WO2001024924A1 - Catalyst for acetic acid production, process for producing the same, and process for producing acetic acid with the same - Google Patents

Catalyst for acetic acid production, process for producing the same, and process for producing acetic acid with the same Download PDF

Info

Publication number
WO2001024924A1
WO2001024924A1 PCT/JP2000/006923 JP0006923W WO0124924A1 WO 2001024924 A1 WO2001024924 A1 WO 2001024924A1 JP 0006923 W JP0006923 W JP 0006923W WO 0124924 A1 WO0124924 A1 WO 0124924A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
catalyst
acetic acid
palladium
elements
Prior art date
Application number
PCT/JP2000/006923
Other languages
English (en)
French (fr)
Other versions
WO2001024924A8 (fr
Inventor
Yoshiaki Obana
Kenichi Abe
Wataru Oguchi
Kenji Yamada
Hiroshi Uchida
Original Assignee
Showa Denko K. K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko K. K. filed Critical Showa Denko K. K.
Priority to AT00964663T priority Critical patent/ATE314340T1/de
Priority to DE60025253T priority patent/DE60025253D1/de
Priority to US09/674,920 priority patent/US6706919B1/en
Priority to EP00964663A priority patent/EP1226868B1/en
Priority to JP2001527913A priority patent/JP3748820B2/ja
Priority to AU75564/00A priority patent/AU7556400A/en
Publication of WO2001024924A1 publication Critical patent/WO2001024924A1/ja
Publication of WO2001024924A8 publication Critical patent/WO2001024924A8/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/648Vanadium, niobium or tantalum or polonium
    • B01J23/6482Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/652Chromium, molybdenum or tungsten
    • B01J23/6525Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/652Chromium, molybdenum or tungsten
    • B01J23/6527Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/66Silver or gold
    • B01J23/68Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/682Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with vanadium, niobium, tantalum or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/66Silver or gold
    • B01J23/68Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/683Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum or tungsten
    • B01J23/687Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum or tungsten with tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/057Selenium or tellurium; Compounds thereof
    • B01J27/0576Tellurium; Compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/188Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/195Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with vanadium, niobium or tantalum
    • B01J27/198Vanadium
    • B01J27/199Vanadium with chromium, molybdenum, tungsten or polonium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/25Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0205Impregnation in several steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing

