WO1999045162A1 - Aciers a forger a froid et leur procede de fabrication - Google Patents

Aciers a forger a froid et leur procede de fabrication Download PDF

Info

Publication number
WO1999045162A1
WO1999045162A1 PCT/JP1999/001049 JP9901049W WO9945162A1 WO 1999045162 A1 WO1999045162 A1 WO 1999045162A1 JP 9901049 W JP9901049 W JP 9901049W WO 9945162 A1 WO9945162 A1 WO 9945162A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel
graphite
less
hardness
ratio
Prior art date
Application number
PCT/JP1999/001049
Other languages
English (en)
French (fr)
Inventor
Masayuki Hashimura
Hideo Kanisawa
Makoto Okonogi
Original Assignee
Nippon Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP06764298A external-priority patent/JP4119517B2/ja
Application filed by Nippon Steel Corporation filed Critical Nippon Steel Corporation
Priority to US09/403,238 priority Critical patent/US6419761B1/en
Priority to KR1019997010117A priority patent/KR100349008B1/ko
Priority to DE69931601T priority patent/DE69931601T2/de
Priority to EP99937950A priority patent/EP1045044B1/en
Publication of WO1999045162A1 publication Critical patent/WO1999045162A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese

Definitions

  • the present invention relates to a structural steel to be subjected to cold forging as it is, or after rolling and annealing, and a method for producing the same.
  • Steel used for structural members goes through a number of processing steps to provide the necessary properties, but one of them is induction hardening, which hardens the surface layer.
  • induction hardening which hardens the surface layer.
  • such a member only needs to have a high surface hardness, so that an increase in the number of steps is a factor that increases costs, and has been regarded as a problem in the past.
  • the as-rolled material of conventional structural steel has a slow cooling rate, it often has a fine-palite structure, but has a low surface hardness and hardly reaches the induction hardening level. Also, due to the effects of decarburization, the surface hardness is often softer than the internal hardness.
  • Hot forging requires heating at the time of forging and is inferior in processing accuracy. Therefore, a more accurate cold forging method is being pursued.
  • the hardness of conventional as-rolled material is too high, making it unsuitable for cold forging.
  • ordinary cold forging steel it is common to soften the cementite by, for example, spheroidizing the cementite. The annealing time is about 20 hours It takes a very long time.
  • the precipitation temperature of BN is considered to be about 850 to 900 ° C, but actual rolling and hot forging are often performed at 1000 ° C or higher. Therefore, in order to use such a graphite-containing steel for cold forging, the rolling and hot forging in the previous step had to be performed at 1000 ° C. or less. Hot working at such temperatures reduces the life of tools such as rolls and punches. In addition, since such an increase in restrictions on the process lowers the efficiency of production, it should be avoided from the viewpoint of production cost. From the viewpoints of such steel production and hot forging in the pre-process of cold forging, there is a demand for steel that can be annealed and hardened in a short time without requiring strict temperature control.
  • the conventional as-rolled material often has an incomplete property in that the surface layer hardness is insufficient when used as it is, and the hardness is too high for cold forging or cutting.
  • the surface layer hardness is insufficient when used as it is, and the hardness is too high for cold forging or cutting.
  • there is a fundamental issue of integrating steel grades as much as possible to reduce costs. Therefore, a material having sufficient surface hardness even as rolled, and providing a material exhibiting excellent cold forgeability after annealing while shortening the annealing time when subjected to cold forging. was an issue O
  • the present invention by adjusting the chemical composition and the microstructure of the steel, has excellent surface hardness up to rolling and has an excellent short softening annealing time before cold forging or cutting.
  • An object of the present invention is to provide steel capable of imparting cold forgeability and a method for producing the steel.
  • the present invention relates to a steel for cold forging after annealing, the chemical composition of which is adjusted.
  • the tempering it is possible to shorten the annealing time, provide excellent cold workability and machinability after annealing, and provide cold forging steel that has excellent strength and toughness after quenching and tempering. That is what you do.
  • the present invention has been made to solve the above problems, and the gist of the present invention is as follows.
  • C 0.1 to 1.0%
  • Si 0.1 to 2.0%
  • Mn 0.01 to 1.50%
  • P 0.100% or less
  • S Sol. N: limited to 0.005% or less, with the balance being Fe and unavoidable impurities. (Speculum area) less than 120x (C%)%
  • the outermost layer hardness is Vickers hardness HV of 450x (C%) more than 1090, and it has excellent surface hardness and excellent softening properties by annealing.
  • the second invention contains one or two of Cr: 0.01 to 0.70% and Mo: 0.05 to 50% in addition to the chemical components described in (1) above.
  • the ratio of the occupied particles is 120X (C%)% or less, and the outermost layer hardness is 450 X (C%) + 90 in Vickers hardness HV. Cold forging steel with excellent surface hardness and softening properties due to annealing.
  • B 0.0001 to 0.0060%, which accounts for the structure in steel
  • the percentage of perlite (percent occupied area on the speculum surface / speculum area) is 120 X (C%)% or less, and the outermost layer hardness is 450 x (C%) + 90 or more for Pickers hardness HV.
  • the composition contains 0.0005 to 0.0200% of Mg, and the ratio of perlite to the structure in steel (examination) Surface light hardness of 120x (C%)% or less and the outermost layer hardness is 450 X (C%) +90 or more in Vickers hardness HV on the mirror surface and softening by annealing Cold forging steel with excellent properties.
  • C 0.1 to 1.0%, Si: 0.1 to 2.0%, Mn: 0.01 to 1.50%, P: 0.100% or less, S: 0.500% or less by weight%, sol N: Restricted to 0.005% or less, with the balance being Fe and unavoidable impurities, and the proportion of C in the steel as graphite (graphite ratio: the amount of carbon precipitated as graphite and the carbon content in the steel) Has a structure of more than 20%, and the average grain size of graphite is 10 X (C%) 1/3 // m or less, and the maximum grain size is 20 / m or less. Cold forging steel with excellent induction hardening properties.
  • one or two of Cr: 0.01 to 0.70% and Mo: 0.05 to 0.50% are contained.
  • the content of B 0.0001 to 0.0060%
  • the ratio of C in the steel as graphite graphite rate: graphite and then the carbon content Z steel the carbon content of which is deposited
  • the steel contains Mg: 0.0005 to 0.0200%, and C in the steel as graphite Existence ratio (graphite ratio: amount of carbon precipitated as graphite Z carbon content in steel) has a structure exceeding 20%, and the average particle size of graphite is 10X (C%) 3 / m or less and maximum Cold forging steel with a grain size of 20 m or less and excellent in cold workability, machinability and induction hardening.
  • graphite ratio amount of carbon precipitated as graphite Z carbon content in steel
  • Figure 1 shows the outline of the method for measuring the ratio of Perlite.
  • FIG. 2 is a diagram showing a relationship between a pearlite area ratio and an annealing time until softening in an example of a 0.20% class.
  • FIG. 3 is a graph showing the relationship between the pearlite area ratio and the annealing time until softening in the example of the 0.35% class.
  • FIG. 4 is a diagram showing the relationship between the pearlite area ratio and the annealing time until softening in the example of the 0.45% class.
  • FIG. 5 is a diagram showing the relationship between the pearlite area ratio and the annealing time until softening in the example of the 0.55% class.
  • Figure 6 shows the relationship between recuperation temperature and surface hardness.
  • Figure 7 shows the relationship between the reheat temperature and the pearlite area ratio.
  • Fig. 8 is a diagram showing the relationship between the solute nitrogen and the annealing time until softening.
  • FIG. 4 is a diagram showing a relationship of curing time according to the present invention.
  • FIG. 10 is a graph showing the relationship between the average particle size and the curing time by high-frequency heating in the example of the 0.55% C class.
  • FIG. 11 is a diagram showing the relationship between the average particle size and the curing time by high-frequency heating for the 0.35% C class examples.
  • C After quenching and tempering, C needs to be 0.1% or more to secure the strength as a part.
  • the upper limit is set at 1.0% to prevent the occurrence of fire cracking.
  • Si has the effect of promoting graphitization by increasing the carbon activity in steel.
  • the lower limit is preferably 0.1% or more from the viewpoint of graphitization. Further, if the content exceeds 2.0%, adverse effects such as an increase in the hardness of the fiber and a decrease in the toughness of the steel become remarkable, so the upper limit was set to 2.0%.
  • Si can be used as an element for adjusting the graphitization ratio, and the lower the content, the lower the graphitization ratio after annealing. If the graphitization rate is reduced by reducing the amount of Si, the hardness of the ferrite phase is reduced.Therefore, within the specified range, the hardness of the steel does not increase, and the cold forging performance is reduced. There is no.
  • Mn is necessary to add the amount required to fix and disperse S in steel as MnS and the amount necessary to secure the strength after hardening by dissolving it in the matrix. Yes, and its lower limit is 0.01%. As the Mn content increases, the hardness of the substrate increases and the cold workability decreases. Mn is a graphitization inhibiting element, and the longer the amount of addition, the longer the annealing time Due to the tendency, the upper limit was set to 1.50%.
  • the upper limit of P must be set to 0.100% because the hardness of the base material increases in steel and the cold workability decreases.
  • sol.N dissolves into the cementite and inhibits the decomposition of the cementite, and thus becomes a graphitization inhibiting element. Therefore, in the present invention, it is specified by sol. That is, if the content of sol.N exceeds 0.005%, the annealing time required for graphitization becomes extremely long, and the hardness after softening becomes high. Therefore, the upper limit of sol.N is set to 0.005%. This is because sol. N inhibits the diffusion of C to slow the graphitization and increases the ferrite hardness.
