリ シ リ コン · ダミ ー層 1 4上方における周辺部の表面が例えば 1 0 0 〜 5 0 0 n m程度高い位置にある。
なお、 このような積層構造の T i N/A 1 — S i /T i ZT i
0 N/T i の下部電極 1 8 aにおいては、 最上層の T i N層が、 製造プロセス中のフォ ト リ ソグラフイエ程における反射防止膜及 びその下の A 1 — S i層の酸化防止膜として機能し、 A 1 — S i 層が、 導電特性を要する電極の主要部として機能し、 下層の T i /T i 0 N/T i積層膜が、 ノくリァメ タルとして機能する。
また、 下部電極 1 8 aの中央部上には、 所要の厚さ、 例えば厚 さ 1 0〜 3 0 O nm程度の T a 2 05 , S i 02 又は S i N等の 誘電体膜 2 0、 本例では T a 2 05 の誘電体膜を介して、 厚さ 5 〜 1 0 0 n m程度の T i, T i N又は T i と T i Nの積層膜から なる上部電極 2 2が形成されている.。 誘電体膜 2 0を T a 2 05 で形成するときは、 上部電極 2 2を酸素と反応しにく い T i N又 は T i Nと T iをこの順で堆積させた積層膜で形成するのが好ま しい。 誘電体膜 2 0を S i 02 , S i N等で形成するときは、 上 部電極 2 2を T i, T i N又は T i Nと T i の積層膜で形成する ことができる。
こう して、 誘電体膜 2 0を間に挟む上部電極 2 2 と下部電極 1 8 a とから容量素子が構成されている。 · そして、 この容量素子の凹型断面形状の下部電極 1 8 aの中央 部上に形成されている誘電体膜 2 0の表面は、 凹型断面形状の下 部電極 1 8 aのポリ シリ コン ' ダミ 一層 1 4上方における周辺部 の。表面より もその高さが低く なっている。 。
また、 上部電極 2 2や下部電極 1 8 aからなる S体表面の凹凸 部に対する平滑化処理がなされている。 即ち、 例えば T E 0 Sを 原料とするプラズマ C V D法を用いて基体全面に堆積した S i 0 2 膜やその上にコ一ティ ングした S 0 G膜からなる平滑化絶縁膜 2 4が形成され、 この平滑化絶縁膜 2 4によつて下部電極 1 8 a の凹型断面形状の窪みが埋められている。.
また、 平滑化されている基体全面、 即ち下部電極 1 8 aの周辺 部及び平滑化絶縁膜 2 4上には、 例えば S i 0 2 膜からなる絶縁 膜 2 6が堆積されている。 平滑化絶縁膜 2 4 と絶縁膜 2 6で層間 絶縁膜 2 7が形成される。
そして、 上部電極 2 2上の層間絶縁膜 2 7に開口された第 1の ビア ' ホール 2 8 aを介して、 上部電極 2 2に接続する例えば A
1合金層からなる第 1 ·の上層配線層 3 0 aが形成されている。 また、 下部電極 1 8 aの周辺部上の層間絶縁膜 2 7に開口され た第 2 のビア · ホール 2 8 bを介して、 下部電極 1 8 aの周辺部 に接続する例えば A 1合金層からなる第 2の上層配線層 3 0 bが 形成されている。
次に、 図 2 0 に示される容量素子の製造方法、 図 2 1〜図 2 8 の概略工程断面図を用いて説明する。
先ず、 図 2. 1 に示されるように、 半導体基板 1 0上に、 例えば S i 02 膜からなる第 1 の絶縁膜 1 2を形成した後、 更にこの第 1 の絶縁膜 1 2上に、 例えばポリ シリ コン層を所要の厚さ、 例え ば 1 0 0〜 5 0 0 n m程度の厚さに形成する。 続いて、 フォ ト リ ソグラフイエ程及び R I E工程により、 このポリ シリ コン層を選 択的にエツチング除去して所定の形状にパターニングする。
こ う して、 半導体基板 1 0上の容量素子形成予定領域の周辺部 に、 第 1 の絶縁膜 1 2 を介して、 厚さ 1 0 0〜 5 0 0 n m程度の ポリ シリ コン層からなる段差用のポリ シリ コン · ダミー層 1 4を 形成する。
なお、 このポリ シリ コ ン ' ダミ ー層 1 4の形成工程は、 L S I の他の素子、 例えば M 0 S T r (M e t a l O i d e S e m i c o n d u c t o r T r a n s i s t o r ) のゲー ト (G a t e ) 電極や、 抵抗素子の抵抗層や、 B i p T r ( B i p o 1 a r T r a n s i s t o r ) の電極として用いるポリ シリ コン 層の形成工程と兼用することが可能である。
次いで、 図 2 2 に示されるように、 この段差用のポリ シリ コン • ダミ ー層 1 4を含む基体全面に、 第 2の絶縁膜 1 6を形成する 。 なお、 第 2の絶縁膜 1 6 の形成は省略できる。
次いで、 図 2 3に示されるように、 例えばスパッタ法を用いて 、 この第 2 の絶縁膜 1 6上に、 所要の厚さの導電体膜、 例えば厚 さ 5〜 7 0 n m程度の T i層、 厚さ 1 0〜 2 0 0 n m程度の T i O N層、 厚さ 5〜 7 O n m程度の T i層、 厚さ 3 0 0〜 1 5 0 0 n m程度の A 1 — S i層、 厚さ 5〜 7 O n m程度の T i N層を下 から順に堆積して、 T i N/A l — S i /T i /T i O N/T i 積層膜 1 8を形成する。
なお、 このような積層構造においては、 最上層の T i N層が、 製造プロセス中のフォ ト リ ソグラフイエ程における反射防止膜及 びその下の A 1 - S i層の酸化防止膜として機能し、 A 1 — S i 層が、 導電特性を要する電極の主要部として機能し、 下層の T i
ZT i 0 N/T i積層膜がバリアメタルと して機能する。
また、 この T i N/A l — S i /T i /T i O N/T i積層膜
1 8において、 厚さ 1 0 0〜 5 0 0 n m程度の段差用のポリ シリ コン ' ダミ ー層 1 4上方における表面は、 このポリ シリ コン ' ダ ミ 一層 1 4に囲まれた領域における表面より もその高さが 1 0 0
〜 5 0 0 n m程度高くなつている。
次いで、 図 2 4に示されるように、 例えば C V D法を用いて、 この T i N/A l — S i ZT i /T i ON/T i積層膜 1 8上に 、 T a 2 05 , S i 02 , S i N等、 本例では T a 2 05 の誘電 体膜を所要の厚さ、 例えば 1 0〜 3 0 0 nm程度の厚さに堆積す る。 更に、 例えばスパッタ法を用いて、 この誘電体膜上に、 例え ば T i層、 T i N層又は T i と T i Nの積層膜による導電体層を 所要の厚さ、 例えば 2 0〜 5 0 0 n m程度の厚さに堆積する。
続いて、 フォ ト リ ソグラフィ工程及び R I E工程により、 これ ら積層ざれた導電体層及び誘電体膜を選択的にエツチング除去し て所定の形状にパターニングする。
こう して、 段差用のポリ シリ コ ン · ダミー層 1 4に囲まれた領 域の T i NZA l - S i ZT i /T i ONZT i積層膜 1 8上に 、 厚さ 1 0〜 3 0 0 n m程度の誘電体膜 2 0を介して、 厚さ 2 0