Definitions

  • the present invention relates to a catalyst used for producing acetic acid from ethylene and oxygen by a single-step catalytic reaction, a method for producing the same, and a method for producing acetic acid using the same.
  • methods for producing acetic acid include a method for oxidizing acetate, a method for reacting methanol with carbon monoxide, and a method for oxidizing lower paraffin.
  • the method of producing acetic acid from ethylene in a single step has many proposals because it has many advantages in the industrial production process and economically.
  • a liquid-phase single-stage oxidation method using a redox catalyst for metal ion pairs such as palladium-cobalt and iron (French Patent No. 1444883), a method using palladium monophosphate or a sulfur-containing modifier.
  • Catalyst JP-A-47-13221, JP-A-51-29425
  • a catalyst comprising a certain palladium salt of heteripolyacid JP 54—5 7 4 8 8
  • a catalyst comprising a three-group oxygen compound JP A gas-phase one-stage oxidation method using the method disclosed in Japanese Patent Application Laid-Open No. 46-76763 has been proposed.
  • the present invention provides a method for producing acetic acid from ethylene and oxygen by using a catalyst containing at least one compound selected from palladium and heteropolyacids and salts thereof. It is an object of the present invention to provide a method for producing such a catalyst, and a method for producing acetic acid using such a catalyst.
  • the present inventors have studied the performance of a catalyst containing at least one compound selected from palladium, a heteropolyacid, and salts thereof, used in producing acetic acid from ethylene and oxygen.
  • ethylene reacts with oxygen (A) palladium and (b) a catalyst for acetic acid production containing at least one compound selected from heteropolyacids and salts thereof as essential components.
  • a catalyst having higher activity and less change over time than conventional catalysts can be obtained by adding the vanadium element and the no or molybdenum element at a specific ratio. It was completed.
  • the present invention ( ⁇ ) relates to a catalyst used in a method for producing diacid which reacts ethylene with oxygen, wherein the catalyst comprises (a) palladium, (b) heptanopolyacid and salts thereof. At least one compound selected from the group consisting of: (c) a vanadium element and / or a molybdenum element; and (d) a group 14 element, a group 15 element and a group 16 element of the periodic table.
  • the present invention (IV) provides a method for producing the catalyst according to any one of the present inventions (I) to (III).
  • the present invention (V) provides a method for producing acetic acid from ethylene and oxygen using the catalyst for producing a drunk acid according to any one of the present invention (I) to (III).
  • FIG. 1 shows the change over time of the catalyst activity in Example 11 (reaction using the catalyst 5 obtained in Example 5) and Comparative Example 11 (reaction using the catalyst 10 obtained in Comparative Example 5). Darafu.
  • FIG. 2 shows the catalytic activities in Example 30 (reaction using catalyst 19 obtained in Example 19) and Comparative Example 21 (reaction using catalyst 25 obtained in Comparative Example 16).
  • 3 is a rough graph showing a change with time.
  • the catalyst for producing acetic acid according to the present invention (I) is a catalyst used in a method for producing acetic acid in which ethylene is reacted with oxygen, wherein the catalyst comprises (a) palladium, (b) a heteropolyacid and a salt thereof. From the group At least one selected compound (hereinafter referred to as “(b) group compound”), and (c) a vanadium element and / or a molybdenum element (hereinafter “
  • the palladium used in the present invention (I) may have any valence, but is preferably metal palladium.
  • metal palladium used herein has zero valence.
  • Metal palladium can usually be obtained by reducing divalent, Z- or tetravalent palladium ions using hydrazine, hydrogen or the like as a reducing agent. In this case, all palladium does not have to be in a metallic state.
  • the heteropolyacid which is the (b) group compound used in the present invention (I) is not particularly limited as long as two or more inorganic oxyacids are condensed.
  • the heteroatoms are selected from phosphorus, silicon, boron, aluminum, genolemanium, titanium, dinoreconium, cerium, cobalt, and chromium, and the polyatoms are tungsten, niobium. , Tantalum and the like.
  • tungstic acid lintungstic acid, and borotungstic acid.
  • tungsten heteropolyacid having a heteroatom of tandustene specifically, keitandastanoic acid and lintungstenic acid are exemplified.
  • tungsten heteropolyacids represented by the following chemical formula, which are known as Keggin-type structures are practically preferred, but all heteropolyacids on the catalyst cannot take this structure. No problem.
  • Heteropoly acids are also known as "polyoxoanions", “polyoxometal salts” or "metal oxide clusters”. Heteropoly acid generally has a high molecular weight, for example, a molecular weight in the range of 500 to 1000, and also includes a multimeric complex such as a dimer complex and a trimer complex.
  • the salt of the heteropolyacid which is the (b) group compound used in the present invention (I) may be obtained by condensing some or all of the hydrogen atoms of the acid formed by condensation of two or more inorganic oxyacids. It is a substituted metal salt or onium salt.
  • the metal substituted for the hydrogen atom of the heteropolyacid is at least one or more elements selected from the group consisting of elements of Groups 1 to 16 in the periodic table, and is a heteropolyacid onium salt. Examples thereof include ammonium salts with ammonium amines.
  • heteropolyacid salts which are preferable in terms of catalytic performance and practical use include, for example, a lithium salt of lintungstic acid, a sodium salt of lintandastanoic acid, and a copper salt of lintungstic acid.
  • a lithium salt of lintungstic acid a sodium salt of lintandastanoic acid
  • a copper salt of lintungstic acid examples thereof include, but are not limited to, lithium salts of calcium tandustate, sodium salts of calcium tandustate and copper salts of calcium tandustate.
  • the catalytic form of the vanadium and / or molybdenum elements which are the (c) group elements used in the present invention (I), and may be in the form of a metal or a compound.
  • oxides such as vanadine dioxide, vanadium pentoxide, and molybdenum trioxide, or heteropoly acids having a vanadium element and / or a molybdenum element in the skeleton and salts thereof can be mentioned. Yes, but not limited to these.
  • the heteropolyacid having a vanadium element and / or a molybdenum element as a (c) group element used in the present invention (I) at least vanadium and / or Z or molybdenum are present in the heteropolyacid skeleton.
  • vanadium and / or Z or molybdenum are present in the heteropolyacid skeleton.
  • linmolybdenic acid, chemolibudenic acid, boromolybdic acid, limbana domolybdic acid, kybana domolybdenic acid, houbana domolybdenic acid, limbana dotungstic acid, cabanado tungstic acid, houbanad examples include tungstic acid, but are not limited thereto.
  • heteropolyacid having a vanadium element and a no or molybdenum element as group elements in its skeleton the following heteropolyacids are particularly preferred.
  • Li Nmori Buden acid ⁇ 3 [ ⁇ ⁇ 12 0 4. ] ⁇ ⁇ ⁇ 2 ⁇
  • Cavanadotungstic acid ⁇ 4 + ⁇ [S i V n W 12 _ n O 40 ] ⁇ xHO
  • Li Nbana Domo Li Buden acid H 3 + n - ⁇ ⁇ ⁇ 2 0 Keimo Li blanking de tungsten acid [PV "M ⁇ 12 ⁇ 0 4.]: ⁇ 4 + ⁇ [S i ⁇ 0 n W 12 _ n ⁇ 40 ] ⁇ ⁇ ⁇ 2 ⁇
  • n is an integer of 1 to 11 and x is an integer of 1 or more
  • the salt of the heteropolyacid containing vanadium and / or molybdenum as the group (c) element include a hydrogen atom of an acid formed by condensation of two or more inorganic oxygen acids.
  • Metal salts or ionic salts in which a part or all of the above have been substituted can be mentioned.
  • the metal salt element include at least one element selected from the group consisting of elements of groups 1 to 16 in the periodic table.
  • Examples of the onium salt include ammonium salts and ammonium salts. And the like.
  • salts of lithium, sodium, potassium, cesium, magnesium, norium, copper, gold, gallium, chromium, manganese, cobalt, and nickel are particularly preferable. I like it.
  • salts of vanadium and rhodium or molybdenum-containing heteropolyacids as the (c) group element include lithium salt of limbinadotungstic acid. , Sodium salt of lumbana tandustanoic acid, copper salt of limber tungstic acid, lithium salt of cabanad tungstic acid, sodium salt of cabanad tungstic acid and copper of cabanad tungstate Salts, sodium salts of ribana domolybdic acid, sodium salts of cavana domolybdic acid, and the like, but are not limited thereto, and the invention (I) is not limited thereto.
  • the carrier to be used is not particularly limited, and may be a porous substance generally used as a carrier. Preferred are silica, alumina, silica-alumina, diatomaceous earth, montmorillonite, titania, and the like, and more preferred is silica.
  • the shape of the carrier is not particularly limited. Specifically, powder, spherical, pellet But not limited to these.
  • the particle size of the carrier used in the present invention (I) is not particularly limited. Preferably, it is in the range of 1 to 10 mm, more preferably 3 to 8 mm.
  • the particle diameter is smaller than 1 mm, a large pressure loss occurs when flowing the gas, and there is a possibility that the gas cannot be circulated effectively. If the particle diameter is larger than 10 mm, the reaction gas cannot diffuse into the inside of the catalyst, and the catalytic reaction may not proceed effectively.
  • the pore structure of the support preferably has a pore diameter of 1 to 100 nm, more preferably 2 to 800 nm.
  • the structure of the catalyst of the present invention (I) is not exactly known, (a) the palladium is preferably palladium in a metallic state, and the (b) group compound is different from the complex oxide in that the palladium has a distinct structure. And it is acidic. And the (c) group element is considered to be in the immediate vicinity of (a) and (b). Therefore, due to the interaction of (a) palladium, the (b) group compound and the (c) group element, it is considered that the catalyst exhibits higher activity and shows less catalyst change with time than the conventional method.
  • the compound containing the group (c) element is a compound containing a vanadium element and Z or a molybdenum element.
  • it is a polyacid (hereinafter referred to as a group (c) group heteropolyacid) and / or a salt thereof
  • the catalyst (a) palladium, (b) group compound and (c) group heteropolyacid of the catalyst of the present invention (I) can be used.
  • the heteropolyacid and / or its salt are considered to have various hydrate structures in the catalyst of the present invention.
  • the weight of the heteropolyacid and the salt thereof or the salt thereof used herein the value converted by the molecular formula in an anhydride state is used.
  • vanadium and molybdenum are conventionally known to be used as oxidation catalysts.However, vanadium and Z or molybdenum alone are not effective in a method for producing acetic acid from ethylene in a single step from ethylene. . In fact, it was confirmed that high activity cannot be obtained as a method for producing acetic acid from ethylene in one step as shown in the examples.
  • acetic acid has a high activity from ethylene.
  • the activity and selectivity of acetic acid change depending on the addition ratio of the element (c) to the catalyst comprising (a) palladium and the compound (b), and the catalyst performance is improved over the conventional method. It was found that there was a range that decreased. As a result of intensive studies, it was found that the ratio of the (c) group element to the (b) group compound was important.
  • Heteropolyacids containing vanadium and / or molybdenum that is, heteropolyacids of group (c) are shown as components of the catalyst, but compounds of group (b) and heteropolyacids of group (c) are shown.
  • a catalyst containing at least one selected from salts and their salts in a specific ratio The present inventors have examined this point in detail.
  • At least one of the constituents of the catalyst for the production of acetic acid of the present invention selected from the group (b) group compounds and the (c) group heteropolyacids and salts thereof.
  • heteropolyacid and the compound or its salt are considered to have various hydrate structures in the catalyst.
  • the weights of the heteropolyacid and Z or salts thereof used herein are values converted by the molecular formula in the state of an anhydride.
  • the compound of the group (b): at least one compound selected from the group (c) heteropolyacids and their salts 1: 0.2 or more, they were used alone. In this case, the catalytic performance is low, and the amount of at least one compound selected from the group (c) heteropolyacids and salts thereof is large. Therefore, only the group (b) compound is used. It is considered that the reaction activity and the selectivity are lower than those of the used catalyst, and the change with time is increased.
  • the catalyst of the present invention is a catalyst for producing acetic acid which reacts ethylene with oxygen.
  • C at least one compound selected from the group consisting of (a) palladium, (b) a heteropolyacid and a salt thereof, (c) a vanadium element and Or a molybdenum element, and (d) at least one element selected from the group consisting of Group 14 elements, Group 15 elements, and Group 16 elements of the periodic table (hereinafter referred to as “(d) group elements”).
  • the catalyst of the present invention (II) is a four-group catalyst in which the catalyst of the present invention (I) contains a group (d) element.
  • the (a) palladium, the (b) group compound and the (c) group element used for the catalyst of the present invention (II) are the same as those of the catalyst of the present invention (I).
  • the carrier is the same as in the case of the catalyst of the present invention (I).
  • (d) group element used in the present invention (II) include tin, lead, antimony, bismuth, selenium, tellurium and the like. Preferably, tellurium and selenium are used.
  • the compound containing the element (c) is a heteropolyacid containing vanadium element and Z or molybdenum element and Z or a salt thereof, the compound of the present invention (II) Catalytic
  • (d) 0.01 to 5.0 mass 0 /.
  • (a) 0.5 to 5.0 mass 0 /. :
  • (B) 1.0 to 50% by mass:
  • Compound 1: 0.05 to 0.2:
  • (d) 0.05 to 2.0% by mass gives more favorable results.
  • the mass ratio of the (b) group compound and at least one compound selected from the (c) group heteropolyacid and salts thereof is important.
  • the compound of group (b): at least one compound selected from group (c) heteropoly acids and salts thereof 1: 0.007 to 0.15.
  • the heteropoly acids and / or salts thereof may have various hydrate structures in the catalyst of the present invention.
  • the mass of the heteropoly acid and / or its salt used here the value converted by the molecular formula in the state of an anhydride is used.
  • the catalyst of the present invention (III) is a catalyst used in a method for producing acetic acid by reacting ethylene and oxygen, wherein the catalyst is a group consisting of (a) palladium, (b) heteropolyacid and a salt thereof. At least one compound selected from the group consisting of: (c) a vanadium element and / or a molybdenum element; and (d) a group consisting of a group 14 element, a group 15 element and a group 16 element of the periodic table. Selected from the group consisting of at least one element selected from the group consisting of Group 7 elements, Group 8 elements, Group 9 elements, Group 10 elements, Group 11 elements and Group 12 elements of the periodic table. At least one element (hereinafter
  • (E) group element is a catalyst supported on a carrier, and the mass ratio of the (b) group compound to the (c) group element is (b) group compound:
  • the catalyst of the present invention (III) is a 5-group catalyst obtained by adding a group (e) element to the catalyst of the present invention (II).
  • the (a) palladium, (b) group compound, (c) group element and (d) group element used for the catalyst of the present invention (III) are the same as those of the catalyst of the present invention (II).
  • the support is the same as in the case of the catalyst of the present invention (II).
  • (e) group element used in the present invention (III) include chromium, manganese, rhenium, norethenium, iridium, rhodium, niggel, gold and zinc. Particularly preferred are copper, gold and zinc.
  • the catalyst (a) of the present invention (III), (a) palladium, (b) a group compound, (c)
  • the composition of (a), (b), (c), (d), and (e) in the catalyst in which the (d) group element, the (d) group element, and the (e) group element are supported on a carrier is (a) 0 . 1 to 0 mass 0/0: (b) 0. 1 ⁇ 9 0 mass 0 /. :
  • (C) group compound: (c) group element 1: 0.00001 to 0.2: (d) 0.01 to 5.0 mass by mass ratio to (c) and (b) %: (e) 0. 0 1 ⁇ 5. is preferably from 0 mass%, in particular (a) 0. 5 ⁇ 5.
  • the present invention when the compound containing group (c) is a heteropolyacid containing vanadium and Z or molybdenum and Z or a salt thereof, the present invention (III) At least one compound selected from the group consisting of (a) palladium, (b) group compounds, (c) group heteropoly acids and salts thereof, (d) group elements, and (e) group elements
  • the composition of (a), (b), (c), (d), and (e) of the catalyst containing (a) 0.1-: L 0 mass 0 /. : (B) 0.1 to 90 mass. /.
  • the heteropolyacid and Z or a salt thereof are considered to have various hydrate structures in the catalyst of the present invention.
  • the mass of the heteropolyacid and / or salt thereof used herein a value converted by a molecular formula in an anhydride state is used.
  • the amounts of the elements contained in the catalysts of the present invention (I) to (III) can be measured by the following method. After a certain amount of the catalyst is pulverized in a mortar or the like to obtain a uniform powder, the catalyst powder is added to an acid such as hydrofluoric acid or aqua regia, stirred with heating, and dissolved to form a uniform solution. Next, the solution is diluted with ion-free pure water to an appropriate concentration to obtain a solution for analysis. The solution is quantitatively analyzed using a plasma emission analyzer (for example, SPS-170, manufactured by Seiko Instruments Inc.). The accuracy of the instrument can be easily corrected with commercially available standard reagents for each element, and reproducible quantification is possible.
  • a plasma emission analyzer for example, SPS-170, manufactured by Seiko Instruments Inc.
  • the present invention (IV) relates to the production of the catalyst for producing acetic acid according to any one of the present inventions (I) to (II). Is the way.
  • the production method (1) of the present invention (IV) is a method for producing the catalyst of the present invention (I), which comprises the following first step and second step.
  • a step of obtaining a catalyst for acetic acid production by supporting the (b) group compound and the (c) group element on the (a) palladium-supported catalyst obtained in the first step.
  • This first step is a step of (a) supporting palladium on a carrier to obtain (a) a catalyst supporting palladium.
  • the raw material compound of palladium is not particularly limited. Specifically, metal palladium, halides such as palladium chloride, organic salts such as palladium acetate, nitrates such as palladium nitrate, palladium oxide, tetra-porous sodium palladium, tetra Lo Lono. Examples thereof include potassium radium acid, and further, a complex having an organic compound such as acetyl acetate, nitrinole, or ammonium as a ligand. Particularly preferred are sodium tetrachloroporate, potassium paratetradimethylate, palladium nitrate and the like.
  • the method for supporting palladium on a carrier is not particularly limited.
  • the support may be carried out by any method.
  • the starting compound is dissolved in a suitable solvent such as water or acetone, an inorganic acid or an organic acid such as hydrochloric acid, nitric acid, acetic acid, or a solution thereof.
  • the carrier After being impregnated with the carrier, the carrier can be supported on the carrier by a method such as drying.
  • the first step (a) after supporting palladium on a carrier, (a) It is preferred to convert palladium to its metallic state.
  • a palladium compound-supported catalyst is treated as it is, or treated with an aqueous solution of sodium hydroxide, sodium metasilicate, and potassium hydroxide or sodium hydroxide to form a palladium compound.
  • an appropriate reducing agent such as hydrazine or hydrogen.
  • the operation of (a) converting palladium to a metal state may be performed after (a) isolating the catalyst supporting palladium, or may be performed subsequent to the operation of supporting palladium. If conditions permit, it is preferred to carry out subsequent to the loading operation without isolation.
  • the (b) group compound and the (c) group element are supported on the palladium-supported catalyst obtained in the first step.
  • This is a method for obtaining the catalyst of the invention (I).
  • the (b) group compound used in the second step is the same as in the case of the catalyst of the present invention (I).
  • the raw material compound of the (c) group element used in the second step is not particularly limited, and includes the element itself, or an oxide, chloride, sulfide, or the like containing the element.
  • chlorides such as vanadyl trichloride, vanadyl chloride, and vanadyl oxychloride, vanadin dioxide, vanadin trioxide, vanadin pentoxide, vanadic acid, molybdenic acid, methavanadic acid, and ammonium metavanadate Oxides and salts thereof, such as sodium metabolite, sodium metavanadate, ammonium molybdate, and sodium molybdate, sulfatovanadate, vanadyl sulfate, and the like.
  • a complex having an organic compound as a ligand, and a heteropolyacid containing vanadium and Z or molybdenum in the skeleton and a salt thereof.
  • heteropoly acids and salts thereof include linmolybdic acid, limbana domolybdic acid, limbana dotandastanoic acid, chemimolybdic acid, geibana domolybdenic acid, kybana dotangstenic acid and the like. No.
  • ammonium metavanadate ammonium molybdate
  • heteropolyacid containing vanadium and / or molybdenum in the skeleton are preferable.
  • the method for supporting the group compound is not particularly limited, and a known method can be used. Specific examples include, but are not limited to, an impregnation method, a spray method, an evaporation to dryness method, a kneading method, and an adhesion method.
  • a solvent used for the impregnation any solvent can be used as long as it can dissolve the inorganic acid, and water, an organic solvent and a mixture thereof can be used. Preferably, water, alcohol and the like are used.
  • the method for supporting the group element is not particularly limited, and a known method can be used. Specific examples include, but are not limited to, an impregnation method, a spray method, an evaporation to dryness method, a kneading method, and an adhesion method.
  • the solvent used for the impregnation may be any solvent that can dissolve the inorganic acid, and water, an organic solvent, and a mixture thereof can be used. Preferably, water, alcohol and the like are used.
  • the loading of the (b) group compound and the (c) group element on the carrier may be performed in any order. That is, each loading may be performed simultaneously. Although they may be performed one after another, it is generally preferable to perform them simultaneously.
  • the production method (2) of the present invention (IV) is a method for producing the catalyst of the present invention (II).
  • the catalyst of the present invention ( ⁇ ) is obtained by adding (d) a group element in one or both of the first step and the second step of the production method (1) of the present invention (IV). Can be manufactured.
  • a) NO is added to the carrier.
  • a palladium-supported catalyst is obtained by supporting radium or palladium and the (d) group element.
  • the (a) raw material compound of palladium used in the first step, the method of converting palladium to a metal state, and the method of loading on a carrier are described in the method (1) of the present invention (IV). ) Is the same as in the first step.
  • the raw material compound used for preparing the catalyst for the (d) group element is not particularly limited, and the element itself or a compound containing the element is used. Halides, nitrates, acetates, phosphates, sulfates, oxides, etc., as well as complexes having an organic substance such as acetyl acetate or nitrile as a ligand. .
  • chloride salts such as selenium chloride, tellurium chloride, bismuth chloride, and lead chloride, antimony nitrate, tin nitrate, bismuth nitrate, nitrate such as lead nitrate, tin acetate, bismuth acetate, and lead acetate acetates, oxides selenium, selenium acid (H 4 S e 0 4) and Bruno or their salts, acetate Len acid (H 2 S e 0 3) and or salts thereof, tellurium oxide, tellurium Acid (H 6 Te O 6 ) and / or salts thereof, tellurous acid (H 2 Te O 6 )
  • metal tellurium or potassium antimonate, but are not limited thereto.
  • metal tellurium or potassium antimonate, but are not limited thereto.
  • sodium tellurite, potassium tellurite, telluric acid, selenium phosphite, etc. are mentioned.
  • the method for supporting the group element on the carrier is not particularly limited, and any method may be used.
  • a raw material compound of the (d) group element is dissolved in water or an appropriate solvent such as acetone, or an inorganic or organic acid such as hydrochloric acid, nitric acid, or acetic acid, impregnated into a carrier, and then dried. It can be carried on a carrier by any method.
  • Examples of the type of loading method include impregnation, evaporation to dryness, kneading, and spraying, but are not limited thereto.
  • (a) loading of palladium on the carrier and (d) loading of group elements on the carrier may be performed in any order.
  • the respective supports may be carried out simultaneously or in succession, in general, the (d) group element is carried on the carrier simultaneously with (a) the palladium raw material compound. Is preferred.
  • the (a) palladium-supported catalyst obtained in the first step is added to the (b) group compound and the (c) group element, or (d) By supporting the group elements, the present invention (II )).
  • the method of supporting the (b) group compound on the starting compound and the carrier is the same as in the second step of the production method (1) of the present invention (IV).
  • the method of loading the (c) group element on the raw material compound and the carrier is the same as in the second step of the production method (1) of the present invention (IV).
  • the method of loading the group (d) element onto the raw material compound and the carrier is the same as that in the first step of the production method (2) of the present invention (IV).
  • the (b) group compound, the (c) group element, and the (d) group element may be loaded on the carrier in any order. That is, the respective loadings may be carried out simultaneously, or may be carried out one after another, but it is generally preferred that they are carried out simultaneously.
  • the catalyst of the present invention (II) can be obtained.
  • the production method (3) of the present invention (IV) is a method for producing the catalyst of the present invention (III).
  • the catalyst of the present invention (III) can be obtained by using the (d) group element and the Z or (e) group element in either or both of the first step and the second step of the production method (1) of the present invention (IV). It can be produced by adding.
  • a) the carrier is used.
  • a palladium-supported catalyst is obtained by supporting radium or palladium and a (d) group element and a Z or (e) group element.
  • the raw material compound of the (e) group element is not particularly limited, and the element itself or a halide containing the element is not limited. And nitrates, acetates, phosphates, sulfates, oxides and the like, and also complexes having an organic substance such as acetyl acetonate and nitrile as a ligand.
  • chromium chloride, manganese chloride, rhenium chloride, ruthenium chloride, rhodium chloride, iridium chloride, nickel chloride, chloroauric acid and salts thereof chlorides such as zinc chloride, and chlorides of nitric acid Nitrates such as manganese, manganese nitrate, nickel nitrate, iridium nitrate, zinc nitrate, chromium acetate, manganese acetate, rhenium acetate, ruthenium acetate, iridium acetate, nickel acetate, zinc acetate, etc.
  • Examples include, but are not limited to:
