WO2022113759A1 - 抗菌・抗ウイルスコーティング組成物 - Google Patents

抗菌・抗ウイルスコーティング組成物 Download PDF

Info

Publication number
WO2022113759A1
WO2022113759A1 PCT/JP2021/041597 JP2021041597W WO2022113759A1 WO 2022113759 A1 WO2022113759 A1 WO 2022113759A1 JP 2021041597 W JP2021041597 W JP 2021041597W WO 2022113759 A1 WO2022113759 A1 WO 2022113759A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibacterial
coating
coating composition
antiviral
mass
Prior art date
Application number
PCT/JP2021/041597
Other languages
English (en)
French (fr)
Inventor
弘喜 安東
泰士 檜垣
洋太郎 阿部
正浩 西尾
尚紀 村田
洋二 高木
浩輔 高見
Original Assignee
日本ペイント・インダストリアルコーティングス株式会社
日本ペイントホールディングス株式会社
Toto株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=81755872&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2022113759(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 日本ペイント・インダストリアルコーティングス株式会社, 日本ペイントホールディングス株式会社, Toto株式会社 filed Critical 日本ペイント・インダストリアルコーティングス株式会社
Publication of WO2022113759A1 publication Critical patent/WO2022113759A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/02Emulsion paints including aerosols
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/14Paints containing biocides, e.g. fungicides, insecticides or pesticides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/20Diluents or solvents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic

Definitions

  • the present invention relates to an antibacterial / antiviral coating composition.
  • Patent Document 1 is characterized in that antibacterial inorganic fine particles containing silver, copper, zinc or a complex thereof are attached to the surface of powder coating material particles containing at least a resin and a curing agent. It describes the antibacterial powder coating material.
  • Patent Document 2 describes an antibacterial powder coating material in which an antibacterial agent containing an antibacterial metal component and a metal oxide other than the antibacterial metal component is adhered to the surface of the powder coating particle.
  • Patent Document 3 describes an antibacterial agent composed of an antibacterial inorganic oxide colloidal solution in which an antibacterial metal component is attached to negatively charged inorganic oxide colloidal particles.
  • Patent Document 4 describes that a composition containing an amine compound having a predetermined structure has excellent antiviral activity.
  • Patent Document 5 describes a titanium oxide solution obtained by heat-treating a solution containing titanium hydroxide obtained by a reaction between a titanium compound and an aqueous ammonia solution on the surface of a material to be coated at a temperature equal to or lower than the boiling point of the solution.
  • the photocatalyst coating material used is described, and it is described that the photocatalyst coating obtained by applying and drying the photocatalyst coating material has antibacterial properties.
  • compositions described in Patent Documents 1 to 4 have a problem in the persistence of antibacterial or antiviral properties. Further, it was found that the composition described in Patent Document 5 is inferior in durability (water rubbing resistance) because it does not sufficiently adhere to the object to be coated, although the antibacterial property is maintained.
  • the present invention focuses on the above-mentioned problems, is an antibacterial / antiviral coating composition capable of forming an antibacterial / antiviral coating layer having water rubbing resistance, and further provides storage stability and work during coating. It is an object of the present invention to provide an antibacterial / antiviral coating composition having good properties.
  • the present disclosure provides the following [1] to [16].
  • [1] Contains an inorganic binder (A), a photocatalytic titanium oxide (B) and an alcohol (C).
  • the inorganic binder (A) is an acidic type and is of an acidic type.
  • the mass ratio [(B) / (A)] of the photocatalytic titanium oxide (B) to the inorganic binder (A) is in the range of 0.5 to 5.0.
  • Antibacterial / antiviral coating composition [2] The antibacterial / antiviral coating composition according to [1], wherein the inorganic binder (A) contains a silicon compound-based binder.
  • the inorganic binder (A) contains at least one selected from the group consisting of colloidal silica and alkyl silicates.
  • the photocatalytic titanium oxide (B) contains silver, copper and tetraammonium hydroxide.
  • [6] The antibacterial / antivirus according to any one of [1] to [5], wherein the alcohol (C) is at least one selected from the group consisting of ethanol, isopropanol, normal propanol and propylene glycol. Coating composition.
  • the antibacterial / antiviral coating composition according to any one of [1] to [10] is applied to the object to be coated, and the weight of the antibacterial / antiviral coating composition after drying is 0.02 to.
  • a method for forming an antibacterial / antiviral coating layer which comprises a step of forming an antibacterial / antiviral coating layer by painting at 0.20 g / m 2 .
  • the antibacterial / anti-virus coating composition is subjected to dip coating, brush coating, coating with a cloth, roller coating, roll coater coating, spray coating, curtain flow coater.
  • the method for forming an antibacterial / anti-virus coating layer according to [13] which is carried out by coating by at least one method selected from the group consisting of coating, roller curtain coater coating and die coater coating.
  • an antibacterial / antiviral coating composition capable of forming an antibacterial / antiviral coating layer having water rubbing resistance, and further, storage stability and workability at the time of coating, particularly wettability to an object to be coated. Can provide a good antibacterial / antiviral coating composition.
  • the antibacterial / antiviral coating composition of the present invention contains an inorganic binder (A), a photocatalytic titanium oxide (B) and an alcohol (C).
  • the inorganic binder (A) is an acidic type and is of an acidic type.
  • the mass ratio [(B) / (A)] of the photocatalytic titanium oxide (B) to the inorganic binder (A) is in the range of 0.5 to 5.0.
  • the antibacterial property refers to the property of inactivating bacteria, and can be evaluated by, for example, the antibacterial activity value of JISR 1752 (2020). Further, the antiviral property means a property of inactivating a virus, and can be evaluated by, for example, the antiviral activity value of JIS R 1756 (2020).
  • the coating composition of the present invention contains the inorganic binder (A)
  • the antibacterial / antiviral coating layer (hereinafter, also referred to as “coating layer”) formed from the composition has good durability. Specifically, it has water rubbing durability and can maintain good antibacterial and antiviral properties. For example, the coating layer also improves durability against routine wiping.
  • the inorganic binder (A) is less likely to be decomposed even when used with the photocatalytic titanium oxide (B). Therefore, when the inorganic binder (A) is used, deterioration of the coating composition is unlikely to occur even in long-term use.
  • water rubbing resistance means that the photocatalyst is retained in the coating layer when the surface of the coating layer is wiped with a cloth soaked in water for daily care, in other words. , It means that antibacterial and antiviral properties can be maintained.
  • the coating layer formed from the coating composition of the present invention is less likely to peel off when the surface of the coating layer is wiped with a cloth soaked in water.
  • an acidic type binder is used as the inorganic binder (A).
  • an acidic type By using an acidic type, the coating composition can be stably present.
  • the term “stable” means that, for example, when the coating composition is allowed to stand, the inorganic binder (A), the photocatalytic titanium oxide (B), and the like are less likely to settle. In other words, the storage stability of the coating composition is good.
  • the acidic type refers to a binder (A) that can stably exist when it is in the acidic region. For example, in the case of a suspension of silica fine particles described later, the acidic type means that gelation is difficult in an acidic region (for example, pH 2.0 to 5.0).
  • the content of the inorganic binder (A) is preferably, for example, 0.05 to 5.0% by mass, more preferably 0.5 to 3.0% by mass in the coating composition.
  • the content of the inorganic binder (A) is 0.05 parts by mass or more, the rubbing durability of the formed coating layer can be improved, and when it is 5.0 parts by mass or less, the coating layer Deterioration of appearance, for example, hue change (for example, whitening due to thickening) can be suppressed. Further, when the content of the inorganic binder (A) is in the above range, the coating composition can be stably present.
  • the content of the inorganic binder (A) means the solid content mass or the active ingredient mass of the inorganic binder (A) with respect to the total mass of the coating composition, and specifically, the inorganic binder.
  • (A) is a silicon compound, it means the mass of the active ingredient, and in other cases, it means the mass of the solid content.
  • the active ingredient of the inorganic mechanical binder means the residue after hydrolysis with dilute ammonia water, evaporating the water content, and further firing at 900 ° C., and the solid content is 1 at 100 ° C. It means the residual heating after time drying.
  • the inorganic binder (A) examples include a binder containing a zirconium compound, a silicon compound, an aluminum compound and the like.
  • the inorganic binder (A) is at least one selected from the group consisting of a zirconium compound, a silicon compound and an aluminum compound.
  • zirconium compound examples include zirconium salts such as zirconium tetrachloride, zirconium oxychloride, zirconium nitrate, zirconium sulfate, zirconium acetate, and zirconium carbonate; tetraethoxyzirconium, tetra-i-propoxyzirconium, and tetra-n-butoxy.
  • zirconium alkoxides such as zirconium and tetra-t-butoxyzirconium.
  • Examples of the silicon compound include alkaline silicates such as sodium silicate, potassium silicate, lithium silicate, cesium silicate and rubidium silicate; alkyl silicates such as tetramethoxysilane and tetraethoxysilane; hydrolysis products of alkyl silicates; methyltrimethoxysilane, Methyltriethoxysilane, Methyltricrolsilane, Methyltribromsilane, Methyltriisopropoxysilane, Methyltrit-butoxysilane, Ethyltrimethoxysilane, Ethyltriethoxysilane, Ethyltricrolsilane, Ethyltribromsilane, Ethyltriisopropoxysilane And the like, such as alkoxysilane; silanol, which is a hydrolysis product of alkoxysilane, and the like can be mentioned.
  • alkaline silicates such as
  • aluminum compound examples include aluminum salts such as aluminum lactate, aluminum phosphate, and aluminum chloride; aluminum alkoxides such as triethoxyaluminum, tri-i-propoxyaluminum, tri-n-butoxyaluminum, and trit-butoxyaluminum aluminum alkoxide. Can be mentioned.
  • the inorganic binder (A) preferably contains a silicon compound-based binder from the viewpoint of water rubbing resistance, antibacterial property and antiviral property.
  • a silicon compound-based binder from the viewpoint of water rubbing resistance, antibacterial property and antiviral property.
  • the fixability to the object to be coated can be particularly good.
  • the silicon compound-based binder include a particle type such as silica and a dissolved molecule type such as a silanol oligomer.
  • the silicon compound-based binder is more preferably a silicon compound.
  • the silicon compound include alkali silicates, specifically, silica fine particles, alkyl silicates and the like. It is considered that such compounds are more likely to exhibit antibacterial and antiviral properties because they attract water to the coating layer due to their own hydrophilicity and efficiently generate hydroxyl radicals by a photocatalyst.
  • the shape of the silicon compound is not particularly limited, and examples thereof include a spherical shape and a chain shape.
  • the average primary particle size of the silica fine particles is, for example, 3 to 50 nm, preferably 10 to 25 nm, and more preferably 10 to 15 nm.
  • the coating composition can be stably present and can be stably present.
  • the coating composition can contribute to the formation of a coating layer having a good appearance.
  • the average primary particle size of the silica fine particles can be measured by a known measuring method such as electron microscope observation and BET method (specific surface area method).
  • the average primary particle size of the silica fine particles is a value obtained by converting from the specific surface area by the BET method.
  • the silica fine particles can be used as a suspension containing the silica fine particles (that is, colloidal silica).
  • the dispersion medium of the suspension include water; an organic solvent such as methanol, ethanol, isobutanol, and propylene glycol monomethyl ether.
  • the suspension those containing silica fine particles in an amount of, for example, 5 to 50% by mass with respect to the suspension can be used.
  • the suspension containing silica fine particles for example, a suspension in which an electrolyte such as sodium generally contained in the suspension containing silica fine particles is removed, or an acid such as hydrochloric acid, sulfuric acid, phosphoric acid or acetic acid is used for stabilization. And preferably, the one from which the electrolyte has been removed can be used. Only one of these components or a combination of two or more can be used.
  • the pH of the suspension of silica fine particles is preferably 2.0 to 5.0, more preferably 2.5 to 4.5. When the pH is within this range, it can stably exist in the suspension of silica fine particles without gelation or precipitation of solid content. Further, even when added to the coating composition, the coating composition is less likely to cause gelation or sedimentation of solid content, and can exist stably.
  • silica fine particles including those in the form of a suspension of silica fine particles.
  • examples of commercially available products include Snowtex (registered trademark) O, O-40, OL, OXS, OS, OUP, PS-SO, PS-MO (manufactured by Nissan Chemical Industries, Ltd.) and the like. These may be used alone or in combination of two or more.
  • Alkyl silicate means an alkyl silicate compound and / or a partially hydrolyzed condensate thereof.
  • the alkyl silicate compound is a compound having silicon to which a hydrolyzable group is bonded, and is represented by, for example, the following general formula (1).
  • R represents an alkyl group having 1 to 4 carbon atoms, and may be the same or different.
  • alkyl silicate compound represented by the above formula (1) examples include tetramethyl silicate, tetraethyl silicate, tetra-n-propyl silicate, tetra-i-propyl silicate, tetra-n-butyl silicate, tetra-i-butyl silicate and tetra.
  • -T-Butyl silicate, methyl ethyl silicate, methyl propyl silicate, methyl butyl silicate, ethyl propyl silicate, propyl butyl silicate and the like can be mentioned. These may be used alone or in combination of two or more.
  • Examples of the partially hydrolyzed condensate of the alkyl silicate compound include those obtained by partially hydrolyzing and condensing the above alkyl silicate compound.
  • the degree of condensation is preferably 1 to 20, more preferably 3 to 15.
  • Alkyl silicate can be used, for example, in a state of being dissolved in water.
  • the pH of the aqueous solution is, for example, 2 to 3.
  • alkyl silicate a commercially available product can be used.
  • examples of commercially available products include ethyl silicate 48 (tetraethoxysilane partial hydrolysis condensate, manufactured by Corcote), MKC silicate MS51 (tetramethoxysilane partial hydrolysis condensate, manufactured by Mitsubishi Chemical Corporation), and EMS485 (ethyl methyl silicate moiety). Hydrolyzed condensate, manufactured by Corcote Co., Ltd.) and the like.
  • Photocatalytic titanium oxide (B) By including the photocatalytic titanium oxide (B) in the coating composition, antibacterial and antiviral properties can be imparted to the coating layer.
  • the photocatalytic type titanium oxide (B) exhibits a photocatalytic effect by being applied with light energy. Light energy is imparted by, for example, ultraviolet light or visible light.
  • the photocatalytic titanium oxide (B) can be used in the form of powder, sol, solution, etc., although the form of use thereof is not particularly limited as long as it exhibits photocatalytic properties. From the viewpoint that it can be stably present in the coating composition, the photocatalytic titanium oxide (B) is preferably used as a titanium oxide sol in which titanium oxide is present as fine particles.
  • the photocatalytic titanium oxide (B) consists of anatase-type or rutile-type crystals having a photocatalytic effect and a mixture thereof.
  • the anatase-type or rutile-type titanium oxide means that at least the result of powder X-ray diffraction of the powder obtained by drying is clearly identified as the anatase-type or rutile-type. Titanium oxide showing anatase type or rutile type shows high photocatalytic performance.
  • the photocatalytic titanium oxide (B) is preferably anatase type. This is because sufficient light energy can be obtained even with weak light energy indoors.
  • the average particle size of the photocatalytic titanium oxide (B) is preferably more than 5 nm and 20 nm or less, and more preferably 10 nm or more and 20 nm or less.
  • the average particle size of the photocatalytic titanium oxide means a value calculated as a number average value obtained by measuring the length of any 100 particles in the field of view 200,000 times by scanning electron microscope observation. ..
  • As the shape of the particles a true sphere is the best, but a substantially circular shape or an elliptical shape may be used, and the particle diameter in that case is approximately calculated as ((major diameter + minor diameter) / 2).
  • the concentration of titanium oxide (TiO 2 ) contained in the photocatalytic titanium oxide sol can be adjusted by an operation such as ordinary concentration.
  • the concentration of titanium oxide (TiO 2 ) is preferably in the range of 3 to 15% by mass as TiO 2 with respect to the photocatalytic titanium oxide sol.
  • the titanium oxide sol does not settle, thicken, etc., has an advantage that storage stability can be improved, and the productivity of the coating liquid is also improved.
  • the photocatalytic titanium oxide (B) contains silver and copper and tetraammonium hydroxide, as well as titanium oxide (TiO 2 ).
  • the silver is preferably contained in the photocatalytic titanium oxide (B) in a non-ionized form such as an oxide or a hydroxide.
  • the silver content is preferably in the range of 0.1 to 5.0% by mass, more preferably 0 . It is in the range of 8 to 3.0% by mass. When the silver content is within the above range, there is an advantage that titanium oxide can be well dispersed in the sol and the antibacterial and antiviral effects are sufficiently exhibited.
  • the tetraammonium hydroxide is added to stabilize the photocatalytic titanium oxide (B) as a photocatalytic titanium oxide sol. Since tetraammonium hydroxide hardly dissolves the antibacterial metal, discoloration of the antibacterial metal can be suppressed while stabilizing the titanium oxide sol.
  • Examples of the quaternary ammonium hydroxide include tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, and tetrabutylammonium hydroxide. From the viewpoint of availability, tetraethylammonium hydroxide is preferable.
  • the tetraammonium hydroxide is preferably contained in the range of 0.01 to 0.1 mol with respect to 21 mol of TiO. With the content of tetraammonium hydroxide in the above range, the titanium oxide sol may be present more stably.
  • the copper When added together with tetraammonium hydroxide, the copper can contribute to the suppression of silver discoloration in the photocatalytic titanium oxide sol. Copper is preferably added as an oxide, a hydroxide, or the like from the viewpoint of not containing nitrate ions or chlorine ions that destabilize the sol.
  • the copper content is preferably in the range of 1 to 30, more preferably in the range of 1 to 10, when converted as the ratio of copper oxide to silver oxide, in other words, CuO / Ag 2O (mass ratio).
  • the photocatalytic titanium oxide (B) is a titanium oxide sol containing silver, copper and tetraammonium hydroxide, discoloration of silver can be significantly suppressed.
  • the color quality index ⁇ L value of the photocatalytic titanium oxide (B) is measured, the ⁇ L value due to light irradiation having a wavelength threshold of 300 to 400 nm can be 10 or less.
  • the mass ratio [(B) / (A)] of the photocatalytic titanium oxide (B) to the inorganic binder (A) is in the range of 0.5 to 5.0, preferably 0.5 to 2.5. More preferably, it is 0.5 to 2.0.
  • the amount of the inorganic binder means the solid content mass or the active ingredient mass of the inorganic binder
  • the amount of the photocatalytic titanium oxide means the solid content mass of the photocatalytic titanium oxide.
  • the coating layer can exhibit antibacterial and antiviral properties and good water rubbing resistance. can. Further, when used in the above ratio, the coating layer exhibits good durability and can maintain antibacterial and antiviral properties.
  • the mass ratio [(B) / (A)] is the photocatalytic titanium oxide (B) with respect to SiO 2 contained in the inorganic binder (A).
  • the mass ratio of TiO 2 contained in other words, TiO 2 / SiO 2 is preferable.
  • the mass of SiO 2 contained in the inorganic binder (A) is a value obtained by converting the silicon content contained in the inorganic binder (A) into SiO 2 .
  • a titanium acid gel obtained by neutralizing and decomposing a titanium salt with aqueous ammonia can be used as a starting material.
  • the method for producing the photocatalytic titanium oxide sol the following methods can be specifically exemplified. (1) A method in which a silver and copper oxide or a hydroxide is added to a titanium acid gel, and then a hydrothermal treatment is performed, and then quaternary ammonium hydroxide is added. (2) A method in which only tetraammonium hydroxide is added to a titanium acid gel, and then a hydrothermal treatment is performed, and then an oxide or hydroxide of silver and copper is added.
  • the heating time may be 1 to 3 hours at a temperature of 60 to 100 ° C.
  • ⁇ Alcohol (C)> When the coating composition contains alcohol (C), the wettability to the object to be coated (for example, the surface of the substrate, the coating film preformed on the surface of the substrate, etc.) is improved, and the workability at the time of coating is improved. Become good. Further, by using the alcohol (C), the storage stability of the coating composition can be improved.
  • the alcohol (C) means a compound having at least one hydroxyl group.
  • an alcohol having 1 to 7 carbon atoms can be preferably used.
  • examples of alcohols having 1 to 7 carbon atoms include monoalcohols such as methanol, ethanol, normal propanol, isopropanol and butanol; alkylene glycols such as ethylene glycol, diethylene glycol and propylene glycol; ethylene glycol monomethyl ether and ethylene glycol monoethyl ether.
  • alkylene glycol monoalkyl ethers such as propylene glycol monomethyl ether, ethylene glycol monobutyl ether, and propylene glycol monobutyl ether.
  • the alcohol may be used alone or in combination of two or more.
  • Alcohol (C) is at least one selected from the group consisting of ethanol, isopropanol, normal propanol and propylene glycol in one embodiment. It is particularly preferable to use these alcohols (C) from the viewpoint of improving coating workability.
  • the alcohol (C) is more preferably an alcohol having 1 to 4 carbon atoms.
  • alcohol (C) monoalcohol is preferable, and ethanol, normal propanol, and isopropanol are more preferable from the viewpoint of volatile drying property.
  • the alcohol (C) it is preferable to use at least one selected from the group consisting of ethanol, normal propanol and isopropanol.
  • the time until the coating layer exhibits antibacterial and antiviral properties can be shortened, and the antibacterial and antiviral properties can be exhibited immediately after the coating composition is applied.
  • the alcohol (C) is preferably contained in an amount of 15 to 90% by mass, more preferably 50 to 80% by mass, still more preferably 50 to 59% by mass, based on the coating composition.
  • the time until the antibacterial and antiviral properties are exhibited in the coating layer becomes shorter. Further, the above-mentioned content is advantageous from the viewpoint of transportation, storage and the like.
  • the alcohol (C) is preferably contained in an amount of 10 to 50% by mass, more preferably 10 to 30% by mass, based on the coating composition.
  • the coating composition of the present invention may contain a solvent other than alcohol.
  • the solvent other than alcohol include water and organic solvents (excluding alcohol).
  • the coating composition of the present invention preferably contains water.
  • water By including water, workability is improved.
  • the water is preferably ion-exchanged water, distilled water, filtered water or pure water.
  • the content of water is not particularly limited and may be adjusted so that the total amount of the coating composition with other components is 100% by mass. For example, 5 to 85% by mass, specifically 35. It may contain up to 70% by mass.
  • the coating composition of the present invention may contain a surfactant.
  • a surfactant By including the surfactant, the coating workability of the composition, particularly the wettability to the object to be coated, can be improved.
  • Nonionic surfactants can contribute to improving the stability of the coating composition.
  • the nonionic surfactant can contribute to the improvement of the wettability of the coating composition to the object to be coated.
  • a nonionic surfactant it is possible to reduce the bias of the composition in the coating layer. This is because even when the alcohol (C) volatilizes first from the coating composition, the presence of the nonionic surfactant causes the inorganic binder (A) and the photocatalytic titanium oxide (B) in the composition. ) Can be prevented from being biased.
  • the content of the nonionic surfactant is preferably 0.02 to 5% by mass, more preferably 0.02 to 1% by mass, based on the coating composition.
  • the nonionic surfactant in the above range antibacterial and antiviral properties can be exhibited in the coating layer obtained from the coating composition. Further, by including the above range, it is possible to secure the wettability to the object to be coated while suppressing foaming during the production of the coating composition.
  • the total amount of the nonionic surfactants is adjusted so as to be within the above range with respect to the coating composition.
  • the HLB of the nonionic surfactant is preferably 12 or less, more preferably 4 to 12.
  • HLB has a balance between hydrophilicity and lipophilicity, which is defined by the Griffin method and is expressed by (molecular weight of the hydrophilic portion of the nonionic surfactant) ⁇ (total molecular weight of the nonionic surfactant) ⁇ 20. It is an index to represent.