〜 5 0 0 n m程度の T i層、 T i N層又は T i と T i Nの積層膜 からなる上部電極 2 2を形成する。 上部電極 2 2の表面は、 積層 膜 1 8のダミ 一層 1 4上方における表面と同一面、 あるいはそれ より高い位置にする。
なお、 このときの誘電体膜 2 0の表面は、 積層膜 1 8のポリ シ リ コン · ダミ ー層 1 4上方における表面より もその高さが低くな つている。
次いで、 図 2 5に示されるように、 フォ ト リ ソグラフィ工程及 び R I E工程により、 T i Ν/ A 1 - S i /T i /T i ON/T i積層膜 1 8を選択的にエッチング除去して所定の形状にパター ニングする。
こう して、 上部電極 2 2が形成されている中央部の誘電体膜 2 0の表面より も段差用のポリ シリ コン . ダミ 一層 1 4上方の周辺 部の表面が高い位置にある凹型断面形状の T i N/ A 1 - S i / T i /T i 0 N/T i積層膜による下部電極 1 8 aを形成する。 また、 この下部電極 1 8 aの形成と同時に、 L S I の他の素子の T i NZA l — S i ZT i /T i ON/T i積層膜による下層配 線層 (図示せず) を形成する。
このようにして、 誘電体膜 2 0を間に挟む上部電極 2 2 と下部 電極 1 8 aとから構成される容量素子を形成する。
なお、 このときの容量素子の誘電体膜 2 0の表面は、 下部電極 1 8 aのポリ シリ コ ン ' ダミ ー層 1 4上方における周辺部の表面 よりもその高さが低く なっている。
次いで、 図 2 6に示されるように、 基体全面の凹凸を平滑化す る平滑化処理を行う。 即ち、 例えば TE 0 Sを原料とするプラズ マ C VD法を用いて、 上部電極 2 2及び下部電極 1 8 aを含む基 体全面に、 例えば、 S i 02 膜を 3 0 0〜 1 5 0 0 n m程度の厚 さに堆積する。 更に、 この S i 02 膜上に、 S O G膜をコ一ティ ングする。 その後、 これらの S 0 G膜及び S i 02 膜をエツチバ ックする。
こう して、 下部電極 1 8 aの凹型断面形状の窪みを埋めると共 に、 基体全面を平滑化する平滑化絶縁膜 2 4を形成する。
なお、 この基体全面の平滑化工程、 即ち平滑化絶縁膜 2 4の形 成工程においては、 凹型断面形状の下部電極 1 8 aの中央部上に 形成されている誘電体膜 2 0の表面が、 凹型断面形状の下部電極 1 8 aのボリ シリ コ ン · ダミ ー層 1 4上方における周辺部の表面 より もその高さが低く なっている。 また、 一般的な平滑化工ツチ ノ ックでは、 S i 0 2 と T i及び T i Nとのエッチングレー トは 大き く変わらないため、 S O G膜及び S i 0 2 膜の形成後のェッ チバックの際にも、 下部電極 1 8 aの周辺部の表面は露出するも のの、 誘電体膜 2 0の表面は、 エッチングによって露出すること はない。 即ち、 下部電極 1 8 aの周辺部がエッチングス ト ッパー となり、 上部電極 2 2下の誘電体膜 2 0がダメージを受けること はない。
次いで、 図 2 7 に示されるように、 例えばプラズマ C V D法を 用いて、 下部電極 1 8 aの周辺部及び平滑化絶縁膜 2 4を含む基 体全体に、 例えば S i 0 2 膜からなる絶縁膜 2 6を堆積する。 平 滑化絶縁膜 2 4 と絶縁膜 2 6で層間絶縁膜 2 7が形成される。
続いて、 フォ ト リ ソグラフィ工程及びドライエツチング法を用 いて、 上部電極 2 2上の層間絶縁膜 2 7を選択的にエッチング除 去すると共に、 下部電極 1 8 aの周辺部上の層間絶縁膜 2 7を選 択的にエッチング除去して、 第 1及び第 2のビア · ホール 2 8 a , 2 8 bをそれぞれ開口する。 このとき、 コンタク ト抵抗低減の ために、 下部電極 1 8 a表面の T i N層のみ除去することもある o
なお、 このとき、 第 1 のビア . ホ一ル 2 8 aを開口するために エッチングする上部電極 2 2上の層間絶縁膜 2 7膜厚が、 第 2の ビア · ホール 2 8 bを開口するためにエツチングする下部電極 1 8 aの周辺部上の層間絶縁膜 2 7の膜厚とほぼ等しくなつている ため、 これら第 1及び第 2のビア · ホール 2 8 a , 2 8 bの開口 の際に、 上部電極 2 2の表面に対する過大なオーバーエッチング が行われることはない。
次いで、 図 2 8 に示されるように、 例えばスパッタ法を用いて 、 例えば A 1合金層を堆積した後、 フォ ト リ ソグラフイエ程及び ドライエッチング法を用いて、 この A 1合金層を加工し、 第 1及 び第 2のビア · ホール 2 8 a, 2 8 bを介して上部電極 2 2及び 下部電極 1 8 aの周辺部にそれぞれ接続する A 1合金層からなる 第 1及び第 2 の上層配線層 3 0 a, 3 0 bを形成する。
また、 この第 1及び第 2 の上層配線層 3 0 a, 3 0 bの形成と 同時に、 L S I の他の素子の上層配線層 (図示せず) を形成する o ·
以上のように本実施形態によれば、 半導体基板 1 0上の容量素 子形成予定領域の周辺部に、 第 1 の絶縁膜 1 2を介して厚さ 1 0 0〜 5 0 0 n m程度のポリ シ リ コ ン層からなる段差用のポリ シリ コ ン · ダミ ー層 1 4を形成し、 このポリ シリ コン · ダミー層 1 4 を含む基体全面に第 2 の絶縁膜 1 6を形成し、 この第 2 の絶縁膜 1 6上に、 中央部の表面より もポリ シ リ コン · ダミ ー層 1 4上方 の周辺部の表面が高い位置にある凹型断面形状の下部電極 1 8 a を形成すると共に、 その中央部上に、 所要の厚さ、 例えば厚さ 1 0〜 3 0 0 n m程度の誘電体膜 (即ち、 ダミー層 1 4より薄い誘 電体膜) 2 0を介して、 所要の厚さ、 例えば厚さ 5〜 1 0 0 n m 程度の上部電極 2 2を形成し、 誘電体膜 2 0の表面の高さを下部 電極 1 8 aのポリ シリ コン . ダミ ー層 1 4上方における周辺部の 表面の高さより も低くするこ とにより、 基体全面に S i 0 2 膜を 堆積し更に S 0 G膜をコ一ティ ングした後にエツチバックする平 滑化処理を行う際に、 下部電極 1 8 aの周辺部がェッチンダス ト ッパ一として働き、 エツチングによつて誘電体膜 2 0がダメ一ジ を受けることはない。 従って、 容量素子の容量値等の特性の変動 及び信頼性の劣化を抑制して、 良好な特性と高い信頼性をもつ容 量素子を得ることができる。
また、 容量素子の上部電極 2 2及び下部電極 1 8 aにそれぞれ 接続する第 1及び第 2 の上層配線層 3 0 a, 3 0 bを形成するた めに第 1及び第 2のビア ' ホール 2 8 a , 2 8 bをそれぞれ開口 する際に、 第 1のビア · ホール 2 8 aを開口するためにエツチン グする上部電極 2 2上の層間絶縁膜 2 7の膜厚が、 第 2のビア · ホール 2 8 bを開口するためにエッチングする下部電極 1 8 aの 周辺部上の層間絶縁膜 2 7の膜厚とほぼ等しくなつているため、 上部電極 2 2 の表面に対する過大なオーバ一エツチングが行われ ることはなく 、 上部電極 2 2やその下の T a 2 0 5 誘電体膜 2 0 がダメージを受けることはない。 従って、 容量素子の容量値等の 特性の変動及び信頼性の劣化を更に抑制して、 より良好な特性と より高い信頼性をもつ容量素子を得ることができる。
