WO2000017229A1 - Procede de preparation de n2-(1(s)-carboxy-3-phenylpropyl)-l-lysyl-l-proline - Google Patents

Procede de preparation de n2-(1(s)-carboxy-3-phenylpropyl)-l-lysyl-l-proline Download PDF

Info

Publication number
WO2000017229A1
WO2000017229A1 PCT/JP1999/005189 JP9905189W WO0017229A1 WO 2000017229 A1 WO2000017229 A1 WO 2000017229A1 JP 9905189 W JP9905189 W JP 9905189W WO 0017229 A1 WO0017229 A1 WO 0017229A1
Authority
WO
WIPO (PCT)
Prior art keywords
inorganic
water
proline
organic solvent
acid
Prior art date
Application number
PCT/JP1999/005189
Other languages
English (en)
French (fr)
Inventor
Tadashi Moroshima
Yoshifumi Yanagida
Yoshihide Fuse
Yasuyoshi Ueda
Original Assignee
Kaneka Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corporation filed Critical Kaneka Corporation
Priority to PL99340685A priority Critical patent/PL340685A1/xx
Priority to SI9920011A priority patent/SI20271A/sl
Priority to IL13627199A priority patent/IL136271A/xx
Priority to HU0100831A priority patent/HUP0100831A3/hu
Priority to DE69934084T priority patent/DE69934084T2/de
Priority to EP99944783A priority patent/EP1035131B1/en
Priority to JP2000574137A priority patent/JP4307733B2/ja
Priority to CA002311407A priority patent/CA2311407A1/en
Priority to US09/554,827 priority patent/US6271393B1/en
Priority to KR1020007005439A priority patent/KR100625553B1/ko
Publication of WO2000017229A1 publication Critical patent/WO2000017229A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/06Dipeptides
    • C07K5/06086Dipeptides with the first amino acid being basic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/02Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing at least one abnormal peptide link
    • C07K5/022Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing at least one abnormal peptide link containing the structure -X-C(=O)-(C)n-N-C-C(=O)-Y-; X and Y being heteroatoms; n being 1 or 2
    • C07K5/0222Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing at least one abnormal peptide link containing the structure -X-C(=O)-(C)n-N-C-C(=O)-Y-; X and Y being heteroatoms; n being 1 or 2 with the first amino acid being heterocyclic, e.g. Pro, Trp
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/12Antihypertensives