  • chloroauric acid, zinc chloride, copper chloride, zinc nitrate and the like are mentioned.
  • the method for supporting the group element on the carrier is not particularly limited, and any method may be used.
  • a raw material compound of the (e) group element is dissolved in water or a suitable solvent such as acetone, or an inorganic or organic acid such as hydrochloric acid, nitric acid, or acetic acid, impregnated into a carrier, and then dried.
  • the carrier can be supported on the carrier by any method. Examples of the type of the supporting method include, but are not limited to, impregnation, evaporation to dryness, kneading, and spraying.
  • the (a) palladium and the-(d) group element and the (d) or (e) group element may be carried on the carrier in any order. That is, each loading may be performed simultaneously, or may be performed in succession. In general, it is preferable that the (d) group element and the (e) group element are supported on the carrier simultaneously with the (a) palladium raw material. Thereafter, if desired, (a) after filtering off the palladium-supported catalyst by a conventional method, in order to remove a reaction inhibitor such as a halide or an alkali salt such as sodium, etc. in the catalyst reaction, Can be washed and dried.
  • a reaction inhibitor such as a halide or an alkali salt such as sodium, etc.
  • the (a) palladium-supported catalyst obtained in the first step is added to the (b) group compound and the (c) group element, or (d)
  • the method of supporting the (b) group compound on the starting compound and the carrier is the same as in the second step of the production method (1) of the present invention (IV).
  • the method of carrying the (c) group element on the raw material compound and the carrier is the same as that in the second step of the production method (1) of the present invention (IV).
  • the method of supporting the (d) group element on the raw material compound and the carrier is the same as in the first step of the production method (2) of the present invention (IV).
  • the method of supporting the group (e) element on the raw material compound and the carrier is the same as in the first step of the production method (3) of the present invention (IV).
  • (a) loading of the (b) group compound, (c) group element, and (d) group element and / or (e) group element on the palladium-supported catalyst It may be performed in any order. That is, the respective loadings may be carried out simultaneously, or may be carried out successively, but it is generally preferred to carry out the loadings simultaneously.
  • the reaction temperature when producing acetic acid by reacting ethylene with oxygen there is no particular limitation on the reaction temperature when producing acetic acid by reacting ethylene with oxygen.
  • the temperature is preferably 100 to 300 ° C, more preferably 120 to 250 ° C.
  • the reaction pressure is 0.0 to 3.0 MPa (gauge pressure) from the viewpoint of equipment, but there is no particular limitation. More preferably, the range is from 0.1 to: L.5 MPa (gauge pressure).
  • the gas supplied to the reaction system contains ethylene and oxygen, and if necessary, nitrogen, carbon dioxide, rare gas, or the like is used as a diluent. Can be.
  • ethylene is 5 to 80 volumes 0 /.
  • oxygen is supplied to the reaction system in an amount of 8 to 50% by volume, and oxygen is supplied in an amount of 1 to 15% by volume, particularly 3 to 12% by volume. .
  • the water vapor is preferably contained in the reaction gas in the range of 1 to 50% by volume, more preferably 5 to 40% by volume.
  • acetic acid of the present invention V
  • high-purity ethylene As a raw material, but lower saturated hydrocarbons such as methane, ethane and propane may be mixed.
  • Oxygen can also be supplied in a form diluted with an inert gas such as nitrogen or carbon dioxide, for example, in the form of air.
  • an inert gas such as nitrogen or carbon dioxide, for example, in the form of air.
  • it when circulating the reaction gas, it is generally high in concentration, preferably 99%. It is advantageous to use more than% oxygen.
  • the reaction mixture gas is preferably passed through the catalyst at a space velocity (SV) of 1 to 1500 hours, particularly 300 to 800 hours- 1 under standard conditions.
  • SV space velocity
  • the reaction format is not particularly limited, and may be a known method, for example, a fixed bed, fluidized bed and the like. Preferably, it is practically advantageous to employ a fixed bed in which the above-mentioned catalyst is filled in a corrosion-resistant reaction tube. It is.
  • All the carriers used in the present invention were dried under air at 110 ° C. for 4 hours as a pretreatment.
  • the water used in this example is all deionized water.
  • Silica mosquito carrier [Me made to SUD: KA- 1, 5 mm] ( 6 9 g) and Te preparative ease throat palladium Sanna Application Benefits um [Tanaka Kikinzoku: N a 2 P d C 1 4] ( The solution was immersed in an aqueous solution (45 ml) of 3.8 g) to absorb the entire amount. Then, this main Takei Sanna Application Benefits um nonahydrate [manufactured by Wako Pure Chemical Industries: N a 2 S i O 3 ⁇ 9 ⁇ 2 ⁇ ] in an aqueous solution of (8. O g) (1 0 0 ml) In addition, the mixture was allowed to stand at room temperature for 20 hours.
  • this heat Dora gin monohydrate [Wako Junyaku Co.: ⁇ 2 ⁇ 4 ⁇ ⁇ 2 ⁇ ] a (6. 5 g) was added pressure, gently stirred, allowed to stand at room temperature for 4 hours Was reduced to metallic palladium. Thereafter, the catalyst was collected by filtration, decanted, transferred to a glass column equipped with a stopcock, and allowed to flow with water for 40 hours for washing. Then, it was dried at 110 ° C. for 4 hours under an air stream to obtain a metal-palladium-supported catalyst.
  • Et al is, in the metallic palladium-loaded catalyst, Kei data tungsten acid 2 hexahydrate [Nippon Inorganic Color & Chemical Co., Ltd.: H 4 S i W 12 O 40 ⁇ 2 6 H 2 O] (2 3. 5 5 g) And an aqueous solution (45 ml) of ammonium hydroxide and metavanadate [manufactured by Wako Pure Chemical Industries, Ltd .: NH 4 VO 3 ] (0.053 g). The addition is made in one step and the mixture is allowed to mix until the solution is fully absorbed (approx. (3 minutes) The mixture was gently stirred and rotated. After impregnation, the wet impregnated carrier was allowed to stand at room temperature for 1 hour. Next, it was dried in an oven under air at 110 ° C. for 4 hours, and then left standing in a desiccator. Thus, acetic acid production catalyst 1 was obtained.
  • Example 2 Instead of main Tapanajin acid Anmoniumu in Example 1, mode re Buden acid Anmoniumu tetrahydrate [Wako Junyaku: (NH 4) 6 M o 7 O 24 ⁇ 4 ⁇ 2 ⁇ ] (0. 8 8 5 g) Except for using, the same procedure as in Example 1 was carried out to obtain a sulfuric acid production catalyst 2.
  • Silica mosquito carrier [Me made to SUD: KA- 1, 5 mm ⁇ ] and (6 9 g), Te preparative ease throat palladium Sanna Application Benefits um [N a 2 P d C 1 4] (3. 8 0 g) in an aqueous solution (45 ml) to absorb the entire amount. Then, this main Takei Sanna Application Benefits um nonahydrate [N a 2 S i O 3 . 9 H 2 O] (8. 0 g) was added to an aqueous solution of (1 0 0 ml), 2 at room temperature It was left for 0 hours. To this was then added hydrazine monohydrate [ ⁇ 2 ⁇ 4 ⁇ ⁇ 2 ⁇ ] a (6.
  • Et al is, in the metallic palladium-loaded catalyst, Kei data tungsten acid 2 hexahydrate [Nippon Inorganic Color & Chemical Co., Ltd.: H 4 S i W 12 O 40 ⁇ 2 6 H 2 O] (2 3. 5 5 g) , telluric acid [manufactured by Kanto Chemical Co.: H 6 T e O 6] a (0. 2 7 g) and main Tabanajin acid Anmoniumu [NH 4 V 0 3] ( 0. 0 5 3 g) aqueous solution (4 5 ml) Impregnated. Add once and gently stir the mixture until the solution is fully absorbed (about 3 minutes) Turned over.
  • the wet impregnated carrier was allowed to stand at room temperature for 1 hour. Then, it was dried in an oven under air at 110 ° C. for 4 hours, and then left overnight in a desiccator. Thus, catalyst 3 for acetic acid production was obtained.
  • Example 4
  • the catalyst was collected by filtration, decanted, and then transferred to a glass column equipped with a stopcock, and circulated with water for 40 hours for washing. Then, the resultant was dried at 110 ° C. for 4 hours under an air stream to obtain a metal-palladium-supported catalyst containing gold.
  • Example 4 instead of chloroauric acid tetrahydrate in Example 4, zinc chloride [Wako Junyaku: except for using Z n C l 2 3 (0. 1 4 g) was operated in the same manner as in Example 4 Thus, an acetic acid production catalyst 5 was obtained.
  • Silica mosquito carrier [Me made into's one de: KA- 1, 5 mm ⁇ ] (6 9 g) and Te preparative La click throat palladium Sanna Application Benefits um [Tanaka Kikinzoku: N a 2 P d C 1 4 ] (3.80 g) in an aqueous solution (45 ml) to absorb the entire amount. Then, this main Takei Sanna Application Benefits um nonahydrate [manufactured by Wako Pure Chemical Industries: N a 2 S i O 3 ⁇ 9 ⁇ 2 ⁇ ] in an aqueous solution of (8. 0 g) (1 0 0 ml) In addition, it was left still at room temperature for 20 hours.
  • this heat Dora gin monohydrate [Wako Junyaku Co.: ⁇ 2 ⁇ 4 ⁇ H 2 O] a (6. 5 g) was added pressure, gently stirred, allowed to stand at room temperature for 4 hours Was reduced to metallic palladium. Thereafter, the catalyst was collected by filtration, decanted, transferred to a glass column equipped with a stopcock, and allowed to flow with water for 40 hours for washing. Next, it was dried at 110 ° C. for 4 hours under an air stream to obtain a catalyst supporting metal palladium.
  • Et al is, in the metallic palladium-loaded catalyst, Kei data tungsten acid 2 hexahydrate [Nippon Inorganic Color & Chemical Co., Ltd.: H 4 S i W 12 ⁇ 40 ⁇ 2 6 H 2 O] (2 3. 5 5 g) Aqueous solution (45 ml). The addition was made once and the mixture was gently stirred and rotated until the solution was fully absorbed (about 3 minutes). After the impregnation, the wet impregnated carrier was allowed to stand at room temperature for 1 hour. Then dried in an oven under air at 110 ° C for 4 hours, Left overnight in desiccator. Thus, catalyst 6 for acetic acid production was obtained.
  • Silica mosquito carrier [Me made to SUD: KA- 1, 5 mm] ( 6 9 g) and Te preparative ease throat Parajiumu Sanna Application Benefits um [Tanaka Kikinzoku: N a 2 P d C 1 4] ( The solution was immersed in an aqueous solution (45 ml) of 3.8 g) to absorb the entire amount. Then, this main Takei Sanna Application Benefits um nonahydrate [manufactured by Wako Pure Chemical Industries: N 0 g) (1 0 0 ml) In addition, the mixture was allowed to stand at room temperature for 20 hours.
  • this heat Dora gin monohydrate [Wako Junyaku Co.: ⁇ 2 ⁇ 4 ⁇ ⁇ 2 ⁇ ] a (6. 5 g) was added pressure, gently stirred, allowed to stand at room temperature for 4 hours Was reduced to metallic palladium. Thereafter, the catalyst was collected by filtration, decanted, transferred to a glass column equipped with a stopcock, and allowed to flow with water for 40 hours for washing. Next, it was dried at 110 ° C. for 4 hours under an air stream to obtain a catalyst supporting metal palladium.
  • Et al is, in the metallic palladium-loaded catalyst, main Tabanajin acid ammonium Niumu [Wako Junyaku Co.: NH 4 V 0 3] impregnated with (0. 0 5 3 g) aqueous solution (4 5 ml). The addition was made in one portion and the mixture was gently stirred and rotated until the solution was fully absorbed (about 3 minutes). After impregnation, The wet impregnated carrier was allowed to stand at room temperature for 1 hour. Then, it was dried in an oven under air at 110 ° C. for 4 hours, and then left overnight in a desiccator. Thus, catalyst 8 for acetic acid production was obtained.
  • Silica mosquito carrier [Mi one made to SUD: KA- 1, 5 mm] of (6 9 g), Te preparative ease throat palladium Sanna Application Benefits um [N a 2 P d C 1 4] (3. 8 0 g) in an aqueous solution (45 ml) to absorb the entire amount.
  • this was added to the main Takei Sanna Application Benefits um nonahydrate [N a 2 S i O 3 ⁇ 9 ⁇ 2 ⁇ ] aqueous (8. 0 g) (1 0 0 ml), 2 at room temperature It was left for 0 hours. To this was then added hydrazine monohydrate [ ⁇ 2 ⁇ 4 ⁇ ⁇ 2 ⁇ ] a (6.
  • Et al is, in the metallic palladium-loaded catalyst, Kei data tungsten acid 2 hexahydrate [Nippon Inorganic Color & Chemical Co., Ltd.: H 4 S i W 12 O 40 ⁇ 2 6 H 2 O] (2 3. 5 5 g) And an aqueous solution (45 ml) of ammonia and metavanadate [manufactured by Wako Pure Chemical Industries, Ltd .: NH 4 VO 3 ] (0.036 g) was impregnated. The addition was made in one portion and the mixture was gently stirred and rotated until the solution was fully absorbed (about 3 minutes). After the impregnation, the wet impregnated carrier was allowed to stand at room temperature for 1 hour. Then, it was dried in an oven under air at 110 ° C. for 4 hours, and then left in a desiccator. Thus, catalyst 9 for acetic acid production was obtained.
  • the metallic palladium supported catalyst containing the zinc impregnated with an aqueous solution (4 5 ml) of the tellurite Sanna Application Benefits um [N a 2 T e O 3 ] (0. 2 7 g). Thereafter, the resultant was dried at 110 ° C. for 4 hours under air to obtain a metal-palladium-supported catalyst containing zinc and tellurium.
  • Elemental analysis of the catalyst components contained in the catalysts for producing acetic acid obtained in Examples 1 to 5 and Comparative Examples 1 to 5 was performed as follows. Each acetic acid production catalyst is dissolved in aqua regia and a mixture of hydrofluoric acid and aqua regia by heating under pressure to completely extract each component, and high frequency induction coupling is performed. Measured by combined plasma (ICP) emission spectrometry. SPS-1 manufactured by Seiko Instruments Inc. as an ICP emission spectrometer.
  • Table 1 shows the acetic acid production catalysts obtained in Examples 1 to 5 and Comparative Examples 1 to 5 by mass% of each component. In addition,% in the table represents% by mass with respect to each catalyst.
  • the catalyst for acetic acid production (18.5 g) obtained in Examples 1 to 5 and Comparative Examples 1 to 5 was charged into a SUS316 reaction tube (inner diameter 25 mm), and the reaction peak temperature of the catalyst layer was 2 At 0 ° C and a reaction pressure of 0.8 MPa (gauge pressure), a gas mixture of ethylene: oxygen: water: nitrogen at a volume ratio of 10: 6: 15: 69, space velocity of 1
  • the reaction was conducted at 800 h 1 to obtain acetic acid from ethylene and oxygen. Cool the generated gas and cool The subsequent condensate and gas components were analyzed by gas chromatography [Shimadzu Science, GC-14B, FID and TCD], respectively.
  • the activity of the catalyst is determined by the mass of acetic acid produced per catalyst volume per hour (liter volume) (spatiotemporal yield STYZ unit gZh ⁇ 1cat)
  • Example 6 STY Acetic acid Carbon dioxide for production Catalyst name (g / hlcat) (%) (%)
  • Example 6 Catalyst 1 110 69.0 27.0
  • Example 7 Catalyst 2 118 68.0 28.3
  • Example 8 Catalyst 3 163 87.4 6.3
  • Example 9 Catalyst 4 184 91.0 5.7
  • Example 10 Catalyst 5 180 90.3 6.3 Comparative Example 6 Catalyst 6 93 70.0 24.0 Comparative Example 7 Catalyst 7 trace trace trace Comparative Example 8 Catalyst 8 trace 5.0 94.0 Comparative Example 9 Catalyst 9 92 71.2 25.3 Comparative Example 10 Catalyst 10 165 92.0 4.3
  • Example 1 1
  • the catalyst for acetic acid production (15 g) obtained in Example 5 was filled in a SUS316 reaction tube (inner diameter 25 mm), and the temperature of the heating bath was set at 170 ° C and the reaction pressure was set at 0.8 MPa ( a gauge pressure), ethylene: oxygen: water: volume nitrogen ratio two 1 0: 6: 1 5: 6 9 mixed gas at a rate of, by introducing at a space velocity of 2 3 5 0 h 1, and ethylene A reaction for obtaining acetic acid from oxygen was performed. The produced gas was cooled, and the condensate and gas components after cooling were analyzed by gas chromatography [GC-14B, Shimadzu Scientific, FID and TCD], respectively.
  • the activity of the catalyst is measured by the weight of acetic acid produced per catalyst volume per hour (liter) (space-time yield ST YZ unit g / h ⁇ 1 cat ) And the change over time was shown.
  • Silica carrier [Me made into's one de: KA- 1, 5 mm ⁇ ] (6 9 g) and te tractor throat palladium Sanna Application Benefits um [Tanaka Kikinzoku: N a 2 P d C 1 4] ( The solution was immersed in an aqueous solution (45 ml) of 3.8 g) to absorb the entire amount. Then, this main Takei Sanna Application Benefits um nonahydrate [manufactured by Wako Pure Chemical Industries: N a 2 S i O 3 ⁇ 9 ⁇ 2 ⁇ ] added to an aqueous solution of (8. 0 g) (9 0 ml) The mixture was allowed to stand at room temperature for 20 hours.
  • this heat Doraji down monohydrate adding the Wako Junyaku Co. ⁇ 2 ⁇ 4 ⁇ ⁇ 2 ⁇ ] (6. 5 g), slowly stirred, allowed to stand at room temperature for 4 hours, Reduced to metallic palladium. Thereafter, the catalyst was collected by filtration, decanted, and then transferred to a glass column equipped with a stopcock, and washed with flowing pure water for 40 hours. Next, it was dried at 110 ° C. for 4 hours under an air stream to obtain a catalyst supporting metal palladium.
  • Et al is, in the metallic palladium-loaded catalyst, Keita tungsten acid 2 hexahydrate [Nippon Inorganic Color & Chemical Co., Ltd.: H 4 S i W 12 O 40 ⁇ 2 6 H 2 O] (2 3. 5 5 g) and Keibana Dota tungsten acid 2 hexahydrate [Nippon inorganic chemical industry Ltd.: H 5 S i V x Wn O 40 ⁇ 2 6 H 2 O] was impregnated with (0. 4 5 g) aqueous solution (4 5 ml) . The addition was made in one portion and the mixture was gently stirred and rotated until the solution was fully absorbed (about 3 minutes).
  • the wet impregnated carrier was allowed to stand at room temperature for 1 hour. It is then dried for 4 hours at 110 ° C in air in an oven and then desiccator Left overnight in the room. Thus, catalyst 12 for acetic acid production was obtained.
  • Example 14 In a 2 instead of Keibana Dota tungsten acid 2 hexahydrate, Li Nbana Domo Li Buden acid 2 hexahydrate [Nippon Inorganic Color & Chemical Co., Ltd.: H 6 PV 3 M o 9 ⁇ 4. ⁇ 2 6 Eta 2 O] except for using (0. 2 5 g), in the same manner as in Example 1 2 to give the acetic acid production catalyst 1 3.
  • Example 12 instead of cabana dotanstennic acid 26 hydrate, linmolybdonic acid 26 hydrate [manufactured by Nippon Inorganic Chemical Industry: H 4 P ⁇ 12 4 . ⁇ 2 6 ⁇ 2 ⁇ ] except for using (0. 2 5 g), in the same manner as in Example 1 2 to give the acetic acid production catalyst 1 4.
  • Silica mosquito carrier [Me made to SUD: KA- 1, 5 mm ⁇ ] (6 9 g) and Te preparative ease throat palladium Sanna Application Benefits um [Tanaka Kikinzoku: N a 2 P d C 1 4] (3.8 g) in an aqueous solution (45 ml) to absorb the entire amount. Then, this main Takei Sanna Application Benefits um nonahydrate [manufactured by Wako Pure Chemical Industries: N a 2 S i ⁇ 3 ⁇ 9 ⁇ 2 ⁇ ] in an aqueous solution of (8. 0 g) (4 5 m 1) In addition, the mixture was allowed to stand at room temperature for 20 hours.
  • Et al is, in the metallic palladium-loaded catalyst, Kei tungstic acid 2 hexahydrate [Nippon Inorganic Color & Chemical Co., Ltd.: H 4 S i W 12 ⁇ 40 ⁇ 2 6 H 2 O] (2 3. 5 5 g), Telluric acid [manufactured by Kanto Chemical: H 6 Te O 6 ] (0. 2 7 g) and Keibana Dota tungsten acid 2 hexahydrate [Nippon Inorganic Color & Chemical Co., Ltd.: H 5 S i Vi W X 1 O 40 ⁇ 2 6 H 2 O] (0. 4 5 g) in water solution (4 5 ml).
  • a silica carrier made by Suzumi Chemical: KA-1, 5 mm ⁇ ] (69 g) was mixed with sodium tetrachloroporate (3.80 g) and quaternary aqueous chloroauric acid.
  • hydrate [Tanaka Kikinzoku: H 4 a u C l 4 ⁇ 4 ⁇ 2 ⁇ ] was immersed into an aqueous solution of (0. 7 8 g) (4 5 ml), was absorbed the entire amount. Next, this was added to an aqueous solution (100 ml) of sodium metasilicate nonahydrate (8.0 g) and allowed to stand at room temperature for 20 hours.
  • hydrazine monohydrate (6.5 g) was added thereto, and the mixture was gently stirred and allowed to stand at room temperature for 4 hours to reduce to palladium metal. Thereafter, the catalyst was collected by filtration, decanted, and then transferred to a glass column equipped with a stopcock. Pure water was passed through for 40 hours for washing. Then, it was dried at 110 ° C. for 4 hours under an air stream to obtain a metal-palladium-supported catalyst containing gold.
  • Example 1 7 instead of chloroauric acid tetrahydrate in Example 1 7, zinc chloride [Wako Junyaku Co.: Z n C 1 2] except for using (0. 1 4 g), in the same manner as in Example 1 7 By operating, acetic acid production catalyst 18 was obtained.
  • a silica carrier made by Zudehemie: KA—1, 5 mm] (69 g) was added to sodium tetraparatium (3.80 g) and zinc chloride [Wako Pure Chemical Industries, Ltd. Ltd.: Z n C l 2] was dipped into (0. 1 4 g) aqueous solution (4 5 m 1), was absorbed the entire amount. Next, this was added to an aqueous solution (100 ml) of sodium metasilicate nonahydrate (8.0 g) and allowed to stand at room temperature for 20 hours. Then, hydrazine monohydrate (6.5 g) was added thereto, and the mixture was stirred gently and allowed to stand at room temperature for 4 hours to reduce to metal palladium.
  • the catalyst was collected by filtration, decanted, and then transferred to a glass column equipped with a stopcock, washed with pure water for 40 hours, and washed. Next, the resultant was dried at 110 ° C. for 4 hours under an air stream to obtain a metal-palladium-supported catalyst containing zinc.
  • Example 19 instead of cavana dotangstenic acid 26 hexahydrate, limpana domolybdenic acid 26 hexahydrate [manufactured by Nippon Inorganic Chemical Industry: H 6 PV 3 Mo 9 O 40 ⁇ 26 H 2 O] (0.25 g) was used in the same manner as in Example 19 to obtain acetic acid production catalyst 20. Comparative Example 1 2
  • Kei data tungsten acid 2 hexahydrate [Nippon Inorganic Color & chemical Co., Ltd.: H 4 S i W 12 O 4 -26 H 2 O] (24 g) was used in the same manner as in Example 12 to obtain acetic acid production catalyst 21.
  • At least one compound selected from the group (b) group compound: (c) group heteropolyacid and their salts by mass ratio more than 1: 0.2, a catalyst for acetic acid production]
  • Example 1 Kei tungstic acid 2 hexahydrate in 2 [Japan Inorganic Chemical Industry Ltd.: H 4 S i W 12 0 4. '2 6 H 2 O] ( 2 3. 5 5 g) and Keibana Dota tungsten acid 2 hexahydrate [Nippon Muki Chemical Co., Ltd.: H 5 S i V! W x ! O 40 ⁇ 26 H 2 O] (0.45 g) was replaced by Ca-tangstenic acid 26-hydrate [produced by Nippon Inorganic Chemical Industry: H 4 Si W 12 O 40 ⁇ 26 H 2 O ] (2 3.
  • Example 1 Kei data tungsten acid 2 hexahydrate in 2 [Japan Inorganic Chemical Industry Ltd.: H 4 S i W 12 0 4. '2 6 H 2 O] ( 2 3. 5 5 g) and Keibana Dota tungsten acid 2 hexahydrate [Nippon Inorganic Color & Chemical Co., Ltd.: H 5 S i Vj W 1 O 40 ⁇ 2 6 H 2 O] (0 45 g) instead of Ca Tungstenic acid 26-hydrate [manufactured by Nippon Inorganic Chemical Industry: H 4 Si W 12 O 0 ⁇ 26 H 2 O] (23.95 g) and cavana Dotangstenic acid 2 hexahydrate except for using the Nippon Inorganic Color & Chemical Co., Ltd.! H 5 S i V, W JO 40 ⁇ 2 6 H 2 O] (0. 0 5 g) , as in Example 1 2 Operation Thus, an acetic acid production catalyst 24 was obtained.
  • Elemental analysis of metal elements and heteropolyacid contained in the catalysts for producing acetic acid obtained in Examples 12 to 20 and Comparative Examples 12 to 16 was performed as follows. Each acetic acid production catalyst is dissolved in aqua regia and Z or a mixture of hydrofluoric acid and aqua regia by heat treatment under pressure to completely extract each component.
  • ICP Measured by emission spectrometry. As an ICP emission spectrometer, SPS-170 manufactured by Seiko Instruments Inc. was used.
  • Table 3 shows the mass% of each component of the acetic acid production catalysts 12 to 25 obtained in Examples 12 to 20 and Comparative Examples 12 to 16.
  • surface represents the mass% with respect to each catalyst.
  • the mass% of the heteropolyacid of group (b) and the heteropolyacid containing the element of group (c) is regarded as an anhydride. S calculated
  • the activity of the catalyst was calculated as the mass of acetic acid produced per hour (catalyst volume per hour) (space-time yield ST YZ unit g / h ⁇ 1 cat), and the selectivity was calculated as ethylene. Calculated as percent of product relative to.
  • Example 21 Acetic acid Carbon dioxide for production Catalyst name (g / hlcat) (%) (%)
  • Example 21 Catalyst 12 115 71.6 24.0
  • Example 22 Catalyst 13 113 72.3 23.0
  • Example 23 Catalyst 14 100 75.6 20.0
  • Example 24 Catalyst 15 173 92.2 5.6
  • Example 25 Catalyst 16 170 89.2 8.0
  • Example 26 Catalyst 17 165 82.0 11.3
  • Example 27 Catalyst 18 170 83.0 13.0
  • Example 28 Catalyst 19 188 88.4 5.6
  • Example 29 Catalyst 20 183 87.0 6.1 Comparative Example 17 Catalyst 21 93 70.0 24.0 Comparative Example 18 Catalyst 22 83 68.0 28.3 Comparative Example 19 Catalyst 23 93 69.8 24.3 Comparative Example 20 Catalyst 24 85 69.0 27.3
  • the activity of the catalyst was calculated as the mass of acetic acid produced per hour (catalyst volume per hour) (space-time yield ST YZ unit g / h ⁇ 1 cat), and the selectivity was calculated as ethylene. Calculated as the percentage of product relative to.
  • Figure 2 shows the time course of acetic acid STY as a reaction result.
  • Silica carrier [manufactured by Zue Hemi: KA-1, 5 mm ⁇ ] (69 g), sodium tetrachloroporate (2.76 g), zinc chloride [Wako Pure Chemical Industries, Ltd.] Ltd.: Z n C l 2] ( 0. 1 4 g) and chloroauric acid hydrate thereof [Tanaka Kikinzoku:. H 4 a u C 1 4 4 H 2 O] aqueous solution (0. 7 8 g) (45 ml) to absorb the whole amount. Next, this was added to an aqueous solution (100 ml) of sodium metasilicate nonahydrate (8.2 g) and allowed to stand at room temperature for 20 hours.
  • hydrazine monohydrate (5.75 g) was added thereto, and the mixture was stirred gently and allowed to stand at room temperature for 4 hours to reduce to palladium metal. Thereafter, the catalyst was collected by filtration, decanted, and then transferred to a glass column equipped with a stopcock, and washed with flowing pure water for 40 hours. Next, it was dried at 110 ° C. for 4 hours under an air stream to obtain a metal-palladium-supported catalyst containing zinc and gold.
  • the metal palladium-supported catalyst containing zinc and gold is Rusan'na Application Benefits um [Wako Junyaku Co.: N a 2 T e O 3 ] was impregnated with an aqueous solution of (0. 2 6 6 g) ( 4 5 ml). After air-drying for 1 hour, it was transferred to a glass column with a stopcock, and purified water was passed through for 16 hours for washing. Next, it was dried at 110 ° C. for 4 hours under an air stream to obtain a metal-palladium-supported catalyst containing zinc, gold and tellurium.
  • the above-mentioned metal-palladium-supported catalyst containing zinc, gold and tellurium was added with calcium tungstate 26 hexahydrate [produced by Nippon Inorganic Chemical Industry: H 4 Si W 12 O 40 ⁇ 26 H 2 O] (2 3. 4 3 g), Li Nbana Domo Ribude phosphate 3 0 hydrate [Nippon Inorganic Color & chemical Co., Ltd.: H 4 PV x M 0 ll O 4Q * 3 0 ⁇ 2 ⁇ ] (0. 3 2 6 g) and manganese nitrate hexahydrate: impregnated with [Wako Junyaku Co. Mn (NO 3) 2 ⁇ 6 ⁇ 2 ⁇ ] aqueous (0.
  • Example 3 Instead of manganese nitrate hexahydrate in Example 3 1, nitric edge Le preparative hexahydrate [manufactured by Wako Pure Chemical Industries: C o (NO 3) 2 ⁇ 6 H 2 O] (0. 2 1 4 g) Except for using, the same procedure as in Example 31 was carried out to obtain a sulfuric acid production catalyst 27.
  • Example 3 instead of zinc chloride in Example 3 1, chloride chromium hexahydrate [manufactured by Wako Pure Chemical Industries: C r C l 3 ⁇ 6 ⁇ 2 ⁇ ] (0. 2 8 3 g) except using the By operating in the same manner as in Example 31, catalyst 28 for acetic acid production was obtained. Elemental analysis of acetic acid production catalyst
  • Example 31 Metal elements contained in the catalyst for producing acetic acid obtained in 1 to 33 and Elemental analysis of the polybutadiene and heteropolyacids was performed as follows. Each catalyst for producing sulfuric acid is dissolved in aqua regia and Z or a mixed solution of hydrofluoric acid and aqua regia by heat treatment under pressure, and the components are completely extracted. (ICP) Measured by emission spectrometry. As an ICP emission spectrometer, SPS-1700 manufactured by Seiko Instruments Inc. was used.
  • Table 5 shows the mass% of each component for the acetic acid production catalysts 26 to 28 obtained in Examples 31 to 33.
  • surface represents the mass% with respect to each catalyst.
  • the mass% of the heteropolyacid in the group (b) and the heteropolyacid containing the group element (c) was calculated as an anhydride.
  • the activity of the catalyst is calculated as the mass of acetic acid produced per catalyst volume per hour (liter) (space-time yield STY / unit gZh ⁇ 1 cat), and the selectivity is calculated as ethylene. Calculated as the percentage of product relative to.
  • the space-time yield of acetic acid is higher and the change over time can be improved as compared with the conventional method.
  • Acetic acid can be produced with a small amount and therefore with high productivity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

