WO2000037701A1 - Palier a roulement - Google Patents

Palier a roulement Download PDF

Info

Publication number
WO2000037701A1
WO2000037701A1 PCT/JP1999/006463 JP9906463W WO0037701A1 WO 2000037701 A1 WO2000037701 A1 WO 2000037701A1 JP 9906463 W JP9906463 W JP 9906463W WO 0037701 A1 WO0037701 A1 WO 0037701A1
Authority
WO
WIPO (PCT)
Prior art keywords
rolling
bearing
rolling bearing
test
life
Prior art date
Application number
PCT/JP1999/006463
Other languages
English (en)
French (fr)
Inventor
Hiromichi Takemura
Yasuo Murakami
Kazuo Sekino
Original Assignee
Nsk Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP10362992A external-priority patent/JP2000144331A/ja
Application filed by Nsk Ltd. filed Critical Nsk Ltd.
Priority to GB0021427A priority Critical patent/GB2349647B/en
Priority to US09/601,792 priority patent/US6357924B1/en
Priority to DE19982543T priority patent/DE19982543B4/de
Publication of WO2000037701A1 publication Critical patent/WO2000037701A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/40Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rings; for bearing races
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/62Selection of substances

Definitions

  • the present invention relates to a rolling bearing used under high-temperature conditions, and more particularly to a rolling bearing suitable for an engine accessory such as an alternator, an electromagnetic clutch, an intermediate pulley, a compressor for a power conditioner, and a water pump.
  • an engine accessory such as an alternator, an electromagnetic clutch, an intermediate pulley, a compressor for a power conditioner, and a water pump.
  • the conventional example 1 at least the residual austenite amount of the bearing outer ring on the load input side, that is, the pulley side is set to 0.05% or more and 6% or less, so that the residual austenite below the raceway surface is reduced. It is said that plastic deformation due to the decomposition of the bird can be prevented. Further, in Conventional Example 2, 0.8 to: 0.5% C, 0.5%. 8 ⁇ 2.0% S i, 0.3 ⁇ 2.0% Mn, 1.3 ⁇ 1.9 8% C r, 0.3 ⁇ 1.0% Mo, and the sum of S i and Mo is 1 A heat-resistant bearing steel containing at least 0.0% and the balance of Fe and impurities is disclosed.
  • the high vibration and high load decompose the moisture contained in the lubricant (for example, it may always contain about 0.1% in the grease) and generate hydrogen ions. Is adsorbed on the orbital surface, becomes hydrogen atoms, and accumulates in a high strain field (near the maximum shear stress position), which is thought to lead to stress corrosion cracking type separation.
  • Another possible cause of moisture in the bearings is that the auxiliary equipment becomes hot while the engine is running and cools down to the ambient temperature after the engine stops, so that air existing in a small space in the bearings may condense.
  • tempering 250 to 380 ° C
  • the residual amount of residual stenite of the outer ring on the pulley side is at least 0.05 to 6%.
  • simply reducing the amount of residual austenite is effective in improving dimensional stability in a high-temperature environment, but it is only effective to suppress the plastic deformation below the raceway surface in terms of separation resistance.
  • Vibration ⁇ Since the sliding of the rolling elements increases under high load, the life extension effect is not recognized in the environment where hydrogen enters from the raceway surface.
  • the amount of residual austenite is set to 8% or less by adding high tempering resistance to elements such as Si and A1 which increase the tempering resistance of steel, the temperature is reduced to 8% or less.
  • the anti-separation resistance increases the slippage of the rolling elements under high vibration and high load. No effect of extending the life is observed below.
  • the orbital ring is immersed in an aqueous solution of sodium carbonate under low-temperature heating to form a ferric oxide film (generally called black dyeing).
  • black dyeing transfer in an oxidizing aqueous solution such as nitric alcohol, hydrochloric acid, or sulfuric acid as another solvent
  • oxidizing aqueous solution such as nitric alcohol, hydrochloric acid, or sulfuric acid as another solvent
  • the bearing is heated in air without controlling the temperature, the oxidation will cause a scale of several // m on the material surface (black scale). Metal loss occurs due to the unevenness of the scale, which may be a starting point for pits and the like. Also, if the bearings are left alone in the atmosphere, the moisture in the air may react with the steel, causing atmospheric corrosion.
  • the rolling fatigue is a phenomenon in which a shear stress and a vertical compressive stress are combined under a rolling surface, and the crack propagation is also caused by a bow I tension type crack propagation mode (mode I). ) And the shear-type crack propagation mode (mode II). Therefore, in order to obtain data on the crack propagation characteristics of the bearing material, a crack propagation test using a compression-tensile (CT) test piece was performed, for example, using the test method of ASTME 647-83, and a bearing with excellent crack propagation resistance was obtained. Materials research is also being conducted.
  • CT compression-tensile
  • the present invention has been developed to solve the above-mentioned problems, and has been developed for use in a rolling bearing used in a high-temperature environment of 150 ° C. or more, preferably 180 ° C. or more, such as for engine accessories. Nearly at the maximum shear stress position where rolling fatigue stress is highest by obtaining a hydrogen trap effect by precipitating Mo- or Ti-based carbides of 50 to 300 nm finely on the wheel surface. Can prevent the intrusion of hydrogen into the high temperature, high vibration and rolling under high load. Rolling that can increase the rolling life extension effect and improve the lower limit stress intensity factor amplitude value by the pinning effect of the Mo-based carbide of 50 to 30 O nm to suppress the propagation of initial microcracks. The purpose is to provide bearings. Disclosure of the invention
  • a rolling bearing according to the present invention is a rolling bearing that is used by arranging a plurality of rolling elements between a bearing ring composed of a fixed wheel and a rotating wheel.
  • the hydrogen trapping effect of the Mo-based or Ti-based carbides in this configuration fixes hydrogen, which is harmful to the reduction of service life, only on the rolling surface, preventing penetration to the maximum shear stress position and extending the rolling life. Is what you get.
  • the pinning effect of the Mo-based micro-carbides in this structure has the effect of improving the amplitude of the lower limit stress intensity factor and suppressing the propagation of initial micro-cracks, thereby delaying the progress to separation. It extends the rolling fatigue life.
  • C is an element that imparts the hardness required for rolling bearings, but if it is less than 0.65%, the hardness HRC 58 or more required for rolling bearings may not be secured. If the content exceeds 1.25%, the precipitated carbides tend to become large and the fatigue life and impact load may decrease. Therefore, C was set to 0.65 to 1.25%.
  • Si is an element that improves the delay of microstructural change, hardenability, temper softening resistance, etc., but its effect is not sufficient if it is less than 0.7%, and its workability is more than 2.5%. Was significantly reduced, so that S i was 0.7 to 2.5%.
  • Cr is an element that improves hardenability and promotes carbide spheroidization, and it is necessary to contain at least 5% or more, preferably 1% or more.
  • Ti is an element that is finely dispersed in steel in the form of Ti carbides and Ti carbonitrides, improving bearing hardness and rolling life, and suppressing austenite crystal grains from becoming coarse during quenching. It also has an effect as a hydrogen trap, but if it is less than 0.05%, most of it will be Ti nitrides of 1 zm or more. Therefore, the effect of miniaturization cannot be expected. On the other hand, if the content exceeds 0.50%, the workability decreases, and the number of inclusions (TiN, TiS) that decrease the rolling life increases. 0 to 50%. Further, in order to finely precipitate and precipitate TiC and TiCN, it is desirable to perform a solution treatment at 115 to 135 ° C. to control the size of the precipitate.
  • the number of dispersed precipitation of Mo-based and Ti-based carbides of 50 to 300 nm is 10 or more per 10 ⁇ 2 .
  • it is preferable to be 10 ppm or less in order to reduce the generation of oxide-based inclusions.
  • S is preferably 0.02% or less.
  • the amount of residual austenite in an environment where the temperature is used at a high temperature of 150 ° C or more, tempering treatment should be performed at a temperature of 400 ° C or more in consideration of dimensional change due to decomposition of austenite. And set it to 1% or less. Since the dimensional change occurs when a small amount of austenite is present, the residual austenite amount is preferably 0%, at which no dimensional change occurs.
  • a material having no dimensional change after tempering at a temperature of 300 ° C. or more was adopted as 0%.
  • Such a bearing ring or a rolling element surface is subjected to a normal heat treatment, that is, quenching, and then tempered at 400 to 550 ° C, and after polishing, is placed in the air at 200 to 400 ° C.
  • Heat treatment up to ° C to reduce the surface hardness to HRC 58 or more and the amount of residual austenite to 1% or less, and to form an iron oxide-based oxide film (reheat oxidation) of 5 to 100 nm.
  • the reheated oxidized film has the effect of blocking hydrogen intrusion, and has a high load.
  • the lubricating oil prevents damage to the film formed on the raceway surface due to the high vibration action. Hydrogen intrusion due to the decomposition of water contained in oil may be suppressed, stress corrosion cracking type separation may be prevented, and rolling life may be extended.
  • FIG. 1 is a cross-sectional view of a main part of an embodiment of the rolling bearing of the present invention.
  • Fig. 2 is a schematic diagram of an example of a rolling bearing life tester.
  • FIG. 3 is a diagram showing the relationship between the average carbide grain size and the bearing life.
  • FIG. 4 is a diagram showing the relationship between the thickness of the oxide film and the bearing life.
  • FIG. 5 is an explanatory diagram of a compression-tensile test specimen.
  • FIG. 6 is a schematic diagram of an example of an AC generator which is a life testing machine for a rolling bearing.
  • FIG. 7 is a graph showing the relationship between the average carbide particle size and the bearing life.
  • FIG. 1 is a cross-sectional view of a main part of one embodiment of a surface-treated rolling bearing of the present invention.
  • Reference numeral 1 in the figure denotes a deep groove ball bearing for rotating the inner ring.
  • the outer ring 2 is fixed to a housing 8, and the inner ring 3 is incorporated in a shaft 7.
  • Numerous rolling elements 4 held by a retainer 5 are arranged between the outer ring 2 and the inner ring 3.
  • An opening between the outer ring 2 and the inner ring 3 located on both sides of the retainer 5 is covered with a sealing member 6 and covered.
  • E-grease is sealed in a space surrounded by the seal member 6, the outer ring 2, and the inner ring 3.
  • the inner ring 3 also rotates with the rotation of the shaft 7, and the vibration and load due to the rotation act on the load zone of the outer ring 2 from the shaft 7 via the inner ring 3 and the rolling elements 4.
  • the outer ring 2 and inner ring 3 of the rolling bearing 1 were prepared by heat-treating the materials shown in the separate table in the later life test, as shown in the separate table. Further, as the rolling element 4, a high-temperature-resistant steel ball having an HRC of 58 or more obtained by returning SUJ 2 to 240 ° C. was used. The surface hardness of the inner and outer rings and rolling elements equivalent to those in the examples was HRC 58 or more and the residual austenite amount was 2% or less. The surface roughness of the inner and outer races is 0.01 to 0.04 mRa, and the surface roughness of the rolling elements is 0.03 to 0.010 ⁇ mRa in both the examples and the comparative examples.
  • the outer ring 2 and the inner ring 3 of a part of the rolling bearing 1 according to the embodiment of the present invention are further heated to a temperature of 200 to 400 ° C. in air.
  • the thermal oxidation treatment is performed for 1 to 3 times for several minutes. This heating is called reheating oxidation treatment.
  • reheating oxidation treatment a film (oxide film) made of chromium iron oxide of 5 to 100 nm is formed on each orbital surface of the outer ring and the inner ring. After that, grease is sealed in the assembled rolling bearing 1 to form a rolling bearing.
  • the oxide film functions to prevent the Mo-based or Ti-based carbide from functioning as a hydrogen trap in the vicinity of the surface, while suppressing the intrusion of hydrogen itself generated by, for example, decomposition of water. Therefore, if the thickness of the oxide film is less than 5 nm, the intrusion of generated hydrogen cannot be prevented, and stress corrosion cracking type separation occurs. On the other hand, when the thickness of the oxide film exceeds 100 nm, brittle oxide scale is formed, the surface roughness is deteriorated, and pits, which serve as separation starting points, frequently occur on the surface.
  • This reheating oxidation treatment can be applied to all of the outer ring 2, the inner ring 3, and the rolling elements 4 which are the components of the rolling bearing, or any one of them—one or two members. May be. Further, when applied to the outer ring 2 and the inner ring 3 which are the bearing rings, they may be applied to the entire surface, or at a minimum, may be applied only to the raceway surface of the bearing ring.
  • FIG. 1-1 Testing equipment and method The test machine shown in Fig. 2 was used.
  • This tester is a rapid acceleration / deceleration tester disclosed in Japanese Patent Application Laid-Open No. Hei 9-89724, which was previously proposed by the present applicant. It can be switched between 0000 rpm and 180 000 rpm.
  • the same reference numerals as those in the publication are attached, and the detailed description of the structure is omitted. According to this rapid acceleration / deceleration testing machine, the life of the test specimen bearing 1 can be matched with the actual operation state of the engine being built into the engine auxiliary equipment or the like. In addition, the moisture in the air is absorbed into the grease sealed in the test piece bearing 1 during the rotation driving.
  • the test specimen bearing 1 can be installed in a state in accordance with the actual use state, so that the load and the rotation speed are set to values in accordance with the actual use state.
  • a highly reliable life test can be performed.
  • a heater was installed around the test piece bearing 1, and the test was performed at 150 ° C.