Definitions

  • the present invention provides the following formula (2)
  • N 2 — (1 (S) 1-carboxy-1-3-phenylpropyl) 1 L-lysyl L-proline (hereinafter also referred to as lisinopril (2)) represented by the following formula: And a method for producing advantageously on a commercial scale.
  • N 2 — (1 (S) —Carboxy-13-phenylpropyl) 1 L-lysyl 1 L-proline (2) (lidinopril) is a very useful compound as a hypotensive agent.
  • NHCOCF 3 (Wherein R represents an alkyl group) represented by N 2 — (1 (S) -alkoxycarboninole 3-pheninolepropinole) 1 N 6 — trifrenoleoloacetinole L-lizinole L-proline
  • R represents an alkyl group
  • N 2 (1 (S) -alkoxycarboninole 3-pheninolepropinole) 1 N 6 — trifrenoleoloacetinole L-lizinole L-proline
  • the compound can be easily synthesized by hydrolyzing with a base in the presence of water and then neutralizing all base components in the mixture with an acid. However, in this case, since a large amount of salts (salts of trifluoroacetic acid generated by hydrolysis and salts formed from the base and acid used) coexist, it is necessary to isolate Lizinopril (2). It is necessary to separate Lisinopril (2) from the above salts.
  • the disclosed methods include, for example, the specification of EP 1 68769 and the journal Ob. Organic. Chemistry (J. Org. Chem.) 53, 836-844, (1 In 988), N 2 — (1 (S) ethoxycanolebonyl-3-pheninolepropinole) 1 N 6 — Trifnoroleoloacetyl-L-lysyl- 1 L-proline is hydrolyzed with sodium hydroxide and then acidified with hydrochloric acid.
  • Nopril (2) is crystallized at the isoelectric point and separated and collected.
  • the above method also uses a special reagent such as tetrabutylammonium hydroxide / trifluoroacetic acid, and is not economically advantageous in terms of industrial production in terms of economy and safety.
  • N 2 — (1 (S) -carboxy-13-phenylpropyl) -L-lysyl-L-proline (2) and the above salts can be easily and efficiently separated, which is advantageous for industrial production.
  • the method was unknown.
  • the present invention relates to N 2 — (1 (S) —alkoxycarbonyl 3-phenylpropyl
  • the present inventors converted N 2 — (1 (S) -ethoxycarbonyl-2- 3-phenylpropyl) -1-N 6 —trifluoroacetyl-L-lysyl-L-proline into an inorganic base, hydroxyl, After hydrolysis with sodium, it is neutralized with hydrochloric acid as an inorganic acid or trifluoroacetic acid as an organic acid, and the formed salts are converted into inorganic salts such as sodium chloride or organic salts such as sodium trifluoroacetate. From a solvent system such as water or ethanol, these salts are dissolved in a large amount and the formula (2):
  • the present invention provides a compound represented by the general formula (1):
  • Second step (n-1) molar equivalents to n molar equivalents (provided that n 3) is neutralized using an inorganic acid in the range, and the inorganic base and the inorganic base formed in the resulting mixture are obtained.
  • a solvent system suitable for precipitating an inorganic salt derived from an inorganic acid by reducing its solubility a solvent in a hydrophilic organic solvent, in a mixed solution of water and a hydrophilic organic solvent, or in water Precipitated from the system and separated and removed,
  • Second step Lizinopril (2) present in the mixed solution after removing the inorganic salt is removed from any solvent system in a hydrophilic organic solvent, a mixed solution of water and a hydrophilic organic solvent, or water.
  • a hydrophilic organic solvent a mixed solution of water and a hydrophilic organic solvent, or water.
  • lisinopril (2) having a low salt content can be simply and efficiently separated and collected from a mixture in which lisinopril (2) and salts coexist.
  • N 2 — (1 (S) —alkoxycarbonyl 3-phenylpropyl) —N 6 —trifluoroacetyl-L-lysyl-L-proline (1) used is described in, for example, Gazette, Japanese Patent Application Laid-Open No. 5-201882, European Patent No. 1 68769 or Journal of Organic Chemistry (J. Org. Chem.) 53, 836-844 ( 1 988) and the like.
  • the inorganic base used for hydrolysis of (1) examples thereof include hydroxides and carbonates of alkali metals or alkaline earth metals.
  • specific examples of these bases include: alkali metal hydroxides such as sodium hydroxide and potassium hydroxide; alkali metal carbonates such as sodium carbonate and potassium carbonate; alkali metals such as magnesium hydroxide and calcium hydroxide.
  • Examples include earth metal hydroxides, and bases other than these may be used. Among them, a basic sodium compound and a basic potassium compound are preferable.
  • these bases are preferably used as an aqueous solution, and usually, for example, are advantageously used as an aqueous solution of 5 to 50% by weight, preferably 20 to 48% by weight.
  • These bases are used alone However, two or more kinds may be used in combination, for example, using 1 molar equivalent of sodium hydrogen carbonate and (n-1) molar equivalent of sodium hydroxide ( ⁇ n ⁇ 3) It can also be carried out preferably.
  • these inorganic bases can be used by adding them all at once from the beginning, but they can also be added sequentially so as to maintain a constant pH during hydrolysis or to change stepwise. . Finally, it is preferable to use a mixed solution of pH 12 or more.
  • the hydrolysis can be carried out in an aqueous system, but it is also possible to carry out the hydrolysis in a mixed solution of water and a hydrophilic organic solvent by including other organic solvents within a range that does not adversely affect the organic solvent. it can.
  • the hydrophilic organic solvent to be contained, in general, Metanonore, Etanonore, Purono ⁇ 0 Nonore, Isopurono ⁇ . Examples thereof include monohydric alcohols having 1 to 4 carbon atoms, such as nonole and t-butanol, in which case, N 2 — (1 (S) -anolecoxylcarbo-l-3-phenylenopropyl) is used.
  • R in the general formula (1) representing 1N 6 -trifluoroacetyl-1L-lysyl-1L-proline is preferably the same group as the alkyl group in the above alcohol. Particularly preferably, ethanol can be used. In this case, it is preferable that R in the general formula (1) is an ethyl group, as described above.
  • the mixture weight ratio when using a mixed solution of water and a hydrophilic organic solvent, especially a mixed solution of water and the above alcohols, is generally 1: 1 to 1:99, but is preferably 1: 1. : 1 to 1: 9, more preferably 1: 1 to 1: 7.
  • the operating temperature for the hydrolysis does not require a particularly high temperature, but practically, it can be generally carried out at a temperature of 70 ° C. or less, preferably 60 ° C. or less at which the solvent does not freeze, and is preferably 0 to 0 ° C. It can be suitably carried out at 50 ° C, especially around 30 ° C.
  • the range of (n-1) molar equivalent to n molar equivalent (n3) A solvent system suitable for precipitating the inorganic base and the inorganic salt derived from the inorganic acid formed in the mixture obtained by neutralization using the above inorganic acid. It is separated and removed from a hydrophilic organic solvent, from a mixed solution of water and a hydrophilic organic solvent, or from water.
  • the amount of the inorganic acid used for the neutralization is as follows: N 2 — (1 (S) —alkoxycarbonyl 3-phenylphenyl) 1 N 6 — trifluoroacetyl-L-Rigi-L-proline in the first step It is (n-1) molar equivalent to the amount of inorganic base (n molar equivalent) used for the hydrolysis of (1). This is because one mole of the inorganic base is consumed by hydrolysis of the trifluoroacetyl group, and trifluoroacetic acid and the inorganic base form an organic acid salt.
  • the inorganic acid used for neutralization is not particularly limited, but from the viewpoint of practicability, use of a strong acid is preferred, hydrochloric acid, sulfuric acid and the like are particularly preferred, and hydrochloric acid is particularly preferred. These may be used alone or in combination of two or more. These inorganic acids can be used as they are, or can be used as a solution diluted in an aqueous liquid.
  • an inorganic acid having a higher acidity than trifluoroacetic acid preferably hydrochloric acid
  • acidification beyond the isoelectric point can also be preferably carried out, and the amount of the inorganic acid used is It is in the range of (n-1) molar equivalent to n molar equivalent with respect to the inorganic base (n molar equivalent), and an inorganic salt having the same molar equivalent as the inorganic acid component used can be formed.
  • the trifluoroacetic acid component which does not form a salt with the inorganic base component increases, the pH of the mixture is lower than the isoelectric point of lisinopril (2).
  • the addition time of the inorganic acid in the above operation is not particularly limited, but the addition time of the entire amount is generally 1 hour 4 hours or more, usually 1 Z 3 hours or more, preferably 12 hours or more. From the viewpoint of the above, the time is generally 20 hours or less, usually 10 hours or less, and preferably 5 hours or less.
  • hydrophilic organic solvent as a poor solvent as a solvent system suitable for precipitating inorganic salts formed in the mixed solution obtained by neutralization by lowering its solubility. It is also preferable to use a mixture of a hydrophilic organic solvent and water, or to substitute a hydrophilic organic solvent with a hydrophilic organic solvent.
  • the organic solvent that can be selected from such a viewpoint is not particularly limited, but specific examples include monohydric alcohols having 1 to 4 carbon atoms such as methanol, ethanol, propanol, isopropanol, and t-butanol. Acetone, tetrahydrofuran, acetonitrile and the like, but other hydrophilic organic solvents may be used.
  • monohydric alcohols having 1 to 4 carbon atoms are preferable, and ethanol is particularly advantageous from the viewpoint of reducing the adverse effect on the human body when introduced in trace amounts in the final product.
  • ethanol is particularly advantageous from the viewpoint of reducing the adverse effect on the human body when introduced in trace amounts in the final product.
  • These may be used alone or in combination of two or more. Further, depending on the type of the inorganic salt to be removed, it can be suitably precipitated from water.
  • the amount of the hydrophilic organic solvent used here depends on the type of the hydrophilic organic solvent used and the type of the inorganic salt to be removed. When used as, the higher the ratio of organic solvent, the higher the removal rate of inorganic salts. From this point of view, the weight ratio of water to the hydrophilic organic solvent is generally from 4: 1 to: I: 99, preferably from 1 ::! To 1:99, more preferably 3: 7. ⁇ 1 ⁇ 9 9 In addition, depending on the type of inorganic salt, it can be precipitated from water. Specific examples of the inorganic salt include sulfuric acid potassium and calcium sulfate.
  • the inorganic salt can be selected based on the solubility in water or an organic solvent by referring to a technical book in this field or by a simple experiment, and these can be selected from a combination of an inorganic base and an inorganic acid to be used. Can be generated. The generated inorganic salt precipitates quickly, while Lisinopril (2) requires time for nucleation and growth of the crystal. Therefore, the inorganic salt can be preferentially precipitated and separated and removed. Furthermore, it is also preferable to select more suitable conditions, for example, it is more preferable to keep the temperature low, for example, to keep it at 0 to 30 ° C.
  • an inorganic acid having a higher acidity than trifluoroacetic acid is used in an amount of (n-1 ) It is effective to use it in the range of more than molar equivalent to n molar equivalents to acidify it above the isoelectric point. Particularly in this range, the effect increases as the amount of the inorganic acid used increases, and it is most preferable to use the inorganic acid in the same molar equivalent (n molar equivalent) as the inorganic base.
  • nucleation of the Lisinopril (2) crystal a decrease in the growth rate, and an increase in the solubility allow the inorganic salt to be preferentially precipitated by little or no Lizinopril (2) precipitation, thereby allowing filtration and separation.
  • the inorganic salt precipitated from the mixed solution obtained in this step can be easily separated and removed by a common solid-liquid separation operation such as centrifugation or pressure filtration.
  • lisinopril (2) present in the mixed solution after the removal of the inorganic salts is crystallized from the hydrophilic organic solvent, the mixed solution of water and the organic solvent, or from water at its isoelectric point.
  • lisinopril (2) is obtained as crystals while the salt mainly composed of an organic acid salt derived from trifluoroacetic acid is dissolved in the mother liquor.
  • the amount of the base used in the operation is usually (Molar equivalent of inorganic acid) One (n-1) molar equivalent.
  • the neutral salt formed at this time is mainly an organic acid salt of trifluoroacetic acid as described above, which is removed from the mother liquor while being dissolved in the crystallization solvent of lizinopril (2), and Can be efficiently crystallized and efficiently collected.
  • the base used for adjusting the isoelectric point is not particularly limited.
  • the base used may be selected from the inorganic bases used in the hydrolysis in the step (b).
  • sodium bicarbonate may be used.
  • Alkali metal bicarbonates such as hydrogen carbonate and calcium carbonate; alkaline metal earth metal carbonates such as magnesium carbonate and calcium carbonate can also be suitably used.
  • organic bases such as ammonia water, amines such as triethylamine and pyridine can also be used.
  • the crystallization solvent for lisinopril (2) in this step for example, water, a hydrophilic organic solvent or a mixture thereof can be used.
  • a mixed solution of water and a hydrophilic organic solvent from the viewpoint of improving the removability of an organic acid salt composed of trifluoroacetic acid and a base and the crystallization of lisinopril (2).
  • the type of the hydrophilic organic solvent can be selected from the hydrophilic organic solvents used in the second step, and can be used in place of the solvent. However, it is more convenient to use the same solvent system as it is. This is advantageous because it is economical. It is also preferable to use water instead of water.
  • the crystallization concentration of lisinopril (2) varies depending on the operating temperature, the type and amount of base used, the composition of the crystallization solvent, and the concentration of coexisting salts, and is not particularly limited. In order to further increase the amount, it is preferable to use a solution having a concentration as high as possible, but from the viewpoint of suppressing salt from being mixed into crystals, it is also important not to increase the concentration too much. Practically, the lower limit of concentration is 5. It is preferably at least / 0 , more preferably at least 10%, while the upper limit of the concentration is at most 40%, more preferably at most 30%. Generally, it can be suitably carried out at a concentration of about 10 to 25%.
  • the concentration of salts mainly composed of an organic acid salt derived from trifluoroacetic acid, which coexists at the time of crystallization of lisinopril (2), is also important in promoting good crystal growth. It cannot be specified in general, depending on the concentration, temperature and method of operation, and the type of coexisting neutral salt, etc., but it is generally not more than 15% by weight, preferably not more than 10% by weight. And more preferably 8% by weight or less.
  • the crystallization temperature of lisinopril (2) depends on the crystallization solvent composition and the operation method, and cannot be particularly limited. However, practically, the crystallization is performed at a temperature below the boiling point of the crystallization solvent without freezing. .
  • the operation temperature is preferably carried out at 40 to 70 ° C, particularly preferably at around 50 ° C.
  • the crystallization amount can be increased by cooling to 20 ° C. or lower, preferably 10 ° C. or lower.
  • the crystallized Lisinopril (2) can be easily crystallized in a high yield, high quality, and efficiently by a general solid-liquid separation operation such as centrifugation or pressure filtration without any special operation. Can be separated.
  • the inorganic base used is a basic sodium compound and the inorganic acid is hydrochloric acid
  • a basic sodium compound as an inorganic base is hydrolyzed in water or a mixture of water and ethanol using n molar equivalents (n ⁇ 3), and in the second step, an inorganic acid is used. Neutralized with n molar equivalents of hydrochloric acid, and the resulting sodium chloride was efficiently precipitated from ethanol or a mixture of ethanol and water, separated and removed by filtration,
  • the inorganic base used is a basic potassium compound and the inorganic acid is sulfuric acid
  • a basic potassium compound as an inorganic base is hydrolyzed in water or a mixture of water and ethanol using n molar equivalents (n ⁇ 3). Neutralized with (n_l) molar equivalents of sulfuric acid to give the isoelectric point of lisinopril (2), and the resulting potassium sulfate in water or water and ethanol. From the mixed solution of ethanol, and separated and removed by filtration.-
  • trifluoroacetic acid phenol contained in the obtained filtrate was dissolved in water or a mixture of water and ethanol. As it is, Lisinopril (2) is efficiently crystallized and separated and collected.
  • HP LC The purity was measured using HP LC and calculated by the absolute calibration curve method.
  • the measurement conditions of HP LC are as follows.
  • N 2 - (1 (S) - ethoxycarbonyl one 3-phenylpropyl) one N 6 - DOO Riffle O b acetyl one L Rijiru L- proline (1) 32.
  • the precipitate was removed by filtration, and washed twice with ethanol 4 Om1.
  • 75.5 g of a 10% by weight aqueous solution of NaOH was added (pH showed 6.0), and the solution was heated to 45 ° C to add seed crystals, and stirred for 3 hours.
  • the mixture was cooled to 5 ° C. in 2 hours, and further stirred for 12 hours.
  • the precipitated crystals were filtered and washed three times with 70% by weight ethanol 3 Om1 cooled to 5 ° C.
  • the precipitated crystals were filtered and washed three times with 15 ml of water cooled to 5 ° C.
  • the obtained crystals were dried under vacuum (20 to 50 C, from 3 OmmHg to 1 mmHg), and 20.0 g to 21.3 g of the dihydrate of lisinopril (2) (80 to 85% yield).
  • Purity 99% or higher, water content 8.2%.
  • the content of potassium sulfate was 0.1% by weight or less.
  • N 2- (1 (S) -carboxy-3-phenylpropyl) -L-lysyl-L-proline can be produced simply, efficiently and industrially advantageously.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pyrrole Compounds (AREA)