  • the HLB of the nonionic surfactant is in such a range, it is possible to secure the wettability to the object to be coated while suppressing foaming during the production of the coating composition.
  • the average HLB of each surfactant is appropriately adjusted to be within the above range.
  • nonionic surfactant examples include a surfactant having an alkylene oxide unit, an acetylenediol-based surfactant, a vinyl-based polymer surfactant, a silicone-based surfactant, and a fluorine-based surfactant. These surfactants may be used alone or in combination of two or more.
  • Examples of the surfactant having the alkylene oxide unit include polyoxyalkylene alkyl ether-based surfactants such as polyoxyethylene oleyl ether and polyoxyethylene lauryl ether; and polyoxyalkylene fatty acid ester-based surfactants. can. As such a surfactant, a commercially available product may be used. Examples of the polyoxyalkylene alkyl ether-based surfactant include Newcol (registered trademark) 2302, 2303, 2305, 3508, 1204, 1305, 2502-A, 2303-Y, 2304-YM, 2304-Y, (Japan).
  • Emulmin (registered trademark) 40, 50, 70, NL-70, NL-80, Cedran (registered trademark) FF-180, SF-506, New Pole (registered trademark) PE-62, 64, 74, 75, (manufactured by Sanyo Kasei Co., Ltd.) and the like can be mentioned.
  • the polyoxyalkylene fatty acid ester-based surfactant include Ionet (registered trademark) MS-400, MS-1000, MO-600, DS-4000, and DO-1000 (manufactured by Sanyo Chemical Industries, Ltd.).
  • the acetylene diol-based interface active agent is, for example, a surfactant having an acetylene diol unit (that is, having an acetylene bond and two hydroxyl groups at the same time in the same molecule), and an alkylene oxide unit in which an alkylene oxide is introduced into the hydroxyl group.
  • It can be a surfactant having an acetylene diol unit and an acetylene diol unit.
  • a commercially available product may be used.
  • Surfinol® 104E, 420, 440, 2502, Dynol® 604, 607, Orfin® PD-001, 002W, 004, EXP. 4001, 4200, 4300 (manufactured by Nissin Chemical Industry Co., Ltd.) and the like can be mentioned.
  • vinyl-based polymer surfactant examples include polyvinylpyrrolidone (PVP); a surfactant obtained by graft-polymerizing polyvinylpyrrolidone with polyvinyl alcohol (PVA).
  • PVP polyvinylpyrrolidone
  • PVA polyvinyl alcohol
  • a commercially available product may be used.
  • Pittscol (registered trademark) K-30, K-30L, K-90, K-90L, V-7154 manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.
  • silicone-based surfactant examples include Granol (registered trademark) 100, 400, 440, Polyflow (registered trademark) KL-245, KL-270, KL-280, KL-600 (manufactured by Kyoeisha Chemical Co., Ltd.), BYK. -307, 333, 345, 346, 348, 375, 378 (manufactured by Big Chemie Japan), SN Wet (registered trademark) 125, 126 (manufactured by San Nopco Ltd.) can be mentioned.
  • fluorine-based surfactant examples include Futergent (registered trademark) 250, 251, 222F, 208G (manufactured by Neos), Megafuck (registered trademark) F-443, F-444, F-445, F-. 470, F-471, F-475, F-477, F-479 (manufactured by DIC), NOVEC FC-4430, 4432 (manufactured by 3M), Unidyne (registered trademark) DS-401, 403 (Nikkei Seisha) EF-121, EF-122A, EF-128B, EF-122C (manufactured by Gemco).
  • the above-mentioned acetylene diol-based surfactant is represented by a preferable chemical formula as follows.
  • R 1 , R 2 , R 3 , and R 4 are the same or different, and are linear or branched hydrocarbon groups having 1 to 10 carbon atoms, preferably linear chains having 1 to 8 carbon atoms. Or represents a branched alkyl group.
  • Surfactant having an alkylene oxide unit and an acetylene diol unit:
  • R 5 , R 6 , R 7 , and R 8 are the same or different, and are linear or branched hydrocarbon groups having 1 to 10 carbon atoms, preferably linear chains having 1 to 8 carbon atoms. Or represents a branched alkyl group.
  • n1 and n2 are the same or different and represent integers of 0 to 20, and do not represent 0 at the same time, but preferably represent integers of 1 to 20.
  • the coating composition contains 5 to 20% by mass of water and 0.0 to 0.05 parts by mass of a nonionic surfactant.
  • a nonionic surfactant in one embodiment, 50 to 85% by mass of water and 0.02 to 1.0 part by mass of a nonionic surfactant are contained in the coating composition.
  • the coating composition contains 50 to 90% by mass of alcohol (C), 5 to 45% by mass of water, and 0.0 to 0.05 parts by mass of a nonionic surfactant.
  • the coating composition contains 10 to 30% by mass of alcohol (C), 65 to 85% by mass of water, and 0.02 to 1.0 part by mass of a nonionic surfactant.
  • the coating composition of the present invention has, for example, a surface tension of 20 to 40 mN / m, preferably 24 to 35 mN / m.
  • the surface tension of the coating composition of the present invention is, for example, "Latest instrument analysis method for color materials and polymer materials-Analysis and evaluation of physical properties-" (Yunori Hoshino, Editor-in-Chief, edited by Japan Society of Color Material). , P.289 Surface Tension Measurement Method, “Du Nouy Ring Method”).
  • the coating composition of the present disclosure may contain other additives other than the above, if necessary.
  • additives include, for example, pigments, aggregates (sand, etc.), film-forming aids, drying delay aids, viscosity regulators, preservatives, fungicides, preservatives, antifoaming agents, light stabilizers, etc. Examples thereof include antioxidants, ultraviolet absorbers, pH adjusters and the like.
  • the coating composition of the present disclosure may be an enamel coating composition containing a pigment or a clear coating composition containing no pigment.
  • the coating composition of the present disclosure is used as a clear coating composition
  • the clear coating composition is colorless and transparent or lightly colored and transparent, it is difficult to distinguish the boundary between the coated layer and the uncoated layer, and the coating layers overlap.
  • a painted part or a forgotten part of the coating composition may occur.
  • the coating composition is wasted because the coating composition is used more than necessary, the film thickness of the coating layer becomes thicker than necessary, and the excess coating layer sags. May occur.
  • the coating layer does not exist in the portion where the coating is forgotten, antibacterial and antiviral properties cannot be obtained.
  • the coating compositions of the present disclosure may contain decolorizing dyes.
  • the decolorizing dye is a component that is colored in the state of the coating composition and can be decolorized by, for example, light, pH change, etc. after the formation of the coating layer (a component that can be decolorized by light). Also called “photochromatic pigment").
  • the photochromic dye may include one or more selected from the group consisting of Monascus-based dyes, betalain-based dyes and Spirulina-based dyes.
  • the coating composition of the present disclosure having such a photochromic dye is used, the coating layer can be decolorized by a simple means of light.
  • Monascus pigments examples include ancaflavin (CAS number 50980-32-0), monascorbrin (CAS number 13283-90-4), monascorbramin (CAS number 3627-51-8), and the like. Examples thereof include xanthomonasin A1 (Xanthomonascin A1), xanthomonasin A2 (Xanthomonasin A2), xanthomonasin A (Xanthomonasin A) and xanthomonasin B (Xanthomonasin B).
  • the Monascus pigment one kind may be used alone, or two or more kinds may be used in combination.
  • xanthomonasin A1 Xanthomonasin A1
  • xanthomonasin A2 Xanthomonasin A2
  • xanthomonasin A Xanthomonasin A
  • xanthomonasin B Xanthomonasin B
  • betalain dyes examples include betanin (CAS number 7569-95-2), betanidin (CAS number 2181-76-2), isobetanin (CAS number 15121-53-6), and isobetanin (CAS number 15121-53-6). No. 4934-32-1), betaxanthine, betacyanin and the like can be mentioned.
  • betalain dye one type may be used alone, or two or more types may be used in combination.
  • the structures of betaxanthine and betacyanin are as follows.
  • Spirulina dyes examples include phycocyanobilin (CAS No. 20298-86-6) and the like.
  • One type of Spirulina dye may be used alone, or two or more types may be used in combination.
  • the Monascus pigment comprises ancaflavin, monascorbrin, monascolbramin, xanthomocin A1, xanthmonacin A2, xantomonasin A and xantomonasin B. Includes one or more species selected from the group.
  • the Monascus pigment comprises one or more selected from the group consisting of ancaflavin, monascorbrin, monascorbramin, xanthomonasin A2 and xantomonasin A. ..
  • the betalain-based pigment comprises one or more selected from the group consisting of betanin, betanicin, isobetanin, isobetanidin, betaxanthine, and betacyanin.
  • the spirulina dye comprises phycocyanobilin.
  • a dye that develops or decolorizes depending on the pH of the coating composition may be used.
  • pH indicators having a colorless acidic to neutral color and a basic color such as phenolphthalein, thymolphthalein, bromcarboxythymolphthalein, o-cresolphthalein, cyanine, and ⁇ -naphthol. Examples thereof include phthalein and p-nitrophenyl.
  • the amount of the decolorizing dye in the coating composition can be appropriately adjusted according to the color depth of the decolorizing dye, the concentration or viscosity of the coating composition, the thickness of the coating layer, the time until decolorization, and the like.
  • the amount of the decolorizing dye in the coating composition is, for example, 0.001 to 5.00 parts by mass with respect to 100 parts by mass of the coating composition.
  • the method for preparing the coating composition is not particularly limited.
  • it can be prepared by selecting and using a mixer such as a sand grind mill, a ball mill, a blender, a paint shaker or a disper, a disperser, a kneader and the like, and mixing each component.
  • the method of using the coating composition of the present disclosure is not particularly limited, and for example, the coating composition can be applied or pre-applied to a portion to which bacteria or viruses adhere or may adhere.
  • the coating composition of the present disclosure may be, for example, dip coating, brush coating, roller coating, coating with a cloth, roll coater coating, spray coating, curtain flow coater coating, roller curtain coater coating, Daiko. It can be painted using a tar paint or the like.
  • the coating method is appropriately selected according to the type and application of the object to be coated.
  • spray coating examples include air spray coating and airless spray coating in one embodiment.
  • the spray coating examples include aerosol spray coating and non-aerosol spray coating in one embodiment.
  • the coating composition can be used, for example, by filling it in a discharge container.
  • the discharge container examples include a spray container and a squeeze container. It is preferable to use a spray container as the discharge container from the viewpoint of excellent paintability on the object.
  • the spray container that is, the aerosol spray container and the non-aerosol spray container may be a manual type or an electric type.
  • the above aerosol spray container uses a pressure resistant container.
  • the coating composition of the present disclosure is used together with a gas such as a liquid gas and a compressed gas.
  • a gas such as a liquid gas and a compressed gas.
  • the liquid gas and the compressed gas include liquefied petroleum gas, dimethyl ether, carbon dioxide gas, nitrogen gas, isopentan and the like.
  • the non-aerosol spray container is provided with a mechanism for ejecting the liquid filled in the container to the outside of the container in the form of mist or foam.
  • gas such as liquid gas and compressed gas is substantially not used.
  • the non-aerosol spray container include a pressure-accumulation type or a direct pressure type spray container such as a pump type and a trigger type.
  • the coating composition can also form a coating layer by spraying the coated portion, covering the coated portion with paper, and sprinkling the composition directly.
  • the coating composition can form a coating layer by coating with a cloth.
  • the coating layer can also be formed by impregnating the cloth with the coating composition and wiping the coated portion (the surface of the object to be coated).
  • the fibers constituting the cloth are not particularly limited, and examples thereof include natural fibers, synthetic fibers, semi-synthetic fibers, and regenerated fibers.
  • the type of cloth is not particularly limited, and examples thereof include woven cloth, non-woven fabric, and knitted fabric.
  • the coating layer is formed by the coating composition of the present disclosure.
  • the formation of the coating layer A step of coating an object to be coated with a coating composition so that the mass of the coating composition after drying is 0.20 g / m 2 or less to form a coating layer. It is preferable to carry out by a method including.
  • the mass after drying may be, for example, 0.02 to 0.20 g / m 2 .
  • a coating layer having good physical properties such as antibacterial and antiviral properties can be formed.
  • the coating composition may be applied a plurality of times as needed, and the number of times of application is appropriately adjusted depending on the solid content concentration of the coating composition and the amount of one application. ..
  • the film thickness of the coating layer (film thickness after drying) is preferably 50 nm to 5 ⁇ m, and more preferably 50 nm to 1 ⁇ m.
  • the coating layer may be provided on the entire surface of the object to be coated, or may be provided only on a part of the surface of the object to be coated.
  • the coating layer is obtained by applying the coating composition to an object to be coated and then drying it at room temperature (for example, 5 ° C to 35 ° C). In another embodiment, the coating layer is obtained by drying the coating composition at room temperature to 80 ° C. In another embodiment, the coating layer is obtained by drying the coating composition at 80 ° C to 130 ° C.
  • the drying time is not particularly limited, but is preferably 30 seconds to 20 minutes, more preferably 30 seconds to 10 minutes.
  • the object to be coated is not particularly limited, and examples thereof include a metal base material, a plastic base material, and an inorganic material base material. Further, a coating film previously formed on these substrates may be used as an object to be coated.
  • a coating composition of the present disclosure By coating the surface of the object to be coated with the coating composition of the present disclosure, a coating having good water-rubbing resistance, good antibacterial and antiviral properties, and capable of sustaining antibacterial and antiviral properties. You can get a layer.
  • the metal base material is not particularly limited, and examples thereof include an aluminum plate, an iron plate, a galvanized steel plate, an aluminum galvanized steel plate, a stainless steel plate, and a tin plate.
  • the plastic base material include an acrylic plate, a polyvinyl chloride plate, a polycarbonate plate, an ABS plate, a polyethylene terephthalate plate, a polyolefin plate and the like.
  • the inorganic material base material include ceramic base materials and glass base materials described in JIS A 5422, JIS A 5430, and the like.
  • the material of the object to be coated includes, for example, acrylic resin, methacrylic resin, alkyd resin, phenol resin, epoxy resin, isocyanate resin, melamine resin, silicone resin, polyester resin, polyurethane resin, fluororesin, rubber and the like.
  • Organic or plastic materials glass; tin, iron, steel, copper, gold, silver, aluminum and other metals; asphalt; ceramics; concrete, mortar, brick, slate, marble and other stones; wood, plywood, etc. Can be done.
  • the coating film examples include an organic coating film, an inorganic coating film, an organic-inorganic hybrid coating film, and a fluororesin coating film.
  • the coating compositions of the present disclosure may adhere well to these coatings as well. By coating the coating composition of the present disclosure on these coating films and forming a layer, not only antibacterial properties and antiviral properties can be imparted, but also a good appearance can be obtained and hue changes and the like can be suppressed. .. In addition, peeling of the formed coating layer can be suppressed. Further, by using the coating layer, chalking, fading, etc. of the enamel-based coating film can be suppressed.
  • the present disclosure also relates to articles comprising a substrate and a coating layer of the present disclosure on the surface of the substrate.
  • the above-mentioned article is not particularly limited and can be appropriately selected.
  • vehicles such as automobiles, trains, buses, and taxis
  • aircraft such as ships
  • transportation means such as escalator and elevator
  • Public facilities Public facilities, commercial facilities, education / research facilities, etc.
  • Silver oxide (Mass ratio) of silver oxide (CuO / Ag 2O (mass ratio)] is 5 in 200 g of this slurry so that the total of Ag 2 O and Cu O is 5% by mass with respect to TiO 2 and the ratio of copper to silver is 5.
  • Ag 2 O manufactured by Wako Pure Chemical Industries, Ltd.
  • Cu (OH) 2 manufactured by Kanto Chemical Co., Ltd.
  • 0.6 g were added.
  • the inorganic binders, alcohols, surfactants, and decolorizing dyes used in Examples and Comparative Examples are as follows.
  • Nonion-based surfactant (Nonion-based surfactant) (D1) Surfinol 420: Acetylenediol-based surfactant (manufactured by Nissin Chemical Industry Co., Ltd.), HLB: 4, active ingredient concentration: 100% by mass (D2) Emulmin NL-70: Polyoxyalkylene alkyl ether-based surfactant (manufactured by Sanyo Chemical Industries, Ltd.), HLB: 10.6, active ingredient concentration: 100% by mass
  • Example 1 0.75 parts by mass of silica fine particles (A1), 4.33 parts by mass of photocatalytic titanium oxide (B1), 59.00 parts by mass of alcohol (C1) and 35.92 parts by mass of ion-exchanged water are sequentially added while stirring. And mixed to prepare the coating composition 1.
  • Examples 2 to 20 and Comparative Examples 1 to 7 were operated in the same manner as in Example 1 except that the content and type of each component were changed to the conditions shown in Tables 1A to 1D to prepare coating compositions, respectively. ..
  • A6 8.5 parts by mass of MKC silicate MS51, 0.1 part by mass of aluminum chelate D (manufactured by Kawaken Fine Chemical Co., Ltd., active ingredient concentration: 76% by mass), 40.0 parts by mass of ethanol, and ion exchange.
  • the obtained coating composition and test plate were evaluated as follows.
  • test plates obtained in Examples and Comparative Examples were subjected to an antibacterial property test using Staphylococcus aureus according to the method specified in JIS R 1752 (2020). That is, a 20 W white fluorescent lamp Neoline FL20S / W (manufactured by Toshiba Lighting & Technology Corporation) was used as a light source, and visible light of 380 nm or more was irradiated with an illuminance of 500 lux through an ultraviolet cut filter N-169 (manufactured by Nitto Jushi Kogyo Co., Ltd.). .. The illuminance was measured using an illuminance meter IM-5 (manufactured by Topcon).
  • the antibacterial activity value (R) in the bright place was calculated by the following formula, assuming that the irradiation time of visible light was 8 hours.
  • the reference plate used was a soda glass plate that had not been antibacterial processed.
  • UB Viable cell count per reference plate after light irradiation (cfu)
  • the measured antibacterial activity value (R) in the bright place was evaluated according to the following evaluation criteria. A score of 1 was the best, a score of 5 was the worst, and a score of 3 or higher was passed.
  • 3: R is 2 or more and less than 3.
  • 4: R is 1 or more and less than 2. 5: R is less than 1.
  • test plates obtained in the Examples and Comparative Examples were subjected to an antiviral test using bacteriophage Q ⁇ according to the method specified in JIS R 1756 (2020). That is, a 20 W white fluorescent lamp Neoline FL20S / W (manufactured by Toshiba Lighting & Technology Corporation) was used as a light source, and visible light of 380 nm or more was irradiated with an illuminance of 500 lux through an ultraviolet cut filter N-169 (manufactured by Nitto Jushi Kogyo Co., Ltd.). .. The illuminance was measured using an illuminance meter IM-5 (manufactured by Topcon).
  • the antiviral activity value (V) in the bright place was calculated by the following formula, assuming that the irradiation time of visible light was 4 hours.
  • As the reference plate a soda glass plate without antiviral processing was used.
  • Antiviral activity value in the bright place: V Log 10 (UV / TV)
  • TV Bacteriophage infectious titer per test plate after light irradiation (pfu)
  • UV Bacteriophage infectious titer per reference plate after light irradiation (pfu)
  • the front surface and the back surface of the coated body were sterilized by irradiating them with a germicidal lamp in a clean bench.
  • V antiviral activity value
  • Residual photocatalytic rate (%) Color difference ( ⁇ E) of the part where the friction test was performed / Color difference ( ⁇ E) of the part where the friction test was not performed ⁇ 100 ⁇ : Residual photocatalytic rate is 95% or more ⁇ : Residual photocatalytic rate is 80% or more and less than 95% ⁇ : Residual photocatalytic rate is 40% or more and less than 80% ⁇ : Residual photocatalytic rate is less than 40%
  • Example 6 Visibility evaluation With respect to the test plate obtained in Example 20, the color of the coating layer immediately after the test plate was produced (the coating layer was formed) was visually observed and evaluated according to the following criteria. ⁇ The above was accepted. ⁇ : The color of the colored coating layer can be clearly confirmed. ⁇ : The color of the colored coating layer can be confirmed. ⁇ : The color of the colored coating layer can be barely confirmed.
  • Example 20 Evaluation of photochromicity
  • the test plate obtained in Example 20 was irradiated with visible light to carry out a photochromic test. Based on the color of the coating layer immediately after the test plate was prepared (the coating layer was formed), it was coated every hour from the start of visible light irradiation using a color difference meter CR-400 (manufactured by Konica Minolta). The color difference ( ⁇ E) of the layers was measured. The time until ⁇ E became 1 or less was measured and evaluated according to the following criteria. Evaluation ⁇ or higher was regarded as acceptable.
  • Visible light source White fluorescent lamp, Neoline FL20SW (manufactured by Toshiba Litec), Wavelength: 400-800 nm, Illuminance: 500 lux (wavelength less than 400 nm was removed with a cut filter)
  • ⁇ E becomes 1 or less within 3 hours from the start of irradiation.
  • ⁇ : ⁇ E becomes 1 or less within 3 hours or more and less than 12 hours from the start of irradiation.
  • ⁇ : ⁇ E becomes 1 or less within 12 hours or more and 24 hours or less from the start of irradiation.
  • X ⁇ E does not become 1 or less within 24 hours from the start of irradiation.
  • Example 13 the numerical value described in the column of "the content of the active ingredient of (A) in 100 parts by mass of the coating composition” in the table corresponds to the “solid content”. Further, in Example 15, the numerical value described in the column of "Content of SiO 2 " in the table is the “Content of AlPO 4 " and the mass ratio of "TIO 2 to SiO 2 (TiO 2 / SiO). The numerical values described in the “ 2 )” column correspond to the “mass ratio of TIM 2 and AlPO 4 (TIO 2 / AlPO 4 )”, respectively.
  • a coating composition having good storage stability and wettability to a substrate could be obtained.
  • a coating layer having good antiviral property, antibacterial property and durability could be obtained.
  • the surfactant (D) was added to the coating composition, and in these examples as well, the storage stability of the coating composition and the wettability to the substrate were good, and the results were obtained.
  • the antiviral property, antibacterial property, and durability (water rubbing test) of the coating layer were also good.
  • Example 20 it was confirmed that good results were obtained in terms of visibility and decolorization.
  • the composition of Comparative Example 1 contains almost no inorganic binder.
  • the obtained coating layer could not maintain antiviral properties due to its poor durability (water rubbing resistance).
  • the mass ratio [(B) / (A)] of the photocatalytic titanium oxide (B) to the inorganic binder (A) was low, and the antiviral property was poor.
  • the composition of Comparative Example 3 contained an alkaline sol as an inorganic binder, and the composition of Comparative Example 4 contained an alumina-treated sol as an inorganic binder.
  • the resulting coating composition had poor storage stability.
  • the composition of Comparative Example 5 did not contain alcohol and had poor wettability to the substrate, so that the antibacterial and antiviral properties of the coating layer were not good.
  • the composition of Comparative Example 6 is obtained by adding a nonionic surfactant to the conditions of Comparative Example 5.
  • the wettability to the substrate was slightly improved as compared with Comparative Example 5, but was not sufficient, and the antibacterial and antiviral properties were as poor as those of Comparative Example 5.
  • the composition of Comparative Example 7 used toluene instead of alcohol, but the stability of the composition was poor and other evaluations could not be performed.
  • the coating composition of the present invention is a coating layer having good storage stability, a short time to exhibit antibacterial and antiviral properties, and good antibacterial and antiviral durability. Can contribute to the formation.
  • the coating composition of the present invention allows the formation of various articles having a coating layer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Plant Pathology (AREA)
  • Paints Or Removers (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Catalysts (AREA)