明 細 書 酢酸製造用触媒、 その製造方法及びそれを用いた酢酸の製造方法 関連出願の記述
この出願は、 米国コー ド 3 5の 1 1 1条 ( b ) に従う、 米国出願 番号 6 0ノ 1 6 4, 1 5 3号 (出願日 1 9 9 9年 1 1月 8 日) に基 づく 出願の利益を主張する、 米国コー ド 3 5の 1 1 1条 ( a ) の出 願である。 技術分野
本発明は、 エチレンと酸素から一段接触反応によ り酢酸を製造す る際に用いる触媒、 その製造方法及びそれを用いた酢酸の製造方法 に関する。 背景技術
従来、 酢酸の製造法と しては、 ァセ トアルデヒ ドの酸化法、 メタ ノールと一酸化炭素を反応させる方法、 低級パラフィ ンを酸化する 方法などが実用化されている。
エチレンから酢酸を一段で製造する方法は、 工業的製造工程上と 経済的に多く の有利な点を有しているために、 多くの提案がなされ ている。 例えば、 パラジウム一コバルト、 鉄などの金属イオン対の 酸化還元触媒を用いた液相一段酸化法 (フランス特許第 1 4 4 8 3 6 1号公報) 、 パラジウム一 リ ン酸又は硫黄含有変性剤からなる触 媒 (特開昭 4 7 — 1 3 2 2 1号公報、 特開昭 5 1 — 2 9 4 2 5号公 報) 、 ある種のへテリポリ酸のパラジウム塩からなる触媒 (特開昭 5 4— 5 7 4 8 8号公報) 、 3群系酸素化合物からなる触媒 (特開 昭 4 6— 6 7 6 3号公報) を用いた気相一段酸化法などが提案され ている。
また最近、 金属パラジウムとヘテロポリ酸及びそれらの塩から選 ばれた少なく とも 1種の化合物を含有する触媒を用い、 エチレンと 酸素から気相一段反応で酢酸を製造する方法 (特開平 7— 8 9 8 9 6号公報、 特開平 9— 6 7 2 9 8号公報) が提案されている。 この 触媒を用いる方法によれば、 比較的高収率で酢酸を得るこ とができ る。
これらの触媒を用いて反応を行なうに当たって工業上特に重要な ことは、 触媒の活性が高く、 かつその経時変化ができる限り小さく 、 しかも酢酸の選択率がよいことである。
従来提案されたパラジウムとヘテロポリ酸及びそれらの塩から選 ばれた少なく とも 1種の化合物を含有する触媒を用い、 エチレンと 酸素から気相一段反応で酢酸を製造する方法は、 工業的規模で実施 する上で十分ではあるが、 さ らなる触媒活性の向上が達成できるな らば経済性において有利である。 発明の開示
本発明は、 パラジウムとへテ口ポリ酸及びそれらの塩から選ばれ た少なく とも一種の化合物を含有する触媒によ り、 エチレンと酸素 から酢酸を製造する方法において、 よ り高性能な触媒の提供、 その よ うな触媒の製造方法の提供及びそのよ うな触媒を用いた酢酸の製 造方法の提供を目的とするものである。
本発明者らは、 上記目的を達成するために、 エチレンと酸素から 酢酸を製造する際に用いるパラジウムとヘテロポリ酸及びそれらの 塩から選ばれた少なく とも 1種の化合物を含有する触媒の性能を高 めるべく鋭意研究を行った。 その結果、 エチレンと酸素とを反応さ せて酢酸を製造する方法において使用する ( a ) パラジウムと、 ( b ) ヘテロポリ酸及びそれらの塩から選ばれた少なく と も 1種の化 合物を必須成分とする酢酸製造用触媒において、 ( c ) バナジウム 元素及びノ又はモリ ブデン元素をある特定の割合で添加するこ とに よ り、 従来の触媒に比べ、 高活性でかつ経時変化の少ない触媒が得 られるこ とを見出し、 本発明を完成させるに至った。
すなわち、 本発明 ( I ) は、 エチレンと酸素とを反応させる酢酸 の製造方法において使用する触媒において、 該触媒が、 ( a ) パラ ジゥム、 ( b ) ヘテロポリ酸及びはそれらの塩よ り なる群から選ば れた少なく と も 1種の化合物、 及び ( c ) バナジウム元素及び Z又 はモリ ブデン元素が、 担体に担持されている触媒であって、 その ( b ) 群化合物と ( c ) 群元素の質量比が ( b ) 群化合物 : ( c ) 群 元素 = 1 : 0. 0 0 0 1 〜 0. 2の範囲である酢酸製造用触媒を提 供する。
本発明 (Π) は、 エチレンと酸素とを反応させる鲊酸の製造方法 において使用する触媒において、 該触媒が、 ( a ) パラジウム、 ( b ) へテ口ポリ酸及びそれらの塩よ り なる群から選ばれた少なく と も 1種の化合物、 ( c ) バナジウム元素及び/又はモリ ブデン元素 、 及び ( d ) 周期律表の 1 4族元素、 1 5族元素及び 1 6族元素よ り なる群から選ばれた少なく と も 1種の元素が、 担体に担持されて いる触媒であって、 その ( b ) 群化合物と ( c ) 群元素の質量比が ( b ) 群化合物 : ( c ) 群元素 = 1 : 0. 0 0 0 1 〜 0. 2の範囲 である酢酸製造用触媒を提供する。
本発明(III) は、 エチレンと酸素とを反応させる酢酸の製造方法 において使用する触媒において、 該触媒が、 ( a ) パラジウム、 ( b ) ヘテロポリ酸及びそれらの塩よ り なる群から選ばれた少なく と も 1種の化合物、 ( c ) バナジウム元素及び Z又はモリ ブデン元素 、 ( d ) 周期律表の 1 4族元素、 1 5族元素及び 1 6族元素よ りな る群から選ばれた少なく とも 1種の元素、 及び ( e ) 周期律表の 7 族元素、 8族元素、 9族元素、 1 0族元素、 1 1族元素及び 1 2族 元素よ りなる群から選ばれた少なく とも 1種の元素が、 担体に担持 されている触媒であって、 その ( b ) 群化合物と ( c ) 群元素の質 量比が ( b ) 群化合物 : ( c ) 群元素 = 1 : 0. 0 0 0 1 〜 0. 2 の範囲である酢酸製造用触媒を提供する。
本発明 (IV) は、 本発明 ( I ) 〜(I II) のいずれかに記載の触媒 の製造方法を提供する。
本発明 (V ) は、 本発明 ( I ) 〜(III) のいずれかに記载の醉酸 製造用触媒を用いてエチレンと酸素から酢酸を製造する方法を提供 する。 図面の簡単な説明
図 1 は、 実施例 1 1 (実施例 5で得た触媒 5を用いた反応) 及び 比較例 1 1 (比較例 5で得た触媒 1 0を用いた反応) における触媒 活性の経時変化を示すダラフである。
図 2は、 実施例 3 0 (実施例 1 9で得た触媒 1 9を用いた反応) 及び比較例 2 1 (比較例 1 6で得た触媒 2 5を用いた反応) におけ る触媒活性の経時変化を示すダラフである。 発明を実施するための最良の形態
本発明 ( I ) 〜(III) の酢酸製造用触媒の説明
本発明 ( I ) の触媒
本発明 ( I ) の酢酸製造用触媒は、 エチレンと酸素とを反応させ る酢酸の製造方法において使用する触媒において、 該触媒が、 ( a ) パラジウム、 ( b ) ヘテロポリ酸及びそれらの塩よ りなる群から 選ばれた少なく と も 1種の化合物 (以下、 「 ( b ) 群化合物」 とい う) 、 及び ( c ) バナジウム元素及び/又はモ リ ブデン元素 (以下
、 「 ( c ) 群元素」 という) が、 担体に担持されている触媒であつ て、 その ( b ) 群化合物と ( c ) 群元素の質量比が ( b ) 群化合物 : ( c ) 群元素 = 1 : 0. 0 0 0 1〜 0. 2の範囲である酢酸製造 用触媒である。
本発明 ( I ) に用いられるパラジウムは、 いずれの価数を持つも のであってもよいが、 好ま しく は金属パラジウムである。 ここで言 う 「金属パラジウム」 とは、 0価の価数を持つものである。 金属パ ラジウムは、 通常、 2価及び Z又は 4価のパラジウムイオンを、 還 元剤である ヒ ドラジン、 水素等を用いて、 還元する こ とによ り得る こ とができる。 この際、 全てのパラジウムが金属状態でなく てもよ レゝ
また、 本発明 ( I ) で用いられる ( b ) 群化合物であるへテロポ リ酸は、 2種以上の無機酸素酸が縮合したものであれば、 特に制限 はない。 例えば、 そのへテロ原子はリ ン、 ケィ素、 ホウ素、 アルミ 二ゥム、 ゲノレマニウム、 チタニウム、 ジノレコニゥム、 セリ ウム、 コ バル ト及びク ロムから選ばれ、 またポリ原子と してはタ ングステン 、 ニオブ、 タ ンタル等を挙げるこ とができる。 具体的には、 例えば 、 ケィ タングステン酸、 リ ンタングステン酸、 ホウタングステン酸 を挙げるこ とができる。 さ らに好ま しく は、 ヘテロ原子がタンダス テンからなるタ ングステン系へテロポリ酸、 具体的にはケィタンダ ステン酸、 リ ンタ ングステン酸が挙げられる。 さ らには、 ケギン型 構造と して知られる下記の化学式で表されるタ ングステン系へテロ ポリ酸が実用上好ま しいが、 触媒上のへテ口ポリ酸が全てこの構造 を取り得なく ても構わない。
1 — 1 2— リ ンタ ングステン酸 : H3 [ PW12 O40] · x H2 O 1 — 1 2 —ケィ タングステン酸 : H4 [ S i W12 O40] · x H2 O (ただし、 xは 1以上の整数である)
ケギン構造以外のへテロポリ酸と しては、 ウェルス— ドーソ ン型 、 アンダーソン一エバンス一ペアロ フ構造などが知られている。 へ テロポリ酸は、 また、 「ポリ オキソァ二オン」 、 「ポリ オキソ金属 塩」 または 「酸化金属クラスター」 と して知られている。 ヘテロポ リ酸は、 通常高分子量、 例えば、 5 0 0〜 1 0 0 0 0の範囲の分子 量を有し、 二量体錯体、 三量体錯体等の複数体錯体も含む。
さ らに、 本発明 ( I ) で用いられる ( b ) 群化合物であるへテロ ポリ 酸の塩は、 2種以上の無機酸素酸が縮合して生成した酸の水素 原子の一部又は全部を置換した金属塩あるいはォニゥム塩である。 ヘテロポリ酸の水素原子を置換した金属は、 周期律表における 1〜 1 6族の元素よ りなる群から選ばれた少なく と も 1種以上の元素で あり、 またへテロポリ酸のォニゥム塩と してはアンモニゥムゃアミ ン類とのアンモニゥム塩などが例示される。 これらのヘテロポリ酸 の中でも、 リ チウム、 ナ ト リ ウム、 カ リ ウム、 セシウム、 マグネシ ゥム、 ノくリ ウム、 銅、 金、 ガリ ウム、 ク ロ ム、 マンガン、 コバル ト 及びニッケルの金属塩が特に好ま しい。
さ らに、 触媒性能上並びに実用上好ま しいヘテロポリ酸の塩と し ては、 例えば、 リ ンタングステン酸のリ チウム塩、 リ ンタンダステ ン酸のナ ト リ ウム塩、 リ ンタングステン酸の銅塩、 ケィ タンダステ ン酸のリ チウム塩、 ケィ タ ングステン酸のナ ト リ ゥム塩及びケイ タ ンダステン酸の銅塩を挙げるこ とができるが、 これらに限定される ものではない。
本発明 ( I ) に用いられる ( c ) 群元素であるバナジウム元素及 びノ又はモリ ブデン元素の触媒上の形態については、 特に制限はな く 、 金属の状態であっても又は化合物の状態であってもよい。 具体 的には、 例えば、 二酸化バナジン、 五酸化バナジン、 三酸化モ リ ブ デン等の酸化物、 又はバナジウム元素及び/又はモリ ブデン元素を 骨格内に有するヘテロポリ酸及びそれらの塩等を挙げるこ とができ るが、 これらに限定されるものではない。
本発明 ( I ) で用いられる ( c ) 群元素と してのバナジウム元素 及び 又はモリ ブデン元素を骨格内に有するヘテロポリ酸について は、 ヘテロポリ酸の骨格中にバナジウム及び Z又はモリ ブデンが少 なく とも 1種含まれていれば、 特に制限はない。 具体的には、 例え ば、 リ ンモリ ブデン酸、 ケィモリ ブデン酸、 ホウモリ ブデン酸、 リ ンバナ ドモリ ブデン酸、 ケィバナ ドモリ ブデン酸、 ホウバナ ドモリ ブデン酸、 リ ンバナ ドタングステン酸、 ケィバナ ドタングステン酸 、 ホウバナ ドタングステン酸等を挙げるこ とができるが、 これらに 限定されるものではない。
( c ) 群元素と してのバナジウム元素及びノ又はモリ ブデン元素 を骨格内に有するヘテロポリ酸と しては、 下記のへテロポリ酸が特 に好ま しい。
リ ンモリ ブデン酸 : Η3 [ ΡΜ ο 1204。] · χ Η2
ケィモリ ブデン酸 : H4 [ S i M o 12 O40] · x H2 O
ケィバナ ドタングステン酸 : Η4 + π [ S i VnW12_n O40] · x H O
リ ンバナ ドタ ングステン酸 : H3+n [ P V nW12_nO 40] · X H2O ケィバナ ドモリ ブデン酸 ·· H 4 + n [ S i VnM ο 12_π O40] · x H O
リ ンバナ ドモ リ ブデン酸 : H3+n [ P V„M ο 12π04。] · χ Η20 ケィモ リ ブ ドタングステン酸 : Η4 + η [ S i Μ 0 nW12_n Ο40] · χ Η2 Ο
リ ンモ リ ブ ドタ ングステン酸 : Η3 + η [ P M o nW12 - n Ο40] ' χ H 2 O
(ただし、 n は 1 〜 1 1 の整数であり 、 xは 1以上の整数である
)
さ らに ( c ) 群元素と してのバナジウム及び 又はモリ ブデン含 有へテロポリ酸の塩の具体例と しては、 2種以上の無機酸素酸が縮 合して生成した酸の水素原子の一部又は全部を置換した金属塩又は ォニゥム塩を挙げるこ とができる。 金属塩の元素と しては周期律表 における 1 〜 1 6族の元素よ り なる群から選ばれた少なく とも 1種 の元素が例示され、 またォニゥム塩と してはアンモニゥムゃアミ ン 類とのアンモニゥム塩などが例示される。 これらのヘテロポリ酸塩 の中でも、 リ チウム、 ナ ト リ ウム、 カ リ ウム、 セシウム、 マグネシ ゥム、 ノ リ ウム、 銅、 金、 ガリ ウム、 ク ロム、 マンガン、 コバル ト 及びニッケルの塩が特に好ま しい。
さ らに、 触媒性能上並びに実用上好ま しい ( c ) 群元素と しての バナジウム及びノ又はモリ ブデン含有へテロポリ酸の塩の具体例と しては、 リ ンバナ ドタングステン酸のリ チウム塩、 リ ンバナ ドタン ダステン酸のナ ト リ ウム塩、 リ ンバナ ドタングステン酸の銅塩、 ケ ィバナ ドタングステン酸のリ チウム塩、 ケィバナ ドタングステン酸 のナ ト リ ゥム塩及びケィバナ ドタングステン酸の銅塩、 リ ンバナ ド モリ ブデン酸のナ ト リ ゥム塩、 ケィバナ ドモリ ブデン酸のナ ト リ ゥ ム塩等を挙げるこ とができるが、 これらに限定されるものではない 本発明 ( I ) に用いられる担体には特に制限はなく 、 一般に担体 と して用いられている多孔質物質であればよい。 好ましく は、 シリ 力、 アルミナ、 シリ カ一アルミナ、 珪藻土、 モンモリ ロナイ ト又は チタニア等が挙げられ、 よ り好ま しく はシリ カである。 また、 担体 の形状には特に制限はない。 具体的には、 粉末状、 球状、 ペレッ ト 状等が挙げられるが、 これらに限定されるものではない。
さ らに、 本発明 ( I ) で用いられる担体の粒子径に特に制限はな い。 好ま しく は、 1 〜 1 0 mmの範囲であるのが好ま しく 、 よ り好 ま しく は 3〜 8 mmである。 管状反応器に触媒を充填して反応を行 う場合、 粒子径が l mmよ り小さいとガスを流通させる ときに大き な圧力損失が生じ、 有効にガス循環ができなく なる恐れがある。 ま た粒子径が 1 0 mmよ り大きいと、 触媒内部まで反応ガスが拡散で きなく な り 、 有効に触媒反応が進まなく なる恐れがある。
担体の細孔構造は、 その細孔直径が 1 〜 1 0 0 0 n mにあるこ と が好ま しく 、 2〜 8 0 0 n mの間がよ り好ま しい。
本発明 ( I ) の触媒の構造は正確にはわからないが、 ( a ) パラ ジゥムは金属状態のパラジウムであるのが好ま しく 、 また ( b ) 群 化合物は、 複合酸化物と異なり、 明らかな構造を持ち、 かつ酸性を 示すものである。 そして ( c ) 群元素は、 ( a ) ( b ) の極近傍に ある と考えられる。 そのため、 ( a ) パラジウム、 ( b ) 群化合物 及び ( c ) 群元素の相互作用によ り 、 従来法に比べ、 活性が高く 、 経時変化の少ない触媒性能を示すものと思われる。
本発明 ( I ) の触媒の ( a ) パラジウム、 ( b ) 群化合物及び ( c ) 群元素が担体中に担持されている触媒中の ( a ) ( b ) ( c ) の組成は、 ( a ) 0. 1 〜 1 0質量0/。 : ( b ) 0 . 1 〜 9 0質量0 /。 : ( c ) ( b ) に対する質量比で ( b ) 群化合物 : ( c ) 群元素 = 1 : 0. 0 0 0 1 〜 0. 2であるのが好ま しく 、 特に ( a ) 0. 5 〜 5. 0質量0 /。 : ( b ) 1 . 0〜 5 0質量0/。 : ( c ) ( b ) に対す る質量比で ( b ) 群化合物 : ( c ) 群元素 = 1 : 0. 0 0 0 1 〜 0 . 2である場合によ り好ま しい結果を与える。
また、 特に本発明 ( I ) の触媒において、 ( c ) 群元素を含む化 合物が、 バナジウム元素及び Z又はモリ ブデン元素を含有するへテ 口ポリ酸 (以下 ( c ) 群へテロポリ酸という) 及び 又はその塩で ある場合、 本発明 ( I ) の触媒の ( a ) パラジウム、 ( b ) 群化合 物及び ( c ) 群へテロポリ酸及び 又はその塩が担体に保持されて いる触媒中の ( a ) ( b ) ( c ) の組成は、 ( a ) 0. 1 〜 1 0質 量% : ( b ) 0. 1 〜 9 0質量% : ( c ) ( b ) に対する質量比で ( b ) 群化合物 : ( c ) 群へテロポリ酸及びそれらの塩から選ばれ た少なく とも 1種の化合物 = 1 : 0. 0 0 5〜 0. 2であるのが好 ましく 、 特に ( a ) 0. 5〜 5 . 0質量0 /0 : ( b ) 1 . 0〜 5 0質 量% : ( c ) ( b ) に対する質量比で ( b ) 群化合物 : ( c ) 群へ テロポリ酸及びそれらの塩から選ばれた少なく とも 1種の化合物 = 1 : 0. 0 0 5〜 0. 2である場合によ り好ましい結果を与える。 なお、 ヘテロポリ酸及び 又はその塩は、 本発明の触媒中で、 種 々の水和物の構造を持ちう ると考えられる。 ここで用いているへテ 口ポリ酸及びノ又はその塩の質量については、 無水物の状態の分子 式で換算した値を用いている。
既に、 従来技術と して例示した特開平 7 — 8 9 8 9 6号公報及び 特開平 9 一 6 7 2 9 8号公報で示される酢酸製造用触媒において、 その請求項及び発明の詳細な説明において、 触媒の構成要素と して ( c ) 群元素であるバナジウム又はモリブデンを含有する触媒につ いて記述があるが、 ( b ) 群化合物と ( c ) 群元素とを特定の割合 で含有する触媒については、 その有効性も含めてなんら述べられて はいない。 本発明者らは、 この点について詳細に検討を行った。 その結果、 驚くべきことに、 本発明 ( I ) の酢酸製造用触媒の構 成要素のうち、 ( b ) 群化合物と ( c ) 群元素の質量比が ( b ) 群 化合物 : ( c ) 群元素 = 1 : 0 . 0 0 0 1 〜 0. 2、 好ましく は ( b ) 群化合物 : ( c ) 群元素 = 1 : 0. 0 0 0 2〜 0. 1 5である 場合に、 酢酸の空時収率が高く 、 触媒の経時変化の少ないことを見 出したのである。
( b ) 群化合物と ( c ) 群元素とを上記特定の範囲の質量比で混 在させることによ り、 触媒活性が向上し、 かつ経時変化の少なくな ることの原因については、 現在まだ正確には理解されたわけではな いが、 以下のよ うに推察される。
まず、 バナジウムやモリ ブデンは、 従来、 酸化触媒と して用いら れることが知られているが、 バナジウム元素及び Z又はモリブデン 元素単独で、 エチレンから一段で酢酸を製造する方法には有効では ない。 事実、 実施例で示されるようにエチレンから一段で酢酸を製 造する方法と して高い活性を得ることはできないことを確認した。 また、 ( a ) パラジウム及び ( c ) バナジウム元素及び 又はモリ ブデン元素の組み合わせ、 及び ( b ) 群化合物及び ( c ) バナジゥ ム元素及び Z又はモリブデン元素の組み合わせにおいても、 ェチレ ンから高い活性で酢酸を得ることはできなかった。 さらに、 ( c ) 群元素の ( a ) パラジウムと ( b ) 群化合物からなる触媒に対する 添加割合によつて、 酢酸の活性及び選択性は変化し、 触媒の性能が 従来法よ り も向上する範囲と低下する範囲があることがわかった。 そして、 鋭意検討の結果、 ( b ) 群化合物に対する ( c ) 群元素の 比が重要であることが判明した。
例えば、 ( b ) 群化合物に対する ( c ) 群元素の質量比が ( b ) 群化合物 : ( c ) 群元素 = 1 : 0. 0 0 0 1未満となるよ うな量で は、 ( b ) 群化合物と ( c ) 群元素の間に十分な相互作用が生まれ ず、 効果が現れないと考えられる。 一方で、 ( b ) 群化合物 : ( c ) 群元素 = 1 : 0. 2超となるよ うな場合には、 ( c ) 群元素の ( b ) 群化合物に対する相互作用が大きく なりすぎるために、 従来法 に比べ、 反応活性及び選択率が低下し、 酢酸の生産性を低下させて しま う と考えられる。 以上のよ うな理由で、 ( b ) 群化合物と ( c ) 群元素との間の質 量比には最適値が存在するのであると考えられるのである。
また、 前述した特開平 7 — 8 9 8 9 6号公報及び特開平 9 一 6 7 2 9 8号公報で示される酢酸製造用触媒において、 その特許請求の 範囲及び発明の詳細な説明の項において、 触媒の構成要素と して、 バナジウム及び 又はモリ ブデンを含むヘテロポリ酸、 すわなち、 ( c ) 群へテロポリ酸が示されているが、 ( b ) 群化合物と ( c ) 群へテロポリ酸及びそれらの塩から選ばれた少なく とも 1種を特定 の割合で含有する触媒の有効性については何らの開示も存在しない 。 本発明者らは、 この点について、 詳細に検討を行った。
その結果、 驚くべきことに、 本発明 ( I ) の酢酸製造用触媒の構 成要素のうち、 ( b ) 群化合物と ( c ) 群へテロポリ酸及びそれら の塩から選ばれた少なく とも 1種の化合物の質量比が、 ( b ) 群化 合物 : ( c ) 群へテロポリ酸及びそれらの塩から選ばれた少なく と も 1種の化合物 = 1 : 0. 0 0 5〜 0. 2、 よ り好ましく は ( b ) 群化合物 : ( c ) 群へテロポリ酸及びそれらの塩から選ばれた少な く とも 1種の化合物 = 1 : 0. 0 0 7〜 0 . 1 5である場合に酢酸 の空時収率が高く、 触媒の経時変化が少ないこ とを見出した。 なお 、 ヘテロポリ酸及びノ又はその塩は、 触媒中で、 種々の水和物の構 造を持ちう ると考えられる。 ここで用いているへテロポリ酸及び Z 又はその塩の質量については、 無水物の状態の分子式で換算した値 を用いている。
( b ) 群化合物と ( c ) 群へテロポリ酸及びそれらの塩から選ば れた少なく とも 1種の化合物をある特定の範囲の質量比で混在させ ることで、 触媒活性が向上し、 かつ、 経時変化が少ないことの原因 については、 現在まだ正確に理解されているわけではないが、 以下 のよ うに推察される。 まず、 ( C ) 群へテロポリ酸及びそれらの塩から選ばれた少なく とも 1種の化合物を単独で用いた場合、 特開平 7 — 8 9 8 9 6号公 報及び特開平 9 一 6 7 2 9 8号公報に例示されているよ うに、 ( b ) 群化合物よ り も低い活性及び選択性を示す。 事実、 後述の実施例 及び比較例においても、 その効果が確認されている。 従って、 ェチ レンと酸素から酢酸を製造する際には、 ( b ) 群化合物と ( c ) 群 ヘテロポリ酸及びそれらの塩から選ばれた少なく と も 1種の化合物 との間の相互作用が重要な要素になっているといえる。
その結果、 例えば、 ( b ) 群化合物に対する ( c ) 群へテロポリ 酸及びそれらの塩から選ばれた少なく とも 1種の化合物の質量比が 、 ( b ) 群化合物 : ( c ) 群へテロポリ酸及びそれらの塩から選ば れた少なく とも 1種の化合物 = 1 : 0. 0 0 5未満となるよ うな少 量では、 ( b ) 群化合物と ( c ) 群へテロポリ酸及びそれらの塩か ら選ばれた少なく とも 1種の化合物の間に十分な相互作用が生まれ ず、 効果が現れないと考えられる。
一方で、 ( b ) 群化合物 : ( c ) 群へテロポリ酸及びそれらの塩 から選ばれた少なく とも 1種の化合物 = 1 : 0. 2以上となるよ う な場合には、 単独で用いた場合には触媒性能が低いへテ口ポリ酸で ある ( c ) 群へテロポリ酸及びそれらの塩から選ばれた少なく とも 1種の化合物の量が多くなるために、 ( b ) 群化合物のみを用いた 触媒よ り も反応活性及び選択性が低下し、 かつ、 経時変化が大きく なってしまう と考えられる。
