WO2000023488A1 - Resine de chlorure de vinyle, son procede de fabrication et objet moule obtenu - Google Patents

Resine de chlorure de vinyle, son procede de fabrication et objet moule obtenu Download PDF

Info

Publication number
WO2000023488A1
WO2000023488A1 PCT/JP1999/000900 JP9900900W WO0023488A1 WO 2000023488 A1 WO2000023488 A1 WO 2000023488A1 JP 9900900 W JP9900900 W JP 9900900W WO 0023488 A1 WO0023488 A1 WO 0023488A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
vinyl chloride
monomer
copolymer
chloride resin
Prior art date
Application number
PCT/JP1999/000900
Other languages
English (en)
French (fr)
Inventor
Takahiro Omura
Noriki Fujii
Original Assignee
Sekisui Chemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co., Ltd. filed Critical Sekisui Chemical Co., Ltd.
Priority to EP99905317A priority Critical patent/EP1167407B1/en
Priority to DE69928294T priority patent/DE69928294T2/de
Priority to US09/807,840 priority patent/US6583221B1/en
Publication of WO2000023488A1 publication Critical patent/WO2000023488A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/003Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/02Monomers containing chlorine
    • C08F214/04Monomers containing two carbon atoms
    • C08F214/06Vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • C08F265/06Polymerisation of acrylate or methacrylate esters on to polymers thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F267/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated polycarboxylic acids or derivatives thereof as defined in group C08F22/00
    • C08F267/06Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated polycarboxylic acids or derivatives thereof as defined in group C08F22/00 on to polymers of esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F285/00Macromolecular compounds obtained by polymerising monomers on to preformed graft polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/04Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C08L27/06Homopolymers or copolymers of vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/06Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L9/00Rigid pipes
    • F16L9/12Rigid pipes of plastics with or without reinforcement
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers

Definitions

  • Vinyl chloride resin method for producing the same, and molded article
  • the present invention relates to a vinyl chloride resin, a method for producing the same, and a molded article.
  • Vinyl chloride resins have excellent mechanical strength, weather resistance, chemical resistance, etc., and are used in many applications.
  • conventional polyvinyl chloride resins have drawbacks such as insufficient impact resistance, for example, when used for building materials such as exterior walls, window frames and sashes, and hard products such as pipes and joints. Therefore, various improved methods for solving these disadvantages have been proposed.
  • Japanese Patent Application Laid-Open No. Sho 60-25555813 discloses that an acryl-based copolymer consisting of an acrylic monomer and a polyfunctional monomer having a glass transition temperature of 110 ° C or lower of a homopolymer is converted into a chloride. There is disclosed a technology for producing vinyl chloride resin having excellent impact resistance, weather resistance and flexural elasticity by graft copolymerizing vinyl.
  • Japanese Patent Application Laid-Open No. Hei 8-2-252622 discloses a vinyl chloride obtained by graft-polymerizing vinyl chloride onto resin particles comprising an acryl-based copolymer latex and having a structure comprising a core portion and a shell portion. A series resin is disclosed.
  • Japanese Patent Application Laid-Open No. Hei 9-111,045 discloses that a copolymer consisting of a radical polymerizable monomer and a polyfunctional monomer having a glass transition temperature of a homopolymer of not more than 160 ° C. is singly polymerized.
  • a copolymer obtained by graft copolymerization of a mixed monomer consisting of an acrylyl monomer having a glass transition temperature of -55 ° C or higher and a polyfunctional monomer, and vinyl chloride is graft copolymerized. Is disclosed.
  • An object of the present invention is to solve the above-mentioned problems, and to obtain a molded article having excellent impact resistance and having a good surface condition even after long-term continuous molding.
  • An object of the present invention is to provide a vinyl chloride resin which can be used, a method for producing the same, and a molded article using the vinyl chloride resin.
  • a first aspect of the present invention relates to a radical polymerizable monomer (100 parts by weight) having a glass transition temperature of a homopolymer of 140 ° C. or more and less than ⁇ 60 ° C .; (A-1) 40 to 90% by weight of a copolymer consisting of a polymer and a homopolymer having a glass transition temperature of at least 55 ° C and less than 10 ° C (meth) acrylate
  • a copolymerized monomer (a-2) consisting of 100 parts by weight of a radical polymerizable monomer having 1.5% by weight and 1.5 to 10 parts by weight of a polyfunctional monomer is copolymerized.
  • Chloride resin obtained by graft copolymerizing a vinyl monomer (b) containing vinyl chloride as a main component with an acrylic copolymer (a) having an average particle diameter of 60 to 250 nm It is.
  • the second present invention provides a matrix resin containing polyvinyl chloride as a main component, having a glass transition temperature of at least 140 ° C. and less than ⁇ 20 ° C., and a gel fraction of 50 to 50 ° C. 100% by weight, and particles of an acryl-based copolymer (a) having an average particle diameter of 60 to 250 nm are dispersed therein, and the acrylic copolymer (a )) Is a vinyl chloride resin characterized in that the graft ratio of vinyl chloride to the resin is 0.1 to 5% by weight.
  • a third aspect of the present invention provides a radically polymerizable monomer having a glass transition temperature of ⁇ 140 ° C. or higher and lower than ⁇ 60 ° C. 100 parts by weight, a polyfunctional monomer 0.1 to 1
  • the copolymer (a-1) was obtained by reacting the copolymer with the polymer in an amount of 40 to 90% by weight of the copolymer (a-1).
  • the glass transition temperature is 140 in a matrix resin containing polyvinyl chloride as a main component.
  • Particles of the acryl-based copolymer (a) having a gel fraction of 50 to 100% by weight and an average particle diameter of 60 to 250 nm, which is not lower than C and lower than 20 ° C.
  • a hard vinyl chloride resin molded article which is dispersed and has a graft ratio of vinyl chloride to the acrylic copolymer (a) of 0.1 to 5% by weight.
  • the fifth present invention is a kind of the rigid vinyl chloride resin molded article of the fourth present invention, which has a Charpy impact value of 100 kgf ⁇ cm / cm 2 or more and a tensile strength of 450 kgf Zcm.
  • the sixth invention is a kind of the rigid vinyl chloride resin molded article of the fourth invention, which has a Charpy impact value of 10 kgf ⁇ cm / cm 2 or more and a tensile strength of 400 kgf / It is an extruded molded product of cm 2 or more.
  • the eighth invention uses the vinyl chloride resin of the first invention or the second invention, has a Charpy impact value of 1 O kgfcm / cm 2 or more, and has a tensile strength of 40. This is an extruded molded product of 0 kgf / cm 2 or more.
  • a ninth aspect of the present invention is a modified extrusion molded article of the rigid vinyl chloride resin molded article of the sixth or eighth aspect of the present invention, or a brass sash comprising the modified extrusion molded article of the eighth aspect of the present invention. It is. BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a perspective view showing an embodiment of a molded article constituting a plaza of the present invention.
  • FIG. 2 is a perspective view showing one embodiment of the brass sash of the present invention.
  • the first vinyl chloride resin of the present invention is obtained by adding vinyl chloride to an acryl-based copolymer (a) obtained by graft copolymerizing a mixed monomer (a-2) with a copolymer (a-1).
  • the copolymer (a-1) which is obtained by graft copolymerizing a vinyl monomer (b) containing a polyester as a main component, has a glass transition temperature of at least 140 ° C. It comprises 100 parts by weight of a radical polymerizable monomer having a temperature of less than 0 ° C. and 0.1 to 1 part by weight of a polyfunctional monomer.
  • the radical polymerizable monomer having a glass transition temperature of at least 140 ° C. and less than 160 ° C. of the homopolymer forms a central part (core) of the particles of the acrylic copolymer (a). It is used for the purpose of improving the impact resistance of the obtained vinyl chloride resin.
  • the radical polymerizable monomer has a glass transition temperature of a homopolymer of 140 ° C. or more and less than 160 ° C. If the temperature is lower than 140 ° C, it is not common in view of the glass transition temperature of the polymer generally used in industry, and if the temperature is higher than 60 ° C, the vinyl chloride resin Sufficient flexibility against high-speed distortion during molding is not obtained, so the range is limited to the above range.
  • the radical polymerizable monomer having a glass transition temperature of the above homopolymer of at least 140 ° C. and less than 160 ° C. is not particularly limited.
  • the glass transition temperature of the homopolymer - 1 4 0 D glass transition temperature of the radical polymerizable monomer such as an 6 0 ° less C than C is Baifukan published, Polymer Society ed., " Polymer data “Handbook (Basic)” etc.
  • the polyfunctional monomer is used in the copolymer (a-1) to cross-link the polymer of the core and to improve the impact resistance of the vinyl chloride resin.
  • the above-mentioned polyfunctional monomer is not particularly limited, and examples thereof include ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) atalylate, 1, 6-Di (meth) acrylates such as hexanediol di (meth) acrylate and trimethylolpropane di (meth) acrylate; trimethylolpropanetri Tri (meta) acrylates, such as (meth) acrylates, ethylene oxide modified denatured trimethylolpropane tri (meta) acrylates, and pen erythritol tri (meta) acrylateskinds of erythritol tetra (meth) acrylate, dipentyl erythritol hexa (
  • the polyfunctional monomer is a radical polymerizable monomer having a glass transition temperature of at least 140 ° C. and less than 160 ° C. 0.1 to 1 part by weight based on parts. If the amount of the polyfunctional monomer is less than 0.1 part by weight, the particle shape of the acrylic copolymer (a) is destroyed during the molding and processing of the obtained vinyl chloride resin, and the impact resistance is not exhibited. If the amount exceeds 1 part by weight, the crosslink density of the copolymer (a-1) becomes high, and it becomes difficult to obtain impact resistance, so that it is limited to the above range. Preferably, the amount is 0.2 to 0.5 parts by weight.
  • the above copolymer (a-1) has a glass transition temperature of -140 ° C or lower of the above homopolymer. It can be obtained by polymerizing a radically polymerizable monomer having a temperature of lower than 60 ° C. and the polyfunctional monomer.
  • the polymerization method is not particularly limited, and examples thereof include an emulsion polymerization method and a suspension polymerization method.
  • the mixed monomer (a-2) has a glass transition temperature of a homopolymer of not less than -55 ° C and less than 110 ° C, and is a radical polymerizable monomer containing (meth) acrylate as a main component. Parts by weight and 1.5 to 10 parts by weight of a polyfunctional monomer.
  • the radical polymerizable monomer having a glass transition temperature of the above homopolymer of not less than 55 ° C. or more and less than 110 ° C. and containing (meth) acrylate as a main component is not less than 50% by weight.
  • the glass transition temperature of (meth) acrylate and the homopolymer is not less than 55 ° C and not more than 10 ° C and less than 10 ° C. It means a mixture of a (meth) acrylate and a radically polymerizable monomer copolymerizable with (meth) acrylate.
  • the (meth) acrylate having a glass transition temperature of ⁇ 55 ° C. or higher and lower than ⁇ 10 ° C. of the above-mentioned homopolymer is formed by the shell of the acryl-based copolymer (a) described in detail later.
  • the main component is to improve the impact resistance of the obtained vinyl chloride resin, and to coat the low glass transition temperature polymer of the core to reduce the adhesiveness of the acrylic copolymer (a) particles. Used for purposes.
  • the above (meth) acrylate has a homopolymer having a glass transition temperature of at least 150 ° C and less than 10 ° C. If the temperature is lower than ⁇ 55 ° C., the effect of coating the copolymer (a-1) to reduce the tackiness of the particles of the acrylic copolymer (a) becomes insufficient. Above, it is difficult to maintain the flexibility of the vinyl chloride resin, so that the above range is limited.
  • the (meth) acrylate which has a glass transition temperature of the above homopolymer of not less than 55 ° C. and less than 10 ° C. is not particularly limited, and includes, for example, ethyl acrylate, n-propyl acrylate, and isophthalate.
  • the above-mentioned homopolymer has a glass transition temperature of not less than 55 ° C. and less than 110 ° C., and the radical polymerizable monomer copolymerizable with the (meth) acrylate can have a mechanical strength of the obtained vinyl chloride resin. It is added for the purpose of improving chemical resistance and moldability.
  • the homopolymer has a glass transition temperature of not less than 55 ° C. and less than 10 ° C.
  • the radical polymerizable monomer copolymerizable with the (meth) acrylate is not particularly limited.
  • the polyfunctional monomer reduces the tackiness of the copolymer (a-1) by cross-linking the polymer of the seal portion, and the copolymer (a-1) and vinyl chloride containing vinyl chloride as main components. It is used to assist the graft copolymerization reaction with the monomer (b) and improve the impact resistance.
  • the polyfunctional monomer is not particularly limited, and includes, for example, those exemplified in the description of the copolymer (a-1).
  • the polyfunctional monomer is a radical mainly composed of (meth) acrylate having a glass transition temperature of ⁇ 55 ° C. or more and less than 110 ° C. It is contained in an amount of 1.5 to 10 parts by weight based on 100 parts by weight of the polymerizable monomer. If the amount is less than 5 parts by weight, it is difficult to obtain the anti-adhesion effect of the copolymer (a-1). If the amount is more than 10 parts by weight, the crosslink density is too high and the impact resistance is obtained. Therefore, it is limited to the above range. Preferably, it is 3 to 7 parts by weight.
  • the acrylic copolymer (a) is obtained by graft copolymerizing the above-mentioned mixed monomer (a-2) with the above copolymer (a-1).
  • the mixing ratio of the copolymer (a-1) and the mixed monomer (a-2) is 40 to 90% by weight of the copolymer (a-1).
  • % Of the mixed monomer (a-2) is 10 to 60% by weight.
  • the method of the above-mentioned graft copolymerization is not particularly limited, and examples thereof include an emulsion polymerization method and a suspension polymerization method.
  • the emulsion polymerization method is preferred from the viewpoint of the development of impact resistance and the point that the particle size of the acryl-based copolymer (a) can be easily controlled.
  • it is roughly classified into three methods: a batch polymerization method, a monomer dropping method, and an emulsion dropping method.
  • any method may be used.
  • the monomer dropping method for example, pure water, an emulsifying and dispersing agent, and a polymerization initiator are placed in a polymerization reaction vessel with a jacket, the inside of the polymerization reaction vessel is depressurized, oxygen is removed, and then the reaction is performed with nitrogen.
  • a nitrogen atmosphere that has been brought back to atmospheric pressure, first, the inside of the polymerization reaction tank is heated to a predetermined temperature by a jacket, and then the monomers are gradually dropped by dropping a fixed amount at a time.
  • an emulsified monomer is prepared in advance by sufficiently emulsifying a monomer, an emulsifying dispersant, and pure water by stirring, and then pure water, polymerization is started in a polymerization reaction vessel with a jacket. After adding the agent and depressurizing the inside of the polymerization layer reactor to remove oxygen, and then returning the pressure to atmospheric pressure with nitrogen, the inside of the polymerization reactor is first heated to a predetermined temperature by a jacket. And then dropping the emulsified monomer in a fixed amount to carry out polymerization.
  • a method is used in which a part of the above-mentioned emulsified monomer (hereinafter referred to as seed monomer) is added all at once in the early stage of polymerization, and then the remaining emulsified monomer is added dropwise.
  • seed monomer a part of the above-mentioned emulsified monomer
  • the particle size of the easily produced polymer can be controlled.
  • the acrylic copolymer (a) can be obtained, for example, as follows.
  • a radical polymerizable monomer and a polyfunctional monomer having a glass transition temperature of a homopolymer of 140 ° C. or more and less than 160 ° C. are subjected to emulsion polymerization in the presence of an emulsifying dispersant and a polymerization initiator. It is polymerized to form a copolymer (a_l) as a core portion.
  • the glass transition temperature of the homopolymer is ⁇ 55 ° C. or higher ⁇ 10 in the presence of the copolymer (a-1), the emulsifying dispersant, and the polymerization initiator.
  • a mixed monomer (a-2) composed of a radically polymerizable monomer having a (C) acrylate lower than C as a main component and a polyfunctional monomer is added, and then subjected to graft polymerization by emulsion polymerization to form a shell portion. Thereby, an acrylic copolymer (a) is obtained.
  • the formation of the shell may be performed in a series of polymerization steps from the synthesis of the core. After the synthesis and recovery of the core, the mixed monomer (a-2) is added again to polymerize the shell. Formation may be performed.
  • the above-mentioned emulsifying dispersant is added for the purpose of improving the dispersion stability of the above-mentioned monomer in an emulsified liquid and efficiently performing polymerization.
  • the emulsifying dispersant is not particularly limited. Examples thereof include anionic surfactants such as polyoxyethylene alkyl phenyl ether sulfate; nonionic surfactants, partially saponified polyvinyl acetate, cellulose-based dispersants, and gelatin. Of these, anionic surfactants are preferred.
  • the polymerization initiator is not particularly limited, and includes, for example, water-soluble polymerization initiators such as potassium persulfate, ammonium persulfate, and hydrogen peroxide; and organic polymerization initiators such as benzoyl peroxyside and lauroyl peroxyside. Peroxide; azo-based initiators such as azobisisobutyronitrile; redox initiators;
  • the polymerization initiator may be added only once, and the polymerization initiator ( When the polymerization of a-1) and the polymerization of the acrylic copolymer (a) are performed separately, it is necessary to add them in each polymerization.
  • a pH adjuster, an antioxidant and the like may be added as necessary.
  • a protective colloid agent may be added as necessary at the end of the polymerization reaction.
  • the acryl-based copolymer obtained as described above is a particle having a two-layer structure composed of a core part and a shell part.
  • the particles of the acrylic copolymer (a) have an average particle diameter of 60 to 250 nm. If it is less than 60 nm, the viscosity increases, and a large number of fine particles with a size of 10 nm or less are included.As a whole, the viscosity increases and adheres to the mold surface of the molding machine, resulting in poor appearance of the molded product. If the thickness exceeds 250 nm, both the impact resistance and the tensile strength of the molded body decrease, so that the range is limited to the above range. Preferably, it is 100 to 200 nm.
  • the acryl-based copolymer (a) preferably has a glass transition temperature of at least 140 ° C. and less than ⁇ 20 ° C. Those having a temperature lower than 140 ° C cannot be produced due to the glass transition temperature of the radical polymerizable monomer constituting the acryl-based copolymer (a). No impact is obtained.
  • the acrylic copolymer (a) has a gel fraction of 50 to 100% by weight. Is preferred. If the amount is less than 50% by weight, the non-crosslinked acryl molecules bleed out to the surface of the molded article during molding due to a low degree of crosslinking, which impairs the appearance of the molded article. More preferably, it is 75 to 10% by weight.
  • the acrylic copolymer (a) preferably has a resin solid content of 10 to 60% by weight. If the amount is less than 10% by weight, the productivity of the acrylic copolymer (a) is not sufficient, and if it exceeds 60% by weight, the vinyl monomer (b) containing vinyl chloride as a main component, which will be performed later, and Poor stability of the polymerization reaction.
  • the first vinyl chloride resin of the present invention is obtained by graft copolymerizing the above-mentioned acrylic copolymer (a) with a vinyl monomer (b) containing vinyl chloride as a main component.
  • the vinyl monomer (b) containing vinyl chloride as a main component means a mixture of 50% by weight or more of vinyl chloride and a vinyl monomer copolymerizable with vinyl chloride.
  • the vinyl monomer copolymerizable with the above-mentioned vinyl chloride is not particularly limited as long as it is a commonly used vinyl monomer.
  • examples thereof include vinyl acetate, alkyl (meth) acrylate, alkyl vinyl ether, ethylene, vinyl fluoride, maleimi And the like. These may be used alone or in combination of two or more.
  • the method of graft-copolymerizing the acrylic copolymer (a) with a vinyl monomer (b) containing vinyl chloride as a main component is not particularly limited.
  • examples thereof include a suspension polymerization method, an emulsion polymerization method, and a solution polymerization method.
  • examples include a legal method and a bulk polymerization method. Among them, the suspension polymerization method is preferred.
  • the vinyl chloride resin of the first invention can be obtained, for example, as follows.
  • Pure water, acrylic copolymer (a), dispersant, oil-soluble polymerization initiator, water-soluble thickener, and, if necessary, polymerization degree regulator are introduced into a reaction vessel equipped with a stirrer and a jacket. After that, the air in the reaction vessel is discharged by a vacuum pump, and a vinyl monomer (b) containing vinyl chloride as a main component is added under stirring conditions, and then the inside of the reaction vessel is heated by a jacket. Performs graft copolymerization of vinyl chloride. Since the above graft copolymerization is an exothermic reaction, by changing the jacket temperature, the temperature in the reaction vessel is changed. Degree, that is, the polymerization temperature can be controlled.
  • the dispersant is used for improving the dispersion stability of the acrylic copolymer (a) and for efficiently performing the graft polymerization of vinyl chloride.
  • the dispersant is not particularly limited, and examples thereof include poly (meth) acrylate, (meth) acrylate monoalkyl acrylate copolymer, methylcellulose, ethylcellulose, hydroxypropylmethylcellulose, and the like. Examples include polyethylene glycol, polyvinyl acetate and partially saponified products thereof, gelatin, polyvinylpyrrolidone, starch, and maleic anhydride-styrene copolymer. These may be used alone or in combination of two or more.
  • the oil-soluble polymerization initiator is not particularly limited, but a radical polymerization initiator is preferable because it is advantageous for graft copolymerization.
  • the radical polymerization initiator is not particularly limited, and examples thereof include lauroyl peroxide, t-butyl butoxyvivalate, diisopropyl peroxy carbonate, dioctyl baroxy dicarbonate, and t-butyl peroxy.
  • Organic peroxides such as neodecanoate and ⁇ -cumylperoxyneodecanoate: 2,2-azobisisobutyronitrile
  • the water-soluble thickener is not particularly limited, and includes, for example, poly (meth) acrylic acid, alkyl (meth) acrylate- (meth) acrylic acid copolymer, casein, and metal salts thereof. .
  • the polymerization degree regulator is not particularly limited, and includes, for example, a chain transfer agent such as mercaptomethanol, mercaptoethanol, and mercaptopropanol; a crosslinking agent such as divinylbenzene and ethylene glycol dimethacrylate.
  • a chain transfer agent such as mercaptomethanol, mercaptoethanol, and mercaptopropanol
  • a crosslinking agent such as divinylbenzene and ethylene glycol dimethacrylate.
  • a coagulant is added to the acrylic copolymer (a) in advance in order to reduce the amount of the acrylic copolymer (a) adhering to the inside of the reaction vessel during the reaction. It may be.