  • Cr is a hardenability improving element, but at the same time, a graphitization inhibiting element. Therefore, if the hardenability needs to be improved, it is necessary to add 0.01% or more. However, if added in a large amount, the graphitization is inhibited and the annealing time becomes longer. Therefore, the upper limit was set to 0.70%.
  • Mo is an element that increases the strength after quenching, but easily forms carbides and reduces the activity of carbon, and is an element that inhibits graphitization. Therefore, the upper limit was 0.50%, at which the graphitization inhibitory effect was remarkable, and the addition amount was limited to a level that did not significantly inhibit graphite nucleation. However, since the degree of graphitization inhibition is smaller than other hardenability improving elements, it is sufficient to increase the amount of Mo added within the specified range in order to improve hardenability.
  • V forms carbonitrides and shortens the graphitizing annealing time on both the grain refinement and precipitation nuclei. Also reduces sol. N during nitride formation.
  • V is less than 0.05%, the effect is small.
  • V is more than 0.50%, the effect is saturated, and mechanical properties are impaired because a large amount of undissolved carbide remains.
  • Nb forms carbonitride and shortens the graphitizing annealing time on both the grain refinement and the precipitation nuclei. Also reduces sol. N during nitride formation. If the Nb content is less than 0.01%, the effect is small. If the Nb content is more than 0.10%, the effect is saturated, and a large amount of undissolved carbide remains, thereby impairing the mechanical properties.
  • Mo is an element that increases the strength after quenching, but easily forms carbides and reduces the activity of carbon, and is an element that inhibits graphitization. Therefore, the upper limit was set to 0.5%, at which the graphitization inhibitory effect was remarkable, and the addition amount was set so as not to significantly inhibit the nucleation of graphite. However, since the degree of graphitization inhibition is smaller than other hardenability improving elements, it is sufficient to increase the amount of Mo added within the specified range for improving hardenability.
  • Zr forms oxides, nitrides, carbides, and sulfides. They reduce the graphitizing annealing time as precipitation nuclei. Also, reduce so 1.N during nitride formation. In addition, the shape of sulfides such as MnS can be made spherical to reduce the mechanical anisotropic rolling anisotropy. Furthermore, hardenability can be improved. If Zr is less than 0.01%, the effect is small. If it exceeds 0.30%, the effect is saturated, and a large amount of undissolved carbide remains, thereby impairing the mechanical properties.
  • A1 is required at least 0.001% in order to deoxidize steel and prevent surface flaws during rolling, and the effect of deoxidation saturates at more than 0.050%, with alumina-based Since the number of items increases, the upper limit is set to 0.050%. Also, when precipitated as A1N, it plays a role as graphite precipitation nuclei and a role to create graphite precipitation nuclei by reducing the grain size. Furthermore, since N is fixed as nitride, sol. N is reduced.
  • sol. B reacts with N and precipitates as BN on the austenite crystal grain boundaries, thus helping to reduce sol.
  • the crystal structure of BN is hexagonal, like graphite, and serves as the precipitation nucleus of graphite.
  • sol. B is an element that improves the hardenability, and is desirably added when hardenability is required.
  • the lower limit must be 0.0001%.
  • the effect of precipitating BN and the effect of improving hardenability are saturated at over 0.0060%, so the upper limit was made 0.0060%.
  • Pb is a machinability improving element. If machinability is required, 0.01% or more is required. If it exceeds 0.30%, graphitization is inhibited and production problems such as rolling flaws occur, so the upper limit was set to 0.30%.
  • Ca is effective when it is necessary to reduce rolling anisotropy and improve machinability by spheroidizing MnS.
  • the precipitated Ca-based inclusions act as precipitation nuclei for graphite. If the effect is less than 0.0001%, the effect is small, and if it exceeds 0.0020%, the mechanical properties may be impaired depending on the precipitate, so the upper limit was made 0.0020%.
  • Te is an element that improves machinability and helps to reduce rolling anisotropy by spheroidizing MnS. If the content is less than 0.001%, the effect is small, and if it exceeds 0.100%, problems such as graphitization inhibition and rolling flaws are caused. Therefore, the upper limit is set to 0.100%.
  • Se is effective in improving machinability.
  • the effect is small when the content is less than 0.01%, and the effect is saturated when the content is more than 0.50%, so the upper limit is 0.50%.
  • Bi is effective in improving machinability.
  • the effect is small when the content is less than 0.01%, and the effect is saturated when the content is more than 0.50%, so the upper limit is 0.50%.
  • Mg is an oxide-forming element such as MgO and forms sulfide. MgS often coexists with MnS and the like, and such oxides and sulfides become graphite precipitation nuclei, and are useful for fine dispersion of graphite and shortening of annealing time.
  • the effect is not recognized when the content of Mg is less than 0.0005%, and when the content is more than 0.0200%, a large amount of oxides is generated and the strength of steel is reduced. Therefore, the content of Mg is set in the range of 0.0005 to 0.0200%.
  • the surface layer of cold forging steel can increase its hardness by quenching from a temperature above the transformation point, but the hardness of the surface layer is affected by the C content. If the surface hardness is too low, it cannot be used for steel that requires surface hardness. For example, in the case of steel that requires wear resistance, it is necessary that at least at least the hardness of general normalizing steels be high. According to the present invention, it is possible to provide a steel having a Vickers hardness HV of 450 X (C%) + 90 or more according to the C content.
  • the percentage of pearlite in the steel structure is 120 X (C%)% or less (however, 100% or less.
  • C%% or less (however, 100% or less.
  • the same applies hereinafter) State the reason for the regulation so that.
  • carbon in steel when carbon in steel is graphitized, if it is cooled from the austenite region at an air cooling rate or at a higher rate, it usually produces cementite.
  • C carbon in steel is graphitized
  • it is necessary to graphitize C by annealing it is necessary to graphitize C by annealing.
  • the process of graphitization by annealing is considered to be in the order of decomposition of cementite-diffusion of C-graphite nucleation.
  • the cementite Takes a lot of time to disassemble The time cannot be shortened.
  • Fig. 1 shows the outline of the method for measuring the ratio of the lights.
  • the method for calculating the percentage of perlite by the method for measuring perlite is given by the following equation.
  • n number of divisions
  • R radius of the bar or wire rod
  • Figs. 2 to 5 show the relationship between the area ratio of the pre-annealing palmite and the annealing time for different C contents. It can be seen that the lower the C content, the easier the softening, but outside the range of the present invention, the annealing time becomes extremely long.
  • C in steel exists as cementite or graphite, but graphite can be easily deformed because it has cleavage properties. If the matrix is high quality, it will have good cold forgeability, and when cutting, it will improve machinability from the functions of both the internal lubricant and the fracture origin. However, if the graphite content is less than 20%, sufficient deformation and lubrication functions will not be exhibited, so the upper limit was set to more than 20%. When the deformation characteristics are prioritized, the graphitization rate is increased.On the other hand, in order to ensure good induction hardening characteristics, part of C is intentionally not graphitized and part of it is cementite. It is effective to leave.
  • the average particle size of graphite is lO x (C%) 1/3 m or less and maximum
  • the reason for setting the particle size to 20 m or less is the result of considering the induction hardening characteristics. That is, when induction hardening is performed, its hardening characteristics are governed by the decomposition and diffusion of C in graphite. At that time, if the graphite particle size is large, a large amount of heat and time are required for decomposition and diffusion, and it is difficult to obtain a stable hardened layer by induction hardening.
  • the average particle size of graphite In order to stably obtain a hardened layer equivalent to the content of C by induction hardening in which the treatment is completed in a short time, the average particle size of graphite must be 10 X (C%) 1/3 m or less. Beyond this, hardening is difficult because the amount of undissolved graphite is large even after induction quenching, and the mixed structure of the layer containing C in the middle of diffusion and the ferrite that does not yet contain the diffused C is included. In addition, a stable cured layer cannot be obtained.
  • Figures 10 and 11 show the relationship between the average particle size of graphite and the hardening time by induction hardening
  • Figure 9 shows the relationship between the maximum particle size of graphite and the hardening time by induction hardening.
  • the surface cooling rate from the end of rolling to 500 ° C is 1. If it is not less than / s, the hardness can be increased more than the inside of which is gradually cooled.
  • the main purpose is not to increase the hardness by rapid cooling as in normal quenching, but to prevent the formation of powder to facilitate decomposition during annealing. There is no need to increase the cooling capacity. In actual steel production, products are often shipped with a diameter of 5 to 150 mm, so it is only necessary to suppress the generation of pearlite for those products.
  • the steel material immediately after rolling is passed through a cooling device such as a cooling trough and a water tank installed at the end of the rolling line.
  • the steel is cooled in air after passing through a cooling system. What is important here is that even if the surface layer is cooled down, it recovers heat due to the heat inside the steel material. It is necessary to keep this recuperation temperature below 650 ° C.
  • recuperation temperature When the recuperation temperature is restored to 650 ° C or more, the surface hardness decreases. In some cases, perlite is generated during cooling in the atmosphere, and it becomes difficult to reduce the perlite amount to 120 X (C%)%.
  • the cooling rate and recuperation characteristics are greatly affected by the diameter of the rod and wire being rolled, but the cooling is not limited to water cooling, oil cooling, air cooling, etc., cooling rates of 1 ° C / s or more, recuperation 650 Any cooling means capable of realizing a temperature of not more than ° C may be used.
  • Figure 6 shows the relationship between reheat temperature and surface hardness. As shown in Fig. 6, the surface hardness cannot be secured if the recuperation increases.