Description

明 細 書
N2- (1 (S ) —カルボキシー 3—フエニルプロピル) 一 L—リジル一 L—プ 口リンの製造方法 技術分野
本発明は、 式 (2)
Figure imgf000003_0001
で表される N2— (1 (S) 一カルボキシ一 3—フエニルプロピル) 一 L—リジ ルー L一プロリン (以下、 リジノプリル (2) ともいう) を、 高品質、 高収率か つ経済的に商業的規模で有利に製造する方法に関する。 N2— (1 (S) —カル ボキシ一 3 _フエニルプロピル) 一 L—リジル一 L—プロリン (2) (リジノプ リル) は、 血圧降下剤としてきわめて有用な化合物である。 背景技術
リジノプリル (2) は、 一般式 (1) :
NHCOCF3 (式中、 Rはアルキル基を表す) で表される N2— (1 (S) 一アルコキシカル ボニノレー 3—フエ二ノレプロピノレ) 一 N6— ト リフノレオロアセチノレ一 Lーリジノレー L一プロリンを、 水存在下、 塩基を用いて加水分解した後、 酸を用いて混合物中 の塩基成分をすベて中和することにより容易に合成することができる。 しかしな がら、 この場合には、 大量の塩類 (加水分解されて生成するトリフルォロ酢酸の 塩や、 用いた塩基と酸から形成された塩) が共存することから、 リジノプリル ( 2) の単離に際しては、 リジノプリル (2) と上記塩類とを分離する必要がある。 これに関し、 開示された方法としては、 例えば、 欧州特許第 1 68769号明 細書やジャーナル .ォブ .オーガニック . ケミス トリー ( J . O r g. C h e m. ) 53、 836—844、 ( 1 988) では、 N2— (1 (S) ーェトキシカノレ ボニルー 3—フエ二ノレプロピノレ) 一N6— トリフノレオロアセチルー L—リジル一 L一プロリンを、 水酸化ナトリウムで加水分解した後、 塩酸で酸性化し、 形成さ れた塩化ナトリゥムゃ生成したトリフルォロ酢酸又はそのナトリゥム塩等の全て の共存する物質は、 イオン交換カラムを用いた処理により除去し、 更に有機塩基 を含有する溶離液 (アンモニア水やピリジン水) を濃縮した後に塩酸で等電点に 調整し、 この際生成したアミン塩を含んだまま、 最終的には水とエタノールの混 合液からリジノプリル (2) を晶析させて分離採取している。
しかしながら、 上記方法では操作が煩雑であることに加え、 大量の塩類をィォ ン交換処理する必要があることや溶離液が希薄であること等から、 設備が巨大化 する、 また溶離液の濃縮には長時間を要して時間や膨大な熱エネルギーを浪費す る等生産性が悪い。 更に、 イオン交換樹脂の再生処理等も含めて、 排水処理量は 莫大となる、 加えて、 イオン交換カラムは雑菌が繁殖し易いという重大な問題を 潜在的に含んでいる等の難点があり、 工業生産上、 有利な方法とは言い難い。 また、 別の例としては、 例えば、 特開平 8— 253497号公報では、 N2— ( 1 (S) 一エトキシカルボュルー 3—フエニルプロピル) 一 N6—トリフルォ ロアセチルー Lーリジルー L一プロリンを有機塩基である水酸化テトラブチルァ ンモユウムで加水分解した後、 有機酸であるトリフルォロ酢酸で中和することに より、 形成される塩が全て有機塩であるテトラプチルアンモニゥムのトリフルォ 口酢酸塩とし、 その塩のすべてが共存したまま、 水とエタノール混合液からリジ O 00/17229
PCT/JP99/05189
3
ノプリル (2) を等電点において晶析させて、 これを分離採取している。 _ しかしながら、 上記方法も、 水酸化テトラプチルアンモユウムゃトリフルォロ 酢酸といった特殊な試剤を使用しており、 経済性や安全性の面から、 工業生産上、 有利な方法とは言い難い。
このように、 従来、 N2— (1 (S) 一カルボキシ一 3—フエニルプロピル) 一 Lーリジルー L一プロリン (2) と上記塩類とを簡便かつ効率的に分離できる 工業生産的に有利な方法は知られていなかった。
本発明は、 N2— (1 (S) —アルコキシカルボ二ルー 3—フエニルプロピル
) —N6—トリフルォロアセチルー L一リジル—L—プロリン (1) をアルカリ 加水分解した後、 中和して得られる混合物から、 形成された塩類とリジノプリル (2) とを、 簡便かつ効率的に分離できる工業的に有利な方法を提供することを 目的とするものである。 発明の要約
まず、 本発明者らは、 N2— (1 (S) 一エトキシカルボ二ルー 3—フエニル プロピル) 一 N6—トリフルォロアセチルー L—リジル一L一プロリンを、 無機 塩基である水酸化ナトリゥムで加水分解した後、 無機酸である塩酸又は有機酸で あるトリフルォロ酢酸で中和して、 形成される塩類を、 塩化ナトリゥムのような 無機塩、 又は、 トリフルォロ酢酸ナトリウムのような有機酸塩とし、 これら塩類 を大量に溶解したまま水やエタノールのような溶剤系から式 (2) :
Figure imgf000005_0001
で表される N2— (1 (S) 一カルボキシ一 3—フエニルプロピル) 一 L—リジ ルー L—プロリンを晶出させて採取する方法について検討を行った結果、 リジノ プリル (2 ) 結晶の取得収率や塩類の除去といった面で何れも不充分であるこど が判った。 また、 これら塩類が大量に共存することにより、 リジノプリル (2 ) 結晶の核化、 成長が遅くなる、 結晶の性状が悪くなつて濾過性が低下する等、 こ の方法には限界があることが判つた。
しかし、 リジノプリル (2 ) を晶出させる際の塩類の濃度を低めると、 これら は改善される傾向を示したことから、 リジノプリル (2 ) を晶出させて分離する 上では、 塩類を予め低減しておくことが必要と考えられた。 この観点から、 更に 鋭意検討を行った結果、 加水分解時に生成するトリフルォロ酢酸と用いた無機塩 基とから形成される有機酸塩と、 用いた無機塩基と無機酸の中和反応に由来する 無機塩といった 2種の異なる塩類を除去する観点から、 溶剤に対する溶解性やリ ジノプリル (2 ) との相互作用といったその性質に応じて、 各々の塩に対して最 適な分離方法を設定するのが好ましいとの考えに至った。
すなわち、 本発明は、 一般式 (1 ) :
Figure imgf000006_0001
(式中、 Rはアルキル基を表す) で表される N 2— ( 1 ( S ) 一アルコキシカル ボニルー 3一フエニルプロピル) 一 N 6— トリフノレオ口ァセチノレー Lーリジスレー L一プロリンから式 (2 ) :
Figure imgf000006_0002
で表される N2— (1 (S) 一カルボキシ一 3—フエニルプロピル) 一 L—リジ ルー L—プロリンを製造するにあたって、
第一工程: 1モルの N2— (1 (S) 一アルコキシカルボ二ルー 3—フエュルプ 口ピル) —N 6—トリフルォロアセチル一 L—リジルー L一プロリン (1) に対 して nモル当量 (但し、 n 3) の無機塩基を使用して、 水と親水性有機溶剤の 混合液中、 又は、 水中の何れかの溶剤系でアルカリ加水分解し、
第二工程: (n— 1) モル当量〜 nモル当量 (但し、 n 3) の範囲の無機酸を 使用して中和し、 得られる当該混合液中に形成された、 上記無機塩基と上記無機 酸に由来する無機塩を、 その溶解度を低下させて析出させるに適した溶剤系とし て、 親水性有機溶剤中、 水と親水性有機溶剤の混合液中、 又は、 水中の何れかの 溶剤系から析出させて分離除去し、
第三工程:無機塩除去後の混合液中に存在するリジノプリル (2) を、 親水性有 機溶剤中、 水と親水性有機溶剤の混合液中、 又は、 水中の何れかの溶剤系からそ の等電点において晶出させることにより、 トリフルォロ醉酸由来の有機酸塩を主 体とする塩類を母液に溶解させたまま、 リジノプリル (2) を結晶として取得す ることからなる、 N2— (1 (S) —カルボキシ一 3—フエ-ルプロピル) 一 L ーリジルー L一プロリン (2) の製造方法である。
本発明の方法により、 リジノプリル (2) と塩類が共存する混合物から、 簡便 かつ効率的に、 塩類含有量の少ないリジノプリル (2) を分離して採取できる。 発明の詳細な開示