  • the calculated life of the test piece bearing 1 at this time was 135 hours, and therefore, the test termination time was set to 150 hours.
  • Table 1 shows the components of the inner and outer races and rolling elements, the tempering temperature, and the amount of residual austenite ( ⁇ ⁇ R ) of the rolling bearings of the test specimens used.
  • Comparative Example 1 corresponds to the conventional example 1, S i, Mo, the content of each of T i, tempering temperature, the residual austenite content ( ⁇ R) is different from the present invention.
  • Comparative Example 2 is the equivalent to the conventional example 3, different Mo, the content of each of T i, tempering temperature, residual Osutenai preparative amounts ( ⁇ R) is the present invention.
  • Comparative Example 3 corresponds to Conventional Example 4 described above. The content of each of Si, Mo, and Ti, the tempering temperature, and the amount of residual austenite (7R) are different from those of the present invention. Have been.
  • Comparative Examples 4 to 7 are different from the present invention in the respective contents of Si, C, Cr, and Ti. In Comparative Examples 8 and 9, the contents of Mo and Ti were different from those of the present invention, and the thickness of the oxide film formed by changing the conditions of the reheating film treatment was different from that of the present invention.
  • Table 2 shows the test results for the evaluation time (bearing life) and the presence or absence of separation (damage) for each sample, the size of Mo and Ti-based carbides, oxide film thickness, surface hardness, and reheating film treatment conditions. Here are the specifications. Table 2
  • Fig. 3 is a graph showing the relationship between the average particle size of Mo and Ti-based carbides for each sample shown in Table 2 and the evaluation time (bearing life). The relationship between the oxide film thickness and the evaluation time (bearing life) for each sample shown is shown in daraf.
  • the average particle diameter of the Mo-based or Ti-based carbide was 95, 150, 205, 80, 85, respectively. nm, and since they are dispersed and precipitated, L,. No separation occurred even when the service life reached 150 Ohr. This is thought to be because the hydrogen trapping effect of the fine carbide near the raceway surface prevented the entry of hydrogen atoms near the position of the maximum shear stress below the rolling surface.
  • the average particle diameter of the Mo-based or Ti-based carbide was 300, 275 nm, respectively, which was near the upper limit of the specifications of the present invention. Separation occurs at one of the 10 outer rings and at the outer ring.
  • the service life was 1304 hr, 1395 hr.
  • the bearing life of each bearing was about six times longer than that of the comparative example, which is a sufficiently long life, the test conditions were as high as 150 ° C and the average of Mo-based or Ti-based carbides was high. Because the particle size was relatively large, the number of carbonized precipitates per unit volume was smaller than in the other examples, and the hydrogen trapping effect was slightly reduced, making it easier for hydrogen atoms to diffuse. Conceivable.
  • Example 7 the average particle size of the Mo-based or Ti-based carbide was 50 nm, which is the lower limit of the specifications of the present invention. Separation occurs, L !.
  • the service life is now 1400 hr.
  • the bearing life is about six times longer than that of the comparative example, which is a sufficiently long life.However, the average particle diameter of the Mo-based or Ti-based carbide is smaller than that of the other examples, and the hydrogen trapping effect is slightly reduced. Thought that hydrogen atoms became easier to diffuse Can be
  • the average particle diameter of the Mo-based or Ti-based carbide is various, but all are 1 ⁇ . No separation occurred even when the life reached 1500 hours. This is considered to be due to the effect of preventing hydrogen penetration by the oxide film having a thickness of 5 to 100 nm in addition to the hydrogen trapping effect of the Mo-based or Ti-based carbide.
  • Comparative Example 1 SU J2 was subjected to high-temperature tempering at 280 ° C, so even under a test environment of 150 ° C, the vibration value and seizure caused by dimensional changes increased. No bearings were found, but the bearings were free of fine carbide precipitation and iron oxide-based coating treatment, preventing the invasion of hydrogen and having a low bearing hardness of HRC 56, which resulted in rolling fatigue. Not enough, 10 out of 10 pieces, separation occurred on the outer ring, 1 ⁇ . The service life was 104 hr, less than 1/13 of the calculated service life.
  • Comparative Example 2 in which the bearings were free from precipitation of fine carbides and no iron oxide-based coating, so that intrusion of hydrogen could not be prevented.
  • the bearing hardness is as high as HRC61, the effect of plastic deformation resistance associated with rolling fatigue can be expected, but as a result, 10 out of 10 bearings are separated from the outer ring.
  • the life was 13 1 hr, which was less than 1/10 of the calculated life.
  • the fine carbide was 295, 250 nm, but the bearing hardness was as low as HRC 55, 56, so that L! .
  • the service life is as long as 487, 525 hr, respectively, it is not enough compared with the above embodiments.
  • the fine carbide was too small at 10 nm, so that a sufficient hydrogen trapping effect was not obtained, and the hardness of the bearing was as low as HRC57. L1.
  • the service life was 250 hr, about 1 Z 5 of the calculated service life.
  • Comparative Example 7 since the amount of D1 was as large as 0.7%, fine TiC capable of trapping hydrogen did not precipitate, and TiN of a large inclusion of 150 nm was found. Is formed on the surface, 10 out of 10 pieces are separated from the outer ring. The service life was 1 1 1 hr.
  • Comparative Example 8 since the thickness of the iron oxide-based coating was as small as 0.5 nm, the coating on the raceway surface was completely damaged after the test, and 10 out of 10 coatings separated from the outer ring. Arising. The service life was 106 hr and the calculated service life was 1Z13. Also, in Comparative Example 9, although an oxide film of 1200 nm was formed on the raceway surface, they became scales, the raceway surface was brittle, and many pits were generated on the surface. . In addition, the separated parts were mixed in both the inner and outer rings. Therefore, separation occurs at the starting point of those pits. The service life was as short as 168 hr.
  • a compression-tensile (CT) test piece shown in FIG. 5 was manufactured using the chemical components of Examples 13 to 20 and Comparative Examples 10 to 14 of Table 3 shown in Table 3. Both also surface hardness of the test piece after the heat treatment and H RC 5 5 ⁇ 6 3, and residual austenite amount ( ⁇ R) 0 to 6%.
  • Comparative Example 1 0 is different from the present invention the content of each of S i, M o, chromatic content of C r, tempering temperature, the residual O - Sutenai preparative amounts ( ⁇ R) is different from the recommended value of the present invention .
  • Comparative Example 1 1 Haji r, the content of each of Mo, residual Osutenai preparative amounts ( ⁇ R) is the recommended value of the present invention different.
  • Comparative Example 12 is different from the present invention in the content of Mo.
  • Comparative Examples 13 and 14 the contents of Si and C are different from those of the present invention, and in Comparative Example 13, the content of Mo is different from the recommended value of the present invention. Table 3
  • the test temperature was 180 in accordance with ASTM E647-83.
  • the stress ratio R is the ratio of the tensile stress to the compressive stress, and that it is -1 means that the amplitudes of the compression and the tensile are equal.
  • Table 4 shows the test results.
  • AK I th (MP am 1/2 ) in this table is the lower critical stress intensity factor amplitude value. The larger this value is, the more difficult it is for a crack to propagate in the initial stage.
  • the lower limit stress intensity factor amplitude value AK I th (MP am 1/2 ) was larger as the average particle size of the Mo-based carbide was smaller.
  • the h have lower critical stress intensity factor amplitude value ⁇ 1 2. 1 (MP am 1/2 )
  • the lower limit stress intensity factor amplitude value ⁇ K Ith was 7.6 (MP am 1/2 ).
  • the lower limit stress intensity factor amplitude value AK I th is 5.8 (MP am 1/2 ), 5.9 (MP am 1/2 ) and small.
  • the average particle size is as large as 475 nm and 510 nm.
  • the stress intensity factor amplitude value ⁇ K Ith is about 6.1 (MP am 1/2 ) and 6.2 (MP am 1/2 ), and a remarkable effect can be obtained as compared with Comparative Examples 1 and 3. Absent.
  • the vehicle alternator shown in Fig. 6 was used as a test machine.
  • the front bearing 31 that supports the shaft 30 of this AC generator is evaluated. This is because the bearing load of the front-side bearing 31 becomes four times or more that of the rear-side bearing 32.
  • a bearing box 33 for holding a single-row bearing as the front bearing 31 and a housing 36 for holding a stay 34 and a rectifier 35 are integrally formed by aluminum die casting.
  • a ventilation hole is formed around the outer periphery of the bearing box 33 so as to cool heat generation materials such as the interior stator 34 and the rotor 37 and the rotor 38.
  • Bearing box 3 3 consists of multiple spokes It is fixed to the housing 36.
  • the outer ring of the front bearing 31 is fixed to a bearing box 33, and the inner ring is driven by a pulley 39 fixed via a shaft 30.
  • the tension applied to the belt wound around the pulley 39 becomes the radial load of the bearing, and is transmitted to the outer ring via a plurality of rolling elements located in the load zone where the load is applied.
  • the specifications of the rolling bearing of the test specimen used in this life test are JIS standard number 6303 and grease is enclosed.
  • SU J 2 steel balls were used for the rolling elements of the rolling bearings of the test pieces used.
  • Comparative Example 15 differs from the present invention in the respective contents of C and Cr.
  • Comparative Example 16 the content of Mo is different from the recommended value of the present invention.
  • Comparative Example 17 the content of Mo was different from that of the present invention, and the content of Cr, the tempering temperature, and the amount of retained austenite (7R) were different from the recommended values of the present invention.
  • Comparative Example 18 is different from the present invention in the content of Mo.
  • the inner and outer rings of Examples 21 to 24 and Comparative Examples 17 and 18 were divided into air at 150 to 350 ° C for several minutes and 1-3 times in air. And heated to form an iron oxide coating on the raceway surface.
  • Comparative Example 17 In No. 18 the thickness of the oxide film formed by changing the reheating film treatment conditions was made different from that of the present invention.
  • the surface hardness of the inner and outer rings and rolling elements is HRC 55 to 63, the residual austenite amount R is 0 to 6%, and the surface roughness of the inner and outer rings is 0.01 to 0.4 imR a.
  • the surface roughness of the rolling elements was 0.003 to 0.010 / zmRa.
  • Table 5 shows the test results for each sample, including the evaluation time (bearing life), the presence or absence of peeling (damage), and the specifications of the Mo-based carbide size, film thickness, surface hardness, and reheating film treatment conditions. Is shown.
  • FIG. 7 is a graph showing the relationship between the average particle size of Mo-based carbide and the evaluation time (bearing life) for each sample shown in Table 5.
  • Mo-based carbides having an average particle size of 50 to 300 nm were dispersed and precipitated, respectively, so that 1 ⁇ . No separation occurred even when the service life reached 1000 hr. This is due to the fact that the surface hardness was as high as HRC 56 or more, the content of Si, which has a high effect of delaying the structural change, was as high as 0.1% or more, and the vicinity of the maximum shear stress generation position under the rolling surface This is because the generation and propagation of microcracks in the steel were suppressed by fine Mo-based carbides.
  • Comparative Examples 14 and 15 the Mo-based carbides due to the addition of Mo were as fine as 250 nm and 200 nm.However, in Comparative Example 14 the C content was as low as 0.51%, so the surface The hardness is low, HRC 54, and the fatigue strength has not been sufficient. . The service life was 71 hr, less than the calculated service life of 1 Z 10. In Comparative Example 15, since the carbon content was as high as 1,38%, huge carbides were generated on the raceway surface, 10 out of 10 raceways, and the outer ring had a surface origin separation from the outer race. Was 107 hr and less than 1Z 7 of the calculated lifetime.
  • Comparative Example 16 since the amount of Mo added was as small as 0.6%, a giant Mo-based carbide having an average particle size of 9500 nm was partially precipitated, and there was no dispersing effect. No effect, 10 out of 10 pieces, separation occurred on the outer ring, L,. The service life was 13 9 hr, which was less than the calculated service life of 1 Z 5.
  • Comparative Example 17 since the thickness of the iron oxide-based coating was as small as 0.5 nm, the coating on the raceway surface was completely damaged after the test, and 10 out of 10 coatings separated from the outer ring. , And. The service life was 118 hr, 1Z7, the calculated service life.
  • Comparative Example 18 Although an oxide film of 1200 nm was formed on the raceway surface, they became scales and the raceway surface was brittle, and many pits were generated on the surface. I was In addition, the separated parts were mixed in both the inner and outer rings. Thus, it occurs ⁇ in their pit origin, L 10 life was 1 2 5 hr and short-lived.
  • the bearing material was dried naturally after heat treatment and polishing, but in actuality, the polished oil and fat adhering to the metal surface was degreased (for example, solvent degreasing and degreasing with an aliquot), and then in air. It is desirable to form an iron oxide-based oxide film by heating. After the inner ring, outer ring, and rolling elements are assembled as bearings, it is possible to perform oxide film treatment. In addition, it is desirable that the oxide film is formed only on the race surface by high-frequency heating.
  • the Mo-based or Ti-based carbide is finely separated and precipitated on the raceway surface of the rolling bearing used in a high-temperature environment, so that the hydrogen is reduced.
  • the trapping effect is obtained to prevent hydrogen from entering near the position of the maximum shear stress where the rolling fatigue stress is the highest, and also to disperse and precipitate M0-based carbide finely to generate initial micro-cracks and By suppressing and preventing propagation, it is possible to significantly extend the rolling life under high temperature, high vibration, and high load.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Rolling Contact Bearings (AREA)