また、 第 1及び第 2 のビア ' ホール 2 8 a, 2 8 bを比較する と、 下部電極 1 8 a上に開口する第 2 のビア · ホール 2 8 bの深 さが上部電極 2 2上に開口する第 1のビア · ホ ル 2 8 aの深さ より浅くなつているこ とにより、 容量素子として実効的に機能す る上部電極 2 2 と下部電極 1 8 a との対向領域から第 1及び第 2 の上層配線層 3 0 a , 3 0 bまでの距離において一般に上部電極 側より も長く なる傾向にある下部電極側の距離を短縮することに なるため、 ィ ンピーダンスの差異を減少させて容量素子の特性の 非対称性の増大を抑制することができる。 即ち、 容量素子の特性 の対称性を向上するこ とができる。 (第 5 の実施形態)
図 2 9 は本発明の第 5の実施形態に係る容量素子を示す概略断 面図であり、 図 3 0及び図 3 1 はそれぞれ囱 2 9 に示される容量 素子の製造方法を説明するための概略工程断面図である。 なお、 ここで、 上記第 4 の実施形態の図 2 1〜図 2 8 に示す容量素子の 構成要素と同一の要素には同一の符号を付して説明を省略する。
図 2 9に示されるように、 本実施形態に係る容量素子において は、 上記第 4の実施形態の図 2 0に示す容量素子における段差用 のポリ シリ コ :ノ · ダミ ー層 1 4の代わりに、 所要の厚さの S i N , S i 0 等による絶縁ダミ ー層、 例えば、 厚さ 1 0 0〜 5 0 0 n m程度の S i 0 層からなる段差用の S i 02 ダミー層 3 2が 形成されている点に特徴がある。 そして、 その他の構成要素は上 記第 4の実施形態の場合と同様である。
.次に、 図 2 9に示される容量素子の製造方法を、 図 3 0及び図 3 1の概略工程断面図を用いて説明する。
先ず、 図 3 0に示されるように、 半導体基板 1 0上に、 例えば S i 02 膜からなる第 1の絶縁膜 1 2を形成した後、 更にこの第
1の絶縁膜 1 2上に、 絶縁膜、 例えば S i 0 膜を 1 0 0〜 5 0 0 n m程度の厚さに形成する。 続いて、 フォ ト リ ソダラフィ工程 及びェッチング工程により、 この S i 02 膜を選択的にエツチン グ除去して、 所定の形状にパターニングする'。
こう して、 半導体基板 1 0上の容量素子形成予定領域の周辺部 に、 第 1の絶縁膜 1 2を介して、 厚さ 1 0 0〜 5 0 0 11 m程度の S i 0 膜からなる S i 02 ダミ ー層 3 2を形成する。
次いで、 図 3 1に示されるように、 上記第 4の実施形態の図 2 2〜図 2 8に示す工程と同様にして、 この S i 0 ダミ ー層 3 2 を含む基体全面に、 第 2の絶縁膜 1 6を形成し、 この第 2の絶縁 膜 1 6上に、 T i N/A l - S i /T i /T i ONZT i積層膜 1 8を形成し、 この T i N/A l — S i /T i /T i ON/T i 積層膜 1 8上に、 誘電体膜 2 0を介して上部電極 2 2を形成し、 フォ ト リ ソグラフイエ程及び R I E工程により、 T i N/A 1 ― S i ZT i /T i ON/T i積層膜 1 8をパターニングして、 上 部電極 2 2が形成されている中央部の表面より も S i 02 ダミ ー 層 3 上方の周辺部の表面が高い位置にある凹型断面形状の下部 電極 1 8 aを形成する。 こ う して、 誘電体膜 2 0を間に挟む上部電極 2 2 と下部電極 1 8 a とから構成される容量素子を形成する。
なお、 このときの容量素子の誘電体膜 2 0の表面は、 下部電極 1 8 aの S i 02 ダミー層 3 2上方における周辺部の表面より も その高さが低くなっている。
続いて、 上部電極 2 2及び下部電極 1 8 aを含む基体全面に、 S i 0 膜を堆積し、 更に S O G膜をコーティ ングした後、 これ らの S 0 G膜及び S i 02 膜をエッチバックする平滑化処理を行 い、 下部電極 1 8 aの凹型断面形状の窪みを埋めると共に、 上部 電極 2 2の表面を被覆して、 基体全面を平滑化する平滑化絶縁膜 2 4を形成する。
なお、 この基体全面の平滑化工程、 即ち平滑化絶縁膜 2 4の形 成工程においては、 凹型断面形状の下部電極 1 8 aの中央部上に 形成されている誘電体膜 2 0 の表面が、 凹型断面形状の下部電極 1 8 aの S i 02 ダミ ー層 3 2上方における周辺部の表面より も その高さが低くなっている。 一般的な平滑化工ツチバック条件で は S i 〇 2 と T i, T i Nとのエッチレー 卜の差は大き く ないた め、 S 0 G膜及び S i 0 膜のエッチバックの際にも、 下部電極 1 8 aの周辺部がェツチングス ト ッパーとして働き、 下部電極 1 8 aの周辺部の表面は露出する塲合があっても、 誘電体膜 2 0の 表面はエッチングによって露出することはない。
続いて、 下部電極 1 8 aの周辺部及び平滑化絶縁膜 2 4を含む 基体全面に、 例えば S i 02 膜からなる絶縁膜 2 6を堆積して平 滑化絶縁膜 2 4 と絶縁膜 2 6 とによる層間絶縁膜 2 7を形成する 。 そして、 上部電極 2 2上の層間絶縁膜 2 7を選択的にエツチン グ賒去すると共に、 下部電極 1 8 aの周辺部上の層間絶縁膜 2 7 を選択的にエツチング除去して、 第 1及び第 2のビア ' ホール 2 8 a , 2 8 bをそれぞれ開口する。 下部電極 1 8 a表面の T i N 層が除去されることもある。
なお、 このとき、 第 1のビア · ホール 2 8 aを開口するために エッチングする上部電極 2 2上の層間絶縁膜 2 7の膜厚が、 第 2 のビア · ホール 2 8 bを開口するためにエツチングする下部電極 1 8 aの周辺部上の層間絶縁膜 2 6の膜厚とほぼ等しくなつてい るため、 これら第 1及び第 2 のビア ' ホール 2 8 a, 2 8 bの開 口の際に、 上部電極 2 2 の表面に対する過大なオーバーエツチン グが行われることはない。
続いて、 第 1及び第 2 のビア ' ホール 2 8 a, 2 8 bを介して ' 上部電極 2 2及び下部電極 1 8 aの周辺部にそれぞれ接続する第 1及び第 2 の上層配線層 3 0 a, 3 0 bを形成する。