第一工程においては、 1モルの N2— (1 (S) —アルコキシカルボ二ルー 3 一フエニルプロピル) — N6—トリフルォロアセチル—L—リジルー L一プロリ ン (1) に対して nモル当量 (但し n 3) の無機塩基を使用して、 水と親水性 有機溶剤の混合液中、 又は、 水中のいずれかの溶剤系でアルカリ加水分解する。 一般式 ( 1 ) : (式中、 Rはアルキル基を表す) で表される N2— (1 (S) 一アルコキシカル ボニル— 3—フエュルプロピル) 一 N6—トリフルォロアセチルー L—リジルー L一プロリンにおける Rは、 アルカリ条件下に加水分解しうる基であり、 好まし くは、 アルキル基であり、 より好ましくは、 炭素数 1〜4のアルキル基であり、 更に好ましくは、 ェチル基である。
使用する N2— (1 (S) —アルコキシカルボ二ルー 3—フエニルプロピル) —N 6—トリフルォロアセチルー Lーリジル一L一プロリン (1) は、 例えば、 特開平 1一 25465 1号公報、 特開平 5— 20 1 882号公報や欧州特許第 1 68769号明細書又はジャーナル ·ォブ ·オーガ二ック 'ケミストリー (J. O r g. C h e m. ) 53、 836— 844 (1 988) 等に記載された方法を 用いて調製することができる。
N2- (1 (S) ーァノレコキシカルボ二ルー 3—フエニルプロピ /レ) -N6 - トリフルォロアセチルー L—リジルー L—プロリン (1) の加水分解に用いる無 機塩基としては特に限定されるものではないが、 例えば、 アルカリ金属又はアル カリ土類金属の水酸化物及ぴ炭酸塩等を挙げることができる。 これら塩基の具体 的な例としては、 例えば、 水酸化ナトリウム、 水酸化カリウム等のアルカリ金属 水酸化物;炭酸ナトリゥム、 炭酸カリゥム等のアルカリ金属炭酸塩;水酸化マグ ネシゥム、 水酸化カルシウム等のアルカリ土類金属水酸化物等が挙げられるが、 これら以外の塩基であってもよい。 なかでも、 塩基性のナトリウム化合物や塩基 性のカリウム化合物が好ましい。 これら塩基は、 操作性等の観点から、 水溶液と して使用するのが好ましく、 普通、 例えば、 5〜50重量%、 好ましくは 20〜 48重量%の水溶液として使用するのが有利である。 なお、 これら塩基は、 単独 で使用することもできるが、 また、 2種以上を併用してもよく、 例えば、 炭酸水 素ナトリウム 1モル当量と水酸化ナトリウムを (n— 1) モル当量 (伹し n≥3 ) を用いて好ましく実施することもできる。
用いる無機塩基のモル当量 (n) としては、 N2— (1 (S) 一アルコキシ力 ルボニルー 3—フエニルプロピル) 一N6— トリフルォロアセチルー L—リジル 一 L一プロリン (1) を加水分解するのに必要な量であり、 一般的には、 N2— (1 (S) ーァノレコキシカルボ二ノレ一 3—フエ二ノレプロピル) 一N6— トリフノレ ォロアセチルー L—リジル— L—プロリン (1) の 3倍モル当量以上 (n≥3) である。 これら無機塩基は、 一般に、 最初から一度に添加して用いることもでき るが、 加水分解時の pHを一定に維持するように、 又は、 段階的に変化させるよ うに、 逐次添加することもできる。 最終的には、 p H 1 2以上の混合液とするこ とが好ましい。
加水分解は、 一般的には、 水系で実施することができるが、 また、 他の有機溶 剤を悪影響のない範囲で含ませて、 水と親水性有機溶剤の混合液中で実施するこ ともできる。 含ませる親水性有機溶剤としては特に限定されないが、 一般的には、 メタノーノレ、 エタノーノレ、 プロノヽ0ノーノレ、 イソプロノヽ。ノーノレ、 t—ブタノーノレ等 の炭素数 1〜4の 1価アルコール類等が挙げられ、 その場合には、 用いる N2— (1 (S) ーァノレコキシカルボ-ルー 3—フエ二ノレプロピル) 一N6—トリフル ォロアセチル一L—リジル一L—プロリンを表す一般式 (1) 中の Rは、 上記ァ ルコールのアルキル基と同一の基であることが好ましい。 特に好ましく用いるこ とができるのはエタノールであり、 その場合、 先と同様、 一般式 (1) 中の Rは ェチル基であることが好ましい。 これら水と親水性有機溶剤の混合液、 とりわけ、 水と上記アルコール類との混合液を用いる場合の混合重量比は、 一般的には、 1 : 1〜1 : 99であるが、 好ましくは 1 : 1〜1 : 9であり、 より好ましくは 1 : 1— 1 : 7である。
加水分解する操作温度は、 とくに高温を必要としないが、 実用的には、 一般に 70°C以下、 好ましくは 60°C以下の溶剤が氷結しない温度で実施することがで き、 好ましくは 0〜50°C、 とりわけ 30°C前後で好適に実施されうる。
第二工程においては、 (n— 1) モル当量〜 nモル当量 (但し n 3) の範囲 の無機酸を使用して中和し、 得られる当該混合液中に形成された、 上記無機塩基 と上記無機酸に由来する無機塩を、 その溶解度を低下させて析出させるに適した 溶剤系として、 親水性有機溶剤中、 水と親水性有機溶剤の混合液中、 又は、 水中 のいずれかの溶剤系から析出させて分離除去する。
中和に用いる無機酸の使用量としては、 基本的に、 第一工程で N 2— ( 1 ( S ) —アルコキシカルボ二ルー 3—フエニルプロピル) 一N 6—トリフルォロアセ チルー Lーリジルー L—プロリン (1 ) の加水分解に用いた無機塩基の量 (nモ ル当量) に対し、 (n— 1 ) モル当量である。 これは、 トリフルォロアセチル基 の加水分解により無機塩基が 1モル消費され、 トリフルォロ酢酸と無機塩基とで 有機酸塩を形成することによる。 従って、 この量の無機酸を用いたときには、 ト リフルォロ酢酸と無機塩基からなる有機酸塩が 1モル当量、 無機塩が (n— 1 ) モル当量形成され、 全ての用いた無機塩基成分が中和されて塩を形成する。 この 時、 混合物の p Hはリジノプリル (2 ) の等電点付近であり、 一般的には、 p H 値は 5 . 2 ± 0 . 4程度である。
中和に用いる無機酸としては、 とくに制限はないが、 実用性の点から、 強酸の 使用が好ましく、 とくに塩酸、 硫酸などが好ましく、 とりわけ塩酸が好ましい。 これらは単独で用いてもよく、 2種以上を併用してもよい。 これらの無機酸はそ のまま用いることもできるが、 水性液に希釈した溶液として用いることもできる。
トリフルォロ醉酸より強い酸性度を持つ無機酸、 好ましくは塩酸を用いる場合 には、 等電点を越えて酸性化することも好ましく実施することができ、 用いる無 機酸の量としては、 用いた無機塩基 (nモル当量) に対し、 (n— 1 ) モル当量 を越えて nモル当量までの範囲であり、 用いた無機酸成分と同モル当量の無機塩 を形成することができる。 この時には、 無機塩基成分と塩を形成しないトリフル ォロ酢酸成分が増加することから、 混合物の p Hはリジノプリル (2 ) の等電点 より低下する。
一方、 (n— 1 ) モル当量〜 nモル当量の範囲以外の量の無機酸を用いた場合 や、 トリフルォロ酢酸より弱い酸を (n— 1 ) モル当量を越えて nモル当量まで の範囲で用いた場合には、 無機塩基成分または無機酸成分が本工程で除去されず に残存し、 後の工程でリジノプリル (2 ) を晶出分離する際、 更なる中和が必要 となり、 また、 その際に形成された塩が結晶に混入したり、 晶出性を悪化させた りして、 不都合を招くことから好ましくない。
上記操作における無機酸の添加時間は、 特に制限はないが、 全量が添加される 時間として、 一般に 1ノ 4時間以上、 普通 1 Z 3時間以上、 好ましくは 1 2時 間以上であり、 生産性などの観点からは、 一般に 2 0時間以下、 普通 1 0時間以 下、 好ましくは 5時間以下である。
中和して得られる当該混合液中に形成された無機塩を、 その溶解度を低下させ て析出させるに適した溶剤系としては、 親水性有機溶剤を貧溶媒として用いるこ とが効果的であり、 親水性有機溶剤と水との混合液としたり、 さらには親水性有 機溶剤に置換することも好ましく実施できる。 このような観点から選択されうる 有機溶剤としては特に限定されないが、 具体的な例としては、 たとえばメタノー ル、 エタノール、 プロパノール、 イソプロパノ一ル、 t—ブタノールなどの炭素 数 1〜4の 1価アルコール類;ァセトン、 テトラヒ ドロフラン、 ァセトニトリル などがあげられるが、 これら以外の親水性有機溶剤であってもよい。 とりわけ、 炭素数 1〜4の 1価アルコール類が好ましく、 さらに、 痕跡量で最終製品に持ち 込まれた場合の人体への悪影響を少なくする点からはエタノールがとくに有利で ある。 これらは単独で用いてもよく、 2種以上併用しても良い。 また、 除去する 無機塩の種類によっては水からも好適に析出させることができる。