  • Figure 7 shows the reheating temperature and The light area ratio is shown. As shown in FIG. 7, the higher the recuperation temperature, the greater the area ratio of the platinum. Thus, Figs. 6 and 7 show that it is important to control the recuperation temperature after rapid cooling.
  • a microscopic sample for an optical microscope in a cross-sectional direction was taken from each test piece, polished to a mirror surface, and then etched with nital.
  • the light and other tissues were separated at a magnification of 1000 times, and the area ratio of the light was quantified by an image processing device. At that time, the number of target fields was 50 is there.
  • Such a heat-treated material was annealed at 680 ° C. Annealing time
  • the hardness was measured every 4 hours up to 16 hours, every 8 hours up to 48 hours, and every 24 hours after that, and the annealing time until the Pisces hardness became HV: 130 or less was measured.
  • the temperature was measured using a radiation thermometer.
  • the cooling rate was determined by dividing the temperature difference between just before cooling and after reheating by the time required for reheating.
  • Tables 1 to 6 show examples of the present invention (1 to 42), and Tables 7 to 8 (43-62) show comparative examples (43 to 62).
  • the surface hardness is high and the softening annealing time is short.
  • Comparative Examples 43 to 54 if the amount of sol. N is out of the specified range, the annealing time for softening becomes longer.
  • Comparative Examples 55 to 59 the cooling rate was insufficient, so the perlite fraction increased, and it was found that annealing took time.
  • Comparative Examples 60 to 62 the reheat temperature is high, and the annealing time is also long.
  • the surface hardness is insufficient when the cooling rate and the reheating temperature are outside the ranges specified in the present invention.
  • a polished sample was prepared, and the graphite particle size was measured with an image processor at a magnification of 400 times or more in 50 visual fields. After the graphitizing annealing, hardness measurement, cutting test and induction hardening test were performed.
  • the cutting test is a drilling process using a high-speed steel drill with a diameter of 30. It was used as an index of grinding performance. The feed rate is 0.33mm / rev and wet cutting using water-soluble oil.
  • the hardness before and after annealing and the quenching time by induction hardening are shown.
  • examples (1 to 59) it is possible to harden to HV: about 120 before quenching, and to HV: about 600 after quenching.
  • An automatic transformation point measuring device (Formaster) was used to evaluate the hardenability by high-frequency heating.
  • Formaster when heated to 1000 ° C by high frequency and quenched, graphite diffuses slowly, causing variations in hardness after induction hardening. Therefore, by changing the heating time and quenching, the time until the hardness variation due to quenching disappeared was measured, and the quality of the quenchability was evaluated accordingly.
  • the specimen size is 3 mm in diameter and 10 mm in length.
  • 5 points When the hardness variation power of HV: 200 or less, it was considered that there was no variation in hardness.
  • the examples of the present invention are sufficiently softened by short-time annealing and have excellent machinability.
  • Machinability VL1000 150 m / min is the limit of the test equipment and has the potential for further improvement. Despite its softness, it hardened without variation by induction hardening. The time was 3 seconds, and the induction hardening was performed with sufficient uniformity even with the shortest heating that could be controlled by the Formaster test. These tendencies do not change the basic characteristics even when elements such as Ti and Cr are added, and if machinability or hardenability is required, these elements can be added as necessary.
  • Comparative Examples 57 to 70 are test materials in which the amount of sol. N exceeds the amount specified in the present invention, and test materials in which the graphite particle size exceeds the specified amount.
  • Fig. 8 shows the effect of sol. N on graphite annealing time and hardness. The numbers in circles in FIG. 8 are the example numbers and the hardness obtained at that time is added.
  • the annealing time required to reduce HV to 120 or less can be extremely shortened.
  • the hardness of steel materials is affected by the amount of carbon, but the effect of the hardness of the graphite becomes significant when graphite is formed.
  • the amount of sol. N is large in any of the C amounts, the hardness does not decrease sufficiently even if the annealing time is increased to 120 hours. For example, it can be seen that even at the same level, total—N varies greatly with the amount of sol. N (Examples: 7, 26; Comparative examples: 57, 60).