Description

明 細 書 転がり軸受 技術分野
本発明は、 高温条件下で使用される転がり軸受に係り、 特に、 オルタ ネ一タ, 電磁クラッチ, 中間プーリ, 力一エアコン用コンプレッサ, 水 ポンプ等のエンジン補機用として好適な転がり軸受に関するものである 背景技術
これらのエンジン補機についても、 近年、 自動車の小型 ·軽量化に伴 い、 小型 ·軽量化と同時に高性能 ·高出力化が求められている。 例えば 、 エンジンの作動に際して、 例えばオルタネ一夕用の軸受には、 高速回 転に伴う高温, 高振動, 高荷重 (重力加速度で 4 G〜2 0 G位) がベル 卜を介して同時に作用する。 その結果、 当該転がり軸受の特に固定輪で ある外輪の早期剝離を生じて軸受寿命が短くなる傾向がある。
このように高振動, 高荷重下で使用される軸受の寿命向上を図る従来 技術としては、 例えば特公平 7 7 2 5 5 6号公報 (以下、 従来例 1と も記す) , 特許 2 7 2 4 0 1 9号公報 (以下、 従来例 2とも記す) , 特 開昭 6 2 - 2 1 8 5 4 2号公報 (以下、 従来例 3とも記す) , 特開平 - 1 9 0 6 1 5号公報 (以下、 従来例 4とも記す) 等がある。 このうち 、 前記従来例 1では、 少なくとも前記荷重入力側, つまりプーリ側の軸 受外輪の残留オーステナイ 卜量を 0 . 0 5 %以上 6 %以下とすることに より、 軌道面下での残留オーステナイ 卜の分解による塑性変形を防止で きるとしている。 また、 前記従来例 2では、 0 . 8〜: L . 5 % C, 0 . 8〜2. 0 %S i , 0. 3〜2. 0 %Mn, 1. 3〜1. 9 8%C r, 0. 3〜1. 0 %Moとし、 S i と Moの合計で 1. 0 %以上を満足す る範囲で含有し、 残部は F e及び不純物の組成となる耐熱軸受鋼が開示 されている。 また、 前記従来例 3では、 軸受軌道輪の特性として、 0. 9 5〜: L 1 0 %C, 1 ~2 %S i , 1. 1 5 %以下 11, 0. 9 0〜 1. 5 0 %C rを含有し、 残留オーステナィ ト量を 8%以下とし、 且つ 表面硬さを HRC 6 0以上とすることが開示されている。 また、 前記従 来例 4では、 軸受内にグリースを封入したグリース封入軸受において、 前記軸受の軌道輪の転走面に厚さ 0. 1〜 2. 5 μ mの酸化皮膜を形成 することが開示されている。
ところで、 高速回転に伴う高温 ·高振動 ·高荷重下で使用される軸受 の早期剝離を防止する対策として、 「SAEテクニカルペーパー : S A E 9 5 0 9 4 4 (開催日 1 9 9 5年 2月 2 7日〜 3月 2日) 」 の第 1〜 第 1 4項には、 オルタネ一夕用軸受の疲労メカニズムを解明し、 封入グ リ一スを Eグリースからダンバ一効果の高い Mダリ一スに変更すること により、 高振動 ·高荷重を吸収し、 且つ金属接触を緩和して、 早期剝離 を防止することができるとしている。
この早期剝離現象については、 高振動 .高荷重によって, 潤滑剤中に 含まれている水分 (例えば、 グリース中に常時 0. 1 %程度含有する場 合もある) が分解し、 発生した水素イオンが軌道面に吸着し、 水素原子 となって高ひずみ場 (最大剪断応力位置近傍) へ集積され、 応力腐食割 れ型剝離に至るとものと考えられている。 また、 軸受内での水分の発生 原因として、 エンジン運転中は補機が高温となり、 エンジン停止後に大 気温度まで冷却されるため、 軸受内の僅かな空間に存在する空気が結露 することも考えられる。 これに対して、 前記従来例 1では、 少なくともプーリ側外輪の残留ォ —ステナイ ト量が 0. 0 5〜6%になるような焼戻し (2 5 0〜3 8 0 °C) を行うとあるが、 単に残留オーステナイ ト量を低下させるだけでは 、 高温環境下では寸法安定性向上には効果が発揮されるものの、 耐剝離 性に対しては軌道面下の塑性変形を抑えることのみで、 高振動 ·高荷重 下で転動体の滑りが増加するため、 軌道面から水素が侵入してくる環境 下では寿命延長効果が認められない。
また、 前記従来例 2でも、 S i, Mo等の耐焼戻し抵抗性を高める元 素を添加することで、 高温使用時でも転がり疲れに耐え得る硬さを維持 できるとしているが、 Cが最大 1. 5 %、 。 1"カ 1. 3~1. 9 8%と なっているため、 C一 C r等の巨大な炭化析出物ができ易くなり、 亀裂 伝播特性が著しく悪くなる。 また、 単純に Moを 0. 1〜1. 0 %とい つた少量添加しただけでは、 下限界応力拡大係数振幅値を向上するため の微細な Mo系炭化物を析出することができないため、 長寿命効果を期 待できない。
また、 前記従来例 3では、 S i, A 1など, 鋼の耐焼戻し抵抗性を高 める元素を添加して高温焼戻しすることにより、 残留オーステナィ ト量 を 8%以下としているため、 高温環境下では経年寸法変化量の小さい軌 道輪を提供できるが、 耐剝離性に対しては、 高振動 ·高荷重下で転動体 の滑りが増加するため、 軌道面から水素が侵入してくる環境下では寿命 延長効果が認められない。
また、 前記従来例 4では、 低温加熱下のカセイソ一ダ水溶液中に軌道 輪を浸漬して四三酸化鉄皮膜 (一般に, 黒染めと呼ばれている) を形成 させるという手間のかかる処理を施すことが必要であること、 更には、 他の溶剤として硝酸アルコール, 塩酸, 硫酸などの酸化水溶液中で転走 面を色がつく程度に腐食するという処理があることから、 設備面や処理 時間の面などに問題を抱えている。 また、 高振動 ·高荷重下にて用いら れるエンジン補機用軸受は、 「日本トライボロジ一会議予稿集 (東京,
1 9 9 5— 5 ) p 5 5 1〜5 5 4」 に示されているように、 固定輪の入 り口側にて自転すベりを生じるため、 ダンパー効果となりうる酸化皮膜 が切断され、 早期剥離の多発する外輪に直接負荷を受け、 固定輪の早期 剝離を防ぐことは実際上は困難である。
また、 温度をコントロールしないで軸受を空気中で加熱すると、 酸化 によって材料表面に数// mのスケール (黒皮) を生じてしまう。 このス ケ一ルの凹凸によって金属の損失が起こり、 ピッ ト等の起点となる恐れ がある。 また、 軸受を大気中にただ放置するだけでは、 空気中の水分と 鋼とが反応し、 大気腐食を起こしてしまう場合も考えられる。
また、 前記転がり疲労とは、 転がり表面下に剪断応力と垂直圧縮応力 とが複合した状態となるための現象であり、 亀裂の伝播も弓 I張型亀裂伝 播モ一ド (モ一ド I ) と剪断型亀裂伝播モード (モード II) との複合モ —ド状態となっている。 従って、 軸受材料の亀裂伝播特性データを求め るために、 例えば A S T M E 6 4 7 - 8 3の試験方法により圧縮引張 ( C T ) 試験片による亀裂伝播試験を行い、 耐亀裂伝播特性に優れた軸 受材料の研究も行われている。
本発明は前記諸問題を解決すべく開発されたものであり、 エンジン補 機用など, 1 5 0 °C以上, 望ましくは 1 8 0 °C以上の高温環境下に用い られる転がり軸受において、 軌道輪表面に 5 0〜3 0 0 n mの M o系も しくは T i系炭化物を微細に分残析出させることにより水素トラップ効 果を得て、 転がり疲れ応力が最も高くなる最大剪断応力位置近傍への水 素の侵入を防止することができ、 もって高温 ·高振動 ·高荷重下での転 がり寿命延長効果を高めたり、 前記 5 0〜3 0 O nmの Mo系炭化物の ピンニング効果により下限界応力拡大係数振幅値を向上し、 初期微小亀 裂の伝播を抑制したりすることができる転がり軸受を提供することを目 的とするものである。 発明の開示
かかる目的を達成するために、 本発明に係る転がり軸受は、 固定輪と 回転輪とからなる軌道輪の間に複数の転動体を配置して用いられる転が り軸受において、 少なくとも前記軌道輪の一つが、 C = 0. 6 5〜1. 2 5 %, S i = 0. Ί〜2. 5 %, C r = 0. 5〜3. 0 %を含有し且 つ少なくとも Mo = 0. 5〜3. 0 %, T i = 0. 0 5〜 5 %のう ちの何れか一種を含有しており、 平均粒径で 5 0〜3 0 0 nmの Mo系 炭化物もしくは T i系炭化物を微細に分散析出させてあることを特徵と するものである。 そして、 この構成中の M o系もしくは T i系炭化物の 水素トラップ効果により、 寿命低下に有害となる水素を転がり表面のみ で固着し、 最大剪断応力位置までの侵入を防止して転がり寿命延長効果 を得るものである。 また、 この構成中の Mo系の微小炭化物のピンニン グ効果により、 下限界応力拡大係数振幅値を向上して初期微小亀裂の伝 播を抑制する効果を得て、 剝離への進展を遅延させて転がり疲労寿命を 延長させるものである。
このうち、 Cは転がり軸受として要求される硬さを付与する元素であ るが、 0. 6 5 %未満だと転がり軸受として要求される硬さ HRC 5 8 以上を確保できない場合があり、 逆に 1. 2 5 %を超えて含有させると 析出炭化物が巨大化し易くなつて疲労寿命及び衝撃荷重が低下する場合 があるため、 C = 0. 6 5〜 1. 2 5 %とした。 また、 S iは組織変化の遅延化, 焼入れ性, 焼戻し軟化抵抗性等を向 上させる元素であるが、 0. 7%未満ではその効果は十分ではなく、 2 . 5%を超えると加工性が著しく低下するため、 S i = 0. 7〜2. 5 %とした。