Abstract

水ラビング耐性を有する抗菌・抗ウイルスコーティング層を形成できる抗菌・抗ウイルスコーティング組成物であり、更に貯蔵安定性及び塗装時の作業性が良好な抗菌・抗ウイルスコーティング組成物を提供することを目的とする。本開示は、無機系バインダー(A)、光触媒型酸化チタン(B)及びアルコール(C)を含み、前記無機系バインダー(A)は、酸性タイプであり、前記無機系バインダー(A)に対する前記光触媒型酸化チタン(B)の質量比[(B)/(A)]は、0.5~5.0の範囲にある、抗菌・抗ウイルスコーティング組成物に関する。

Description

抗菌・抗ウイルスコーティング組成物
 本発明は、抗菌・抗ウイルスコーティング組成物に関する。
 近年、新型インフルエンザ等のウイルスやO157等の細菌による感染症は、人間の生命を脅かす事態となっており、抗ウイルス機能及び/又は抗菌機能を備えた商品へのニーズが高まっている。
 例えば、特許文献1には、少なくとも樹脂及び硬化剤を含有する粉体塗料母粒子の表面に、銀、銅、亜鉛あるいはこれらの錯体を含有する抗菌性無機微粒子が付着していることを特徴とする抗菌性粉体塗料について記載されている。また、特許文献2には、抗菌性金属成分と該抗菌性金属成分以外の金属酸化物とを含む抗菌剤が粉体塗料粒子表面に付着された抗菌性粉体塗料について記載されている。また、特許文献3には、負の電荷を有する無機酸化物コロイド粒子に抗菌性金属成分を付着せしめた抗菌性無機酸化物コロイド溶液からなる抗菌剤について記載されている。また、特許文献4には、所定構造のアミン化合物を含む組成物が抗ウイルス活性に優れることが記載されている。更に、特許文献5には、被コーティング材表面に、チタン化合物とアンモニア水溶液との反応により得られた水酸化チタンを含有する溶液を、該溶液の沸点以下の温度で加熱処理した酸化チタン溶液を用いた光触媒コーティング材料について記載されており、それを塗布・乾燥して得られた光触媒被膜は抗菌性を有することが記載されている。
 また、次亜塩素酸や過酸化水素等の薬剤を使用して、ウイルスや微生物に対抗することも試みられてきた。
特開平09-263715号公報 特開平10-168346号公報 特開平6-80527号公報 特開2020-125259号公報 特開2005-219967号公報
 しかしながら、特許文献1~4に記載されている組成物では、いずれも抗菌性又は抗ウイルス性の持続性に問題のあることが分かった。また、特許文献5に記載されている組成物では、抗菌性は持続するものの、被塗物に十分に定着せず、耐久性(水ラビング耐性)に劣ることが分かった。
 一方、次亜塩素酸や過酸化水素水等の薬剤は、人体又は環境に与える影響が大きく、抗菌性又は抗ウイルス性の持続性にも問題があった。
 本発明は、上記のような問題点に着目したものであり、水ラビング耐性を有する抗菌・抗ウイルスコーティング層を形成できる抗菌・抗ウイルスコーティング組成物であり、更に貯蔵安定性及び塗装時の作業性が良好な抗菌・抗ウイルスコーティング組成物を提供することを目的とする。
 本開示は、以下の[1]~[16]を提供する。
[1]無機系バインダー(A)、光触媒型酸化チタン(B)及びアルコール(C)を含み、
 前記無機系バインダー(A)は、酸性タイプであり、
 前記無機系バインダー(A)に対する前記光触媒型酸化チタン(B)の質量比[(B)/(A)]は、0.5~5.0の範囲にある、
抗菌・抗ウイルスコーティング組成物。
[2]前記無機系バインダー(A)は、ケイ素化合物系バインダーを含む、[1]に記載の抗菌・抗ウイルスコーティング組成物。
[3]前記無機系バインダー(A)は、コロイダルシリカ及びアルキルシリケートからなる群より選ばれる少なくとも1種を含む、[1]又は[2]に記載の抗菌・抗ウイルスコーティング組成物。
[4]前記光触媒型酸化チタン(B)は、銀及び銅並びに水酸化第四アンモニウムを含有する、[1]~[3]のいずれか1つに記載の抗菌・抗ウイルスコーティング組成物。
[5]前記アルコール(C)は、炭素数1~7のアルコールを含む、[1]~[4]のいずれか1つに記載の抗菌・抗ウイルスコーティング組成物。
[6]前記アルコール(C)は、エタノール、イソプロパノール、ノルマルプロパノール及びプロピレングリコールからなる群より選ばれる少なくとも1種である、[1]~[5]のいずれか1つに記載の抗菌・抗ウイルスコーティング組成物。
[7]更に、水を含む、[1]~[6]のいずれか1つに記載の抗菌・抗ウイルスコーティング組成物。
[8]更に、界面活性剤を含む、[1]~[7]のいずれか1つに記載の抗菌・抗ウイルスコーティング組成物。
[9]前記界面活性剤は、ノニオン系界面活性剤である、[8]に記載の抗菌・抗ウイルスコーティング組成物。
[10]更に、消色性色素を含む、[1]~[9]のいずれか1つに記載の抗菌・抗ウイルスコーティング組成物。
[11][1]~[10]のいずれか1つに記載の抗菌・抗ウイルスコーティング組成物により形成された、抗菌・抗ウイルスコーティング層。
[12]基材と、該基材の表面に[11]に記載の抗菌・抗ウイルスコーティング層とを含む物品。
[13]被塗物に、[1]~[10]のいずれか1つに記載の抗菌・抗ウイルスコーティング組成物を、該抗菌・抗ウイルスコーティング組成物の乾燥後の質量が0.02~0.20g/mとなるように塗装して抗菌・抗ウイルスコーティング層を形成する工程、を含む、抗菌・抗ウイルスコーティング層の形成方法。
[14]前記抗菌・抗ウイルスコーティング層の形成は、前記抗菌・抗ウイルスコーティング組成物を、浸漬塗装、刷毛塗装、布を用いての塗装、ローラー塗装、ロールコーター塗装、スプレー塗装、カーテンフローコーター塗装、ローラーカーテンコーター塗装及びダイコーター塗装からなる群から選ばれる少なくとも1つの方法により塗装することにより行われる、[13]に記載の抗菌・抗ウイルスコーティング層の形成方法。
[15]前記スプレー塗装は、エアゾールスプレー塗装又は非エアゾールスプレー塗装である、[14]に記載の抗菌・抗ウイルスコーティング層の形成方法。
[16]前記布を用いての塗装は、前記抗菌・抗ウイルスコーティング組成物を布に含浸させ、被塗物の表面を拭くことにより行われる、[14]に記載の抗菌・抗ウイルスコーティング層の形成方法。
 本発明によれば、水ラビング耐性を有する抗菌・抗ウイルスコーティング層を形成できる抗菌・抗ウイルスコーティング組成物であり、更に、貯蔵安定性及び塗装時の作業性、特に被塗物への濡れ性が良好な抗菌・抗ウイルスコーティング組成物を提供できる。
[抗菌・抗ウイルスコーティング組成物]
 本発明の抗菌・抗ウイルスコーティング組成物(以下、「コーティング組成物」と称することもある)は、無機系バインダー(A)、光触媒型酸化チタン(B)及びアルコール(C)を含み、
 前記無機系バインダー(A)は、酸性タイプであり、
 前記無機系バインダー(A)に対する前記光触媒型酸化チタン(B)の質量比[(B)/(A)]は、0.5~5.0の範囲にある。
 なお、本開示において、抗菌性とは、菌を不活性化する性質をいい、例えば、JISR 1752(2020)の抗菌活性値により評価することができる。また、抗ウイルス性とは、ウイルスを不活性化する性質をいい、例えば、JIS R 1756(2020)の抗ウイルス活性値により評価することができる。
<無機系バインダー(A)>
 本発明のコーティング組成物が無機系バインダー(A)を含むことにより、該組成物から形成される抗菌・抗ウイルスコーティング層(以下、「コーティング層」と称することもある)は、良好な耐久性、具体的には、水ラビング耐久性を有し、良好な抗菌・抗ウイルス性を維持できる。例えば、コーティング層において、日常的な水拭きに対する耐久性も向上する。また、無機系バインダー(A)は、光触媒型酸化チタン(B)と用いた場合であっても分解が生じにくい。このため、無機系バインダー(A)を用いると、コーティング組成物の劣化、特に長期的な使用においても劣化が生じにくい。
 なお、本開示において、水ラビング耐性とは、日常の手入れ、具体的には、水を含ませた布でコーティング層の表面を拭いた場合に、光触媒がコーティング層に保持されること、言い換えると、抗菌性及び抗ウイルス性を持続できることをいう。例えば、本発明のコーティング組成物から形成されたコーティング層は、水を含ませた布でコーティング層の表面を拭いた場合に剥落も生じにくい。
 無機系バインダー(A)としては、酸性タイプのものを用いる。酸性タイプのものを用いることにより、コーティング組成物は安定に存在し得る。ここで、コーティング組成物が安定であるとは、例えば、コーティング組成物を静置した場合に、無機系バインダー(A)や光触媒型酸化チタン(B)等の沈降が生じにくいことをいう。言い換えると、コーティング組成物の貯蔵安定性が良好である。
 なお、酸性タイプとは、無機系バインダー(A)が酸性領域にある際に安定に存在し得るものをいう。例えば、後述するシリカ微粒子の懸濁液であれば、酸性タイプとは、酸性領域(例えば、pH2.0~5.0)においてゲル化しにくいことをいう。
 無機系バインダー(A)の含有量は、コーティング組成物中、例えば、0.05~5.0質量%が好ましく、0.5~3.0質量%がより好ましい。無機系バインダー(A)の含有量が0.05質量部以上であると、形成されるコーティング層のラビング耐久性が良好になり得、また、5.0質量部以下であると、コーティング層の外観の低下、例えば、色相変化(例えば、厚膜化による白化)が抑制され得る。また、無機系バインダー(A)の含有量が上記のような範囲にあることにより、コーティング組成物は安定に存在し得る。なお、本開示において、無機系バインダー(A)の含有量は、コーティング組成物の総質量に対する無機系バインダー(A)の固形分質量又は有効成分質量を意味し、具体的には、無機系バインダー(A)がケイ素化合物の場合には有効成分質量を、それ以外の場合には固形分質量を意味する。ここで、無機機系バインダーの有効成分とは、希アンモニア水で加水分解した後、水分を蒸発させ、更に900℃で焼成した後の残分を意味し、固形分とは、100℃で1時間乾燥した後の加熱残分を意味する。
 無機系バインダー(A)としては、ジルコニウム化合物、ケイ素化合物、アルミニウム化合物等を含むバインダーが挙げられる。一の実施態様において、無機系バインダー(A)は、ジルコニウム化合物、ケイ素化合物及びアルミニウム化合物からなる群より選ばれる少なくとも1つである。
 具体的には、ジルコニウム化合物としては、四塩化ジルコニウム、オキシ塩化ジルコニウム、硝酸ジルコニウム、硫酸ジルコニウム、酢酸ジルコニウム、炭酸ジルコニウム等のジルコニウム塩;テトラエトキシジルコニウム、テトラ-i-プロポキシジルコニウム、テトラ-n-ブトキシジルコニウム、テトラ-t-ブトキシジルコニウム等のジルコニウムアルコキシド等が挙げられる。
 ケイ素化合物としては、珪酸ナトリウム、珪酸カリウム、珪酸リチウム、珪酸セシウム、珪酸ルビジウム等のアルカリ珪酸塩;テトラメトキシシラン、テトラエトキシシラン等のアルキルシリケート;アルキルシリケートの加水分解生成物;メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリクロルシラン、メチルトリブロムシラン、メチルトリイソプロポキシシラン、メチルトリt-ブトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、エチルトリクロルシラン、エチルトリブロムシラン、エチルトリイソプロポキシシラン等のアルコキシシラン;アルコキシシランの加水分解生成物であるシラノール等が挙げられる。
 アルミニウム化合物としては、乳酸アルミニウム、リン酸アルミニウム、塩化アルミニウム等のアルミニウム塩;トリエトキシアルミニウム、トリ-i-プロポキシアルミニウム、トリ-n-ブトキシアルミニウム、トリ-t-ブトキシアルミニウムアルミニウムアルコキシド等のアルミニウムアルコキシド等が挙げられる。
 無機系バインダー(A)は、水ラビング耐性、抗菌性及び抗ウイルス性の観点から、ケイ素化合物系バインダーを含むことが好ましい。コーティング組成物は、ケイ素化合物系バインダーを含むことにより、被塗物への定着性が特に良好になり得る。なお、ケイ素化合物系バインダーとしては、シリカのような粒子タイプ、シラノールオリゴマーのような溶解分子タイプが挙げられる。
 ケイ素化合物系バインダーは、より好ましくは、ケイ素化合物である。ケイ素化合物としては、例えば、アルカリ珪酸塩、具体的には、シリカ微粒子、アルキルシリケート等を挙げることができる。このような化合物は、それら自身の有する親水性によりコーティング層に水分を呼び込み、光触媒によるヒドロキシラジカルの発生が効率的に行われるため、より抗菌性及び抗ウイルス性が発揮しやすくなると考えられる。
 ケイ素化合物の形状は特に限定されないが、例えば、球状、鎖状等を挙げることができる。
 (シリカ微粒子)
 シリカ微粒子の平均一次粒子径は、例えば、3~50nmであり、好ましくは、10~25nmであり、より好ましくは、10~15nmである。平均一次粒子径が上記の範囲にあることにより、コーティング組成物は、安定に存在し得、安定に存在し得る。また、コーティング組成物は、外観の良好なコーティング層の形成に寄与できる。
 シリカ微粒子の平均一次粒子径の測定は、電子顕微鏡観察、BET法(比表面積法)等の公知の測定方法によって測定することができる。一の態様においては、シリカ微粒子の平均一次粒径は、BET法による比表面積から換算して求める値である。
 シリカ微粒子は、シリカ微粒子を含む懸濁液(即ち、コロイダルシリカ)として用いることができる。
 上記懸濁液の分散媒としては、水;メタノール、エタノール、イソブタノール、プロピレングリコールモノメチルエーテル等の有機溶剤を挙げることができる。
 上記懸濁液は、シリカ微粒子を、懸濁液に対して、例えば5~50質量%含むものを用いることができる。
 シリカ微粒子を含む懸濁液としては、例えば、シリカ微粒子を含む懸濁液に一般的に含まれるナトリウム等の電解質を除去したものや、塩酸、硫酸、リン酸、酢酸等の酸で安定化させたものが挙げられ、好ましくは、電解質を除去したものを用いることができる。これらのうち1成分のみ、又は複数を組み合わせて使用することができる。
 シリカ微粒子の懸濁液のpHは、2.0~5.0であるのが好ましく、2.5~4.5であるのがより好ましい。pHがこの範囲内であることで、シリカ微粒子の懸濁液において、ゲル化や固形分の沈降が生じることなく安定に存在できる。また、コーティング組成物に加えた場合にも、コーティング組成物は、ゲル化や固形分の沈降を起こしにくく、安定に存在できる。
 このようなシリカ微粒子(シリカ微粒子の懸濁液である形態のものを含む)として、市販品を用いてもよい。
 市販品としては、例えば、スノーテックス(登録商標)O、O-40、OL、OXS、OS、OUP、PS-SO、PS-MO(日産化学社製)等が挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。
 (アルキルシリケート)
 アルキルシリケートとは、アルキルシリケート化合物及び/又はその部分加水分解縮合物を意味する。アルキルシリケート化合物は、加水分解性基の結合したケイ素を有する化合物であり、例えば、下記一般式(1)で表わされる。
   Si(OR)       ・・・(1)
 上記式(1)中、Rは、炭素数1~4個のアルキル基を示し、同一でも異なっていてもよい。