  • the minimum hardness can be lowered, and the steel can be made softer than steel having a high sol. N content.
  • the annealing time becomes longer when the amount of sol.
  • the annealing is discontinued in the middle as in Comparative Examples 65 to 67, the graphite ratio becomes insufficient, so that the hardness after annealing is not sufficient. Inferior in cold forgeability without decreasing in minutes. Also, the higher the hardness, the lower the machinability.
  • Comparative Examples 71 to 73 even when the average particle size is large, it is necessary to increase the induction quenching heating time in order to eliminate the variation. This is the same as high-frequency heating as a whole, making it difficult to control the thickness of the hardened layer and making it easier to cause cracking.
  • the steel for cold rolling according to the present invention has excellent surface hardness, excellent deformation characteristics and machinability, and can be used as rolled or in a short-time annealing state, and Since C is retained in steel, the strength can be significantly improved by heat treatment, making it possible to manufacture machine parts easily and efficiently. Furthermore, the steel for cold forging according to the present invention can shorten the annealing time for softening.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Description

明 細 書 冷間鍛造用鋼およびその製造方法 技術分野
本発明は圧延ままで、 または圧延、 焼鈍後に冷間鍛造に供する構 造用鋼とその製造方法に係わる。 背景技術
構造用部材に用いられる鋼は必要な特性を付与するために多く の 加工工程を経るが、 表層を硬化させる高周波焼入れもその一つであ る。 このような部材は多く の場合、 表層硬度だけ高ければよいため 、 そのために工程が增えるこ とはコス ト増の要因となり、 従来から 問題視されていた。 従来の構造用鋼の圧延まま材は冷却速度が遅い ため、 フヱライ ト ―パ一ライ 卜組織を有する こ とが多いが、 表層硬 度は低く 、 高周波焼入れレベルには到底到達しない。 また、 脱炭な どの影響のため、 表層硬度が内部硬度より軟質であること も しばし ばである。 一般の部材は必ずしも高周波焼入れによる C含有量に対 応した最高硬さを必要と しないが、 焼準材以上の硬さを必要とする 部材があるのも事実である。 したがって、 圧延ままでも内部より硬 度の高い鋼を供給する ことが従来よりの課題であつた。
また、 複雑な形状を必要とする場合には鍛造や切削工程を経る。 熱間鍛造は鍛造時に加熱を必要とする うえ、 加工精度に劣るため、 より精度の良い冷間鍛造方法が指向されている。 しかし、 従来の圧 延まま材では硬度が高すぎるため、 冷間鍛造には不向きである。 通 常の冷間鍛造用鋼では、 通常、 セメ ンタイ トを球状化するこ となど して軟質化することが一般的である。 その焼鈍時間は 20時間程度と 非常に長い時間を要する。
このよ うに、 冷間鍛造に供する炭素鋼レベルの炭素量を含有する 鋼でも炭素を黒鉛化し、 フヱライ 卜 —グラフアイ 卜の 2相組織とす ることで、 冷間加工性と被削性が向上する こ とが、 特開平 3 - 1404 1 1号公報などに見られる。 しかし、 そのような組織を実現するため にも長時間の焼鈍が必要であり、 やはり生産能率とコス トの点で問 題があり、 焼鈍時間の短縮が課題であった。
これまで、 黒鉛化焼鈍の時間を短縮するためには Bを添加し、 BN を析出核と して用いるこ とが報告されている。 しかし、 このような 特定の析出物を用いる こ とは、 焼鈍前に BN析出温度域での保温工程 が必要となり、 熱処理工程が余分に必要になる。 また、 圧延、 熱間 鍛造などでこの処理を兼ねて行うには、 焼鈍に至るまで非常に厳密 な温度制御を要し、 事実上不可能である。
すなわち、 BNの析出温度は 850 ~ 900 °C程度と考えられるが、 実 際の圧延や熱間鍛造は 1000 °C以上で行われる ことが多い。 そのため 、 このような黒鉛を含有する冷間鍛造用鋼を用いるには、 その前ェ 程の圧延や熱間鍛造を 1000 °C以下で行う必要があつた。 このような 温度での熱間加工はロールやポンチなどの工具の寿命を低下させる 。 また、 このような工程上の制限が多 く なるこ とは、 製造上の効率 を低下させるので、 製造コス 卜の点からも避けるべきこ とである。 このような鋼材製造や冷間鍛造の前工程の熱間鍛造などの観点から は、 厳密な温度制御を必要とせずに短時間での焼鈍、 钦化が可能な 鋼材が要求されている。
また、 短時間でグラフ アイ 卜の含有量を抑制することによって焼 鈍時間を短縮させること も特開平 2 1 1 1842号公報などに見られる 。 しかし、 グラフアイ ト含有率を抑制した結果と して残留するセメ ンタイ 卜量に比例して冷間鍛造性や切削性が損なわれるので根本的 な解決には至っていなかった。
このように、 従来の圧延まま材は、 そのまま使用するには表層硬 度が不足し、 冷間鍛造や切削に供するには硬度が高すぎるという中 途半端の特性を有することがしばしばである。 また、 製造する立場 からはコス 卜低減のために極力鋼種を統合して製造する という基本 的な課題がある。 そのため、 圧延まま材でも十分な表層硬度を有し 、 また冷間鍛造に供する場合にはその焼鈍時間を短縮するとと もに 、 焼鈍後には優れた冷間鍛造性を示す素材を提供する こ とが課題で あった O
さ らに強度が必要な場合には、 焼入れ性の向上のために黒鉛化を 阻害せず焼入れ性を改善できる元素の添加が考えられる。 特に、 高 周波焼入れによる表面硬度を必要とする場合には、 焼入れ層の深さ を深く する必要から、 焼入れ性が重要な課題となる。 しかし、 通常 の焼入れ性向上元素、 例えば Cr, Mn, Moなどの元素は黒鉛化を阻害 するこ とから、 その添加量に制限が加えられている。 また、 BNを生 成して黒鉛化焼鈍時間を短縮するような場合には、 Bは焼入れ性向 上元素と して用いることはできず、 焼入れ深さを十分に確保できな い o
このような状況で焼鈍時間を短縮した上で、 焼鈍後の冷間鍛造性 、 焼入れ特性、 被削性に優れた鋼が求められていた。
発明の開示
本発明は、 鋼の化学成分と ミ ク 口組織を調整する こ とで、 圧延ま まで表層硬度に優れると と もに、 冷間鍛造や切削加工前の極めて短 い軟質化焼鈍時間で優れた冷間鍛造性を付与できる鋼とその製造方 法を提供する ものである。
また、 本発明は、 焼鈍後の冷間鍛造用鋼であって、 化学成分を調 整するこ とで、 焼鈍時間の短縮を可能と した上で焼鈍後の冷間加工 性と被削性に優れ、 焼入れ焼き戻し後に優れた強度 · 靱性を有する 冷間鍛造用鋼を提供しょう とする ものである。
本発明は上記の課題を解決するためになされ、 その要旨は、
( 1 ) 第 1 の発明と して、 重量%で、 C : 0. 1〜1.0 %、 Si : 0. 1 〜2.0 %、 Mn : 0.01~1.50%、 P : 0. 100 %以下、 S : 0.500 %以 下を含み、 sol. N : 0.005%以下に制限し、 残部は Feおよび不可避 的不純物からなり、 鋼中組織に占めるパ一ライ 卜の比率 (検鏡面に おけるパーライ 卜 占有面積率 Z検鏡面積) が 120x ( C %) %以下
(但し、 100%以下。 ) 、 かつ最表層硬度がビッカース硬度 HVで 4 50x ( C %) 十 90以上である表層硬度と焼鈍による軟質化特性に優 れた冷間鍛造用鋼。
( ) 第 2 の発明と して、 上記 ( 1 ) 記載の化学成分に加え、 Cr: 0.01〜0. 70%、 Mo: 0.05〜 50%のうち 1種または 2種を含み、 鋼 中組織に占めるパ一ライ トの比率 (検鏡面におけるパ一ライ 卜 占有 面積率 Z検鏡面積) が 120X ( C %) %以下、 かつ最表層硬度がビ ッカース硬度 HVで 450 X ( C %) + 90以上である表層硬度と焼鈍に よる軟質化特性に優れた冷間鍛造用鋼。
( 3 ) 第 3 の発明と して、 上記 ( 1 ) または ( 2 ) 記載の化学成分 に加え、 Ti : 0.01〜0.20%、 V : 0.05〜0.50%, Nb: 0.01〜0. 10% 、 Zr: 0.01〜0.30%、 A1 : 0.001〜0.050 %のうち 1種または 2種 以上を含み、 鋼中組織に占めるパーライ 卜の比率 (検鏡面における パ—ライ 卜 占有面積率/検鏡面積) が 120x ( C %) %以下、 かつ 最表層硬度がビッ カース硬度 HVで 450 X ( C %) + 90以上である表 層硬度と焼鈍による軟質化特性に優れた冷間鍛造用鋼。
( 4 ) 第 4 の発明と して、 上記 ( 1 ) 〜 ( 3 ) のいずれかに記載の 化学成分に加え、 B : 0.0001〜0.0060%を含み、 鋼中組織に占める パーライ 卜の比率 (検鏡面におけるパーライ 卜 占有面積率/検鏡面 積) が 120 X ( C %) %以下、 かつ最表層硬度がピツカ—ス硬度 HV で 450 x ( C %) + 90以上である表層硬度と焼鈍による軟質化特性 に優れた冷間鍛造用鋼。