また、 C rは焼入れ性を向上させ且つ炭化物球状化を促進させる元素 であり、 少なくとも 5%以上, 好ましくは 1%以上を含有させる必 要があるが、 3. 0%を超えて含有させると C - C r系の炭化物が粗大 化して平均結晶粒が大きくなり、 また被削性を劣化させる場合があると 共に、 特に 1. 1 5 %を超えると炭化物の平均粒径が大きくなる傾向に あり、 応力拡大係数振幅値が低下するので、 C r = 0. 5〜: L. 1 5% とした。
M oは焼戻し軟化抵抗性や微細な炭化物の分散効果により軸受硬さを 向上させると共に高温強度を向上させる元素であり、 0. 5 %以上必要 であるが、 3. 0 %を超えてもその効果は飽和し、 逆に加工性が劣化す る可能性もあることから、 Mo = 0. 5〜3. 0%とした。 また、 前記 Mo系の炭化物の分散析出は 1 0 /zm2 あたり, 1 0個以上が望ましい 。 更に、 Moを l. 1%以上添加し、 溶体化処理することにより 5 0〜 3 0 0 nmの M o系炭化物の粒径を制御することになり、 あ たり, 2 0個以上とすることも可能となる。 この分散析出効果は、 応力 拡大係数振幅値を向上させる働きがあるため、 好ましくは Mo= l. 1 〜3. 0%とした。
T iは鋼中に T i炭化物, T i炭窒化物の形で微細分散し、 軸受硬さ の向上並びに転がり寿命を向上させ、 また焼入れ時のオーステナイ ト結 晶粒の粗大化を抑制する元素であり、 また水素トラップとしての効果も あるが、 0. 0 5%以下では、 その多くが 1 zm以上の T i窒化物とな つて微細化効果が期待できない。 また、 0. 5 0 %を超えると加工性が 低下することや、 また転がり寿命を低下させる介在物 (T i N, T i S ) の個数が増加するため、 含有量を T i = 0. 0 5〜 5 0 %とした 。 また、 T i C, T i C Nを微細分散析出させるために、 1 1 5 0〜 1 3 5 0 °Cにて溶体化処理を行い、 析出物の大きさを制御することが望ま しい。
また、 5 0〜3 0 0 n mの Mo系, T i系炭化物の分散析出は、 1 0 μ πι2 あたり 1 0個以上が望ましい。
また、 ◦に関しては、 酸化物系介在物の生成を低下させるために 1 0 p p m以下が望ましい。 Sに関しても、 同様に 0. 0 2 %以下が好まし い。 残留オーステナィ 卜量に関しては、 1 5 0 °C以上の高温にて使用さ れる環境下では、 オーステナィ 卜の分解に起因する寸法変化を考慮し、 4 0 0 °C以上の温度にて焼戻し処理を行い、 1 %以下とする。 オーステ ナイ 卜が少量存在すると寸法変化が生じるため、 残留オーステナイ 卜量 は寸法変化のない 0 %が好ましい。 ここでは、 3 0 0 °C以上の温度での 焼戻し後に寸法変化のないものを 0 %として採用した。
なお、 このような軌道輪もしくは転動体表面に、 通常の熱処理, つま り焼入れ後、 4 0 0〜5 5 0 °Cで焼戻し処理を行い、 研磨後に空気中に て 2 0 0〜 4 0 0 °Cまで再度加熱処理を施して、 表面硬さ HRC 5 8以 上で且つ残留オーステナイ ト量を 1 %以下とすると共に、 5〜1 0 0 n mの酸化鉄系からなる酸化皮膜 (再加熱酸化処理皮膜ともいう) を形成 し、 この再加熱酸化処理皮膜によって水素侵入遮断効果を得て、 高荷重 •高振動作用によつて潤滑油で軌道面に形成される皮膜の破損を防止し 、 潤滑油中含有水分の分解に伴う水素の侵入を抑制し, 応力腐食割れ型 剝離を防止し、 更に転がり寿命を延長させるようにしてもよい。 図面の簡単な説明
図 1は、 本発明の転がり軸受の一実施形態の要部断面図である。 図 2 は、 転がり軸受の寿命試験機の一例の概略図である。 図 3は、 炭化物平 均粒と軸受寿命との関係を示す図である。 図 4は、 酸化皮膜の厚さと軸 受寿命との関係を示す図である。 図 5は、 圧縮引張試験片の説明図であ る。 図 6は、 転がり軸受の寿命試験機である交流発電機の一例の概略図 である。 図 7は、 炭化物平均粒径と軸受寿命との関係を示す図である。 発明を実施するための最良の形態
以下、 本発明の実施の形態を図面を参照して説明する。
図 1は、 本発明の表面処理した転がり軸受の一実施形態の要部断面図 である。 図中の符号 1は、 内輪回転用の深みぞ玉軸受である。 図示の転 がり軸受 1は、 外輪 2がハウジング 8に固定され, 内輪 3はシャフト 7 に組み込まれている。 外輪 2と内輪 3との間には、 保持器 5により保持 された多数の転動体 4が配置されている。 保持器 5の両側に位置する外 輪 2と内輪 3との間の開口部は、 シール部材 6が装着されて蓋されてい る。 シール部材 6と外輪 2 , 内輪 3とによって囲まれる空間には Eグリ —スが封入されている。 そして、 シャフト 7の回転に伴い内輪 3も回転 し、 その回転による振動 ·荷重はシャフト 7から内輪 3及び転動体 4を 介して外輪 2の負荷圏に作用する。
この転がり軸受 1の外輪 2及び内輪 3については、 後段の寿命試験に おける別表の材料を、 同じく別表のように熱処理して作成した。 また、 前記転動体 4には、 S U J 2を 2 4 0 °C戻しした H R C 5 8以上の耐 高温仕様鋼球を用いた。 なお, 実施例に相当する内 ·外輪, 転動体の表 面硬さは何れも H R C 5 8以上、 残留オーステナイ 卜量は 2 %以下とし 、 実施例, 比較例とも内 ·外輪の表面粗さは 0 . 0 1 ~ 0 . 0 4 m R a、 転動体の表面粗さは 0 . 0 0 3〜0 . 0 1 0 ^ m R aとした。 また、 本発明の実施例の転がり軸受 1の一部には、 その組立前に、 例 えばその外輪 2と内輪 3とに対し、 空気中にて更に 2 0 0〜4 0 0 °Cの 温度で数分間、 1〜3回に分けて熱酸化処理が施される。 この加熱を、 再加熱酸化処理と呼ぶ。 この再加熱酸化処理で、 当該外輪 ·内輪の各軌 道面に、 5 ~ 1 0 0 n mの酸化鉄クロム系からなる皮膜 (酸化皮膜) が 形成される。 その後、 組み立てた転がり軸受 1内にグリースを封入して 転がり軸受とする。
この酸化皮膜は、 前記 M o系或いは T i系炭化物が表面近傍で水素ト ラップとして機能するのに対して、 例えば水分の分解によつて発生する 水素の侵入そのものを抑制防止するものである。 従って、 この酸化皮膜 厚さが 5 n m未満であると、 発生した水素の侵入を防止しきれず、 応力 腐食割れ型剝離が生じてしまう。 また、 酸化皮膜厚さが 1 0 0 n mを超 えると脆い酸化スケールとなって表面粗さは悪くなり、 また表面に剝離 起点となるピッ 卜が多発する。
なお、 この再加熱酸化処理は、 転がり軸受の構成部材である外輪 2 , 内輪 3, 転動体 4の全てに施すことができるし、 またそのうちの何れか —つの部材あるいは二つの部材を選んで施しても良い。 さらに、 軌道輪 である外輪 2, 内輪 3に施す場合は、 その全面に施してもよく、 または 最小限で軌道輪の軌道面にのみ施すようにしてもよい。
以下、 本発明の実施例の転がり軸受と比較例の転がり軸受とについて 行った 「比較試験」 について説明する。
比較試験 1 :高温下高速回転での寿命試験
1 - 1 ;試験装置及び方法 図 2に示す試験機を用いた。 この試験機は、 本出願人が先に提案した 特開平 9 - 8 9 7 2 4号公報に開示した急加減速試験機であり、 回転数 を所定時間毎 (例えば 9秒毎) に 9 0 0 0 r pmと 1 8 0 0 0 r pmと に切り換えることができるものであり、 図中には当該公報と同じ符号を 付して、 構造の詳細な説明は省略する。 この急加減速試験機によれば、 試験体軸受 1の寿命を、 ェンジン用補機等に組み込まれて実際に運転さ れる状態に合致させて行える。 また、 回転駆動中に、 空気中の水分が試 験体軸受 1に封入されているグリース中に吸収される。 このように、 本 急加減速試験機によれば、 試験体軸受 1を実際の使用状態に則した状態 に設置できるので、 負荷荷重や回転速度を実際の使用状態に則した値に 設定して信頼性の高い寿命試験が行える。 なお、 試験時には試験体軸受 1のまわりにヒータを設置して 1 5 0°C—定として試験を行った。 また 、 今回の荷重条件は、 P (負荷荷重) ZC (動定格荷重) = 0. 1 0と した。 更に、 このときの試験体軸受 1の計算寿命は 1 3 5 0時間であり 、 したがって試験打ち切り時間を 1 5 0 0時間とした。 試験数はおのお の n = 1 0個づつとした。
1 - 2 ;試験軸受
この寿命試験に際して用いられた試験体の転がり軸受の諸元は、 J I S呼び番号 6 3 0 3である。 また、 用いられた試験体の転がり軸受の内 ·外輪, 転動体の成分, 焼戻し温度, 残留オーステナイ ト量 (ァ R ) を 表 1に示す。
3
表 1 o 〇〇〇
0 00 0ト o 〇 ο
化学成分 (%)
C Si C 〇r o Mo Ti 焼戻し温度 y R (%) 備考
1 0. 65 2. 50 0. 63 一 0. 5 400V, 1. 2
2 0. 84 1. 03 1. 51 1. 0 ― 400°C 0. 5
3 0. 78 0. 74 0. 5 0. 3 450V. 2. 0
4 1. 15 1. 56 1. 0 0. 05 450T 0. 0
施 5 0. 97 0. 98 1. 49 0. 5 一 500°C ' 0. 0
例 6 0. 86 2. 09 0. 78 2. 0 500°C 0. 5