以上のよ うな理由で、— ( b ) 群化合物と ( c ) 群へテロポリ酸及 びそれらの塩から選ばれた少なく とも 1種の化合物との間の質量比 に最適値が存在するのであると考えられる。
本発明 (II) の触媒
本発明 (II) の触媒は、 エチレンと酸素とを反応させる酢酸の製 W 造方法において使用する触媒において、 該触媒が、 ( a ) パラジゥ ム、 ( b ) ヘテロポリ酸及びそれらの塩よ りなる群から選ばれた少 なく とも 1種の化合物、 ( c ) バナジウム元素及び 又はモリブデ ン元素、 及び ( d ) 周期律表の 1 4族元素、 1 5族元素及び 1 6族 元素よ りなる群から選ばれた少なく とも 1種の元素 (以下、 「 ( d ) 群元素」 という) が、 担体に担持されている触媒であって、 その
( b ) 群化合物と ( c ) 群元素の質量比が ( b ) 群化合物 : ( c ) 群元素 = 1 : 0. 0 0 0 1 〜 0. 2の範囲である酢酸製造用触媒で ある。
本発明 (II) の触媒は、 本発明 ( I ) の触媒に、 ( d ) 群元素を 含有させた 4群系触媒である。 本発明 (II) の触媒に用いられる ( a ) パラジウム、 ( b ) 群化合物及び ( c ) 群元素に関しては、 本 発明 ( I ) の触媒の場合と同様である。 さ らに、 担体についても本 発明 ( I ) の触媒の場合と同様である。
本発明 (Π) で用いられる ( d ) 群元素の具体例と しては、 スズ 、 鉛、 アンチモン、 ビスマス、 セ レン、 テルル等を挙げるこ とがで きる。 好ましく は、 テルル及びセ レンである。
本発明 (Π) の触媒の ( a ) パラジウム、 ( b ) 群化合物、 ( c ) 群元素、 及び ( d ) 群元素が担体中に担持されている触媒中の ( a ) ( b ) ( c ) ( d ) の組成は、 ( a ) 0. 1〜: L 0質量0 /。 : ( b ) 0. 1 〜 9 0質量% : ( c ) ( b ) に対する質量比で ( b ) 群 化合物 : ( c ) 群元素 = 1 : 0. 0 0 0 1 〜 0. 2 : ( d ) 0. 0 1 〜 5 . 0質量0 /。であるのが好ましく、 特に ( a ) 0. 5〜 5 . 0 質量% : ( b ) 1 . 0〜 5 0質量% : ( c ) ( b ) に対する質量比 で ( b ) 群化合物 : ( c ) 群元素 = 1 : 0. 0 0 0 5〜 0. 1 5 : ( d ) 0. 0 5〜 2 . 0質量%である場合によ り好ましい結果を与 える。 また、 本発明 ( I ) の触媒の場合と同様に、 ( b ) 群化合物と ( c ) 群元素の質量比が重要であり、 その質量比は ( b ) 群化合物 : ( c ) 群元素 = 1 : 0. 0 0 0 1 〜 0. 2であるのがよく、 好まし く は ( b ) 群化合物 : ( c ) 群元素 = 1 : 0. 0 0 0 2〜 0. 1 5 である。
また、 特に本発明 ( I I ) の触媒において、 ( c ) 群元素を含む 化合物が、 バナジウム元素及び Z又はモリブデン元素を含有するへ テロポリ酸及び Z又はその塩である場合、 本発明 ( I I ) の触媒の
( a ) パラジウム、 ( b ) 群化合物、 ( c ) 群へテロポリ酸及びそ れらの塩から選ばれた少なく とも 1種の化合物、 及び ( d ) 群元素 を含有する触媒の ( a ) ( b ) ( c ) ( d ) の組成は、 ( a ) 0. 1〜: L 0質量0 /0 : ( b ) 0. 1 〜 9 0質量% : ( c ) ( b ) に対す る質量比で ( b ) 群化合物 : ( c ) 群へテロポリ酸及びそれらの塩 から選ばれた少なく とも 1種の化合物 = 1 : 0. 0 0 5〜 0. 2 :
( d ) 0. 0 1 〜 5. 0質量0 /。であるのが好ましく、 特に ( a ) 0 . 5〜 5. 0質量0 /。 : ( b ) 1 . 0〜 5 0質量% : ( c ) ( b ) に 対する質量比で ( b ) 群化合物 : ( c ) 群へテロポリ酸及びそれら の塩から選ばれた少なく とも 1種の化合物 = 1 : 0. 0 0 5〜 0. 2 : ( d ) 0. 0 5〜 2 . 0質量%である場合によ り好ましい結果 を与える。
また、 本発明 ( I ) の触媒と同様に、 ( b ) 群化合物と ( c ) 群 ヘテロポリ酸及びそれらの塩から選ばれた少なく とも 1種の化合物 の質量比が重要であり、 その質量比は、 好ましく は ( b ) 群化合物 : ( c ) 群へテ口ポリ酸及びそれらの塩から選ばれた少なく とも 1 種の化合物 = 1 : 0. 0 0 5〜 0. 2であり、 よ り好ましく は ( b ) 群化合物 : ( c ) 群へテロポリ酸及びそれらの塩から選ばれた少 なく とも 1種の化合物 = 1 : 0. 0 0 7〜 0. 1 5である。 なお、 ヘテロポリ酸及び 又はその塩は、 本発明の触媒中で、 種々の水和 物の構造を持ちうると考えられる。 ここで用いているへテロポリ酸 及び 又はその塩の質量については、 無水物の状態の分子式で換算 した値を用いている。
本発明(III) の触媒
本発明(III) の触媒は、 エチレンと酸素とを反応させる酢酸の製 造方法において使用する触媒において、 該触媒が、 ( a ) パラジゥ ム、 ( b ) ヘテロポリ酸及びそれらの塩よ りなる群から選ばれた少 なく とも 1種の化合物、 ( c ) バナジウム元素及び 又はモリブデ ン元素、 ( d ) 周期律表の 1 4族元素、 1 5族元素及び 1 6族元素 よ りなる群から選ばれた少なく とも 1種の元素、 及び ( e ) 周期律 表の 7族元素、 8族元素、 9族元素、 1 0族元素、 1 1族元素及び 1 2族元素よ りなる群から選ばれた少なく とも 1種の元素 (以下、
「 ( e ) 群元素」 という) が、 担体に担持されている触媒であって 、 その ( b ) 群化合物と ( c ) 群元素の質量比が ( b ) 群化合物 :
( c ) 群元素 = 1 : 0. 0 0 0 1〜 0. 2の範囲である酢酸製造用 触媒である。
本発明(III) の触媒は、 本発明 (II) の触媒に、 ( e ) 群元素を 含有させた 5群系触媒である。 本発明(III) の触媒に用いられる ( a ) パラジウム、 ( b ) 群化合物、 ( c ) 群元素及び ( d ) 群元素 に関しては、 本発明 (II) の触媒の場合と同様である。 さらに、 担 体についても本発明 (II) の触媒の場合と同様である。
本発明(III) で用いられる ( e ) 群元素の具体例と しては、 ク ロ ム、 マンガン、 レニウム、 ノレテニゥム、 イ リ ジウム、 ロジウム、 二 ッゲル、 金及び亜鉛が挙げられる。 特に好ましく は、 銅、 金及び亜 鉛である。
本発明(III) の触媒の ( a ) パラジウム、 ( b ) 群化合物、 ( c ) 群元素、 ( d ) 群元素及び ( e ) 群元素が、 担体中に担持されて いる触媒中の ( a ) ( b ) ( c ) ( d ) ( e ) の組成は、 ( a ) 0 . 1 〜 1 0質量0 /0 : ( b ) 0. 1 〜 9 0質量0 /。 : ( c ) ( b ) に対 する質量比で ( b ) 群化合物 : ( c ) 群元素 = 1 : 0. 0 0 0 1 〜 0. 2 : ( d ) 0. 0 1 〜 5. 0質量% : ( e ) 0. 0 1 〜 5. 0 質量%であるのが好ましく、 特に ( a ) 0. 5〜 5. 0質量0 /。 : ( b ) 1 . 0〜 5 0質量% : ( c ) ( b ) に対する質量比で ( b ) 群 化合物 : ( c ) 群元素 = 1 : 0. 0 0 0 5〜 0. 1 5 : ( d ) 0. 0 5〜 2 . 0質量% : ( e ) 0. 0 5〜 2 . 0質量%である場合に よ り好ましい結果を与える。
また、 本発明 ( I ) の触媒の場合と同様に ( b ) 群化合物と ( c ) 群元素の質量比が重要であり、 その質量比は ( b ) 群化合物 : ( c ) 群元素 = 1 : 0. 0 0 0 1 〜 0. 2であるのがよく、 好ましく は ( b ) 群化合物 : ( c ) 群元素 = 1 : 0. 0 0 0 2〜 0. 1 5で ある。
また、 特に本発明 ( I I I ) の触媒において、 ( c ) 群元素を含 む化合物が、 バナジウム元素及び Z又はモリ ブデン元素を含有する ヘテロポリ酸及び Z又はその塩である場合、 本発明 ( I I I ) の触 媒の ( a ) パラジウム、 ( b ) 群化合物、 ( c ) 群へテロポリ酸及 びそれらの塩から選ばれた少なく とも 1種の化合物、 ( d ) 群元素 、 及び ( e ) 群元素を含有する触媒の ( a ) ( b ) ( c ) ( d ) ( e ) の組成は、 ( a ) 0. 1 〜 : L 0質量0/。 : ( b ) 0. 1 〜 9 0質 量。 /。 : ( c ) ( b ) に対する質量比で ( b ) 群化合物 : ( c ) 群へ テロポリ酸及びそれらの塩から選ばれた少なく とも 1種の化合物 = 1 : 0. 0 0 5〜 0. 2 : ( d ) 0 . 0 1 〜 5 . 0質量0/。 : ( e ) 0. 0 1 〜 5. 0質量0 /0であるのが好ましく、 特に ( a ) 0. 5〜 5質量% : ( b ) 1 . 0〜 5 0質量% : ( c ) ( b ) に対する質量 比で ( b ) 群化合物 : ( c ) 群へテロポリ酸及びそれらの塩から選 ばれた少なく とも 1種の化合物 = 1 : 0. 0 0 5〜 0. 2 : ( d ) 0. 0 5〜 2. 0質量0 /。 : ( e ) 0. 0 5〜 2. 0質量0 /。である場 合によ り好ましい結果を与える。
また、 本発明 ( I ) の触媒と同様に、 ( b ) 群化合物と ( c ) 群 へテ口ポリ酸及びそれらの塩から選ばれた少なく とも 1種の化合物 の質量比が重要であり、 その質量比は、 好ましく は ( b ) 群化合物 : ( c ) 群へテロポリ酸及びそれらの塩から選ばれた少なく とも 1 種の化合物 = 1 : 0. 0 0 5〜 0. 2であり、 よ り好ましくは ( b ) 群化合物 : ( c ) 群へテロポリ酸及びそれらの塩から選ばれた少 なく とも 1種の化合物 = 1 : 0. 0 0 7〜 0. 1 5である。 なお、 ヘテロポリ酸及び Z又はその塩は、 本発明の触媒中で、 種々の水和 物の構造を持ちう る と考えられる。 ここで用いているへテロポリ酸 及び/又はその塩の質量については、 無水物の状態の分子式で換算 した値を用いている。
元素分析の方法
本発明 ( I ) 〜(III) の触媒中に含まれる元素の量は、 以下の方 法で測定できる。 一定量の触媒を、 乳鉢等で粉砕して均一な粉末と した後、 その触媒粉末をフッ酸、 王水等の酸に加えて加熱攪拌し、 溶解させて均一な溶液とする。 次に、 その溶液をイオンを含まない 純水によって適当な濃度まで希釈し、 分析用の溶液とする。 その溶 液をプラズマ発光分析装置 (例えば、 セイコー電子工業株式会社製 S P S - 1 7 0 0 ) によって、 定量分析する。 装置の精度は、 市販 されている各元素の標準試薬によって容易に補正することができ、 再現性のある定量が可能である。
本発明 (IV) の齚酸製造用触媒の製造方法の説明
本発明 (IV) は、 本発明 ( I ) 〜(ΠΠ の酢酸製造用触媒の製造 方法である。
本発明 (IV) の製造方法 ( 1 )
本発明 (IV) の製造方法 ( 1 ) は、 以下の第 1 工程及び第 2工程 を含む本発明 ( I ) の触媒の製造方法である。
第 1工程
担体に、 ( a ) パラジウムを担持して、 ( a ) パラジウム担持触 媒を得る工程。
第 2工程
第 1 工程で得た ( a ) パラジウム担持触媒に、 ( b ) 群化合物及 び ( c ) 群元素を担持して、 酢酸製造用触媒を得る工程。
この第 1 工程は、 ( a ) パラジウムを担体に担持して、 ( a ) パ ラジゥム担持触媒を得る工程である。
本発明 (IV) の製造方法 ( 1 ) において、 ( a ) パラジウムの原 料化合物は、 特に限定されるものではない。 具体的には、 金属パラ ジゥム、 塩化パラジウム等のハロゲン化物、 酢酸パラジウム等の有 機酸塩、 硝酸パラジウム等の硝酸塩、 酸化パラジウム、 テ ト ラク ロ 口パラジウム酸ナ ト リ ゥム、 テ ト ラク ロ ロノ、。ラジウム酸カ リ ゥム等 が挙げられ、 さ らにァセチルァセ トナー ト、 二 ト リノレ、 アンモニゥ ム等の有機化合物を配位子に持つ錯体も挙げられる。 特に好ま しく は、 テ ト ラク ロ 口パラジウム酸ナ ト リ ウム、 テ ト ラク ロ 口パラジゥ ム酸カ リ ウム、 硝酸パラジウム等が挙げられる。
( a ) パラジウムの担体への担持方法には、 特に制限はない。 い かなる方法で担持を行ってもよく 、 例えば、 水又はアセ ト ンなどの 適当な溶媒、 塩酸、 硝酸、 酢酸などの無機酸又は有機酸、 或いはそ れらの溶液に該原料化合物を溶解し、 これに担体を含浸した後、 乾 燥するなどの方法で担体に担持する こ とができる。
第 1 工程において ( a ) パラジウムを担体に担持した後に、 ( a ) パラジウムを金属状態へ転化するこ とが好ま しい。 その際、 金属 状態への転化方法に特に制限はなく 、 公知の方法を用いるこ とがで きる。 具体的には、 例えば、 パラジウム化合物を担持した触媒を、 そのままで、 或いは水酸化ナ ト リ ウム、 メ タケイ酸ナ ト リ ウム及び ノ又は水酸化バリ ゥム等の水溶液で処理し、 パラジウム化合物を酸 化物又は水酸化物に変換した後に、 ヒ ドラジン、 水素などの適切な 還元剤によ り金属パラジウムに還元する方法などが挙げられる。
( a ) パラジウムの金属状態への転化操作は、 ( a ) パラジウム を担持した触媒を単離した後に行っても、 又は担持操作に引き続い て行ってもよい。 条件が許せば、 単離するこ となく 、 担持操作に引 き続いて行う こ とが好ま しい。
以上のよ う にして、 ( a ) パラジウム担持触媒を得るこ とができ る。
本発明 (IV) の製造方法 ( 1 ) の第 2工程は、 第 1 工程で得られ たパラジウム担持触媒に、 ( b ) 群化合物及び ( c ) 群元素を担持 するこ とによ り、 本発明 ( I ) の触媒を得る方法である。
この第 2工程において用いられる ( b ) 群化合物は、 本発明 ( I ) の触媒の場合と同様である。
第 2工程において用いられる ( c ) 群元素の原料化合物と しては 、 特に制限されるものではなく 、 該元素そのもの、 あるいは該元素 を含有する酸化物、 塩化物、 硫化物等が挙げられる。 具体的には、 例えば、 三塩化バナジン、 塩化バナジル、 ォキシ塩化バナジル等の 塩化物、 二酸化バナジン、 三酸化バナジン、 五酸化バナジン、 バナ ジン酸、 モリ ブデン酸、 メ タバナジン酸、 メ タバナジン酸アンモニ ゥム、 メ タバナジン酸ナ ト リ ウム、 モリ ブデン酸アンモニゥム、 モ リ ブデン酸力 リ ゥム等の酸化物及びそれらの塩、 スルファ トバナジ ン酸、 硫酸バナジルなどが挙げられ、 さ らにァセチルァセ トナー ト 等の有機化合物を配位子に持つ錯体、 及びバナジウム及び Z又はモ リブデンを骨格内に含有するへテロポリ酸及びそれらの塩も挙げら れる。
ヘテロポリ酸及びそれらの塩と しては、 具体的には、 例えば、 リ ンモリ ブデン酸、 リ ンバナ ドモリ ブデン酸、 リ ンバナ ドタンダステ ン酸、 ケィモリブデン酸、 ゲイバナ ドモリ ブデン酸、 ケィバナ ドタ ングステン酸などが挙げられる。
これらの ( C ) 群元素の原料化合物と しては、 好ましく は、 メタ バナジン酸アンモニゥム、 モリ ブデン酸アンモニゥム、 及びバナジ ゥム及び 又はモリ ブデンを骨格内に含有するへテロポリ酸が挙げ られる。
( b ) 群化合物の担持方法については特に制限はなく、 公知の方 法を用いることができる。 具体的には、 含浸法、 スプレー法、 蒸発 乾固法、 混練法、 付着法等の手段が挙げられるが、 これらに限定さ れるものではない。 含浸の際に用いる溶媒と しては、 無機酸を溶解 させるものであればいずれでもよく、 水、 有機溶媒及びそれらの混 合物を用いるこ とができる。 好ましく は、 水、 アルコール等が用い られる。
( c ) 群元素の担持方法については特に制限はなく、 公知の方法 を用いることができる。 具体的には、 含浸法、 スプレー法、 蒸発乾 固法、 混練法、 付着法等の手段が挙げられるが、 これらに限定され るものではない。 含浸の際に用いる溶媒と しては、 無機酸を溶解さ せるものであればいずれでもよく、 水、 有機溶媒及びそれらの混合 物を用いることができる。 好ましく は、 水、 アルコール等が用いら れる。
( b ) 群化合物及び ( c ) 群元素の担体への担持は、 いかなる順 序で行ってもよレ、。 すなわち、 各々の担持を同時に行ってもよいし 、 相前後して行ってもよいけれども、 一般には同時に行うのが好ま しい。
以上のよ うにして、 本発明 ( I ) の触媒を得ることができる。 本発明 (IV) の製造方法 ( 2 )
本発明 (IV) の製造方法 ( 2 ) は、 本発明 (II) の触媒の製造方 法である。
本発明 (Π) の触媒は、 本発明 (IV) の製造方法 ( 1 ) の第 1ェ 程または第 2工程のいずれかまたはその両方において、 ( d ) 群元 素を添加することによ り製造できる。
すなわち、 この第 1工程は、 担体に ( a ) ノ、。ラジウム、 又はパラ ジゥム及び ( d ) 群元素を担持して、 ( a ) パラジウム担持触媒を 得る工程である。
第 1工程で用いられる ( a ) パラジウムの原料化合物、 金属状態 へ転化する場合の転化方法、 及び担体への担持方法は、 本発明 (IV ) における本発明 ( I ) の触媒の製造方法 ( 1 ) の第 1工程の場合 と同様である。
第 1工程において、 ( d ) 群元素を添加する場合、 ( d ) 群元素 の触媒調製に用いられる原料化合物と しては、 特に制限されるもの ではなく、 該元素そのもの、 あるいは該元素を含有するハロゲン化 物、 硝酸塩、 酢酸塩、 リ ン酸塩、 硫酸塩、 酸化物等が挙げられ、 さ らにァセチルァセ トナー ト、 二 ト リル等の有機物を配位子に持つ錯 体等も挙げられる。
具体的には、 例えば、 塩化セ レン、 塩化テルル、 塩化ビスマス、 塩化鉛等の塩化物塩、 硝酸アンチモン、 硝酸スズ、 硝酸ビスマス、 硝酸鉛等の硝酸塩、 酢酸スズ、 酢酸ビスマス、 酢酸鉛等の酢酸塩、 酸化セ レン、 セ レン酸 (H4 S e 04 ) 及びノ又はその塩類、 亜セ レン酸 (H2 S e 03 ) 及び 又はその塩類、 酸化テルル、 テルル 酸 (H6 T e O6 ) 及び 又はその塩類、 亜テルル酸 (H2 T e O
3 ) 及びノ又はその塩類、 金属テルル、 又はアンチモン酸カ リ ウム 等が挙げられるがこれらに限定されるものではない。 好ましく は、 亜テルル酸ナ ト リ ウム、 亜テルル酸カ リ ウム、 テルル酸、 亜セレン 酸力 リ ゥム等が挙げられる。
( d ) 群元素の担体への担持方法には、 特に制限はなく 、 いかな る方法で行ってもよい。 例えば、 ( d ) 群元素の原料化合物を、 水 又はアセ ト ンなどの適当な溶媒や塩酸、 硝酸、 酢酸などの無機酸ま たは有機酸に溶解し、 これを担体に含浸した後、 乾燥するなどの方 法で担体に担持するこ とができる。
また、 担持方法の形式と しては、 含浸法、 蒸発乾固法、 混練法、 スプレー法等の手段が挙げられるが、 これらに限定されるものでは なレ、。
( a ) パラジウムの担体への担持と、 ( d ) 群元素の担体への担 持は、 いかなる順序で行ってもよレ、。 すなわち、 各々の担持を同時 に行ってもよいし、 相前後して行ってもよいけれども、 一般には ( d ) 群元素の担体への担持を ( a ) パラジウムの原料化合物の担持 と同時に行うのが好ま しい。
その後、 所望ならば、 ( a ) パラジウム担持触媒を常法によ り濾 取した後に、 ハロゲン化物ゃナ ト リ ゥム等のアルカ リ塩等の触媒反 応における反応阻害物質を取り除く ために、 水洗、 乾燥するこ とが できる。
以上のよ う にして、 ( a ) パラジウム担持触媒を得るこ とができ る。
本発明 (IV) の製造方法 ( 2 ) の第 2工程は、 第 1工程で得られ た ( a ) パラジウム担持触媒に、 ( b ) 群化合物及び ( c ) 群元素 、 又はそれらと ( d ) 群元素とを担持するこ とによ り、 本発明 (II ) の触媒を得る方法である。
第 2工程において、 ( b ) 群化合物の原料化合物及び担体への担 持方法は、 本発明 (IV) の製造方法 ( 1 ) の第 2工程の場合と同様 である。 また、 ( c ) 群元素の原料化合物及び担体への担持方法は 本発明 (IV) の製造方法 ( 1 ) の第 2工程の場合と同様である。 さ らに、 ( d ) 群元素の原料化合物及び担体への担持方法は、 本発明 (IV) の製造方法 ( 2 ) の第 1工程の場合と同様である。
第 2工程において、 ( b ) 群化合物、 ( c ) 群元素、 及び ( d ) 群元素の担体への担持は、 いかなる順序で行ってもよい。 すなわち 、 各々の担持を同時に行ってもよいし、 相前後して行ってもよいけ れども、 一般には同時に行うのが好ましい。
以上のようにして、 本発明 (II) の触媒を得るこ とができる。 本発明 (IV) の製造方法 ( 3 )
本発明 (IV) の製造方法 ( 3 ) は、 本発明(III) の触媒の製造方 法である。
本発明(III) の触媒は、 本発明 (IV) の製造方法 ( 1 ) の第 1ェ 程又は第 2工程のいずれかまたはその両方において、 ( d ) 群元素 及び Z又は ( e ) 群元素を添加するこ とによ り製造できる。
この第 1工程は、 担体に ( a ) ノ、。ラジウム、 又はパラジウム及び ( d ) 群元素及び Z又は ( e ) 群元素を担持して、 ( a ) パラジゥ ム担持触媒を得る工程である。
第 1工程で用いられる ( a ) パラジウムの原料化合物、 金属状態 に転化する場合の転化方法、 担体への担持方法は、 本発明 (IV) に おける本発明 ( I ) の触媒の製造方法 ( 1 ) の第 1工程の場合と同 様である。
また、 第 1工程において、 ( d ) 群元素を添加する場合、 ( d ) 群元素の原料化合物及び担体への担持方法は、 本発明 (IV) におけ る本発明 (Π) の触媒の製造方法 ( 2 ) の第 1工程の場合と同様で ある。
第 1工程において、 ( e ) 群元素を添加する場合、 ( e ) 群元素 の原料化合物と しては、 特に制限されるものではなく、 該元素その もの、 あるいは該元素を含有するハロ ゲン化物、 硝酸塩、 酢酸塩、 リ ン酸塩、 硫酸塩、 酸化物等が挙げられ、 さ らにァセチルァセ トナ ー ト、 二 ト リル等の有機物を配位子に持つ錯体等も挙げられる。 具体的には、 塩化ク ロ ム、 塩化マンガン、 塩化レニウム、 塩化ル テニゥム、 塩化ロジウム、 塩化ィ リ ジゥム、 塩化二ッケル、 塩化金 酸及びそれらの塩類、 塩化亜鉛等の塩化物、 硝酸ク ロ ム、 硝酸マン ガン、 硝酸ニッケル、 硝酸イ リ ジウム、 硝酸亜鉛等の硝酸塩、 酢酸 ク ロ ム、 酢酸マンガン、 酢酸レニウム、 酢酸ルテニウム、 酢酸イ リ ジゥム、 酢酸ニッケル、 酢酸亜鉛等の酢酸塩等が挙げられるが、 こ れらに限定されるものではない。 好ましく は、 塩化金酸、 塩化亜鉛 、 塩化銅、 硝酸亜鉛等が挙げられる。
( e ) 群元素の担体への担持方法には、 特に制限はなく、 いかな る方法で行ってもよい。 例えば、 ( e ) 群元素の原料化合物を、 水 又はアセ ト ンなどの適当な溶媒や塩酸、 硝酸、 酢酸などの無機酸ま たは有機酸に溶解し、 これを担体に含浸した後、 乾燥するなどの方 法で担体に担持することができる。 また、 担持方法の形式と しては 、 含浸法、 蒸発乾固法、 混練法、 スプレー法等の手段が挙げられる が、 これらに限定されるものではない。
( a ) パラジウムと- ( d ) 群元素及びノ又は ( e ) 群元素の担体 への担持は、 いかなる順序で行ってもよい。 すなわち、 各々の担持 を同時に行ってもよいし、 相前後して行ってもよい。 一般的には、 ( d ) 群元素及び ( e ) 群元素の担体への担持を、 ( a ) パラジゥ ムの原料と同時に行う ことが好ましい。 その後、 所望ならば、 ( a ) パラジウム担持触媒を常法によ り濾 取した後に、 ハロゲン化物やナ ト リ ウム等のアルカ リ塩等の触媒反 応における反応阻害物質を取り 除く ために、 水洗、 乾燥するこ とが できる。