  • the degree of polymerization of polyvinyl chloride is preferably from 300 to 200. If it is less than 300 or more than 2000, it will be difficult to obtain sufficient moldability. More preferably, it is from 400 to 160.
  • the first vinyl chloride resin of the present invention is preferably a resin obtained by dispersing the acrylic copolymer (a) particles in a matrix resin containing polyvinyl chloride as a main component.
  • the proportion occupied by the acrylic copolymer (a) in the vinyl chloride resin of the first present invention is not particularly limited, but is preferably 1 to 30% by weight. When the amount is less than 1% by weight, the impact resistance of the molded body is reduced, and when it exceeds 30% by weight, the mechanical strength of the molded body is reduced. More preferably, it is 3 to 16% by weight.
  • the vinyl chloride preferably has a graft ratio of 0.1 to 5% by weight.
  • the graft ratio of vinyl chloride means the weight fraction of vinyl chloride molecules copolymerized with the acrylic copolymer (a) and chemically bonded thereto. If the graft ratio of the vinyl chloride is less than 0.1% by weight, the surface of the acrylic copolymer (a) cannot be sufficiently covered with the vinyl chloride molecules, and the surface of the mold of the molding machine is not molded during molding. It is not possible to obtain a molded body having good surface condition, and if it exceeds 5% by weight, it is not common.
  • the vinyl chloride resin according to the first aspect of the present invention may be used after adding a heat stabilizer, a stabilizing aid, a lubricant, a processing aid, an antioxidant, a light stabilizer, a filler, a pigment, etc., if necessary. , Formed and processed.
  • the heat stabilizer is not particularly limited and includes, for example, dimethyltin mercapto, dibutyltin mercapto, dioctyltin mercapto, dibutyltin maleate, dibutyltin maleate polymer, dioctyltin maleate, dioctyltin maleate polymer, dibutyl Organic tin stabilizers such as tin laurate and dibutyltin laurate polymer; lead-based stabilizers such as lead stearate, dibasic lead phosphite, and tribasic lead sulfate; calcium-zinc-based stabilizers; Zinc-based stabilizers; barium-cadmium-based stabilizers;
  • the stabilizing aid is not particularly limited, and includes, for example, epoxidized soybean oil, epoki Amazinated soybean oil, epoxidized tetrahydrophthalate, epoxidized polybutadiene, phosphate ester and the like.
  • the lubricant is not particularly limited and includes, for example, montanic acid wax, paraffin wax, polyethylene wax, stearate, stearyl alcohol, butyl stearate and the like.
  • the processing aid is not particularly limited.
  • an acryl-based processing aid which is an alkyl acrylate-to-alkyl methacrylate copolymer having a weight average molecular weight of 1,000 to 2,000. Agents and the like.
  • the acryl-based processing aid is not particularly limited, and includes, for example, n-butyl acrylate Z-methyl methacrylate copolymer, 2-ethylhexyl acrylate / methyl methacrylate gbutyl methacrylate copolymer. Coalescence and the like.
  • the antioxidant is not particularly limited, and includes, for example, a phenolic antioxidant.
  • the light stabilizer is not particularly restricted but includes, for example, salicylic acid ester-based, benzofunone-based, benzotriazole-based, cyanoacrylate-based ultraviolet absorbers, and hindered amine-based light stabilizers.
  • the filler is not particularly limited, and includes, for example, calcium carbonate, talc and the like.
  • the pigment is not particularly limited.
  • organic pigments such as azo-based, phthalocyanine-based, styrene-based, and dye lake-based: oxides, molybdenum chromate-based, sulfide / selenide-based, and cyanide-based And other inorganic pigments.
  • a plasticizer may be added to the vinyl chloride resin of the first aspect of the present invention in order to improve workability during molding.
  • the plasticizer is not particularly restricted but includes, for example, dibutyl phthalate, di-2-ethylhexyl phthalate, di-2-ethylhexyl adipate and the like.
  • a thermoplastic resin such as polyvinyl chloride may be added as necessary.
  • the method for mixing the various additives with the vinyl chloride resin is not particularly limited. Alternatively, a method using hot blending or a method using cold blending may be used.
  • the method for molding the vinyl chloride resin is not particularly limited, and examples thereof include an extrusion molding method, an injection molding method, a calendar molding method, and a press molding method.
  • the core of the acrylic copolymer (a) is formed of a polymer having high flexibility, it is possible to maintain extremely excellent impact resistance. it can.
  • the vinyl chloride resin of the first present invention has a higher degree of hardness of the particle surface since the seal portion of the acrylic copolymer (a) is highly crosslinked than the conventional vinyl chloride resin.
  • the high elasticity and the use of a large amount of polyfunctional monomer that plays a role of cross-linking agent improve the graft ratio of vinyl chloride and reduce the adhesiveness of acrylic copolymer (a) Can be done.
  • resin particles can be prevented from adhering and accumulating on the mold surface of the molding machine during molding, and even if continuous molding is performed for a long period of time, the surface of the molded body will have no burrs, streaks, unevenness, cracks No defective part is generated.
  • the vinyl chloride resin of the first aspect of the present invention prevents the generation of particles having a particle diameter of 10 nm or less, which increases the tackiness, because the average particle diameter of the acrylic copolymer (a) is large.
  • the adhesiveness can be controlled, and a molded article having a good surface condition can be obtained.
  • the second present invention provides a matrix resin containing polyvinyl chloride as a main component, which has a glass transition temperature of at least 140 ° C. and less than ⁇ 20 ° C., and a gel fraction of 50 to 1 0% by weight, and particles of an acryl copolymer (a) having an average particle diameter of 60 to 250 nm are dispersed therein, and the acrylic copolymer (a)
  • the vinyl chloride resin has a graft ratio of vinyl chloride to 0.1 to 5% by weight.
  • the second vinyl chloride resin of the present invention has a glass transition temperature of at least 140 ° C. and less than ⁇ 20 ° C. in a matrix containing polyvinyl chloride as a main component, and a gel fraction. It is 50 to 100% by weight, and particles of an acryl-based copolymer (a) having an average particle diameter of 6 (! To 250 nm) are dispersed therein.
  • the particles of the acrylic copolymer (a) are not particularly limited. Examples include those exemplified for the vinyl chloride resin of the first invention.
  • the matrix resin containing polyvinyl chloride as a main component has a graft ratio of vinyl chloride to the acryl-based copolymer (a) of 0.1 to 5% by weight. If the content is less than 0.1% by weight, the surface of the acrylic copolymer (a) cannot be sufficiently covered with the vinyl chloride molecules, and adheres to the mold surface of the molding machine during molding, and the surface condition becomes poor. If a good molded body cannot be obtained, and if it exceeds 5% by weight, it is not general and is limited to the above range.
  • a third aspect of the present invention relates to a radically polymerizable monomer having a glass transition temperature of ⁇ 140 ° C. or more and less than 60 ° C. 100 parts by weight, a polyfunctional monomer 0.1 to 1 times And the copolymer (a-1) was obtained by reacting the copolymer (a-1) with 40 to 90% by weight, and the glass transition temperature of the homopolymer was -55 ° C or more.
  • a mixed monomer consisting of 100 parts by weight of a radical polymerizable monomer mainly composed of (meth) acrylate having a temperature of less than 110 ° C and 1.5 to 10 parts by weight of a multifunctional monomer (a-2 ) 10 to 60% by weight of a graft copolymer was obtained to obtain an acryl-based copolymer (a) having an average particle diameter of 60 to 250 nm.
  • This is a method for producing a vinyl chloride resin by graft copolymerizing a vinyl monomer (b) containing vinyl chloride as a main component.
  • the surface of the core made of a highly flexible polymer is coated with a shell having a high degree of cross-linking to form a two-layer acryl-based copolymer ( a) can be efficiently prepared. Furthermore, in the graft copolymerization of an acryl-based copolymer (a) and a vinyl monomer (b) containing vinyl chloride as a main component, the graft ratio of vinyl chloride is increased. Therefore, it is possible to produce a vinyl chloride-based resin having excellent impact resistance and capable of stably supplying a molded body having a good surface condition even if continuous molding is performed for a long period of time.
  • the glass transition temperature is from ⁇ 140 ° C. to less than 120 ° C.
  • the gel fraction is from 50 to 100% by weight
  • particles of an acryl-based copolymer (a) having an average particle diameter of 60 to 250 nm are dispersed, and the acrylic copolymer (a)
  • the hard vinyl chloride resin molded article of the fourth aspect of the present invention has a glass transition temperature of ⁇ 140 ° C. or higher and lower than ⁇ 20 ° C.
  • the particles of the acryl-based copolymer (a) having a polymer fraction of 50 to 100% by weight and an average particle diameter of 60 to 250 nm are dispersed therein.
  • the particles of the acrylic copolymer (a) are not particularly limited, and include, for example, those exemplified for the vinyl chloride resin of the first aspect of the present invention.
  • the matrix resin containing polyvinyl chloride as a main component has a graft ratio of vinyl chloride to the acryl-based copolymer (a) of 0.1 to 5% by weight. If the content is less than 0.1% by weight, the surface of the acrylic copolymer (a) cannot be sufficiently covered with the vinyl chloride molecules, and adheres to the mold surface of the molding machine during molding, and the surface condition becomes poor. If a good molded body cannot be obtained, and if it exceeds 5% by weight, it is not general and is limited to the above range.
  • the rigid vinyl chloride-based resin molded article of the fourth present invention may be, for example, a heat stabilizer, a stabilizing aid, if necessary, added to the vinyl chloride resin of the first present invention or the second present invention. It can be obtained by adding additives such as lubricants, processing aids, antioxidants, light stabilizers, fillers, pigments and the like, followed by molding.
  • the molding method is not particularly limited, and examples thereof include an extrusion molding method, an injection molding method, a calendar molding method, and a press molding method.
  • the shape of the rigid vinyl chloride resin molded article is not particularly limited, and is appropriately selected from, for example, a tubular shape, a plate shape, and other shapes according to the application.
  • the fourth rigid vinyl chloride resin molded product of the present invention the Charpy impact value 1 0 0 kgf - is at cm / cm 2 or more, the tube tensile strength is 4 6 0 kgf / cm 2 or more, or, Charpy impact value is at 1 0 kgf ⁇ cmZcm 2 or more, profile extrusion molding tensile strength is 4 0 0 kgf Xcm z or more.
  • the pipe has a Charpy impact value of lOO kgf 'cmZcm 2 or more. If it is less than 100 kgf ⁇ cm / cm 2 , it cannot sufficiently withstand use in cold regions.
  • the above tube has a tensile strength of not less than 450 kgf / cm 2 . If it is less than 460 kgf Zcm 2 , the pulsation resistance when used for water supply will be insufficient.
  • the above tube is also one of the present invention.
  • the above-mentioned extruded molded product has a Charpy impact value of 1 O kgf / cm / cm 2 or more. If it is less than 10 kgf ⁇ cm / cm 2 , it cannot sufficiently withstand the use of the brass sash in cold regions.
  • the above-mentioned extruded molded product has a tensile strength of 400 kgf / cm z or more. If it is less than AOO kgf Zcm 2 , problems such as deformation will occur during normal use in warm areas.
  • extrusion molded product is also one of the present invention.
  • the rigid vinyl chloride resin molded article of the fourth aspect of the present invention has the above characteristic values, it can be used for applications requiring extremely high impact resistance and tensile strength. As described above, it can be applied not only to high impact resistance and tensile strength but also to applications requiring good appearance and formability.
  • the pipe of the seventh invention is made of the vinyl chloride resin of the first invention or the second invention and has the above-mentioned characteristic values.
  • water and sewage pipes, factory drain pipes, etc. Can be suitably used.
  • Eighth of the invention will be had use a vinyl chloride resin of the first invention or the second invention, it is Sharubi one impact value 1 0 kg ⁇ ⁇ c mZc m 2 or more, a tensile strength It is an extruded product with a profile of 400 kgf Zcm 2 or more.
  • the modified extruded product of the eighth invention is made of the vinyl chloride resin of the first invention or the second invention, only high impact resistance and tensile strength such as a brass sash and a soundproof wall are used. However, it is suitable for applications that require good appearance and moldability.
  • the ninth aspect of the present invention is a brass sash comprising the irregularly extruded article of the rigid vinyl chloride resin molded article of the sixth aspect of the present invention or the irregularly shaped extruded article of the eighth aspect of the present invention.
  • the plaza of the ninth aspect of the present invention is obtained by assembling the above-mentioned extruded molded product according to a conventional method, it has a good appearance, has impact resistance and tensile strength, and has a window of a house or a building. It is suitable as a sash to be attached to the like. lg
  • the ninth plaza of the present invention will be described in more detail with reference to the drawings.
  • FIG. 1 shows an embodiment of the shape of an extruded molded product constituting a plaza in the ninth aspect of the present invention.
  • the arrow indicates the extrusion direction. Since the resin used at this time is the vinyl chloride resin of the first aspect of the present invention, it can be continuously molded without adhering to the mold of the extruder, and has a good surface appearance. is there.
  • the extruded molded product manufactured as shown in FIG. 1 is appropriately cut and assembled into a brass sash as shown in FIG. 2 according to a conventional method.
  • each vinyl chloride resin was obtained by the following operation procedure.
  • a predetermined amount of ion-exchanged water used for polymerization, an emulsifying dispersant (polyoxyethylene nonylphenyl ether ammonium sulfate), a core monomer, and a multifunctional monomer [trimethylolpropane triacrylate (TMPTA) )] was mixed and stirred to prepare an emulsifying monomer for the core.
  • a predetermined amount of ion-exchanged water, an emulsifying dispersant (polyquinethylene nonylphenyl ether ammonium sulfate), a monomer for shell, and TMPTA were mixed and stirred to prepare an emulsion monomer for shell.
  • a predetermined amount of ion-exchanged water was charged into the polymerization vessel, and stirring was started.
  • the pressure was returned with nitrogen to perform the replacement, and the temperature of the polymerization tank was raised to 70 ° C.
  • Ammonia persulfate (APS) and an amount equivalent to 20% by weight of the total emulsified monomer from the emulsified monomer for the core as described above were collectively charged as a seed monomer into the polymerization tank in which the temperature was raised, and polymerization was started. . Subsequently, the remaining emulsifying monomer for the core was dropped.
  • the monomer for sealing was dropped into the surroundings, and the dropping of all the emulsion monomers was completed in 3 hours. After that, aging period of 1 hour After an interval, the polymerization was terminated to obtain an acrylic polymer latex having a solid content of about 30% by weight.
  • a vinyl chloride-based copolymer was prepared in the same manner as in Example 1 according to the composition shown in Table 1. A resin was prepared.
  • a vinyl chloride-based copolymer was prepared in the same manner as in Example 1 in accordance with the composition shown in Table 1. A resin was prepared.
  • Example 2 Except that 50% by weight of the total emulsified monomer amount was batch-injected as a seed monomer to produce an acrylic copolymer, the same procedure as in Example 1 was repeated except for producing the acrylic copolymer. A resin was prepared.
  • a vinyl chloride resin was prepared in the same manner as in Example 1 in accordance with the composition shown in Table 1, except that an amount corresponding to 3% by weight of the total emulsified monomer amount was collectively charged as a seed monomer to produce an acrylic copolymer. Prepared.
  • Comparative Example 10 A mixture of 94 parts by weight of a vinyl chloride resin having a degree of polymerization of 1000 and 6 parts by weight of the acryl-based copolymer of Example 1 was prepared.
  • a mixture of 95 parts by weight of a vinyl chloride resin having a degree of polymerization of 100 and 5 parts by weight of the acrylic copolymer of Example 1 was prepared.
  • Average particle size When the acryl-based copolymer particles are deformed into an elliptical shape or the like due to stress or the like during molding, the average of the major axis and the minor axis is defined as the particle diameter.
  • the measurement was carried out using a differential scanning calorimeter (DSC) (manufactured by Seiko Instruments Inc.).
  • the sample is a dry film of an acrylic copolymer latex [In the case of a molded product, 20 g of the molded product is immersed in 200 ml of tetrahydrofuran (THF) for 50 hours to remove the THF-insoluble portion in 200 ml. After collecting with a mesh, the film was dried and solidified].
  • the measurement range was —100 to 250 ° C., and the scanning speed was 5 ° CZ.
  • W3 g About 10 g (referred to as W3 g) of the vinyl chloride resin was weighed out and mixed with stirring in THF 100 ml for 50 hours. The THF-insoluble portion was separated from the THF solution portion with a 200 mesh wire mesh, and dried at 70 ° C. for one day. The weight of the obtained dried product was determined (referred to as W4 g) and the chlorine content was determined (referred to as C%).
  • the graft rate was evaluated according to the following equation.
  • each vinyl chloride resin of Examples 1 to 8 and Comparative Examples 1 to 1G 100 parts by weight of each vinyl chloride resin of Examples 1 to 8 and Comparative Examples 1 to 1G, 0.8 parts by weight of an organic tin stabilizer, 0.5 parts by weight of a polyethylene lubricant, 0.5 parts by weight of stearic acid, .2 parts by weight and 0.5 parts by weight of calcium stearate were added, and the mixture was stirred and mixed with a supermixer (100 L, manufactured by Rikiota Co., Ltd.) to obtain a vinyl chloride resin composition.
  • the obtained vinyl chloride resin composition is supplied to a biaxially-oriented extruder (BT-50, manufactured by Plastics Engineering Laboratory) with a screw diameter of 50 mm, and a vinyl chloride resin composition with a diameter of 20 mm is supplied.
  • the resin tube was continuously molded for 24 hours.
  • the obtained rigid polyvinyl chloride pipe was evaluated for appearance, and measured for impact resistance and tensile strength.
  • a Charpy impact test was performed in accordance with JIS K7111. The sample was cut out from a sample with a molding time of 30 minutes among the molded products. The measurement temperature was 23 ° C. The results are shown in Tables 1 and 2.
  • a tensile strength test was performed according to JISK 711. A sample was cut out of a sample of a molded product having a molding time of 30 minutes and used. The measurement temperature is 23 ° C. Was. The results are shown in Tables 1 and 2.
  • each of 80 parts by weight of each of the vinyl chloride resins of Examples 1 to 8, Comparative Examples 1 to 9, and Comparative Example 11 20 parts by weight of polyvinyl chloride having a degree of polymerization of 100, basic phosphorous acid Lead acid salt 3.0 parts by weight, lead stearate 0.6 parts by weight, calcium stearate 0.3 parts by weight, stearic acid ester 0.5 parts by weight, stearate 0.3 parts by weight, calcium carbonate 5 Then, 3.0 parts by weight of titanium oxide and 3.0 parts by weight of titanium oxide were added, and the mixture was stirred and mixed with a super mixer to obtain a vinyl chloride resin composition.
  • the obtained vinyl chloride resin composition was supplied to a twin screw extruder (BT-50, manufactured by Plastics Engineering Laboratory Co., Ltd.) with a screw diameter of 50 mm. Molding was continued for 24 hours. Using the vinyl chloride-based resin of Example 1, the resulting molded article was assembled to obtain a brass sash as shown in FIG.
  • the surface of the resulting irregularly shaped article was visually observed, and the time from the start of molding until appearance defects such as scratches, streaks, and cracks at the ends were examined. If the surface condition of the irregular-shaped molded product was good over 24 hours, 24 ⁇ was set.
  • Example 1 Example 2 Example 3
  • Example 4 Example 5
  • Example 6 Example 7
  • Example 8 Core 2-EHA (% by weight) 69.85 69.5 69.85 69.85 49.9 79.85 69.85 69.85 69.85
  • Tree weight ⁇ (weight 0 / ⁇ ) 1.5 1.5 1.0 2.0 2.0 1.0 1.5 1.5 Fat ⁇
  • Composition gel fraction (o / o ) 95 98 98 98 93 96 91 97 Ichi 42 ⁇ -39 ⁇ -40 ⁇ I 38 ⁇ -32 ⁇ I 45 ⁇ -42 ⁇ I 42 ⁇ Force-Las transition ⁇ C)
  • TatsukiShigeru TMPTA (heavy location 0/0) 4 ⁇ S Li 0 2 ⁇ 1 5 1 5 1 5 fat
  • N-butyl acrylate N-butyl acrylate
  • EA is ethyl acrylate
  • MMA is methyl methacrylate
  • TMPTA is trimethylolpropane triacrylate.
  • the vinyl chloride resin of the present invention has the above-described structure, it has extremely excellent impact resistance.
  • it can be molded with good fluidity. Processing can be performed, and a molded body having an excellent surface condition can be stably obtained even after long-term continuous molding. In particular, it is suitable for obtaining a shaped product having good appearance by continuous molding.
  • the vinyl chloride resin of the present invention utilizing the properties described above, is a hard vinyl chloride pipe that requires high impact resistance, It can be suitably used for soundproof walls and the like.
  • a molded article molded using the vinyl chloride resin of the present invention has high tensile strength and excellent impact resistance, and is therefore suitable as a hard product.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Graft Or Block Polymers (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Description