( 5 ) 第 5 の発明と して、 上記 ( 1 ) ~ ( 4 ) のいずれかに記載の 化学成分に加え、 pb: 0.01~0.30%、 Ca: 0.0001〜0.0020%、 Te:
0.001〜0.100 %、 Se : 0.01〜0.50%、 Bi : 0· 01~ 0.50%を含み、 鋼中組織に占めるパーライ 卜の比率 (検鏡面におけるパ一ライ 卜占 有面積率 Z検鏡面積) が 120 X ( C %) %以下、 かつ最表層硬度が ビッカース硬度 HVで 450 X ( C %) +90以上である表層硬度と焼鈍 による軟質化特性に優れた冷間鍛造用鋼。
( 6 ) 第 6 の発明と して、 上記 ( 1 ) 〜 ( 5 ) のいずれかに記載の 化学成分に加え、 Mg: 0.0005〜0.0200%を含み、 鋼中組織に占める パーライ 卜の比率 (検鏡面におけるパ一ライ ト 占有面積率/検鏡面 積) が 120x ( C %) %以下、 かつ最表層硬度がビッカース硬度 HV で 450 X ( C %) + 90以上である表層硬度と焼鈍による軟質化特性 に優れた冷間鍛造用鋼。
( 7 ) 第 7発明と して、 重量%で、 C : 0.1~1.0 %、 Si : 0.1〜 2.0 %、 Mn: 0.01〜1.50%、 P : 0.100 %以下、 S : 0.500 %以下 を含み、 sol. N : 0.005%以下に制限し、 残部は Feおよび不可避的 不純物からなり、 鋼中 Cが黒鉛と して存在する比率 (黒鉛率 : 黒鉛 と して析出した炭素量 Z鋼中炭素含有量) が 20%を越える組織を有 し、 黒鉛の平均粒径が 10 X ( C %) 1/3 // m以下、 かつ最大粒径が 20 / m以下である冷間加工性、 被削性および高周波焼入れ性に優れ た冷間鍛造用鋼。
( 8 ) 第 8発明と して、 上記 ( 7 ) 記載の化学成分に加え、 Cr: 0. 01〜0.70%、 Mo: 0.05- 0.50%のうち 1種または 2種を含み、 鋼中 cが黒鉛と して存在する比率 (黒鉛率 : 黒鉛と して析出した炭素量 Z鋼中炭素含有量) が 20%を越える組織を有し、 黒鉛の平均粒径が lOx ( C %) 1/ 3 m以下、 かつ最大粒径が 20// m以下である冷間 加工性、 被削性および高周波焼入れ性に優れた冷間鍛造用鋼。
( 9 ) 第 9発明と して、 上記 ( 7 ) または ( 8 ) 記載の化学成分に 加え、 Ti : 0.01〜0.20%、 V : 0.05-0.50%、 Nb: 0.01〜0.10%、 Zr: 0.01〜0.30%、 A1 : 0.001〜0.050 %のうち 1種または 2種以 上を含み、 鋼中 Cが黒鉛と して存在する比率 (黒鉛率 : 黒鉛と して 析出した炭素量/鋼中炭素含有量) が 20%を越える組織を有し、 黒 鉛の平均粒径が 10 X ( C %) 1/ 3 m以下、 かつ最大粒径が 以下である冷間加工性、 被削性および高周波焼入れ性に優れた冷間 鍛造用鋼。
(10) 第 10発明と して、 上記 ( 7 ) 〜 ( 9 ) のいずれかに記載の化 学成分に加え、 B : 0.0001〜0.0060%を含み、 鋼中 Cが黒鉛と して 存在する比率 (黒鉛率 : 黒鉛と して析出した炭素量 Z鋼中炭素含有 量) が 20%を越える組織を有し、 黒鉛の平均粒径が 10 X ( C %) 1/ 3 / m以下、 かつ最大粒径が 20 / m以下である冷間加工性、 被削性 および高周波焼入れ性に優れた冷間鍛造用鋼。
(11) 第 11発明と して、 上記 ( 7 ) 〜 (10) のいずれかに記載の化 学成分に加え、 Pb: 0.01〜0.30%、 Ca: 0.0001〜0.0020%、 Te: 0 .001〜0.100 % . Se : 0.01〜0.50%、 Bi : 0.01〜 0.50%を含み、 鋼 中 Cが黒鉛と して存在する比率 (黒鉛率 : 黒鉛と して析出した炭素 量/鋼中炭素含有量) が 20%を越える組織を有し、 黒鉛の平均粒径 が lOx ( C %) 1/ 3 m以下、 かつ最大粒径が 20/ m以下である冷 間加工性、 被削性および高周波焼入れ性に優れた冷間鍛造用鋼。
(12) 第 12発明と して、 上記 ( 7 ) 〜 (11) のいずれかに記載の化 学成分に加え、 Mg: 0.0005〜0.0200%を含み、 鋼中 Cが黒鉛と して 存在する比率 (黒鉛率 : 黒鉛と して析出した炭素量 Z鋼中炭素含有 量) が 20%を越える組織を有し、 黒鉛の平均粒径が 10X ( C %) 3 / m以下、 かつ最大粒径が 20 m以下である冷間加工性、 被削性 および高周波焼入れ性に優れた冷間鍛造用鋼。
(13) 第 13の発明と して、 上記 ( 1 ) 〜 ( 6 ) のいずれかに記載の 化学成分を有する鋼に対して、 鋼中組織にしめるパーライ 卜 の比率
(検鏡面におけるパーライ ト 占有面積率 Z検鏡面積) が 120x ( C %) %以下、 かつ最表層硬度がピツカ—ス硬度 HVで 450 X ( C %) + 90以上となるようオーステナイ 卜温度域またはオーステナイ ト ー フ ェライ 卜 2相域で圧延終了後、 直ちに 1 °CZ s以上で急冷し、 復 熱温度を 650°C以下に制御する表層硬度と焼鈍による軟質化特性に 優れた冷間鍛造用鋼の製造方法。 図面の簡単な説明
図 1 は、 パーラィ トの比率測定方法の概要を示す図。
図 2 は、 0.20%ク ラスの実施例におけるパーライ ト面積率と軟化 までの焼鈍時間の関係を示す図。
図 3 は、 0.35%ク ラスの実施例におけるパーライ ト面積率と軟化 までの焼鈍時間の関係を示す図。
図 4 は、 0.45%ク ラスの実施例におけるパーライ 卜面積率と軟化 までの焼鈍時間の関係を示す図。
図 5 は、 0.55%クラスの実施例におけるパーライ 卜面積率と軟化 までの焼鈍時間の関係を示す図。
図 6 は、 復熱温度と表層硬度の関係を示す図。
図 7 は、 復熱温度とパーライ ト面積率の関係を示す図。
図 8 は、 固溶窒素と軟質化までの焼鈍時間の関係を示す図。
図 9 は、 0.55% Cク ラ スの実施例に関する最大粒径と高周波加熱 による硬化時間の関係を示す図。
図 10は、 0. 55 % C クラスの実施例に関する平均粒径と高周波加熱 による硬化時間の関係を示す図。
図 11は、 0. 35 % C クラスの実施例に関する平均粒径と高周波加熱 による硬化時間の関係を示す図。 発明を実施するための最良の実施形態
以下に本発明を詳細に説明する。
先ず、 本発明による冷間鍛造用鋼に用いる鋼組織とその含有量に ついて説明する。
Cは、 焼入れ焼き戻し後、 部品と しての強度を確保するために 0 . 1 %以上とする必要がある。 上限値は焼き割れ発生を防止するため に 1. 0 %と した。
Siは、 鋼中の炭素活量を大き く するこ とにより、 黒鉛化を促進す る作用がある。 その下限値は黒鉛化の観点から 0. 1 %以上が好ま し い。 また、 2. 0 %を越える とフ ヱライ 卜硬さが大き く なつたり、 鋼 の靱性が損なわれるなどの弊害が顕著となるので上限値を 2. 0 %と した。 また、 Siは黒鉛化率を調整する元素と して使用でき、 含有量 が低いほど焼鈍後の黒鉛化率が小さ く なる。 Si量低減によって黒鉛 化率を低下させる と、 フェライ ト相の硬さを低下させることから、 規定範囲内であれば鋼材硬度が大き く なる こ とはなく 、 冷間鍛造性 能を低下させることはない。
Mnは、 鋼中 Sを MnSと し固定 ' 分散させるために必要な量及びマ ト リ ッ ク スに固溶させて焼入れ後の強度を確保するために必要な量 を加算した量が必要であり、 その下限値は 0. 01 %である。 Mn量が大 き く なる と素地の硬さが大き く なり冷間加工性が低下する。 また、 Mnは黒鉛化阻害元素であり、 添加量が増えると焼鈍時間が長く なる 傾向があるので上限を 1. 50 %と した。
Pは、 鋼中において素地の硬さが大き く なり、 冷間加工性が低下 するので、 その上限を 0. 100 %とする必要がある。
Sは、 Mnと結合して MnS介在物と して存在するが、 冷間加工性の 点からその上限値を 0. 500 %とする必要がある。
窒化物と して存在しない固溶窒素はセメ ンタイ 卜中に溶け込み、 セメ ンタイ 卜の分解を阻害するこ とから、 黒鉛化阻害元素となる。 そのため、 本発明では sol. Nによって規定する。 すなわち、 sol. N が 0. 005 %超含まれる と極端に黒鉛化に要する焼鈍時間が長く なり 、 かつ軟質化後の硬度が高く なるため、 sol. Nの上限を 0. 005 %と した。 このこ とは、 sol. Nが Cの拡散を阻害して黒鉛化を遅く する と と もに、 フェライ ト硬度を高めるからである。
Crは、 焼入れ性向上元素であるが、 同時に黒鉛化阻害元素である 。 そのため、 焼入れ性向上が必要な場合には 0. 01 %以上の添加を必 要とする。 しかし、 多量に添加すると黒鉛化を阻害するので焼鈍時 間が長く なるため、 0. 70 %を上限と した。
Moは、 焼入れ後の強度を增加させるが、 炭化物を生じやすく炭素 の活量を低下させる元素で黒鉛化を阻害する元素である。 そこで黒 鉛化阻害効果が顕著となる 0. 50 %を上限と し、 黒鉛の核生成を大き く 阻害しない添加量にとどめた。 ただし、 他の焼入れ性向上元素に 比べ黒鉛化阻害の程度が小さいので、 焼入れ性を向上させるために 規定した範囲内で Mo添加量を多く すればよい。
は、 鋼中で TiNを形成し、 ァ粒径を小さ く する。 黒鉛はァ粒界 や析出物という、 いわば格子の不均一部に析出する傾向にあり、 Ti の炭窒化物は黒鉛の析出核と しての役割と、 ァ粒径微細化による黒 鉛析出核の創出という役割を担う。 さ らに、 Nを窒化物と して固定 するために sol. Nを低減させる。 Tiが、 0. 01 %未満ではその効果が 小さ く 、 0. 20 %超ではその効果が飽和する とと もに、 多く の TiNが 析出して機械的性質を損なう。
Vは、 炭窒化物を形成し、 ァ粒微細化と析出核の両面で黒鉛化焼 鈍時間を短縮する。 また、 窒化物生成時に sol. Nを低減させる。 V が 0. 05 %未満ではその効果が小さ く 、 0. 50 %超ではその効果が飽和 する と と もに、 多く の未溶解炭化物が残留するために機械的性質を 損なう。
Nbは、 炭窒化物を形成し、 ァ粒微細化と析出核の両面で黒鉛化焼 鈍時間を短縮する。 また、 窒化物生成時に sol. Nを低減させる。 Nb が 0. 01 %未満ではその効果が小さ く 、 0. 10 %超ではその効果が飽和 する とと もに、 多く の未溶解炭化物が残留するために機械的性質を 損なう。