7 1. 10 0. 70 0. 50 0. 2 550X 0. 0
8 1. 00 0. 84 1. 45 1. 0 0. 1 550 C 0. 0
9
Figure imgf000013_0001
1. 05 1. 47 1. 0 4001C 0. 7 再加熱皮膜
10 0. 85 1. 05 1. 41 0. 3 50°C 0. 5 †
11 1. 05 1. 05 1. 56 0. 5 0. 2 500。C 0. 0 †
12 0. 92 0. 78 2. 0 550X 0. 0 †
1 1. 00 0. 15 1. 49 280V. 2. 8 SUJ2 比 2 1. 05 1. 00 1. 45 260t 3. 0 l %Si 較 3 0. 98 0. 27 1. 55 180t: 6. 0 黒染め 例 4 0. 84 0. 54 1. 44 1. 0 400。C 0. 7
5 0. 55 0. 98 0. 95 0. 2 400t: 1. 2
6 1. 54 0. 31 0. 5 450 : 0. 0
7 0. 95 0. 89 1. 37 0'. 7 450 0. 5
8 1. 51 0. 90 350 1. 7 再加熱処理
9 1. 06 0. 98 1. 60 35cnc 0. 5 再加熱処理
実施例 1〜1 2は、 何れも本発明の転がり軸受であり、 C= 0. 6 5 〜1. 2 5% (推奨値 0. 6 5〜: L. 1 0 %) , S i = 0. 7〜2. 5 %, C r = 0. 5〜3. 0% (推奨値 0. 5〜1. 1 5%) を含有し且 つ少なくとも Mo = 0. 5〜3. 0% (推奨値 1. 1〜3. 0%) , T i = 0. 0 5〜 5 %のうちの何れか一種を含有しており、 4 0 0 °C 以上で焼戻し処理を行い、 残留オーステナィ ト量が 2 %以下であるとい う条件を満足する。 また、 実施例 9~ 1 2に対しては、 前述の再加熱皮 膜処理を施して軌道面に 5〜1 0 0 nm厚の酸化皮膜を形成した。
一方、 比較例 1は前記従来例 1に相当し、 S i, Mo, T iの夫々の 含有量, 焼戻し温度, 残留オーステナイ ト量 (ァ R ) が本発明と異なる 。 また、 比較例 2は前記従来例 3に相当し、 Mo, T iの夫々の含有量 , 焼戻し温度, 残留オーステナィ ト量 (ァ R ) が本発明と異なる。 また 、 比較例 3は前記従来例 4に相当し、 S i, Mo, T iの夫々の含有量 , 焼戻し温度, 残留オーステナイ 卜量 (7R ) が本発明と異なるほか、 前述の黒染めが施されている。 また比較例 4〜7は、 夫々、 S i, C, C r、 T iの各含有量が本発明と異なる。 また、 比較例 8, 9は Mo, T iの夫々の含有量が本発明と異なるほか、 再加熱皮膜処理条件を変え て形成される酸化皮膜厚を本発明と異なる厚さとした。
1 - 3 ;試験結果
表 2に、 試験結果として各試料毎の評価時間 (軸受寿命) 及び剝離 ( 損傷) の有無並びに Mo, T i系炭化物の大きさ, 酸化皮膜厚さ表面硬 さ, 再加熱皮膜処理条件の各諸元を示す。 表 2
Mo-Ti系炭化物 皮膜厚さ 表面硬さ 再加熱皮膜処理 評価時間 はくりの有無 の大きさ(nm) vn m) (HRC) (hr)
1 95 59 1500
2 150 ― 62 ― 1500
3 300 ― 58 ― 1304 1/10外輪はくり 施 4 205 一 63 ― 1500 te
1タリ 5 275 ― 59 ― 1395 1 10外輪はくり
6 80 60 1500
7 50 59 1400 1 0
一 外輪はくり
8 85 61 1500
9 50 20 61 300°C X 20 min 1500
10 150 5 60 220 30min 1500
11 75 50 59 260 60min 1500 fat
12 270 100 58 400t:xi0min 1500 to
1 56 104 10Z10外輪はくり 比 2 61 131 10/ 10外輪はくり 絞 3 2000 62 74 10/ 10捩動大停 例 止
4 295 55 487 10/10外輪はくり
5 10 57 250 10/ 10外輪はくり
6 250 56 525 10/10外輪はくり
7 1050 58 111 10/ 10外輪はくり
8 0. 5 58 170°CX60min 106 10/10外輪はくり
9 1200 58 450 : 20Γηίη 168 10ノ10内外輪は
<
また、 図 3には、 表 2に示される各試料毎の Mo, T i系炭化物の平 均粒径と評価時間 (軸受寿命) との関係をグラフで示し、 図 4には、 表 2に示される各試料毎の酸化皮膜厚さと評価時間 (軸受寿命) との関係 をダラフで示した。
このうち、 実施例 1, 2, 4, 6, 8については、 夫々、 Mo系或い は T i系炭化物の平均粒径が、 9 5, 1 5 0, 2 0 5, 8 0, 8 5 nm であり、 しかもそれらが分散析出しているため、 L ,。寿命が 1 5 0 O h rに至っても剝離を生じなかった。 これは、 軌道輪表面近傍での微細炭 化物の水素トラップ効果によって、 転がり表面下の最大剪断応力位置近 傍への水素原子の侵入が防止されたためであると考えられる。
また、 実施例 3, 5については、 夫々、 Mo系或いは T i系炭化物の 平均粒径が、 3 0 0, 2 7 5 nmと、 本発明の諸元上限近傍となってお り、 試験体 1 0個のうち 1個, 外輪にて剝離が生じ、 夫々、 。寿命が 1 3 0 4 h r , 1 3 9 5 h rとなった。 夫々の軸受寿命は、 比較例の約 6倍以上と十分な長寿命結果となっているが、 試験条件が 1 5 0 °Cと高 温であったため、 また Mo系或いは T i系炭化物の平均粒径が比較的大 きいため、 その結果、 単位体積当たりの炭化析出物の個数が他の実施例 より少なくなり、 水素トラップ効果がやや低下して水素原子が拡散し易 くなってしまったためと考えられる。
また、 実施例 7については、 Mo系或いは T i系炭化物の平均粒径が 、 5 0 nmと、 本発明の諸元下限となっており、 試験体 1 0個のうち 1 個, 外輪にて剝離が生じ、 L !。寿命が 1 4 0 0 h rとなった。 その軸受 寿命は、 比較例の約 6倍以上と十分な長寿命結果となっているが、 Mo 系或いは T i系炭化物の平均粒径が他の実施例より小さく、 水素トラッ プ効果がやや低下して水素原子が拡散し易くなつてしまったためと考え られる。
また、 実施例 9〜1 2については、 Mo系或いは T i系炭化物の平均 粒径がさまざまであるが、 何れも 1^。寿命が 1 5 0 0 h rに至っても剝 離を生じなかった。 これは、 前記 Mo系或いは T i系炭化物の水素トラ ップ効果に加えて、 前述した厚さ 5〜 1 0 0 nmの酸化皮膜による水素 侵入防止効果によるものであると考えられる。
一方、 比較例 1については、 SU J 2を 2 8 0 °Cで高温焼戻し処理を 行っているため、 1 5 0°Cの試験環境下でも、 寸法変化に起因する振動 値の増加や焼付きは認められなかったが、 微細炭化物の析出や酸化鉄系 皮膜処理のない軸受であったため、 水素の侵入を防止することができず 、 また軸受硬さが HRC 5 6と低いため、 転がり疲労に対して十分では なく、 1 0個中 1 0個, 外輪に剝離を生じ、 1^。寿命は 1 0 4 h rと計 算寿命の 1/1 3以下であった。 比較例 2も同様で、 微細炭化物の析出 や酸化鉄系皮膜処理のない軸受であったため、 水素の侵入を防止するこ とができない。 また、 軸受硬さが HRC 6 1と高いため、 転がり疲労に 伴う塑性変形抵抗効果は期待できるものの、 結果としては 1 0個中 1 0 個, 外輪に剝離を生じ、 。寿命は 1 3 1 h rと計算寿命の 1/ 1 0以 下であった。
比較例 3については、 黒染め処理を行ったことにより軌道輪表面に 2 0 0 0 nmの皮膜を形成することができたが、 表面粗さが 1 m R aと粗く、 振動が大きくなり、 合わせて残留オーステナイ 卜量ァ R が 6 %と高いため、 本試験条件の 1 5 0 °Cの高温下ではオーステナイ 卜の分 解に伴う寸法変化の影響により、 1 0個中 1 0個, 振動大となり、 L 10 寿命は 7 4 h rと計算寿命の 1Z1 5以下で試験が中止した。 また、 試 験後の表面を観察したところ、 黒染め膜の破壊が認められ、 前述の酸化 皮膜のような水素侵入を防止する効果も期待できない。
比較例 4, 6については、 微細炭化物が 2 9 5, 2 5 0 n mとなって いるが、 軸受硬さが HRC 5 5, 5 6と低く、 他の比較例と比較すれば L!。寿命が、 夫々 4 8 7, 5 2 5 h rと長くなっているものの、 前記各 実施例と比較すると十分ではない。 また、 比較例 5については、 微細炭 化物が 1 0 nmと小さ過ぎるため、 十分な水素トラップ効果が得られず 、 また軸受硬さも HRC 5 7と低かったため、 1 0個中 1 0個, 外輪に 剝離を生じ、 L 1。寿命は 2 5 0 h rと計算寿命の 1 Z 5程度であった。 また、 比較例 7については、 丁 1の量が0. 7 %と多いために、 水素を トラップし得る微細な T i Cが析出せず、 1 0 5 0 nmと大きな介在物 の T i Nが表面に生じ、 1 0個中 1 0個, 外輪に剝離を生じ、 。寿命 は 1 1 1 h rとなった。
