WO1999052986A1 - Procede permettant de former un film de revetement inorganique hydrophile et composition de revetement inorganique - Google Patents

Procede permettant de former un film de revetement inorganique hydrophile et composition de revetement inorganique Download PDF

Info

Publication number
WO1999052986A1
WO1999052986A1 PCT/JP1999/001928 JP9901928W WO9952986A1 WO 1999052986 A1 WO1999052986 A1 WO 1999052986A1 JP 9901928 W JP9901928 W JP 9901928W WO 9952986 A1 WO9952986 A1 WO 9952986A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating
inorganic
coating composition
inorganic coating
group
Prior art date
Application number
PCT/JP1999/001928
Other languages
English (en)
French (fr)
Inventor
Koichi Takahama
Minoru Inoue
Junko Ikenaga
Shoichi Nakamoto
Original Assignee
Matsushita Electric Works, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works, Ltd. filed Critical Matsushita Electric Works, Ltd.
Priority to JP55150099A priority Critical patent/JP3367953B2/ja
Priority to CA002293356A priority patent/CA2293356C/en
Priority to US09/445,350 priority patent/US6303229B2/en
Priority to DE69939244T priority patent/DE69939244D1/de
Priority to EP99913627A priority patent/EP0989169B1/en
Publication of WO1999052986A1 publication Critical patent/WO1999052986A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/02Polysilicates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31652Of asbestos
    • Y10T428/31663As siloxane, silicone or silane