以上のよ う にして、 ( a ) パラジウム担持触媒を得るこ とができ る。
本発明 (IV) の製造方法 ( 3 ) の第 2工程は、 第 1工程で得られ た ( a ) パラジウム担持触媒に、 ( b ) 群化合物及び ( c ) 群元素 、 又はそれらと ( d ) 群元素及び Z又は ( e ) 群元素とを担持する こ とによ り 、 本発明(III) の触媒を得る方法である。
第 2工程において、 ( b ) 群化合物の原料化合物及び担体への担 持方法については、 本発明 (IV) の製造方法 ( 1 ) の第 2工程の場 合と同様である。 また、 ( c ) 群元素の原料化合物及び担体への担 持方法は、 本発明 (IV) の製造方法 ( 1 ) の第 2工程の場合と同様 である。 さ らに、 ( d ) 群元素の原料化合物及び担体への担持方法 は、 本発明 (IV) の製造方法 ( 2 ) の第 1工程の場合と同様である 。 さ らに、 ( e ) 群元素の原料化合物及び担体への担持方法は、 本 発明 (IV) の製造方法 ( 3 ) の第 1工程の場合と同様である。
第 2工程において、 ( a ) パラジウム担持触媒への、 ( b ) 群化 合物、 ( c ) 群元素と、 ( d ) 群元素及び/又は ( e ) 群元素との 担体への担持は、 いかなる順序で行ってもよい。 すなわち、 各々の 担持を同時に行ってもよいし、 相前後して行ってもよいけれども、 一般には同時に行うのが好ま しい。
以上のよ う にして、 本発明(III) の触媒を得るこ とができる。 本発明 (V) の酢酸の製造方法の説明
本発明 (V) の酢酸の製造方法において、 エチ レン と酸素を反応 させて、 酢酸を製造する際の反応温度には、 特に制限はない。 好ま しく は 1 0 0〜 3 0 0 °Cであり 、 さ らに好ま しく は 1 2 0〜 2 5 0 °Cである。 また、 反応圧力は、 設備の点から 0. 0〜 3. 0 M P a (ゲージ圧) であるのが実用上有利であるが、 特に制限はない。 よ り好ま しく は 0. 1〜 : L . 5 MP a (ゲージ圧) の範囲である。 本発明の酢酸の製造方法において、 反応系に供給するガスは、 ェ チレンと酸素を含み、 さ らに必要に応じて窒素、 二酸化炭素、 希ガ スなどを希釈剤と して使用するこ とができる。
かかる供給ガスの全量に対して、 エチレンは 5〜 8 0容量0 /。、 特 に 8〜 5 0容量%の割合となる量で、 酸素は 1〜 1 5容量%、 特に 3〜 1 2容量%の割合となる量で、 反応系に供給されるのが好ま し レヽ。
また、 この反応系においては、 水を反応系内に存在させる と、 鲊 酸生成活性と選択率の向上、 及び触媒の活性維持に著しい効果が得 られる。 水蒸気は、 反応ガス中に 1〜 5 0容量%の範囲で含まれる のが好適であるが、 よ り好ましく は 5〜 4 0容量%である。
本発明 (V) の酢酸の製造方法において、 原料エチレンと して高 純度のものを用いるこ とが好ましいが、 メ タ ン、 ェタン、 プロパン 等の低級飽和炭化水素が混入しても差し支えない。 また、 酸素は窒 素、 炭酸ガス等の不活性ガスで希釈されたもの、 例えば、 空気の形 でも供給できるが、 反応ガスを循環させる場合には、 一般には高濃 度、 好適には 9 9 %以上の酸素を用いる方が有利である。
反応混合ガスは、 標準状態において、 空間速度 ( S V) 1 0〜 1 5 0 0 0 h r 特に 3 0 0〜 8 0 0 0 h r— 1で触媒に通すのが好 ま しい。
反応形式と しては、 特に制限はなく 、 公知の方法、 例えば、 固定 床、 流動床などの形式を採り得る。 好ま しく は、 耐蝕性を有する反 応管に前述の触媒を充填した固定床を採用する こ とが、 実用上有利 である。
以下、 実施例によ り本発明をさ らに説明するが、 これらの実施例 は本発明を説明するためのものであって、 本発明はこれらの実施例 にによ り何らの限定もされるものではない。
担体の前処理
本発明で用いた全ての担体は、 前処理と して、 1 1 0 °Cの空気下 で、 4時間乾燥を行った。
水の使用
本実施例で用いた水は、 全て脱イ オン水である。
実施例 1
シリ カ担体 [ズー ドへミー製 : KA— 1、 5 m m ] ( 6 9 g ) を、 テ ト ラク ロ 口パラジウム酸ナ ト リ ウム [田中貴金属製 : N a 2 P d C 14 ] ( 3. 8 0 g ) の水溶液 ( 4 5 m l ) へ浸漬し、 全量 を吸収させた。 次に、 これをメ タケイ酸ナ ト リ ウム 9水和物 [和光 純薬製 : N a 2 S i O3 · 9 Η2 Ο] ( 8. O g ) の水溶液 ( 1 0 0 m l ) に加え、 室温で 2 0時間静置した。 次いで、 これにヒ ドラ ジン 1水和物 [和光純薬製 : Ν2 Η4 · Η2 Ο] ( 6. 5 g ) を添 加し、 緩やかに攪拌した後、 室温で 4時間静置し、 金属パラジウム に還元した。 その後触媒を濾取し、 デカンテーシヨ ンを行った後、 ス ト ップコ ック付きのガラスカラムに移し、 4 0時間水を流通させ 、 洗浄した。 次いで、 空気気流下に 1 1 0 °Cで 4時間乾燥し、 金属 パラジウム担持触媒を得た。
さ らに、 上記金属パラジウム担持触媒に、 ケィ タ ングステン酸 2 6水和物 [日本無機化学工業製 : H4 S i W12 O40 · 2 6 H2 O] ( 2 3. 5 5 g ) 及びメ タバナジン酸アンモニゥム [和光純薬製 : NH4 V O3 ] ( 0. 0 5 3 g ) の水溶液 ( 4 5 m l ) を含浸させ た。 添加は 1 回で行い、 混合物を溶液が十分に吸収されるまで (約 3分間) 静かに撹拌回転させた。 含浸の後、 湿含浸担体を室温で 1 時間静置した。 次いで、 オーブン中にて空気下に 1 1 0 °Cで 4時間 乾燥し、 次いでデシケーター中で一晚放置した。 これによ り酢酸製 造用触媒 1 を得た。
実施例 2
実施例 1 においてメ タパナジン酸ァンモニゥムの代わりに、 モ リ ブデン酸アンモニゥム 4水和物 [和光純薬 : (NH4 ) 6 M o 7 O 24 · 4 Η2 Ο] ( 0. 8 8 5 g ) を用いた以外は、 実施例 1 と同様 に操作して、 齚酸製造用触媒 2を得た。
実施例 3
シリ カ担体 [ズー ドへミー製 : KA— 1、 5 m m φ ] ( 6 9 g ) を、 テ ト ラク ロ 口パラジウム酸ナ ト リ ウム [N a 2 P d C 14 ] ( 3. 8 0 g ) の水溶液 ( 4 5 m l ) へ浸漬し、 全量を吸収させた。 次に、 これをメ タケイ酸ナ ト リ ウム 9水和物 [N a 2 S i O3 . 9 H2 O] ( 8. 0 g ) の水溶液 ( 1 0 0 m l ) に加え、 室温で 2 0 時間静置した。 次いで、 これにヒ ドラジン 1水和物 [Ν2 Η4 · Η 2 Ο] ( 6. 5 g ) を添加し、 緩やかに攪拌した後、 室温で 4時間 静置し、 金属パラジウムに還元した。 その後触媒を濾取し、 デカン テ一ショ ンを行った後、 ス ト ップコ ック付きのガラスカラムに移し 、 4 0時間水を流通させ、 洗浄した。 次いで、 空気気流下に 1 1 0 °Cで 4時間乾燥し、 金属パラジウム担持触媒を得た。
さ らに、 上記金属パラジウム担持触媒に、 ケィ タ ングステン酸 2 6水和物 [日本無機化学工業製 : H4 S i W12 O40 · 2 6 H2 O] ( 2 3. 5 5 g ) 、 テルル酸 [関東化学製 : H6 T e O6 ] ( 0. 2 7 g ) 及びメ タバナジン酸アンモニゥム [NH4 V 03 ] ( 0. 0 5 3 g ) の水溶液 ( 4 5 m l ) を含浸させた。 添加は 1回で行い 、 混合物を溶液が十分に吸収されるまで (約 3分間) 静かに撹拌回 転させた。 含浸の後、 湿含浸担体を室温で 1時間静置した。 次いで 、 オーブン中にて空気下に 1 1 0 °Cで 4時間乾燥し、 次いでデシケ 一ター中で一晩放置した。 これによ り酢酸製造用触媒 3を得た。 実施例 4
シリ カ担体 [ズー ドへミー製 : KA— 1、 5 m m φ ] ( 6 9 g ) を、 テ ト ラク ロ 口パラジウム酸ナ ト リ ウム [N a 2 P d C 14 ] (
3. 8 0 g ) 及び塩化金酸 4水和物 [田中貴金属製 : H4 A u C l 4 · 4 Η2 Ο] ( 0. 7 8 g ) の水溶液 ( 4 5 m l ) へ浸漬し、 全 量を吸収させた。 次に、 これをメ タケイ酸ナ ト リ ウム 9水和物 [N a 2 S i 03 · 9 H2 O] ( 1 0. 5 g ) の水溶液 ( 1 0 0 m l ) に加え、 室温で 2 0時間静置した。 次いで、 これにヒ ドラジン 1水 和物 [Ν2 Η4 · Η2 Ο] ( 6. 5 g ) を添加し、 緩やかに攪拌し た後、 室温で 4時間静置し、 金属パラジウムに還元した。 その後触 媒を濾取し、 デカンテーシヨ ンを行った後、 ス ト ップコ ック付きの ガラスカラムに移し、 4 0時間水を流通させ、 洗浄した。 次いで、 空気気流下に 1 1 0 °Cで 4時間乾燥して金を含む金属パラジウム担 持触媒を得た。
次に、 上記金を含む金属パラジウム担持触媒に、 亜テルル酸ナ ト リ ウム [和光純薬製 : N a 2 T e 03 ] ( 0. 2 7 g ) の水溶液 ( 4 5 m l ) を浸漬し、 全量を吸収させた。 その後、 空気下に 1 1 0 °Cで 4時間乾燥して、 金、 テルル含む金属パラジウム担持触媒を得 た。
さ らに、 上記の金、 テルルを含む金属パラジウム担持触媒に、 ケ ィ タングステン酸 2 6水和物 [日本無機化学工業製 : H4 S i W12 Ο4。 · 2 6 Η2 〇] ( 2 3. 5 5 g ) 及びメ タバナジン酸アンモニ ゥム [NH4 V 03 ] ( 0. 0 5 3 g ) の水溶液 ( 4 5 m l ) を含 浸させた。 添加は 1 回で行い、 混合物を溶液が十分に吸収されるま で (約 3分間) 静かに撹拌回転させた。 含浸の後、 湿含浸担体を室 温で 1時間静置した。 次いで、 オーブン中にて空気下に 1 1 0 °Cで 4時間乾燥し、 次いでデシケータ一中で一晩放置した。 これによ り 酢酸製造用触媒 4を得た。
実施例 5
実施例 4において塩化金酸 4水和物の代わり に、 塩化亜鉛 [和光 純薬 : Z n C l 2 3 ( 0. 1 4 g ) を用いた以外は、 実施例 4 と同 様に操作して、 酢酸製造用触媒 5を得た。
比較例 1
シリ カ担体 [ズ一 ドへミー製 : KA— 1 、 5 m m φ ] ( 6 9 g ) を、 テ ト ラ ク ロ 口パラジウム酸ナ ト リ ウム [田中貴金属製 : N a 2 P d C 14 ] ( 3. 8 0 g ) の水溶液 ( 4 5 m l ) へ浸漬し、 全量 を吸収させた。 次に、 これをメ タケイ酸ナ ト リ ウム 9水和物 [和光 純薬製 : N a 2 S i O3 · 9 Η2 Ο] ( 8. 0 g ) の水溶液 ( 1 0 0 m l ) に加え、 室温で 2 0時間静置した。 次いで、 これにヒ ドラ ジン 1水和物 [和光純薬製 : Ν2 Η4 · H2 O] ( 6. 5 g ) を添 加し、 緩やかに攪拌した後、 室温で 4時間静置し、 金属パラジウム に還元した。 その後触媒を濾取し、 デカンテーシヨ ンを行った後、 ス ト ップコ ック付きのガラスカラムに移し、 4 0時間水を流通させ 、 洗浄した。 次いで、 空気気流下に 1 1 0 °Cで 4時間乾燥し、 金属 パラジゥム担持触媒を得た。
さ らに、 上記金属パラジウム担持触媒に、 ケィ タ ングステン酸 2 6水和物 [日本無機化学工業製 : H4 S i W12 Ο40 · 2 6 H2 O] ( 2 3. 5 5 g ) の水溶液 ( 4 5 m l ) を含浸させた。 添加は 1 回 で行い、 混合物を溶液が十分に吸収されるまで (約 3分間) 静かに 撹拌回転させた。 含浸の後、 湿含浸担体を室温で 1時間静置した。 次いで、 オーブン中にて空気下に 1 1 0 °Cで 4時間乾燥し、 次いで デシケ一ター中で一晩放置した。 これによ り酢酸製造用触媒 6を得 た。
比較例 2
シリ カ担体 [ズー ドへミー製 : KA— 1 、 5 mm φ ] ( 6 9 g ) にメ タバナジン酸アンモニゥム [和光純薬製 : NH4 V O3 ] ( 0 . 0 5 3 g ) の水溶液 ( 4 5 m l ) を含浸させた。 添加は 1 回で行 い、 混合物を溶液が十分に吸収されるまで (約 3分間) 静かに撹拌 回転させた。 含浸の後、 湿含浸担体を室温で 1時間静置した。 次い で、 オーブン中にて空気下に 1 1 0 °Cで 4時間乾燥し、 次いでデシ ケーター中で一晩放置した。 これによ り酢酸製造用触媒 7を得た。 比較例 3
シリ カ担体 [ズー ドへミー製 : KA— 1 、 5 m m ] ( 6 9 g ) を、 テ ト ラク ロ 口パラジゥム酸ナ ト リ ウム [田中貴金属製 : N a 2 P d C 14 ] ( 3. 8 0 g ) の水溶液 ( 4 5 m l ) へ浸漬し、 全量 を吸収させた。 次に、 これをメ タケイ酸ナ ト リ ウム 9水和物 [和光 純薬製 : N a 2 S i O3 · 9 Η2 Ο] ( 8. 0 g ) の水溶液 ( 1 0 0 m l ) に加え、 室温で 2 0時間静置した。 次いで、 これにヒ ドラ ジン 1水和物 [和光純薬製 : Ν2 Η4 · Η2 Ο] ( 6. 5 g ) を添 加し、 緩やかに攪拌した後、 室温で 4時間静置し、 金属パラジウム に還元した。 その後触媒を濾取し、 デカンテーシヨ ンを行った後、 ス ト ップコ ック付きのガラスカラムに移し、 4 0時間水を流通させ 、 洗浄した。 次いで、 空気気流下に 1 1 0 °Cで 4時間乾燥し、 金属 パラジゥム担持触媒を得た。
さ らに、 上記金属パラジウム担持触媒に、 メ タバナジン酸アンモ ニゥム [和光純薬製 : NH4 V 03 ] ( 0. 0 5 3 g ) の水溶液 ( 4 5 m l ) を含浸させた。 添加は 1 回で行い、 混合物を溶液が十分 に吸収されるまで (約 3分間) 静かに撹拌回転させた。 含浸の後、 湿含浸担体を室温で 1時間静置した。 次いで、 オーブン中にて空気 下に 1 1 0 °Cで 4時間乾燥し、 次いでデシケータ一中で一晩放置し た。 これによ り酢酸製造用触媒 8を得た。
比較例 4
シリ カ担体 [ズー ドへミ一製 : KA— 1、 5 m m ] ( 6 9 g ) を、 テ ト ラク ロ 口パラジウム酸ナ ト リ ウム [N a 2 P d C 14 ] ( 3. 8 0 g ) の水溶液 ( 4 5 m l ) へ浸漬し、 全量を吸収させた。 次に、 これをメ タケイ酸ナ ト リ ウム 9水和物 [N a 2 S i O3 · 9 Η2 Ο ] ( 8. 0 g ) の水溶液 ( 1 0 0 m l ) に加え、 室温で 2 0 時間静置した。 次いで、 これにヒ ドラジン 1水和物 [Ν2 Η4 · Η 2 Ο] ( 6. 5 g ) を添加し、 緩やかに攪拌した後、 室温で 4時間 静置し、 金属パラジウムに還元した。 その後触媒を濾取し、 デカン テーショ ンを行った後、 ス ト ップコ ック付きのガラスカラムに移し 、 4 0時間水を流通させ、 洗浄した。 次いで、 空気気流下に 1 1 0 °Cで 4時間乾燥し、 金属パラジウム担持触媒を得た。
さ らに、 上記金属パラジウム担持触媒に、 ケィ タ ングステン酸 2 6水和物 [日本無機化学工業製 : H4 S i W12 O40 · 2 6 H2 O] ( 2 3. 5 5 g ) 及びメ タバナジン酸アンモニゥム [和光純薬製 : NH4 V O3 ] ( 0. 0 0 3 6 g ) の水溶液 ( 4 5 m l ) を含浸さ せた。 添加は 1 回で行い、 混合物を溶液が十分に吸収されるまで ( 約 3分間) 静かに撹拌回転させた。 含浸の後、 湿含浸担体を室温で 1時間静置した。 次いで、 オーブン中にて空気下に 1 1 0 °Cで 4時 間乾燥し、 次いでデシケーター中でー晚放置した。 これによ り酢酸 製造用触媒 9を得た。
比較例 5
シリ カ担体 [ズー ドへミー製 : KA— 1、 5 mm φ ] ( 6 9 g ) を、 テ ト ラク ロ 口パラジウム酸ナ ト リ ウム [N a 2 P d C l 4 ] ( 3. 8 0 g ) 及び塩化亜鉛 [和光純薬製 : Z n C l 2 ] ( 0. 1 4 g ) の水溶液 ( 4 5 m l ) へ浸漬し、 全量を吸収させた。 次に、 こ れをメ タケイ酸ナ ト リ ウム 9水和物 [N a 2 S i 〇3 · 9 H2 O]
( 1 0. 5 g ) の水溶液 ( 1 0 0 m l ) に加え、 室温で 2 0時間静 置した。 次いで、 これにヒ ドラジン 1水和物 [Ν2 Η4 · Η2 Ο ]
( 6. 5 g ) を添加し、 緩やかに攪拌した後、 室温で 4時間静置し 、 金属パラジウムに還元した。 その後触媒を濾取し、 デカンテ一シ ヨ ンを行った後、 ス ト ップコ ック付きのガラスカラムに移し、 4 0 時間水を流通させ、 洗浄した。 次いで、 空気気流下に 1 1 0 °Cで 4 時間乾燥して亜鉛を含む金属パラジウム担持触媒を得た。
次に、 上記亜鉛を含む金属パラジウム担持触媒に、 亜テルル酸ナ ト リ ウム [N a 2 T e O3 ] ( 0. 2 7 g ) の水溶液 ( 4 5 m l ) を含浸させた。 その後、 空気下に 1 1 0 °Cで 4時間乾燥して、 亜鉛 、 テルル含む金属パラジウム担持触媒を得た。
さ らに、 上記の亜鉛、 テルルを含む金属パラジウム担持触媒に、 ケィ タングステン酸 2 6水和物 [H4 S i W12 O40 · 2 6 H2 O]
( 2 3. 5 5 g ) の水溶液 ( 4 5 m l ) を含浸させた。 添加は 1 回 で行い、 混合物を溶液が十分に吸収されるまで (約 3分間) 静かに 撹拌回転させた。 含浸の後、 湿含浸担体を室温で 1時間静置した。 次いで、 オーブン中にて空気下に 1 1 0 °Cで 4時間乾燥し、 次いで デシケーター中で一晩放置した。 これによ り酢酸製造用触媒 1 0を 得た。
酢酸製造用触媒の元素分析
実施例 1〜 5及び比較例 1 〜 5で得た酢酸製造用触媒中に含まれ る触媒成分の元素分析を、 以下のよ う にして行った。 各酢酸製造用 触媒を、 王水及びノ又はフ ッ酸と王水の混合液に、 圧力下に加熱処 理するこ とによ り溶解させ、 各成分を完全に抽出し、 高周波誘導結 合プラズマ ( I C P) 発光分析法によ り測定した。 I C P発光分析 測定装置と して、 セイコーイ ンスツルメ ンッ株式会社製 S P S— 1
7 0 0を用いた。
表 1 に実施例 1〜 5及び比較例 1〜 5で得た酢酸製造用触媒につ いて、 各成分の質量%を示した。 なお、 表中における%とは、 各触 媒に対する質量%を表す。 酢 酸 雌 ffi ^分 (b)に る ^^分
(C)の
(a) (b)群化^ J l.c)¾ C¾ 重量比 (d)群 (e)群 7έ¾ 雄例 1 赚 1 Pd ケィタングステン V (バナジウム)
1.5% 22% 0.025% 0.0012
例 2 鹂 2 Pd ケィタングステン酸 Mo (モリブデン)
1.5% 22¾ 0.025% 0.0012
魏例 3 脚某 3 Pd ケィタングステン酸 V (バナジウム) Te (テルル)
1.5% 22% 0.瞧 0.0013 0.1θ¾
錢例 4 滅 4 Pd ケィタングステン酸 V (バナジウム) Te (テノレル) Au(^)
1.5% 22% 0.025% 0.0011 0.16% 0.41% 魏例 5 赚 5 Pd ゲイタングステン酸 V (パ'ナジゥム) Te (テルル) Zn )
1.5% 22% 0.025% 0.0011 0.16% 0.07% item 脚某 6 Pd ケィタンダステ:^
1.5% 22% 0
比棚 2 赚 7 V (バナジウム)
0.025%
比棚 3 赚 8 Pd V (バナジウム)
1.5% 0.025%
赚 9 Pd ゲイタングステン酸 V (バナジウム)
1.5% 22% 0.0017% 0.00008
比翻 5 赚 0 Pd ケィタングステン酸 Te (テルル) Zn (翻
1.5% 22% 0 0.1θ¾ 0.07% 実施例 6〜 1 0及び比較例 6〜 1 0
実施例 1〜 5及び比較例 1 〜 5で得た酢酸製造用触媒 ( 1 8. 5 g ) を S U S 3 1 6製反応管 (内径 2 5 mm) に充填し、 触媒層の 反応ピーク温度 2 0 0 °C、 反応圧力 0. 8 MP a (ゲージ圧) で、 エチレン : 酸素 : 水 : 窒素の容量比 = 1 0 : 6 : 1 5 : 6 9の割合 で混合したガスを、 空間速度 1 8 0 0 h 1にて導入して、 エチレン と酸素から酢酸を得る反応を行った。 生成したガスを冷却し、 冷却 後の凝縮液及びガス成分をそれぞれガスク ロマ トグラフィー [島津 科学、 G C— 1 4 B、 F I Dおよび T C D] にて分析した。
触媒の活性度を、 時間当たり の触媒体積 (リ ッ トノレ) 当たりで製 造された酢酸の質量 (空間時間収率 S T YZ単位 g Z h · 1 c a t
) と して計算し、 選択率をエチレンに対する生成物のパーセン ト と して計算した。
反応結果を、 表 2に示す。
表 2 実施例 使用酢酸 酢酸の空時収率 選択率
製造用 STY 酢 酸 炭酸ガス 触媒名 ( g /hlcat) (%) (%) 実施例 6 触媒 1 110 69.0 27.0 実施例 7 触媒 2 118 68.0 28.3 実施例 8 触媒 3 163 87.4 6.3 実施例 9 触媒 4 184 91.0 5.7 実施例 10 触媒 5 180 90.3 6.3 比較例 6 触媒 6 93 70.0 24.0 比較例 7 触媒 7 trace trace trace 比較例 8 触媒 8 trace 5.0 94.0 比較例 9 触媒 9 92 71.2 25.3 比較例 10 触媒 10 165 92.0 4.3 実施例 1 1
実施例 5で得た酢酸製造用触媒 ( 1 5 g ) を S U S 3 1 6製反応 管 (内径 2 5 mm) に充填し、 加熱浴槽温度 1 7 0 °C、 反応圧力 0 . 8 MP a (ゲージ圧) で、 エチレン : 酸素 : 水 : 窒素の容量比二 1 0 : 6 : 1 5 : 6 9の割合で混合したガスを、 空間速度 2 3 5 0 h 1にて導入して、 エチレンと酸素から酢酸を得る反応を行った。 生成したガスを冷却し、 冷却後の凝縮液及びガス成分をそれぞれガ スク ロマ トグラフィー [島津科学製、 G C— 1 4 B、 F I Dおよび T C D] にて分析した。
触媒の活性度を、 時間当たりの触媒体積 (リ ッ トル) 当たりで製 造された酢酸の重量 (空間時間収率 S T YZ単位 g / h · 1 c a t ) と して計算し、 その経時変化を示した。
反応結果を、 図 1 に示す。
比較例 1 1
比較例 5で得た酢酸製造用触媒 ( 1 5 g ) を用いた以外は実施例 1 1 と同様にして反応を行い、 経時変化を測定した。 反応結果を、 図 1 に示す。
実施例 1 2
シリカ担体 [ズ一 ドへミー製 : KA— 1 、 5 m m φ ] ( 6 9 g ) を、 テ トラク ロ 口パラジウム酸ナ ト リ ウム [田中貴金属製 : N a 2 P d C 14 ] ( 3. 8 0 g ) の水溶液 ( 4 5 m l ) へ浸漬し、 全量 を吸収させた。 次に、 これをメ タケイ酸ナ ト リ ウム 9水和物 [和光 純薬製 : N a 2 S i O3 · 9 Η2 Ο] ( 8. 0 g ) の水溶液 ( 9 0 m l ) に加え、 室温で 2 0時間静置した。 次いで、 これにヒ ドラジ ン 1水和物 [和光純薬製 : Ν2 Η4 · Η2 Ο] ( 6. 5 g ) を添加 し、 緩やかに攪拌した後、 室温で 4時間静置し、 金属パラジウムに 還元した。 その後触媒を濾取し、 デカンテーシヨ ンを行った後、 ス ト ップコック付きのガラスカラムに移し、 4 0時間純水を流通させ 、 洗浄した。 次いで、 空気気流下に 1 1 0 °Cで 4時間乾燥し、 金属 パラジゥム担持触媒を得た。
さ らに、 上記金属パラジウム担持触媒に、 ケィタ ングステン酸 2 6水和物 [日本無機化学工業製 : H4 S i W12 O40 · 2 6 H2 O] ( 2 3. 5 5 g ) 及びケィバナ ドタ ングステン酸 2 6水和物 [日本 無機化学工業製 : H5 S i Vx Wn O40 · 2 6 H2 O] ( 0. 4 5 g ) の水溶液 ( 4 5 m l ) を含浸させた。 添加は 1回で行い、 混合 物を溶液が十分に吸収されるまで (約 3分間) 静かに撹拌回転させ た。 含浸の後、 湿含浸担体を室温で 1時間静置した。 次いで、 ォ一 ブン中にて空気下に 1 1 0 °Cで 4時間乾燥し、 次いでデシケーター 中で一晩放置した。 これによ り酢酸製造用触媒 1 2を得た。