以上のように本実施形態によれば、 半導体基板 1 0上の容量素 子形成予定領域の周辺部に、 第 1 の絶縁膜 1 2を介して所要の厚 さ、 例えば 1 0 0〜 5 0 O n m程度の段差用の S i 0 2 ダミ ー層 3 2を形成し、 この S i 0 2 ダミ ー層 3 2を含む基体全面に第 2 の絶縁膜 1 6を形成し、 この第 2 の絶縁膜 1 6上に、 中央部の表 面より も S i 0 2 ダミー層 3 2上方の周辺部の表面が高い位置に ある凹型断面形状の下部電極 1 8 aを形成すると共に、 その中央 部上に誘電体膜 2 0を介して上部電極 2 2を形成して、 誘電体膜 2 0の表面の高さを下部電極 1 8 aの S i 0 2 ダミ 一層 3 2上方 における周辺部の表面の高さより も低くすることにより、 基体全 面に S i 0 2 膜を堆積し更に S 0 G膜をコ一ティ ングした後にェ ッチバックする平滑化処理を行う際に、 下部電極 1 8 aの周辺部 がェツチングス ト ッパーと して働き、 エツチングによつて誘電体 膜 2 0がダメ一ジを受けることはない。 従って、 上記第 1 の実施 形態の場合と同様に、 容量素子の容量値等の特性の変動及び信頼 性の劣化を抑制して、 良好な特性と高い信頼性をもつ容量素子を 得ることができる。 また、 容量素子の上部電極 2 2及び下部電極 1 8 aにそれぞれ 接続する第 1及び第 2の上層配線層 3 0 a, 3 O bを形成するた めに第 1及び第 2のビア · ホール 2 8 a , 2 8 bをそれぞれ開口 する際に、 第 1のビア ♦ ホール 2 8 aを開口するためにエツチン グする上部電極 2 2上の層間絶縁膜 2 7の膜厚が、 第 2のビア · ホール 2 8 bを開口するためにエッチングする下部電極 1 8 aの 周辺部上の層間絶縁膜 2 7の膜厚とほぼ等しくなつているため、 上部電極 2 2の表面に対する過大なオーバ一エツチングが行われ ることはなく、 上部電極 2 2やその下の誘電体膜 2 0がダメ一ジ を受けることはない。 従 て、 上記第 1の実施形態の場合と同様 に、 容量素子の容量値等の特性の変動及び信頼性の劣化を更に抑 制して、 より良好な特性とより高い信頼性をもつ容量素子を得る ことができる。
また.、 下部電極 1 8 a上に開口する第 2のビア · ホール 2 8 b の深さが上部電極 2 2上に開口する第 1のビア · ホール 2 8 aの 深さとほぼ等しく なつていることにより、 容量素子として実効的 に機能する上部電極 2 2 と下部電極 1 8 a との対向領域から第 1 及び第 2の上層配線層 3 0 a, 3 0 bまでの距離において一般に 上部電極側より も長くなる傾向にある下部電極側の距離を短縮す ることになるため、 上記第 1の実施形態の場合と同様に、 インピ
—ダンスの差異を減少させて容量素子の特性の非対称性の増大を 抑制し、 容量素子の特性の対称性を向上することができる。
なお、 上記第 5の実施形態においては、 半導体基板 1 0上の容 量素子形成予定領域の周辺部に、 第 1の絶縁膜 1 2を介して所要 の厚さ、 例えば厚さ 1 0 0〜 5 0 0 n m程度の段差用の S i 0 2 ダミ ー層 3 2を形成しているが、 このような S i 0 2 ダミ一層 3 2を形成する代わりに、 フォ ト リ ソグラフィ工程及びェッチング 工程により、 半導体基板 1 0上の容量素子形成予定領域の中央部 の第 1の絶縁膜 1 2を選択的にエツチング除去して、 深さ 1 0 0 〜 5 0 0 n m程度の窪みを形成してもよい。 さ らには、 第 1の絶 縁膜 1 2の選択ェッチングと、 ダミー層 3 2 (又はダミ一層 1 4 、'後述するダミー層 3 4 ) の組み合わせで最終的なダミー層を形 成して深さ 1 0 0〜 5 0 0 n m程度の窪みを形成することもでき o
これらの場合においても、 この容量素子形成予定領域の中央部 に深さ 1 0 0〜 5 0 0 n m程度の窪みが形成された第 1の絶縁膜 1 2上に、 上記第 2の実施形態の場合と同様にして、 第 2の絶縁 膜 1 6を形成し、 この第 2の絶縁膜 1 6上に、 T i N/A l — S i /T i /T i ON/T i積層膜 1 8を形成し、 この T i N/ A 1 一 S i ZT i /T i ON/T i積層膜 1 8をパターニングする こ とにより、 第 1の絶縁膜 1 2に形成された窪みの上方の中央部 の表面より も周辺部の表面が高い位置にある凹型断面形状の下部 電極 1 8 aを形成することが可能になる。 従って、 上記第 5の実 施形態の場合と同様の作用 ·効果を奏することができる。
(第 6の実施形態)
図 3 2は本発明の第 6の実施形態に係る容量素子を示す概略断 面図であり、 図 3 3〜図 3 8はそれぞれ図 3 2に示される容量素 子の製造方法を説明するための概略工程断面図である。 なお、 こ こで、 上記第 4の実施形態の図 2 0〜図 2 8に示す容量素子の構 成要素と同一の要素には同一の符号を付して説明を省略する。
図 3 2に示されるように、 本実施形態に係る容量素子において は、 上記第 4の実施形態の図 2 0に示す容量素子と比較すると、 その容量素子の周辺部に段差用のポリ シリ コン · ダミ—層 1 4が 形成されている代わりに、 同じ厚さ、 例えば厚さ 1 0 0〜 5 0 0 n m程度の段差用のポリ シリ コン · ダミ 一層 3 4が容量素子の周 囲に形成されている点に特徵がある。
また、 上記第 4の実施形態の図 2 0に示す凹型断面形状の例え ば T i N/A 1 一 S i ZT i /T i ONZT iの下部電極 1 8 a の代わりに、 表面が平坦な例えば T i N/A 1 一 S i / T i / Τ i 0 Ν/Τ i の下部電極 1 8 bが形成されていると共に、 この下 部電極 1 8 bと分離して、 容量素子の周囲の段差用のポリ シリ コ ン · ダミ ー層 3 4上方に、 上部電極 2 2の表面よりも高い表面を 有する例えば T i N/A 1 一 S i /T i /T i 0 N/T iのダミ —電極 1 8 cが形成されている点に特徴がある。
そして、 その他の構成要素は上記第 4の実施形態の場合と略同 様 る。
次に、 図 3 に示される容量素子の製造方法を、 図 3 2〜図 3 8の概略工程断面図を用いて説明する。
先ず、 図 3 3に示されるように、 半導体基板 1 0上に、 例えば S i 02 膜からなる第 1の絶縁膜 1 2を形成した後、 更にこの第
1 ,の絶縁膜 1 2上に、 例えばポリ シリ コン層を所要の厚さ、 例え ば 1 0 0〜 5 0 0 n m程度の厚さに形成する。 続いて、 フォ ト リ ソグラフィ工程及び R I E工程により、 このポリ シリ コン層を選 択的にェッチング除去して所定の形状にパターニングする。
こう して、 半導体基板 1 0上の容量素子形成予定領域の周囲に
、 第 1の絶縁膜 1 2を介して、 厚さ 1 0 0〜 5 0 0 nm程度のポ リ シリ コン層からなる段差用のポリ シリ コン · ダミ ー層 3 4を形 成する。
なお、 このポリ シリ コン ' ダミ ー層 3 4の形成工程は、 L S I の他の素子、 例えば M 0 S T rのゲ一 ト電極や、 抵抗素子の抵抗 層や、 B i p T rの電極として用いるポリ シリ コン層の形成工程 と兼用することが可能である。
次いで、 図 3 4に示されるように、 上記第 4の実施形態の図 2 2〜図 2 4 に示す工程と同様にして、 段差用のポリ シリ コン · ダ ミ ー層 3 4を含む基体全面に、 第 2の絶縁膜 1 6を形成する。 絶 縁膜 1 6 は省略するこ ともできる。 そして、 この第 2の絶縁膜 1 6上に、 T i N/A l — S i /T i ZT i O N/T i積層構造膜 、 あるいは C u, A l — C u等による積層膜、 本例では T i N/