Definitions

  • the present invention relates to a method for forming a hydrophilic inorganic coating film and an inorganic coating composition.
  • the present invention relates to a method for forming a hydrophilic inorganic substance having excellent antifogging property, antifouling property, weather resistance, durability and the like on the surface of a building exterior, a display panel, a vehicle, a glass member, and the like, and a method for forming the same.
  • the present invention relates to an inorganic coating composition used for the above.
  • Japanese Patent Application Laid-Open Nos. 61-83106 and WO966Z293375 describe a method for highly hydrophilizing the surface of an article.
  • the method described here is characterized by forming an inorganic coating film containing a photoconductor material such as titanium oxide on the surface of an article, and utilizes the photocatalytic action of an optical semiconductor material. .
  • the photocatalytic action of an optical semiconductor means that when light (ultraviolet light) at an excitation wavelength (for example, 400 nm) is applied to an optical semiconductor material, an oxidation-reduction reaction occurs on the surface of the optical semiconductor material, and the organic substances present there.
  • an excitation wavelength for example, 400 nm
  • an oxidation-reduction reaction occurs on the surface of the optical semiconductor material, and the organic substances present there.
  • organic substances are usually hydrophobic, their surface becomes hydrophilic when they are decomposed and removed. As a result, the contact angle of water to the surface of the coating film is reduced, and the surface of the coating film is easily wetted (familiar) with water.
  • the photocatalytic action of an optical semiconductor material requires a certain amount of time from when it is exposed to ultraviolet light to when the effect is exerted.Therefore, the coating does not become hydrophilic for a certain period after the film is formed, and the coating is easily clouded and easily stained. There are problems such as. In addition, in places where it is difficult to reach ultraviolet rays, it takes a longer time for the photocatalytic action to exert its effect, so that there are also problems such as being limited to applications that are easily exposed to ultraviolet rays.
  • An object of the present invention is to provide a hydrophilic hydrophilic coating film whose coating surface is highly hydrophilized even immediately after film formation or even when it is difficult to hit with ultraviolet light.
  • the present invention provides a method of formula (1)
  • R is an alkyl group or an aryl group having up to 7 carbon atoms.
  • the present invention provides an inorganic coating composition containing a silicone resin as a main component, which is used for forming a hydrophilic inorganic coating film by applying, drying, and curing the surface of a base material, wherein the silicone resin is It is obtained by hydrolytic polycondensation of only the tetrafunctional alkoxysilane represented by the formula (I), and the inorganic coating composition has a total solid content of 5% by weight. /.
  • the present invention provides an inorganic coating composition, wherein the thickness of the hydrophilic inorganic coating film is from 0.01 to 0.5 ⁇ m.
  • the present invention relates to a method for forming a hydrophilic inorganic coating film on the surface of a substrate by applying, drying, and curing an inorganic coating composition containing a silicone resin as a main component on the surface of an article to be coated.
  • the surface hydrophilicity of the hydrophilic inorganic coating film formed by the method of the present invention is exhibited from the beginning of film formation, and its expression does not require ultraviolet irradiation.
  • Silicone resin is a component of the binder of the inorganic coating composition. It gives durability and strength to the coating film to be formed, and gives hydrophilicity (water wettability) to the surface of the MM to prevent It is a component that mainly provides antifouling property by rainwater washing.
  • This silicone resin needs to be a polysiloxane formed by hydrolytic polycondensation of only a tetrafunctional alkoxysilane as a polymerizable component. That using only tetrafunctional alkoxysilane as a polymerizable Ingredient means contains no trifunctional following ⁇ alkoxysilane. Alkali of trifunctional or less as a polymerizable component Addition of coxysilane reduces the performance of the formed coating film, such as surface hydrophilicity, antifogging property, antifouling property for rainwater washing, weather resistance, durability, and strength.
  • the form of the silicone resin in the inorganic coating composition is not particularly limited, and may be, for example, a solution form or a dispersed liquid form.
  • the silicone resin is contained as a main component in the inorganic coating composition.
  • the main component means that the silicone resin is present in an amount of 50 to 100% by weight in the solid content of the inorganic coating composition.
  • the silicone resin is 50 to 80% by weight in the solid content of the inorganic coating composition. / 0 , more preferably 50-70 weight. Present in an amount of / 0 .
  • a preferred tetrafunctional alkoxysilane as a raw material of the silicone resin has a structure represented by the formula (I).
  • R is preferably at least one selected from the group consisting of a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a t-butyl group, and a phenyl group.
  • tetrafunctional alkoxysilanes include, for example, tetraalkoxysilanes such as tetramethoxysilane, tetraethoxysilane, tetra-n-propoxysilane, tetraisopropoxysilane, and tetra-t-butoxysilane.
  • tetraalkoxysilanes such as tetramethoxysilane, tetraethoxysilane, tetra-n-propoxysilane, tetraisopropoxysilane, and tetra-t-butoxysilane.
  • tetraalkoxysilanes such as tetramethoxysilane, tetraethoxysilane, tetra-n-propoxysilane, tetraisopropoxysilane, and tetra-t-butoxysilane.
  • the inorganic coating composition may contain various functional components in addition to the silicone resin for the convenience of the coating film forming operation and for imparting various functions to the formed coating film.
  • functional components include a curing catalyst, a boiler, an optical semiconductor material, a coloring material, a film forming aid, a coating aid, an antioxidant, and an ultraviolet absorber.
  • the inorganic coating composition can further contain a curing catalyst, if necessary, for the purpose of accelerating the curing of the coating layer by accelerating the condensation reaction of the silicone resin.
  • a curing catalyst include, but are not particularly limited to, alkyl titanates; carboxylic acid metal salts such as tin octylate, dibutyltin dilaurate, and dioctyltin dimaleate; dibutylamine 1-2- ⁇ xoxoate; Amine salts such as dimethylamine acetate and ethanolamine acetate; quaternary ammonium salts of carboxylic acids such as tetramethylammonium acetate; amines such as tetraethylpentamine-N-3-aminoethyl-1-amine Minoprovir trimethoxysilane, N—
  • Amines silane coupling agents such as monoaminobutyl pyrmethyldimethylmethoxysilane; acids such as p-toluenesulfonic acid, phthalic acid and hydrochloric acid; aluminum compounds such as aluminum-dimethyl alkoxide and aluminum chelate; lithium diacid and acetic acid Alkali metal salts such as potassium, lithium, sodium formate, potassium phosphate, and potassium hydroxide; titanium compounds such as tetraisopropyl titanate, tetrabutyl titanate, titanium tetraacetyl acetate; methyl trichlorosilane, dimethyldichlorosilane, and trimethyl mono Examples thereof include halogenated silanes such as chlorosilane. However, other than these, there is no particular limitation as long as it is effective for accelerating the condensation reaction of the silicone resin.
  • the amount is at most 10 parts by weight, more preferably at most 8 parts by weight, based on 100 parts by weight of the silicone resin on a solids basis. If the amount exceeds 10 parts by weight, the storage (storage) stability of the inorganic coating composition may be impaired.
  • the inorganic coating composition may optionally contain a filler such as silica (a film-forming auxiliary) for the purpose of increasing the hardness of the formed hardening and improving smoothness and crack resistance. It can. Known silica can be used.
  • silica into the coating by dispersing the silica in a reaction solvent used in the preparation of the silicone resin in the form of a colloidal silicic force, in terms of film forming properties and simplification of the process.
  • the method is not limited, and for example, after mixing silica with a silicone resin prepared without silica, the resulting mixture may be introduced into a coating material, or silica may be added to a silicone resin. It may be introduced into the paint separately from the resin.
  • the form of the silica when introduced into the paint is not particularly limited, and may be, for example, a powder form or a colloidal silica form.
  • the colloidal silica is not particularly limited.
  • water-dispersible or non-aqueous organic solvent-dispersible colloidal silica such as alcohol can be used.
  • colloidal silica contains 20 to 50 weight of silica as a solid component. / 0 is contained, and the amount of silicide compounding can be determined from this value.
  • the water used as a component other than the solid content can be used for the hydrolysis of the tetrafunctional alkoxysilane, which is the raw material of the silicone resin (added to the following amount of water used for the hydrolysis), and the inorganic paint It can be used as a curing agent for the composition.
  • Water-dispersible colloidal silica is usually made of water glass, but can be easily obtained as a commercial product.
  • the organic solvent dispersible colloidal silica can be easily prepared by substituting the water having the water dispersible colloidal silicidity with an organic solvent.
  • Such an organic solvent dispersible colloidal silicic acid can be easily obtained as a commercial product similarly to the water dispersible colloidal silica.
  • the type of the organic solvent in which the colloidal silica is dispersed is not particularly limited.
  • lower aliphatic alcohols such as methanol, ethanol, isopropanol, ⁇ - butanol, and isobutanol are used.
  • Ethylene glycol derivatives such as ethylene glycol, ethylene glycol monobutyl ether, and ethylene glycol monoethyl ether; diethylene glycol / le derivatives such as diethylene glycol / diethylene glycol / monoethylene / 4.000ole; and diacetone alcohol; One or two or more selected from the group consisting of these can be used.
  • Toluene, xylene, ethyl acetate, butyl nitrate, methyl ethyl ketone, methyl isobutyl ketone, methyl ethyl ketoxime, and the like can also be used in combination with these hydrophilic organic solvents.
  • Silica has the above-mentioned effects, but if the blending amount is too large, the cured resin becomes too hard and cracks may occur. Therefore, when silica is used, its blending amount is 10 to 90 parts by weight, preferably 20 to 85 parts by weight, based on 100 parts by weight of the silicone resin on a solid content basis. If the amount is less than 10 parts by weight, the desired coverage may not be obtained. On the other hand, if it exceeds 90 parts by weight, cracks are likely to occur.
  • the inorganic coating composition obtains various functions by the photocatalytic effect described later, and further enhances the surface hydrophilicity of the formed by the photocatalytic effect or maintains the photo-semiconductor material for a long period of time. It is preferred to include.
  • the material is not particularly limited, for example, titanium oxide, zinc oxide, tin oxide, iron oxide, zirconium oxide, tungsten oxide, chromium oxide, molybdenum oxide, ruthenium oxide, germanium oxide, lead oxide, cadmium oxide, and oxidized oxide
  • Metal oxides such as copper, vanadium oxide, niobium oxide, tantalum oxide, manganese oxide, cobalt oxide, rhodium oxide, nickel oxide, rhenium oxide, and strontium titanate harden the coating film (especially at room temperature. This is preferable in that an effect of accelerating the curing at a low temperature can also be obtained.
  • the above-mentioned metal oxides are preferable in that they can be easily used practically.
  • titanium oxide is particularly preferable because of its photocatalytic performance, curing acceleration performance, safety, availability, and cost. It is preferable in terms of.
  • an anatase-type (anatase-type) crystal it is better to use an anatase-type (anatase-type) crystal as the photocatalyst performance and oxidation promotion performance, as well as long-term problems.
  • the photocatalytic performance and the mi-promoting performance are expressed in a shorter time.
  • the optical semiconductor material only one kind may be used, or two or more kinds may be used in combination.
  • the average primary particle diameter of the optical semiconductor material is preferably 50 ⁇ m or less, more preferably 5 jti tn or less, and 0.5 / X m It is more preferred that:
  • the photosemiconductor material before being dispersed in the paint may be in any form as long as it can be dispersed in the paint, such as powder, fine particle powder, solution-dispersed sol particles, etc. If it is in the sol form, curing will proceed in a shorter time, and it will be more convenient for use.
  • the dispersion medium may be water or an organic solvent, but an organic solvent is preferred from the viewpoint of paint preparation.
  • the material used as the optical semiconductor material is not limited as long as it finally shows the properties of the optical semiconductor.
  • a photo semiconductor generates active oxygen (photocatalytic property) when irradiated with ultraviolet rays. Since active oxygen can oxidize and decompose organic substances, its properties are used to make use of the properties of carbon-based dirt components adhering to painted products (for example, carbon fractions contained in automobile exhaust gas and tobacco emissions).
  • Self-cleaning effect that decomposes second-grade
  • deodorant effect that removes bad odor components represented by amine compounds and aldehyde compounds
  • Fruit an antibacterial effect for preventing the generation of bacterial components represented by Escherichia coli and Staphylococcus aureus
  • ultraviolet light is applied to the optical semiconductor material, including the optical semiconductor material
  • the optical semiconductor material converts water into hydroxyl radicals by the photocatalytic action, and the hydroxyl radical force ⁇ decomposes water-repellent organic substances and the like attached to the surface.
  • the hydrophilicity (wetting property) of the 'to water is further improved, and a higher level of anti-fogging property and anti-fouling property by rainwater washing can be obtained or maintained for a long time. There is also an effect.
  • an antistatic function due to the photocatalytic action of the optical semiconductor, and this function also provides an antifouling effect.
  • the surface resistance of the coating film decreases due to the action of the optical semiconductor material contained therein, thereby exhibiting an antistatic effect, and the coating film surface is less likely to be stained.
  • the mechanism by which the surface resistance value of ⁇ decreases when light is irradiated to the optical semiconductor material is not yet clearly identified, but electrons and holes generated by light irradiation act. It is thought that the surface resistance value of 3 ⁇ 4 ⁇ is reduced by this.
  • the photocatalytic effect of the optical semiconductor material will be higher.
  • the mechanism has not been clarified yet, but the metal is supported on the surface of the optical semiconductor material. This is considered to be related to the fact that the charge separation of the photosemiconductor material is promoted by this and the probability of disappearance of electrons and holes generated by the charge separation is reduced.
  • Metals that may be supported on the surface of the optical semiconductor material include, for example, silver, copper, iron, nickel, nickel, platinum, gold, palladium, cadmium, cobalt, rhodium, ruthenium, and the like. It is preferable in that the charge separation of the semiconductor is further promoted.
  • the metal supported may be only one kind or two or more kinds.
  • the amount of the metal carried is not particularly limited, but is preferably, for example, 0.1 to 10% by weight, more preferably 0.2 to 5% by weight, based on the optical semiconductor. If the loading amount is less than 0.1% by weight, the loading effect tends to be insufficient, and if the loading exceeds 10% by weight, the effect does not increase much, and conversely, discoloration and performance deterioration Problems tend to occur.
  • the method for supporting the metal is not particularly limited, but may be an immersion method, an impregnation method, or an optical method. A reduction method and the like can be mentioned.
  • a clay cross-linked body in which an optical semiconductor material is supported between layers may be used.
  • the photosemiconductor material By introducing the photosemiconductor material between the layers, the photosemiconductor material is supported by the fine particles, and the photocatalytic performance is improved.
  • the amount of the optical semiconductor material is 5 to 80 parts by weight, preferably 10 to 50 parts by weight, based on 100 parts by weight of the silicone resin on a solid basis. Department.
  • the amount is 1 to 75 parts by weight, preferably 3 to 45 parts by weight.
  • the amount of the optical semiconductor material is less than the above range, it tends to be difficult to obtain a sufficient optical touch performance. If the amount is more than the above range, cracks are liable to occur and the performance is deteriorated. Tend. When the metal is carried on the surface of the optical semiconductor material and the metal is carried, the amount of the optical semiconductor material is an amount not including the supported metal.
  • the inorganic coating composition can be toned by further including a coloring agent such as a pigment or a dye, if necessary.
  • the pigments that can be used are not particularly limited, but include, for example, carbon black, quinacridone, naphthol / rered, cyanine bray, cyanine green, non-zijaero, etc .; titanium oxide, barium sulfate, red iron oxide, composite metal It is free from oxides and the like, and may be used alone or in combination of two or more selected from these groups.
  • the dispersion of the pigment is not particularly limited, and may be a usual method, for example, a method of directly dispersing the pigment powder using a dino-meal, a paint shaker or the like. At that time, a dispersant, a dispersing aid, a thickener, a coupling agent, and the like can be used.
  • the amount of the pigment to be added is not particularly limited because the concealing property varies depending on the type of the pigment, but, for example, 5 to 80 parts by weight, preferably 10 to 7 parts by weight, based on 100 parts by weight of the silicone resin on a solid content basis. 0 parts by weight.
  • the addition amount is less than 5 parts by weight, the concealing property tends to deteriorate, and when it exceeds 80 parts by weight, the smoothness may deteriorate.
  • the dyes that can be used are not particularly limited. , Methine, nit Mouth-based, nitroso-based dyes and the like can be mentioned. One kind selected from these groups or a combination of two or more kinds may be used.
  • the amount of the dye to be added is not particularly limited because the concealing property varies depending on the type of the dye, but, for example, 5 to 80 parts by weight, preferably 10 to 100 parts by weight, based on 100 parts by weight of the silicone resin based on the solid content. 70 parts by weight. When the addition amount is less than 5 parts by weight, the concealing property tends to deteriorate, and when it exceeds 80 parts by weight, the smoothness may deteriorate.
  • a leveling agent, a metal powder, a glass powder, an antibacterial agent, an antioxidant, an ultraviolet absorber and the like may be included in the inorganic coating composition within a range that does not adversely affect the effects of the present invention.
  • the total solid content concentration of the paint is more preferably 2% by weight or less, and further preferably 1% by weight or less.
  • the lower limit of the total solid content of the coating material is preferably 0.01% by weight / 0 , more preferably 0.01% by weight. / 0 .
  • the diluting solvent used for adjusting the concentration is not particularly limited as long as it can be mixed with the silicone resin (and furthermore, when using an optical semiconductor material).
  • various organic solvents can be used.
  • the type of the organic solvent can be appropriately selected according to the type of the monovalent hydrocarbon group contained in each component of the silicone resin, the molecular weight of each component of the silicone resin, and the like.
  • organic solvents are not particularly limited, and include, for example, lower aliphatic alcohols such as methanol, ethanol, isopropanol, ⁇ -butanol, and isoptanol; ethylene glycol, ethylene glycol monobutyl ether, and ethylene glycol dihydrate.
  • Ethylene glycol derivatives such as monoethyl ether / diethylene glycol; diethylene glycol derivatives such as diethylene glycol and dimethyleneglycol / monobutylinole / tenole; and toluene, xylene, hexane, heptane, and acetate Butyl, butyric acetate, methyl / butyl / leketone, methylisobutynoleketone, methylethylketoxime, diacetone alcohol, etc., and use one or more selected from the group consisting of these. Can be.
  • the method for producing the inorganic coating composition is not particularly limited, and the components may be mixed using a usual method and apparatus.
  • the form of each component at the time of introduction into a paint it can be a liquid itself, a solution dissolved in a solvent, a liquid such as a dispersion dispersed in a dispersion medium, or a solid such as a powder. Regardless, there is no particular limitation.
  • the solvent or dispersion medium may be, for example, water, the above-mentioned organic solvent, or a mixture of water and the above-mentioned organic solvent.
  • each component may be added separately, or two or more components may be mixed in advance and then mixed with the remaining components, or all components may be mixed simultaneously. c which is not particularly limited either and mixed occasions such as
  • the inorganic coating composition is, for example, a hydrophilic solution of an inorganic material, and the inorganic material is prepared as a hydrophilic solution containing only a tetrafunctional alkoxysilane as a polymerizable component. It may be prepared by hydropolycondensation of alkoxysilane. However, at the time of the hydrolytic condensation, other non-polymerizable inorganic materials may be present in the hydrophilic solution.
  • the hydrolysis and condensation of the tetrafunctional alkoxysilane can be carried out, for example, by adding water as a hardening agent and optionally a catalyst (for example, hydrochloric acid, drunk acid, halogenated silane, chloroacetic acid, citrate, Benzoic acid, dimethylmalonic acid, formic acid, propionic acid, glutaric acid, glycolic acid, maleic acid, malonic acid, toluenesulfonic acid, oxalic acid and other organic acids and inorganic acids, etc.) (If necessary, heating (for example, 40 to 100 ° C.)).