 上記式(1)で表わされるアルキルシリケート化合物としては、テトラメチルシリケート、テトラエチルシリケート、テトラ-n-プロピルシリケート、テトラ-i-プロピルシリケート、テトラ-n-ブチルシリケート、テトラ-i-ブチルシリケート、テトラ-t-ブチルシリケート、メチルエチルシリケート、メチルプロピルシリケート、メチルブチルシリケート、エチルプロピルシリケート、プロピルブチルシリケート等が挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。
 アルキルシリケート化合物の部分加水分解縮合物としては、上記アルキルシリケート化合物が部分的に加水分解縮合したものが挙げられる。その縮合度は、1~20が好ましく、3~15がより好ましい。
 アルキルシリケートは、例えば、水中に溶解した状態で用いることができる。このとき、該水溶液のpHは例えば2~3である。
 アルキルシリケートとしては、市販品を用いることができる。
 市販品としては、例えば、エチルシリケート48(テトラエトキシシラン部分加水分解縮合物、コルコート社製)、MKCシリケート MS51(テトラメトキシシラン部分加水分解縮合物、三菱化学社製)、EMS485(エチルメチルシリケート部分加水分解縮合物、コルコート社製)等を挙げることができる。
<光触媒型酸化チタン(B)>
 コーティング組成物が光触媒型酸化チタン(B)を含むことにより、抗菌性及び抗ウイルス性をコーティング層に付与できる。光触媒型酸化チタン(B)は、光エネルギーが付与されることにより、光触媒効果を発揮する。光エネルギーは、例えば、紫外光、可視光によって付与される。
 光触媒型酸化チタン(B)は、光触媒性を示すものであれば、その使用形態は特に限定されないが、粉末状、ゾル状、溶液状等で用いることができる。コーティング組成物中に安定に存在し得る観点からは、光触媒型酸化チタン(B)は、酸化チタンが微粒子として存在する酸化チタンゾルとして用いることが好ましい。
 光触媒型酸化チタン(B)は、光触媒効果を有するアナターゼ型又はルチル型の結晶並びにこれらの混合物からなる。アナターゼ型又はルチル型の酸化チタンとは、少なくとも乾燥して得られる粉の粉末X線回折の結果が、明らかにアナターゼ型又はルチル型と同定されるものをいう。アナターゼ型又はルチル型を示す酸化チタンは、高い光触媒性能を示す。
 光触媒型酸化チタン(B)は、アナターゼ型であることが好ましい。これは、屋内の微弱な光エネルギーでも十分な光エネルギーを得ることができるためである。
 光触媒型酸化チタン(B)の平均粒子径は、5nmを超え20nm以下であることが好ましく、10nm以上20nm以下であることがより好ましい。なお、本開示において光触媒型酸化チタンの平均粒子径は、走査型電子顕微鏡観察により20万倍の視野に入る任意の100個の粒子の長さを測定した個数平均値として算出した値を意味する。粒子の形状としては、真球が最も良いが、略円形や楕円形でも良く、その場合の粒子径は((長径+短径)/2)として略算出される。
 光触媒型酸化チタン(B)が、光触媒酸化チタンゾルとして存在する場合、光触媒酸化チタンゾルに含まれる酸化チタン(TiO)の濃度は、通常の濃縮等の操作によって調整可能である。例えば、酸化チタン(TiO)の濃度は、光触媒酸化チタンゾルに対してTiOとして3~15質量%の範囲であることが好ましい。上記範囲内にあることで、酸化チタンゾルに沈降、増粘等が無く、貯蔵安定性を良好にでき、また、コーティング液の生産性も向上する利点がある。
 光触媒型酸化チタン(B)は、酸化チタン(TiO)とともに、好ましくは銀及び銅並びに水酸化第四アンモニウムを含有する。
 上記銀は、酸化物、水酸化物等のイオン化していない形態で光触媒型酸化チタン(B)に含有させることが好ましい。銀の含有量は、TiOに対するAgOの質量比、言い換えるとAgO/TiOとした場合に、好ましくは0.1~5.0質量%の範囲にあり、より好ましくは0.8~3.0質量%の範囲にある。銀の含有量が上記範囲内にあることで、酸化チタンがゾル中に良好に分散でき、かつ、抗菌・抗ウイルス効果が十分に発現するという利点がある。
 上記水酸化第四アンモニウムは、光触媒型酸化チタン(B)が、光触媒酸化チタンゾルとして安定にするために加えられる。
 水酸化第四アンモニウムは抗菌金属をほとんど溶解させないため、酸化チタンゾルを安定化させながら抗菌金属の変色を抑制し得る。
 水酸化第四アンモニウムとしては、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、水酸化テトラプロピルアンモニウム、水酸化テトラブチルアンモニウムを例示することができる。入手の容易さの観点からは、水酸化テトラエチルアンモニウムが好ましい。
 水酸化第四アンモニウムは、TiO 1モルに対して、0.01~0.1モルの範囲で含有されることが好ましい。水酸化第四アンモニウムの含有量が上記の範囲にあることにより、酸化チタンゾルはより安定に存在し得る。
 上記銅は、水酸化第四アンモニウムとともに加えることにより、光触媒酸化チタンゾル中の銀の変色の抑制に寄与し得る。銅は、ゾルを不安定化する硝酸イオンや塩素イオンを含まない観点から、酸化物、水酸化物等として添加することが好ましい。
 銅の含有量は、酸化銀に対する酸化銅の割合、言い換えるとCuO/AgO(質量比)として換算したときに、好ましくは1~30の範囲、より好ましくは1~10の範囲である。
 上述したように、光触媒型酸化チタン(B)が、銀、銅及び水酸化第四アンモニウムを含有する酸化チタンゾルである場合に、銀の変色を大幅に抑えることができる。例えば、光触媒型酸化チタン(B)の色質指数ΔL値を測定したときに、300~400nmの波長閾の光照射によるΔL値が10以下とし得る。
 無機系バインダー(A)に対する光触媒型酸化チタン(B)の質量比[(B)/(A)]は、0.5~5.0の範囲にあり、好ましくは0.5~2.5、より好ましくは0.5~2.0である。
 なお、本開示において、無機系バインダーの量は無機系バインダーの固形分質量又は有効成分質量を、光触媒型酸化チタンの量は光触媒型酸化チタンの固形分質量を、それぞれ意味する。
 光触媒型酸化チタン(B)のみを用いた場合には、水ラビング耐性が悪く、例えば日常的な水拭きを行った場合であっても、コーティング層において抗菌性及び抗ウイルス性を維持することができない。これに対して、無機系バインダー(A)と光触媒型酸化チタン(B)とを上記比率で用いることによって、コーティング層は、抗菌性及び抗ウイルス性を示すとともに良好な水ラビング耐性を示すことができる。更に、上記比率で用いることにより、コーティング層は、良好な耐久性を示し、抗菌性及び抗ウイルス性を維持できる。
 例えば、無機系バインダー(A)がケイ素化合物である場合、上記質量比[(B)/(A)]は、無機系バインダー(A)に含まれるSiOに対する、光触媒型酸化チタン(B)に含まれるTiOの質量比、言い換えるとTiO/SiOであることが好ましい。なお、無機系バインダー(A)に含まれるSiOの質量は、無機系バインダー(A)に含まれるケイ素含有量をSiOに換算した値である。
 光触媒型酸化チタン(B)のゾルの形成には、チタン塩をアンモニア水で中和分解して得られるチタン酸のゲルを出発原料として用いることができる。光触媒酸化チタンゾルの製造方法に関しては、具体的には以下の方法を例示することができる。
(1)チタン酸のゲルに銀及び銅の酸化物又は水酸化物を添加してから水熱処理した後、水酸化第四アンモニウムを添加する方法。
(2)チタン酸のゲルに水酸化第四アンモニウムのみを添加してから水熱処理した後、銀及び銅の酸化物又は水酸化物を添加する方法。
(3)チタン酸のゲルに銀及び銅の酸化物又は水酸化物並びに水酸化第四アンモニウムを同時に添加してから水熱処理する方法。
(4)チタン酸のゲルを水熱処理した後に銀及び銅の酸化物又は水酸化物並びに水酸化第四アンモニウムを添加する方法。
 上記(1)及び(3)の如く銀及び銅の酸化物又は水酸化物共存下で水熱処理した方が、銀の変色を抑えることができる。一般的に、これら添加物が多くなるに従い酸化チタンのアナターゼ型への結晶化を阻害する場合もあるのでこれら添加物の種類、量等を本発明の範囲内で適宜選択して製造することが好ましい。また、上記(4)の如く水熱処理後に銀と銅の酸化物又は水酸化物及び水酸化第四アンモニウムを添加した場合には、必要に応じて更に加熱することによって更に安定化させることができる。加熱の時間は60~100℃の温度で1~3時間処理すればよい。
<アルコール(C)>
 コーティング組成物がアルコール(C)を含むことにより、被塗物(例えば、基材表面、基材表面に予め形成された塗膜等)への濡れ性が良好になり、塗装時の作業性が良好になる。また、アルコール(C)を用いることにより、コーティング組成物の貯蔵安定性が良好になり得る。なお、本開示においては、アルコール(C)とは、少なくとも1つの水酸基を有する化合物を意味する。
 アルコール(C)としては、好ましくは、炭素数1~7のアルコールを用いることができる。炭素数1~7のアルコールとしては、例えば、メタノール、エタノール、ノルマルプロパノール、イソプロパノール、ブタノール等のモノアルコール;エチレングリコール、ジエチレングリコール、プロピレングリコール等のアルキレングリコール;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノブチルエーテル等のアルキレングリコールモノアルキルエーテル等を挙げることができる。なお、上記アルコールは単独で使用してもよく、2種以上を併用してもよい。
 アルコール(C)は、一の実施態様において、エタノール、イソプロパノール、ノルマルプロパノール及びプロピレングリコールからなる群より選ばれる少なくとも1種である。これらのアルコール(C)を用いることは、塗装作業性の向上の観点から特に好ましい。
 アルコール(C)は、より好ましくは、炭素数1~4のアルコールである。
 アルコール(C)としては、揮発乾燥性の観点から、モノアルコールが好ましく、エタノール、ノルマルプロパノール、イソプロパノールがより好ましい。
 アルコール(C)としては、エタノール、ノルマルプロパノール及びイソプロパノールからなる群より選ばれる少なくとも1種を用いることが好ましい。上記アルコールを用いると、コーティング層において抗菌性及び抗ウイルス性の発揮までの時間を短くし得、コーティング組成物を塗装直後からも、抗菌性及び抗ウイルス性を発揮することができる。
 一の実施態様において、アルコール(C)は、コーティング組成物に対し、好ましくは15~90質量%含まれ、より好ましくは50~80質量%、更に好ましくは50~59質量%含まれる。上記含有量であることにより、コーティング層において抗菌性及び抗ウイルス性の発揮までの時間がより短くなる。また、上記含有量であるは、輸送、保管等の観点からも有利である。
 一の実施態様において、アルコール(C)は、コーティング組成物に対し、好ましくは10~50質量%、より好ましくは10~30質量%含まれる。
 本発明のコーティング組成物は、アルコール以外の溶媒を含んでいてもよい。アルコール以外の溶媒としては、水、又は有機溶媒(アルコールは除く)が挙げられる。
 本発明のコーティング組成物は、水を含むことが好ましい。水を含むことにより、作業性が良好になる。
 コーティング組成物の貯蔵安定性の点から、上記水は、イオン交換水、蒸留水、ろ過水又は純水であることが好ましい。
 水の含有量は、特に限定されず、コーティング組成物において、他の成分との合計量が100質量%になるように調製すればよいが、例えば、5~85質量%、具体的には35~70質量%含んでいてもよい。
 本発明のコーティング組成物は、界面活性剤を含んでいてもよい。界面活性剤を含むことにより、該組成物の塗装作業性、特に、被塗物への濡れ性が向上し得る。
 界面活性剤としては、ノニオン系界面活性剤を用いることが好ましい。ノニオン系界面活性剤は、コーティング組成物の安定性の向上に寄与し得る。また、ノニオン系界面活性剤は、コーティング組成物の被塗物への濡れ性の向上に寄与し得る。更に、ノニオン系界面活性剤を含むことにより、コーティング層における組成の偏りを低減し得る。これは、コーティング組成物からアルコール(C)が先に揮発した場合であっても、ノニオン系界面活性剤が存在することによって、該組成物において無機系バインダー(A)や光触媒型酸化チタン(B)の偏りを防止し得るためである。
 上記ノニオン系界面活性剤の含有量は、コーティング組成物に対し、好ましくは0.02~5質量%、より好ましくは、0.02~1質量%である。ノニオン系界面活性剤を上記範囲含むことにより、コーティング組成物から得られるコーティング層において抗菌性、抗ウイルス性を発揮し得る。更に、上記範囲含むことにより、コーティング組成物の製造時の泡立ちを抑制しつつ、被塗物への濡れ性を確保することができる。
 ノニオン系界面活性剤を2種類以上併用する場合は、ノニオン系界面活性剤の合計量が、コーティング組成物に対して、上記範囲となるよう調整される。
 ノニオン系界面活性剤のHLBは、好ましくは12以下であり、より好ましくは4~12である。ここでHLBは、グリフィン法によって定義される、(ノニオン系界面活性剤の親水性部分の分子量)÷(ノニオン系界面活性剤の全分子量)×20で表される親水性と親油性のバランスを表す指標である。
 ノニオン系界面活性剤におけるHLBがこのような範囲であることにより、コーティング組成物の製造時の泡立ちを抑制しつつ、被塗物への濡れ性を確保することができる。なお、ノニオン系界面活性剤を2種以上併用する場合は、各界面活性剤のHLBの平均が上記範囲となるよう、適宜調整される。
 ノニオン系界面活性剤としては、例えば、アルキレンオキサイドユニットを有する界面活性剤、アセチレンジオール系界面活性剤、ビニル系ポリマー界面活性剤、シリコーン系界面活性剤、及びフッ素系界面活性剤等が挙げられる。これらの界面活性剤は、単独又は2種以上を併用してもよい。
 上記アルキレンオキサイドユニットを有する界面活性剤としては、例えば、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンラウリルエーテル等のポリオキシアルキレンアルキルエーテル系界面活性剤;ポリオキシアルキレン脂肪酸エステル系界面活性剤を挙げることができる。
 このような界面活性剤は、市販品を使用してもよい。ポリオキシアルキレンアルキルエーテル系界面活性剤としては、例えば、ニューコール(登録商標)2302、2303、2305、3508、1204、1305、2502-A、2303-Y、2304-YM、2304-Y、(日本乳化剤社製)エマルミン(登録商標)40、50、70、NL-70、NL-80、セドラン(登録商標)FF-180、SF-506、ニューポール(登録商標)PE-62、64、74、75、(三洋化成社製)等を挙げることができる。ポリオキシアルキレン脂肪酸エステル系界面活性剤としては、例えば、イオネット(登録商標)MS-400、MS-1000、MO-600、DS-4000、DO-1000(三洋化成社製)を挙げることができる。
 上記アセチレンジオール系界面活性剤は、例えば、アセチレンジオールユニットを有する(すなわち、同一分子内にアセチレン結合と2つの水酸基を同時に有する)界面活性剤、上記水酸基にアルキレンオキサイドが導入された、アルキレンオキサイドユニットとアセチレンジオールユニットとを有する界面活性剤であり得る。