A l - S i XT i /T i O N/T i積層膜 1 8を形成し、 この T i N/A l - S i /T i /T i O N/T i積層膜 1 8上に、 T a 05 , S 1 0 , S i N等、 本例では T a 2 03 の誘電体膜 1 0 を介して T i, T i N又は T i と T i Nの積層膜による上部電 極 2 2を形成する。
なお、 このときの誘電体膜 2 0 の表面は、 T i N/ A 1 - S i /T i /T i O N/T i積層膜 1 8のポリ シリ コン · ダミ ー層 3. 4上方における最上表面より もその高さが低くなつている。
次いで、 図 3 5に示されるように、 フォ ト リ ソグラフィ工程及 び R I E工程により、 T i N/A l - S i /T i /T i O N/T i積層膜 1 8を選択的にエツチング除去して所定の形状にバタ一 ニングする。
こ う して、 第 2の絶縁膜 1 6上の容量素子形成予定領域に、 T i N/A 1 一 S i /T i /T i 〇 N/T i による下部電極 1 8 b を形成すると共に、 この下部電極 1 8 b と分離して、 容量素子形 成予定領域の周囲のポリ シリ コン · ダミ 一層 3 4上方に、 下部電 極 1 8 bの表面より も高い最上表面を有する T i N/ A 1 — S i /Ί i /T i 0 N/T i によるダミ 一電極 1 8 cを形成する。
また、 この下部電極 1 8 bの形成と同時に、 L S I の他の素子 の T i NZA l — S i /T i /T i O NZT i積層膜による下層 配線層 (図示せず) を形成する。
このようにして、 誘電体膜 2 0 を間に挟む上部電極 2 2 と下部 L 8 b とから構成される容量素子を形成する。 なお、 このときの容量素子の誘電体膜 2 0の表面は、 容量素子 形成領域の周囲のダミ一電極 1 8 cのポリ シリ コン ' ダミー層 3 4上方における最上表面より もその高さが低くなつている。
次いで、 図 3 6に示されるように、 上部電極 2 2及び下部電極 1 8 bを含む基体全面に、 S i 0 2 膜を 3 0 0〜; 1 5 0 0 n m程 度の厚さに堆積する。 更に、 この S i 0 2 膜上に、 S O G膜をコ 一ティ ングする。 その後、 これらの S O G膜及び S i 0 2 膜をェ ッチバッ クする平滑化処理を行う。.
こう して、 ダミー電極 1 8 cによって周囲を囲まれた窪みを埋 める平滑化する平滑化絶縁膜 2 4を形成する。
なおこの基体全面の平滑化工程、 即ち平滑化絶縁膜 2 4の形成 工程においては、 下部電極 1 8 b上に形成されている誘電体膜 2 0 の表面が、 容量素子形成領域の周囲のダミ一電極 1 8 cのポリ シリ コ ン · ダミ ー層 3 4上方における最上表面より もその高さが 低く なつている。 通常のエッチバック条件では T i, 丁 1 と 3 i 0 2 のエッチングレー ト差は大き く ないので、 S O G膜及び S i 0 2 膜のエッチバックの際にも、 誘電体膜 2 0の表面はエツチ ングによって露出することはない。
次いで、 図 3 7に示されるように、 例えばプラズマ C V D法を 用いて、 ダミ一電極 1 8 c及び平滑化絶縁膜 2 4を含む基体全面 に、 絶縁膜 2 6 を堆積する。 この平滑化絶縁膜 2 4 と絶縁膜 2 6 で層間絶縁膜 2 7が形成される。
続いて、 フォ ト リ ソグラフィ工程及びドライエツチング法を用 いて、 上部電極 2 2及び下部電極 1 8 b上の層間絶縁膜 2 7を選 択的にェッチング除去して、 第 1及び第 2 のビア · ホ一ル 2 8 a
, 2 8 cをそれぞれ開口する。
次いで、 図 3 8に示されるように、 例えばスパッタ法を用いて 、 例えば A 1合金層を堆積した後、 フォ ト リ ソグラフィ工程及び ドライエッチング法を用いて、 この A 1合金層を加工し、 第 1及 び第 2のビア · ホール 2 8 a, 2 8 cを介して上部電極 2 2及び 下部電極 1 8 bの周辺部にそれぞれ接続する A 1合金層からなる 第 1及び第 2の上層配線層 3 0 a, 3 0 cを形成する。
また、 この第 1及び第 2の上層配線層 3 0 a, 3 0 cの形成と 同時に、 L S Iの他の素子の上層配線層 (図示せず) を形成する 以上のように本実施形態によれば、 半導体基板 1 G上の容量素 子形成予定領域の周囲に、 第 1の絶縁膜 1 2を介して厚さ 1 0 0 〜 5 0 0 n m程度の段差用のポリ シリ コン ' ダミ一層 3 4を形成 し、 このポリ シリ コン · ダミー層 3 4を含む基体全面に、 第 2の 絶縁膜 1 6を介して例えば T i N/A l — S i ZT i /T i O N κτ i積層膜 i 8を形成して所定の形状にバタ一ニングし、 容量 素子形成予定領域に T i NZA l — S i /T i /T i ON/T i の下部電極 1 8 bを形成し、 その周囲のポリシリ コン · ダミー層
3 4上方に下部電極 1 8 bの表面よりも高い表面を有する T i N ZA 1 - S i ZT i /T i ONZT iのダミ一電極 1 8 cを形成 すると共に、 下部電極 1 8 b上に誘電体膜 2 0を介して上部電極 2 2を形成して、 誘電体膜 2 0の表面の高さをダミ—電極 1 8 c のポリ シ リ コン · ダミー層 3 4上方における最上表面の高さより も低くすることにより、 基体全面に S i 02 膜を堆積し更に S 0 G膜をコ一ティ ングした後にエッチバックする平滑化処理を行う 際に、 ダミ 一電極 1 8 cがエツ ングス ト ッパーとして働き、 ェ ッチングによつて上部電極 2 2の下の誘電体膜 2 0がダメ―ジを 受けることはない。 従って、 上記第 4の実施形態の場合と同様に 、 容量素子の容量値等の特性の変動及び信頼性の劣化を抑制して 、 良好な特性と高い信頼性をもつ容量素子を得ることができる。
なお、 上記第 4〜第 6の実施形態においては、 容量素子の下部 電極 1 8 a, 1 8 bは、 第 2 のビア ' ホール 2 8 b , 2 8 cを介 して第 2 の上層配線層 3 0 b, 3 0 cに接続されている場合につ いて説明しているが、 下部電極 1 8 a, 1 8 bがそのまま配線層 を兼ねて、 L S I の他の素子に接続する場合もある。
そして、 この場合には、 下部電極 1 8 a, 1 8 b上の層間絶縁 膜 2 7を選択的にェッチング除去して、 第 2のビア · ホール 2 8 b , 2 8 cを開口する必要はなくなる。
また、 第 1及び第 2 の上層配線層 3 0 a, 3 0 b , 3 0 cの形 成は、 A 1合金層を堆積し加工する代わりに、 C V D法を用いて 、 W (タングステン) 層を堆積した後、 エッチバック して、 第 1 及び第 2 のビア . ホール 2 8 a, 2 8 b , 2 8 cをそれぞれ埋め 込む Wブラグを形成し、 更にスパッタ法を用いて、 A 1合金層を 堆積した後、 フォ ト リ ソグラフィ工程及びドライエッチング法を 用いて、 この A 1合金層を加工して、 第 1及び第 2 のビア · ホ一 ル 2 8 a, 2 8 b , 2 8 c内の Wプラグにそれぞれ接続する第 1 及び第 2の上層配線層を形成する方法を用いてもよい。