実施例 1 3
実施例 1 2においてケィバナ ドタ ングステン酸 2 6水和物の代わ り に、 リ ンバナ ドモ リ ブデン酸 2 6水和物 [日本無機化学工業製 : H6 P V3 M o 94。 · 2 6 Η2 O] ( 0. 2 5 g ) を用いた以外 は、 実施例 1 2 と同様に操作して、 酢酸製造用触媒 1 3を得た。 実施例 1 4
実施例 1 2においてケィバナ ドタ ングステン酸 2 6水和物の代わ り に、 リ ンモリ ブデン酸 2 6水和物 [日本無機化学工業製 : H4 P Μ ο 12 Ο4。 · 2 6 Η2 Ο] ( 0. 2 5 g ) を用いた以外は、 実施例 1 2 と同様に操作して、 酢酸製造用触媒 1 4を得た。
実施例 1 5
シリ カ担体 [ズー ドへミー製 : KA— 1 、 5 m m φ ] ( 6 9 g ) を、 テ ト ラク ロ 口パラジウム酸ナ ト リ ウム [田中貴金属製 : N a 2 P d C 14 ] ( 3. 8 g ) の水溶液 ( 4 5 m l ) へ浸漬し、 全量を 吸収させた。 次に、 これをメ タケイ酸ナ ト リ ウム 9水和物 [和光純 薬製 : N a 2 S i 〇3 · 9 Η2 Ο ] ( 8. 0 g ) の水溶液 ( 4 5 m 1 ) に加え、 室温で 2 0時間静置した。 次いで、 これにヒ ドラジン 1水和物 [和光純薬製 : Ν2 Η4 · Η2 Ο] ( 6. 5 g ) を添加し 、 緩やかに攪拌した後、 室温で 4時間静置し、 金属パラジウムに還 元した。 その後触媒を濾取し、 デカンテ一シヨ ンを行った後、 ス ト ップコ ック付きのガラスカラムに移し、 4 0時間純水を流通させ、 洗浄した。 次いで、 空気気流下に 1 1 0 °Cで 4時間乾燥し、 金属パ ラジゥム担持触媒を得た。
さ らに、 上記金属パラジウム担持触媒に、 ケィ タングステン酸 2 6水和物 [日本無機化学工業製 : H4 S i W12 Ο40 · 2 6 H2 O] ( 2 3. 5 5 g ) 、 テルル酸 [関東化学製 : H6 T e O6 ] ( 0. 2 7 g ) 及びケィバナ ドタ ングステン酸 2 6水和物 [日本無機化学 工業製 : H5 S i Vi WX 1 O40 · 2 6 H2 O] ( 0. 4 5 g ) の水 溶液 ( 4 5 m l ) を含浸させた。 添加は 1 回で行い、 混合物を溶液 が十分に吸収されるまで (約 3分間) 静かに撹拌回転させた。 含浸 の後、 湿含浸担体を室温で 1時間静置した。 次いで、 オーブン中に て空気下に 1 1 0 °Cで 4時間乾燥し、 次いでデシケ一ター中で一晩 放置した。 これによ り酢酸製造用触媒 1 5を得た。
実施例 1 6
実施例 1 5においてテルル酸の代わり に、 塩化ビスマス 5水和物 [和光純薬製 : B i C l 3 · 5 Η2 0] ( 0. 5 2 g ) の酢酸溶液 を用いた以外は、 実施例 1 5 と同様に操作して、 酢酸製造用触媒 1 6を得た。
実施例 1 7
シリ カ担体 [ズ一 ドへミ一製 : KA— 1、 5 m m φ ] ( 6 9 g ) を、 テ トラク ロ 口パラジウム酸ナ ト リ ウム ( 3. 8 0 g ) 及び塩化 金酸 4水和物 [田中貴金属製 : H4 A u C l 4 · 4 Η2 Ο] ( 0. 7 8 g ) の水溶液 ( 4 5 m l ) へ浸漬し、 全量を吸収させた。 次に 、 これをメ タケイ酸ナ ト リ ウム 9水和物 ( 8. 0 g ) の水溶液 ( 1 0 0 m l ) に加え、 室温で 2 0時間静置した。 次いで、 これにヒ ド ラジン 1水和物 ( 6. 5 g ) を添加し、 緩やかに攪拌した後、 室温 で 4時間静置し、 金属パラジウムに還元した。 その後触媒を濾取し 、 デカンテ一シヨ ンを行った後、 ス ト ップコ ック付きのガラスカラ ムに移し、 4 0時間純水を流通させ、 洗浄した。 次いで、 空気気流 下に 1 1 0 °Cで 4時間乾燥して、 金を含む金属パラジウム担持触媒 を得た。
さ らに、 上記金を含む金属パラジウム担持触媒に、 ケィタンダス テン酸 2 6水和物 [日本無機化学工業製 : H4 S i W12 O40 · 2 6 H2 O] ( 2 3. 5 5 g ) 及びケィバナ ドタングステン酸 2 6水和 物 [日本無機化学工業製 : H5 S i Vt W O 40 - 2 6 H2 O] ( 0 . 4 5 g ) の水溶液 ( 4 5 m l ) を含浸させた。 添加は 1 回で行い 、 混合物を溶液が十分に吸収されるまで (約 3分間) 静かに撹拌回 転させた。 含浸の後、 湿含浸担体を室温で 1時間静置した。 次いで 、 オーブン中にて空気下に 1 1 0 °Cで 4時間乾燥し、 次いでデシケ ータ—中で一晩放置した。 これによ り酢酸製造用触媒 1 7を得た。 実施例 1 8
実施例 1 7において塩化金酸 4水和物の代わり に、 塩化亜鉛 [和 光純薬製 : Z n C 12 ] ( 0. 1 4 g ) を用いた以外は、 実施例 1 7 と同様に操作して、 酢酸製造用触媒 1 8を得た。
実施例 1 9
シリ カ担体 [ズ一 ドへミー製 : KA— 1、 5 m m ] ( 6 9 g ) を、 テ ト ラク ロ 口パラジゥム酸ナ ト リ ウム ( 3. 8 0 g ) 及び塩化 亜鉛 [和光純薬製 : Z n C l 2 ] ( 0. 1 4 g ) の水溶液 ( 4 5 m 1 ) へ浸漬し、 全量を吸収させた。 次に、 これをメ タケイ酸ナ ト リ ゥム 9水和物 ( 8. 0 g ) の水溶液 ( 1 0 0 m l ) に加え、 室温で 2 0時間静置した。 次いで、 これにヒ ドラジン 1水和物 ( 6. 5 g ) を添加し、 緩やかに攪拌した後、 室温で 4時間静置し、 金属パラ ジゥムに還元した。 その後触媒を濾取し、 デカンテーシヨ ンを行つ た後、 ス ト ップコ ック付きのガラスカラムに移し、 4 0時間純水を 流通させ、 洗浄した。 次いで、 空気気流下に 1 1 0 °Cで 4時間乾燥 して、 亜鉛を含む金属パラジウム担持触媒を得た。
さ らに、 上記亜鉛を含む金属パラジウム担持触媒に、 ケィ タンダ ステン酸 2 6水和物 [日本無機化学工業製 : H4 S i W12 O40 · 2 6 H2 O] ( 2 3. 5 5 g ) 、 テルル酸 [関東化学製 : Hs T e O ] ( 0. 2 7 g ) 及びケィバナ ドタ ングステン酸 2 6水和物 [日 本無機化学工業製 : H5 S i V, WX 1 O40 · 2 6 H2 O] ( 0. 4 5 g ) の水溶液 ( 4 5 m l ) を含浸させた。 添加は 1回で行い、 混 合物を溶液が十分に吸収されるまで (約 3分間) 静かに撹拌回転さ せた。 含浸の後、 湿含浸担体を室温で 1時間静置した。 次いで、 ォ ーブン中にて空気下に 1 1 0 °Cで 4時間乾燥し、 次いでデシケ一タ —中で一晩放置した。 これによ り酢酸製造用触媒 1 9を得た。
実施例 2 0
実施例 1 9においてケィバナ ドタ ングステン酸 2 6水和物の代わ りに、 リ ンバナ ドモリ ブデン酸 2 6水和物 [日本無機化学工業製 : H6 P V3 M o 9 O40 · 2 6 H2 O ] ( 0. 2 5 g ) を用いた以外 は、 実施例 1 9 と同様に操作して、 酢酸製造用触媒 2 0を得た。 比較例 1 2
[質量比で ( b ) 群化合物 : ( c ) 群へテロポリ酸及びそれらの塩 から選ばれた少なく とも 1種の化合物 = 1 : 0の酢酸製造用触媒] 実施例 1 2においてケィタ ングステン酸 2 6水和物 [日本無機化 学工業製 : H4 S i W12 O40 · 2 6 H2 O] ( 2 3. 5 5 g ) 及び ケィバナ ドタ ングステン酸 2 6水和物 [日本無機化学工業製 : H5 S i Wx J O40 · 2 6 H2 O ] ( 0. 4 5 g ) の代わりに、 ケィ タ ングステン酸 2 6水和物 [日本無機化学工業製 : H4 S i W12 O 4 0 - 2 6 H2 O] ( 2 4 g ) を用いた以外は、 実施例 1 2 と同様に 操作して、 酢酸製造用触媒 2 1 を得た。
比較例 1 3
[質量比で ( b ) 群化合物 : ( c ) 群へテロポリ酸及びそれらの塩 から選ばれた少なく とも 1種の化合物 = 0 : 1 の酢酸製造用触媒] 実施例 1 2においてケィタ ングステン酸 2 6水和物 [日本無機化 学工業製 : H4 S i W12 O40 · 2 6 H2 O] ( 2 3. 5 5 g ) 及び ケィバナ ドタ ングステ ン酸 2 6水和物 [日本無機化学工業製 : H5 S i V: Wj ! O 40 - 2 6 H2 O ] ( 0. 4 5 g ) の代わり に、 ケィ バナ ドタ ングステン酸 2 6水和物 [日本無機化学工業製 : H4 S i
O 40 - 2 6 H O] ( 2 4 g ) を用いた以外は、 実施例 1 2 と同様に操作して、 齚酸製造用触媒 2 2を得た。
比較例 1 4
[質量比で ( b ) 群化合物 : ( c ) 群へテロポリ酸及びそれらの塩 から選ばれた少なく と も 1種の化合物 = 1 : 0. 2超である酢酸製 造用触媒]
実施例 1 2においてケィ タングステン酸 2 6水和物 [日本無機化 学工業製 : H4 S i W1204。 ' 2 6 H2 O] ( 2 3. 5 5 g ) 及び ケィバナ ドタ ングステン酸 2 6水和物 [日本無機化学工業製 : H5 S i V! Wx! O40 · 2 6 H2 O ] ( 0. 4 5 g ) の代わり に、 ケィ タ ングステン酸 2 6水和物 [日本無機化学工業製 : H4 S i W12 O 40 · 2 6 H2 O] ( 2 3. 5 5 g ) 及びリ ンバナ ドモリ ブデン酸 3 0水和物 [日本無機化学工業製 : H4 P V, Μ Ο ι 1 Ο4。 · 3 0 Η2 Ο] ( 1 0. 0 g ) を用いた以外は、 実施例 1 2 と同様に操作して 、 酢酸製造用触媒 2 3を得た。
比較例 1 5
[質量比で ( b ) 群化合物 : ( c ) 群へテロポリ酸及びそれらの塩 から選ばれた少なく と も 1種の化合物 = 1 : 0. 0 0 5未満である 齚酸製造用触媒]
実施例 1 2においてケィ タ ングステン酸 2 6水和物 [日本無機化 学工業製 : H4 S i W1204。 ' 2 6 H2 O] ( 2 3. 5 5 g ) 及び ケィバナ ドタ ングステン酸 2 6水和物 [日本無機化学工業製 : H5 S i Vj W1 O40 · 2 6 H2 O] ( 0. 4 5 g ) の代わり に、 ケィ タ ングステン酸 2 6水和物 [日本無機化学工業製 : H4 S i W12 O 0 · 2 6 H2 O] ( 2 3. 9 5 g ) 及びケィバナ ドタ ングステン酸 2 6水和物 [日本無機化学工業製 : H5 S i V, W! J O40 · 2 6 H 2 O] ( 0. 0 5 g ) を用いた以外は、 実施例 1 2 と同様に操作し て、 酢酸製造用触媒 2 4を得た。
比較例 1 6
[質量比で ( b ) 群化合物 : ( c ) 群へテロポリ酸及びそれらの塩 から選ばれた少なく とも 1種の化合物 = 1 : 0の酢酸製造用触媒] 実施例 1 9においてケィタ ングステン酸 2 6水和物 [日本無機化 学工業製 : H4 S i W12 O40 · 2 6 H2 O] ( 2 3. 5 5 g ) 、 テ ルル酸 [関東化学製 : H6 T e 06 ] ( 0. 2 7 g ) 及びケィバナ ドタ ングステン酸 2 6水和物 [日本無機化学工業製 : H5 S i V, W O40 . 2 6 H2 O] ( 0. 4 5 g ) の代わ り に、 ケィ タ ンダス テン酸 2 6水和物 [日本無機化学工業製 : H4 S i W12 O40 · 2 6 H2 O] ( 2 4 g ) 及びテルル酸 [関東化学製 : Hs T e O6 ] ( 0. 2 7 g ) を用いた以外、 実施例 1 9 と同様に操作して、 酢酸製 造用触媒 2 5を得た。
酢酸製造用触媒の元素分析
実施例 1 2〜 2 0及び比較例 1 2〜 1 6で得た酢酸製造用触媒中 に含まれる金属元素及びへテロポリ酸の元素分析を、 以下のように して行った。 各酢酸製造用触媒を、 王水及び Z又はフ ッ酸と王水の 混合液に、 圧力下に加熱処理することによ り溶解させ、 各成分を完 全に抽出し、 高周波誘導結合プラズマ ( I C P ) 発光分析法によ り 測定した。 I C P発光分析測定装置と して、 セイ コーイ ンスツルメ ンッ株式会社製 S P S— 1 7 0 0を用いた。
表 3に実施例 1 2〜 2 0及び比較例 1 2〜 1 6で得た酢酸製造用 触媒 1 2〜 2 5について、 各成分の質量%を示した。 なお、 表中に おける%は、 各触媒に対する質量%を表す。 また ( b ) 群へテロポ リ酸と ( c ) 群元素を含むヘテロポリ酸の質量%は、 無水物と して S十算した
^ 酸 難 ^^分 分
成分
離名 (a) (b)群化^! (C)群へテロポリ (b脆^!: α)群 5¾ e)群兀素 その塩
魏例 12 Pd ゲイタングステン酸 ケィバナド
タングステン酸 ― 一
1.46% 21. 7% 0.48% 1:0.00035
雄例 13 赚 3 Pd ゲイタングステン酸 リンバナド
モリブデン酸 一 ―
1.46% 21.7% 0.26% 1:0.0057
魏例 14 Pd ケィタングステン酸 リンモリブンデン酸 一 ―
1.46% 21.7% 0.2 1 :00613
魏例 15 Pd ケィタングステン酸 ゲイバナド
タングステン酸 Te (テルル) ―
1.46% 21.7% 0.48% 1:00035 0. 16% 雞例 16 Pd ケィタングステン酸 ゲイバナド
タングステン酸 Bi (ビスマス) 一
1.46% 21. 7% 0.48% 1:00035 0.37% 魏例 17 Pd ケィタングステン酸 ケィバナド
タングステン酸 ― Au (金)
1.46% 21.7% 0.48% 1:00035 0.40% 鎌例 18 s Pd ゲイタングステン酸 ゲイバナド
タングステン酸 ― Zn(¾¾)
1.46% 21.7% 0.48% 1:00035 0.07% 難例 19 Pd ゲイタングステン酸 ゲイバナド
タングステン酸 Te (テルル) Zn (麵
1.46% 21. 7% 0.48% 1:00035 o. m 0.07% 雞細 Pd ゲイタングステン酸 リンパナド
モリブデ Te (テルル) Zn )
1.46% 21. 7% 0.26% 1 :0.0057 0. 16% 0.07% 比瞧 2 Pd ケィタングステン酸 — ―
1. 46% 21.7% 1 :0
比糊 13 Pd ケィバナドタングステン酸 一 ―
1.46% 22.0% 0:1
比賺 4 Pd ケィタングステン酸 Vンバナト'
モリブデ
1. 6% 20. 1% 1.33% 1 :0.232
比瞧 5 m Pd ゲイタングステン酸 ゲイパナド
タングステン酸
1.46% 21. 2% 0.045% 1 :0.00080
比瞧 6 Pd ケィタングステン酸 Te (テルル) Zn (秦
1.46% 21.7% 1 :0 0. 16% 0.07% 実施例 2 1 〜 2 9及び比較例 1 7〜 2 0
実施例 1 2〜 2 0及び比較例 1 2〜 1 6で得た酢酸製造用触媒 1 2〜 2 5 ( 1 8. 5 g ) を S U S 3 1 6製反応管 (内径 2 5 mm) に充填し、 触媒層の反応ピーク温度 2 0 0 °C、 反応圧力 0. 8 MP a (ゲージ圧) で、 エチレン : 酸素 : 水 : 窒素の容量比 = 1 0 : 6 : 2 0 : 6 4の割合で混合したガスを、 空間速度 1 8 0 0 h r 1に て導入して、 エチレンと酸素から酢酸を得る反応を行った。 生成し たガスを冷却し、 冷却後の凝縮液及びガス成分をそれぞれガスク ロ マ トグラフィ一 [島津科学、 G C— 1 4 B、 F I Dおよび T C D] にて分析した。
触媒の活性度を、 時間当たりの触媒体積 (リ ッ トノレ) 当たりで製 造された酢酸の質量 (空間時間収率 S T YZ単位 g / h · 1 c a t ) と して計算し、 選択率をエチレンに対する生成物のパーセント と して計算した。
反応結果を、 表 4に示す。
表 4 実施例 使用酢酸 酢酸の空時収率 選択率
製造用 酢酸 炭酸ガス 触媒名 ( g /hlcat ) (%) ( % ) 実施例 21 触媒 12 115 71.6 24.0 実施例 22 触媒 13 113 72.3 23.0 実施例 23 触媒 14 100 75.6 20.0 実施例 24 触媒 15 173 92.2 5.6 実施例 25 触媒 16 170 89.2 8.0 実施例 26 触媒 17 165 82.0 11.3 実施例 27 触媒 18 170 83.0 13.0 実施例 28 触媒 19 188 88.4 5.6 実施例 29 触媒 20 183 87.0 6.1 比較例 17 触媒 21 93 70.0 24.0 比較例 18 触媒 22 83 68.0 28.3 比較例 19 触媒 23 93 69.8 24.3 比較例 20 触媒 24 85 69.0 27.3 実施例 3 0及び比較例 2 1
実施例 1 9で得た酢酸製造用触媒 1 9 ( 1 8. 5 g ) 及び比較例 6で得た酢酸製造用触媒 2 5について ( 1 8. 5 g ) をそれぞれ S U S 3 1 6製反応管 (内径 2 5 mm) に充填し、 シヱル温度 1 8 0 °C、 反応圧力 0. 8 MP a (ゲージ圧) で、 エチレン : 酸素 : 水 : 窒素の容量比 = 1 0 : 6 : 2 5 : 5 9の割合で混合したガスを、 空間速度 1 8 0 O h 1にて導入して、 エチレンと酸素から酢酸を得 る反応を行った。 生成したガスを冷却し、 冷却後の凝縮液及びガス 成分をそれぞれガスク ロマ トグラフィー [島津科学、 G C— 1 4 B 、 F I Dおよび T C D] にて分析した。
触媒の活性度を、 時間当たりの触媒体積 (リ ッ トノレ) 当たりで製 造された酢酸の質量 (空間時間収率 S T YZ単位 g / h · 1 c a t ) と して計算し、 選択率をエチレンに対する生成物のパーセン ト と して計算した。 ' 反応結果と して、 酢酸の S T Yの経時変化を、 図 2に示す。
実施例 3 1
シリカ担体 [ズー ドへミ一製 : KA— 1、 5 mm φ ] ( 6 9 g ) を、 テ トラク ロ 口パラジウム酸ナ ト リ ウム ( 2. 7 6 g ) 、 塩化亜 鉛 [和光純薬製 : Z n C l 2 ] ( 0. 1 4 g ) 及び塩化金酸 4水和 物 [田中貴金属製 : H4 A u C 14 . 4 H2 O] ( 0. 7 8 g ) の 水溶液 ( 4 5 m l ) へ浸漬し、 全量を吸収させた。 次に、 これをメ タケイ酸ナ ト リ ウム 9水和物 ( 8. 2 g ) の水溶液 ( 1 0 0 m l ) に加え、 室温で 2 0時間静置した。 次いで、 これにヒ ドラジン 1水 和物 ( 5. 7 5 g ) を添加し、 緩やかに攪拌した後、 室温で 4時間 静置し、 金属パラジウムに還元した。 その後触媒を濾取し、 デカン テーショ ンを行った後、 ス ト ップコック付きのガラスカラムに移し 、 4 0時間純水を流通させ、 洗浄した。 次いで、 空気気流下に 1 1 0 °Cで 4時間乾燥して、 亜鉛及び金を含む金属パラジウム担持触媒 を得た。
次に、 上記亜鉛及び金を含む金属パラジウム担持触媒に、 亜テル ル酸ナ ト リ ウム [和光純薬製 : N a 2 T e O3 ] ( 0. 2 6 6 g ) の水溶液 ( 4 5 m l ) を含浸させた。 1時間風乾後、 ス ト ップコッ ク付きのガラスカラムに移し、 1 6時間純水を流通させ、 洗浄した 。 次いで、 空気気流下に 1 1 0 °Cで 4時間乾燥して、 亜鉛、 金及び テルルを含む金属パラジゥム担持触媒を得た。
さ らに、 上記亜鉛、 金及びテルルを含む金属パラジウム担持触媒 に、 ケィタ ングステン酸 2 6水和物 [日本無機化学工業製 : H4 S i W12 O40 · 2 6 H2 O] ( 2 3. 4 3 g ) 、 リ ンバナ ドモ リブデ ン酸 3 0水和物 [日本無機化学工業製 : H4 P Vx M 0 l l O4Q * 3 0 Η2 Ο] ( 0. 3 2 6 g ) 及び硝酸マンガン 6水和物 [和光純薬 製 : Mn (N O3 ) 2 · 6 Η2 Ο] ( 0. 2 0 6 g ) の水溶液 ( 4 5 m l ) を含浸させた。 添加は 1回で行い、 混合物を溶液が十分に 吸収されるまで (約 3分間) 静かに撹拌回転させた。 含浸の後、 湿 含浸担体を室温で 1時間静置した。 次いで、 オーブン中にて空気下 に 1 1 0 °Cで 4時間乾燥し、 次いでデシケ一タ一中でー晚放置した 。 これによ り酢酸製造用触媒 2 6を得た。
実施例 3 2
実施例 3 1 において硝酸マンガン 6水和物の代わりに、 硝酸コバ ル ト 6水和物 [和光純薬製 : C o (N O3 ) 2 · 6 H2 O] ( 0. 2 1 4 g ) を用いた以外は、 実施例 3 1 と同様に操作して、 鲊酸製 造用触媒 2 7を得た。
実施例 3 3
実施例 3 1 において塩化亜鉛の代わりに、 塩化ク ロム 6水和物 [ 和光純薬製 : C r C l 3 · 6 Η2 Ο] ( 0. 2 8 3 g ) を用いた以 外は、 実施例 3 1 と同様に操作して、 酢酸製造用触媒 2 8を得た。 酢酸製造用触媒の元素分析
実施例 3 1〜 3 3で得た酢酸製造用触媒中に含まれる金属元素及 びへテロポリ酸の元素分析を、 以下のよ うにして行った。 各齚酸製 造用触媒を、 王水及び Z又はフッ酸と王水の混合液に、 圧力下に加 熱処理することによ り溶解させ、 各成分を完全に抽出し、 高周波誘 導結合プラズマ ( I C P) 発光分析法によ り測定した。 I C P発光 分析測定装置と して、 セイ コーイ ンスツルメ ンッ株式会社製 S P S — 1 7 0 0を用いた。
表 5に実施例 3 1〜 3 3で得た酢酸製造用触媒 2 6〜 2 8につい て、 各成分の質量%を示した。 なお、 表中における%は、 各触媒中 に対する質量%を表す。 また ( b ) 群のへテロポリ酸と ( c ) 群元 素を含んだヘテロポリ酸の質量%は、 無水物と して計算した。
¾_5 鲊酸 分
成分
(a) (b)群化^! (c) ^^テロポリ (b)群化^!: (d)群¾ (e)群
そM (c)¾7¾
魏伊] 31 Pd ケィタングステ;^ yンパナ κ
マンガ ¾ モリブデ^ Te (テルル) Zn (麟) Au(^) i.m 22.9% 0.27% 1:0.0076 0.11% 0.07% 0.41% 雞娥 Pd ゲイタングステン截 ジンバナ κ
コパルト塩 モリブデ V® Te (テルル) Zn ) Au(^)
1.08% 2 9% 0.27% 1:0.0076 0.11% 0.07% 0.41%
Pd ゲイタングステン酸 ンバナト'
マンガ モリブデ Te (テルル) Cr (クロム) Au(^)
1.08% 22.9% 0.26% 1:0.0076 0.11% 0.07% 0.41% 実施例 3 4〜 3 6
実施例 3 1〜 3 3で得た齚酸製造用触媒を ( 1 8. 5 g ) をそれ ぞれ S U S 3 1 6製反応管 (内径 2 5 mm) に充填し、 触媒層ピー ク温度 2 0 5 °C、 反応圧力 0. 8 M P a (ゲージ圧) で、 エチレン : 酸素 : 水 : 窒素の容量比 = 1 0 : 6 : 1 5 : 6 9の割合で混合し たガスを、 空間速度 1 8 0 O h—1にて導入して、 エチレンと酸素か ら酢酸を得る反応を行った。 生成したガスを冷却し、 冷却後の凝縮 液及びガス成分をそれぞれガスク ロマ トグラフィー [島津科学、 G C一 1 4 B、 F I Dおよび T C D] にて分析した。
触媒の活性度を、 時間当たりの触媒体積 (リ ッ トル) 当たりで製 造された酢酸の質量 (空間時間収率 S T Y/単位 g Z h · 1 c a t ) と して計算し、 選択率をエチレンに対する生成物のパーセン ト と して計算した。
反応結果を、 表 6に示す。
表 6 実施例 使用酢酸 酢酸の空時収率 選択率
製造用 酢酸 炭酸ガス 触媒名 ( g /hlcat) (%) ( % ) 実施例 34 触媒 26 189 92.0 6.5 実施例 35 触媒 27 192 90.7 7.5 実施例 36 触媒 28 187 88.0 9.8 産業上の利用可能性
以上に説明したよ うに、 本発明の酢酸製造用触媒を用いてェチレ ンと酸素とを反応させることによ り、 従来の方法に比較して、 酢酸 の空時収率が高くかつ経時変化の少ない、 従って生産性の高い酢酸 の製造を行う ことができる。