比較例 8については、 酸化鉄系皮膜厚さが 0. 5 nmと小さいため、 試験終了後には、 軌道面の皮膜は完全に破損しており、 1 0個中 1 0個 , 外輪に剝離を生じ、 。寿命は 1 0 6 h rと計算寿命の 1Z1 3であ つた。 また、 比較例 9については、 軌道面に 1 2 0 0 nmの酸化皮膜が できていたものの、 それらはスケールとなって軌道面は脆くなっており 、 表面にはピッ 卜が多く発生していた。 また、 剝離部位は内輪, 外輪と もに混在していた。 従って、 それらのピッ 卜起点で剝離を生じ、 。寿 命は 1 6 8 h rと短寿命であった。
以上の結果より、 高振動 ·高荷重下において、 転がり表面に 5 0〜3 0 0 nmの Mo系, T i系の微細な炭化物を分散析出させることにより 、 水素トラップ効果を得て、 転がり疲れ応力が最も高くなる最大剪断応 力位置近傍への水素の侵入を防止することができ、 もつて転がり寿命延 長効果が期待できる。 また、 軸受表面に 5〜1 0 O nmの酸化鉄クロム 系の皮膜 (再加熱酸化処理皮膜) を設けることにより、 潤滑剤中に含ま れる数%の水分の分解により発生する水素侵入による応力腐食割れ形剝 離を抑制することができる。
次に、 疲労亀裂伝播試験について説明する。
比較試験 2 :圧縮引張試験
ー 丄 ; 3 験片
まず、 表 3に示すうち、 実施例 1 3乃至実施例 2 0及び比較例 1 0乃 至比較例 1 4の化学成分で、 図 5に示す圧縮引張 (C T) 試験片を製作 した。 何れも熱処理後の試験片の表面硬さは H RC 5 5〜 6 3とし、 残 留オーステナイ ト量 (ァ R ) を 0 ~ 6 %とした。 実施例 1 3〜2 0は、 何れも本発明の転がり軸受であり、 C = 0. 6 5〜 1. 2 5 % (推奨値 0. 6 5〜: L 1 0 %) , S i = 0. 7〜 2 , 596, C r二 0. 5~ 3 . 0 % (推奨値 0. 5〜 1. 1 5 %) を含有し且つ少なくとも Mo = 0 . 5- 3. 0 % (推奨値 1. :!〜 3. 0 %) を含有しており、 3 0 0 ~ 4 5 0 °Cで焼戻し処理を行い、 残留オーステナィ 卜量が 1 %以下, 好ま しくは 0 %であるという条件を満足する。 一方、 比較例 1 0は S i, M oの夫々の含有量が本発明と異なり、 C rの有量, 焼戻し温度, 残留ォ —ステナイ ト量 (ァ R ) が本発明の推奨値と異なる。 また、 比較例 1 1 はじ r , Moの夫々の含有量, 残留オーステナィ ト量 (ァ R ) が本発明 の推奨値と異なる。 また、 比較例 1 2は M oの含有量が本発明と異なる 。 また比較例 1 3, 1 4は、 夫々、 S i, Cの各含有量が本発明と異な り、 比較例 1 3では Moの含有量が本発明の推奨値と異なる。 表 3
〇〇
〇 in o 化学成分 (%)
C Si Mn Cr Mo 焼戻し温度 y R(%) 備考
13 1. 08 1. 10 0. 50 1. 12 1. 3 300°C 0
ό
•14 0. 65 2. 50 0. 35 0. 98 1. 1 300°C 0
15 0. 78 0. 74 0. 21 1. 05 3. 0 350。C 0
16 1. 15 0. 78 0. 78 1. 5 350°C 0
施 17 0. 97 0. 98 0. 17 1. 15 1. 2 400。C 0
例 18 0. 86 2. 09 0. 30 1. 06 1. 3 400°C 0
19 1. 25 0. 70 0. 42 0. 68 2. 1 50°C 0
20 1. 00 1. 08 1. 15 0. 50 1. 8 50°C 0
21 0. 75 1. 05 0. 43 0. 98 1. 2 300°C 0 再加熱皮膜
22 1. 21 0. 64 1. 10 2. 0 350°C 0 T
23 1. 04 1. 05 0. 38 1. 06 1. 2 400°C 0 ΐ
24 0. 81 0. 98 0. 46 0. 78 2. 9 450°C 0 ί
10 1. 00 0. 35 0. 34 1. 49 250°C 3. 8
比 11 1. 05 1. 00 0. 49 1. 45 1. 0 300°C 0
較 12 0. 98 1. 27 0. 39 1. 05 300。C 0
例 13 0. 84 0. 44 0. 25 0. 9 300°C 0
14 0. 51 0. 98 0. 56 1. 10 1. 2 300°C 0
15 1. 38 1. 05 0. 87 0. 49 1. 8 300°C 1. 0
16 0. 95 0. 84 0. 34 1. 07 0. 6 350°C 0
17 0. 80 1. 50 0. 49 1. 51 250°C 4. 6 再加熱処理
18 1. 06 0. 50 0. 91 350。C 0 再加熱処理
2 - 2 ;試験方法
このような実施例及び比較例の試験片を用いて、 ASTM E 6 4 7 一 8 3に従い、 試験温度 1 8 0。 試験荷重 Δ P= 6 7 5 k g f , 周波 数 3 0〜1 Ηζ, 応力比 R = - 1で試験を行った。 なお、 応力比 Rは引 張と圧縮の応力の比であり、 それが— 1であるということは、 圧縮と引 張の振幅が等しいことを意味している。
2 - 3 ;試験結果
試験の結果を表 4に示す。 この表中の AKI th (MP am1/2 ) が下 限界応力拡大係数振幅値であり、 この数値が大きいほど、 初期段階にお いて亀裂が伝播し難いことを示している。 その結果、 実施例 1 3〜2 0 において、 Mo系炭化物の平均粒径が小さいほど、 下限界応力拡大係数 振幅値 AKI th (MP am1/2 ) が大きく、 例えば実施例 1 5では M o 系炭化物の平均粒径が 5 0 nmのとき、 下限界応力拡大係数振幅値 ΔΚ い h は 1 2. 1 (MP am1/2 ) となり、 実施例 1 4のように Mo系炭 化物の平均粒径が 3 0 0 nmのときには、 下限界応力拡大係数振幅値 Δ KI th は 7. 6 (MP a m1/2 ) となった。
表 4
疲労き裂試験結果
Mo系炭化物の平均粒径 nm 表面硬さ HRC A K„,, (MPam "2)
13 106 61 8. 9
14 300 59 7. 6
15 50 59 12. 1 施 16 148 60 8. 2 例 17 245 58 7. 8
18 211 60 7. 9
1 9 64 57 10. 8
20 ' 79 56 10. 5
10 58 5. 8 比 1 1 475 60 6. 1 較 12 59 5. 9 例 13 510 56 6. 2
14 250 54 8. 2
これに対して、 比較例 1 0, 1 2のように Mo系炭化物がない場合は 、 夫々、 下限界応力拡大係数振幅値 AKI th が 5. 8 (MP am1/2 ) , 5. 9 (MP am1/2 ) と小さい。 また、 Mo系炭化物があっても、 比較例 1 1, 1 3のように、 その平均粒径が 4 7 5 nm, 5 1 0 nmと 大きく、 本発明と異なる場合には、 夫々、 下限界応力拡大係数振幅値 Δ KI th は 6. 1 (MP a m1/2 ) , 6. 2 (MP a m1/2 ) 程度で、 比 較例 1, 3に比して格段の効果が得られない。 また、 比較例 1 4では、 表面硬さが HRC 5 4と低いものの、 Mo系炭化物の平均粒径が 2 5 0 nmと比較的小さくなっているため、 下限界応力拡大係数振幅値 ΔΚΙ ( h が 8. 2 (MP a m1/2 ) と大きな値になった。 これらのことから、 Mo系炭化物の平均粒径を 5 0〜3 0 0 nmの間に制御できれば、 下限 界応力拡大係数振幅値 Δ KI th を向上して初期微小亀裂の伝播を抑制す ることが分かる。
次に、 前述と異なる軸受寿命試験について説明する。
比較試験 3 :高温下高速回転での寿命試験
3 - 1 ;試験装置
図 6に示す車両用交流発電機を試験機として用いた。 この交流発電機 のシャフト 3 0を支持するフロント側軸受 3 1の評価を行う。 これは、 リャ側軸受 3 2に対してフロント側軸受 3 1の軸受荷重が 4倍以上にな るためである。 この交流発電機では、 前記フロント側軸受 3 1として単 列軸受を保持するベアリングボックス 3 3と、 ステ一夕 3 4ゃレクチフ アイャ 3 5等を保持するハウジング 3 6とをアルミダイカス卜により一 体に形成し、 前記べァリングボックス 3 3の外周辺には、 内装されるス テ一タ 3 4やロータ 3 7, 回転子 3 8等の発熱物を冷却するための通気 孔が設けられ、 前記ベアリングボックス 3 3は複数本のスポークにより ハウジング 3 6に固定されている。 前記フロント側軸受 3 1の外輪はべ ァリングボックス 3 3に固定され、 内輪はシャフト 3 0を介して固定さ れたプーリ 3 9によって駆動される。 このプーリ 3 9に巻回されたベル トに加えられるテンションが軸受のラジァル荷重となり、 荷重がかかる 負荷圏に位置している複数個の転動体を介して外輪に伝えられる。
3 - 2 ;試験軸受