  • a catalyst for example, hydrochloric acid, drunk acid, halogenated silane, chloroacetic acid, citrate, Benzoic acid, dimethylmalonic acid, formic acid, propionic acid, glutaric acid, glycolic acid, maleic acid, malonic acid, toluenesulfonic acid, oxalic acid and other organic acids and inorganic acids
  • the weight average molecular weight (Mw) of the obtained silicone resin (prepolymer) is adjusted to be preferably at least 800, more preferably at least 800, and even more preferably at least 900 in terms of polystyrene. . If the molecular weight distribution (weight average molecular weight (Mw)) of the silicone resin is less than 800, the silicone resin shrinks greatly when the coating layer cures, and cracks may occur in the ⁇ ⁇ ⁇ after curing. There is. Further, the amount of water as a curing agent is preferably from 0.01 to 3.0 mol, more preferably from 1.0 to 2.5 mol, per mol equivalent of the alkoxy group of the tetrafunctional alkoxysilane.
  • reaction solvent reaction solvent used in the hydrolysis polycondensation reaction of the tetrafunctional alkoxysilane
  • reaction solvent those described above as specific examples of the colloidal silica dispersion solvent can be used.
  • the pH of the silicone resin is preferably adjusted within a range of 3.8 to 6.
  • the silicone resin can be used stably within the above-mentioned range of molecular weight. If the pH is out of this range, the stability of the silicone resin is poor, so that the usable period from the time of coating preparation is limited.
  • the method of adjusting ⁇ ⁇ is not particularly limited.For example, when the pH becomes less than 3.8 when the silicone resin raw materials are mixed, for example, the pH is adjusted using a basic reagent such as ammonia.
  • the silicone resin may be heated to accelerate the reaction, or, the pH may be lowered with a reagent, and the reaction may be advanced. To return to a predetermined pH.
  • the method of applying the inorganic coating composition to the surface of the coating is not particularly limited, and may be, for example, brush coating, spray coating, dipping (also referred to as dive coating or dip coating), roll coating, flow coating (substrate coating).
  • Various coating methods such as a flow coating method in which the paint is flowed from the upper part of the coating area and a curtain coat, a knife coat, a spin coat, a bar coat, and the like can be selected.
  • the coating layer of the inorganic coating composition formed on the surface of the base material is subjected to a condensation reaction between the hydrolyzable groups of the silicone resin by being heated at low temperature or left at room temperature. It can be a cured coating. Such an inorganic coating composition is hardly affected by humidity even when it is cured at room temperature. Further, by performing the heat treatment, the condensation reaction can be promoted to form a cured coating film.
  • the method of curing the coating layer may be a known method, and is not particularly limited.
  • the hardening process there is no particular limitation on the hardening process, and the desired curing performance and light
  • the temperature can be in a wide range from room temperature to heating depending on the heat resistance of the semiconductor material and the base material.
  • the thickness of the formed hardened layer may be about 0.01 to 0.5 xm in order to prevent cracking and peeling, but it is possible to exhibit various functions of the coating film more effectively or at room temperature. 0.01 ⁇ 0.3 / m is preferable, and 0.01 ⁇ 0.1 ⁇ is preferable in order to shorten the curing time of More preferred.
  • the material to which the inorganic coating composition is applied is not particularly limited, but may be, for example, a base forest used for the hydrophilic coated product of the present invention.
  • a base forest used for the hydrophilic coated product of the present invention.
  • inorganic base organic base
  • inorganic-organic composite base And a coating substrate having at least one layer of an inorganic film and Z or at least one layer of an organic film on any of these surfaces.
  • the inorganic material is not particularly limited, and examples thereof include a metal substrate; a glass substrate; an enamel; a water glass decorative plate; an inorganic building material such as an inorganic cured material; and ceramics.
  • the metal substrate is not particularly limited, but includes, for example, non-ferrous metals [eg, aluminum (JIS-H4000 etc.), anolemmium alloy (eg, duralumin), copper, zinc, etc.], iron, steel [eg, rolling Copper (JIS-G3101, etc.), hot-dip galvanized steel (JIS-G3302, etc.), (rolled) stainless steel (JI S-G430 4, G4305, etc.), etc., tinplate (JIS-G3303, etc.), and other metals in general
  • non-ferrous metals eg, aluminum (JIS-H4000 etc.), anolemmium alloy (eg, duralumin), copper, zinc, etc.]
  • iron, steel eg, rolling Copper (JIS-G3101, etc.), hot-dip galvanized steel (JIS-G3302, etc.), (rolled) stainless steel (JI S-G430 4, G4305, etc.), etc., tinplate (JIS-G3303, etc.),
  • glass base material For example, sodium glass, Pyrex glass, quartz glass, non-alkali glass, etc. are mentioned.
  • the above-mentioned hole 1 is obtained by baking and coating a glassy hollow medicine on a metal surface.
  • the base metal include, but are not particularly limited to, mild steel sheet, steel sheet, steel, aluminum, and the like. It is sufficient to use a normal hood mouthpiece, and there is no particular limitation.
  • the water glass decorative board refers to, for example, a decorative board obtained by applying sodium silicate to cement such as slate and baking the cement.
  • the inorganic hardened material is not particularly limited.
  • ⁇ reinforced cement board JIS- (5430, etc.), ceramic siding (JIS-A54222, etc.), wood wool cement board (JIS-A5404) ), Pulp cement board (JIS-A54 14 etc.), slate 'wood wool cement laminate board (JIS-A5426 etc.), gypsum board product (JIS-A6901 etc.), clay tile (JIS-A5414 etc.) A52008, etc.), thick slates (JIS-A5402, etc.), ceramic tiles (JIS-A5209, etc.), concrete blocks for construction (JIS-A5406, etc.), Terrazzo (JIS-A54 11 etc.), prestressed concrete double T slab (JIS-A54 12 etc.), ALC panel (JIS-A54 16 etc.), cavity press rest concrete panel (JIS-A65 11 1) Etc
  • the ceramic substrate is not particularly limited, and examples thereof include alumina, silicone, silicon carbide, silicon nitride and the like.
  • the organic substrate is not particularly limited, and examples thereof include plastic, wood, wood, paper, and the like.
  • plastic S ⁇ examples include, but are not particularly limited to, thermosetting or thermoplastic plastics such as polycarbonate resin, acrylic resin, AB S resin, vinyl chloride resin, epoxy resin, and phenol resin. And ⁇ i-reinforced plastics (FRP) in which these plastics are reinforced with an organic compound such as Naipin Ht.
  • thermosetting or thermoplastic plastics such as polycarbonate resin, acrylic resin, AB S resin, vinyl chloride resin, epoxy resin, and phenol resin.
  • FRP i-reinforced plastics in which these plastics are reinforced with an organic compound such as Naipin Ht.
  • the inorganic-organic composite base material is not particularly limited, and examples thereof include a fiber-reinforced plastic (FRP) in which the above-mentioned plastic is reinforced with an inorganic material such as glass, carbon, or the like.
  • FRP fiber-reinforced plastic
  • the organic film constituting the coating substrate is not particularly limited, and examples thereof include acrylic, alkyd, polyester, epoxy, urethane, acrylsilicone, chloride rubber, phenol, and melamine. And a cured film of a coating material containing an organic resin such as a resin.
  • the inorganic material constituting the coating base material is not particularly limited, and examples thereof include a cured film of a coating material containing an inorganic resin such as a silicone resin. You.
  • a primer layer is formed on the surface of the base material before forming a cured coating of the inorganic coating composition on the surface of the base material. It may be formed.
  • the primer layer is not particularly limited, regardless of whether it is organic or inorganic. Examples of the organic primer layer include a nylon resin, an alkyd resin, an epoxy resin, an acrylic resin, and an organic modified silicone resin (for example, acrylic resin).
  • mentioned cured resin layer of the organic primer pair Narubutsu the contained, examples of more inorganic primer, curing of the inorganic primer one containing 9 0 wt% or more of inorganic resin of silicone resins such as solid ⁇ And a fat layer.
  • a particularly preferred primer layer is a water-based emulsion-type silicone coating.
  • the thickness of the primer layer is not particularly limited, but is preferably, for example, 0.1 to 50 / im, more preferably 0.5 to 10m. If the thickness is too small, adhesion and weather resistance may not be obtained. If the thickness is too large, foaming may occur during drying.
  • a substrate having at least one organic primer layer and one Z or inorganic primer layer on the surface is included in the category of the coating substrate. That is, the coating film on the surface of the coating substrate may be the primer layer. Further, the primer layer may contain a coloring agent such as a pigment or a dye for toning as required. Examples of the colorant that can be used include those described above as those that can be added to the inorganic coating composition. The preferred numerical range of the amount of the coloring agent to be added to the primer layer is the same as in the case of the inorganic coating composition described above. However, on a solids basis, the total resin in the total amount of primer composition :! It is specified for 100 parts by weight.
  • the form of the substrate is not particularly limited.
  • a film form, a sheet form, A plate shape, a ridge shape, and the like are included.
  • the base material may be a molded article of a material having these shapes, or a structure partially provided with at least one of the materials having these shapes or the molded article.
  • the substrate may be composed of the above-mentioned various materials alone, a composite material obtained by combining at least two of the above-mentioned various materials, or a laminated material obtained by laminating at least two of the above-mentioned various materials. May be.
  • the hydrophilic inorganic substance formed according to the method of forming the hydrophilic inorganic substance ⁇ ) H of the present invention which is also a coating film of the hydrophilic coated article of the present invention, is used as at least a part of various materials or articles. By equipping, for example, it can be suitably used for the following applications.
  • Building-related members or articles for example, exterior materials (eg, materials, flat tiles-Japanese tiles, metal tiles, etc.), resin rain gutters such as PVC rain gutters, etc.
  • Metal rain gutters such as stainless steel double gutters Rain gutters, gates and materials used for them (eg, gates 'gate pillars' gate fences, etc.), fences (fences) and materials used therefor, garage doors, home terraces, doors, pillars, carports, bicycle parking Ports, signposts, home delivery posts, wiring boards such as switchboards, switches, gas meters, intercoms, TV phones and camera lenses, electric locks, entrance poles, rims, ventilation fans, glass for buildings, etc .; Windows (eg, daylighting windows, skylights, louvers, etc.) and members used therefor (eg, window frames, shutters, blinds, etc.) , Automobiles, railway vehicles, aircraft, ships, machinery, road peripherals (for example, soundproof walls, tunnel interior boards, various display devices, guardrails,
  • the inorganic coating composition may be directly applied to at least a part of the above-mentioned various materials or articles and cured, but is not limited thereto.
  • the inorganic coating composition may be applied to the surface of a film base material. Apply the coated and cured ⁇ ⁇ ⁇ ⁇ atable film to the above materials. Alternatively, it may be attached to at least a part of the article.
  • the forest quality of the base material of such films is, for example, polyethylene terephthalate (PET) resin, polybutylene terephthalate (PBT) resin, vinyl chloride resin, acrylic resin, fluorine resin, polypropylene (PP) resin, and composites thereof. Strength of resin such as resin is not particularly limited.
  • This solution was further mixed with 1,000 parts of isopropanol as a diluting solvent to obtain an inorganic coating composition (1).
  • the total solid content concentration with respect to the total amount of the paint was 4.1%.
  • the freshly prepared inorganic coating composition (1) was applied to a glass substrate washed with acetone by the spray method, and 'MJ' was dried at room temperature for 0.5 hour. For 1 hour to obtain a hydrophilic coated product (1).
  • the film thickness after curing was 0.2 ⁇ m.
  • the newly prepared inorganic coating composition (2) was applied to a glass substrate washed with acetone by a spray coating method, and the coating was dried and cured at room temperature for 0.5 hour. For 1 hour to obtain a hydrophilic coated product (2).
  • the thickness of the cured film having a thickness of 0.2 ⁇ m was 0.2 ⁇ m.
  • a hydrophilic coating product (3) was prepared in the same manner as in Example 1 except that a flow coating method in which a paint was flowed from above the substrate was applied instead of the spray ⁇ 3 ⁇ 4 method. Obtained.
  • a hydrophilic coated product (4) was obtained by performing the same operation as in Example 1 except that an aluminum substrate was used instead of a glass substrate as a base material.
  • Example 5
  • An inorganic coating composition (5) was obtained in the same manner as in Example 2, except that the addition amount of the titanium oxide sol used as the optical semiconductor material was changed to 5 parts. In this paint, the total solid content concentration relative to the total amount of the paint was 3.59%.
  • the newly prepared inorganic coating composition (5) was applied to a glass substrate washed with acetone by a spray coating method, and the coating film was dried at room temperature for 0.5 hour. For 1 hour to obtain a hydrophilic coated product (5).
  • the cured film had a thickness of 0.2 ⁇ m.
  • Example 2 was repeated except that the amount of isopropanol used as the diluting solvent was changed to 300 parts and the amount of titanium oxide sol used as the optical semiconductor material was changed to 80 parts. Similarly, an inorganic coating composition (6) was obtained. In this paint, the total solid content concentration relative to the total amount of the paint was 3.69%.
  • the inorganic coating composition (6) which had just been prepared, was applied to a glass substrate washed with acetone by a spray coating method, and the coating film was dried and cured at room temperature for 0.5 hour. After 1 hour, a hydrophilic coated product (6) was obtained.
  • the thickness of the flour after hardening was 0.1 ⁇ m.
  • An inorganic coating composition (7) was obtained in the same manner as in Example 2 except that the same amount of titanium oxide supporting platinum was used instead of the titanium oxide sol as the optical semiconductor material. In this paint, the total solid content concentration with respect to the total amount of the paint was 4.7%.
  • platinum supported is titanium powder (Ishihara Sangyo Kaisha Ltd. Titanium oxide: trade name "ST- 0 1”) oxidation rows photoelectrodeposition method Rere and 0 5% on relative titanium oxide.
  • the same operation as in Example 1 was performed to obtain a hydrophilic coated product (7).
  • a hydrophilic coated product (8) was obtained in the same manner as in Example 1 except that the dip coating method was used instead of the spray coating method.
  • Example 9 Matsushita Electric Works, Ltd.
  • the newly prepared inorganic coating composition (1) obtained in Example 1 was applied to the window glass (lm 2 , thickness 6 mm) of a building on the site of Osaka Kadoma by the flow coating method.
  • the coating was applied to a cured thickness of 0.04 / im and allowed to dry overnight at room temperature to obtain a hydrophilic coated product (9).
  • the aluminum substrate is washed with acetone, and a silicon-based coating agent (trade name “FLETSU CERA ⁇ ”, manufactured by Matsushita Electric Works, Ltd.) is applied to the surface of the aluminum substrate, and dried to apply a 1.5 mm-thick primer II. Formed.
  • a silicon-based coating agent trade name “FLETSU CERA ⁇ ”, manufactured by Matsushita Electric Works, Ltd.
  • the inorganic coating composition (1) was applied, dried and cured in the same manner as in Example 1 to obtain a hydrophilic coated product.
  • An aluminum substrate is washed with acetone, and a water-soluble silicone-based coating agent (trade name “FLETSU-CERA Aqueous Type”, manufactured by Matsushita Electric Works, Ltd.) is applied to the surface of the aluminum substrate, and dried to a primer layer of 1.5 / im thickness. Was formed.
  • An inorganic coating composition (1) was applied, dried and cured on the primer layer in the same manner as in Example 1 to obtain a hydrophilic coated product.
  • Comparative inorganic coating composition (1) was obtained in the same manner as in Example 1 except that the same amount of methyltrimethoxysilane was used instead of tetraisopropoxysilane. In this coating, the total solid content concentration with respect to the coating amount was 5.00%.
  • Example 1 the same operation as in Example 1 was performed to obtain a comparative coated product (1).
  • a comparative inorganic paint composition (2) was obtained in the same manner as in Example 1 except that the amount of isoprobeanol added as a diluting solvent after obtaining the alcohol solution of the hydrolyzed polycondensate was changed to 500 parts. Was. In this paint, the total solid content concentration with respect to the total amount of the paint was 6.38%.
  • a comparative coated article (2) was obtained by performing the same operation as in Example 1 using the comparative inorganic coating composition (2) which had just been prepared.
  • a comparative coated product (4) was obtained in the same manner as in Example 1, except that the film thickness after curing of the coating film was changed to 0.007 ⁇ m.
  • a comparative inorganic coating composition (5) was obtained in the same manner as in Example 1 except that 100 parts of methyltrimethoxysilane was used instead of 50 parts of tetraethoxysilane and 50 parts of tetraisopropoxysilane. In this paint, the total solid content concentration with respect to the total amount of the paint was 5.00%.
  • Evaluation was made by measuring the contact angle between ' ⁇ JH and water before UV irradiation.
  • the contact angle was measured by dropping 0.2 cc of distilled water onto the surface of the coating film and observing it with a magnifying camera. The smaller the contact angle, the higher the hydrophilicity.
  • the prepared coatings were stored at 25 and periodically tested for film forming ability. The test was performed by examining whether the sprayed coating layer formed a coating. The number of days of storage during which the paint during storage no longer formed a film was used as an evaluation criterion.
  • Table 1 shows the evaluation results of (1) to (3).
  • Example 1 10 points 0 ° 90 days or more
  • Example 2 10 points 0. 90 days or more
  • Example 3 points 0 ° 90 ° or more
  • Example 4 points 5 ° 90 days or more
  • Example 5 10 points 0 ° 90 days or more
  • Example 6 points 5 ° 90 days or more
  • Example 7 10 points 0 ° 90 days or more
  • Example 8 points 0. 90 days or more
  • Example 9 10 points 5 "90 days or more
  • Example 11 points 0 ° 90 days or more
  • Comparative Example 1 10 points 80 ° 90 days or more
  • Comparative Example 2 10 points 0 ° 40 days
  • Comparative Example 4 10 points 25. 90 days or more
  • Comparative Example 5 10 points 80 ° 90 days or more
  • 3 ⁇ 4 in the examples showed good hydrophilicity with a contact angle with water of 5 ° or less after film formation without irradiation with ultraviolet rays.
  • the hydrophilic fiber was also good at 300 hours or more.
  • Comparative Examples 1 and 5 were formed of a silicone resin containing a trifunctional alkoxysilane as a polymerizable component, and thus no hydrophilicity was obtained.
  • the paints of Examples having a total solid content concentration of 5% by weight or less based on the total amount of the paints can be easily formed into a film even after storage for one month. While almost the same performance was obtained as compared with ⁇ ⁇ formed from the paint soon after, the paint of Comparative Example 2 in which the total solid content concentration relative to the total amount of paint exceeded 5% by weight was one month. After storage for a while, it was not even possible to form a coating.
  • the coating films of Examples 10 and 11 were coated on a substrate having a water-based emulsion type silicone coating film as a primer layer, so that the coating material was well applied and the film forming property was good. Was good.
  • the hydrophilic inorganic substance formed by the method of the present invention has surface hydrophilicity (water wettability) from the beginning of film formation, and can exhibit anti-fouling and anti-fog properties by rainwater washing.
  • these performances do not require UV irradiation. Therefore, the above-described performance can be obtained even when the coating is applied to a portion that is not exposed to ultraviolet light, or when a coated product provided with the coating film is used in a location that is not exposed to ultraviolet light. It is also excellent in weather resistance, durability, strength, etc.
  • the thickness of » is formed as thin as 0.1 to 0.5 ⁇ , cracks and peeling are unlikely to occur.
  • the coating material in order to adjust the total solid content in the inorganic coating composition used to a low concentration of 5% by weight or less based on the total amount of the coating material, the coating material is stored for a long time after the preparation of the coating material.
  • the curing and deterioration of the paint can be suppressed, and the pot life can be drastically extended, so that the storage stability of the paint can be improved.
  • the above-mentioned inorganic coating composition is an inorganic type, its performance is hardly impaired by the addition of various additives such as an optical semiconductor, and is hardly deteriorated by ultraviolet rays, and forms hydrophilicity. be able to. Also, since it can be adjusted to various colors, it has high designability and a wide range of use.
  • the inorganic coating composition used in the method for forming a hydrophilic inorganic coating film can be cured not only by heat but also at room temperature, it can be used in a wide range of dry curing conditions or temperatures.
  • substrates that have large dimensions, or substrates that have poor heat resistance such as when performing painting work outdoors, etc. Its industrial value is high because it can be painted even when it is hard to apply heat.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Paints Or Removers (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Laminated Bodies (AREA)