Claims

請求の範囲
1 . 半導体基板上に第 1の絶縁膜を介して形成され、 中央部の表 面より も周辺部の表面が高い位置にある凹型断面形状の下部電 極と、 前記下部電極の中央部上に、 前記下部電極の周辺部の表 面より も表面が低い位置にある誘電体膜を介して形成された上 部電極と前記下部電極の凹型断面形状の窪みを埋める第 2の絶 縁膜とを具備することを特徴とする半導体装置。
2 . 請求の範囲第 1項記載の半導体装置において、 前記下部電極 の周辺部、 上部電極及び前記第 2 の絶縁膜上に第 3の絶縁膜が 形成されて層間絶縁膜が形成され、 前記層間絶縁膜に開口され た第 1のビア ♦ ホールを介して前記上部電極に接続する第 1の 配線層、 及び前記層間絶縁膜に開口された第 2 のビア · ホール を介して前記下部電極の周辺部に接続する第 2の配線層がそれ ぞれ形成されている ことを特徵とする半導体装置。
3 . 請求の範囲第 1項記載の半導体装置において、 前記下部電極 の周辺部の下方に設けられた段差用のダミ—層が、 他の素子の 電極又は抵抗層と同じ材料層で形成されていることを特徴とす る半導体装置。
4 . 請求の範囲第 2項記載の半導体装置において、 前記下部電極 の周辺部の下方に設けられた段差用のダミー層が、 他の素子の 電極又は抵抗層と同じ材料層で形成されていることを特徵とす る半導体装置。
5 . 半導体基板上に第 1の絶縁膜を介して形成されている下部電 極と、 前記下部電極の周囲に形成され、 前記下部電極の表面よ り も高い表面を有するダミ一電極と、 前記下部電極上に前記ダ ミ一電極の最上表面より も表面が低い位置にある誘電体膜を介 して形成された上部電極と、 前記ダミ一電極に周囲を囲まれた 窪みを埋める第 2 の絶縁膜とを具備することを特徼とする半導 体装置。
. 請求の範囲第 5項記載の半導体装置において、 前記ダミー電 極、 前記上部電極及び前記第 2 の絶縁膜上に第 3の絶縁膜が形 成されて層間絶縁膜が形成され、 前記層間絶縁膜に開口された 第 1 のビア ♦ ホールを介して前記上部電極に接続する第 1 の配 線層、 及び前記眉間絶縁膜に開口された第 2のビア · ホールを 介して前記下部電極に接続する第 2の配線層がそれぞれ形成さ れていることを特徵とする半導体装置。
. 請求の範囲第 5項記載の半導体装置において、 前記ダミー電 極の下方に設けられた段差用のダミ—層が、 他の素子の電極又 は抵抗層と同じ材料層で形成されていることを特徵とする半導 . 請求の範囲第 6項記載の半導体装置において、 前記ダミー電 極の下方に設けられた段差用のダミー層が、 他の素子の電極又 は抵抗層と同じ材料層で形成されていることを特徵とする半導 . 半導体基板上に第 1 の絶縁膜を介して形成され、 中央部の表 面より も周辺部の表面が高い位置にある凹型断面形状の下部電 極と、 前記下部電極の中央部上に誘電体膜を介して形成され、 前記下部電極の周辺部の表面より も表面が低い位置にある上部 電極と、 前記下部電極の凹型断面形状の窪みを埋めると共に、 前記上部電極の表面を被覆している第 2の絶縁膜と、 を具備す ることを特徴とする半導体装置。
0 . .請求の範囲第 9項記載の半導体装置において、 前記下部電 極の周辺部及び前記第 2の絶縁膜上に第 3の絶縁膜が形成され て層間絶縁膜が形成され、 前記層間絶縁膜に開口された第 1の ビア · ホ一ルを介して前記上部電極に接続する第 1の配線層、 及び前記層間絶縁膜に開口された第 2のビア · ホールを介して 前記下部電極の周辺部に接続する第 2の配線層がそれぞれ形成 されていることを特徵とする半導体装置。 .
1 1 . 請求の範囲第 9項記載の半導体装置において、 前記下部電 極の周辺部の下方に設けられた段差用のダミ 一層が、 他の素子 の電極又は抵抗層と同じ材料層で形成されていることを特徴と する半導体装置。
1 2 . 請求の範囲第 1 0項記載の半導体装置において、 前記下部 電極の周辺部の下方に設けられた段差用のダミ一層が、 他の素 子の電極又は抵抗層と同じ材料層で形成されていることを特徵 とする半導体装置。
1 3 . 半導体基板上に第 1 の絶縁膜を介して形成されている下部 電極と、 前記下部電極の周囲に形成され、 前記下部電極の表面 より も高い表面を有するダミ ー電極と、 前記下部電極上に誘電 体膜を介して形成され、 前記ダミ一電極の最上表面より も表面 が低い位置にある上部電極と、 前記ダミ ー電極に周囲を囲まれ た窪みを埋めると共に、 前記下部電極及び前記上部電極の表面 を被覆している第 2の絶縁膜と、 を具備することを特徴とする 半導体装置。
1 4 . 請求の範囲第 1 3項記載の半導体装置において、 前記ダミ —電極、 前記上部電極及び前記第 2 の絶縁膜上に第 3の絶縁膜 が形成されて層間絶縁膜が形成され、 前記層間絶縁膜に開口さ れた第 1 のビア · ホールを介して前記上部電極に接続する第 1 の配線層、 及び前記層間絶縁膜に開口された第 2のビア · ホ— ルを介して前記下部電極に接続する第 2 の配線層がそれぞれ形 成されていることを特徵とする半導体装置。
1 5 . 請求の範囲第 1 3項記載の半導体装置において、 前記ダミ —電極の下方に設けられた段差用のダミ ー層が、 他の素子の電 極又は抵抗層と同じ材料層で形成されていることを特徴とする 半導体装置。
6 . 請求の範囲第 1 4項記載の半導体装置において、 前記ダミ —電極の下方に設けられた段差用のダミ ー層が、 他の素子の電 極又は抵抗層と同じ材料層で形成されていることを特徵とする 半導体装置。
7 . 半導体基板上の容量素子形成予定領域の周辺部に、 第 1の 絶縁膜を介して、 所定の厚さの段差用のダミ ー層を形成するェ 程と、 前記第 1 の絶縁膜及び前記ダミ ー層上に、 導電体膜を堆 積した後、 前記導電体膜をバタ一ニングして、 中央部の表面よ り も周辺部の表面が高い位置にある凹型断面形状の下部電極を 容量素子形成予定領域に形成する工程と、 前記下部電極の中央 部上に、 前記下部電極の周辺部の表面より も表面が低い位置に ある誘電体膜を介して上部電極を形成する工程と、 基体全面に 第 2の絶縁膜を形成して、 前記下部電極の凹型断面形状の窪み を埋める工程とを有することを特徽とする半導体装置の製造方 法。
8 . 請求の範囲第 1 7項記載の半導体装置の製造方法において 、 前記下部電極の周辺部、 上部電極及び前記第 2の絶縁膜を含 む基体全面に第 3の絶縁膜を形成して層間絶縁膜を形成するェ 程と、 前記上部電極上の前記層間絶縁膜に第 1のビア · ホール を開口すると共に、 前記下部電極の周辺部上の前記層間絶縁膜 に第 2のビア . ホールを開口する工程と、 前記第 1のビア · ホ ールを介して前記上部電極に接続する第 1の配線層を形成する と共に、 前記第 2 のビア · ホールを介して前記下部電極の周辺 部に接続する第 2 の配線層を形成する工程とを有することを特 徵とする半導体装置の製造方法。
9 . 請求の範囲第 1 7項記載の半導体装置の製造方法において 、 前記段差用のダミー層の形成工程を、 他の素子の電極又は抵 抗層の形成工程と兼ねることを特徼とする半導体装置の製造方 法。