Moは、 焼入れ後の強度を增加させるが、 炭化物が生じやすく炭素 の活量を低下させる元素で黒鉛化を阻害する元素である。 そこで、 黒鉛化阻害効果が顕著となる 0. 5 %を上限と し、 黒鉛の核生成を大 き く 阻害しない添加量にとどめた。 ただし、 他の焼入れ性向上元素 に比べ、 黒鉛化阻害の程度が小さいので、 焼入れ性を向上させるた めに規定した範囲内で Mo添加量を多くすればよい。
Zrは、 酸化物、 窒化物、 炭化物、 硫化物を形成する。 それらは析 出核と して黒鉛化焼鈍時間を短縮する。 また、 窒化物生成時には so 1. Nを低減させる。 また、 MnSなどの硫化物の形状を球状化させ、 機械的性質の圧延異方性を緩和することができる。 さ らに、 焼入れ 性も向上させる ことができる。 Zrが 0. 01 %未満ではその効果が小さ く 、 0. 30 %超ではその効果が飽和するとと もに、 多く の未溶解炭化 物が残留するために機械的性質を損なう。
A1は、 鋼を脱酸して圧延時の表面疵を防止するために 0. 001 %以 上必要であり、 脱酸の効果は 0. 050 %超で飽和し、 アルミ ナ系介在 物が増加するので上限を 0.050%と した。 また、 A1Nと して析出し た場合には黒鉛の析出核と しての役割と、 ァ粒径微細化による黒鉛 析出核の創出という役割を担う。 さ らに、 Nを窒化物と して固定す るので sol. Nを低減させる。
Bは、 Nと反応してオーステナイ 卜結晶粒界に BNと して析出する ので sol. N低減に役立つ。 また、 BNの結晶構造は黒鉛と同じ く六方 晶系てあり黒鉛の析出核となる。 また、 sol. Bは焼入れ性を向上さ せる元素であり、 焼入れ性を必要とする場合に添加するこ とが望ま しい。 その下限値は 0.0001%とする必要がある。 BNを析出させる効 果ゃ焼入れ性向上効果は 0.0060%超で飽和するので上限を 0.0060% と した。
Pbは、 被削性向上元素である。 被削性を必要とする場合には 0.01 %以上必要であり、 0.30%超では黒鉛化を阻害すると と もに圧延疵 などの製造上の問題を生じるため 0.30 %を上限と した。
Caは、 MnSの球状化による圧延異方性の緩和と被削性向上を必要 とする場合に有効である。 また、 析出した Ca系介在物は黒鉛の析出 核と して作用する。 その効果は 0.0001%未満では効果が小さ く 、 0. 0020%超では析出物によっては機械的性質を損なうおそれがあるた め 0.0020%を上限と した。
Teは、 被削性向上元素であるとと もに、 MnSの球状化による圧延 異方性の緩和に役立つ。 0.001%未満では効果が小さ く 、 0.100% 超では黒鉛化阻害や圧延疵などの問題を引き起こすので 0.100%を 上限と した。
Seは、 被削性向上に有効で、 0.01%未満ではその効果が小さ く 、 0.50%超ではその効果が飽和するので 0.50%を上限と した。
Biは、 被削性向上に有効で、 0.01%未満ではその効果が小さ く 、 0.50%超ではその効果が飽和するので 0.50%を上限と した。 Mgは、 MgOなどの酸化物生成元素であるとと もに、 硫化物を生成 する。 MgSは、 MnSなどと共存すること も多く 、 このような酸化物 、 硫化物は黒鉛析出核になり、 黒鉛の微細分散と焼鈍時間の短縮に 有用である。 その効果は Mg: 0. 0005 %未満では認められず、 0. 0200 %超では酸化物を多く生成し鋼の強度を低下させる。 従って、 Mgの 含有量は、 0. 0005〜0. 0200 %の範囲と した。
次に、 本発明による冷間鍛造用鋼の圧延ままの状態の鋼組織につ いて説明する。
冷間鍛造用鋼の表層は、 変態点以上の温度から急冷する こ とによ つて硬度を増すこ とができるが、 その表層の硬度は C量の影響を受 ける。 表層硬度が低すぎる場合には表層硬度を必要とする鋼には使 用できないこ ととなる。 たとえば、 耐磨耗性を必要とする鋼では少 な く と も一般焼準材ょり も大きな硬度とする必要がある。 本発明で は、 C量に応じてビッカース硬度 HVで 450 X ( C % ) + 90以上の硬 さを有する鋼を提供できる。
鋼中組織に占めるパーライ 卜 の比率 (検鏡面におけるパーライ ト 占有面積率 Z検鏡面積) が 120 X ( C % ) %以下 (ただし、 100 % 以下。 なお、 本発明においては、 以下同様とする。 ) となるように 規定した理由を述べる。 本発明の成分系では鋼中の炭素が黒鉛化す る場合、 オーステナイ 卜領域から大気放冷速度、 または、 それより 速い速度で冷却すると、 通常はセメ ンタイ 卜を生成する。 しかし、 焼鈍後に優れた冷間加工特性を付与するには、 焼鈍によって Cを黒 鉛化する必要がある。 焼鈍による黒鉛化の過程は、 セメ ンタイ 卜の 分解一 Cの拡散—黒鉛核生成. ' 成長の順と考えられる。 その際、 セ メ ンタイ トの分解の観点から、 セメ ンタイ 卜の大きさが大き く 、 力、 つエネルギー的に安定な形態、 すなわち、 Cがラメ ラ上のパーライ 卜を生成すると、 セメ ンタイ トの分解に多く の時間を要し、 焼鈍時 間を短縮することができない。
また、 黒鉛の成長の観点からは Cの拡散によつて黒鉛を生成する 際、 Cの拡散距離が短い場所の黒鉛が生成 · 成長する傾向にある。 すなわち、 旧パ一ライ 卜付近に黒鉛を生成する傾向にある。 このこ とは生成した黒鉛が粗大かつ不均一に分散する こ とを意味し、 焼鈍 後の破壊までの変形量を小さ く したり、 高周波焼入れによる黒鉛の 分解と Cの拡散に時間がかかり、 高周波焼入れによる硬化特性を低 下させる。 このように、 本発明の鋼では焼鈍の時間短縮と焼鈍後に 優れた変形特性を付与できるよう、 パーライ 卜の生成を極力抑制す る こ とが必要である。
次に、 パ一ライ 卜の比率測定方法の概要を図 1 に示す。 パーライ トの比率測定方法によるパーライ 卜の比率の算出方法は以下の式に よる。
( P % ) = ∑ { ( P i % ) · 2 w · r i } ここで、 r i = i — l リ ' w ^ ι / w = R / n
( P % ) : パーライ トの比率
w : 測定代表幅
n : 分割数
( P i % ) : 測定場所のパーライ トの比率
r ; : 測定代表半径
i : 分割時の引数 (内側から i = 1 , 2 , ■■· , n )
R : 棒鋼または線材の半径
こ、、め 。
本方法は簡易的な方法であるが、 分割数 nが大きければ wが小さ く なるので、 鋼のパーライ トの比率を正確な面積率と して算出でき る。 本発明では n ≥ 5 と規定する。 具体的にはナイ タ一ルェッチング した断面方向研磨検鏡サンプルを倍率 1000倍で光学顕微鏡にて 1 mm ピッチで表層から中心まで観察する (20mm線材では n = 10 ) 。 視野 内におけるパ一ライ 卜を画像処理装置によって計測した面積率を測 定し、 その面積率を棒鋼または線材半径方向 1 mm幅の代表値 wと し て断面内のパーライ ト面積占有率を算出する。
この際、 ナイ タールによるエッチングによってラメ ラ組織が認め られる ものをパ一ライ ト と した。 この面積率が 120 X ( C % ) %を 越える と焼鈍時間が極端に長く なる。 この焼鈍時間への影響は素材 C量によって異なるが、 C量が多く 、 パーライ ト面積占有率が 120 X ( C % ) %以上であればコス ト的に実用化できない。 従って、 パ —ライ 卜の面積率の上限を 120 X ( C % ) %と した。 但し、 100 % は超えない。
図 2〜図 5 にそれぞれ C量の異なる場合の焼鈍前パ一ライ 卜面積 率と焼鈍時間の関係を示す。 C量が低い方が容易に軟化するが、 本 発明の範囲外では極端に焼鈍時間が長く なるこ とがわかる。
次に、 本発明にかかる冷間鍛造用鋼の焼入れ後または焼鈍後の状 態における鋼組織について説明する。
鋼中 Cは大部分がセメ ンタイ トまたは黒鉛と して存在するが、 黒 鉛は劈開性を有するので容易に変形できる。 マ ト リ ッ クスが砍質で あれば冷間鍛造性に優れ、 切削時には内部潤滑材と破壊起点の両方 の機能から被削性を向上させる。 しかし、 黒鉛の含有率が 20 %以下 となる と十分な変形 · 潤滑機能を発揮しなく なるので、 20 %超を下 限と した。 変形特性を優先する場合には黒鉛化率を大き く し、 一方 、 良好な高周波焼入れ特性を確保するためには、 意図的に Cの一部 を黒鉛化させず一部をセメ ンタイ 卜 と して残すことが有効である。
さ らに、 黒鉛の平均粒径が l O x ( C % ) 1 / 3 m以下、 かつ最大 粒径が 20 m以下と した理由は、 高周波焼入れ特性に考慮した結果 である。 すなわち、 高周波焼入れを行う と、 その硬化特性は黒鉛中 Cの分解 · 拡散に支配される。 その際、 黒鉛粒径が大きいと分解 · 拡散に多く の熱量および時間が必要となり、 高周波焼入れで安定し た硬化層を得ることが困難であるためである。 短時間に処理が終了 する高周波焼入れによって含有 C量相当の硬化層を安定して得るた めには、 黒鉛の平均粒径が 10 X ( C % ) 1 / 3 m以下である こ と力 必要で、 これを越えると高周波焼入れ後も未溶解の黒鉛が多かった り、 拡散途中の Cを含む層と、 拡散した Cを未だ含まないフェライ 卜の混合組織が多く 含まれるので、 硬化が困難なだけでなく 、 安定 した硬化層を得る こ とができない。
図 10, 11に黒鉛の平均粒径と高周波焼入れによる硬化時間の関係 を、 図 9 に黒鉛の最大粒径と高周波焼入れによる硬化時間の関係を 示す。
更に、 本発明による冷間鍛造用鋼を圧延ままで使用する際の製造 方法について説明する。
上述した鋼組成を有する鋼をォ一ステナイ ト温度領域で圧延した 後においては、 冷却速度が遅いとパーライ 卜が多く生成し、 軟化す るまでの焼鈍時間が長く なる。 また、 表層硬度の点でも十分な硬度 を示さないので、 直接使用するには軟らかく 、 冷間鍛造するには硬 すぎる という中途半端な鋼になる。 従って、 これらの問題を解消す るには急冷することが望ま しい。 圧延終了から 500 °Cまでの表層冷 却速度が 1 。 / s以上であれば、 徐冷される内部より硬度を増すこ とができる。 また、 鋼断面のパ一ライ 卜の面積率が 120 X ( C % ) %を超えないようにするためにも 1 °C / s以上の速度で冷却する必 要がある。 ー亘冷却した後、 オーステナイ ト化温度まで再加熱して 水冷するなどの手段によってパーライ ト量を減少させること もでき るが、 コス ト と手間の点でォンライ ンで処理する ことが望ま しい。 鋼内部の組織については、 通常の焼入れのように急冷によって硬 度を大き く することが主目的ではなく 、 焼鈍時に分解が容易なよう にパ一ライ トを生成させないことが目的であるため、 冷却能力を無 理に大き く する必要はない。 実際の鋼材製造においては 5〜 150mm の直径で成品出荷される こ とが多いため、 それらを対象にパーライ 卜の生成を抑制すればよい。 換言すれば、 必ずし もマルテンサイ 卜 組織である必要はなく 、 ペイナイ 卜組織でもフヱライ 卜、 パーライ ト組織の鋼より軟化のための焼鈍時間が短く て済む。 そのため具体 的には、 圧延直後の鋼材を圧延ライ ン最後部に設置したクーリ ング 卜ラフゃ水槽などの冷却装置内を通過させる。