Description

明 細 書
親水性無機塗膜形成方法及び無機塗料組成物 発明の属する技術分野
本発明は、 建築物の外装、 表示板、 車両、 ガラス部材等の表面に、 防曇性、 防 汚性、 耐候性、 及び耐久性等に優れた親水性無機 を形成する方法、 及びこの 方法に用いる無機塗料組成物に関する。
従来の技術
ガラスや鏡の表面の曇りを防止したり、 屋外建築物の表面に付着した汚れを雨 水によって自然に落とす等の効果を得るために、 物品の表面を高度に親水化する ことが近年行われている。
特開昭 6 1 - 8 3 1 0 6号公報や WO 9 6 Z 2 9 3 7 5公報等には、 物品の表 面を高度に親水化する方法が記載されている。 ここに記載されている方法は、 全 て酸化チタン等の光芋導体材料を含む無機塗膜を物品の表面に形成することに特 徴があり、 光半導体材料の光触媒作用を利用するものである。
光半導 料の光触媒作用とは、 光半導体材料に励起波長 (たとえば、 4 0 0 n m) の光 (紫外線) を当てると、 光半導体材料の表面で酸化還元反応が生じて そこに存在する有機物等を分解する作用をいう。 有機物質は通常疎水性であるた め、 これらが分解されて除去されると、 その表面は親水性となる。 その結果、 塗 膜表面に対する水の接触角が低下して塗膜表面が水に濡れ (馴染み) やすくなる のである。
ところが、 光半導体材料の光触媒作用は、 紫外線が当たってからその効果が発 揮されるまでにある程度の時間がかかるため、 製膜後の一定期間は塗装 が親水 化せず、 曇りやすい、 汚れ易い等の問題がある。 また、 紫外線の当たり難い場所 では光触媒作用が効果を発揮するのにさらに長い時間がかかるため、 紫外線の当 たり易い用途に限定される等の問題もある。
発明の要旨
本発明はかかる従来の問題を解決するものであり、 その目的とするところは、 製膜直後や紫外線が当たり難レ、場合でも、 塗膜表面が高度に親水化されている親 水性無機塗膜の形成方法、 及びその形成方法に用いる無機塗料組成物を提供する ことにある。
本発明は、 (1 ) 式
S i (O R) 4 ( I )
[式中、 Rは炭素数 7までのアルキル基又はァリール基である。 ]
で表される 4官能性アルコキシシランのみを加水分解重縮合させて得られるシリ コーンレジンを主成分として含み、 全固形分含有量が 5重量%以下の無機塗料組 成物を得る工程;
( 2 ) 該無機塗料組成物を基材の表面に塗布して塗布層を形成する下程;及び
( 3 ) 該塗布層を乾燥、 及び硬化させて膜厚 0 . 0 1〜0 . 5 z mの硬化塗膜 を形成する工程;
を包含する、 基材の表面に親水性無機塗膜を形成する方法を する。
また、 本発明は、 基材の表面に塗布、 乾燥、 及び硬化させて親水性無機塗膜を 形成するために用いる、 シリコーンレジンを主成分として含む無機塗料組成物に おいて、 該シリコーンレジンが、 式 (I ) で表される 4官能性アルコキシシラン のみを加水分解重縮合させて得たものであり、 該無機塗料組成物の全固形分含有 量が 5重量。/。以下であり、 該親水性無機塗膜の膜厚が 0 . 0 1〜 0 . 5 μ mであ る、 無機塗料組成物を提供する。
発明の詳細な説明
本発明は、 シリコーンレジンを主成分として含む無機塗料組成物を被塗物品の 表面に塗布、 乾燥、 硬化させて基材の表面に親水性無機塗膜を形成する方法に係 るものである。 本発明の方法で形成される親水性無機塗膜の表面親水性は製膜当 初から発揮され、 その発現に紫外線照射を必要としない。
シリコーンレジンは無機塗料組成物のバインダ一成分であり、 形成される塗膜 に耐久性、 強度等を付与するとともに、 MMの表面に親水性 (水濡れ性) を付与 し、 防 *†生、 雨水洗浄による防汚性等を主としてもたらす成分である。
このシリコーンレジンは、 重合性成分として 4官能性アルコキシシランのみを 加水分解重縮合して形成したポリシロキサンであることを必要とする。 重合性成 分として 4官能性アルコキシシランのみを用いるということは、 3官能以下のァ ルコキシシランを含まないことを意味する。 重合性成分として 3官能以下のアル コキシシランを添加すると、 形成される塗膜の表面親水性、 防曇性、 雨水洗浄防 汚性、 耐候性、 耐久性、 強度等の,性能が低下してしまう。 無機塗料組成物中 のシリコーンレジンの形態は特に限定はされず、 たとえば、 溶液状のものでも分 散液状のもの等でも構わない。
シリコーンレジンは、 無機塗料組成物中に主成分として含有される。 主成分と は、 無機塗料組成物の固形分中にシリコーンレジンが 5 0〜 1 0 0重量%の量で 存在することをいう。 好ましくは、 無機塗料組成物の固形分中シリコーンレジン は 5 0〜 8 0重量。 /0、 より好ましくは 5 0〜 7 0重量。 /0の量で存在する。
シリコーンレジンの原料として好ましい 4官能性アルコキシシランは式 ( I ) に示される構造のものである。 式 ( ί ) 中、 Rはメチル基、 ェチル基、 プロピル 基、 イソプロピル基、 ブチル基、 イソブチル基、 t—ブチル基、 及びフエニル基 からなる群から選択される少なくとも 1種であることが好ましい。
4官能性アルコキシシラン類の具体例としては、 たとえば、 テトラメ トキシシ ラン、 テトラエトキシシラン、 テトラ n—プロポキシシラン、 テトライソプロボ キシシラン、 テトラー t一ブトキシシラン等のテトラアルコキシシランが挙げら れる。 4官能性アルコキシシランは、 1種のみを用いてもよいし、 2種以上を併 用してもよい。
無機塗料組成物は、 塗膜形成操作の便宜のため、 及ぴ形成される塗膜に種々の 機能を付与する等のために、 シリコーンレジンの他に種々の機能性成分を含んで よい。 このような機能性成分には、 硬化触媒、 ブイラ一、 光半導体材料、 着色材、 製膜助剤、 塗布助剤、 酸化防止剤、 及び紫外線吸収剤等がある。
無機塗料組成物は、 シリコーンレジンの縮合反応を促進することによって、 塗 布層の硬化を促進させる目的で、 必要に応じて、 さらに硬化触媒を含むことがで きる。 硬化触媒としては、 特に限定はされないが、 たとえば、 アルキルチタン酸 塩類;ォクチル酸錫、 ジブチル錫ジラウレ一ト、 ジォクチル錫ジマレエ一ト等の カルボン酸金属塩類;ジブチルァミン一 2—^ ^キソェ一ト、 ジメチルァミンァセ テート、 ェタノ一ルァミンアセテート等のアミン塩類;酢酸テトラメチルアンモ ニゥム等のカルボン酸第 4級アンモニゥム塩;テトラェチルペンタミン等のアミ ン類- N— 3—アミノエチルー 一ァミノプロビルトリメ トキシシラン、 N—|S —ァミノエチルー?一アミノブ口ピルメチルジメ 卜キシシラン等のァミン系シラ ンカップリング剤; p—トルエンスルホン酸、 フタル酸、 塩酸等の酸類;アルミ -ゥムアルコキシド、 アルミニウムキレート等のアルミニウム化合物;齚酸リチ ゥム、 酢酸カリウム、 リチウム、 蟻酸ナトリウム、 リン酸カリウム、 水酸化 カリウム等のアルカリ金属塩;テトライソプロピルチタネート、 テトラブチルチ タネート、 チタニウムテトラァセチルァセトネ一ト等のチタニウム化合物;メチ ルトリクロロシラン、 ジメチルジクロロシラン、 トリメチルモノクロロシラン等 のハロゲン化シラン類等が挙げられる。 しカゝし、 これらの他に、 シリコーンレジ ンの縮合反応の促進に有効なものであれば特に制限はない。
無機塗料組成物が硬化触媒をも含む場合、 その量は、 固形分基準でシリコーン レジン 1 0 0重量部に対して 1 0重量部以下、 より好ましくは 8重量部以下であ る。 1 0重量部を超えると、 無機塗料組成物の保存 (貯蔵) 安定性を損なう可能 性がある。
無機塗料組成物は、 形成される硬化 の硬度を高くし、 平滑性と耐クラック 性を改善する等の目的で、 必要に応じて、 シリカ等のフィラー (製膜助剤) を含 むことができる。 シリカとしては公知のものを使用できる。
なお、 シリカはシリコーンレジンの調製の際に用いられる反応溶媒中にコロイ ダルシリ力の形で分散させておくことで塗料に導入することが、 製膜性、 工程の 簡素化の点で好ましい。 しかし、 この方法は限定的ではなく、 たとえば、 シリカ 抜きで調製して得られたシリコーンレジンにシリカを混合した後、 得られた混合 物を塗料に導入してもよいし、 あるいは、 シリカをシリコーンレジンとは別途に 塗料に導入してもよい。
塗料に導入する際のシリカの形態は、 特に限定されず、 たとえば、 粉体の形で もコロイダルシリカの形でもよい。 上記コロイダルシリカとしては、 特に限定は されないが、 たとえば、 水分散性あるいはアルコール等の非水系の有機溶媒分散 性コロイダルシリカが使用できる。 一般に、 このようなコロイダルシリカは、 固 形分としてのシリカを 2 0〜5 0重量。/0含有しており、 この値からシリ力配合量 を決定できる。
なお- 水分散性コロイダルシリカを使用する場合には、 同コロイダルシリカ中 に固形分以外の成分として する水は、 シリコーンレジンの原料である 4官能 性アルコキシシランの加水分解に用いることができる (加水分解の際の水の下記 使用量に加算される) とともに、 無機塗料組成物の硬化剤として用いることがで さる。
水分散性コロイダルシリカは、 通常、 水ガラスから作られるが、 市販品として 容易に入手することができる。 また、 有機溶媒分散性コロイダルシリカは、 前記 水分散性コ口ィダルシリ力の水を有機溶媒と置換することで容易に調製すること ができる。 このような有機溶媒分散性コロイダルシリ力も水分散性コ口ィダルシ リカと同様に市販品として容易に入手することができる。
有機溶媒分散性コロイダルシリカにおいて、 コロイダルシリカが分散している 有機溶媒の種類は、 特に限定はされないが、 たとえば、 メタノール、 エタノール、 イソプロパノール、 η—ブタノ一ル、 イソブタノール等の低級脂肪族アルコール 類;エチレングリコール、 エチレングリコールモノブチルエーテル、 齚酸ェチレ ングリコールモノェチルェ一テル等のエチレングリコール誘導体;ジエチレング リコーノレ、 ジエチレングリ コ一ノレモノプチ/レエーテノレ等のジエチレングリコー/レ 誘導体;およびジァセトンアルコール等を挙げることができ、 これらからなる群 より選ばれた 1種もしくは 2種以上のものを使用することができる。 これらの親 水性有機溶媒と併用してトルエン、 キシレン、 酢酸ェチル、 齚酸ブチル、 メチル ェチルケトン、 メチルイソブチルケトン、 メチルェチルケトォキシム等も用いる ことができる。
シリカは、 前述の効果があるが、 配合量が多すぎると、 硬化' ¾ ^が硬くなりす ぎてクラックが発生する恐れがある。 そのため、 シリカを用いる場合、 その配合 量は、 固形分基準でシリコーンレジン 1 0 0重量部に対して 1 0〜 9 0重量部、 好ましくは 2 0〜8 5重量部とする。 この配合量が 1 0重量部未満であると、 所 望の被,度が得られなくなる傾向がある。 一方、 9 0重量部を越えると、 クラ ックが発生しやすくなる。
無機塗料組成物は、 後で述べる光触媒効果による各種機能を得るとともに、 形 成される の表面親水性を、 光触媒効果でさらに高く したり長期間維持させた りするために、 さらに光半導体材料を含むことが好ましい。 用いられる光半導体 材料としては、 特に限定はされないが、 たとえば、 酸化チタン、 酸化亜鉛、 酸化 錫、 酸化鉄、 酸化ジルコニウム、 酸化タングステン、 酸化クロム、 酸化モリブデ ン、 酸化ルテニウム、 酸化ゲルマニウム、 酸化鉛、 酸化カドミウム、 酸化銅、 酸 化バナジウム、 酸化ニオブ、 酸化タンタル、 酸化マンガン、 酸化コバルト、 酸化 ロジウム、 酸化ニッケル、 酸化レニウム等の金属酸化物の他、 チタン酸ストロン チウム等が、 塗膜の硬化 (特に常温を含む低温での硬化) を促進する効果も得ら れる点で好ましい。
これらの中でも、 上記金属酸化物が、 実用的に容易に利用可能な点で好ましく、 金属酸化物の中でも特に酸化チタンが、 その光触媒性能、 硬化促進性能、 安全性、 入手の容易さおよびコス トの面で好ましい。 なお、 酸化チタンを光半導体材料と して用いる場合は、 結晶型がアナタ一ス型 (アナタ一ゼ型) であるものを用いる 方が、 光触媒性能およ 化促進性能が最も強く、 しかも長期問発現するととも に、 光触媒性能およ mi化促進性能がより短時間で発現する点で好ましい。 光半 導体材料は、 1種のみ用いてもよいし、 2種以上を組み合わせて用いてもよい。 塗膜の透明性が必要とされる場合は、 光半導体材料の平均一次粒子径が 5 0 μ m以下であることが好ましく、 5 jti tn以下であることがより好ましく、 0 . 5 /X m以下であることがさらに好ましい。
塗料中に分散させる前の光半導体材料は、 粉末、 微粒子粉末、 溶液分散ゾル 粒子等、 塗料に分散可能なものであれば、 いかなる形態のものでも構わないが、 ゾル状、 特に p H 7以下のゾル状であれば、 硬化がより短時間で進み、 使用する 上で利便性に優れる。 ゾル状のものを使用する場合、 分散媒は水でも有機溶媒で も構わないが、 有機溶媒の方が塗料調製の点で好ましい。
さらに、 光半導体材料の原料となるものも、 最終的に光半導 料の性質を示 す物であれば、 制限されない。
光半導^料は、 紫外線を照射されると、 活性酸素を発生すること (光触媒 性) は公知である。 活性酸素は、 有機物を酸化、 分解させることができるため、 その特性を利用して、 塗装品に付着したカーボン系汚れ成分 (たとえば、 自動車 の排気ガス中に含まれるカーボン留分や、 タバコのャ二等) を分解する自己洗浄 効果;ァミン化合物、 アルデヒ ド化合物に代表される悪臭成分を^?する消臭効 果;大腸菌、 黄色ブドウ球菌に代表される菌成分の発生を防ぐ抗菌効果;防力ビ 効果等を得ることができる。 また、 光半導体材料を含む',に紫外線が当たると、 光半導体材料がその光触媒作用で水を水酸化ラジカル化し、 この水酸化ラジカル 力 ^表面に付着した、 水をはじく有機物等の汚れを分解除去することにより、 水に対する',の親水性 (濡れ性) がさらに向上して、 防曇性や、 雨水洗浄によ る防汚性等がより高いレベルで得られたり長期間維持されたりするという効果も ある。
さらには、 光半導 ί«ί料の光触媒作用による帯電防止機能もあり、 この機能に よっても防汚効果が得られる。 たとえば、 無機塗料組成物の^ に光を照! ^る と、 この に含まれる光半導体材料の作用により塗膜の表面抵抗値が下がるこ とで帯電防止効果が発現されて、 塗膜表面が汚れにくくなる。 光半導体材料含有 に光が照射されたとき、 どのようなメ力二ズムで ¾ϋの表面抵抗値が下がる のかはまだ明確には確認されていないが、 光照射により生成した電子とホールが 作用することで ¾ ^の表面抵抗値が下がるものと考えられる。
光半導^"料の表面に金属が担持されていると、 光半導体材料の光触媒効果が より高くなる。 そのメカニズムは、 まだ明確には されていないが、 光半導体 材料の表面に金属が担持されることにより光半導体材料の電荷分離が促進されて、 電荷分離により生成した電子とホールの消失確立が小さくなることが関係してい ると考えられる。
光半導^ "料の表面に担持してよい金属としては、 たとえば、 銀、 銅、 鉄、 二 ッケル、 ffi口、、 白金、 金、 パラジウム、 カドミウム、 コバルト、 ロジウム、 ルテ ニゥム等が、 光半導 ί«ί料の電荷分離をより促進させる点で好ましい。 担持され る金属は、 1種のみでも 2種以上でもよい。
金属の担持量は、 特に限定はされないが、 たとえば、 光半導 料に対し、 0 . 1〜 1 0重量%であることが好ましく、 0 . 2〜 5重量%であることがより好ま しい。 担持量が 0 . "1重量%未満だと、 担持効果が充分に得られない傾向があり、 1 0重量%を超えて担持しても、 効果はあまり增加せず、 逆に変色や性能劣化等 の問題が起きる傾向がある。
金属の担持方法としては、 特に限定するわけではないが、 浸積法、 含浸法、 光 還元法等が挙げられる。
また、 光半導体材料を層間に担持した粘土架橋体を用いても良い。 光半導体材 料を層間に導入することで、 光半導体材料が微粒子に担持されて光触媒性能が向 上する。