0 . 請求の範囲第 1 8項記載の半導体装置の製造方法において 、 前記段差用のダミ—層の形成工程を、 他の素子の電極又は抵 抗層の形成工程と兼ねることを特徵とする半導体装置の製造方 法。
1 . 半導体基板上の容量素子形成予定領域の周囲に、 第 1の絶 縁膜を介して所定の厚さの段差用のダミ一層を形成する工程と 、 前記第 1の絶縁膜及び前記ダミ 一層上に、 導電体膜を堆積し た後、 前記導電体膜をパターニングして、 下部電極を容量素子 形成予定領域に形成すると共に、 前記ダミー層を被覆し、 前記 下部電極の表面より も高い表面を有するダミ一電極を容量素子 形成予定領域の周囲に形成する工程と、 前記下部電極上に、 前 記ダミ一電極の最上表面より も表面が低い位置にある誘電体膜 を介して、 上部電極を形成する工程と、 基体全面に第 2の絶縁 膜を形成して前記ダミ 一電極によつて周囲を囲まれた窪みを埋 める工程とを有することを特徵とする半導体装置の製造方法。 2 . 請求の範囲第 2 1項記載の半導体装置の製造方法において 、 前記ダミー電極、 上部電極及び第 2の絶縁膜を含む基体全面 に第 3 の絶縁膜を形成して層間絶縁膜を形成する工程と、 前記 上部電極上の前記層間絶縁膜に第 1のビァ · ホールを開口する と共に、 前記下部電極上の前記層間絶縁膜に第 2のビア ♦ ホー ルを開口する工程と、 前記第 1のビア · ホールを介して前記上 部電極に接続する第 1の配線層を形成すると共に、 前記第 2の ビア · ホールを介して前記下部電極に接続する第 2の配線層を 形成する工程とを有することを特徴とする半導体装置の製造方 法。
3 . 請求の範囲第 2 1項記載の半導体装置の製造方法において 、 前記段差用のダミ ー層の形成工程を、 他の素子の電極又は抵 抗層の形成工程と兼ねることを特徴とする半導体装置の製造方 法。
4 . 請求の範囲第 2 2項記載の半導体装置の製造方法において 、 前記段差用のダミ 一層の形成工程を、 他の素子の電極又は抵 抗層の形成工程と兼ねることを特徵とする半導体装置の製造方 法。
5 . 半導体基板上の容量素子形成予定領域の周辺部に、 第 1の 絶縁膜を介して、 所定の厚さの段差用のダミー層を形成するェ 程と、 前記第 1 の絶縁膜及び前記ダミー層上に、 導電体膜を堆 積した後、 前記導電体膜をバタ一ニングして、 中央部の表面よ り も周辺部の表面が高い位置にある凹型断面形状の下部電極を 容量素子形成予定領域に形成する工程と、 前記下部電極の中央 部上に、 誘電体膜を介して、 前記下部電極の周辺部の表面より も表面が低い位置にある上部電極を形成する工程と、 基体全面 に第 2の絶縁膜を形成して、 前記下部電極の凹型断面形状の窪 みを埋めると共に、 前記上部電極の表面を被覆する工程とを有 することを特徵とする半導体装置の製造方法。
6 . 請求の範囲第 2 5項記載の半導体装置の製造方法において 、 前記下部電極の周辺部及び前記第 2の絶縁膜を含む基体全面 に第 3 の絶縁膜を形成して層間絶縁膜を形成する工程と、 前記 上部電極上の前記層間絶縁膜に第 1のビア · ホールを開口する と共に、 前記下部電極の周辺部上の前記層間絶縁膜に第 2のビ ァ · ホ一ルを開口する工程と、 前記第 1 のビア · ホールを介し て前記上部電極に接続する第 1の配線層を形成すると共に、 前 記第 2のビア , ホールを介して前記下部電極の周辺部に接続す る第 2 の配線層を形成する工程とを有することを特徵とする半 導体装置の製造方法。
7 . 請求の範囲第 2 5項記載の半導体装置の製造方法において 、 前記段差用のダミ 一層の形成工程を、 他の素子の電極又は抵 抗層の形成工程と兼ねることを特徴とする半導体装置の製造方 法。
8 . 請求の範囲第 2 6項記載の半導体装置の製造方法において
、 前記段差用のダミ ー層の形成工程を、 他の素子の電極又は抵 抗層の形成工程と兼ねることを特徵とする半導体装置の製造方 法。
9 . 半導体基板上の容量素子形成予定領域の周囲に、 第 1の絶 縁膜を介して所定の厚さの段差用のダミ一層を形成する工程と
、 前記第 1 の絶縁膜及び前記ダミー層上に、 導電体膜を堆積し た後、 前記導電体膜をパターユングして、 下部電極を容量素子 形成予定領域に形成すると共に、 前記ダミ 一層を被覆し、 前記 下部電極の表面より も高い表面を有するダミ一電極を容量素子 形成予定領域の周囲に形成する工程と、 前記下部電極上に、 誘 電体膜を介して、 前記ダミ —電極の最上表面より も表面が低い 位置にある上部電極を形成する工程と、 基体全面に第 2 の絶縁 膜を形成して前記ダミ ー電極によ όて周囲を囲まれた窪みを埋 めると共に、 前記下部電極及び前記上部電極の表面を被覆する 工程とを有することを特徼とする半導体装置の製造方法。
0 . 請求の範囲第 2 9項記載の半導体装置の製造方法において 、 前記ダミ —電極及び前記第 2 の絶縁膜を含む基体全面に第 3 の絶縁膜を形成して層間絶縁膜を形成する工程と、 前記上部電 極上の前記層間絶縁膜に第 1のビア · ホールを開口すると共に 、 前記下部電極上の前記層間絶縁膜に第 2のビア , ホールを開 口する工程と、 前記第 1 のビア · ホールを介して前記上部電極 に接続する第 1 の配線層を形成すると共に、 前記第 2のビア · ホールを介して前記下部電極に接続する第 2 の配線層を形成す る工程とを有することを特徵とする半導体装置の製造方法。 1 . 請求の範囲第 2 9項記載の半導体装置の製造方法において 、 前記段差用のダミ ー層の形成工程を、 他の素子の電極又は抵 抗層の形成工程と兼ねることを特徵とする半導体装置の製造方 法。
2 . 請求の範囲第 3 0項記載の半導体装置の製造方法において 、 前記段差用のダミ ー層の形成工程を、 他の素子の電極又は抵 抗層の形成工程と兼ねることを特徴とする半導体装置の製造方 法。
PCT/JP2001/005663 2000-06-30 2001-06-29 Dispositif semi-conducteur et son procede de fabrication WO2002003458A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/069,901 US6770974B2 (en) 2000-06-30 2001-06-29 Semiconductor device and its manufacturing method
JP2002507439A JP4997682B2 (ja) 2000-06-30 2001-06-29 半導体装置及びその製造方法
EP01945729.0A EP1233450B1 (en) 2000-06-30 2001-06-29 Semiconductor device and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-199309 2000-06-30
JP2000199309 2000-06-30