ここで用いる親水性有機溶剤の量としては、 用いる親水性有機溶剤の種類や除 去する無機塩の種類などにより異なることから、 一概には云えないが、 たとえば、 有機溶剤を無機塩の貧溶媒として用いる場合には、 有機溶剤比率を高めるほど、 無機塩の除去率が向上する。 このような観点から、 水と親水性有機溶剤の重量比 は一般に 4 : 1〜: I : 9 9であるが、 好ましくは 1 : :!〜 1 : 9 9、 より好まし くは 3 : 7〜1 ·· 9 9である。 また、 無機塩の種類によっては、 水から析出させ ることも可能であり、 その具体的な無機塩の例としては、 たとえば、 硫酸力リウ ム、 硫酸カルシウムなどをあげることができる。 上記無機塩は、 当分野における 専門書を参考としたり、 簡単な実験により、 水や有機溶剤への溶解度に基づいて 選択することができ、 これらは用いる無機塩基と無機酸の組み合わせから選択し て生成させることができる。 生成した無機塩は速やかに析出する一方、 リジノプリル (2 ) は結晶の核発 や成長に時間を要することから、 無機塩を優先的に析出させ、 分離除去すること ができる。 さらに、 より適した条件を選択して行うことも好ましく、 たとえば、 温度は低く保つ、 例えば 0〜3 0 °Cに保つことがより好ましい。
上記操作において、 さらに好ましくは、 中和に用いる無機酸として、 トリフル ォロ酢酸より強い酸性度を持つ無機酸を、 その使用量として、 用いた無機塩基 ( nモル当量) に対し (n— 1 ) モル当量を越えて nモル当量までの範囲で用いて、 等電点を越えて酸性化することが効果的である。 とくにこの範囲においては、 無 機酸の使用量を増すほどその効果は高まり、 無機酸を無機塩基と同モル当量 (n モル当量) 用いることが最も好ましい。 これにより、 リジノプリル (2 ) 結晶の 核発生 .成長速度の低下、 溶解度の向上により、 リジノプリル (2 ) を殆どまた は全く析出させることなく、 無機塩を優先的に析出させ濾過分離することができ る。
本工程で得られた当該混合液より析出した無機塩は、 遠心分離や加圧濾過等の 一般的な固液分離操作により、 簡便に分離除去することができる。
第三工程においては、 無機塩の除去後の混合液中に存在するリジノプリル (2 ) を、 親水性有機溶剤中、 水と有機溶剤の混合液中または水中からその等電点に おいて晶出させることにより、 トリフルォロ酢酸由来の有機酸塩を主体とする塩 類を母液に溶解させたまま、 リジノプリル (2 ) を結晶として取得する。
第二工程で得られた、 無機塩除去後の混合液中に存在するリジノプリル (2 ) を等電点条件下に晶出させる際、 前工程の中和段階で (n— 1 ) モル当量の無機 酸を用いて既に等電点条件としている場合には、 通常、 特に処理を要しないが、 無機酸を (n— 1 ) モル当量を越えて nモル当量までの範囲で用いて等電点より さらに酸性化している場合には、 リジノプリル (2 ) の晶出率を高める為、 塩基 を用いて等電点条件とすることが好適であり、 その操作で用いる塩基の量は、 普 通、 (無機酸の使用モル当量) 一 (n— 1 ) モル当量である。 この際生成する中 性塩は、 前述のようにトリフルォロ酢酸の有機酸塩が主体となり、 これは、 リジ ノプリル (2 ) の晶析溶剤に溶解させたまま母液に除去して、 リジノプリル (2 ) を良好に晶出させて効率的に分離採取することができる。 等電点に調整する際に用いる上記塩基は、 特に制限はなく、 たとえば、 第 ェ 程で加水分解に用いた無機塩基から選択して用いることもできるが、 加えて、 た とえば炭酸水素ナトリウム、 炭酸水素力リゥムなどのアルカリ金属炭酸水素塩; 炭酸マグネシゥム、 炭酸カルシゥムなどのアル力リ土類金属炭酸塩なども好適に 用いることができる。 また、 アンモニゥム水、 トリェチルァミン、 ピリジンのよ うなァミン類などの有機塩基類を用いることもできる。 好ましくは塩基性のナト リゥム化合物や塩基性の力リゥム化合物である。 これらは単独で使用してもよく、 2種以上併用してもよい。
本工程における、 リジノプリル (2 ) の晶析溶剤としては、 たとえば水、 親水 性有機溶剤またはそれらの混合液を用いることができる。 とくに水と親水性有機 溶剤との混合液を用いることが、 トリフルォロ酢酸と塩基からなる有機酸塩の除 去性やリジノプリル (2 ) の晶出性を良好とする点から好ましい。 親水性有機溶 剤の種類としては、 第二工程で用いた親水性有機溶剤から選択して、 置き換えて 用いることもできるが、 好ましくは、 そのまま同種の溶剤系を用いることが、 よ り簡便で経済的であることから有利である。 また水に置き換えて用いることも好 ましく実施できる。
リジノプリル (2 ) の晶析濃度としては、 操作温度、 用いる塩基の種類や量、 晶析溶剤の組成、 共存する塩類濃度により異なることから、 とくに限定はできな いが、 結晶析出時の晶出量をより向上させるためには、 できるだけ高い濃度の溶 液とすることが好ましいが、 塩類の結晶への混入を抑制する観点からは、 あまり 濃度を高め過ぎないことも重要である。 実用的には、 濃度の下限として 5。/0以上、 より好ましくは 1 0 %以上が好適であり、 一方濃度の上限としては 4 0 %以下、 より好ましくは 3 0 %以下である。 一般的には 1 0〜2 5 %程度の濃度で好適に 実施することができる。
リジノプリル (2 ) の晶出時に共存する、 トリフルォロ酢酸由来の有機酸塩を 主体とする塩類の濃度も、 良好な結晶成長を促す点から重要である。 操作の濃度、 温度や方法、 また共存する中性塩の種類などにもよることから、 一般に規定する ことはできないが、 一般的には 1 5重量%以下、 好ましくは 1 0重量%以下であ り、 さらに好ましくは 8重量%以下である。 リジノプリル (2 ) の晶析温度は、 晶析溶剤組成、 操作方法などにもよるの _で 特に限定できないが、 実用的には晶析溶剤の沸点以下の氷結しなレ、温度で実施さ れる。 ことさら高温にする必要はないが、 晶出時の温度を高めることは、 リジノ プリル (2 ) 結晶の核化および成長速度を高めることにつながり好ましい。 この ような観点から、 操作温度は、 好ましくは 4 0〜7 0 °Cで実施され、 とりわけ 5 0 °C前後で好ましく実施される。 最終的に 2 0 °C以下、 好ましくは 1 0 °C以下に 冷却して晶出量を増大させることができる。
晶出したリジノプリル (2 ) の結晶は、 特別な操作を行うことなく、 遠心分離 や加圧濾過等の一般的な固液分離操作により、 高収率、 高品質かつ効率的に結晶 として、 容易に分離することができる。
本発明において、 反応基質として N 2— ( 1 ( S ) 一エトキシカルボ二ルー3 —フエニルプロピル) 一 N 6—トリフルォロァセチル— L—リジル _ L一プロリ ンを用いた場合の実施態様としては、 例えば、 用いる無機塩基が塩基性のナトリ ゥム化合物であり、 無機酸が塩酸である場合、
第一工程においては、 無機塩基として塩基性のナトリゥム化合物を nモル当量 (但し、 n≥3 ) 用いて、 水または水とエタノールの混合液中、 加水分解し、 第二工程においては、 無機酸として塩酸を nモル当量用いて中和し、 生成する 塩化ナトリゥムをエタノールまたはエタノールと水の混合液中から効率的に析出 させて、 濾過で分離除去し、
第三工程においては、 塩化ナトリゥム除去後の混合液に 1モル当量の塩基性の ナトリゥム化合物を加え、 生成したトリフルォロ酢酸ナトリゥムをエタノールと 水の混合液中に溶解させたまま、 リジノプリル (2 ) を効率的に晶出させて、 分 離採取する。
また、 もう 1つの好ましい実施態様としては、 例えば、 用いる無機塩基が塩基 性のカリウム化合物であり、 無機酸が硫酸である場合、