無機塗料組成物が光半導体材料をも含む場合、 光半導体材料の配合量は、 固形 分基準でシリコーンレジン 1 0 0重量部に対して 5〜8 0重量部、 好ましくは 1 0〜5 0重量部とする。 また、 光半導^料の表面に金属が担持されている場合 は、 1〜7 5重量重量部、 好ましくは 3〜4 5重量部とする。
光半導体材料の配合量が上記範囲より少ないと、 充分な光触■能が得られに くくなる等の傾向があり、 ヒ記範囲より多いと、 クラックが発生しやすくなる等、 性能が低下する傾向がある。 なお、 光半導体材料の表面に金属が担持されて レヽる場合の光半導体材料の上記配合量は、 担持金属を含めない量である。
無機塗料組成物は、 必要に応じ、 顔料、 染料等の着色剤をさらに含むことによ り、 調色可能である。
使用できる顔料としては、 特に限定はされないが、 たとえば、 カーボンブラッ ク、 キナクリ ドン、 ナフトー/レレッド、 シァニンブレー、 シアニングリーン、 ノヽ ンザイエロ一等の有 «料;酸化チタン、 硫酸バリウム、 弁柄、 複合金属酸化物 等の無 «料がよく、 これらの群から選ばれる 1種あるいは2種以上を組み合わ せて使用しても差し支えない。 顔料の分散は、 特に限定はされず、 通常の方法、 たとえば、 ダイノ一ミール、 ペイントシエ一カー等により顔料粉を直接分散させ る方法等でよい。 その際、 分散剤、 分散助剤、 增粘剤、 カップリング剤等の使用 が可能である。 顔料の添加量は、 顔料の種類により隠蔽性が異なるので特に限定 はされないが、 たとえば、 固形分基準でシリコーンレジン 1 0 0重量部に対して 5〜8 0重量部、 好ましくは 1 0〜 7 0重量部とする。 この添加量が 5重部未満 の場合は隠蔽性が悪くなる傾向があり、 8 0重量部を超えると の平滑性が悪 くなることがある。
使用できる染料としては、 特に限定はされないが、 たとえば、 ァゾ系、 アント ラキノン系、 インジコイド系、 硫化物系、 トリフエ-ルメタン系、 キサンテン系、 ァリザリン系、 ァクリジン系、 キノンィミン系、 チアゾ一ル系、 メチン系、 ニト 口系、 ニトロソ系等の染料が挙げられる。 これらの群から選ばれる 1種あるいは 2種以上を組み合わせて使用しても差し支えない。 染料の添加量は、 染料の種類 により隠蔽性が異なるので特に限定はされないが、 たとえば、 固形分基準でシリ コーンレジン 1 0 0重量部に対して 5〜 8 0重量部、 好ましくは 1 0〜 7 0重量 部とする。 この添加量が 5重部未満の場合は隠蔽性が悪くなる傾向があり、 8 0 重量部を超えると の平滑性が悪くなることがある。
なお、 レべリング剤、 金属粉、 ガラス粉、 抗菌剤、 酸化防止剤、 紫外線吸収剤 等も、 本発明の効果に悪影響を与えない範囲内で無機塗料組成物に含まれていて ちょい。
無機塗料組成物中、 全固形分濃度は、 塗料全量に対し 5重量%以下に調整され ていることを要する。 塗料の全固形分濃度がこのように薄いため、 塗料の保存安 定性が向上するとともに、 薄膜化が容易で、 ¾^膜化により、 塗膜のクラ ックゃ剥離の発生が防止される。 塗料の全固形分濃度は、 これらの点で、 より好 ましくは 2重量%以下、 さらに好ましくは 1重量%以下である。 また、 塗料の全 固形分濃度の下限は、 好ましくは 0 . 0 0 1重量/0、 より好ましくは 0 . 0 1重 量。 /0である。 塗料の全固形分濃度が 0 . 0 0 1重量%より低いと、 塗料としての 機能が出にくかったり ί可層もコーティングしなければならなかったりする傾向が あり、 好ましくなレヽ。
上記濃度の調整に用いられる希釈溶剤は、 シリコーンレジン (光半導体材料を 用いる場合はさらに光半導体材料) と混合可能なものであれば特に限定はされな いが、 たとえば、 各種有機溶媒が挙げられる。 有機溶媒の種類は、 シリコーンレ ジンの各成分の有する 1価炭化水素基の種類、 または、 シリコーンレジンの各成 分の分子量の大きさ等に応じて適宜選定することができる。
このような有機溶媒としては、 特に限定はされないが、 たとえば、 メタノール、 エタノール、 イソプロパノール、 η—プタノ一ル、 イソプタノール等の低級脂肪 族アルコール類;エチレングリコール、 エチレングリコールモノブチルエーテル、 齚酸エチレングリコールモノェチルエーテ /レ等のエチレングリコール誘導体; ジ エチレングリコール、 ジェチレングリコ一ノレモノブチノレエ一テノレ等のジエチレン グリコール誘導体;および、 トルエン、 キシレン、 へキサン、 ヘプタン、 酢酸ェ チル、 酢酸ブチ Λ^、 メチ /レエチ/レケトン、 メチルイソブチノレケトン、 メチルェチ ルケトォキシム、 ジアセトンアルコール等を挙げることができ、 これらからなる 群より選ばれた 1種もしくは 2種以上を使用することができる。
無機塗料組成物を製造する方法は、 特に限定はされず、 各成分を通常の方法お よび装置等を用いて混合すればよい。 塗料に導入する際の各成分の形態について も、 それ自身液状のものや、 溶媒に溶解してなる溶液、 分散媒中に分散してなる 分散液等の液状、 粉体等の固体状等を問わず、 特に限定はされない。
各成分を溶液または分散液の形で導入する場合、 その溶媒または分散媒として は、 たとえば、 水、 上述の有機溶媒、 または、 水と上述の有機溶媒との混合物を 使用できる。 また、 各成分は、 別個に添加してもよいし、 あるいは、 2成分以上 を予め混合しておいてから残りの成分と混合したり、 全成分を同時に混合したり してもよく、 その添加や混合の時機等についても特に限定はされない c
無機塗料組成物は、 例えば、 無機材料の親水性溶液であって、 その無機材料が 重合性成分として 4官能性ァルコキシシランのみを含有する親水性溶液を調製し、 この親水性溶液中で 4官能性アルコキシシランを加水^重縮合させて調製して もよい。 ただし、 加水分解縮合の際に、 非重合性の他の無機材料が親水性溶液中 に存在することは差し支えない。
4官能性アルコキシシランの加水分解縮合は、 たとえば、 上記親水性溶液に硬 化剤としての水および必要に応じて触媒 (たとえば、 塩酸、 醉酸、 ハロゲン化シ ラン、 クロ口酢酸、 クェン酸、 安息香酸、 ジメチルマロン酸、 蟻酸、 プロピオン 酸、 グルタール酸、 グリコール酸、 マレイン酸、 マロン酸、 トルエンスルホン酸、 シュゥ酸などの有機酸および無機酸等の 1種または 2種以上) 等を必要量添加し て (必要に応じ加温 (たとえば、 4 0〜1 0 0 °C) してもよレ、) 行わせることが できる。
得られるシリコーンレジン (プレボリマー) の重量平均分子量 (Mw) はポリ スチレン換算で、 好ましくは 8 0 0以上、 より好ましくは 8 5 0以上、 さらに好 ましくは 9 0 0以上になるように調整する。 シリコーンレジンの分子量分布 (重 量平均分子量 (Mw) ) が 8 0 0より小さいときは、 被覆層が硬化する際、 シリ コーンレジンの収縮が大きくて、 硬化後に ¾ ^にクラックが発生する怖れがある。 また、 硬化剤としての水の量は、 4官能性アルコキシシランのアルコキシ基 1 モル当量当たり、 水 0 . 0 1〜3 . 0モルが好ましく、 1 . 0〜2 . 5モルがよ り好ましい。
4官能性アルコキシシランの加水分解重縮合反応の際に用いられる希釈溶剤 (反応溶媒) としては、 コロイダルシリカの分散溶媒の具体例として前述したも のを使用可能である。
また、 シリコーンレジンの p Hは 3 . 8〜6の範囲内に調整されていることが 好ましい。 p Hがこの範囲內であれば、 前記の分子量の範囲内で、 安定してシリ コ一ンレジンを使用することができる。 p Hがこの範囲外であると、 シリコーン レジンの安定性が悪いため、 塗料調製時からの使用できる期間が限られてしまう。 ρ Η調整方法は、 特に限定されるものではないが、 たとえば、 シリコーンレジ ンの原料混合時、 p Hが 3 . 8未満となった場合は、 たとえば、 アンモニア等の 塩基性試薬を用いて前記範囲內の P Hに調整すればよく、 p Hが 6を超えた場合 も、 たとえば、 塩酸等の酸性試薬を用いて調整すればよい 3 また、 p Hによって は、 分子量が小さいまま逆に反応が進まず、 前記分子量範囲に到達させるのに時 問がかかる場合は、 シリコーンレジンを加熱して反応を促進してもよいし、 , 試薬で p Hを下げて反応を進めた後、 塩基性試薬で所定の p Hに戻してもよい。 無機塗料組成物を の表面に塗布する方法は、 特に限定されるものではなく、 たとえば、 刷毛塗り、 スプレーコート、 浸漬 (デイツビング、 ディップコートと も言う) 、 ロールコート、 フローコート (基材の被塗装部位の上部から塗料を流 して塗装する流し塗り塗装法) 、 カーテンコート、 ナイフコート、 スピンコート、 バーコ一ト等の通常の各種塗布方法を選択することができる。
基材の表面上に形成された無機塗料組成物の塗布層は、 低 ^!Jtl熱するか、 ある いは、 常温放置することにより、 シリコーンレジンの有する加水分解性基同士が 縮合反応して硬化塗膜とすることができる。 このような無機塗料組成物は、 常温 で硬化するときにも湿度の影響をほとんど受けない。 また、 加熱処理を行えば、 縮合反応を促進して硬化塗膜を形成することができる。
塗布層の硬化方法については、 公知の方法を用いればよく、 特に限定はされな レヽ。 また、 硬ィ匕の際の も特に限定はされず、 所望される硬化 性能や、 光 半導 才料および基材の耐熱性等に応じて常温〜加熱 の広い範囲をとること ができる。
形成される硬化 の厚みは、 クラックや剥離が発生しないためには、 0. 0 1〜0. 5 xm程度であればよいが、 塗膜の各種機能をより効果的に発揮させた り常温での硬化時間をより短くしたりするとともに、 硬化^ HIが長期的に安定に 密着、 保持されるためには、 0. 01〜0. 3 / mが好ましく、 0. 01〜0. 1 μτηがより好ましい。
無機塗料組成物が塗布される »才 (本発明の親水件塗装品に用いられる基林で もある) としては、 特に限定はされないが、 たとえば、 無機質 ¾ίί、 有機質基材、 無機有機複合基材、 および、 これらのうちのいずれかの表面に少なくとも 1層の 無機物被膜および Zまたは少なくとも 1層の有機物被膜を有する塗装基材等が挙 げられる。
無機質 St才としては、 特に限定はされないが、 たとえば、 金属基材;ガラス基 材;ホーロー;水ガラス化粧板、 無機質硬化体等の無機質建材;セラミックス等 が挙げられる。
金属基材としては、 特に限定はされないが、 たとえば、 非鉄金属 [たとえば、 アルミニウム (J I S— H4000等) 、 ァノレミ-ゥム合金 (ジュラルミン等) 、 銅、 亜鉛等] 、 鉄、 鋼 [たとえば、 圧延銅 ( J I S— G3101等) 、 溶融亜鉛 めっき鋼 ( J I S— G3302等) 、 (圧延) ステンレス鋼 ( J I S-G430 4、 G4305等) 等] 、 ブリキ (J I S— G3303等) 、 その他の金属全般
(合金含む) が挙げられる。
ガラス基材としては、 特に限定はされないが、 たとえば、 ナトリウムガラス、 パイレックスガラス、 石英ガラス、 無アルカリガラス等が挙げられる。
前記ホー口一とは、 金属表面にガラス質のホ一ローぐすりを焼き付け、 被覆し たものである。 その素地金属としては、 たとえば、 軟鋼板、 鋼板、 铸鉄、 アルミ ニゥム等が挙げられるが、 特に限定はされない。 ホー口一ぐすりも通常のものを 用いればよく、 特に限定はされない。
前記水ガラス化粧板とは、 たとえば、 ケィ酸ソーダをスレートなどのセメント に塗布し、 焼き付けた化粧板などを指す。 無機質硬化体としては、 特に限定はされないが、 たとえば、 Ιϋ強化セメント 板 ( J I S— Α 54 3 0等) 、 窯業系サイディング ( J I S— A 54 2 2等) 、 木毛セメント板 (J I S— A 5404等) 、 パルプセメント板 (J I S—A54 1 4等) 、 スレート '木毛セメント積層板 ( J I S— A 54 26等) 、 石膏ボー ド製品 (J I S— A 6 90 1等) 、 粘土瓦 (J I S— A 5 20 8等) 、 厚形スレ —ト (J I S— A 54 0 2等) 、 陶磁器質タイル (J I S— A 5 20 9等) 、 建 築用コンクリートブロック (J I S— A 54 0 6等) 、 テラゾ (J I S— A54 1 1等) 、 プレストレストコンクリートダブル Tスラブ (J I S -A 54 1 2 等) 、 ALCパネル ( J I S— A54 1 6等) 、 空洞プレス トレストコンクリ一 トパネル ( J I S— A 6 5 1 1等) 、 普通煉瓦 (J I S— R 1 2 5 0等) 等の無 機材料を硬化、 成形させた 全般を指す。
セラミックス基材としては、 特に限定はされないが、 たとえば、 アルミナ、 ジ ルコニァ、 炭化ケィ素、 窒化ケィ素等が挙げられる。
有機質基材としては、 特に限定はされないが、 たとえば、 プラスチック、 木、 木材、 紙等が挙げられる。
プラスチック S†としては、 特に限定はされないが、 たとえば、 ポリカーボネ ート榭脂、 アクリル樹脂、 AB S榭脂、 塩化ビニル樹脂、 エポキシ樹脂、 フエノ —ル榭脂等の熱硬化性もしくは熱可塑性プラスチック、 および、 これらのプラス チックをナイ口ン Ht等の有機^ で強化した^ i強化ブラスチック ( F R P ) 等が挙げられる。
無機有機複合基材としては、 特に限定はされないが、 たとえば、 上記プラスチ ックをガラス «、 力一ボン■等の無機^!で強化した繊維強化ブラスチック (F R P) 等が挙げられる。
前記塗装基材を構成する有機物被膜としては、 特に限定はされないが、 たとえ ば、 アクリル系、 アルキド系、 ポリエステル系、 エポキシ系、 ウレタン系、 ァク リルシリコーン系、 塩化ゴム系、 フエノール系、 メラミン系等の有機樹脂を含む コーティング材の硬化被膜等が挙げられる。
前記塗装基材を構成する無機物 «としては、 特に限定はされないが、 たとえ ば、 シリコーン樹脂等の無機樹脂を含むコ一ティング材の硬化被膜等が挙げられ る。
無機塗料組成物を基材に塗布する際に、 基材の材質や表面状態によっては、 そ のまま無機塗料組成物を塗布すると密着性ゃ耐候性が得にくい場合があるので (特に、 光半導 才料を添カ卩した無機塗料組成物を有機質基材に塗装する場合) 、 必要に応じ、 基材の表面に、 無機塗料組成物の塗布硬化被膜を形成させる前に予 めプライマー層を形成させておいてもよい。 プライマー層としては、 有機、 無機 を問わず、 特に限定はされないが、 有機プライマ一層の例としては、 ナイロン榭 脂、 アルキド樹脂、 エポキシ榭脂、 アクリル樹脂、 有機変性シリコーン樹脂 (た とえば、 アクリルシリコーン樹脂等) 、 塩化ゴム樹脂、 ウレタン樹脂、 フエノー ル榭脂、 ポリエステル榭脂およびメラミン榭脂からなる群の中から選ばれた少な くとも 1種の有機樹脂を固形分として 1 0重量%以上含有する有機プライマ一組 成物の硬化樹脂層等が挙げられ、 無機プライマ一層の例としては、 シリコーン樹 脂等の無機樹脂を固形分として 9 0重量%以上含有する無機プライマ一 物の 硬化榭脂層等が挙げられる。
特に好ましいプライマー層は、 水性ェマルジヨンタイプのシリコーン系被膜で ある。
プライマ一層の厚みは、 特に限定はされないが、 たとえば、 0 . l〜5 0 /i m が好ましく、 0 . 5〜 1 0 mがより好ましい。 この厚みが薄すぎると密着性や 耐候性が得られない恐れがあり、 厚すぎると乾燥時に発泡等の恐れがある。
なお、 表面に上記のような有機プライマ一層および Zまたは無機プライマ一層 を少なくとも 1層有する基材は、 前記塗装基材の範疇に含まれる。 すなわち、 前 記塗装基材が表面に有する前記被膜は上記プライマー層であつてもよいのである。 また、 プライマー層には、 必要に応じ、 調色のために顔料、 染料等の着色剤が 含まれていてもよい。 使用可能な着色剤としては、 無機塗料組成物に添加可能な ものとして前述したものが挙げられる。 プライマ一層への着色剤の配合量の好ま しい数値範囲についても、 前述の、 無機塗料組成物の場合と同様である。 ただし 固形分基準ではあるが、 プライマ一組成物全量中での全榭脂:! 0 0重量部に対し て規定される。