Publications (1)

Publication Number Publication Date
WO2002003458A1 true WO2002003458A1 (fr) 2002-01-10

Family

ID=18697348

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/005663 WO2002003458A1 (fr) 2000-06-30 2001-06-29 Dispositif semi-conducteur et son procede de fabrication

Country Status (5)

Country Link
US (1) US6770974B2 (ja)
EP (1) EP1233450B1 (ja)
JP (2) JP4997682B2 (ja)
KR (1) KR100814622B1 (ja)
WO (1) WO2002003458A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10236890A1 (de) * 2002-08-12 2004-03-04 Infineon Technologies Ag Integrierte Schaltungsanordnungen, insbesondere Kondensatoranordnungen, und zugehörige Herstellungsverfahren
WO2018198330A1 (ja) * 2017-04-28 2018-11-01 ゼンテルジャパン株式会社 キャパシタ装置とその製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3792589B2 (ja) * 2001-03-29 2006-07-05 富士通株式会社 半導体装置の製造方法
KR100438789B1 (ko) * 2002-09-19 2004-07-05 삼성전자주식회사 미세 선폭을 갖는 반도체 소자의 전극 배선 구조 및 그형성방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0595048A (ja) * 1991-10-02 1993-04-16 Hitachi Ltd 半導体集積回路装置の製造方法
JPH11274409A (ja) 1998-03-18 1999-10-08 Fujitsu Quantum Device Kk 半導体装置、その製造方法およびエッチング方法
JPH11317498A (ja) * 1998-05-01 1999-11-16 Nec Kyushu Ltd 半導体装置及びその製造方法
JP2001185687A (ja) * 1999-12-24 2001-07-06 Nec Corp 集積回路装置及びその製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6279629A (ja) * 1985-10-03 1987-04-13 Mitsubishi Electric Corp 半導体装置の製造方法
JP2851871B2 (ja) * 1989-07-21 1999-01-27 触媒化成工業株式会社 半導体装置およびその製造方法
US5658828A (en) * 1989-11-30 1997-08-19 Sgs-Thomson Microelectronics, Inc. Method for forming an aluminum contact through an insulating layer
JPH04372175A (ja) * 1991-06-21 1992-12-25 Mitsubishi Electric Corp 半導体装置
US5747375A (en) * 1993-07-22 1998-05-05 Sanyo Electric Co., Ltd. Method of manufacturing a semiconductor integrated circuit device
JPH07115171A (ja) * 1993-10-15 1995-05-02 Murata Mfg Co Ltd Mimキャパシタ
TW459323B (en) * 1996-12-04 2001-10-11 Seiko Epson Corp Manufacturing method for semiconductor device
JPH11111921A (ja) * 1997-09-30 1999-04-23 Nec Corp 半導体装置
US6020266A (en) * 1997-12-31 2000-02-01 Intel Corporation Single step electroplating process for interconnect via fill and metal line patterning
US6358837B1 (en) * 1998-03-31 2002-03-19 Lsi Logic Corporation Method of electrically connecting and isolating components with vertical elements extending between interconnect layers in an integrated circuit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0595048A (ja) * 1991-10-02 1993-04-16 Hitachi Ltd 半導体集積回路装置の製造方法
JPH11274409A (ja) 1998-03-18 1999-10-08 Fujitsu Quantum Device Kk 半導体装置、その製造方法およびエッチング方法
JPH11317498A (ja) * 1998-05-01 1999-11-16 Nec Kyushu Ltd 半導体装置及びその製造方法
JP2001185687A (ja) * 1999-12-24 2001-07-06 Nec Corp 集積回路装置及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1233450A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10236890A1 (de) * 2002-08-12 2004-03-04 Infineon Technologies Ag Integrierte Schaltungsanordnungen, insbesondere Kondensatoranordnungen, und zugehörige Herstellungsverfahren
WO2018198330A1 (ja) * 2017-04-28 2018-11-01 ゼンテルジャパン株式会社 キャパシタ装置とその製造方法
JPWO2018198330A1 (ja) * 2017-04-28 2020-01-16 ゼンテルジャパン株式会社 キャパシタ装置とその製造方法
US11038012B2 (en) 2017-04-28 2021-06-15 AP Memory Technology Corp. Capacitor device and manufacturing method therefor

Also Published As

Publication number Publication date
JP2012080132A (ja) 2012-04-19
EP1233450B1 (en) 2014-08-27
KR100814622B1 (ko) 2008-03-18
EP1233450A4 (en) 2007-08-29
JP4997682B2 (ja) 2012-08-08
US20020180053A1 (en) 2002-12-05
US6770974B2 (en) 2004-08-03
EP1233450A1 (en) 2002-08-21
KR20020026005A (ko) 2002-04-04
JP5477396B2 (ja) 2014-04-23

Similar Documents

Publication Publication Date Title
JP3790469B2 (ja) 半導体装置
KR100671111B1 (ko) 반도체장치 및 그 제조방법
KR20000056157A (ko) 다층의 패시배이션막을 이용한 도전층 사이에 공기 공간을 형성하는 방법
US7602599B1 (en) Metal-metal capacitor and method of making the same
JP2003264235A (ja) 半導体装置及びその製造方法
US7256118B2 (en) Semiconductor device using low-K material as interlayer insulating film and its manufacture method
JP5477396B2 (ja) 半導体装置及びその製造方法
JP3525788B2 (ja) 半導体装置の製造方法
JP2003158190A (ja) 半導体装置およびその製造方法
JPH11274428A (ja) 半導体装置及びその製造方法
KR101153224B1 (ko) 다마신 공정에 의해 형성된 캐패시터와 금속 배선을 갖는 반도체 소자 제조방법
US6358792B1 (en) Method for fabricating metal capacitor
KR100295054B1 (ko) 다층금속배선을갖는반도체소자및그제조방법
JP2000243836A (ja) 半導体素子の配線形成方法
US6992393B2 (en) Interconnect structure and method for fabricating the same
JPH04355951A (ja) 半導体装置及びその製造方法
KR100504198B1 (ko) 반도체 소자의 mim 커패시터 형성 방법
TWI382523B (zh) 金屬-金屬電容及其製法
JPH08306779A (ja) 半導体装置の製造方法
KR100778852B1 (ko) 반도체 소자 및 그 제조방법
JPH036827A (ja) 半導体装置の製造方法
KR20050070794A (ko) 반도체 소자의 금속배선 형성방법
JP2005175328A (ja) 半導体装置及びその製造方法
JPH07115131A (ja) 半導体装置
JP2001352037A (ja) 半導体装置の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

WWE Wipo information: entry into national phase

Ref document number: 1020027002768

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2001945729

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020027002768

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10069901

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2001945729

Country of ref document: EP