 このような界面活性剤は、市販品を使用してもよい。例えば、サーフィノール(登録商標)104E、420、440、2502、ダイノール(登録商標)604、607、オルフィン(登録商標)PD-001、002W、004、EXP.4001、4200、4300(日信化学工業社製)等を挙げることができる。
 上記ビニル系ポリマー界面活性剤としては、例えば、ポリビニルピロリドン(PVP);ポリビニルアルコール(PVA)にポリビニルピロリドンをグラフト重合させた界面活性剤を挙げることができる。
 このような界面活性剤は、市販品を使用してもよい。例えば、ピッツコール(登録商標)K-30、K-30L、K-90、K-90L、V-7154(第一工業製薬社製)を挙げることができる。
 上記シリコーン系界面活性剤としては、例えば、グラノール(登録商標)100、400、440、ポリフロー(登録商標)KL-245、KL-270、KL-280、KL-600(共栄社化学社製)、BYK-307、333、345、346、348、375、378(ビッグケミージャパン社製)、SNウェット(登録商標)125、126(サンノプコ社製)を挙げることができる。
 上記フッ素系界面活性剤としては、例えば、フタージェント(登録商標)250、251、222F、208G(ネオス社製)、メガファック(登録商標)F-443、F-444、F-445、F-470、F-471、F-475、F-477、F-479(DIC社製)、NOVEC FC-4430、4432(3M社製)、ユニダイン(登録商標)DS-401、403(日進化成社製)、エフトップ(登録商標)EF-121、EF-122A、EF-128B、EF-122C(ジェムコ社製)を挙げることができる。
 一の実施態様において、上記アセチレンジオール系界面活性剤を好ましい化学式で表すと、次のようになる。
 アセチレンジオールユニットを有する界面活性剤:
Figure JPOXMLDOC01-appb-C000001
 上記式中、R、R、R、Rは、同一又は異なって、炭素数が1~10の直鎖又は分岐の炭化水素基、好ましくは、炭素数が1~8の直鎖又は分岐のアルキル基を表す。
 アルキレンオキサイドユニットとアセチレンジオールユニットとを有する界面活性剤:
Figure JPOXMLDOC01-appb-C000002
 上記式中、R、R、R、Rは、同一又は異なって、炭素数が1~10の直鎖又は分岐の炭化水素基、好ましくは、炭素数が1~8の直鎖又は分岐のアルキル基を表す。n1及びn2は、同一又は異なって、0~20の整数を表し、同時に0を表すものではなく、好ましくは、1~20の整数を表す。
 一の実施態様において、コーティング組成物に対し、水が5~20質量%及びノニオン系界面活性剤が0.0~0.05質量部含まれる。
 一の実施態様において、コーティング組成物に対し、水が50~85質量%及びノニオン系界面活性剤が0.02~1.0質量部含まれる。
 一の実施態様において、コーティング組成物に対し、アルコール(C)が50~90質量%、水が5~45質量%及びノニオン系界面活性剤が0.0~0.05質量部含まれる。
 一の実施態様において、コーティング組成物に対し、アルコール(C)が10~30質量%、水が65~85質量%及びノニオン系界面活性剤が0.02~1.0質量部含まれる。
 本発明のコーティング組成物は、例えば、その表面張力が20~40mN/mであり、好ましくは24~35mN/mである。
 コーティング組成物の表面張力が上記範囲内にあることで、被塗物表面にコーティング組成物を均一に塗装することができる。
 なお、本発明のコーティング組成物の表面張力は、例えば、「色材と高分子材料のための最新機器分析法-分析と物性評価-」(ソフトサイエンス社 社団法人色材協会編 編集代表 星埜由典、p.289 表面張力測定法、「Du Nouy円環法」)に記載の方法に従って測定される。
 本開示のコーティング組成物は、必要に応じて、上記以外のその他の添加剤を含有してもよい。
 その他の添加剤としては、例えば、顔料、骨材(砂等)、造膜助剤、乾燥遅延助剤、粘性調整剤、防腐剤、防かび剤、防腐剤、消泡剤、光安定剤、酸化防止剤、紫外線吸収剤、pH調整剤等を挙げることができる。
 本開示のコーティング組成物は、顔料を含むエナメルコーティング組成物であってもよいし、顔料を含まないクリヤーコーティング組成物であってもよい。
 本開示のコーティング組成物をクリヤーコーティング組成物として用いた場合、クリヤーコーティング組成物は無色透明又は薄い有色透明の状態であるため、コーティング層と未コーティング層との境界を見分け難く、コーティング層の重複塗装部分又はコーティング組成物の塗装忘れ部分が生じ得る。その重複塗装部分では、例えば、必要以上のコーティング組成物が使用されるためコーティング組成物が無駄になる、コーティング層の膜厚が必要以上に厚くなる、余分なコーティング層がタレる等の不具合の生じるおそれがある。また、塗装忘れ部分では、コーティング層が存在しないため、抗菌性、抗ウイルス性が得られなくなる。
 これに対し、本開示のコーティング組成物は、消色性色素を含み得る。消色性色素は、一態様において、コーティング組成物の状態では有色を示し、コーティング層の形成後に、例えば、光、pH変化等によって消色し得る成分である(光によって消色し得る成分を「光消色性色素」とも言う)。
 本開示のコーティング組成物では、例えば、光消色性色素としては、ベニコウジ系色素、ベタレイン系色素及びスピルリナ系色素からなる群から選ばれる1種以上を含み得る。
 理論に拘束されることを望むものではないが、これらの光消色性色素の分子は、ある程度以上の強度の光によってその構造が破壊されて消色すると考えられる。そのため、このような光消色性色素を有する本開示のコーティング組成物を用いると、光という簡便な手段によってコーティング層の消色化が可能となる。
・ベニコウジ系色素
 ベニコウジ系色素としては、例えば、アンカフラビン(CAS番号50980-32-0)、モナスコルブリン(CAS番号13283-90-4)、モナスコルブラミン(CAS番号3627-51-8)、キサントモナシンA1(Xanthomonascin A1)、キサントモナシンA2(Xanthomonascin A2)、キサントモナシンA(Xanthomonasin A)及びキサントモナシンB(Xanthomonasin B)等が挙げられる。ベニコウジ系色素は、1種を単独で用いてもよく、2種以上を併用してもよい。キサントモナシンA1(Xanthomonascin A1)、キサントモナシンA2(Xanthomonascin A2)、キサントモナシンA(Xanthomonasin A)及びキサントモナシンB(Xanthomonasin B)の構造は、以下のとおりである。
Figure JPOXMLDOC01-appb-C000003
 ・ベタレイン系色素
 ベタレイン系色素としては、例えば、ベタニン(CAS番号7659-95-2)、ベタニジン(Betanidin、CAS番号2181-76-2)、イソベタニン(CAS番号15121-53-6)、イソベタニジン(CAS番号4934-32-1)、ベタキサンチン、ベタシアニン等が挙げられる。ベタレイン系色素は、1種を単独で用いてもよく、2種以上を併用してもよい。ベタキサンチン及びベタシアニンの構造は、以下のとおりである。
Figure JPOXMLDOC01-appb-C000004
・スピルリナ系色素
 スピルリナ系色素としては、例えば、フィコシアノビリン(CAS番号20298-86-6)等が挙げられる。スピルリナ系色素は、1種を単独で用いてもよく、2種以上を併用してもよい。
 本開示に係るコーティング組成物の一実施形態では、ベニコウジ系色素が、アンカフラビン、モナスコルブリン、モナスコルブラミン、キサントモナシンA1、キサントモナシンA2、キサントモナシンA及びキサントモナシンBからなる群から選ばれる1種以上を含む。
 本開示に係るコーティング組成物の別の実施形態では、ベニコウジ系色素が、アンカフラビン、モナスコルブリン、モナスコルブラミン、キサントモナシンA2及びキサントモナシンAからなる群から選ばれる1種以上を含む。
 本開示に係るコーティング組成物の一実施形態では、ベタレイン系色素が、ベタニン、ベタニジン、イソベタニン、イソベタニジン、ベタキサンチン、ベタシアニンからなる群から選ばれる1種以上を含む。
 本開示に係るコーティング組成物の一実施形態では、スピルリナ系色素が、フィコシアノビリンを含む。
 また、消色性色素の一態様としては、コーティング組成物のpHに依存して呈色又は消色する色素を用いてもよい。具体的には、酸性~中性色が無色で塩基性色が有色であるpH指示薬、例えば、フェノールフタレイン、チモールフタレイン、ブロムカルボキシチモールフタレイン、o-クレゾールフタレイン、シアニン、α-ナフトールフタレイン、p-ニトロフェニール等が挙げられる。
 コーティング組成物における消色性色素の量は、消色性色素の色の濃さ、コーティング組成物の濃度又は粘度、コーティング層の厚さ、消色までの時間等に応じて適宜調整できる。コーティング組成物における消色性色素の量は、例えば、コーティング組成物100質量部に対して、0.001~5.00質量部である。
 (コーティング組成物の製造方法)
 コーティング組成物を調製する方法は、特に限定されない。例えば、サンドグラインドミル、ボールミル、ブレンダー、ペイントシェーカー又はディスパー等の混合機、分散機、混練機等を選択して使用し、各成分を混合することにより、調製することができる。
 (コーティング組成物の使用方法)
 本開示のコーティング組成物の使用方法は、特に限定されないが、例えば、菌又はウイルスが付着又は付着するおそれのある箇所に、コーティング組成物を塗装する又は予め塗装しておくことができる。
 一の実施態様において、本開示のコーティング組成物は、例えば、浸漬塗装、刷毛塗装、ローラー塗装、布を用いての塗装、ロールコーター塗装、スプレー塗装、カーテンフローコーター塗装、ローラーカーテンコーター塗装、ダイコーター塗装等を用いて塗装することができる。塗装方法は被塗物の種類・用途に応じて適宜選ばれる。
 上記スプレー塗装としては、一の実施態様において、エアスプレー塗装、エアレススプレー塗装を挙げることができる。
 上記スプレー塗装としては、一の実施態様において、エアゾールスプレー塗装、非エアゾールスプレー塗装を挙げることができる。
 この場合、コーティング組成物は、例えば、吐出容器に充填して使用し得る。
 上記吐出容器としては、スプレー容器やスクイズ容器等が挙げられる。対象物に対する塗装性に優れる点からは、吐出容器としてスプレー容器を用いることが好ましい。
 上記スプレー容器、即ち、エアゾールスプレー容器、非エアゾールスプレー容器は、手動式のものでもよいし、電動式のものでもよい。
 上記エアゾールスプレー容器は、耐圧容器を用いる。この場合、本開示のコーティング組成物は、液体ガス及び圧縮ガス等のガスと共に用いる。液体ガス及び圧縮ガスとしては、例えば、液化石油ガス、ジメチルエーテル、炭酸ガス、窒素ガス及びイソペンタン等が挙げられる。
 上記非エアゾールスプレー容器は、容器中に充填される液体を霧状及び泡状等の形態で容器外へ噴出させる機構を備えているものである。この場合、液体ガス及び圧縮ガス等のガスを実質的に用いない。非エアゾールスプレー容器としては、例えば、ポンプ式及びトリガー式等の蓄圧式又は直圧式のスプレー容器が挙げられる。
 一の態様において、コーティング組成物は、塗装箇所に噴霧する、塗装箇所にペーパーをかぶせ直接組成物を振りかける等によっても、コーティング層を形成し得る。
 一の態様において、コーティング組成物は、布を用いての塗装によりコーティング層をを形成し得る。具体的には、コーティング組成物を布に含浸させ、塗装箇所(被塗物の表面)を拭くことによってもコーティング層を形成し得る。布を構成する繊維としては特に限定されず、例えば、天然繊維、合成繊維、半合成繊維及び再生繊維等が挙げられる。また、布の種類としては特に限定されないが、例えば、織布、不織布及び編物等が挙げられる。
[コーティング層]
 コーティング層は、本開示のコーティング組成物によって形成される。
 コーティング層の形成は、
 被塗物に、コーティング組成物を、該コーティング組成物の乾燥後の質量が0.20g/m以下となるように塗装してコーティング層を形成する工程、
を含む方法で行うことが好ましい。
 上記乾燥後の質量は、例えば、0.02~0.20g/mであってもよい。上記のような範囲にあることにより、抗菌性、抗ウイルス性等の物性の良好なコーティング層が形成できる。
 上記コーティング組成物は、必要に応じて複数回塗り重ねしてもよく、その塗り重ね回数は、上記コーティング組成物の固形分濃度や一回の塗布量により適宜調整される。。
 上記コーティング層の膜厚(乾燥後の膜厚)は、好ましくは50nm~5μmであり、より好ましくは50nm~1μmである。
 コーティング層は、被塗物の表面全体に設けられてもよく、被塗物の表面の一部のみに設けられてもよい。
 コーティング層は、コーティング組成物を被塗物に塗装後、室温(例えば、5℃~35℃)において乾燥することによって得られる。
 別の実施態様において、コーティング層は、コーティング組成物を室温~80℃で乾燥させて得られる。別の実施態様においては、コーティング層は、コーティング組成物を80℃~130℃で乾燥させて得られる。
 乾燥時間は特に限定されないが、好ましくは30秒~20分、より好ましくは30秒~10分である。
 上記被塗物としては、特に限定されないが、例えば、金属基材、プラスチック基材、無機材料基材等を挙げることができる。また、これら基材の上に予め形成した塗膜を被塗物としてもよい。本開示のコーティング組成物を、被塗物の表面に塗装することにより、耐水ラビング性が良好であり、抗菌性及び抗ウイルス性が良好であり、抗菌性及び抗ウイルス性の持続も可能なコーティング層を得ることができる。
 上記金属基材としては特に限定されず、例えば、アルミニウム板、鉄板、亜鉛メッキ鋼板、アルミニウム亜鉛メッキ鋼板、ステンレス板、ブリキ板等を挙げることができる。
 上記プラスチック基材としては、アクリル板、ポリ塩化ビニル板、ポリカーボネート板、ABS板、ポリエチレンテレフタレート板、ポリオレフィン板等を挙げることができる。
 上記無機材料基材としては、JIS A 5422、JIS A 5430等に記載された窯業系基材、ガラス基材等を挙げることができる。
 一の実施態様において、被塗物の材質として、例えば、アクリル樹脂、メタクリル樹脂、アルキド樹脂、フェノール樹脂、エポキシ樹脂、イソシアネート樹脂、メラミン樹脂、シリコーン樹脂、ポリエステル樹脂、ポリウレタン樹脂、フッ素樹脂、ゴム等の有機ないしプラスチック材料;ガラス;ブリキ、鉄材、鋼材、銅材、金、銀、アルミニウム等の金属;アスファルト;セラミック;コンクリート、モルタル、れんが、スレート、大理石等の石材;木材、合板等を挙げることができる。
 上記塗膜としては、有機塗膜、無機塗膜、有機無機ハイブリッド塗膜又はフッ素樹脂塗膜を挙げることができる。本開示のコーティング組成物は、これらの塗膜とも良好に付着し得る。本開示のコーティング組成物を、これらの塗膜上に塗装し、層を形成することにより、抗菌性及び抗ウイルス性を付与できるだけでなく、良好な外観がもたらされ、色相変化等を抑制できる。また、形成されたコーティング層の剥がれも抑制し得る。