この寿命試験に際して用いられた試験体の転がり軸受の諸元は、 J I S呼び番号 6 3 0 3でグリースを封入してある。 また、 用いられた試験 体の転がり軸受の転動体には SU J 2の鋼球を用いた。 また、 内 .外輪 の成分, 焼戻し温度, 残留オーステナイ 卜量 (ァ R ) は、 前記表 1の実 施例 1 3乃至実施例 2 0及び比較例 1 0乃至比較例 1 4に加えて、 同表 1の実施例 2 1乃至実施例 2 4及び比較例 1 5乃至比較例 1 8を増やし た。 実施例 2 1〜2 4は、 何れも本発明の転がり軸受であり、 C= 0. 6 5〜 1. 2 5 % (推奨値 0. 6 5~ 1. 1 0 %) , S i = 0. 7〜2 . 5 %, C r = 0. 5〜3. 0 % (推奨値 0. 5〜: L . 1 5 %) を含有 し且つ少なくとも Mo = 0. 5〜3. 0 % (推奨値 1. 1〜3. 0 %) を含有しており、 3 0 0〜4 5 0 °Cで焼戻し処理を行い、 残留ォ一ステ ナイ ト量が 1 %以下であるという条件を満足する。 一方、 比較例 1 5は C, C rの夫々の含有量が本発明と異なる。 また、 比較例 1 6は Moの 含有量が本発明の推奨値と異なる。 また、 比較例 1 7は Moの含有量が 本発明と異なり、 C rの含有量, 焼戻し温度, 残留オーステナイト量 ( 7R ) が本発明の推奨値と異なる。 また、 比較例 1 8は Moの含有量が 本発明と異なる。 また、 実施例 2 1〜2 4及び比較例 1 7, 1 8の内 · 外輪に対しては、 空気中にて 1 5 0〜3 5 0 °Cに数分間、 1〜3回に分 けて加熱して、 軌道面に酸化鉄系皮膜を形成した。 但し、 比較例 1 7, 1 8は、 再加熱皮膜処理条件を変えて形成される酸化皮膜厚を本発明と 異なる厚さとした。 そして、 内 ·外輪, 転動体の表面硬さは HRC 5 5 〜6 3, 残留オーステナイ ト量ァ R は 0〜6%, 内 ·外輪の表面粗さを 0. 0 1〜 0 4 imR a, 転動体の表面粗さを 0. 0 0 3〜0. 0 1 0 /zmR aとした。
3 - 3 ;試験方法
「S AEテクニカルペーパー : SAE 9 5 0 9 4 4J に開示されるェ ンジン耐久試験を行う。 回転数を所定時間毎に 2 0 0 0 r pmと 1 4 0 0 0 r pmとに切り換えるエンジン急加減速試験を用いた。 試験時には 試験体軸受のまわりにヒータを設置して 1 8 0°C—定として試験を行つ た。 また、 今回の荷重条件は、 P (負荷荷重) ZC (動定格荷重) = 0 . 1 4とした。 更に、 このときの試験体軸受の計算寿命は 7 6 0時間で あり、 したがって試験打ち切り時間を 1 0 0 0時間とした。 試験数はお のおの n= l 0個づつとした。 剝離有無の判定は、 振動の状態が初期振 動の 5倍になった時点で試験を中断し、 剝離の有を確認した。
3 4 ;試験結果
表 5に、 試験結果として各試料毎の評価時間 (軸受寿命) 及び剥離 ( 損傷) の有無並びに Mo系炭化物の大きさ, 皮膜厚さ, 表面硬さ, 再加 熱皮膜処理条件の各諸元を示す。
表 5
ェンシ 'ン試験結果
η 5>ί÷ Ι の女キ d nn n¾ t J U i nl'llUJPTln) J-+ 4 さ nm) ( n m J (HRC) \i
13 106 fi 1
14 300 9
15 50 5
施 16 ]45 ■l nnn
例 17 2 5 o nnn
18 211 60 1000
19 64 57 1000
20 79 56 iooo
21 230 5 60 220^X30 rain 1500
22 70 20 59 300t 20min 1500
23 236 50 57 260°CX60min 1500
24 59 100 56 400°C lOmin 1500
10 58 126 10/10外輪はくり 比 11 475 60 234 10/ 10外輪はくり 較 12 59 131 10/10外輪はくり 例 13 510 5(5 212 10/10外輪はくり
14 250 54 71 10/]0外輪はくり
15 200 57 107 10/10外輪はくり
16 950 56 139 10/10外輪はくり
17 0.5 55 170°C X60min 118 10ノ10外輪はくり
18 1200 54 450°CX20min 125 10 10内外輪はくり
また、 図 7には、 表 5に示される各試料毎の Mo系炭化物の平均粒径 と評価時間 (軸受寿命) との関係をグラフで示した。
このうち、 実施例 1 3〜2 0については、 夫々、 平均粒径 5 0〜3 0 0 nmの Mo系炭化物が分散析出しているため、 1^。寿命が 1 0 0 0 h rに至っても剝離を生じなかった。 これは、 表面硬さが HRC 5 6以上 と高かったこと及び組織変化の遅延効果が高い S iの含有量が 0. 1% 以上と高かったことと、 転がり表面下の最大剪断応力発生位置近傍にお ける微小亀裂の発生及び伝播を微細な Mo系炭化物が抑制したためであ る。
また、 実施例 2 1〜2 4については、 前記転がり表面下の微細な Mo 系炭化物による効果に加えて、 厚さ 5〜1 0 G nmの酸化皮膜による水 素侵入防止効果の複合効果によって、 何れも 1^。寿命が 1 5 0 0 h rに 至っても剝離を生じなかった。
一方、 比較例 1 0については、 SUJ 2を 2 5 0°Cで高温焼戻し処理 を行っているため、 表面硬さは HRC 5 8と高く、 1 8 0°Cの試験環境 下では、 寸法変化に起因する振動値の増加や焼付きは認められなかった 。 しかしながら、 Moを添加していないため、 微細炭化物の析出がなく 、 転がり疲労に対して十分ではなく、 1 0個中 1 0個, 外輪に剝離を生 じ、 L i。寿命は 1 2 6 h rと計算寿命の 1 Z 6以下であった。 比較例 1 2も同様で、 S iを添加したことにより、 3 0 0 °Cの高温焼戻しを行つ ても表面硬さは HRC 5 9と高かったが、 Mo系の微細炭化物の析出が ないため、 1 0個中 1 0個, 外輪に剝離を生じ、 。寿命は 1 3 1 h r と計算寿命の 1 Z 6以下であつた。
比較例 1 1, 1 3については、 Moを夫々、 1. 0%, 1. 9 %添加 したが、 夫々の Mo系炭化物の平均粒径が 4 7 5 nm, 5 1 0 nmと大 き過ぎるため、 1 0個中 1 0個, 外輪に表面起点剝離を生じ、 1^。寿命 は 2 3 4 h r, 2 1 2 h rと計算寿命の 1 Z 3以下であった。
比較例 1 4, 1 5については、 Mo添加による Mo系炭化物が 2 5 0 nm, 2 0 0 nmと微細であるが、 比較例 1 4では C量が 0. 5 1%と 少ないため、 表面硬さは HRC 5 4と低く、 疲労強度が十分にならなか つたため、 L!。寿命は 7 1 h rと計算寿命の 1 Z 1 0以下であった。 ま た、 比較例 1 5は、 C量力 1, 3 8%と高かったため、 軌道輪表面に巨 大な炭化物が生じ、 1 0個中 1 0個, 外輪に表面起点剝離を生じ、 L 10 寿命は 1 0 7 h rと計算寿命の 1Z 7以下であった。
比較例 1 6に関しては、 Mo添加量が 0. 6 %と少なかったため、 平 均粒径 9 5 0 nmの巨大な Mo系炭化物が部分的に析出し、 分散効果も なく、 亀裂伝播特性に対して効果がみられず、 1 0個中 1 0個, 外輪に 剝離を生じ、 L ,。寿命は 1 3 9 h rと計算寿命の 1 Z 5以下であった。 比較例 1 7については、 酸化鉄系皮膜厚さが 0. 5 nmと小さいため 、 試験終了後には、 軌道面の皮膜は完全に破損しており、 1 0個中 1 0 個, 外輪に剝離を生じ、 。寿命は 1 1 8 h rと計算寿命の 1Z7であ つた。 また、 比較例 1 8については、 軌道面に 1 2 0 0 nmの酸化皮膜 ができていたものの、 それらはスケールとなって軌道面は脆くなってお り、 表面にはピッ 卜が多く発生していた。 また、 剝離部位は内輪, 外輪 ともに混在していた。 従って、 それらのピッ ト起点で剝離を生じ、 L 10 寿命は 1 2 5 h rと短寿命であった。
以上の結果より、 高振動 ·高荷重下において、 転がり表面に 5 0〜3 0 0 nmの Mo系の微細な炭化物を分散析出させることにより、 微小亀 裂の伝播を抑制することが可能となり、 もって転がり寿命延長効果が期 待できる。 また、 軸受表面に 5〜 1 0 0 n mの酸化鉄クロム系の被膜 ( 再加熱酸化処理皮膜) を設けることにより、 潤滑剤中に含まれる数%の 水分の分解により発生する水素侵入による応力腐食割れ形剝離を抑制す ることができる。
なお、 今回、 軸受材料を熱処理 ·研磨後、 自然に乾燥させたが、 実際 は金属表面に付着した研磨後の油脂を脱脂し (例えば溶剤脱脂やアル力 リ脱脂など) 、 その後、 空気中で加熱して酸化鉄系の酸化皮膜を形成さ せることが望ましい。 また、 内輪, 外輪, 転動体を軸受として組込んだ 後に、 酸化皮膜処理を行うことも可能である。 また、 高周波加熱処理で 、 酸化皮膜をレース面のみに形成させることが望ましい。
また、 前記実施形態では高速回転条件下のみについて説明したが、 例 えば境界潤滑のように滑り率が高くなる低 Λ領域や高振動環境下のよう に転動体の剝離が多くなるような場合にも、 本発明の転がり軸受を用 L、 ることにより、 長寿命化を図ることができる。 産業上の利用可能性
上記の説明から明らかなように、 本発明の転がり軸受によれば、 高温 環境下に用いられる転がり軸受の軌道輪表面に M o系もしくは T i系炭 化物を微細に分残析出させることにより水素卜ラップ効果を得て、 転が り疲れ応力が最も高くなる最大剪断応力位置近傍への水素の侵入を防止 し、 合わせて M 0系炭化物を微細に分散析出させることにより初期微小 亀裂の発生及び伝播を抑制防止し、 もって高温 ·高振動 ·高荷重下での 転がり寿命の大幅な延長を果たすことが可能である。