明 細 書
塩化ビニル系樹脂、 その製造方法及び成形体 技術分野
本発明は、 塩化ビニル系樹脂、 その製造方法及び成形体に関する。 背景技術
塩化ビニル系樹脂は、 機械的強度、 耐候性、 耐薬品性等に優れており、 多くの 用途に用いられている。 しかしながら、 従来より用いられている塩化ビニル系樹 脂は、 例えば、 外壁、 窓枠、 サッシ等の建材、 パイプ、 継手等の硬質製品に用い るには、 耐衝撃性が充分ではない等の欠点があるため、 これらの欠点を解消する ための種々の改良方法が提案されている。
特開昭 6 0 - 2 5 5 8 1 3号公報には、 単独重合体のガラス転移温度が一 1 0 °C以下であるアクリルモノマーと多官能性モノマーとからなるァクリル系共重合 体に塩化ビニルをグラフ ト共重合させて、 耐衝撃性、 耐候性、 曲げ弾性に優れた 塩化ビュル系樹脂を製造する技術が開示されている。
特開平 8 - 2 2 5 6 2 2号公報には、 ァクリル系共重合体ラテツクスからなり 、 コア部とシェル部とからなる構造を有する樹脂粒子に、 塩化ビニルをグラフ 卜 重合させてなる塩化ビニル系樹脂が開示されている。
特開平 9一 1 1 0 9 4 5号公報には、 単独重合体のガラス転移温度が一 6 0 °C 以下であるラジカル重合性モノマーと多官能性モノマーとからなる共重合体に単 独重合体のガラス転移温度が— 5 5 °C以上であるァクリルモノマーと多官能性モ ノマーとからなる混合モノマーをグラフ 卜共重合させた共重合体と、 塩化ビニル とをグラフ ト共重合させてなる塩化ビニル系樹脂が開示されている。
これらの技術では、 塩化ビニル系樹脂の耐衝撃性は向上しているが、 ガラス転 移温度が低く、 粘着性を有するゴム成分であるァクリル系ラテックスを混入させ ている結果、 押出成形加工時において、 成形機の金型表面にこれらのゴム成分が 付着、 堆積し、 成形品の表面にカスレやスジ等を発生させ、 成形品の外観が著し く損なわれる問題がある。 特に、 異型押出成形を行った場合、 外観不良の問題が 顕著に見られる。 このため、 俊れた耐衝撃性を有しながら、 長期間の連続成形に よっても表面状態が良好な形成品が安定して得られる塩化ビニル系樹脂が工業的 に要望されている。 発明の要約
本発明の目的は、 上記の問題点を解決するもので、 優れた耐衝搫性を有し、 か つ、 長期間の連続成形を行っても表面状態が良好な成形体を安定して得ることが できる塩化ビニル系樹脂及びその製造方法、 並びに、 該塩化ビニル系樹脂を用い てなる成形体を提供するところにある。
第一の本発明は、 単独重合体のガラス転移温度が一 1 4 0 °C以上— 6 0 °C未満 であるラジカル重合性モノマー 1 0 0重量部と、 多官能性モノマー 0 . 1〜 1重 量部とからなる共重合体 (a— 1 ) 4 0〜9 0重量%に、 単独重合体のガラス転 移温度が一 5 5 °C以上— 1 0 °C未満である (メタ) ァクリレートを主成分とする ラジカル重合性モノマー 1 0 0重量部と多官能性モノマー 1 . 5〜 1 0重量部と からなる混合モノマー (a— 2 ) 1 0〜6 0重量%をグラフ ト共重合して得られ る平均粒子径 6 0〜2 5 0 n mのアク リル系共重合体 (a ) に、 塩化ビニルを主 成分とするビニルモノマー (b ) をグラフ ト共重合させてなる塩化ビニル系樹脂 である。
第二の本発明は、 ポリ塩化ビニルを主成分とするマ トリ ックス樹脂中に、 ガラ ス転移温度が一 1 4 0 °C以上— 2 0 °C未満であり、 ゲル分率が 5 0〜 1 0 0重量 %であり、 平均粒子径が 6 0〜 2 5 0 n mであるァクリル系共重合体 (a ) の粒 子が分散されたものであり、 かつ、 上記アクリル系共重合体 (a ) への塩化ビニ ルのグラフ 卜率が 0 . 1〜 5重量%であることを特徴とする塩化ビニル系樹脂で ある。
第三の本発明は、 単独重合体のガラス転移温度が— 1 4 0 °C以上— 6 0 °C未満 であるラジカル重合性モノマー 1 0 0重量部と、 多官能性モノマー 0 . 1〜 1重 量部とを反応させて共重合体 (a— 1 ) を得、 上記共重合体 (a— 1 ) 4 0〜9 0重量%に、 単独重合体のガラス転移温度が一 5 5 °C以上— 1 0 °C未満である ( メタ) ァクリレートを主成分とするラジカル重合性モノマー 1 0 0重量部と多官 能性モノマー 1. 5〜 1 0重量部とからなる混合モノマー ( a— 2 ) 1 0〜6 0 重量%をグラフ 卜共重合させて、 平均粒子径 6 0〜2 5 0 nmのァクリル系共重 合体 (a) を得た後、 上記アクリル系共重合体 (a) と塩化ビニルを主成分とす るビニルモノマー (b) とをグラフ ト共重合させる塩化ビニル系樹脂の製造方法 こ''あ o。
第四の本発明は、 ポリ塩化ビニルを主成分とするマトリ ックス榭脂中に、 ガラ ス転移温度が一 1 4 0。C以上一 2 0 °C未満であり、 ゲル分率が 5 0〜 1 0 0重量 %であり、 平均粒子径が 60〜2 5 0 nmであるァクリル系共重合体 (a) の粒 子が分散されたものであり、 かつ、 上記アクリル系共重合体 (a) への塩化ビニ ルのグラフ ト率が 0. 1〜 5重量%である硬質塩化ビニル系樹脂成形体である。 第五の本発明は、 第四の本発明の硬質塩化ビニル系樹脂成形体の一種であつて 、 シャルピー衝撃値が 1 00 k g f · cm/cm2 以上であり、 引張強度が 4 6 0 k g f Zcm2 以上である管である。
第六の本発明は、 第四の本発明の硬質塩化ビニル系樹脂成形体の一種であって 、 シャルピー衝撃値が 1 0 k g f · cm/cm2 以上であり、 引張強度が 4 0 0 k g f /cm2 以上である異型押出成型品である。
第七の本発明は、 上記第一の本発明又は第二の本発明の塩化ビニル系樹脂を用 いてなり、 シャルピー衝撃値が l O O k g i ' cmノ cm2 以上であり、 引張強 度が 4 6 0 k g f /c rn2 以上である管である。
第八の本発明は、 上記第一の本発明又は第二の本発明の塩化ビニル系樹脂を用 いてなり、 シャルピー衝撃値が 1 O k g f · cm/cm2 以上であり、 引張強度 が 4 0 0 k g f /cm2 以上である異型押出成型品である。
第九の本発明は、 上記第六の本発明又は第八の本発明の硬質塩化ビニル系樹脂 成形体の異型押出成型品、 又は、 上記第八の本発明の異型押出成型品からなるブ ラサッシである。 図面の簡単な説明
図 1は、 本発明のプラザッシを構成する異型成形品の一実施形態を示す斜視図 である。 図 2は、 本発明のブラサッシの一実施形態を示す斜視図である。 発明の詳細な開示
以下に本発明を詳述する。
第一の本発明の塩化ビニル系樹脂は、 共重合体 (a— 1 ) に、 混合モノマー ( a - 2 ) をグラフ ト共重合して得られるァクリル系共重合体 (a ) に、 塩化ビニ ルを主成分とするビニルモノマー (b ) をグラフ ト共重合させてなるものである 上記共重合体 (a— 1 ) は、 単独重合体のガラス転移温度が一 1 4 0 °C以上一 6 0 °C未満であるラジカル重合性モノマー 1 0 0重量部と、 多官能性モノマー 0 . 1〜 1重量部とからなる。
上記単独重合体のガラス転移温度が一 1 4 0 °C以上一 6 0 °C未満であるラジカ ル重合性モノマーは、 上記アクリル系共重合体 (a ) の粒子の中心部 (コア) を 形成するものであり、 得られる塩化ビニル系樹脂の耐衝撃性を向上させる目的で 使用される。
上記ラジカル重合性モノマーは、 単独重合体のガラス転移温度が一 1 4 0 °C以 上一 6 0 °C未満である。 ― 1 4 0 °C未満であると、 工業的に一般に使用されるポ リマ一のガラス転移温度から鑑みて一般的ではなく、 — 6 0 °C以上であると、 塩 化ビニル系榭脂の成形加工時における高速の歪みに対する充分な柔軟性が得られ ないので、 上記範囲に限定される。
上記単独重合体のガラス転移温度が一 1 4 0 °C以上一 6 0 °C未満であるラジカ ル重合性モノマーとしては特に限定されず、 例えば、 ブタジエン、 イソプレン、 2—ェチルブタジエン、 2—プロピルブタジエン等のジェン類;エチレン、 1— ォクテン、 2—メチルプロピレン等のアルケン類; n—へプチルァク リ レー 卜、 n—ォクチルアタ リ レー ト、 2—メチルへプチルァク リ レー 卜、 2—ェチルへキ シルァク リ レー 卜、 n—ノニルァク リ レー ト、 2—メチルォクチルァク リ レー 卜 、 2—ェチルヘプチルアタリレート、 n—デシルァクリレート、 2—メチルノニ ルァク リ レー ト、 2—ェチルォクチルァク リ レー ト等のアルキルァク リ レー ト類 ; n—ペンチルビニルエーテル、 n—へキシルビニルエーテル、 n—才クチルビ 二ルェ一テル、 n—へプチルビ二ルェ一テル、 2 _ェチルへキシルビ二ルェ一テ ル等のビニルエーテル類等が挙げられる。 これらは単独で使用してもよく、 2種 以上を併用してもよい。
なお、 本明細書中、 上記単独重合体のガラス転移温度が— 1 4 0 DC以上一 6 0 °C未満であるラジカル重合性モノマー等のガラス転移温度は、 培風館刊、 高分子 学会編 「高分子データ 'ハンドブック (基礎編) 」 等による。
上記多官能性モノマーは、 上記共重合体 (a - 1 ) において、 コア部のポリマ —を架橋して、 塩化ビニル系樹脂の耐衝撃性を向上させるために使用される。 上記多官能性モノマーとしては特に限定されず、 例えば、 エチレングリコール ジ (メタ) ァク リ レー ト、 ジエチレングリ コールジ (メタ) ァク リ レー ト、 トリ エチレングリ コールジ (メタ) アタ リ レー ト、 1 , 6 —へキサンジオールジ (メ タ) ァク リ レー ト、 ト リメチロールプロパンジ (メタ) ァク リ レー ト等のジ (メ タ) ァク リ レー ト類; 卜 リメチロールプロパントリ (メタ) ァク リ レート、 ェチ レンォキサイ ド変性トリメチロールプロパントリ (メタ) ァク リ レー ト、 ペン夕 エリスリ トールトリ (メタ) ァク リ レー ト等のト リ (メタ) ァク リ レー ト類;ぺ ンタエリスリ トールテ トラ (メタ) ァク リ レー ト、 ジペン夕エリスリ トールへキ サ (メタ) ァク リ レー ト、 ジァリルフタレー 卜、 ジァリルマレー ト、 ジァリルフ マレー ト、 ジァリルサクシネー ト、 ト リァリルイソシァヌ レー ト等のジ又は 卜 リ ァリル化合物; ジビニルベンゼン、 ブタジエン等のジビニル化合物等が挙げられ る。 これらは単独で使用してもよく、 2種以上を併用してもよい。
上記共重合体 (a— 1 ) において、 上記多官能性モノマーは、 上記単独重合体 のガラス転移温度が一 1 4 0 °C以上一 6 0 °C未満であるラジカル重合性モノマー 1 0 0重量部に対して、 0 . 1〜 1重量部含有される。 上記多官能性モノマーが 0 . 1重量部未満であると、 得られる塩化ビニル系樹脂の成形加工時にアクリル 系共重合体 (a ) の粒子形状が破壊されて、 耐衝撃性が発現しなくなり、 1重量 部を超えると、 共重合体 (a— 1 ) の架橋密度が高くなつて、 耐衝撃性が得られ にく くなるので、 上記範囲に限定される。 好ましくは、 0 . 2〜0 . 5重量部で める。
上記共重合体 (a— 1 ) は、 上記単独重合体のガラス転移温度が— 1 4 0 °C以 上一 6 0 °C未満であるラジカル重合性モノマーと上記多官能性モノマーとを重合 させて得ることができる。 上記重合の方法としては特に限定されず、 例えば、 乳 化重合法、 懸濁重合法等が挙げられる。
上記混合モノマー (a— 2 ) は、 単独重合体のガラス転移温度が— 5 5 °C以上 一 1 0 °C未満である (メタ) ァクリ レートを主成分とするラジカル重合性モノマ - 1 0 0重量部と、 多官能性モノマー 1 . 5〜 1 0重量部とからなる。
本明細書中、 上記単独重合体のガラス転移温度が一 5 5 °C以上一 1 0 °C未満で ある (メタ) ァクリレートを主成分とするラジカル重合性モノマーとは、 5 0重 量%以上のガラス転移温度が一 5 5 °C以上一 1 0 °C未満である (メタ) ァクリレ ート、 及び、 単独重合体のガラス転移温度が— 5 5 °C以上— 1 0 °C未満であり、 (メタ) ァクリ レー卜と共重合可能なラジカル重合性モノマーの混合物を意味す る。
上記単独重合体のガラス転移温度が— 5 5 °C以上— 1 0 °C未満である (メタ) ァクリレートは、 後で詳述するァクリル系共重合体 (a ) の外殻部 (シェル) の 主成分をなし、 得られる塩化ビニル系樹脂の耐衝撃性を向上させるとともに、 コ ァの低ガラス転移温度のポリマーを被覆して、 アクリル系共重合体 (a ) の粒子 の粘着性を低減させる目的で使用される。
上記 (メタ) ァクリレートは、 単独重合体のガラス転移温度が一 5 5 °C以上— 1 0 °C未満である。 ― 5 5 °C未満であると、 上記共重合体 (a— 1 ) を被覆して アクリル系共重合体 (a ) の粒子の粘着性を低減させる効果が不充分となり、 ― 1 0 °Cを以上では、 塩化ビニル系樹脂の柔軟性を保持することが困難となるので 、 上記範囲に限定される。
上記単独重合体のガラス転移温度が一 5 5 °C以上一 1 0 °C未満である (メタ) アタリレートとしては特に限定されず、 例えば、 ェチルアタリ レート、 n—プロ ピルァク リ レー ト、 ィソプロピルァクリ レート、 n—ブチル (メタ) ァク リ レー ト、 イソブチルアタ リ レー ト、 s e c—ブチルァク リ レー 卜、 n—ペンチルァク リレート、 n—へキシルァクリレート、 クミルァクリ レート、 n—へプチルメタ クリレート、 n—ォクチルメタクリ レート、 2—メチルヘプチルメタクリレート 、 2—ェチルへキシルメタクリレート、 n—ノニルメタクリ レート、 2—メチル ォクチルメタク リ レー 卜、 2—ェチルヘプチルメタク リ レー 卜、 n—デシルメ タ ク リ レー ト、 2 —メチルノニルメタク リ レ一 卜、 2 —ェチルォクチルメタク リ レ —ト、 ラウリル (メタ) ァクリレート等のアルキル (メタ) ァクリレート ; 2— ヒ ドロキシェチルァク リ レー ト、 2—ヒ ドロキンプロピルァク リ レー ト等の極性 基含有ァクリ レート等が挙げられる。 これらは単独で使用してもよく、 2種以上 を併用してもよい。