 更に、上記コーティング層を用いることで、エナメル系塗膜等のチョーキング、退色等も抑制できる。
[物品]
 本開示は、基材と、該基材の表面に本開示のコーティング層とを含む物品にも関する。
 上記物品としては、特に限定されず、適宜選択することができる。例えば、自動車、電車、バス、タクシー等の車両の内外装;船;飛行機、ヘリコプター等の航空機の内外装;エスカレーター、エレベーター等の移動手段の外装;戸建住宅、マンション等の集合住宅、オフィスビル、公共施設、商業施設、教育・研究施設等建築物の内外装(壁面、床面、天井、屋根、柱、看板、電子看板(デジタルサイネージ)、トイレ、門扉、手すり、ドアノブ、窓枠、スイッチ類、カーテン等を含む)、机、テーブル、椅子、棚、パーテーション、鏡、ベッド等の家具類;テレビ、冷蔵庫等の家電製品;コピー機、ロッカー、宅配ボックス等の設備類;各種製品のタッチパネル;自動販売機;衣類;靴等の履物;傘等の雨具;包装材等が挙げられる。
 以下の実施例により本発明を更に具体的に説明するが、本発明はこれらに限定されない。実施例中「部」及び「%」は、ことわりのない限り質量基準による。
[光触媒型酸化チタン(B1)の調製方法]
 四塩化チタン水溶液(TiOを0.5質量%含有)に、アンモニア水(NHを3.0質量%含有)をかくはん下で添加し、チタンゲルを生成させた。このチタンゲルを、塩素イオンが、チタンゲルに対して100ppm以下になるまでろ過水洗し、チタンゲルからなるスラリー(該スラリーに対して、TiOを6.2質量%含有)を得た。このスラリー200gに、TiOに対してAgO及びCuOの合計が5質量%、且つ、銀に対する銅の割合[CuO/AgO(質量比)]が5となるように、酸化銀(AgO、和光純薬工業社製)0.1gと水酸化銅(Cu(OH)、関東化学社製)0.6gとを添加した。更に、酸化チタン(TiO)1モルに対して、0.03モルとなるように水酸化テトラエチルアンモニウム25%水溶液(多摩化学工業社製)1.7gを添加してよくかくはんした。その後、これをオートクレーブに入れ、130℃で10時間の水熱処理を行い、光触媒型酸化チタン(B1)を調製した。各成分の含有量は、TiO:6.10質量%、AgO:0.05質量%、CuO:0.24質量%、水酸化テトラエチルアンモニウム:0.21質量%であった。これを100℃で乾燥させて得られた粉末を粉末X線回折法により測定したところ、アナターゼ型の酸化チタンのピークが認められた。
[光触媒型酸化チタン(B2)の調製方法]
 AgO及びCuOの量を、TiOに対してAgO及びCuOの合計を7質量%、且つ、銀に対する銅の割合[CuO/AgO(質量比)]を5に変更した以外は上記と同様にして、光触媒型酸化チタン(B2)を調整した。各成分の含有量は、TiO:6.10質量%、AgO:0.07質量%、CuO:0.36質量%、水酸化テトラエチルアンモニウム:0.21質量%であった。
 実施例及び比較例で用いた無機系バインダー、アルコール、界面活性剤、消色性色素はそれぞれ以下のとおりである。
 (A1)ST-O、コロイダルシリカ、酸性タイプ、球状(日産化学社製);平均粒子径12nm、有効成分濃度:20質量%
 (A2)ST-OUP、コロイダルシリカ、酸性タイプ、鎖状(日産化学社製);平均一次粒子径:12nm、有効成分濃度:15質量%
 (A3)ST-PS-SO、コロイダルシリカ、酸性タイプ、パールネックレス状(日産化学社製);平均一次粒子径:15nm、有効成分濃度:15質量%
 (A4)ST-OXS、コロイダルシリカ、酸性タイプ、球状(日産化学社製);平均一次粒子径:5nm、有効成分濃度:10質量%
 (A5)ST-OL、コロイダルシリカ、酸性タイプ、球状(日産化学社製);平均一次粒子径:45nm、有効成分濃度:20質量%
 (A6)MKCシリケート MS51、テトラメトキシシラン部分加水分解縮合物(三菱化学社製)、有効成分濃度:52質量%
 (A7)50L、リン酸アルミニウム、酸性(多木化学社製)、固形分濃度:38質量%
 (a1)ST-N、コロイダルシリカ、アルカリ性タイプ、球状(日産化学社製);平均一次粒子径:12nm、有効成分濃度:20質量%
 (a2)ST-C、コロイダルシリカ、中性タイプ、アルミナ処理、球状(日産化学社製);平均一次粒子径:12nm、有効成分濃度:20質量%
(アルコール)
 (C1)エタノール、コニシ社製
 (C2)イソプロパノール、林純薬工業社製
 (C3)ノルマルプロパノール、林純薬工業社製
 (C4)プロピレングリコール、林純薬工業社製
(ノニオン系界面活性剤)
 (D1)サーフィノール420:アセチレンジオール系界面活性剤(日信化学工業社製)、HLB:4、有効成分濃度:100質量%
 (D2)エマルミンNL-70:ポリオキシアルキレンアルキルエーテル系界面活性剤(三洋化成社製)、HLB:10.6、有効成分濃度:100質量%
(消色性色素)
 モナスコレッドAL900R:ベニコウジ色素(キリヤ化学)、有効成分濃度:45質量%(エタノール溶液)
(その他)
・トルエン:三菱ケミカル社製
・イオン交換水
(実施例1)
 シリカ微粒子(A1)0.75質量部、光触媒型酸化チタン(B1)4.33質量部、アルコール(C1)59.00質量部及びイオン交換水35.92質量部を、かくはんしながら、順次添加して混合し、コーティング組成物1を調製した。
(実施例2~20及び比較例1~7)
 実施例2~20及び比較例1~7は、各成分の含有量及び種類を表1A~1Dに記載の条件に変更した以外は実施例1と同様に操作し、コーティング組成物をそれぞれ調製した。
 なお、(A6)は、MKCシリケート MS51 8.5質量部に、アルミキレートD(川研ファインケミカル社製、有効成分濃度:76質量%)0.1質量部、エタノール40.0質量部及びイオン交換水51.4質量部を添加し、60℃で3時間かくはんをすることにより調製したもの(pH:3.5、有効成分濃度:5質量%)を用いた。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
(試験板の調製)
 実施例及び比較例で得られたコーティング組成物を、ガラス板にコーティング組成物の液の塗布量が10g/mとなるようにスプレー塗装し、ジェット乾燥機(風速:10m/s)にて100℃で10分間乾燥させて試験板を得た。
 得られたコーティング組成物及び試験板について、それぞれ以下のように評価した。
1)コーティング組成物の貯蔵安定性
 実施例及び比較例で得られたコーティング組成物を、40℃で14日間静置した。静置後のコーティング組成物の状態を目視観察し、コーティング組成物の安定性を評価した。評価基準は以下のとおりである。
○: 分離及び/又は沈降が生じなかった。
×: 分離及び/又は沈降が生じた。
2)基材への濡れ性
 実施例及び比較例で得られたコーティング組成物を、ソーダガラス板(50mm×50mm×2mm)にコーティング組成物の塗布量がWET質量として10g/mとなるようにスプレー塗装した。塗装後の状態を目視で観察し、基材への濡れ性を評価した。評価基準は以下のとおりである。
○: 全面が均一に濡れる(コーティング組成物が玉状にならない)。
△: 全面がほぼ均一に濡れるが、端面に塗りもれが生じる(コーティング組成物が僅かに中央部による)。
×: 全面がはじく(コーティング組成物が玉状となり、全面が均一に濡れない)。
3)抗菌性評価
 実施例及び比較例で得られた試験板について、JIS R 1752(2020)に規定する方法に従って、黄色ブドウ球菌を用いて、抗菌性試験を実施した。
 すなわち、20Wの白色蛍光灯ネオラインFL20S・W(東芝ライテック社製)を光源として用い、紫外線カットフィルターN-169(日東樹脂工業社製)を通して、380nm以上の可視光を、照度500ルクスで照射した。なお、照度は照度計IM-5(トプコン社製)を用いて測定した。可視光の照射時間を8時間として、明所の抗菌活性値(R)を下式により算出した。基準板は抗菌加工が成されていないソーダガラス板を用いた。
明所の抗菌活性値:R=Log10(UB/TB)
 TB:光照射後の試験板あたりの生菌数(cfu)
 UB:光照射後の基準板あたりの生菌数(cfu)
 測定された明所の抗菌活性値(R)を以下の評価基準で評価した。評点1が最も良く、評点5が最も悪いとし、評点3以上を合格とした。
1:Rが4以上
2:Rが3以上4未満
3:Rが2以上3未満
4:Rが1以上2未満
5:Rが1未満
4)抗ウイルス性
 実施例及び比較例で得られた試験板について、JIS R 1756(2020)に規定する方法に従って、バクテリオファージQβを用いて、抗ウイルス試験を実施した。
 すなわち、20Wの白色蛍光灯ネオラインFL20S・W(東芝ライテック社製)を光源として用い、紫外線カットフィルターN-169(日東樹脂工業社製)を通して、380nm以上の可視光を、照度500ルクスで照射した。なお、照度は照度計IM-5(トプコン社製)を用いて測定した。可視光の照射時間を4時間として、明所の抗ウイルス活性値(V)を下式により算出した。基準板は抗ウイルス加工が成されていないソーダガラス板を用いた。
明所の抗ウイルス活性値:V=Log10(UV/TV)
  TV:光照射後の試験板あたりのバクテリオファージ感染価(pfu)
  UV:光照射後の基準板あたりのバクテリオファージ感染価(pfu)
 なお、抗ウイルス性を評価する前に、塗装体の表面及び裏面をそれぞれ、クリンベンチ内にて殺菌灯を照射して、滅菌処理した。殺菌灯は15Wの殺菌灯(波長254nm)がクリンベンチの側面に各1本、計2本設置され、塗装体から光源までの距離を30cm~60cmとした。殺菌灯の照射時間は15分とした。
 測定された明所の抗ウイルス活性値(V)を以下の評価基準で評価した。評点1が最も良く、評点5が最も悪いとし、評点3以上を合格とした。
1:Vが4以上
2:Vが3以上4未満
3:Vが2以上3未満
4:Vが1以上2未満
5:Vが1未満1
5)耐久性(水ラビング試験)
 摩擦摩擦解析装置TS501(協和界面科学社製)の評価台に、実施例及び比較例で得られた試験板を粘着テープで貼り付け、ラビング試験を実施した。測定条件は、摩擦材としてイオン交換水を含ませたウエス脱脂綿を用い、荷重20g/cm、往復速度60回/分、往復距離60mm、往復回数10回とした。
 試験終了後、ラビング試験を行った部位及び行っていない部位それぞれに、1質量%硝酸銀水溶液を1g/10cm塗布し、紫外光を照射(照度:80mW/m、照射時間:5秒)した。試験を行った部位及び行っていない部位について、それぞれの硝酸銀水溶液を塗布していない部位を基準として、色彩色差計CR-400(コニカミノルタ社製)を用いて色差(ΔE)を測定し、下記式に従って残存光触媒率を算出した。評価基準は以下のとおりである。なお、色差測定の際、試験板の下に白色コート紙(TP技研社製)を敷いて実施した。
 残存光触媒率(%)=摩擦試験を行った部位の色差(ΔE)/摩擦試験を行っていない部位の色差(ΔE)×100
◎: 残存光触媒率が95%以上
○: 残存光触媒率が80%以上95%未満
△: 残存光触媒率が40%以上80%未満
×: 残存光触媒率が40%未満
6)視認性評価
 実施例20で得られた試験板について、試験板を作製した(コーティング層を形成した)直後のコーティング層の色を目視で観察し、以下の基準で評価した。○以上を合格とした。
◎:着色コーティング層の色をはっきり確認できる。
○:着色コーティング層の色を確認できる。
△:着色コーティング層の色をかろうじて確認できる。
6)光消色性評価
 実施例20で得られた試験板について、可視光を照射し、光消色性試験を実施した。
 試験板を作製した(コーティング層を形成した)直後のコーティング層の色を基準として、色彩色差計CR-400(コニカミノルタ社製)を用いて、可視光の照射の開始から1時間ごとにコーティング層の色差(ΔE)を測定した。ΔEが1以下となるまでの時間を測定し、以下の基準で評価した。評価△以上を合格とした。
可視光光源:白色蛍光灯、ネオラインFL20SW(東芝ライテック社製)、波長:400~800nm、照度:500ルクス(波長400nm未満はカットフィルターで除去した)
◎:照射開始から3時間未満でΔEが1以下になる。
○:照射開始から3時間以上12時間未満でΔEが1以下になる。
△:照射開始から12時間以上24時間以下でΔEが1以下になる。
×:照射開始から24時間以内ではΔEが1以下にならない。
 実施例及び比較例の条件及び評価結果を以下の表に示す。
 なお、実施例13においては、表の「コーティング組成物100質量部における(A)の有効成分含有量」の欄に記載している数値は「固形分含有量」に対応する。
 また、実施例15においては、表の「SiOの含有量」の欄に記載している数値は「AlPOの含有量」に、「TiOとSiOとの質量比 (TiO/SiO)」の欄に記載している数値は「TiOとAlPOの質量比 (TiO/AlPO)」に、それぞれ対応する。
 また、比較例3、4においては、表の「(B)と(A)の質量比」の欄に記載している数値は、それぞれ、「(B)と(a1)の質量比」、「(B)と(a2)の質量比」に対応する。更に、比較例7においては、表の「コーティング組成物100質量部における(C)の含有量」の欄に記載している数値は、「コーティング組成物100質量部におけるトルエンの含有量」に対応する。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
 実施例1~20によれば、貯蔵安定性、基材への濡れ性の良好なコーティング組成物を得ることができた。実施例1~20で得られたコーティング組成物を用いることにより、抗ウイルス性、抗菌性、耐久性(水ラビング試験)の良好なコーティング層を得ることができた。実施例17、18ではコーティング組成物に界面活性剤(D)を加えており、これらの実施例においても、コーティング組成物の貯蔵安定性、基材への濡れ性が良好であり、得られたコーティング層の抗ウイルス性、抗菌性、耐久性(水ラビング試験)も良好であった。実施例20では、視認性及び消色性においても良好な結果が得られたことを確認した。
 比較例1の組成物は、無機系バインダーをほとんど含まない。得られたコーティング層では、耐久性(水ラビング耐性)が悪いため抗ウイルス性を維持できないことが分かった。
 比較例2の組成物では、無機系バインダー(A)に対する光触媒型酸化チタン(B)の質量比[(B)/(A)]が低く、抗ウイルス性が悪かった。
 比較例3の組成物は、無機系バインダーとしてアルカリ性ゾルを、比較例4の組成物は、無機系バインダーとしてアルミナ処理ゾルをそれぞれ含んだ。得られたコーティング組成物は、貯蔵安定性が悪い結果となった。
 比較例5の組成物は、アルコールを含まず、基材への濡れ性も悪かったため、コーティング層の抗菌性及び抗ウイルス性が良好でなかった。
 比較例6の組成物は、比較例5の条件にノニオン系界面活性剤を加えたものである。基材への濡れ性は比較例5よりも少しは向上したが、充分でなく、抗菌性及び抗ウイルス性は比較例5と同様に悪かった。
 比較例7の組成物は、アルコールの代わりにトルエンを用いたものであるが、組成物の安定性が悪く、他の評価は実施できなかった。
 本発明のコーティング組成物は、貯蔵安定性が良好であり、かつ、抗菌性・抗ウイルス性の発揮までの時間が短く、更に、抗菌性及び抗ウイルス性の耐久性が良好であるコーティング層の形成に寄与できる。本発明のコーティング組成物を用いると、コーティング層を有する様々な物品の形成が可能になる。