Claims

請 求 の 範 囲
1. 固定輪と回転輪とからなる軌道輪の間に複数の転動体を配置して用 いられる転がり軸受において、 少なくとも前記軌道輪の一つが、 C = 0. 6 5 - 1. 2 5 %, S i = 0. 7〜2. 5 %, C r = 0. 5〜 3. 0 %を含有し且つ少なくとも Mo = 0. 5〜3. 0 %,
T i - 0. 0 5〜0. 5 %のうちの何れか一種を含有しており、 平均粒 径で 5 0〜3 0 O nmの Mo系炭化物もしくは T i系炭化物を微細に分 散析出させてあることを特徵とする転がり軸受。
2. 少なくとも前記軌道輪の一つの Cの含有量を 0. 6 5〜 1. 1 0 % とし、 且つ C rの含有量を 0. 5〜1. 1 5%とし、 且つ Moの含有量 を 1. 1〜3. 0%としたことを特徴とする請求の範囲第 1項に記載の 転がり軸受。
3. 少なくとも前記軌道輪の一つに、 5〜1 0 0 nmの酸化皮膜を形成 したことを特徴とする請求項の範囲第 1項又は第 2項に記載の転がり軸 受。
4. 少なくとも前記軌道輪の一つの残留オーステナイ ト量が 3%以下で あることを特徴とする請求の範囲第 1項乃至第 3項の何れかに記載の転 がり軸受。
5. 少なくとも前記軌道輪の一つの残留オーステナイ 卜量が 1%以下で あることを特徵とする請求の範囲第 1項乃至第 3項の何れかに記載の転 がり軸受。
6. 少なくとも前記軌道輪の一つの残留オーステナイ ト量が 0%である ことを特徴とする請求の範囲第 1項乃至第 3項の何れかに記載の転がり 軸受。
7. 少なくとも前記軌道輪の一つの下限界応力拡大係数値が 7. 6〜 1 2. IMP am1/2 であることを特徴とする請求の範囲第 1項乃至第 6 項の何れかに記載の転がり軸受。
8. 前記軌道輪の一つが固定輪であることを特徵とする請求の範囲第 1 項乃至第 7項の何れかに記載の転がり軸受。
9. 車両用発電器に使用することを特徴とする請求の範囲第 1項乃至第 8項の何れかに記載の転がり軸受。
PCT/JP1999/006463 1998-12-21 1999-11-19 Palier a roulement WO2000037701A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
GB0021427A GB2349647B (en) 1998-12-21 1999-11-19 Rolling bearing
US09/601,792 US6357924B1 (en) 1998-12-21 1999-11-19 Rolling bearing
DE19982543T DE19982543B4 (de) 1998-12-21 1999-11-19 Wälzlager

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP10/362992 1998-12-21
JP10362992A JP2000144331A (ja) 1998-08-25 1998-12-21 転がり軸受

Publications (1)

Publication Number Publication Date
WO2000037701A1 true WO2000037701A1 (fr) 2000-06-29

Family

ID=18478252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/006463 WO2000037701A1 (fr) 1998-12-21 1999-11-19 Palier a roulement

Country Status (4)

Country Link
US (1) US6357924B1 (ja)
DE (1) DE19982543B4 (ja)
GB (1) GB2349647B (ja)
WO (1) WO2000037701A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1357308A2 (en) * 2002-04-23 2003-10-29 NSK Ltd., Rolling element bearing with ring or rolling elements made of chromium steel

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10082695B4 (de) * 1999-09-03 2007-05-31 Nsk Ltd. Wälzlager
JP4053826B2 (ja) * 2002-06-25 2008-02-27 Thk株式会社 循環部品、並びにこの循環部品を用いた運動案内装置及びボールねじ
DE102012202902A1 (de) * 2012-02-27 2013-08-29 Aktiebolaget Skf Verfahren zur Herstellung einer Elektromotoranordnung und Elektromotoranordnung eines Elektrofahrzeugs

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0382736A (ja) * 1989-08-24 1991-04-08 Nippon Seiko Kk 転動部材用鋼及びこれを用いた転がり軸受
JPH04165048A (ja) * 1990-10-25 1992-06-10 Nachi Fujikoshi Corp 高クロム系軸受鋼
JPH05179404A (ja) * 1991-12-27 1993-07-20 Aichi Steel Works Ltd 耐熱軸受用鋼
JPH07188857A (ja) * 1993-12-27 1995-07-25 Koyo Seiko Co Ltd 軸受部品
JPH1151065A (ja) * 1997-07-31 1999-02-23 Nippon Seiko Kk 転がり軸受
JPH1180897A (ja) * 1997-09-04 1999-03-26 Nippon Seiko Kk 転がり軸受

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0633441B2 (ja) * 1986-03-19 1994-05-02 エヌティエヌ株式会社 軸受軌道輪
JPH0689783B2 (ja) * 1989-01-14 1994-11-14 エヌティエヌ株式会社 グリース封入軸受
GB2235698B (en) 1989-08-24 1994-04-06 Nippon Seiko Kk Rolling contact parts steel and rolling bearing made thereof
JPH0772556A (ja) * 1993-09-02 1995-03-17 Ricoh Co Ltd 原稿押え装置
JPH116526A (ja) * 1997-06-17 1999-01-12 Nippon Seiko Kk 転がり軸受
US6224688B1 (en) * 1997-08-18 2001-05-01 Nsk Ltd. Rolling bearing
DE19928775C2 (de) * 1998-06-29 2001-10-31 Nsk Ltd Induktionsgehärtete Wälzlagervorrichtung
JP2000212721A (ja) * 1998-11-19 2000-08-02 Nsk Ltd 耐摩耗性に優れた転動部材
JP4022607B2 (ja) * 1999-07-21 2007-12-19 日産自動車株式会社 耐高面圧部材の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0382736A (ja) * 1989-08-24 1991-04-08 Nippon Seiko Kk 転動部材用鋼及びこれを用いた転がり軸受
JPH04165048A (ja) * 1990-10-25 1992-06-10 Nachi Fujikoshi Corp 高クロム系軸受鋼
JPH05179404A (ja) * 1991-12-27 1993-07-20 Aichi Steel Works Ltd 耐熱軸受用鋼
JPH07188857A (ja) * 1993-12-27 1995-07-25 Koyo Seiko Co Ltd 軸受部品
JPH1151065A (ja) * 1997-07-31 1999-02-23 Nippon Seiko Kk 転がり軸受
JPH1180897A (ja) * 1997-09-04 1999-03-26 Nippon Seiko Kk 転がり軸受

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1357308A2 (en) * 2002-04-23 2003-10-29 NSK Ltd., Rolling element bearing with ring or rolling elements made of chromium steel
EP1357308A3 (en) * 2002-04-23 2006-12-06 NSK Ltd., Rolling element bearing with ring or rolling elements made of chromium steel

Also Published As

Publication number Publication date
GB2349647B (en) 2003-04-09
DE19982543T1 (de) 2000-11-30
US6357924B1 (en) 2002-03-19
GB0021427D0 (en) 2000-10-18
GB2349647A (en) 2000-11-08
DE19982543B4 (de) 2005-12-22

Similar Documents

Publication Publication Date Title
JP3487288B2 (ja) 表面処理した転がり軸受及びその製造方法
JPH0689783B2 (ja) グリース封入軸受
WO2003081062A1 (en) Rolling bearing for belt type non-stage transmission
JP2000337389A (ja) 転がり軸受
JP4942374B2 (ja) 耐白色組織変化特性に優れた転動部品用鋼および耐白色組織変化特性に優れた転動部品
WO2000037701A1 (fr) Palier a roulement
JPH1030150A (ja) 転がり軸受
JP5076274B2 (ja) 転がり軸受
JP2000144331A (ja) 転がり軸受
JP2005069274A (ja) 転がり軸受
JP3526180B2 (ja) 転がり軸受
JP2004176156A (ja) 転がり軸受
JP4440692B2 (ja) モータ用軸受およびその製造方法ならびにモータ
JP4320825B2 (ja) 転がり軸受
JPH0772565B2 (ja) 車両用交流発電機
JP2005147352A (ja) 転がり軸受
JP3071696B2 (ja) グリース封入軸受
JP2006138376A (ja) ラジアルニードルころ軸受
JP2009084699A (ja) 転がり軸受
JPH03173747A (ja) グリース封入軸受
JP2002242942A (ja) 転がり軸受
JP2006105363A (ja) 転がり軸受
JP2007284723A (ja) 自動車電装・補機用転動部材および自動車電装・補機用転がり軸受
JP2006017163A (ja) 転がり支持装置およびその構成部品の製造方法
JPH10122243A (ja) 転がり軸受

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): DE GB US

WWE Wipo information: entry into national phase

Ref document number: 09601792

Country of ref document: US

ENP Entry into the national phase

Ref document number: 200021427

Country of ref document: GB

Kind code of ref document: A

RET De translation (de og part 6b)

Ref document number: 19982543

Country of ref document: DE

Date of ref document: 20001130

WWE Wipo information: entry into national phase

Ref document number: 19982543

Country of ref document: DE