上記単独重合体のガラス転移温度が一 5 5 °C以上一 1 0 °C未満であり、 (メタ ) アタリレートと共重合可能なラジカル重合性モノマーは、 得られる塩化ビニル 系樹脂の機械的強度、 耐薬品性及び成形性を改善する目的で添加される。
上記単独重合体のガラス転移温度が一 5 5 °C以上一 1 0 °C未満であり、 (メタ ) ァクリレー卜と共重合可能なラジカル重合性モノマーとしては特に限定されず 、 例えば、 メチル (メタ) ァクリレート、 ェチルメタクリレート、 n—プロピル メタク リ レー ト、 イソプロピルメタク リ レー ト、 イソブチルメタク リ レー ト、 s e c—プチルメタク リ レート、 t—プチル (メタ) ァク リ レー ト、 ク ミルメタク リ レー ト、 シクロへキシル (メタ) ァク リ レー ト、 ミ リスチル (メタ) ァク リ レ ― ト、 パノレミチル (メタ) ァク リ レー ト、 ステアリル (メタ) ァク リ レー ト等の アルキル (メタ) ァク リ レー ト ; 2—ヒ ドロキシェチルメタク リ レー ト、 2—ヒ ドロキンプロピルメタク リ レー ト、 2—ァク リ ロイルォキシェチルフタル酸等の 極性基含有ビニルモノマー ; スチレン、 な一メチルスチレン、 p—メチルスチレ ン、 p—クロロスチレン等の芳香族ビニルモノマ一 ; アク リロニト リル、 メタク リ ロニト リル等の不飽和二トリル;酢酸ビニル、 プロピオン酸ビニル等のビニル エステル等が挙げられる。 これらは単独で使用してもよく、 2種以上を併用して もよい。
上記多官能性モノマーは、 シヱル部のポリマーを架橋して上記共重合体 (a— 1 ) の粘着性を低減させるとともに、 上記共重合体 (a— 1 ) と塩化ビニルを主 成分とするビニルモノマー (b ) とのグラフ ト共重合反応を助けて、 耐衝撃性を 向上させるために使用される。
上記多官能性モノマーとしては特に限定されず、 例えば、 上記共重合体 (a— 1 ) の説明中において例示したもの等が挙げられる。 上記混合モノマー (a— 2 ) において、 上記多官能性モノマーは、 上記単独重 合体のガラス転移温度が— 5 5 °C以上一 1 0 °C未満である (メタ) ァクリレート を主成分とするラジカル重合性モノマー 1 0 0重量部に対して、 1 . 5〜 1 0重 量部含有される。 し 5重量部未満であると、 共重合体 (a— 1 ) の粘着防止効 果が得られにく くなり、 1 0重量部を超えると、 架橋密度が高すぎて耐衝撃性が 得られにく くなるので、 上記範囲に限定される。 好ましくは、 3 ~ 7重量部であ る。
上記アク リル系共重合体 (a ) は、 上記共重合体 (a— 1 ) に、 上記混合モノ マー (a— 2 ) をグラフ ト共重合して得られる。
上記アクリル系共重合体 (a ) において、 上記共重合体 (a— 1 ) 及び上記混 合モノマー (a— 2 ) の配合割合は、 上記共重合体 (a— 1 ) 4 0〜9 0重量% 、 上記混合モノマー (a— 2 ) 1 0〜6 0重量%である。 上記混合モノマ一 (a 一 2 ) の割合が 1 0重量%未満であると、 得られるアクリル系共重合体 (a ) の 粘着性が増大し、 6 0重量%を超えると、 コアが小さい場合、 充分な耐衝撃性が 得られないので、 上記範囲に限定される。
上記グラフ ト共重合の方法としては特に限定されず、 例えば、 乳化重合法、 懸 濁重合法等が挙げられる。 なかでも、 耐衝撃性の発現性の点から、 また、 ァクリ ル系共重合体 (a ) の粒子径の制御が行いやすい点から、 乳化重合法が好ましい なお、 上記乳化重合法は、 モノマーの添加方法の違いから、 一括重合法、 モノ マー滴下法、 エマルンヨン滴下法の 3つに大別されるが、 第一の本発明において は、 いずれの方法であってもよい。 なお、 多層構造の粒子を調製する場合には、 モノマー滴下法又はエマルション滴下法で行うことが好ましい。
以下に、 各重合法について説明する。
上記一括重合法は、 例えば、 ジャケッ ト付重合反応槽内に、 純水、 乳化分散剤 、 重合開始剤、 モノマーを一括して添加し、 重合反応槽内部を減圧して酸素除去 を行った後、 窒素にて大気圧に圧戻しを行った窒素雰囲気下において、 攪拌によ り充分乳化させ、 重合反応槽内をジャケッ トにより所定の温度にした後、 重合開 始剤を添加して重合させる方法である。 上記モノマ一滴下法は、 例えば、 ジャケッ 卜付重合反応槽内に、 純水、 乳化分 散剤、 重合開始剤を入れ、 重合反応槽内部を減圧して酸素除去を行った後、 窒素 にて大気圧に圧戻しを行った窒素雰囲気下において、 まず、 重合反応槽内をジャ ケッ トにより所定の温度にした後、 モノマーを一定量ずつ滴下することにより徐 々に重合させる方法である。
上記エマルシヨ ン滴下法は、 例えば、 モノマー、 乳化分散剤、 純水を攪拌によ り充分乳化させることにより予め乳化モノマーを調製し、 ついで、 ジャケッ ト付 重合反応槽内に、 純水、 重合開始剤を入れ、 重合層反応槽内部を減圧して酸素除 去を行った後、 窒素にて大気圧に圧戻しを行った窒素雰囲気下において、 まず、 重合反応槽内をジャケッ トにより所定の温度にした後、 上記乳化モノマーを一定 量ずつ滴下することにより重合させる方法である。 本方法においては、 重合初期 に上記乳化モノマーの一部 (以下、 シー ドモノマーという) を一括添加し、 その 後、 残りの乳化モノマーを滴下する方法を用いると、 シードモノマーの量を変化 させることにより容易に生成する重合体の粒径を制御することができる。
上記アクリル系共重合体 (a ) は、 例えば、 以下のようにして得ることができ 。
まず、 単独重合体のガラス転移温度が一 1 4 0 °C以上一 6 0 °C未満であるラジ カル重合性モノマー及び多官能性モノマーを乳化分散剤及び重合開始剤の存在下 で乳化重合により重合させて、 コア部である共重合体 (a _ l ) を形成させる。 次に、 共重合体 (a— 1 ) 、 乳化分散剤及び重合開始剤の存在下で、 単独重合体 のガラス転移温度が— 5 5 °C以上— 1 0。C未満である (メタ) ァクリ レートを主 成分とするラジカル重合性モノマーと多官能性モノマーとからなる混合モノマー ( a— 2 ) を添加し、 乳化重合によりグラフ 卜重合させてシェル部を形成させる ことにより、 アクリル系共重合体 (a ) を得る。
上記シェル部の形成は、 コア部の合成から一連の重合過程で行ってもよく、 コ ァ部を合成、 回収した後、 改めて混合モノマー (a— 2 ) を添加して、 シヱル部 の重合 ·形成を行ってもよい。
上記乳化分散剤は、 上記モノマーの乳化液中での分散安定性を向上させ、 重合 を効率的に行う目的で添加される。 上記乳化分散剤としては特に限定されず、 例 えば、 ポリオキシェチレンアルキルフ 1ニルエーテルサルフヱ一卜等のァニォン 系界面活性剤; ノニオン系界面活性剤、 部分けん化ポリ酢酸ビニル、 セルロース 系分散剤、 ゼラチン等が挙げられる。 なかでも、 ァニオン系界面活性剤が好まし い。
上記重合開始剤としては特に限定されず、 例えば、 過硫酸カリウム、 過硫酸ァ ンモニゥム、 過酸化水素水等の水溶性重合開始剤;ベンゾィルパーォキサイ ド、 ラウロイルパーォキサイ ド等の有機系過酸化物; ァゾビスィソブチロニトリル等 のァゾ系開始剤; レ ドックス開始剤等が挙げられる。
上記重合開始剤は、 上記共重合体 (a— 1 ) の重合と上記アクリル系共重合体 ( a ) の重合とを連続して行う場合には、 一度の添加でよく、 上記共重合体 (a 一 1 ) の重合と上記アクリル系共重合体 (a ) の重合とを別に行う場合には、 そ れぞれの重合において添加することが必要である。
上記反応においては、 必要に応じて、 p H調製剤、 酸化防止剤等が添加されて いてもよい。 また、 上記アク リル系共重合体 (a ) のエマルシヨ ンの機械的安定 性を向上させるために、 重合反応終了時に、 必要に応じて、 保護コロイ ド剤が添 加されていてもよい。
上述のようにして得られるァクリル系共重合体は、 コア部とシェル部とからな る二層構造の粒子である。
上記アクリル系共重合体 (a ) の粒子は、 平均粒子径が 6 0〜2 5 0 n mであ る。 6 0 n m未満であると、 粘着性が増大する 1 0 n m以下の微粒子を多数含む ようになり、 全体として粘着性が高くなり、 成形機の金型表面に付着し、 成形体 の外観不良の原因となり、 2 5 0 n mを超えると、 成形体の耐衝撃性及び抗張力 がともに低下するので、 上記範囲に限定される。 好ましくは、 1 0 0〜 2 0 0 n mである。
上記ァクリル系共重合体 (a ) は、 ガラス転移温度が一 1 4 0 °C以上— 2 0 °C 未満であることが好ましい。 ― 1 4 0 °C未満のものは、 ァクリル系共重合体 (a ) を構成するラジカル重合性モノマーのガラス転移温度から製造が不可能であり 、 — 2 (TC以上であると、 充分な耐衝擊性が得られない。
上記アクリル系共重合体 (a ) は、 ゲル分率が 5 0〜1 0 0重量%であること が好ましい。 5 0重量%未満であると、 架橋度が低いために成形加工時に未架橋 のァクリル分子が成形体表面にプリードアウ トし、 成形体の外観を損なってしま う。 より好ましくは、 7 5〜 1 0 ϋ重量%である。
上記アクリル系共重合体 (a ) は、 樹脂固形分が 1 0〜6 0重量%であること が好ましい。 1 0重量%未満であると、 アクリル系共重合体 (a ) の生産性が充 分ではなく、 6 0重量%を超えると、 後に行われる塩化ビニルを主成分とするビ ニルモノマー (b ) との重合反応の安定性が悪い。
第一の本発明の塩化ビニル系樹脂は、 上記アクリル系共重合体 (a ) に、 塩化 ビニルを主成分とするビニルモノマー (b ) をグラフ ト共重合させてなるもので ある。
本明細書中、 上記塩化ビニルを主成分とするビニルモノマー (b ) とは、 5 0 重量%以上の塩化ビニルと、 塩化ビニルと共重合可能なビニルモノマーとの混合 物を意味する。
上記塩化ビュルと共重合可能なビニルモノマーとしては、 通常使用されている ものであれば特に限定されず、 例えば、 酢酸ビニル、 アルキル (メタ) ァクリレ —ト、 アルキルビニルエーテル、 エチレン、 フッ化ビニル、 マレイミ ド等が挙げ られる。 これらは単独で使用してもよく、 2種以上を併用してもよい。
上記アクリル系共重合体 (a ) に、 塩化ビニルを主成分とするビニルモノマー ( b ) をグラフ ト共重合させる方法としては特に限定されず、 例えば、 懸濁重合 法、 乳化重合法、 溶液重合法、 塊状重合法等が挙げられる。 なかでも、 懸濁重合 法が好ましい。
第一の本発明の塩化ビニル系樹脂は、 例えば、 以下のようにして得ることがで きる。
攪拌機及びジャケッ トを備えた反応容器に、 純水、 アクリル系共重合体 (a ) 、 分散剤、 油溶性重合開始剤、 水溶性増粘剤、 必要に応じて、 重合度調節剤を投 入し、 その後、 真空ポンプで反応容器内の空気を排出し、 更に、 攪拌条件下で塩 化ビニルを主成分とするビニルモノマー (b ) を投入した後、 反応容器内をジャ ケッ トにより加熱し、 塩化ビニルのグラフ ト共重合を行う。 上記グラフ ト共重合 は、 発熱反応であるので、 ジャケッ ト温度を変えることにより、 反応容器内の温 度、 すなわち、 重合温度を制御することができる。
反応終了後、 未反応の塩化ビニルを除去し、 スラ リー状にし、 更に、 脱水乾燥 させることにより、 第一の本発明の塩化ビニル系樹脂を得る。
上記分散剤は、 上記アクリル系共重合体 (a ) の分散安定性を向上させ、 塩化 ビニルのグラフ 卜重合を効率的に行うために用いられる。 上記分散剤としては特 に限定されず、 例えば、 ポリ (メタ) アク リル酸塩、 (メタ) アクリル酸塩一ァ ルキルァク リ レー ト共重合体、 メチルセルロース、 ェチルセルロース、 ヒ ドロキ シプロピルメチルセルロース、 ポリエチレングリ コール、 ポリ酢酸ビニル及びそ の部分けん化物、 ゼラチン、 ポリ ビニルピロリ ドン、 デンプン、 無水マレイン酸 一スチレン共重合体等が挙げられる。 これらは単独で使用してもよく、 2種以上 を併用してもよい。
上記油溶性重合開始剤としては特に限定されないが、 グラフ ト共重合に有利で あるので、 ラジカル重合開始剤が好ましい。 上記ラジカル重合開始剤としては特 に限定されず、 例えば、 ラウロイルパーオキサイ ド、 t—ブチルバ一ォキシビバ レー ト、 ジイソプロピルパーォキシカーボネート、 ジォクチルバーオキシジカー ボネート、 t —ブチルパーォキシネオデカノエート、 α—クミルパ一ォキシネオ デカノエ一ト等の有機パ一オキサイ ド類: 2 , 2—ァゾビスイソプチロニト リル
、 2 , 2—ァゾビス— 2 , 4 —ジメチルバレロニ ト リル等のァゾ化合物等が挙げ れる
上記水溶性増粘剤としては特に限定されず、 例えば、 ポリ (メタ) アクリル酸 、 アルキル (メタ) ァクリ レート一 (メタ) ァク リル酸共重合体、 カゼィン及び これらの金属塩等が挙げられる。
上記重合度調節剤としては特に限定されず、 例えば、 メルカプトメタノール、 メルカプトエタノール、 メルカプトプロパノール等の連鎖移動剤 ; ジビニルベン ゼン、 エチレングリコールジメタクリレート等の架橋剤等が挙げられる。
上記重合反応においては、 上記アクリル系共重合体 (a ) が反応中に反応容器 内に付着する量を減少させるために、 予め、 上記アク リル系共重合体 (a ) に凝 集剤を添加していてもよい。
上記重合反応においては、 上記のほか、 必要に応じて、 p H調整剤、 酸化防止 剤等が添加されていてもよい。
第一の本発明の塩化ビニル系樹脂は、 ポリ塩化ビニルの重合度が 3 0 0〜2 0 0 0であることが好ましい。 3 0 0未満であっても、 2 0 0 0を超えても、 充分 な成形性が得られにく くなる。 より好ましくは、 4 0 0〜 1 6 0 0である。 第一の本発明の塩化ビニル系樹脂は、 ポリ塩化ビニルを主成分とするマトリッ クス樹脂中に、 上記アクリル系共重合体 (a ) の粒子が分散されたものであるこ とが好ましい。