Claims (16)

  1.  無機系バインダー(A)、光触媒型酸化チタン(B)及びアルコール(C)を含み、
     前記無機系バインダー(A)は、酸性タイプであり、
     前記無機系バインダー(A)に対する前記光触媒型酸化チタン(B)の質量比[(B)/(A)]は、0.5~5.0の範囲にある、
    抗菌・抗ウイルスコーティング組成物。
  2.  前記無機系バインダー(A)は、ケイ素化合物系バインダーを含む、請求項1に記載の抗菌・抗ウイルスコーティング組成物。
  3.  前記無機系バインダー(A)は、コロイダルシリカ及びアルキルシリケートからなる群より選ばれる少なくとも1種を含む、請求項1又は2に記載の抗菌・抗ウイルスコーティング組成物。
  4.  前記光触媒型酸化チタン(B)は、銀及び銅並びに水酸化第四アンモニウムを含有する、請求項1~3のいずれか1項に記載の抗菌・抗ウイルスコーティング組成物。
  5.  前記アルコール(C)は、炭素数1~7のアルコールを含む、請求項1~4のいずれか1項に記載の抗菌・抗ウイルスコーティング組成物。
  6.  前記アルコール(C)は、エタノール、イソプロパノール、ノルマルプロパノール及びプロピレングリコールからなる群より選ばれる少なくとも1種である、請求項1~5のいずれか1項に記載の抗菌・抗ウイルスコーティング組成物。
  7.  更に、水を含む、請求項1~6のいずれか1項に記載の抗菌・抗ウイルスコーティング組成物。
  8.  更に、界面活性剤を含む、請求項1~7のいずれか1項に記載の抗菌・抗ウイルスコーティング組成物。
  9.  前記界面活性剤は、ノニオン系界面活性剤である、請求項8に記載の抗菌・抗ウイルスコーティング組成物。
  10.  更に、消色性色素を含む、請求項1~9のいずれか1項に記載の抗菌・抗ウイルスコーティング組成物。
  11.  請求項1~10のいずれか1項に記載の抗菌・抗ウイルスコーティング組成物により形成された、抗菌・抗ウイルスコーティング層。
  12.  基材と、該基材の表面に請求項11に記載の抗菌・抗ウイルスコーティング層とを含む物品。
  13.  被塗物に、請求項1~10のいずれか1項に記載の抗菌・抗ウイルスコーティング組成物を、該抗菌・抗ウイルスコーティング組成物の乾燥後の質量が0.02~0.20g/mとなるように塗装して抗菌・抗ウイルスコーティング層を形成する工程、を含む、抗菌・抗ウイルスコーティング層の形成方法。
  14.  前記抗菌・抗ウイルスコーティング層の形成は、前記抗菌・抗ウイルスコーティング組成物を、浸漬塗装、刷毛塗装、布を用いての塗装、ローラー塗装、ロールコーター塗装、スプレー塗装、カーテンフローコーター塗装、ローラーカーテンコーター塗装及びダイコーター塗装からなる群から選ばれる少なくとも1つの方法により塗装することにより行われる、請求項13に記載の抗菌・抗ウイルスコーティング層の形成方法。
  15.  前記スプレー塗装は、エアゾールスプレー塗装又は非エアゾールスプレー塗装である、請求項14に記載の抗菌・抗ウイルスコーティング層の形成方法。
  16.  前記布を用いての塗装は、前記抗菌・抗ウイルスコーティング組成物を布に含浸させ、被塗物の表面を拭くことにより行われる、請求項14に記載の抗菌・抗ウイルスコーティング層の形成方法。
PCT/JP2021/041597 2020-11-27 2021-11-11 抗菌・抗ウイルスコーティング組成物 WO2022113759A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020197442A JP7121356B2 (ja) 2020-11-27 2020-11-27 抗菌・抗ウイルスコーティング組成物
JP2020-197442 2020-11-27

Publications (1)

Publication Number Publication Date
WO2022113759A1 true WO2022113759A1 (ja) 2022-06-02

Family

ID=81755872

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/041597 WO2022113759A1 (ja) 2020-11-27 2021-11-11 抗菌・抗ウイルスコーティング組成物

Country Status (3)

Country Link
JP (1) JP7121356B2 (ja)
TW (1) TW202229466A (ja)
WO (1) WO2022113759A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115717021A (zh) * 2022-11-16 2023-02-28 上海展辰涂料有限公司 一种耐磨防滑抗菌的地板紫外线固化涂装体系

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999052986A1 (fr) * 1998-04-10 1999-10-21 Matsushita Electric Works, Ltd. Procede permettant de former un film de revetement inorganique hydrophile et composition de revetement inorganique
JP2002060687A (ja) * 2000-08-21 2002-02-26 C I Kasei Co Ltd 透明光触媒用塗料組成物
JP2006232729A (ja) * 2005-02-24 2006-09-07 Taki Chem Co Ltd ファージ・ウイルスの不活性化剤及び水溶性塗料
JP2008080253A (ja) * 2006-09-28 2008-04-10 Taki Chem Co Ltd 光触媒酸化チタンゾル及びこれを用いたコーティング組成物並びに部材
JP2010209337A (ja) * 2006-02-20 2010-09-24 Tama Kagaku Kogyo Kk 均一分散性光触媒コーティング液及びその製造方法並びにこれを用いて得られる光触媒活性複合材

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999052986A1 (fr) * 1998-04-10 1999-10-21 Matsushita Electric Works, Ltd. Procede permettant de former un film de revetement inorganique hydrophile et composition de revetement inorganique
JP2002060687A (ja) * 2000-08-21 2002-02-26 C I Kasei Co Ltd 透明光触媒用塗料組成物
JP2006232729A (ja) * 2005-02-24 2006-09-07 Taki Chem Co Ltd ファージ・ウイルスの不活性化剤及び水溶性塗料
JP2010209337A (ja) * 2006-02-20 2010-09-24 Tama Kagaku Kogyo Kk 均一分散性光触媒コーティング液及びその製造方法並びにこれを用いて得られる光触媒活性複合材
JP2008080253A (ja) * 2006-09-28 2008-04-10 Taki Chem Co Ltd 光触媒酸化チタンゾル及びこれを用いたコーティング組成物並びに部材

Also Published As

Publication number Publication date
TW202229466A (zh) 2022-08-01
JP7121356B2 (ja) 2022-08-18
JP2022085649A (ja) 2022-06-08

Similar Documents

Publication Publication Date Title
US6407033B1 (en) Photocatalytic coating composition and photocatalyst-bearing structure
CN102105303B (zh) 光催化剂涂装体
TWI557192B (zh) Coating composition and antibacterial and antiviral components
JP4017389B2 (ja) 光触媒体の製造方法
WO2005105304A2 (de) Verwendung photokatalytischer tio2-schichten zur funktionalisierung von substraten
JP2012250134A (ja) 光触媒塗装体およびそのための光触媒コーティング液
JP2017064707A (ja) 光触媒塗装体
WO2022113759A1 (ja) 抗菌・抗ウイルスコーティング組成物
JP2004337740A (ja) 光触媒体
JP2002060651A (ja) 金属酸化物水系ゾル組成物、これを用いた造膜法及び部材
JP5361513B2 (ja) 光触媒塗装体
JP2006008902A (ja) 光触媒塗料組成物
JP2009119462A (ja) 光触媒塗装体およびそのための光触媒コーティング液
JP7023689B2 (ja) 光触媒塗装体及び光触媒塗料組成物
JP2002273234A (ja) 光触媒体の製造方法
JP2009263651A (ja) 光触媒コーティング組成物
KR100524050B1 (ko) 방오성 코팅제 조성물 및 그 제조방법
JP4553439B2 (ja) 塗布方法
JP2004091697A (ja) 酸化チタン膜形成用液体、酸化チタン膜の形成法、酸化チタン膜及び光触媒性部材
JP5614945B2 (ja) 光触媒塗装体
JP2007277403A (ja) 透明コーティング剤及び透明コーティング膜
JPWO2011059105A1 (ja) 遮熱剤組成物
JP2000303055A (ja) 光触媒性親水性被膜の親水性回復剤
JP2005224727A (ja) 変性光触媒
JP2011006957A (ja) 門扉

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21897733

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21897733

Country of ref document: EP

Kind code of ref document: A1