オンライ ンでは、 鋼材は冷却装置を通過した後、 大気中で冷却さ れる。 こ こで重要なこ とは、 表層はー亘冷却されても鋼材内部の熱 により復熱することである。 この復熱温度を 650 °C以下に抑制する こ とが必要である。
復熱温度を 650 °C以上に復熱した場合、 表層硬度は低下する。 ま た一部では大気中での冷却中にパーライ 卜を生成し、 パーライ ト量 を 120 X ( C % ) %にすることが困難になる。 この冷却速度および 復熱特性は圧延されている棒および線の直径の影響を大き く受ける が、 冷却は水冷に限らず、 油冷、 風冷など冷却速度 1 °C / s以上、 復熱 650 °C以下を実現できる冷却手段であればよい。
このように圧延後、 圧延ライ ン中に取り付けた冷却装置によって 直ちに冷却し、 復熱温度を 650 °C以下に抑制することで、 表層硬度 を大き く し、 さ らにパ一ライ ト面積占有率を 120 X ( C % ) %以下 にできる。
図 6 に復熱温度と表層硬度の関係を示す。 図 6 に示すように、 復 熱が大き く なると表面硬さを確保できない。 図 7 に復熱温度とパー ラィ ト面積率を示す。 図 7 に示すように、 復熱温度が高く なるとパ 一ライ ト面積率が增大することがわかる。 このように、 図 6 、 図 7 から急冷後に復熱温度を抑制することが重要である こ とがわかる。
また、 本発明により製造される焼鈍後に冷間加工に供するための 冷間鍛造用鋼とする場合の焼鈍条件について述べる。
冷間加工に供するために本発明で規定した量の黒鉛を得るにはさ らに焼鈍を必要とする。 黒鉛は Fe - C系では鋼の安定相であるから 、 変態温度 A , 点以下で長時間保持すれば良い。 ただし実用的には 限られた時間内での黒鉛を析出する必要があるので、 早く黒鉛が析 出する温度 600〜7 10 °Cで保持するこ とが好ま しい。 その際、 保持 時間は 1 〜50時間で黒鉛化を完了できる。
このよ うな条件を採用する ことにより、 本発明で規定したよ うな 、 鋼中 Cが黒鉛と して存在する比率が 20 %を越える組織で、 かつ黒 鉛の平均粒径が l O x ( C % ) 1 / 3 m以下、 最大粒径が 20 m以下 を有する組織を得ることができる。
実施例
く実施例 1 >
表 1〜 8 に示す化学成分を有する鋼を溶製した。 本発明例はォー ステナイ 卜温度域で直径 50mmまたは直径 20mmに圧延後、 直ちに水冷 した。 圧延温度はオーステナイ 卜温度域である 800 ~ 1 100 °Cである 。 水冷には圧延ライ ン最後部に設置したクーリ ング トラフを用いた 比較例を含む一部の試験片については 1200 °C以上で直径 50mmまた は直径 20mmに圧延後、 空冷した。
それぞれの試験片から断面方向の光学顕微鏡用検鏡サンプルを採 取し、 鏡面に研磨した後ナイ タールでエッチングした。 1000倍の倍 率でパ—ライ 卜 と他の組織を分離し、 パーライ 卜の面積率を画像処 理装置によって定量化した。 その際、 対象と した視野数は 50視野で ある。
このような熱処理材を 680°Cで焼鈍した。 焼鈍時間 16時間までは 4時間ごと、 48時間までは 8時間ごと、 それ以上では 24時間ごとに 硬度を測定し、 ピツカ一ス硬度は HV: 130 以下となるまでの焼鈍時 間を測定した。 また温度の測定は輻射温度計によつて鋼材表面の温 度を測定した。 冷速は冷却直前と復熱後の温度差を復熱に要した時 間で除することで求めた。
表 1 ~ 6 に本発明例 ( 1〜42) を、 表 7 ~ 8 ( 43- 62) に比較例 ( 43〜62) を示す。 本発明例はいずれも表層硬度が高く 、 軟化焼鈍 時間も短い。 しかし、 比較例 43〜54に示すように、 sol. N量が規定 範囲外である と軟質化のための焼鈍時間が長く なる。 また、 比較例 55〜59では冷却速度が不足したためにパーラィ ト分率が多く なり、 焼鈍に時間がかかるこ とがわかる。 さ らに比較例 60〜 62では復熱温 度が高く 、 やはり焼鈍時間が長く なる。 またこのよ うに、 冷速およ び復熱温度が本発明に規定した範囲外であると表層硬度が不足する ことがわかる。
実 化 学 成 分
Να C Si Mn P S sol. N Cr Ti V Nb Zr Mo
1 発明例 0.51 1.23 0.32 0.023 0.017 0.0020
2 発明例 0.54 1.87 0.82 0.023 0.017 0.0021
3 発明例 0.56 1.43 1.21 0.008 0.008 0.0019 0.021
4 発明例 0.52 1.17 0.45 0.012 0.030 0.0042 0.20
5 発明例 0.51 1.23 0.32 0.023 0.017 0.0020 0.11
6 発明例 0.54 1.87 0.82 0.023 0.017 0.0021 0.022
7 発明例 0.56 1.43 1.21 0.008 0.008 0.0019 0.023
8 発明例 0.52 1.17 0.45 0.012 0.030 0.0042 0.035
9 発明例 0.51 1.16 0.45 0.027 0.028 0.0035 0.12
10 発明例 0.48 1.26 0.28 0.024 0.021 0.0019 0.11
11 発明例 0.54 1.82 0.54 0.024 0.021 0.0029 0.05
12 発明例 0.48 1.09 0.36 0.029 0.018 0.0037
13 発明例 0.51 1.29 0.38 0.021 0.015 0.0032
14 発明例 0.53 1.25 0.36 0.029 0.018 0.0037
化 学 成 分 復熱 表層 パ一ラ 焼鈍 焼鈍 施 区 分 ィ卜率 時間 硬さ
Να A1 B Pb Ca Te Se Bi Mg (。C ) (HV) (%) (hr) (HV)
1 発明例 0. 027 15 100 652 0 8 121
2 発明例 0. 023 8 489 429 0 8 124
3 発明例 0. 017 3 520 364 25 16 127
4 発明例 10 560 410 23 16 126
5 発明例 0. 027 3 510 319 12 8 121
6 発明例 0. 023 15 380 621 0 8 124
7 発明例 0. 017 8 490 510 11 8 127
8 発明例 8 420 565 7 8 126
9 発明例 0. 022 8 380 589 0 8 119
10 発明例 0. 034 0. 0021 5 510 405 10 16 126
11 発明例 0. 029 0. 13 5 410 425 32 16 127
12 発明例 0. 027 0. 0021 0. 0013 10 530 385 15 16 124
13 発明例 0. 021 0. 0025 0. 031 10 550 398 35 8 125
14 発明例 0. 023 0. 0024 0. 23 15 620 320 53 32 120
表 3
化 学 成 分
施 区 分
Να C Si Mn P S sol. Cr Ti V Nb Zr Mo
15 発明例 0.32 1.23 0.42 0.013 0.027 0.0021
16 発明例 0.32 1.27 0.54 0.023 0.012 0.0022
17 発明例 0.26 1.83 0.51 0.003 0.015 0.0037
18 発明例 0.32 1.17 0.45 0.020 0.025 0.0012
19 発明例 0.25 1.20 0.60 0.026 0.020 0.0042 0.21
20 発明例 0.34 1.32 0.25 0.022 0.025 0.0032 0.25 0.022
21 発明例 0.35 1.21 0.36 0.019 0.022 0.0022 0.023
22 発明例 0.35 1.19 0.81 0.027 0.023 0.0038 0.035 0.25
23 発明例 0.23 1.16 0.52 0.028 0.023 0.0045 0.040
24 発明例 0.35 1.26 0.55 0.027 0.019 0.0025 0.048
25 発明例 0.31 1.26 0.75 0.028 0.025 0.0033 0.22
26 発明例 0.38 1.46 0.18 0.025 0.029 0.0015 0.10
27 発明例 0.32 1.31 0.91 0.030 0.022 0.0042
28 発明例 0.32 1.20 0.34 0.021 0.026 0.0042
29 発明例 0.33 1.26 0.36 0.028 0.018 0.0037
30 発明例 0.38 1.34 0.45 0.029 0.017 0.0026
化 学 成 分 冷 却 復熱 表層 パーラ 焼鈍 焼鈍 施 区 分 速 度 ィ ト率 時間 硬さ Να A1 Β Pb Ca Te Se Bi Mg (°C/ s ) (。C ) (HV) { % ) (hr) (HV)
15 発明例 0. 025 3 470 292 32 4 119
16 発明例 0. 022 3 390 385 12 4 125
17 発明例 0. 022 3 280 275 19 12 124
18 発明例 15 100 398 0 4 122
19 発明例 0. 021 15 100 310 0 4 128
20 発明例 0. 018 8 330 416 0 4 124
21 発明例 0. 030 3 390 402 2 4 118
22 発明例 0. 031 3 360 420 0 4 125
23 発明例 0. 029 3 480 295 5 4 126
24 発明例 0. 027 3 530 361 10 8 119
25 発明例 0. 017 3 480 311 9 8 120
26 発明例 0. 023 0. 0028 3 390 451 0 8 118
27 発明例 0. 026 0. 0025 0. 021 3 470 338 17 8 131
28 発明例 0. 022 0. 0022 0. 0016 3 610 306 25 16 125
29 発明例 0. 022 0. 0023 0. 25 3 500 318 17 8 109
30 発明例 0. 025 3 510 298 20 8 121
化 学 成 分
施 区 分
Να C Si Mn P S sol. N Cr Ti V Nb Zr Ho
31 発明例 0.55 0.75 0.31 0.023 0.017 0.0020
32 発明例 0.44 0.65 0.72 0.023 0.017 0.0021