第一の本発明の塩化ビニル系樹脂における上記アクリル系共重合体 (a ) の占 める割合は、 特に限定されるものではないが、 1 ~ 3 0重量%が好ましい。 1重 量%未満であると、 成形体の耐衝撃性が低下し、 3 0重量%を超えると、 成形体 の機械的強度が低下する。 より好ましくは、 3〜 1 6重量%である。
第一の本発明の塩化ビニル系樹脂は、 上記塩化ビニルのグラフ ト率が 0 . 1〜 5重量%であることが好ましい。 本明細書中、 上記塩化ビニルのグラフ 卜率とは 、 アクリル共重合体 (a ) と共重合して化学的に結合している塩化ビニル分子の 重量分率を意味する。 上記塩化ビニルのグラフ 卜率が 0 . 1重量%未満であると 、 アクリル系共重合体 (a ) の表面を充分に塩化ビニル分子で被覆することがで きず、 成形時に成形機の金型表面に付着し、 表面状態が良好な成形体を得ること ができず、 5重量%を超えると、 一般的ではない。
第一の本発明の塩化ビニル系樹脂は、 必要に応じて、 熱安定剤、 安定化助剤、 滑剤、 加工助剤、 酸化防止剤、 光安定剤、 充填剤、 顔料等が添加された後、 形成 加工される。
上記熱安定剤としては特に限定されず、 例えば、 ジメチルすずメルカプト、 ジ ブチルすずメルカプト、 ジォクチルすずメルカプト、 ジブチルすずマレ一 卜、 ジ ブチルすずマレートポリマー、 ジォクチルすずマレート、 ジォクチルすずマレー 卜ポリマー、 ジブチルすずラウレート、 ジブチルすずラウレー卜ボリマ一等の有 機すず安定剤; ステアリン酸鉛、 二塩基性亜りん酸鉛、 三塩基性硫酸鉛等の鉛系 安定剤; カルシウム一亜鉛系安定剤;バリウム一亜鉛系安定剤; バリウムーカ ド ミゥム系安定剤等が挙げられる。
上記安定化助剤としては特に限定されず、 例えば、 エポキシ化大豆油、 ェポキ シ化アマ二豆油、 エポキシ化テ 卜ラヒ ドロフタレー ト、 エポキシ化ポリブタジェ ン、 りん酸エステル等が挙げられる。
上記滑剤としては特に限定されず、 例えば、 モンタン酸ワックス、 パラフィン ワックス、 ポリエチレンワックス、 ステアリ ン酸、 ステアリルアルコール、 ステ ァリン酸ブチル等が挙げられる。
上記加工助剤としては特に限定されず、 例えば、 重量平均分子量 1 0 0 0 0 0 〜 2 0 0 0 0 0 0のアルキルァク リ レー トノアルキルメタク リ レー 卜共重合体で あるァクリル系加工助剤等が挙げられる。 上記ァクリル系加工助剤としては特に 限定されず、 例えば、 n —ブチルァクリレート Zメチルメタクリレート共重合体 、 2—ェチルへキシルァクリ レー 卜/メチルメ タク リ レートグブチルメタク リ レ 一卜共重合体等が挙げられる。
上記酸化防止剤としては特に限定されず、 例えば、 フエノール系抗酸化剤等が 挙げられる。
上記光安定剤としては特に限定されず、 例えば、 サリチル酸エステル系、 ベン ゾフュノン系、 ベンゾトリアゾール系、 シァノアクリレ一ト系等の紫外線吸収剤 ; ヒンダードアミ ン系の光安定剤等が挙げられる。
上記充塡剤としては特に限定されず、 例えば、 炭酸カルシウム、 タルク等が挙 げられる。
上記顔料としては特に限定されず、 例えば、 ァゾ系、 フタロシアニン系、 スレ ン系、 染料レーキ系等の有機顔料:酸化物系、 クロム酸モリブデン系、 硫化物 · セレン化物系、 フ 口シアン化物系等の無機顔料等が挙げられる。
第一の本発明の塩化ビニル系樹脂には、 成形時の加工性を向上させるために、 可塑剤が添加されていてもよい。
上記可塑剤としては特に限定されず、 例えば、 ジブチルフタレート、 ジー 2— ェチルへキシルフタレー ト、 ジ一 2—ェチルへキシルアジべ一ト等が挙げられる また、 第一の本発明の塩化ビニル系樹脂には、 成形される際に、 必要に応じて 、 ポリ塩化ビニル等の熱可塑性樹脂が添加されていてもよい。
上記各種添加剤を上記塩化ビニル系樹脂に混合する方法としては特に限定され ず、 ホッ トブレンドによる方法であってもよく、 コールドブレンドによる方法で あってもよい。
上記塩化ビニル系樹脂の成形方法としては特に限定されず、 例えば、 押出成形 法、 射出成形法、 カレンダー成形法、 プレス成形法等が挙げられる。
第一の本発明の塩化ビニル系樹脂は、 アクリル系共重合体 (a ) のコア部が、 柔軟性に富む重合体により形成されているので、 極めて優れた耐衝撃性を維持す ることができる。
また、 第一の本発明の塩化ビニル系樹脂は、 従来の塩化ビニル系樹脂と比較し て、 アクリル系共重合体 (a ) のシヱル部が高度に架橋されているため、 粒子表 面の硬度、 弾性が高いうえ、 架橋剤の役割を果たす多官能性モノマーを多量に使 用しているため、 塩化ビニルのグラフ ト率が向上して、 アクリル系共重合体 (a ) の粘着性を低減させることができる。 このため、 成形時に成形機の金型表面に 樹脂粒子が付着、 堆積するのを防止することができ、 長期間にわたる連続成形を 行っても、 成形体の表面に、 カスレ、 スジ、 ムラ、 亀裂等の不良部が生じない。 更に、 第一の本発明の塩化ビニル系樹脂は、 アクリル系共重合体 (a ) の平均 粒子径が大きいため、 粘着性が増大する粒子径 1 0 n m以下の粒子が発生するの を防止することができるので、 粘着性を制御することができ、 表面状態が良好な 成形体を得ることができる。
第二の本発明は、 ポリ塩化ビニルを主成分とするマトリ ックス樹脂中に、 ガラ ス転移温度が一 1 4 0 °C以上— 2 0 °C未満であり、 ゲル分率が 5 0〜 1 0 0重量 %であり、 平均粒子怪が 6 0〜 2 5 0 n mであるァクリル系共重合体 ( a ) の粒 子が分散されたものであり、 かつ、 上記アクリル系共重合体 (a ) への塩化ビニ ルのグラフ ト率が 0 . 1〜5重量%であることを特徴とする塩化ビニル系樹脂で ある。
第二の本発明の塩化ビニル系樹脂は、 ポリ塩化ビニルを主成分とするマトリ ッ クス中に、 ガラス転移温度が一 1 4 0 °C以上— 2 0 °C未満であり、 ゲル分率が 5 0〜 1 0 0重量%であり、 平均粒子径が 6 (!〜 2 5 0 n mであるァクリル系共重 合体 (a ) の粒子が分散されたものである。
上記アクリル系共重合体 (a ) の粒子としては特に限定されず、 例えば、 上記 第一の本発明の塩化ビニル系樹脂において例示したもの等が挙げられる。
上記ポリ塩化ビニルを主成分とするマトリ ックス樹脂は、 上記ァクリル系共重 合体 (a) への塩化ビニルのグラフ ト率が 0. 1〜5重量%である。 0. 1重量 %未満であると、 アクリル系共重合体 (a) の表面を充分に塩化ビニル分子で被 覆することができず、 成形時に成形機の金型表面に付着し、 表面状態が良好な成 形体を得ることができず、 5重量%を超えると、 一般的ではないので、 上記範囲 に限定される。
第三の本発明は、 単独重合体のガラス転移温度が— 1 4 0°C以上 6 0°C未満 であるラジカル重合性モノマー 1 0 0重量部と、 多官能性モノマー 0. 1 ~ 1重 量部とを反応させて共重合体 (a— 1 ) を得、 上記共重合体 (a— 1 ) 4 0〜9 0重量%に、 単独重合体のガラス転移温度が— 5 5°C以上一 1 0°C未満である ( メタ) ァクリレートを主成分とするラジカル重合性モノマ一 1 0 0重量部と多官 能性モノマー 1. 5〜 1 0重量部とからなる混合モノマー ( a— 2 ) 1 0〜6 0 重量%をグラフ ト共重合させて、 平均粒子径 6 0〜2 5 0 nmのァクリル系共重 合体 (a) を得た後、 上記アクリル系共重合体 (a) と塩化ビニルを主成分とす るビニルモノマー (b) とをグラフ ト共重合させる塩化ビニル系樹脂の製造方法 である。
第三の本発明の塩化ビニル系樹脂の製造方法によれば、 柔軟性に富む重合体か らなるコアの表面が、 架橋度の高いシェルで被覆された二層構造のァクリル系共 重合体 (a) を効率よく調製することができ、 更に、 ァクリル系共重合体 (a) と塩化ビニルを主成分とするビニルモノマー (b) とのグラフ ト共重合において 、 塩化ビニルのグラフ ト率を高くすることができるので、 耐衝撃性に優れ、 長期 間にわたる連続成形を行っても、 表面状態が良好な成形体を安定して供給できる 塩化ビニル系樹脂を製造することができる。
第四の本発明は、 ポリ塩化ビニルを主成分とするマ卜リックス樹脂中に、 ガラ ス転移温度が— 1 4 0 °C以上一 2 0 °C未満であり、 ゲル分率が 5 0〜 1 0 0重量 %であり、 平均粒子怪が 6 0〜2 5 0 nmであるァクリル系共重合体 (a) の粒 子が分散されたものであり、 かつ、 上記アクリル系共重合体 (a) への塩化ビニ ルのグラフ ト率が 0. 1〜 5重量%である硬質塩化ビニル系樹脂成形体である。 笫四の本発明の硬質塩化ビニル系樹脂成形体は、 ポリ塩化ビニルを主成分とす るマトリ ックス中に、 ガラス転移温度が— 1 4 0°C以上— 2 0 °C未満であり、 ゲ ル分率が 5 0〜 1 0 0重量%であり、 平均粒子径が 6 0〜2 5 0 nmであるァク リル系共重合体 (a) の粒子が分散されたものである。
上記アクリル系共重合体 (a) の粒子としては特に限定されず、 例えば、 上記 第一の本発明の塩化ビニル系樹脂において例示したもの等が挙げられる。
上記ポリ塩化ビニルを主成分とするマトリ ックス樹脂は、 上記ァクリル系共重 合体 (a) への塩化ビニルのグラフ ト率が 0. 1 ~5重量%でぁる。 0. 1重量 %未満であると、 アクリル系共重合体 (a) の表面を充分に塩化ビニル分子で被 覆することができず、 成形時に成形機の金型表面に付着し、 表面状態が良好な成 形体を得ることができず、 5重量%を超えると、 一般的ではないので、 上記範囲 に限定される。
第四の本発明の硬質塩化ビニル系樹脂成形体は、 例えば、 上記第一の本発明又 は第二の本発明の塩化ビニル系樹脂に、 必要に応じて、 熱安定剤、 安定化助剤、 滑剤、 加工助剤、 酸化防止剤、 光安定剤、 充塡剤、 顔料等の添加剤を添加して、 成形することにより、 得ることができる。
上記成形の方法としては特に限定されず、 例えば、 押出成形法、 射出成形法、 カレンダ一成形法、 プレス成形法等が挙げられる。
また、 硬質塩化ビニル系樹脂成形体の形状は特に限定されず、 用途に応じて、 例えば、 管状、 板状、 その他の形状等から適宜選択される。
第四の本発明の硬質塩化ビニル系樹脂成形体としては、 シャルピー衝撃値が 1 0 0 k g f - cm/cm2 以上であり、 引張強度が 4 6 0 k g f /cm2 以上で ある管、 又は、 シャルピー衝撃値が 1 0 k g f · cmZcm2 以上であり、 引張 強度が 4 0 0 k g f Xcmz 以上である異型押出成型品が好ましい。
上記管は、 シャルピー衝撃値が l O O k g f ' cmZcm2 以上である。 1 0 0 k g f · cm/cm2 未満であると、 寒冷地での使用に充分に耐えることがで きない。
上記管は、 引張強度が 4 6 0 k g f /cm2 以上である。 4 6 0 k g f Zcm 2 未満であると、 上水道用途に用いられた場合の耐脈動性が不充分となる。 上記管もまた本発明の一つである。
上記異型押出成形品は、 シャルピー衝撃値が 1 O k g f ■ cm/cm2 以上で ある。 1 0 k g f · c mノ c m2 未満であると、 寒冷地でのブラサッシ用途等に 充分に耐えることができない。
上記異型押出成型品は、 引張強度が 4 0 0 k g f /c mz 以上であることが好 ましい。 A O O k g f Zcm2 未満であると、 温暖地での通常の使用において変 形等の問題が生じてしまう。
上記異型押出成型品もまた本発明の 1つである。
第四の本発明の硬質塩化ビニル系樹脂成形体は、 上記特性値を有しているので 、 非常に高い耐衝撃性及び引張強度が要求される用途であっても、 また、 プラザ ッシ等のように、 高い耐衝撃性及び引張強度だけではなく、 良好な外観や成形性 が要求される用途であっても適用することができる。
第七の本発明は、 上記第一の本発明又は第二の本発明の塩化ビニル系樹脂を用 いてなり、 シャルピー衝撃値が 1 0 0 k g f · cm/cm2 以上であり、 引張強 度が 4 6 0 k g f Zcm2 以上である管である。
第七の本発明の管は、 上記第一の本発明又は第二の本発明の塩化ビニル系樹脂 からなり、 上記特性値を有しているので、 例えば、 上下水道管、 工場の排水管等 として好適に使用することができる。
第八の本発明は、 上記第一の本発明又は第二の本発明の塩化ビニル系樹脂を用 いてなり、 シャルビ一衝撃値が 1 0 k g ί ■ c mZc m2 以上であり、 引張強度 が 4 0 0 k g f Zcm2 以上である異型押出成型品である。
第八の本発明の異型押出成型品は、 上記第一の本発明又は第二の本発明の塩化 ビニル系樹脂からなるので、 ブラサッシ、 防音壁等のように、 高い耐衝撃性及び 引張強度だけではなく、 良好な外観や成形性が要求される用途に好適である。 第九の本発明は、 上記第六の本発明の硬質塩化ビニル系樹脂成形体の異型押出 成型品、 又は、 上記第八の本発明の異型押出成型品からなるブラサッシである。 第九の本発明のプラザッシは、 上記異型押出成型品を常法に従って組み立てて なるものであるので、 外観が良好であり、 耐衝擊性、 引張強度を有しており、 住 宅やビルの窓等に取り付けられるサッシとして好適である。 l g 以下に、 第九の本発明のプラザッシについて図面を参照しながら更に詳細に説 明する。
図 1は、 第九の本発明のプラザッシを構成する異型押出成型品の形状の一実施 形態を示す。 図 1中、 矢印は、 押出方向である。 このとき使用される樹脂は、 第 一の本発明の塩化ビニル系樹脂であるので、 押出成形機の金型に付着することな く、 連続して成形することができ、 表面の外観も良好である。
図 1のようにして製造された異型押出成型品は、 適宜切断され、 常法に従って 、 図 2に示すようなブラサッシに組み立てられる。 発明を実施するための最良の形態
以下に実施例を掲げて本発明を更に詳しく説明するが、 本発明はこれら実施例 のみに限定されるものではない。
実施例 1〜 6、 比較例 1〜 7
ァクリル系共重合体ラテックスの調製
表 1及び表 2に示した配合組成に従って、 下記の操作手順で各塩化ビニル系樹 脂を得た。