基材の形態については、 特に限定はされず、 たとえば、 フィルム状、 シート状、 板状、 «状等が挙げられる。 また、 基材は、 これらの形状の材料の成形体、 ま たは、 これらの形状の材料もしくはその成形体の少なくとも 1つを一部に備えた 構成体等であってもよい。
基材は、 上述した各種材料単独からなるものでもよいし、 上述した各種材料の うちの少なくとも 2つを組み合わせてなる複合材料または上述した各種材料のう ちの少なくとも 2つを積層してなる積層材料でもよい。
本発明の親水性無機^) H形成方法に従つて形成される親水性無機, (本発明 の親水性塗装品の有する塗膜でもある) は、 それを各種材料または物品の少なく とも一部に装備させることにより、 たとえば、 下記の用途に好適に用いることが できる。
建物関連の部材または物品、 たとえば、 外装材 (たとえば、 材、 平板瓦 - 日本瓦.金属瓦等の瓦等) 、 塩ビ雨とい等の樹脂製雨とい ' ステンレス兩とい等 の金属製雨とい等の雨とい、 門およびそれに用いるための部材 (たとえば、 門 扉 '門柱'門塀等) 、 フェンス (塀) およびそれに用いるための部材、 ガレージ 扉、 ホームテラス、 ドア、 柱、 カーポート、 駐輪ポ一ト、 サインポスト、 宅配ポ スト、 配電盤 'スィッチ等の配線器具、 ガスメ一ター、 インターホン、 テレビド ァホン本体およびカメラレンズ部、 電気錠、 エントランスポール、 縁側、 換気扇 吹き出し口、 建物用ガラス等;窓 (たとえば、 採光窓、 天窓、 ルーバー等の開閉 窓等) およびそれに用いるための部材 (たとえば、 窓枠、 雨戸、 ブラインド等) 、 自動車、 鉄道車両、 航空機、 船舶、 機械装置、 道路周辺部材 (たとえば、 防音壁、 トンネル内装板、 各種表示装置、 ガードレール、 家止め、 高欄、 交通標識の標識 板および標識柱、 信号機、 ポストコ一ン等) 、 広告塔、 屋外または屋内用照明器 具およびそれに用いるための部材 (たとえば、 ガラス、 榭脂、 金属およびセラミ ックスからなる群の中から選ばれた少なくとも 1種の材料からなる辦才等) 、 太 陽電池用ガラス、 農業用ビニールおよびガラスハウス、 エアコン用室外機、 V H F、 U H F、 B S、 C S等のアンテナ等。
なお、 無機塗料組成物を上記の各種材料または物品の少なくとも一部に直接塗 布し、 硬化させてもよいが、 これに限定されず、 たとえば、 無機塗料組成物をフ ィルム基材の表面に塗布し、 硬化させてなる Ι¾ 性フィルムを上記の各種材料ま たは物品の少なくとも一部に貼るようにしてもよい。 このようなフィルムの基材 の林質としては、 たとえば、 ポリエチレンテレフタレート (PET) 樹脂、 ポリ ブチレンテレフタレート (PBT) 樹脂、 塩化ビニル樹脂、 アクリル樹脂、 フッ 素樹脂、 ポリプロピレン (PP) 樹脂およびそれらの複合樹脂等の樹脂が挙げら れる力 特に限定はされない。
実施例
以下、 実施例及び比較例によって本発明を詳細に説明する。 実施例及び比較例 中、 特に断らない限り、 「部」 はすべて 「重量部」 を、 「%」 はすべて 「重 量。 /o」 を表す。 また、 分子量は G PC (ゲルパ一ミエーシヨンクロマトグラフィ ―) により、 測定機種として東ソー (株) の HLC8020を用いて、 標準ポリ スチレンで検 4^を作成し、 その換算値として測定したものである。 なお、 本発 明は下記実施例に限定されない。
実施例 1
テトラエトキシシラン 50部、 テトライソプロボキシシラン 50部、 酸性コロ ィダルシリカであるイソプロパノール分散オルガノシリカゾル (商品名 「 O S C AL 1 432」 、 触媒化成工業 (株) 製、 固形分 30%) 100部に、 希釈溶媒 としてイソプロパノール 75部を混合し、 更に、 水 100部を添加し、 した。 得られた液を 60°C恒温槽中で 5時間加熱することにより、 反応生成物である加 水分解重縮合物の重量平均分子量 (Mw) を 1 500〜 1800に調整して加水 分解重縮合物のアルコール溶液を得た。
加水分解重縮合物のアルコール溶液の調製条件:
Figure imgf000018_0001
この溶液に希釈溶媒としてさらにィソプロパノール 1000部を添加混合する ことにより、 無機塗料組成物 (1) を得た。 この塗料において、 塗料全量に対す る全固形分濃度は、 4. 1%であった。
調製して間もない無機塗料組成物 (1) を、 アセトンで洗浄したガラス基板に スプレー^法により塗布し、 'MJ^を室温下で 0. 5時間乾 ¾f更化させた後、 1 50 で 1時間焼成することにより、 親水性塗装品 ( 1 ) を得た。 なお、 の 硬化後の膜厚は 0 . 2 μ mであつた。
実施例 2
テトラメ トキシシラン 1 0部、 テトラエトキシシラン 1 0 0部、 生コ口イダ ルシリカであるメタノール分散シリカゾル (商品名 「MT— S T」 、 日産化学ェ 業 (株) 製、 固形分 3 0 °/0) 3 0部に、 希釈溶媒としてメタノール 1 0 0部を混 合し、 更に、 水 6 0部を添カ卩し、 撹拌した。 得られた液を 6 0 °C恒温槽中で 5時 間加熱することにより、 反応生成物である加水分解重縮合物の重量平均分子量
(Mw) を 1 8 0 0〜 2 0 0 0に調整して加水分解重縮合物のアルコール溶液を 得た。
加水分解重縮合物のアルコール溶液の調製条件:
Figure imgf000019_0001
この溶液に、 鎌溶媒としてィソプロノくノール 1 0 0 0部を添加混合するとと もに、 光半導体材料として酸化チタンゾル (触媒化成 (株) 製酸化チタンゾル: 商品名 「クイ一ンタイタユック 1 1一 1 0 2 0 G」 ) を、 固形分基準で、 塗料全 量中での全縮合化合物と全光半導^料成分との合計 1 0 0部に対し 2 0部にな る量添加混合することにより、 無機塗料組成物 (2 ) を得た。 この塗料において、 塗料全量に対する全固形分濃度は、 4 . 7 %であった。
調製して間もない無機塗料組成物 (2 ) を、 アセトンで洗浄したガラス基板に スプレー塗装法により塗布し、 塗膜を室温下で 0 . 5時間乾燥硬化させた後、 1 5 0 °Cで 1時間焼成することにより、 親水性塗装品 ( 2 ) を得た。 なお、 ¾mの 硬化後の膜厚は 0 · 2 μ mであった。
実施例 3
塗装方法として、 スプレー ^¾法の代わりに、 基材の上部から塗料を流して塗 装する流し塗り塗装法を用いたこと以外は実施例 1と同様にして、 親水性塗装品 ( 3 ) を得た。
実施例 4
基材としてガラス基板の代わりにアルミ基板を用いたこと以外は実施例 1と同 様の作業を行って親水性塗装品 (4 ) を得た。 実施例 5
光半導体材料として用いた酸化チタンゾルの添加量を 5部に変更したこと以外 は実施例 2と同様にして無機塗料組成物 (5 ) を得た。 この塗料において、 塗料 全量に対する全固形分濃度は、 3 . 5 9 %であった。
調製して間もない無機塗料組成物 (5 ) を、 アセトンで洗浄したガラス基板に スプレー塗装法により塗布し、 塗膜を室温下で 0 . 5時間乾 化させた後、 1 5 0 °Cで 1時間焼成することにより、 親水性塗装品 (5 ) を得た。 なお、 塗膜の 硬化後の膜厚は 0 . 2 μ mであつた。
実施例 Θ
希釈溶媒として用いたィソプロパノールの添加量を 3 0 0 0部に変更するとと もに、 光半導体材料として用いた酸化チタンゾルの添加量を 8 0部に変更したこ と以外は実施例 2と同様にして無機塗料組成物 (6 ) を得た。 この塗料において、 塗料全量に対する全固形分濃度は、 3 . 6 9 %であった。
調製して間もない無機塗料組成物 (6 ) を、 アセトンで洗浄したガラス基板に スプレー塗装法により塗布し、 塗膜を室温下で 0 . 5時間乾燥硬化させた後、 2 0 0 °Cで 1時問^ gすることにより、 親水性塗装品 (6 ) を得た。 なお、 の 硬化後の fl莫厚は 0 . 1 μ mであった。
実施例 7
光半導体材料として、 酸化チタンゾルの代わりに白金を担持した酸化チタンを 同じ量用いたこと以外は実施例 2と同様にして無機塗料組成物 (7 ) を得た。 こ の塗料において、 塗料全量に対する全固形分濃度は、 4 . 7 %であった。
なお、 白金担持は、 酸化チタン粉末 (石原産業 (株) 製酸化チタン:商品名 「 S T— 0 1」 ) に光電着法で行レヽ、 酸化チタンに対して 0 . 5 %担持した。 次に、 調製して間もない無機塗料組成物 (7 ) を用い、 実施例 1と同様の作業 を行うことにより、 親水性塗装品 ( 7 ) を得た。
実施例 8
塗装方法として、 スプレー塗装法の代わりに、 ディップコート法を用いたこと 以外は実施例 1と同様にして、 親水性塗装品 (8 ) を得た。
実施例 9 松下電工 (株) 大阪門真敷地内の建物の窓ガラス (lm2 、 厚み 6 mm) に、 実施例 1で得られた調製して間もない無機塗料組成物 (1) を流し塗り塗装法で 硬化 厚 0. 04 /i mになるように塗布し、 室温下で一昼夜乾^!化させるこ とにより、 親水性塗装品 (9) を得た。
実施例 10
アルミ基板をアセトンで洗浄し、 その表面にシリコ一ン系コ一ティング剤 (商 品名 「フレツセラ Ν」 、 松下電工 (株) 製) を塗布、 乾燥させて厚さ 1. 5 Mm のプライマー餍を形成した。 このプライマー層の上に、 実施例 1と同様にして、 無機塗料組成物 (1) を塗布、 乾燥、 硬化させて親水性塗装品を得た。
実施例 1
アルミ基板をァセトンで洗浄し、 その表面に水溶 シリコーン系コ一ティング 剤 (商品名 「フレツセラ水性タイプ」 、 松下電工 (株) 製) を塗布、 乾燥させて 厚さ 1. 5 /i mのプライマー層を形成した。 このプライマー層の上に、 実施例 1 と同様にして、 無機塗料組成物 (1) 塗布、 乾燥、 硬化させて親水性塗装品を得 た。
比較例 1
テトライソプロボキシシランの代わりにメチルトリメ トキシシランを同量用い たこと以外は実施例 1と同様にして比較用無機塗料組成物 (1) を得た。 この塗 料において、 塗 量に対する全固形分濃度は、 5. 00%であった。
次に、 調製して間もない比較用無機塗料組成物 (1) を用い、 実施例 1と同様 の作業を行うことにより、 比較用塗装品 (1) を得た。
比較例 2
加水分解重縮合物のアルコール溶液を得た後で希釈溶媒として添加したィソプ ロバノールの量を 500部に変更したこと以外は実施例 1と同様にして比較用無 機塗料組成物 (2) を得た。 この塗料において、 塗料全量に対する全固形分濃度 は、 6. 38%であった。
次に、 調製して間もない比較用無機塗料組成物 (2) を用い、 実施例 1と同様 の作業を行うことにより、 比較用塗装品 (2) を得た。
比糊 3 塗膜の硬化後の膜厚を 0. 6 // mに変更したこと以外は実施例 1と同様の作業 を行って比較用塗装品 (3) を得た。
比較例 4
塗膜の硬化後の膜厚を 0. 007 μ mに変更したこと以外は実施例 1と同様の 作業を行って比較用塗装品 (4) を得た。
比較例 5
テトラエトキシシラン 50部とテトライソプロポキシシラン 50部の代わりに メチルトリメ トキシシラン 100部を用いたこと以外は実施例 1と同様にして比 較用無機塗料組成物 (5) を得た。 この塗料において、 塗料全量に対する全固形 分濃度は、 5. 00%であった。
以上のようにして得られた塗装品の 性能を次のような方法で評価した。 評価方法
( 1 ) 密着性:
J I S— K5400に記載された煮沸試験により評価した。
(2) 表面親水性 (水に対する濡れ性) :
紫外線照射前の'^ JHと水との接触角を測定することにより評価した。 接触角の 測定は、 0. 2 c cの蒸留水を塗膜表面に滴下した後、 拡大カメラで観察するこ とにより行った。 接触角が小さい程、 親水性が高いことを示す。
(3) 塗料の保存安定性:
調製した塗料を 25 で保管し、 定期的に塗膜形成能を試験した。 試験は、 ス プレー塗布した被覆層が塗膜化するかどうかを調べることにより行つた。 保管中 の塗料が塗膜化しなくなった保管日数を評価基準として用いた。
(1) 〜 (3) の評価結果を表 1に示す。 実施例番号 密着性 s 表面親水性 塗料の保存安定性
実施例 1 10点 0° 90日以上
実施例 2 10点 0。 90日以上
実施例 3 8点 0° 90闩以上
実施例 4 8点 5° 90日以上
実施例 5 10点 0° 90日以上
実施例 6 8点 5° 90日以上
実施例 7 10点 0° 90日以上
実施例 8 8点 0。 90日以上
実施例 9 10点 5" 90日以上
実施例 10 8点 0。 90日以上
実施例 11 8点 0° 90日以上
比較例 1 10点 80° 90日以上
比較例 2 10点 0° 40日
比較例 3 4点 90日以上
比較例 4 10点 25。 90日以上
比較例 5 10点 80° 90日以上
1密着性の評価点は J I S— K5400に準拠
表 1にみるように、 実施例の ¾ ^は製膜後、 紫外線照射なしで、 いずれも水と の接触角 5° 以下と良好な親水性を示した。 また、 親水性の維 m¾も 300時間 以上と良好であった。
これに対し、 比較例 1及び 5の ¾Μは重合性成分として 3官能アルコキシシラ ンを含むシリコーンレジンで形成されたため、 親水性は得られなかった。
また、 塗料の保存安定性については、 塗料全量に対する全固形分濃度が 5重 量%以下である実施例の塗料は、 いずれも 1ヶ月間の保存後も容易に塗膜化でき、 しかも、 調製後間もない塗料から形成された^ ϋと比べてほぼ同等の性能が得ら れたのに対し、 塗料全量に対する全固形分濃度が 5重量%を超える比較例 2の塗 料は、 1ヶ月間保存後は塗膜化することさえできなかった。
また、 塗膜の硬化後の膜厚が 0. 01〜0. 5 mの範囲内である実施例の塗 膜はいずれも密着性および親水性の両方とも良好であるのに対し、 塗膜の硬ィ匕後 の膜厚が 0. 5 mを超える比較例 3の塗膜は密着性が悪かつた。 該膜厚が 0 - 01 / m未満である比較例 4の塗膜は密着性は問題がないものの、 親水性が充分 でなかった。
実施例 1 0及ぴ 1 1の塗膜は、 プライマー層として水性ェマルジヨンタイプの シリコーン系塗膜を有する基材の上に被覆されているため、 コーティング材の塗 れがよく、 造膜性が良好であつた。
発明の効果
本発明の方法で形成された親水性無機謹は、 製膜当初から表面親水性 (水濡 れ性) を有し、 これにより雨水洗浄防汚性、 防曇性を発揮することができる。 し 力 も、 これらの性能の発現は紫外線照射を必要としない。 そのため、 紫外線が当 たらない部位に塗装したり、 該塗膜を備えた塗装品を紫外線が当たらない場所で 使用したりしても、 上記性能を得ることができる。 また、 耐候性、 耐久性、 強度 等にも優れている。
さらに、 上記 »は、 厚さが 0 . 0 1〜0 . 5 μ πιと薄く形成されるため、 ク ラックや剥離が生じにくレ、。
また、 木発明の塗膜形成方法では、 使用する無機塗料組成物中、 全固形分濃度 を塗料全量に対し 5重量%以下の薄い濃度に調整するため、 塗料調製後、 塗料を 長期間保存しても塗料の硬化と劣化を抑えることができ、 ポットライフを飛躍的 に延ばせるので、 塗料の保存安定性を向上させることができる。
さらに、 上記無機塗料組成物は、 無機系であるため、 光半導^料等の各種添 加剤の添加により 性能が損なわれることが少なく、 紫外線で劣化しにくレ、親 水性 を形成することができる。 また、 様々な色に調色可能であるため、 デザ イン性も高く、 使用範囲が広い。
上記親水性無機塗膜形成方法で用いられる無機塗料組成物は、 加熱硬化だけで なく、 常温硬化も可能であるため、 広い乾燥硬化条件範囲あるいは温度範囲での 使用が" ί能である。 従って、 熱を均等にかけにくい形状を持つ基材、 大きな寸法 を持つ基材または耐熱性に劣る基材等に対しても塗装ができるのみでなく、 屋外 等で塗装作業を行つたりする場合等のように熱をかけにくレ、場合でも塗装できる こと力ゝら、 その産業的価値が高い。