Claims

請 求 の 範 囲
1 . エチレンと酸素とを反応させる酢酸の製造方法において使用 する触媒において、 該触媒が
( a ) パラジウム、
( b ) ヘテロポリ酸及びそれらの塩よ りなる群から選ばれた少なく と も 1種の化合物、 及び
( c ) バナジウム元素及び/又はモリ ブデン元素、
が担体に担持されている触媒であって、 その ( b ) 群化合物と ( c ) 群元素の質量比が ( b ) 群化合物 : ( c ) 群元素 = 1 : 0. 0 0 0 1 〜 0. 2の範囲である酢酸製造用触媒。
2. エチレンと酸素とを反応させる酢酸の製造方法において使用 する触媒において、 該触媒が
( a ) パラジウム、
( b ) ヘテロポリ酸及びそれらの塩よ りなる群から選ばれた少なく と も 1種の化合物、
( c ) バナジウム元素及び Z又はモリ ブデン元素、 及び
( d ) 周期律表の 1 4族元素、 1 5族元素及び 1 6族元素よ りなる 群から選ばれた少なく と も 1種の元素、
が担体に担持されている触媒であって、 その ( b ) 群化合物と ( c ) 群元素の質量比が ( b ) 群化合物 : ( c ) 群元素 = 1 : 0. 0 0 0 1 〜 0. 2の範囲である酢酸製造用触媒。
3. エチレンと酸素とを反応させる酢酸の製造方法において使用 する触媒において、 該触媒が
( a ) パラジウム、
( b ) ヘテロポリ 酸及びそれらの塩よ り なる群から選ばれた少なく と も 1種の化合物、 ( C ) バナジウム元素及び 又はモリブデン元素、
( d ) 周期律表の 1 4族元素、 1 5族元素及び 1 6族元素よ りなる 群から選ばれた少なく とも 1種の元素、 及び
( e ) 周期律表の 7族元素、 8族元素、 9族元素、 1 0族元素、 1 1族元素及び 1 2族元素よ りなる群から選ばれた少なく とも 1種の 元素、
が担体に担持されている触媒であって、 その ( b ) 群化合物と ( c ) 群元素の質量比が ( b ) 群化合物 : ( c ) 群元素 = 1 : 0. 0 0 0 1〜 0. 2の範囲である酢酸製造用触媒。
4. ( c ) バナジウム元素及び Z又はモリ ブデン元素が、 バナジ ゥム元素及び 又はモリブデン元素を含有するへテロポリ酸 (以下
( c ) 群へテロポリ酸という) 及びそれらの塩から選ばれた少なく とも 1種の化合物中に存在するものであり、 その ( b ) 群化合物と
( c ) 群へテロポリ酸及び Z又はその塩の質量比が ( b ) 群化合物 : ( c ) 群へテロポリ酸及びノ又はその塩 = 1 : 0. 0 0 5〜 0. 2の範囲である、 請求項 1〜 3のいずれかに記載の酢酸製造用触媒
5. ( b ) ヘテロポリ酸及びそれらの塩よ りなる群から選ばれた 少なく とも 1種の化合物が、 下記のへテロポリ酸及びそれらの塩の いずれか 1種以上である、 請求項 1〜 4のいずれかに記載の酢酸製 造用触媒。
1 — 1 2 — リ ンタングステン酸 : H3 [ P W12 O40] · x H 2 O 1 - 1 2—ケィ タングステン酸 : H4 [ S i W12 O40] · x H2 O (ただし、 xは 1以上の整数である)
6. ( c ) 群へテロポリ酸及びそれらの塩から選ばれた少なく と も 1種の化合物が、 下記のへテロポリ酸及びそれらの塩のいずれか 1種以上である、 請求項 1〜 5のいずれかに記載の酢酸製造用触媒 リ ンモリブデン酸 : H3 [ P M o 12 O40] · x H2 O ケィモリブデン酸 : H4 [ S i M o 12 O40] · x H2 O
ケィバナ ドタ ングステン酸 : H4 + n [ S i Vn W12_n O40] - x H2 O
リ ンバナ ドタ ングステ ン酸 : H3+n [ P VnW12_nO40] ' x H2O ケィバナ ドモ リ ブデン酸 : Η4 + π [ S i Vn M o 12-nO40] - x H2 O
リ ンバナ ドモリ ブデン酸 : H3+n [ P VnM o 12-nO40] · x H20 ケィモリ ブドタ ングステン酸 : H4 + n [ S i M o n W12- n Ο40] · x H2 O
リ ンモ リ ブ ドタ ングステン酸 : H3 + n [ P M o n W12_n O40 ] - x H2 O
(ただし、 n は 1〜 1 1の整数であり、 xは 1以上の整数である
)
7. ( a ) パラジウムが金属パラジウムである、 請求項 1〜 6の いずれかに記載の酢酸製造用触媒。
8. ( d ) 周期律表の 1 4族元素、 1 5族元素及び 1 6族元素よ りなる群から選ばれた少なく とも 1種の元素が、 テルル、 セ レン、 ビスマス及び鉛からなる群から選ばれた少なく とも 1種の元素であ る、 請求項 2 ~ 7のいずれかに記載の酢酸製造用触媒。
9. ( e ) 周期律表の 7族元素、 8族元素、 9族元素、 1 0族元 素、 1 1族元素及び 1 2族元素よ りなる群から選ばれた少なく とも 1種の元素が、 銅、 金及び亜鉛からなる群から選ばれた少なく とも 1種の元素である、 請求項 3〜 8のいずれかに記載の酢酸製造用触 媒。
1 0. 以下の第 1工程及び第 2工程を含む、 請求項 1又は 4〜 7 のいずれかに記載の酢酸製造用触媒の製造方法。
第 1工程
担体に、 ( a ) パラジウムを担持して、 パラジウム担持触媒を得 る工程
第 2工程
第 1工程で得たパラジウム担持触媒に、 ( b ) ヘテロポリ酸及び それらの塩よ りなる群から選ばれた少なく とも 1種の化合物及び ( c ) バナジウム元素及び 又はモリブデン元素を担持して、 酢酸製 造用触媒を得る工程
1 1 . 以下の第 1工程及び第 2工程を含む、 請求項 2又は 4〜 8 のいずれかに記載の酢酸製造用触媒の製造方法。
第 1工程
担体に、 ( a ) パラジウム及び ( d ) 周期律表の 1 4族元素、 1 5族元素及び 1 6族元素よ りなる群から選ばれた少なく とも 1種の 元素を担持して、 パラジウム担持触媒を得る工程
第 2工程
第 1工程で得たパラジウム担持触媒に、 ( b ) ヘテロポリ酸及び それらの塩よ りなる群から選ばれた少なく とも 1種の化合物及び ( c ) バナジウム元素及び 又はモリ ブデン元素を担持して、 酢酸製 造用触媒を得る工程
1 2. 以下の第 1工程及び第 2工程を含む、 請求項 2又は 4〜 8 のいずれかに記載の酢酸製造用触媒の製造方法。
第 1工程 ―
担体に、 ( a ) パラジウムを担持して、 パラジウム担持触媒を得 る工程
第 2工程
第 1工程で得たパラジウム担持触媒に、 ( b ) ヘテロポリ酸及び それらの塩よ りなる群から選ばれた少なく とも 1種の化合物、 ( c ) バナジウム元素及び 又はモリブデン元素及び ( d ) 周期律表の 1 4族元素、 1 5族元素及び 1 6族元素よ りなる群から選ばれた少 なく とも 1種の元素を担持して、 酢酸製造用触媒を得る工程
1 3 . 以下の第 1工程及び第 2工程を含む、 請求項 3〜 9のいず れかに記載の酢酸製造用触媒の製造方法。
第 1工程
担体に、 ( a ) パラジウム及び ( d ) 周期律表の 1 4族元素、 1 5族元素及び 1 6族元素よ りなる群から選ばれた少なく とも 1種の 元素を担持してパラジウム担持触媒を得る工程
第 2工程
第 1工程で得たパラジウム担持触媒に、 ( b ) ヘテロポリ酸及び それらの塩よ りなる群から選ばれた少なく とも 1種の化合物、 ( c ) バナジウム元素及び 又はモリブデン元素及び ( e ) 周期律表の 7族元素、 8族元素、 9族元素、 1 0族元素、 1 1族元素及び 1 2 族元素よ りなる群から選ばれた少なく とも 1種の元素を担持して、 酢酸製造用触媒を得る工程
1 4. 以下の第 1工程及び第 2工程を含む、 請求項 3〜 9のいず れかに記載の酢酸製造用触媒の製造方法。
第 1工程
担体に、 ( a ) パラジウム及び ( e ) 周期律表の 7族元素、 8族 元素、 9族元素、 1 0族元素、 1 1族元素及び 1 2族元素よ りなる 群から選ばれた少なく とも 1種の元素を担持して、 パラジウム担持 触媒を得る工程
第 2工程
第 1工程で得たパラジウム担持触媒に、 ( b ) ヘテロポリ酸及び それらの塩よ りなる群から選ばれた少なく とも 1種の化合物、 ( c ) バナジウム元素及びノ又はモリブデン元素及び ( d ) 周期律表の 1 4族元素、 1 5族元素及び 1 6族元素よ りなる群から選ばれた少 なく とも 1種の元素を担持して、 酢酸製造用触媒を得る工程
1 5. 以下の第 1工程及び第 2工程を含む、 請求項 3〜 9のいず れかに記載の酢酸製造用触媒の製造方法。
第 1工程
担体に、 ( a ) パラジウム、 ( d ) 周期律表の 1 4族元素、 1 5 族元素及び 1 6族元素よ りなる群から選ばれた少なく とも 1種の元 素及び ( e ) 周期律表の 7族元素、 8族元素、 9族元素、 1 0族元 素、 1 1族元素及び 1 2族元素よ りなる群から選ばれた少なく とも 1種の元素を担持して、 パラジウム担持触媒を得る工程
第 2工程
第 1工程で得たパラジウム担持触媒に、 ( b ) ヘテロポリ酸及び それらの塩よ りなる群から選ばれた少なく とも 1種の化合物及び ( c ) バナジウム元素及び Z又はモリブデン元素を担持して、 酢酸製 造用触媒を得る工程
1 6. 以下の第 1工程及び第 2工程を含む、 請求項 3〜 9のいず れかに記載の酢酸製造用触媒の製造方法。
第 1工程
担体に、 ( a ) パラジウムを担持して、 パラジウム担持触媒を得 る工程
第 2工程
第 1工程で得たパラジウム担持触媒に、 ( b ) ヘテロポリ酸及び それらの塩よ りなる群から選ばれた少なく とも 1種の化合物、 ( c ) バナジウム元素及び 又はモリ ブデン元素、 ( d ) 周期律表の 1 4族元素、 1 5族元素及び 1 6族元素よ りなる群から選ばれた少な く とも 1種の元素及び ( e ) 周期律表の 7族元素、 8族元素、 9族 元素、 1 0族元素、 1 1族元素及び 1 2族元素よ りなる群から選ば れた少なく とも 1種の元素を担持して、 酢酸製造用触媒を得る工程
1 7. 請求項 1〜 9のいずれかに記載の酢酸製造用触媒の存在下 に、 エチレンと酸素とを反応させるこ とを含む酢酸の製造方法。
1 8. 水の存在下に、 エチレンと酸素とを反応させる、 請求項 1 7に記載の酢酸の製造方法。
1 9. 原料ガス中の水の濃度が 1〜 4 0容量%である、 請求項 1 8に記載の酢酸の製造方法。
PCT/JP2000/006923 1999-10-05 2000-10-04 Catalyst for acetic acid production, process for producing the same, and process for producing acetic acid with the same WO2001024924A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AT00964663T ATE314340T1 (de) 1999-10-05 2000-10-04 Katalysator zur herstellung von essigsäure
DE60025253T DE60025253D1 (de) 1999-10-05 2000-10-04 kATALYSATOR ZUR HERSTELLUNG VON ESSIGSÄURE
US09/674,920 US6706919B1 (en) 1999-10-05 2000-10-04 Catalyst for use in producing acetic acid, process for producing the catalyst, and process for producing acetic acid using the catalyst
EP00964663A EP1226868B1 (en) 1999-10-05 2000-10-04 Catalyst for producing acetic acid
JP2001527913A JP3748820B2 (ja) 1999-10-05 2000-10-04 酢酸製造用触媒、その製造方法及びそれを用いた酢酸の製造方法
AU75564/00A AU7556400A (en) 1999-10-05 2000-10-04 Process for producing alkyd resin

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP11/284522 1999-10-05
JP28452299 1999-10-05
US16415399P 1999-11-08 1999-11-08
US60/164,153 1999-11-08
JP2000/151130 2000-05-23
JP2000151130 2000-05-23

Publications (2)

Publication Number Publication Date
WO2001024924A1 true WO2001024924A1 (en) 2001-04-12
WO2001024924A8 WO2001024924A8 (fr) 2002-05-10

Family

ID=27337093

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/006923 WO2001024924A1 (en) 1999-10-05 2000-10-04 Catalyst for acetic acid production, process for producing the same, and process for producing acetic acid with the same

Country Status (5)

Country Link
EP (1) EP1226868B1 (ja)
JP (1) JP3748820B2 (ja)
CN (1) CN1153614C (ja)
AU (1) AU7556400A (ja)
WO (1) WO2001024924A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003053188A (ja) * 2001-06-04 2003-02-25 Nippon Shokubai Co Ltd 金属粒子担持体及びカルボン酸エステルの製造方法
JP2008018421A (ja) * 2006-06-13 2008-01-31 Showa Denko Kk 酢酸製造用担持型触媒の製造方法
WO2009116584A1 (ja) * 2008-03-19 2009-09-24 住友化学株式会社 カルボニル化合物の製法
CZ303842B6 (cs) * 2012-03-01 2013-05-22 SYNPO, akciová spolecnost Zpusob prípravy alkydových pryskyric, urethanizovaných alkydu a urethanových oleju

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007092188A2 (en) * 2006-02-07 2007-08-16 Celanese International Corporation Integrated process for the production of acetic acid and vinyl acetate
WO2007145151A1 (en) * 2006-06-13 2007-12-21 Showa Denko K.K. Process for production of supported catalyst for acetic acid production
JP4969501B2 (ja) * 2007-04-13 2012-07-04 昭和電工株式会社 酢酸アリル製造用触媒の製造方法
TW201509522A (zh) 2013-07-29 2015-03-16 Rohm & Haas 氧化酯化催化劑
TW201509901A (zh) 2013-07-29 2015-03-16 Rohm & Haas 氧化酯化方法
CN107088438A (zh) * 2017-05-04 2017-08-25 东北师范大学 用含钼杂多酸催化甘油选择性转化制备乳酸的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994022803A1 (en) * 1993-04-06 1994-10-13 Showa Denko K.K. Process for producing acetic acid
JPH06293695A (ja) * 1993-04-06 1994-10-21 Showa Denko Kk 酢酸の製造法
JPH0967298A (ja) * 1995-08-29 1997-03-11 Showa Denko Kk 酢酸の製造方法
JPH1017523A (ja) * 1996-07-01 1998-01-20 Mitsubishi Chem Corp 酢酸の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1025679A (en) * 1961-12-29 1966-04-14 Eastman Kodak Co The preparation of organic compounds containing a carbonyl group and compositions for use therein
DE19717076A1 (de) * 1997-04-23 1998-10-29 Hoechst Ag Katalysator und Verfahren zur katalytischen Oxidation von Ethan zu Essigsäure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994022803A1 (en) * 1993-04-06 1994-10-13 Showa Denko K.K. Process for producing acetic acid
JPH06293695A (ja) * 1993-04-06 1994-10-21 Showa Denko Kk 酢酸の製造法
JPH0967298A (ja) * 1995-08-29 1997-03-11 Showa Denko Kk 酢酸の製造方法
JPH1017523A (ja) * 1996-07-01 1998-01-20 Mitsubishi Chem Corp 酢酸の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1226868A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003053188A (ja) * 2001-06-04 2003-02-25 Nippon Shokubai Co Ltd 金属粒子担持体及びカルボン酸エステルの製造方法
JP2008018421A (ja) * 2006-06-13 2008-01-31 Showa Denko Kk 酢酸製造用担持型触媒の製造方法
WO2009116584A1 (ja) * 2008-03-19 2009-09-24 住友化学株式会社 カルボニル化合物の製法
US8258348B2 (en) 2008-03-19 2012-09-04 Sumitomo Chemical Company, Limited Process for production of carbonyl compound
CZ303842B6 (cs) * 2012-03-01 2013-05-22 SYNPO, akciová spolecnost Zpusob prípravy alkydových pryskyric, urethanizovaných alkydu a urethanových oleju

Also Published As

Publication number Publication date
EP1226868A4 (en) 2003-05-14
CN1153614C (zh) 2004-06-16
JP3748820B2 (ja) 2006-02-22
WO2001024924A8 (fr) 2002-05-10
CN1378482A (zh) 2002-11-06
EP1226868A1 (en) 2002-07-31
AU7556400A (en) 2001-05-10
EP1226868B1 (en) 2005-12-28

Similar Documents

Publication Publication Date Title
JP2770734B2 (ja) 酢酸の製造方法
JP3803254B2 (ja) 酢酸又は酢酸及び酢酸エチル製造用触媒、その製造方法並びにそれを用いた酢酸又は酢酸及び酢酸エチルの製造方法
KR100407528B1 (ko) 산화 또는 가암모니아산화용 산화물 촉매의 제조 방법
SA99200360B1 (ar) المحفزات catalysts المستخدمة في تفاعل الأكسدة الحفزية catalyicoxidation للبروبان propane الى حمض الأكريليك acrylic acid وطرق تصنيعها واستخدامها
KR101731650B1 (ko) 메타크릴산 제조용 촉매의 제조 방법 및 메타크릴산의 제조 방법
WO2001024924A1 (en) Catalyst for acetic acid production, process for producing the same, and process for producing acetic acid with the same
JPS5827255B2 (ja) 不飽和脂肪酸の製造方法
JP4081824B2 (ja) アクリル酸の製造方法
JP4182237B2 (ja) イソブタンの気相接触酸化反応用触媒およびこれを用いてなるアルケンおよび/または含酸素化合物の製造方法
WO2000051725A1 (en) Catalyst for producing acetic acid, method for preparing the same and method for producing acetic acid using the same
JP3232971B2 (ja) 酢酸製造用触媒、該触媒の製造方法及び該触媒を用いた酢酸の製造方法
JP3343982B2 (ja) 酢酸の製造法
US6706919B1 (en) Catalyst for use in producing acetic acid, process for producing the catalyst, and process for producing acetic acid using the catalyst
JP2002159853A (ja) 酸化又はアンモ酸化用酸化物触媒の製造方法
US20070173663A1 (en) Production and use of supported catalysts
JP5062993B2 (ja) 担持型触媒の製造およびその使用
JP4352537B2 (ja) アクリロニトリル及び/又はアクリル酸の製造方法
JP4258199B2 (ja) 酢酸製造用触媒の製造方法
US4408071A (en) Process for the production of carboxylic acids
JP4488834B2 (ja) 酢酸製造用触媒の製造方法
JP2007326036A (ja) 酸化又はアンモ酸化用酸化物触媒
KR100431550B1 (ko) 아세트산 제조용 또는 아세트산 및 에틸 아세테이트의 병산용 촉매, 그의 제조방법 및 이를 이용한 아세트산 또는 아세트산 및 에틸 아세테이트의 제조방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 1200200396

Country of ref document: VN

WWE Wipo information: entry into national phase

Ref document number: 09674920

Country of ref document: US

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: IN/PCT/2002/00352/DE

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2000964663

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 008139326

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2000964663

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 2000964663

Country of ref document: EP