まず、 重合に使用する所定量のイオン交換水、 乳化分散剤 (ポリオキシェチレ ンノニルフエニルエーテルアンモニゥムサルフェート) 、 コア用モノマー、 多官 能性モノマ一 〔ト リメチロールプロパン ト リァクリ レー ト (T M P T A ) 〕 を混 合、 攪拌し、 コア用乳化モノマーを調製した。 また、 別個に所定量のイオン交換 水、 乳化分散剤 (ポリオキンエチレンノニルフエニルエーテルアンモニゥムサル フェー ト) 、 シェル用モノマー、 T M P T Aを混合、 攪拌し、 シヱル用乳化モノ マーを調製した。 一方、 重合器に所定量のイオン交換水を入れ、 攪拌を開始した 。 重合器内を減圧して容器内の脱酸素を行った後、 窒素により圧戻しをして置換 し、 重合槽を 7 0 °Cまで昇温した。 昇温が完了した重合槽に、 過硫酸アンモニゥ ム (A P S ) 、 及び、 上記コア用乳化モノマーより全乳化モノマー量の 2 0重量 %に当たる量をシードモノマ一として一括して投入し、 重合を開始した。 続いて 、 コア用乳化モノマーの残りを滴下した。 更に、 繞いてシヱル用モノマーを滴下 し、 すべての乳化モノマーの滴下を 3時間で終了した。 その後、 1時間の熟成期 間を置いた後、 重合を終了して、 固形分濃度約 3 0重量%のアクリル系重合体ラ テックスを得た。
塩化ビニル系樹脂の調製
ついで、 攪拌機及びジャケッ トを備えた反応容器に、 純水、 上記アクリル系重 合体ラテックス、 部分けん化ポリ酢酸ビニルの 3 %水溶液、 tーブチルバ一ォキ シネオデカノエート、 α—クミルパーォキシネオデカノエートを一括投入し、 そ の後、 真空ポンプで重合器内の空気を排出し、 更に、 攪拌条件下で塩化ビニルを 投入した後、 ジャケッ ト温度の制御により重合温度 5 7 °Cにて重合を開始した。 反応容器内の圧力が 6 . 0 k g / c m 2 の圧力まで低下することで反応終了を 確認し、 冷却して停止した。 その後、 未反応の塩化ビニルモノマーを除去し、 更 に脱水乾燥して、 塩化ビニル系樹脂中の塩化ビニルの重合度が約 1 0 0 0である 塩化ビニル系樹脂を得た。
実施例 7
全乳化モノマー量の 3 0重量%に当たる量をシードモノマーとして一括して投 入し、 アクリル系共重合体を製造したこと以外は、 表 1の配合組成に従って実施 例 1 と同様にして塩化ビニル系樹脂を調製した。
実施例 8
全乳化モノマー量の 1 0重量%に当たる量をンードモノマ一として一括して投 入し、 アクリル系共重合体を製造したこと以外は、 表 1の配合組成に従って実施 例 1 と同様にして塩化ビニル系樹脂を調製した。
比較例 8
全乳化モノマー量の 5 0重量%に当たる量をシードモノマーとして一括して投 入し、 アクリル系共重合体を製造したこと以外は、 表 1の配合組成に従って実施 例 1 と同様にして塩化ビュル系樹脂を調製した。
比較例 9
全乳化モノマー量の 3重量%に当たる量をシードモノマーとして一括して投入 し、 アクリル系共重合体を製造したこと以外は、 表 1の配合組成に従って実施例 1 と同様にして塩化ビニル系樹脂を調製した。
比較例 1 0 重合度 1 0 0 0の塩化ビニル樹脂 9 4重量部と実施例 1のァク リル系共重合体 6重量部との混合物を調製した。
比較例 1 1
重合度 1 0 0 0の塩化ビニル樹脂 9 5重量部と実施例 1のアクリル系共重合体 5重量部との混合物を調製した。
ァクリル系共重合体平均粒子径の測定
塩化ビニル系樹脂の中間物質であるァクリル系共重合体ラテツクスの平均粒子 径は、 レーザー回折ノ散乱粒度分布計 (堀場製作所社製) を用いて測定した。 塩 化ビニル系樹脂及びその成型品に含まれるァクリル系共重合体の粒子径は、 透過 式電子顕微鏡 (TEM) 写真より計測した。 塩化ビニル系樹脂及びその成型品を 酸化ルテニウムで染色し、 ウルトラミクロ トームにより削り出した薄片を TEM にて観察した。 1 0 0 0 0倍の TEM写真上で染色されたァクリル系共重合体粒 子の直径を計測し、 一辺 1 0 cmの正方形に含まれる全粒子について平均を取り 、 アクリル系共重合体粒子の平均粒子怪とした。 なお、 成型時の応力等によりァ クリル系共重合体粒子が楕円状等に変形している場合には、 その長径と短径との 平均を粒子直径とした。
ガラス転移温度の測定
示差走査熱量計 (DS C) (セイコー電子工業社製) を用いて測定した。 サン プルは、 アクリル系共重合体ラテックスの乾燥被膜 〔成型品の場合には、 成型品 2 0 gをテトラヒ ドロフラン (THF) 2 0 0m lに 5 0時間浸漬させ、 THF 不溶部分を 2 0 0メ ッシュで捕集した後、 乾燥固化させた被膜〕 を約 1 O mg用 いた。 測定範囲は、 — 1 0 0〜2 5 0°C、 走査速度は、 5°CZ分とした。
ゲル分率の評価
アクリル系共重合体の乾燥被膜 (成型品の場合には、 成型品 2 0 gを THF 2 0 0 m 1に 5 0時間浸潰させ、 THF不溶部分を 2 0 0メッシュで捕集した後、 乾燥固化させた被膜) 約 1 g (Wl gとする) を秤取し、 THF 5 0m l中に 5 0時間静置した。 アクリル系共重合体ゲルを 1 0 0メ ッシュの金網で THF溶液 より分離し、 7 0°Cで 1昼夜乾燥させた。 得られた乾燥ゲルの重量を秤量し (W 2 gとする) 、 下記の式に従って、 ゲル分率を評価した。 ゲル分率 (%) = (W2 /W 1 ) X 1 0 0
グラフ ト率の評価
塩化ビニル系樹脂約 1 0 g (W3 gとする) を秤取し、 THF 1 0 0 m 1中で 5 0時間攪拌混合した。 THF不溶部分を 2 0 0メ ッシュの金網で THF溶液部 分より分離し、 7 0°Cで 1昼夜乾燥した。 得られた乾燥物の重量を抨量 (W4 g とする) とともに、 塩素含有率を定量した (C%とする) 。 下記の式に従って、 グラフ ト率を評価した。
グラフ ト率 (%) = [ (C XW4/5 6. 8) X I 0 0〕 / [W3 - W4 x ( 1 - C/5 6. 8 ) 〕
管の製作
実施例 1〜 8、 及び、 比較例 1〜 1 Gの各塩化ビニル系樹脂 1 0 0重量部に、 有機すず系安定剤 0. 8重量部、 ポリエチレン系滑剤 0. 5重量部、 ステアリン 酸 0. 2重量部及びステアリン酸カルシウム 0. 5重量部を加え、 スーパーミキ サー ( 1 0 0 L、 力ヮタ社製) にて攪拌混合して、 塩化ビニル系樹脂組成物を得 た。 得られた塩化ビニル系樹脂組成物をスク リュー直径 5 0 mmの 2軸異方向押 出機 (BT— 5 0、 プラスチック工学研究所社製) に供給し、 直径 2 0 mmの塩 化ビニル系樹脂管を 2 4時間連続して成形した。 得られた硬質塩化ビニル管につ いて、 外観の評価、 耐衝撃性及び引張強度の測定を行った。
管の外観の評価
得られた硬質塩化ビニル管の内外面を目視により観察し、 成形開始からカスレ 、 スジ、 ムラ等の外観不良が発生するまでの時間を測定した。 2 4時間を通して 管の表面状態が良好なものは、 2 4≤とした。 結果を表 1及び表 2に示した。 耐衝撃性の測定
J I S K 7 1 1 1に準拠し、 シャルピー衝撃試験を行った。 試料は、 成型 品のうち成形時間 3 0分のサンプルから切り出して用いた。 測定温度は、 2 3°C であった。 結果を表 1及び表 2に示した。
引張強度の測定
J I S K 7 1 1 3に準拠し、 引張強度試験を行った。 試料は、 成型品のう ち成形時間 3 0分のサンプルから切り出して用いた。 測定温度は、 2 3°Cであつ た。 結果を表 1及び表 2に示した。
異型成型品の製作
実施例 1 〜 8、 比較例 1 〜 9、 及び、 比較例 1 1の各塩化ビニル系樹脂 8 0重 量部に、 重合度 1 0 0 0のポリ塩化ビニル 2 0重量部、 塩基性亜りん酸鉛 3 . 0 重量部、 ステアリ ン酸鉛 0 . 6重量部、 ステアリ ン酸カルシウム 0 . 3重量部、 ステアリン酸エステル 0 . 5重量部、 ステアリ ン酸 0 . 3重量部、 炭酸カルシゥ ム 5 . 0重量部、 酸化チタン 3 . 0重量部を加え、 スーパーミキサーにて攪拌混 合して、 塩化ビニル系榭脂組成物を得た。 得られた塩化ビニル系樹脂組成物をス クリユー直径 5 0 m mの 2軸異方向押出機 (B T— 5 0、 プラスチック工学研究 所社製) に供袷し、 図 1に示した異型成型品を 2 4時間連続して成形した。 実施 例 1の塩化ビニル系樹脂を用いたものについて、 得られた異型成型品を組み立て て、 図 2に示したブラサッシを得た。
得られた異型成型品について、 外観の評価を行い、 硬質塩化ビニル管の場合と 同様にして、 耐衝撃性及び引張強度の測定を行った。 結果を表 1及び表 2に示し 異型成型品の外観の評価
得られた異型成型品の表面を目視により観察し、 成形開始から、 カスレ、 スジ 、 端部の亀裂等の外観不良が発生するまでの時間を調べた。 2 4時間をとおして 異型成型品の表面状態が良好なものは、 2 4≤とした。
実施例 1 実施例 2 実施例 3 実施例 4 実施例 5 実施例 6 実施例 7 実施例 8 コア 2-EHA (重量%) 69.85 69.5 69.85 69.85 49.9 79.85 69.85 69.85 ァ
* 0.15 0.1 0.15 0.15 0.15 ク モノマー TMPTA 量0ん) 0.15 0.5 0.15
V η-ΒΑ (重量0ん) 28.5 28.5 29.0 28.0 48.0 28.5 28.5 ル
シェル ΕΑ (重量0 ) 9.0
共 モノマー ΜΑ (重量%) 10.0 _ _
樹 重 ΤΜΡΤΑ (重量0 /ο) 1.5 1.5 1.0 2.0 2.0 1.0 1.5 1.5 脂 α
組 ラテックス平均粒子径(run) 121 120 121 125 120 124 88 182 体
成 組ゲル分率(o/o) 95 98 98 98 93 96 91 97 成 一 42〜 — 39〜 -40〜 一 38〜 - 32〜 一 45〜 -42~ 一 42〜 力'ラス転移 ω C)
-39 -37 -37 -35 - 30 -42 -39 -39 アクリル系共重合体(重量%) 6.0 6.0 6.0 6.0 10.0 6.0 6.0 6.0 塩化ビュルモノマ一(重量%) 94.0 94.0 94.0 94.0 90.0 94.0 94.0 94.0 グラフト率(0/0) 1.4 1.4 1.3 1.7 1.6 1.2 . 1.5 1.3 シャル f—衝撃値(kgf. cm/cm2) 133 136 130 131 128 137 131 134 管引張強度(kgf/cm2) 485 492 487 495 475 468 467 462 評 外観の評価(不良発生時間: h) 24≤ 24≤ 24≤ 24≤ 24≤ 24≤ 24≤ 24≤ 価 15 14 14 16 15 15 異シャルヒ'一衝撃値(kgf' cm/cm2) 16 15
型引張強度(kgf/cm2) 442 451 438 454 440 435 432 430
Ρ ΠΠ外観の評価(不良発生時間: h) 24≤ 24≤ 24≤ 24≤ 24≤ 24≤ 24≤ 24≤
せ EsH A: ns B A: 比較例 1比較例 2比較例 3比較例 4比較例 5比較例 6比較例 7比較例 8比較例 9比較例 10比較例 11 コア 2-EHA (fi¾%) 70.0 68.0 69.85 69.85 29.9 94.8 99.7 69.85 69.85 69.85 69.85 ァ
モノマー TMPTA (fi量0 /0) 2.0 0.15 0.15
ク 0.1 0.2 0.3 0.15 0.15 0.15 0.15 y n-BA (S¾0/0) 28.5 28.5 29.7 26.5 46.5 28.5 28.5 28.5 28.5 ル
シェル EA (≤量0 /o) 20
共 モノマー MMA (重: ft%〉
樹重 TMPTA (重置0 /0) 4參 Sリ 0 2 ς 1 5 1 5 1 5 脂
組 ラテックス平均粒子径(nm) 121 ςο
成 QQ
組ゲル分率(%) *f\ 42
成 -43~ -25〜 一 39〜 — 23〜 -21〜 一 47〜 — 48〜 —4卜 -40〜 -42〜 — 42〜 力,ラス転移 (X)
-39 -17 -36 -16 - 18 -45 -46 -38 -37 - 39 -39 アクリル系共重合体 (¾量%) 6.0 6.0 6.0 6.0 10.0 6.0 6.0 6.0 6.0 - - - - 塩化ビニルモノマー (fiS%) 94.0 94.0 94.0 94.0 90.0 94.0 94.0 94.0 94.0 - - —- グラフト率 /0) 1.3 1. 4 0.6 1. 7 1. 6 0.8 0.5 1.5 1.2 0 0 シャルビ-衝»値(kgf* cm/cm2) 24 23 128 22 15 144 143 90 87 112 引張強度 (kgf/cm2) 454 485 463 496 502 445 421 461 447 460 管
外観の評価(不良発生時間: h) 8 15 3 3 15 2
24≤ 24≤ 24≤ 24≤
評 (不良状況) スジ カスレ スジ スジ カスレ カスレ 価 シャルビー衝 S値 (kgf- cm/cm2) 6 8 14 8 6 17 18 11 12 10 異引張強度 (kgf/cm2) 422 455 442 459 458 401 377 442 397 436 型
外観の評価(不良発生時間: h) 11 10 1 1
24≤ 2i≤ 24≤ 24≤ 24≤
(不良状況) スジ スジ 亀裂 亀裂 スジ
、 n —ブチルァクリ レー卜であり、 E Aは、 ェチルアタリレートであり、 MM A は、 メチルメタクリ レー トであり、 T M P T Aは、 卜リメチロールプロパントリ ァクリ レートである。 産業上利用の可能性
本発明の塩化ビニル系樹脂は、 上述の構成よりなるので、 耐衝撃性が非常に優 れたものであり、 通常の成形加工に使用される添加剤を配合することにより、 流 動性よく成形加工を行うことができ、 長期間の連続成形によっても表面状態が良 好な成形体を安定して得ることができる。 特に、 連続成形により外観良好な異型 品を得るのに好適である。
本発明の塩化ビニル系樹脂は、 上述のような特性を活かして、 高い衝撃性が要 求される硬質塩化ビニル管、 良好な成形性と表面性とが要求される異形断面を有 したブラサッシ、 防音壁等に好適に使用することができる。
また、 本発明の塩化ビニル系樹脂を用いて成形された成形体は、 引張強度が高 く、 耐衝擊性に優れているので、 硬質製品としても好適である。