Claims

請 求 の 範 囲
1. (1) 式
S i (OR) 4 ( I )
[式中、 Rは炭素数 7までのアルキル基又はァリール基である。 ]
で表される 4官能性アルコキシシランのみを加水分解重縮合させて得られるシリ コーンレジンを主成分として含み、 全固形分含有量が 5重量%以下の無機塗料組 成物を得る工程;
(2) 該無機塗料組成物を基材の表面に塗布して塗布層を形成する丁-程;及び
(3) 該塗布層を乾燥、 及 化させて膜厚 0. 01〜0. 5 /xmの硬化, を形成する工程;
を包含する、 基材の表面に親水性無機,を形成する方法。
2. 前記無機塗料組成物の固形分中にシリコーンレジンが 50〜: 100重量0 /0 の量で存在する請求項 1記載の方法。
3. grfBRがメチル基、 ェチル基、 プロピル基、 イソプロピル基、 ブチル基、 イソブチル基、 t一ブチル基、 及ぴフエニル基からなる群から選択される少なく とも 1種である、 請求項 1 己载の方法。
4. 前記無機塗料組成物が固形分として光半導 才料を更に含有するものであ る請求項 1記載の方法。
5. 前記無機塗料組成物の固形分中に、 シリコーンレジン 100重量部に対し て光半導体材料が 5〜 80重量部の量で存在する請求項 4記載の方法。
6. ήίίΙΕ光半導体材料が酸化チタンである請求項 4記載の方法。
7. 前記基材が表面にプライマー塗膜を有するものである請求項 1記載の方法。
8. 前記プライマー塗膜が水性ェマルジョンタイプのシリコーン系材料でなる ものである請求 I 7記載の方法。
9. 前記 が金属、 ガラス、 ホー口一、 セラミックス、 セメント、 コンクリ ート、 木、 木材、 プラスチック、 無機 強化プラスチックからなる群から選択 される、 請求項 1記載の方法。
10. 前記塗布が、 流し塗り法、 スプレー法、 ロール塗り法、 刷毛塗り法、 スピ ンコート法、 ディップコート法、 フローコート法、 カーテンコート法、 ナイフコ 一ト法、 及びバーコ一ト法からなる群から選択される方法により行われる請求項 1記載の方法。
a . S#の表面に塗布、 乾燥、 及び硬化させて親水性無機塗膜を形成するため に用いる、 シリコーンレジンを主成分として含む無機塗^ &成物において、 該シリコーンレジンが、 式
S i (O R) 4 ( I )
[式中、 Rは炭素数 7までのアルキル基又はァリール基である。 ]
で表される 4官能性アルコキシシランのみを加水^军重縮合させて得たものであ り、
該無機塗料組成物の全固形分含有量が 5重量%以下であり、
該親水性無機 の膜厚が 0 . 0 1〜0 . 5 /i mである、 無機塗料組成物。
PCT/JP1999/001928 1998-04-10 1999-04-12 Procede permettant de former un film de revetement inorganique hydrophile et composition de revetement inorganique WO1999052986A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP55150099A JP3367953B2 (ja) 1998-04-10 1999-04-12 親水性無機塗膜形成方法及び無機塗料組成物
CA002293356A CA2293356C (en) 1998-04-10 1999-04-12 Method of forming hydrophilic inorganic coating film and inorganic coating composition
US09/445,350 US6303229B2 (en) 1998-04-10 1999-04-12 Hydrophilic inorganic coating film and composition made from alkoxysilane and silica
DE69939244T DE69939244D1 (de) 1998-04-10 1999-04-12 Verfahren zur herstellung eines hydrophilen anorganischen beschichtungsfilms und eine zusammensetzung für anorganische beschichtungen
EP99913627A EP0989169B1 (en) 1998-04-10 1999-04-12 Method of forming hydrophilic inorganic coating film and inorganic coating composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP9867098 1998-04-10
JP10/98670 1998-04-10