第一工程においては、 無機塩基として塩基性のカリウム化合物を nモル当量 ( 但し、 n≥3 ) 用いて、 水中または水とエタノールの混合液中、 加水分解し、 第二工程においては、 無機酸として硫酸を (n _ l ) モル当量用いて中和して、 リジノプリル (2 ) の等電点とし、 生成する硫酸カリウムを水中または水とエタ ノールの混合液中から効率的に析出させて、 濾過で分離除去し、 ― 第三工程においては、 得られた濾液に含まれるトリフルォロ酢酸力リゥムを水 または水とエタノールの混合液に溶解させたまま、 リジノプリル (2) を効率的 に晶出させて、 分離採取する。 発明を実施するための最良の形態
以下に実施例をあげて本発明をさらに詳しく説明するが、 本発明はこれらに限 定されるものではない。
なお、 純度は HP LCを用いて測定し、 絶対検量線法により算出した。 水分含 量はカールフィッシャー法により、 また塩化ナトリウム含量はイオンクロマトを 用いて算出した。 HP LCの測定条件は以下のとおりである。
[HP LC]
カラム:カプセルパック UG— 1 20 (商品名、 4. 6mmX 25 cm、 資生 堂 (株) 製)
溶媒: 6 OmM KH2P04 (p H 2. 8) /CH3CN (90 : 1 0 (容積比 ) )
流速: 1. Om l Z分
温度: 50 °C
検出条件: UV 21 0 nm 実施例 1
N2- (1 (S) 一エ トキシカノレボニノレ一 3—フエ二ノレプロピノレ) 一N6—ト リフルォロアセチルー L一リジル一 L—プロリン ( 1 ) 32. O gと 30重量0 /0 Na OH水溶液 25. 9 gを混合し、 攪拌しながら約 4時間反応させた。 これに 濃塩酸 20. 1 8を加ぇて 12. 8 ±0. 5とし、 この溶液をエタノールで 2 倍に希釈後、 元の容量まで濃縮する操作を繰り返して、 水の濃度を 4±2重量% とした。 この溶液にエタノールを添加して、 リジノプリル (2) の濃度を 22土 2重量%とし、 更に、 1時間攪拌を続けた。 析出物を濾過にて除去し、 エタノー ル 30 m 1で洗浄した。 得られた濾液に 1 5重量% N a O H水溶液 1 6. 1 gを CT/JP99/05189
14
加え (pHは 5. 8を示した) 、 この溶液を 45°Cに加温して種晶を添加し、 3 時間攪拌後、 2時間で 5 °Cまで冷却し、 更に、 1 2時間攪拌を続けた。 析出した 結晶を濾過し、 5 °Cに冷却した 70重量%エタノール 3 Om 1で 3回洗浄した。 得られた結晶を真空乾燥 (20〜50°C、 3 OmmHgから 1 mmHgへ) し、 リジノプリル (2) の 2水和物 22. 7 g〜23. 5 g (収率 85〜 88 %) を 得た。 純度 99%以上、 水分含量 8· 2%。 塩化ナトリウムの含有量は 0. 1重 量%以下であった。 実施例 2
N2— (1 (S ) —エトキシカルボニル一 3—フエニルプロピル) 一 N6—ト リフルォロアセチル一 Lーリジルー L—プロリン ( 1 ) 32. O gと 30重量0 /0 NaOH水溶液 25. 9 gを混合し、 攪拌しながら約 4時間反応させた。 これに 濃塩酸 1 3. 9 gを加えて pH5. 2±0. 2とし、 この溶液をエタノールで 2 倍に希釈後、 元の容量まで濃縮する操作を繰り返して、 水の濃度を 4 ±2重量0 /o とした。 この溶液にエタノールを添カ卩して、 リジノプリル (2) の濃度を 22土 2重量%とし、 更に、 1時間攪拌を続けた。 析出物を濾過にて除去し、 エタノー ル 3 Om 1で洗浄した。 得られた濾液に水 1 5. 0 gを加え、 この溶液を 45 °C に加温して種晶を添加し、 3時間攪拌後、 2時間で 5°Cまで冷却し、 更に、 1 2 時間攪拌を続けた。 析出した結晶を濾過し、 5°Cに冷却した 70重量%エタノー ル 3 Om 1で 3回洗浄した。 得られた結晶を真空乾燥 (20〜50°C、 3 Omm Hgから 1 mmHgへ) し、 リジノプリル (2) の 2水和物 22. 7 g〜23. 5 g (収率 85〜88%) を得た。 純度 9 9%以上、 水分含量 8. 2 %。 塩化ナ トリウムの含有量は 0. 1重量%以下であった。 実施例 3
N2— (1 (S) 一エトキシカルボ-ル一 3—フエ-ノレプロピル) 一 N6—ト リフルォロアセチルー L一リジル一 L—プロリン ( 1 ) 32. O gと 30重量0 /0 Na OH水溶液 25. 9 gを混合し、 攪拌しながら約 4時間反応させた。 これに 濃塩酸 20. 1 8を加ぇて ^12. 8 ±0. 5とし、 この溶液をエタノールで 2 倍に希釈後、 元の容量まで濃縮する操作を繰り返して、 水の濃度を 3 ±2重量% とした。 この溶液に 48重量%N a OH水溶液 5 · 0 gを加え (pHは 5· 7を 示した) 、 更にエタノールを添加して、 リジノプリル (2) の濃度を 22 ± 2重 量%とし、 1時間攪拌を続けた。 析出物を濾過にて採取し、 エタノール 3 Om l で洗浄した。 得られた濾液に水 1 2. 0 gを加え、 この溶液を 45 °Cに加温して 種晶を添加し、 3時間攪拌後、 2時間で 5°Cまで冷却し、 更に、 1 2時間攪拌を 続けた。 析出した結晶を濾過し、 5°Cに冷却した 70重量%エタノール 30m 1 で 3回洗浄した。 得られた結晶を真空乾燥 (20〜50°C、 301111111 §から 1 mmHgへ) し、 リジノプリル (2) の 2水和物 22. 7 g〜23. 5 g (収率 85〜88%) を得た。 純度 99%以上、 水分含量 8. 2 %。 塩化ナトリウムの 含有量は 0. 1重量%以下であった。 実施例 4
N2- ( 1 (S) 一エトキシカノレボ二/レー 3—フエ二ノレプロピノレ) 一 N6— ト リフルォロアセチル—Lーリジルー L一プロリン (1) 1 00. 08を48重量 %Na OH水溶液 50. 4 gとエタノール 39. 3 gの混合液に添加し、 攪拌し ながら約 4時間反応させた。 これに濃塩酸 62. 9 gを加えた後、 この溶液にェ タノールを添加してリジノプリル (2) の濃度を 8 ± 2重量0 /0とし、 更に 1時間 攪拌を続けた。 析出物を濾過にて除去し、 エタノール 4 Om 1で 2回洗浄した。 得られた濾液に 10重量%N a OH水溶液 75. 5 gを加え (pHは 6. 0を示 した) 、 この溶液を 45°Cに加温して種晶を添加し、 3時間攪拌後、 2時間で 5 °Cまで冷却し、 更に、 1 2時間攪拌を続けた。 析出した結晶を濾過し、 5°Cに冷 却した 70重量%エタノール 3 Om 1で 3回洗浄した。 得られた結晶を真空乾燥 (20〜50°C、 3 OmmHgから 1 mmHgへ) し、 リジノプリル (2) の 2 水和物 65. 9 g〜70. 0 g (収率 79〜84%) を得た。 純度 99 %以上、 水分含量 8. 2 %。 塩化ナトリウムの含有量は 0. 1重量。 /。以下であった。 実施例 5
N2- ( 1 (S) 一エ トキシカノレボニルー 3—フエニルプロピル) 一 N6—ト リフルォロアセチルー Lーリジルー L一プロリン ( 1 ) 30. O gと 38重量% KOH水溶液 1 7. O gを混合し、 攪拌しながら約 4時間反応させた。 これに濃 塩酸 6. 9 gを加えて pH5. 2±0. 5とし、 更に 1時問攪拌を続けた。 析出 物を濾過にて除去し、 水 1 5m 1で洗浄した。 得られた濾液を 45 °Cに加温して 種晶を添加し、 3時間攪拌後、 2時間で 5°Cまで冷却し、 更に、 1 2時間攪拌を 続けた。 析出した結晶を濾過し、 5°Cに冷却した水 1 5m 1で 3回洗浄した。 得 られた結晶を真空乾燥 (20〜50。C、 3 OmmHgから 1 mmHgへ) し、 リ ジノプリル (2) の 2水和物 20. 0 g〜21. 3 g (収率 80〜85%) を得 た。 純度 99%以上、 水分含量 8. 2%。 硫酸カリウムの含有量は 0. 1重量% 以下であった。 産業上の利用可能性
本発明の方法により、 N2— (1 (S) 一カルボキシ— 3—フエニルプロピル ) 一 L一リジル—L一プロリンを簡便かつ効率的に、 工業的にも有利に製造する ことができる。