Claims

請 求 の 範 囲
1. 単独重合体のガラス転移温度が一 1 4 0°C以上一 6 0°C未満であるラジカル 重合性モノマー 1 0 0重量部と、 多官能性モノマー 0. 1〜 1重量部とからなる 共重合体 (a— 1 ) 4 0〜9 0重量%に、
単独重合体のガラス転移温度が— 5 5°C以上一 1 0°C未満である (メタ) ァクリ レートを主成分とするラジカル重合性モノマー 1 0 0重量部と、 多官能性モノマ — 1. 5〜 1 0重量部とからなる混合モノマー (a— 2) 1 0〜6 0重量%を グラフ ト共重合して得られる平均粒子径 6 0〜2 5 0 nmのァク リル系共重合体 (a) に、
塩化ビニルを主成分とするビニルモノマー (b) をグラフ 卜共重合させてなる ことを特徴とする塩化ビニル系樹脂。
2. ポリ塩化ビニルを主成分とするマトリ ックス樹脂中に、 ガラス転移温度が一 1 4 0 °C以上— 2 0 °C未満であり、 ゲル分率が 5 0〜 1 0 0重量%であり、 平均 粒子径が 6 0〜 2 5 0 nmであるァクリル系共重合体 (a) の粒子が分散された ものであり、 かつ、 前記アク リル系共重合体 (a) への塩化ビュルのグラフ ト率 が 0. 1〜5重量%であることを特徵とする塩化ビニル系樹脂。
3. 単独重合体のガラス転移温度が— 1 4 0°C以上一 6 0°C未満であるラジカル 重合性モノマー 1 0 0重量部と、 多官能性モノマー 0. 1〜 1重量部とを反応さ せて共重合体 (a— 1 ) を得、
前記共重合体 (a— 1 ) 4 0〜9 0重量%に、 単独重合体のガラス転移温度が一 5 5°C以上一 1 0°C未満である (メタ) ァクリ レー卜を主成分とするラジカル重 合性モノマー 1 0 0重量部と多官能性モノマー 1. 5〜 1 0重量部とから る混 合モノマー (a— 2) 1 0〜6 0重量%をグラフ 卜共重合させて、 平均粒子怪 6 0〜2 5 0 nmのァクリル系共重合体 (a) を得た後、
前記アク リル系共重合体 (a) と塩化ビニルを主成分とするビニルモノマー (b ) とをグラフ ト共重合させる ことを特徴とする塩化ビニル系樹脂の製造方法。
4. ボリ塩化ビニルを主成分とするマトリ ックス樹脂中に、 ガラス転移温度が一 1 4 0°C以上— 2 0°C未満であり、 ゲル分率が 5 0〜 1 0 0重量%であり、 平均 粒子径が 6 0〜2 5 0 nmであるアクリル系共重合体 (a) の粒子が分散された ものであり、 かつ、 前記アクリル系共重合体 (a) への塩化ビニルのグラフ 卜率 が 0. 1〜 5重量%であることを特徴とする硬質塩化ビニル系樹脂成形体。
5. シャルビー衝撃値が 1 0 0 k g f · cmZcm2 以上であり、 引張強度が 4 6 0 k g f /cm2 以上である管である請求の範囲 4記載の硬質塩化ビニル系樹 脂成形体。
6. シャルピー衝撃値が 1 0 k g f · cm/cm2 以上であり、 引張強度が 4 0 0 k g f /cms 以上である異型押出成型品である請求の範囲 4記載の硬質塩化 ビニル系樹脂成形体。
7. 請求の範囲 1又は 2記載の塩化ビニル系樹脂を用いてなり、 シャルピー衝擊 値が 1 0 0 k g f · cmZcm2 以上であり、 引張強度が 4 6 0 k g f /cm2 以上であることを特徴とする管。
8. 請求の範囲 1又は 2記載の塩化ビュル系樹脂を用いてなり、 シャルピー衝撃 値が 1 0 k g f · cmZcm2 以上であり、 引張強度が 4 0 0 k g f Zcm2 以 上であることを特徴とする異型押出成型品。
9. 請求の範囲 6記載の硬質塩化ビニル系樹脂成形体又は請求の範囲 8記載の異 型押出成形品からなることを特徴とするプラサッシ。
PCT/JP1999/000900 1998-10-19 1999-02-26 Resine de chlorure de vinyle, son procede de fabrication et objet moule obtenu WO2000023488A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP99905317A EP1167407B1 (en) 1998-10-19 1999-02-26 Vinyl chloride resin, process for producing the same, and molded object
DE69928294T DE69928294T2 (de) 1998-10-19 1999-02-26 Vinylchloridharz, verfahren zu seiner herstellung und daraus geformte gegenstände
US09/807,840 US6583221B1 (en) 1998-10-19 1999-02-26 Vinyl chloride resin, process for producing the same, and molded object

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP10296816A JP2000119349A (ja) 1998-10-19 1998-10-19 塩化ビニル系樹脂、その製造方法及び成形体
JP10/296816 1998-10-19

Publications (1)

Publication Number Publication Date
WO2000023488A1 true WO2000023488A1 (fr) 2000-04-27

Family

ID=17838528

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/000900 WO2000023488A1 (fr) 1998-10-19 1999-02-26 Resine de chlorure de vinyle, son procede de fabrication et objet moule obtenu

Country Status (8)

Country Link
US (1) US6583221B1 (ja)
EP (1) EP1167407B1 (ja)
JP (1) JP2000119349A (ja)
KR (1) KR100587753B1 (ja)
CN (1) CN1126766C (ja)
DE (1) DE69928294T2 (ja)
TW (1) TWI254052B (ja)
WO (1) WO2000023488A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100472020B1 (ko) * 2001-12-05 2005-03-08 주식회사 엘지화학 내충격성 염화비닐계 수지의 제조방법

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100484722B1 (ko) 2002-01-25 2005-04-20 주식회사 엘지화학 다단계 중합에 의해 제조된 아크릴 충격보강제 및 그의제조방법
JP4643895B2 (ja) * 2002-06-28 2011-03-02 株式会社カネカ ペースト用塩化ビニル系共重合樹脂、組成物及び樹脂の製造方法
DE102009043379B4 (de) * 2009-09-29 2018-01-04 Lg Chem. Ltd. Verfahren zur Herstellung von Vinylchlorid-Pfropfcopolymer-Harz
CN102061044A (zh) * 2010-12-10 2011-05-18 河南理工大学 高抗冲击型阻燃抗静电聚氯乙烯组合物及制备方法
CN102276774A (zh) * 2011-04-28 2011-12-14 内江市运通塑料助剂有限公司 本体法制备氯乙烯、丙烯酸酯共聚树脂的加料工艺及装置
EP2953980B1 (de) 2013-02-11 2023-05-10 Vestolit GmbH Transparente artikel aus pfropfcopolymeren des pvc's
MX2015010335A (es) 2013-02-11 2016-09-19 Vestolit Gmbh Articulo transparente hecho de copolimeros de injerto de pvc.
DK2954007T3 (da) * 2013-02-11 2017-02-20 Vestolit Gmbh Blødgørerfrie artikler af podede copolymerer af PVC
WO2014188971A1 (ja) * 2013-05-22 2014-11-27 積水化学工業株式会社 塩化ビニル系共重合体、塩化ビニル系樹脂組成物及び成形体
JP6214228B2 (ja) * 2013-06-10 2017-10-18 積水化学工業株式会社 塩化ビニル系共重合体及び塩化ビニル系共重合体の製造方法
CN103992605B (zh) * 2014-06-05 2016-03-02 东莞市瀛通电线有限公司 一种高耐油性pvc材料及其制法
KR101740813B1 (ko) * 2015-09-25 2017-05-30 목원대학교 산학협력단 폐플라스틱의 폴리염화비닐을 재활용한 차음재 및 그 제조방법
JP6980402B2 (ja) * 2017-04-03 2021-12-15 株式会社日本触媒 コアシェル粒子

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09110945A (ja) * 1995-10-23 1997-04-28 Sekisui Chem Co Ltd 塩化ビニル系樹脂及び製造方法
JPH09291124A (ja) * 1996-04-26 1997-11-11 Sekisui Chem Co Ltd 耐衝撃性硬質塩化ビニル系樹脂管
JPH11140140A (ja) * 1997-09-02 1999-05-25 Sekisui Chem Co Ltd 塩化ビニル系グラフト樹脂の製造方法及び塩化ビニル系グラフト樹脂組成物

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001098131A (ja) * 1999-09-30 2001-04-10 Sekisui Chem Co Ltd 塩化ビニル系樹脂組成物および成形体

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09110945A (ja) * 1995-10-23 1997-04-28 Sekisui Chem Co Ltd 塩化ビニル系樹脂及び製造方法
JPH09291124A (ja) * 1996-04-26 1997-11-11 Sekisui Chem Co Ltd 耐衝撃性硬質塩化ビニル系樹脂管
JPH11140140A (ja) * 1997-09-02 1999-05-25 Sekisui Chem Co Ltd 塩化ビニル系グラフト樹脂の製造方法及び塩化ビニル系グラフト樹脂組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1167407A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100472020B1 (ko) * 2001-12-05 2005-03-08 주식회사 엘지화학 내충격성 염화비닐계 수지의 제조방법

Also Published As

Publication number Publication date
DE69928294D1 (de) 2005-12-15
EP1167407A4 (en) 2002-07-17
KR20010075629A (ko) 2001-08-09
CN1323325A (zh) 2001-11-21
EP1167407A1 (en) 2002-01-02
JP2000119349A (ja) 2000-04-25
US6583221B1 (en) 2003-06-24
TWI254052B (en) 2006-05-01
DE69928294T2 (de) 2006-07-06
CN1126766C (zh) 2003-11-05
EP1167407B1 (en) 2005-11-09
KR100587753B1 (ko) 2006-06-09

Similar Documents

Publication Publication Date Title
WO2000023488A1 (fr) Resine de chlorure de vinyle, son procede de fabrication et objet moule obtenu
JPH11140140A (ja) 塩化ビニル系グラフト樹脂の製造方法及び塩化ビニル系グラフト樹脂組成物
JP3192967B2 (ja) 耐衝撃性硬質塩化ビニル系樹脂管
JP2000230099A (ja) 着色用樹脂組成物及び塩化ビニル系樹脂組成物
JP3262698B2 (ja) 塩化ビニル系樹脂及び製造方法
JP3262700B2 (ja) 塩化ビニル系樹脂
JP2000053839A (ja) 塩化ビニル系樹脂組成物
JP3577157B2 (ja) 可撓性・耐衝撃性に優れたパイプ又は継手
JP2001106852A (ja) 塩化ビニル系樹脂及び成形体
JPH11106443A (ja) 塩化ビニル系グラフト樹脂及び共重合体ラテックスの製造方法
JP2004091518A (ja) 塩化ビニル系樹脂成形品
JP2000119347A (ja) 塩化ビニル系樹脂組成物
JP2000128942A (ja) 塩化ビニル系樹脂の製造方法
JPH11228642A (ja) 塩化ビニル系樹脂の製造方法
JP2002088217A (ja) 塩化ビニル系樹脂組成物及び塩化ビニル系樹脂管状体
JP2003119341A (ja) ポリ塩化ビニル系樹脂組成物
JPH0827232A (ja) 塩化ビニル系樹脂の製造方法
JPH1087762A (ja) 塩化ビニル系グラフト共重合体及びその製造方法
JPH09309932A (ja) 塩化ビニル系樹脂
JP2000063606A (ja) 塩素化塩化ビニル系樹脂組成物及び成形体
JPH1087761A (ja) 塩化ビニル系グラフト共重合体及びその製造方法
JPH0827233A (ja) 塩化ビニル系樹脂
JP2003171526A (ja) ポリ塩化ビニル系樹脂組成物
JP2002088216A (ja) 塩化ビニル系樹脂組成物
JP2004161870A (ja) 塩化ビニル系樹脂組成物及び電力ケーブル防護管

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99812293.9

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1020017004699

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1999905317

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09807840

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020017004699

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1999905317

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1999905317

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1020017004699

Country of ref document: KR