Publications (1)

Publication Number Publication Date
WO1999052986A1 true WO1999052986A1 (fr) 1999-10-21

Family

ID=14225961

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/001928 WO1999052986A1 (fr) 1998-04-10 1999-04-12 Procede permettant de former un film de revetement inorganique hydrophile et composition de revetement inorganique

Country Status (8)

Country Link
US (1) US6303229B2 (ja)
EP (1) EP0989169B1 (ja)
JP (1) JP3367953B2 (ja)
CN (1) CN1171961C (ja)
AT (1) ATE403707T1 (ja)
CA (1) CA2293356C (ja)
DE (1) DE69939244D1 (ja)
WO (1) WO1999052986A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006031012A1 (en) * 2004-09-15 2006-03-23 Lg Chem, Ltd. Films or structural exterior materials using coating composition having self-cleaning property and preparation method thereof
JP2008500433A (ja) * 2004-05-28 2008-01-10 ピーピージー インダストリーズ オハイオ, インコーポレイテッド 親水性組成物、その生成のための方法、およびそのような組成物でコーティングされた基材
JP2010022997A (ja) * 2008-07-24 2010-02-04 Nippon Paint Co Ltd 複層塗膜および該複層塗膜を有する塗装体
JP2012132012A (ja) * 2004-02-11 2012-07-12 Nof Metal Coatings Europe 有機チタン化物及び/又は有機ジルコン化物を含有する水性分散液の形態である防錆塗料組成物
WO2015001979A1 (ja) * 2013-07-05 2015-01-08 旭硝子株式会社 塗膜付き基板の製造方法
WO2022113759A1 (ja) * 2020-11-27 2022-06-02 日本ペイント・インダストリアルコーティングス株式会社 抗菌・抗ウイルスコーティング組成物

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6824879B2 (en) * 1999-06-10 2004-11-30 Honeywell International Inc. Spin-on-glass anti-reflective coatings for photolithography
JP2001025666A (ja) * 1999-07-14 2001-01-30 Nippon Sheet Glass Co Ltd 積層体およびその製造方法
US6777091B2 (en) 2000-03-22 2004-08-17 Nippon Sheet Glass Co., Ltd. Substrate with photocatalytic film and method for producing the same
US6508959B1 (en) * 2001-05-29 2003-01-21 The Regents Of The University Of California Preparation of energy storage materials
US20030054207A1 (en) * 2001-07-18 2003-03-20 Warner John C. Metal oxide films
EP1429919B1 (en) * 2001-08-10 2008-04-02 3M Innovative Properties Company Stain resistant protect film and adhesive sheet having the same thereon
EP1445095B1 (en) 2001-10-25 2012-12-26 Panasonic Corporation Composite thin film holding substrate, transparent conductive film holding substrate, and panel light emitting body
US6979478B1 (en) * 2002-08-01 2005-12-27 Hilemn, Llc Paint for silver film protection and method
TW592837B (en) * 2003-04-25 2004-06-21 Chung Shan Inst Of Science Photo-catalyst-coated air-cleaning fluorescent lamp and method for producing the same
DE602004014296D1 (de) 2003-08-15 2008-07-17 Inst Tech Precision Elect Chromfreies Mittel zur Behandlung von Metalloberflächen
WO2005103172A2 (en) 2004-04-15 2005-11-03 Avery Dennison Corporation Dew resistant coatings
KR100581133B1 (ko) * 2004-04-16 2006-05-16 자동차부품연구원 자동차 사이드 미러용 광촉매 산화물과 그의 제조방법
US7354624B2 (en) * 2004-05-28 2008-04-08 Ppg Industries Ohio, Inc. Multi-layer coatings and related methods
US7354650B2 (en) * 2004-05-28 2008-04-08 Ppg Industries Ohio, Inc. Multi-layer coatings with an inorganic oxide network containing layer and methods for their application
US20060238870A1 (en) 2005-04-26 2006-10-26 Brian Sneek Gauge lens with embedded anti-fog film and method of making the same
US8344238B2 (en) * 2005-07-19 2013-01-01 Solyndra Llc Self-cleaning protective coatings for use with photovoltaic cells
US20070281167A1 (en) * 2006-06-06 2007-12-06 Jeffrey Allen Odle Method for improving cleanability of surfaces
JP5324048B2 (ja) * 2007-03-20 2013-10-23 ニチハ株式会社 建築板
CA2680296C (en) * 2007-04-02 2015-09-15 Certainteed Corporation Photocatalytic colored roofing granules
DE102008010752A1 (de) * 2008-02-23 2009-08-27 Bayer Materialscience Ag Asymetrischer Mehrschichtverbund
CN102140265A (zh) * 2010-11-19 2011-08-03 吴江龙泾红贝家装有限公司 一种不锈钢材质的耐高温涂料
JP5761346B2 (ja) * 2011-06-29 2015-08-12 信越化学工業株式会社 無機親水性コート液、それから得られる親水性被膜及びこれを用いた部材
RU2494060C1 (ru) * 2012-07-03 2013-09-27 Юлия Алексеевна Щепочкина Сырьевая смесь для получения искусственной породы
US20140161980A1 (en) * 2012-12-10 2014-06-12 Corning Incorporated Methods and formulations for spray coating sol-gel thin films on substrates
JP6125275B2 (ja) * 2013-02-28 2017-05-10 株式会社ソフト99コーポレーション コーティング剤およびその塗布方法
JP6022433B2 (ja) * 2013-12-03 2016-11-09 日新製鋼株式会社 溶融Zn合金めっき鋼板の製造方法
TWI684569B (zh) * 2015-05-11 2020-02-11 日商日產化學工業股份有限公司 胺基矽烷修飾之膠體二氧化矽分散液及其製造方法
US10480081B2 (en) * 2015-09-28 2019-11-19 Sumitomo Osaka Cement Co., Ltd. Method of manufacturing dishwasher
CN105566864A (zh) * 2015-12-14 2016-05-11 广东弘擎电子材料科技有限公司 一种抗静电离型膜
US10308771B2 (en) 2016-08-31 2019-06-04 Ppg Industries Ohio, Inc. Coating compositions and coatings for adjusting friction
CN110615905A (zh) * 2018-06-19 2019-12-27 奇鼎科技股份有限公司 淋水板材的制法
CN109294296B (zh) * 2018-09-27 2020-10-27 湖南松井新材料股份有限公司 超耐污的水性单组份透明搪瓷涂料及其制备方法和施工工艺
CN114956593B (zh) * 2022-05-18 2024-05-28 唐山金信新能源科技有限公司 一种超亲水自清洁防雾玻璃及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06505282A (ja) * 1991-03-01 1994-06-16 アルキャン・インターナショナル・リミテッド 表面処理用組成物
WO1995017349A1 (fr) * 1993-12-21 1995-06-29 Mitsubishi Chemical Corporation Particules de silice reactive ultra-fines, suspension les contenant et composition de revetement dur
JPH09176527A (ja) * 1995-12-22 1997-07-08 Mitsubishi Materials Corp 紫外線および/または赤外線遮断膜とその形成用塗料および形成方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6183106A (ja) 1984-10-01 1986-04-26 Giken Kogyo Kk 水と接触する固体表面の汚損防止方法
KR0150944B1 (ko) * 1990-03-13 1998-10-01 김정배 대전방지 및 방현성 화상표시 스크린
US5514211A (en) * 1991-03-01 1996-05-07 Alcan International Limited Composition for surface treatment
EP0816466B1 (en) 1995-03-20 2006-05-17 Toto Ltd. Use of material having ultrahydrophilic and photocatalytic surface
US6291697B1 (en) * 1996-03-25 2001-09-18 Mitsubishi Chemical Corporation Siloxane compounds, process for preparing the same, and liquid composition containing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06505282A (ja) * 1991-03-01 1994-06-16 アルキャン・インターナショナル・リミテッド 表面処理用組成物
WO1995017349A1 (fr) * 1993-12-21 1995-06-29 Mitsubishi Chemical Corporation Particules de silice reactive ultra-fines, suspension les contenant et composition de revetement dur
JPH09176527A (ja) * 1995-12-22 1997-07-08 Mitsubishi Materials Corp 紫外線および/または赤外線遮断膜とその形成用塗料および形成方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012132012A (ja) * 2004-02-11 2012-07-12 Nof Metal Coatings Europe 有機チタン化物及び/又は有機ジルコン化物を含有する水性分散液の形態である防錆塗料組成物
JP2008500433A (ja) * 2004-05-28 2008-01-10 ピーピージー インダストリーズ オハイオ, インコーポレイテッド 親水性組成物、その生成のための方法、およびそのような組成物でコーティングされた基材
WO2006031012A1 (en) * 2004-09-15 2006-03-23 Lg Chem, Ltd. Films or structural exterior materials using coating composition having self-cleaning property and preparation method thereof
US7514498B2 (en) 2004-09-15 2009-04-07 Lg Chem Ltd. Films or structural exterior materials using coating composition having self-cleaning property and preparation method thereof
JP2010022997A (ja) * 2008-07-24 2010-02-04 Nippon Paint Co Ltd 複層塗膜および該複層塗膜を有する塗装体
WO2015001979A1 (ja) * 2013-07-05 2015-01-08 旭硝子株式会社 塗膜付き基板の製造方法
WO2022113759A1 (ja) * 2020-11-27 2022-06-02 日本ペイント・インダストリアルコーティングス株式会社 抗菌・抗ウイルスコーティング組成物
JP2022085649A (ja) * 2020-11-27 2022-06-08 日本ペイント・インダストリアルコ-ティングス株式会社 抗菌・抗ウイルスコーティング組成物

Also Published As

Publication number Publication date
US20010008696A1 (en) 2001-07-19
JP3367953B2 (ja) 2003-01-20
CA2293356A1 (en) 1999-10-21
CN1263547A (zh) 2000-08-16
CN1171961C (zh) 2004-10-20
DE69939244D1 (de) 2008-09-18
US6303229B2 (en) 2001-10-16
EP0989169B1 (en) 2008-08-06
EP0989169A4 (en) 2003-06-04
CA2293356C (en) 2003-12-30
EP0989169A1 (en) 2000-03-29
ATE403707T1 (de) 2008-08-15

Similar Documents

Publication Publication Date Title
JP3367953B2 (ja) 親水性無機塗膜形成方法及び無機塗料組成物
JP3182107B2 (ja) 機能性塗装品とその製造方法および用途
JP2920140B2 (ja) 防汚性シリコーンエマルジョンコーティング材組成物とその製造方法およびそれを用いた防汚性塗装品
KR100310196B1 (ko) 방오성실리콘에멀전코팅재조성물,이의제조방법및이를이용한방오성도장품
US20050266248A1 (en) Multi-layer coatings and related methods
JP2003206417A (ja) コーティング組成物及びコーティング層形成方法
JP2004359902A (ja) 光触媒塗料
JP3424533B2 (ja) 親水性無機塗料とそれを用いた親水性塗装品
JP2000239608A (ja) コーティング用樹脂組成物とこれを用いた塗装品
JP4010049B2 (ja) 機能性無機塗料、それを用いた塗装品およびそれらの用途
WO1999052983A1 (fr) Composition de revetement inorganique et film de revetement inorganique hydrophile
JPH11335625A (ja) コーティング用樹脂組成物とこれを用いた塗装品
JPH10296185A (ja) 低温硬化無機塗装方法
JPH1161042A (ja) 高親水性無機塗料、それを用いた塗装品およびそれらの用途
JP4088995B2 (ja) 機能性無機塗膜の形成方法および機能性塗装品
JP5399870B2 (ja) コーティング組成物及びその塗装品
JPH10287846A (ja) 機能性無機塗料、それを用いた塗装品およびそれらの用途
JP2000212510A (ja) 機能性無機塗料、その塗装方法および機能性塗装品
JPH10237358A (ja) 帯電防止機能無機塗料、それを用いた塗装品およびそれらの用途
JPH11166156A (ja) 低温硬化性無機塗料とそれを用いた塗装品
JP4374807B2 (ja) 親水性塗膜及び親水性塗膜の塗装方法
JP2001031913A (ja) 塗料組成物および該塗膜被覆物品
JP2000185368A (ja) 塗装品
JP2002161239A (ja) コーティング材およびそれを用いた塗装品
JP2000007991A (ja) 機能性無機塗料、その製造方法および機能性塗装品

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99800514.2

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 09445350

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2293356

Country of ref document: CA

Ref document number: 2293356

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1999913627

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1999913627

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1999913627

Country of ref document: EP