Claims

17
請 求 の 範 囲 一般式 (1)
Figure imgf000019_0001
(式中、 Rはアルキル基を表す) で表される N2_ (1 (S) —アルコキシカル ボニルー 3—フエニルプロピル) 一 N6— トリフルォロァセチルー L—リジルー L一プロリンから式 (2) :
Figure imgf000019_0002
で表される N2— (1 (S) 一カルボキシ一 3—フエニルプロピル) Lーリジ ルー L一プロリンを製造するにあたって、
第一工程: 1モルの N2— (1 (S) 一アルコキシカルボ二ルー 3—フエニルプ 口ピル) 一 N 6— トリフルォロアセチル— Lーリジルー L—プロ リン (1) に対 して nモル当量 (但し、 n≥3) の無機塩基を使用して、 水と親水性有機溶剤の 混合液中、 又は、 水中の何れかの溶剤系でアルカリ加水分解し、
第二工程: (n— 1) モル当量〜 nモル当量 (伹し、 n≥3) の範囲の無機酸を 使用して中和し、 得られる当該混合液中に形成された、 前記無機塩基と前記無機 酸とに由来する無機塩を、 その溶解度を低下させて析出させるに適した溶剤系と して、 親水性有機溶剤中、 水と親水性有機溶剤の混合液中、 又は、 水中の何れ _か の溶剤系から析出させて分離除去し、
第三工程:無機塩除去後の混合液中に存在する N 2— ( 1 ( S ) 一カルボキシー 3—フエ -ルプロピル) 一 Lーリジル— L一プロリン ( 2 ) を、 親水性有機溶剤 中、 水と親水性有機溶剤の混合液中、 又は、 水中の何れかの溶剤系からその等電 点において晶出させることにより、 トリフルォロ酢酸由来の有機酸塩を主体とす る塩類を母液に溶解させたまま、 N 2— (1 ( S ) —カルボキシー 3 _フユニル プロピル) 一 L一リジル一L—プロリン (2 ) を結晶として取得する
ことを特徴とする、 N 2— ( 1 ( S ) 一カルボキシ _ 3—フエニルプロピル) 一 L—リジルー L一プロリン (2 ) の製造方法。
2 . 第一工程で使用する無機塩基は、 アルカリ金属水酸化物、 アルカリ金属炭 酸塩又はアル力リ土類金属水酸化物である請求項 1記載の製造方法。
3 . 第一工程で使用する無機塩基は、 塩基性のナトリゥム化合物又は塩基性の カリゥム化合物である請求項 2記載の製造方法。
4 . 第二工程における無機酸の使用量が、 (n— 1 ) モル当量を越えて nモル 当量 (伹し、 n≥3 ) までの範囲であり、 第三工程において、 無機塩除去後の混 合物を (無機酸の使用モル当量) 一 (n— 1 ) モル当量の塩基を使用して等電点 に調整する請求項 1、 2又は 3記載の製造方法。
5 . 第二工程における無機酸の使用量が、 nモル当量 (但し、 n 3 ) であり、 第三工程において、 無機塩除去後の混合物を 1モル当量の塩基を使用して等電点 に調整する請求項 4記載の製造方法。
6 . 第三工程において等電点調整に使用する塩基は、 アル力リ金属水酸化物、 アルカリ金属炭酸塩、 アルカリ金属炭酸水素塩、 アルカリ土類金属水酸化物又は アル力リ土類金属炭酸塩から選ばれる無機塩基である請求項 4又は 5記載の製造 方法。
7 . 第三工程において等電点調整に使用する塩基は、 塩基性のナトリウム化合 物又は塩基性の力リゥム化合物である請求項 6記載の製造方法。
8 . 第二工程において使用する無機酸は、 塩酸又は硫酸である請求項 1、 2、
3、 4、 5、 6又は 7記載の製造方法。
9. 第二工程における無機塩の析出、 及び、 第三工程における N2— (1 (S ) —力ノレボキシ一 3—フエニルプロピノレ) 一L—リジノレ一 L—プロリン (2) の 晶出を、 水と親水性有機溶剤との混合液中から行う請求項 1、 2、 3、 4、 5、
6、 7又は 8記載の製造方法。
1 0. 混合液における水と親水性有機溶剤の重量比が、 4 : 1〜1 : 99でぁ る請求項 9記載の製造方法。
1 1. 親水性有機溶剤として炭素数 1 ~4の 1価アルコールを用いる請求項 1、 2、 3、 4、 5、 6、 7、 8、 9又は 1 0記載の製造方法。
1 2. 親水性有機溶剤としてエタノールを用いる請求項 1 1記載の製造方法。
1 3. —般式 (1) において、 Rが炭素数 1〜4のアルキル基である請求項 1、 2、 3、 4、 5、 6、 7、 8、 9、 1 0、 1 1又は 1 2記載の製造方法。
14. 一般式 (1) において、 Rがェチル基である請求項 1 3記載の製造方法。
1 5. 第二工程において、 形成させる無機塩が硫酸カリウム又は硫酸カルシゥ ムであり、 これを水中から析出させて分離除去する請求項 1記載の製造方法。
PCT/JP1999/005189 1998-09-22 1999-09-22 Procede de preparation de n2-(1(s)-carboxy-3-phenylpropyl)-l-lysyl-l-proline WO2000017229A1 (fr)

Priority Applications (10)

Application Number Priority Date Filing Date Title
PL99340685A PL340685A1 (en) 1998-09-22 1999-09-22 Method of obtaining n2-(1(s)-carboxy-3-phenylpropyl)-l-lysil-l-proline
SI9920011A SI20271A (sl) 1998-09-22 1999-09-22 Postopek za proizvodnjo N2-(1(S)-karboksi-3-fenilpropil)-L-lizil-L-prolina
IL13627199A IL136271A (en) 1998-09-22 1999-09-22 Process for the preparation of n<2>-(1(s)-carboxy-3-phenylpropyl)-l-lysyl-l-proline
HU0100831A HUP0100831A3 (en) 1998-09-22 1999-09-22 Process for the preparation of n2-(1(s)-carboxy-3-phenylpropyl)-l-lysyl-l-proline
DE69934084T DE69934084T2 (de) 1998-09-22 1999-09-22 Verfahren zur herstellung von n2-(1(s)-carboxy-3-phenylpropyl)-l-lysyl-l-prolin
EP99944783A EP1035131B1 (en) 1998-09-22 1999-09-22 Process for the preparation of n2 -(1(s)-carboxy-3-phenylpropyl)-l-lysyl-l-proline
JP2000574137A JP4307733B2 (ja) 1998-09-22 1999-09-22 N2−(1(s)−カルボキシ−3−フェニルプロピル)−l−リジル−l−プロリンの製造方法
CA002311407A CA2311407A1 (en) 1998-09-22 1999-09-22 Process for the preparation of n2-(1(s)-carboxy-3-phenylpropyl)-l-lysyl-l-proline
US09/554,827 US6271393B1 (en) 1998-09-22 1999-09-22 Process for producing N2-(1(S)-carboxy-3-phenylpropyl)-L-lysyl-L-proline
KR1020007005439A KR100625553B1 (ko) 1998-09-22 1999-09-22 N2-(1(s)-카르복시-3-페닐프로필)-l-리실-l-프롤린의제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP10/268676 1998-09-22
JP26867698 1998-09-22

Publications (1)

Publication Number Publication Date
WO2000017229A1 true WO2000017229A1 (fr) 2000-03-30

Family

ID=17461854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/005189 WO2000017229A1 (fr) 1998-09-22 1999-09-22 Procede de preparation de n2-(1(s)-carboxy-3-phenylpropyl)-l-lysyl-l-proline

Country Status (16)

Country Link
US (1) US6271393B1 (ja)
EP (1) EP1035131B1 (ja)
JP (1) JP4307733B2 (ja)
KR (1) KR100625553B1 (ja)
CN (1) CN1200946C (ja)
AT (1) ATE346086T1 (ja)
CA (1) CA2311407A1 (ja)
CZ (1) CZ292494B6 (ja)
DE (1) DE69934084T2 (ja)
ES (1) ES2277446T3 (ja)
HU (1) HUP0100831A3 (ja)
IL (1) IL136271A (ja)
PL (1) PL340685A1 (ja)
RU (1) RU2220152C2 (ja)
SI (1) SI20271A (ja)
WO (1) WO2000017229A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6136297A (ja) * 1984-07-16 1986-02-20 メルク エンド カムパニー インコーポレーテツド カルボキシアルキルジペプチドを製造する方法
JPH01254651A (ja) * 1988-04-04 1989-10-11 Kanegafuchi Chem Ind Co Ltd N↑2−(1−カルボキシ−3−フエニルプロピル)−l−リジン誘導体及び該化合物を用いるリジノプリルの製造法
WO1994015957A1 (en) * 1993-01-08 1994-07-21 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Method of crystallizing n2-((s)-1-ethoxycarbonyl-3-phenylpropyl)-n6-trifluoroacetyl-l-lysyl-l-proline
JPH08253497A (ja) * 1995-03-14 1996-10-01 Richter Gedeon V G Rt ペプチド型化合物
JPH09301938A (ja) * 1996-05-10 1997-11-25 Kanegafuchi Chem Ind Co Ltd 1−アルコキシカルボニル−3−フェニルプロピル誘導体の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0653757B2 (ja) * 1985-12-06 1994-07-20 味の素株式会社 プロリン誘導体の芳香族スルホン酸塩
DE4331540A1 (de) * 1993-09-17 1995-03-23 Degussa Verfahren zur Reinigung von 1-[N·2·-((S)-Ethoxycarbonyl)-3-phenylpropyl)-N·6·-trifluoracetyl]-L-lysyl-L-prolin (Lisinopril(Tfa)ethylester)

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6136297A (ja) * 1984-07-16 1986-02-20 メルク エンド カムパニー インコーポレーテツド カルボキシアルキルジペプチドを製造する方法
JPH01254651A (ja) * 1988-04-04 1989-10-11 Kanegafuchi Chem Ind Co Ltd N↑2−(1−カルボキシ−3−フエニルプロピル)−l−リジン誘導体及び該化合物を用いるリジノプリルの製造法
WO1994015957A1 (en) * 1993-01-08 1994-07-21 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Method of crystallizing n2-((s)-1-ethoxycarbonyl-3-phenylpropyl)-n6-trifluoroacetyl-l-lysyl-l-proline
JPH08253497A (ja) * 1995-03-14 1996-10-01 Richter Gedeon V G Rt ペプチド型化合物
JPH09301938A (ja) * 1996-05-10 1997-11-25 Kanegafuchi Chem Ind Co Ltd 1−アルコキシカルボニル−3−フェニルプロピル誘導体の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BLACKLOCK T.J. ET AL.: "Synthesis of semisynthetic dipeptides using N-carboxyanhydrides and chiral induction on Raney nickel. A method practical for large scale", J. ORG. CHEM., vol. 53, no. 4, 1988, pages 836 - 844, XP002925770 *

Also Published As

Publication number Publication date
IL136271A0 (en) 2001-05-20
SI20271A (sl) 2000-12-31
CN1286695A (zh) 2001-03-07
KR20010032238A (ko) 2001-04-16
JP4307733B2 (ja) 2009-08-05
ATE346086T1 (de) 2006-12-15
PL340685A1 (en) 2001-02-26
RU2220152C2 (ru) 2003-12-27
HUP0100831A3 (en) 2001-12-28
CZ20001897A3 (cs) 2000-10-11
CN1200946C (zh) 2005-05-11
HUP0100831A2 (hu) 2001-08-28
EP1035131B1 (en) 2006-11-22
CZ292494B6 (cs) 2003-10-15
EP1035131A1 (en) 2000-09-13
EP1035131A4 (en) 2002-05-02
DE69934084D1 (de) 2007-01-04
ES2277446T3 (es) 2007-07-01
US6271393B1 (en) 2001-08-07
CA2311407A1 (en) 2000-03-30
IL136271A (en) 2005-06-19
DE69934084T2 (de) 2007-04-05
KR100625553B1 (ko) 2006-09-20

Similar Documents

Publication Publication Date Title
EP0127411B1 (en) Method of preparing alpha-l-aspartyl-l-phenylalanine methyl ester and its hydrochloride
JPH10237030A (ja) 分岐鎖アミノ酸の精製法
JP3163661B2 (ja) α−L−アスパルチル−L−フェニルアラニンメチルエステル、及びL−フェニルアラニン、L−アスパラギン酸の回収方法
CA1155453A (en) Method of producing n-benzyloxycarbonyl-l-aspartic acid
WO2000017229A1 (fr) Procede de preparation de n2-(1(s)-carboxy-3-phenylpropyl)-l-lysyl-l-proline
JPH0351713B2 (ja)
JP4405675B2 (ja) N−(1(s)−エトキシカルボニル−3−フェニルプロピル)−l−アラニル−l−プロリンのマレイン酸塩の晶出方法
JPH0570478A (ja) α−L−アスパルチル−L−フエニルアラニンメチルエステルの製造方法
US5362903A (en) Method for preparing α-L-aspartyl-L-phenylalanine
JPH08134088A (ja) N−ホスホノメチルグリシンの単離方法
JP3307491B2 (ja) L−フェニルアラニンの回収方法
JP4475573B2 (ja) リシノプリル2水和物の製造方法
WO2008132759A2 (en) Industrially advantageous process for the production of lisinopril dihydrate
JPH07640B2 (ja) α−L−アスパルチル−L−フエニルアラニンメチルエステル塩酸塩の製造法
WO2003066657A1 (en) A process for preparing ursodeoxycholic acid dusulphate and pharmaceutically acceptable salts thereof
JPH07258182A (ja) L−フェニルアラニンの回収方法
WO1999014225A1 (fr) Produit d&#39;addition d&#39;acetone pour agent antifongique v-28-3m
JPH0212239B2 (ja)
JP2001316342A (ja) イソロイシンの精製法
JPS6013746A (ja) 新規フェニルアラニン塩結晶とその製造法
JP2001081069A (ja) アミノ酸化合物の製造法
WO2007062675A1 (en) Method for producing metal salts of losartan
JPH07116228B2 (ja) α−L−アスパルチル−L−フエニルアラニンメチルエステルの製造法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 136271

Country of ref document: IL

Ref document number: 99801639.X

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN CZ HU IL IN JP KR PL RU SG SI US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1999944783

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020007005439

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: PV2000-1897

Country of ref document: CZ

ENP Entry into the national phase

Ref document number: 2311407

Country of ref document: CA

Ref document number: 2311407

Country of ref document: CA

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: IN/PCT/2000/55/KOL

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 09554827

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1999944783

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: PV2000-1897

Country of ref document: CZ

WWP Wipo information: published in national office

Ref document number: 1020007005439

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: PV2000-1897

Country of ref document: CZ

WWG Wipo information: grant in national office

Ref document number: 1020007005439

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1999944783

Country of ref document: EP