33 発明例 0.36 0.50 1.01 0.008 0.008 0.0019
34 発明例 0.22 0.42 0.52 0.012 0.030 0.0042
35 発明例 0.54 0.46 0.42 0.021 0.019 0.0022 0.25
36 発明例 0.54 0.21 0.51 0.024 0.021 0.0042 0.21 0.021
37 発明例 0.55 0.55 0.36 0.022 0.024 0.0022 0.025
38 発明例 0.48 0.64 0.24 0.024 0.021 0.0048 0.025 0.21
39 発明例 0.52 0.43 0.37 0.022 0.022 0.0035 0.031
40 発明例 0.65 0.51 0.38 0.017 0.012 0.0025 0.053
41 発明例 0.51 0.35 0.48 0.027 0.028 0.0035 0.12
42 発明例 0.48 0.65 0.19 0.024 0.021 0.0019 0.11
表 6
化 学 成 分 復熱 賴 パーラ 焼鈍 焼鈍 施 区 分 ィ卜率 時間 硬さ Να A1 Β Pb Ca Te Se Bi Mg (°C ) (HV) (% ) (hr) (HV)
31 発明例 0. 027 10 430 521 0 8 121
32 発明例 0. 023 15 100 521 0 8 124
33 発明例 0. 017 3 500 320 0 4 127
34 発明例 3 380 325 0 8 126
35 発明例 0. 029 10 370 596 0 12 125
36 発明例 0. 019 0. 0021 10 440 562 36 16 122
37 発明例 0. 029 8 430 545 37 12 120
38 発明例 0. 030 0. 0021 3 550 320 42 24 128
39 発明例 0. 036 0. 0025 3 560 410 45 16 124
40 発明例 0. 021 0. 0024 8 440 495 35 16 126
41 発明例 0. 022 3 470 452 31 16 119
42 発明例 0. 034 8 390 495 2 12 126
表 7
化 学 成 分
/倫Jib J p
l υη ο ς
b(J IN I τ-i
1 v 1 u 例 0.55 1.23 0.34 0.019 0.017 0.0059
44 0.49 1.19 0.40 0.021 0.020 0.0070
0.35 1.18 0.35 0.021 0.026 0.0062
0.53 0.75 0.41 0.029 0.027 0.0057
47 0.46 0.69 0.41 0.022 0.021 0.0061
48 比校例 0.36 0.72 0.34 0.024 0.021 0.0057
49 比蛟例 0.58 1.28 0.50 0.021 0.026 0.0082 0.01
50 比较例 0.46 0.73 0.34 0.023 0.019 0.0059
51 比較例 0.36 0.72 0.34 0.024 0.021 0.0057
52 比较例 0.58 1.21 0.32 0.024 0.026 0.0068 0.11
53 比较例 0.48 1.06 0.35 0.021 0.022 0.0063 0.014
54 比較例 0.48 0.71 0.50 0.029 0.021 0.0065
55 比較例 0.53 1.12 0.36 0.022 0.027 0.0035
56 比較例 0.51 1.21 0.35 0.019 0.019 0.0038
57 比較例 0.54 1.87 0.82 0.023 0.017 0.0021
58 比較例 0.46 1.43 1.21 0.008 0.008 0.0019 0.021
59 比較例 0.35 1.23 0.42 0.021 0.016 0.0045
60 比較例 0.22 1.17 0.45 0.012 0.030 0.0042 0.20
61 比較例 0.51 1.23 0.32 0.023 0.017 0.0020 0.11
62 比較例 0.54 1.87 0.82 0.023 0.017 0.0021 0.022
表 8
化 学 成 分 冷 却 —ラ 焼鈍 焼鈍 復熱 表眉
施 区 k— 分 J R 速 度 ィト率 時間 硬さ
Να C/ s ) (°C ) (HV) (% ) (hr) (HV)
43 比較例 0. 028 10 450 586 0 120 138
44 比较例 0. 019 0. 0026 10 550 546 0 120 141
45 比较例 J 0. 021 6 560 405 10 120 145
46 比較例 0. 028 8 540 486 10 120 145
47 比較例 0. 019 8 500 456 40 120 141
48 比较例 0. 021 0. 0024 10 450 385 55 120 135
49 比較例 0. 010 10 450 367 25 120 150
50 比較例 0. 019 10 570 341 20 120 141
51 比較例 0. 021 0. 0024 10 570 345 15 120 135
52 比較例 0. 015 10 400 520 0 120 152
53 比較例 0. 027 0. 0021 10 420 512 0 120 148
54 比較例 0. 021 0. 0021 10 440 465 16 32 148
55 比較例 0. 028 0. 0025 0. 5 770 265 86 48 125
56 比較例 0. 027 0. 0028 0. 5 700 253 90 32 126
57 比較例 0. 023 0. 5 780 243 82 120 124
58 比較例 0. 017 0. 5 760 225 75 70 127
59 比較例 0. 024 0. 5 770 205 36 48 124
60 比較例 2 780 211 36 120 126
61 比較例 0. 027 2 750 254 92 72 151
62 比較例 0. 023 2 720 259 81 96 164
<実施例 2 >
表 9〜16に示す化学成分を有する鋼を溶製し、 750 ~ 850 °Cで直 径 50mmまたは直径 30mmに圧延した。 比較例を含む一部の試験片につ いては 1200 °C以上で鍛造した。 実施例となる圧延材は圧延直後に 8 00〜900 °Cからオンライ ン水冷装置によって水冷した。 また鍛造材 は加熱炉により 850 °Cまで加熱し、 本発明例は水冷し、 比較例は空 冷または水冷した。 空冷することにより黒鉛粒径が大き く なる。 そ の際の試験片サイズは直径 30mm、 長さ 40mmである。 このように冷却 した熱処理材を再度 680 °Cに加熱し、 焼鈍した。 黒鉛化率は J I S G 12 1 1に基づいて測定した o
また研磨試料を作成し、 黒鉛粒径については 50視野を 400倍以上 の倍率で画像処理装置によって測定した。 黒鉛化焼鈍後、 硬度測定 、 切削試験と高周波焼入れ試験を行った。 切削試験は直径 3 0の 高速度鋼 ドリ ルによる孔あけ加工で、 切削条件は切削速度を変化さ せ、 工具寿命 1000mm以上となる ドリ ル周速度、 いわゆる VL 1000 ( m Z mi n )を被削性の指標と した用いた。 なお送り量は 0. 33mm/ rev で 水溶性油を用いた湿式切削である。
その結果を表 17〜19に示す。
焼鈍前後の硬さおよび高周波焼入れによる焼入れ時間を示す。 本 発明例 ( 1〜59 ) は焼入れ前は HV : 120 前後、 焼入れ後は HV: 600 前後まで硬化するこ とができる。 高周波加熱による焼入れ性の評価 には変態点自動測定装置 (フォーマスタ) を用いた。 フォーマスタ では高周波によって 1000 °Cまで加熱、 急冷した場合、 黒鉛は拡散時 間が遅いので、 高周波焼入れ後の硬度にばらつきを生じる。 そこで 、 加熱時間を変化させて急冷する ことで、 焼入れによる硬度ばらつ きがな く なるまでの時間を測定し、 それによつて焼入れ性の良否を 評価した。 試験片サイズは直径 3 mm、 長さ 10mmである。 ここで 5点 の硬度ばらつき力 HV: 200 以下となったときに、 硬度のばらつきが ないものと見なした。
本発明例は短時間の焼鈍で十分に軟化し、 被削性に優れる。 被削 性 VL1000 = 150 m / min は試験装置の限界であり、 さ らに向上する 可能性を秘めている。 また軟質にも関わらず、 高周波焼入れによつ てばらつきな く硬化した。 その時間は 3秒とフォーマスタ試験の制 御可能な最短時間の加熱でも十分にばらつきなく 高周波焼入れでき た。 これらの傾向は Ti, Crなどの元素を添加してもその基本特性は 変わらず、 さ らに被削性や焼入れ性が必要な場合には必要に応じて それら元素を添加できる。
比較例 57〜70は sol. N量の本発明で規定した量を越える試験材、 黒鉛粒径が規定量を越える試験材である。 sol. Nの効果をさ らに明 確にするために、 sol. Nと黒鉛焼鈍時間および硬さへの影響を図 8 に示す。 図 8 中の円内の番号は実施例番号で、 そのとき得られた硬 さを付記した。
sol. Nを低減すると HV: 120 以下にするのに必要な焼鈍時間を極 端に短く するこ とができる。 一般に、 C量によって鋼材の硬さは影 響を受けるが、 黒鉛を生成するこ とでフ ライ 卜硬さの影響が顕著 になる。 いずれの C量でも sol. Nを多く含む場合には焼鈍時間 120 時間と長く しても硬度が十分に下がっていない。 例え、 total— N が同レベルでも sol. N量によって大き く 変化することがわかる (実 施例 : 7 , 26、 比較例 : 57, 60) 。
また、 sol. Nを低減させることで最低硬さ も低く する こ とができ 、 sol. N含有量の多い鋼より軟質にする こ とができる。 このように 、 添加元素に若干の違いはあるが、 sol. N量の規定を越える場合に は焼鈍時間が長く なるこ とがわかる。 また、 比較例 65〜67のように 焼鈍を途中で打ち切ると、 黒鉛率が不足するので焼鈍後の硬度が十 分に低下せず冷間鍛造性に劣る。 また、 硬度が高いと被削性も低下 する。 例え、 焼鈍時間を長く し、 コス ト上不利な処理を敢えて行つ ても、 黒鉛粒径が本発明で規定した範囲内にあるように十分に微細 でなければ高周波焼入れ時に硬度のばらつきを生じゃすい。
比較例 68 ~ 71は最大粒径が大き く 、 高周波焼入れによつて Cの拡 散が困難なため均一な硬さを得るには加熱時間を要する。
比較例 71〜73に見られるように、 平均粒径が大きい場合もばらつ きを解消するためには高周波焼入れ加熱時間を長くする必要がある 。 このことは、 高周波による全体加熱と同じになり、 硬化層厚さの 制御が困難で焼き割れを生じやすく する。
表 9
化 学 成 分
施 区 分
C Si Mn Ρ S sol. Ν total Ν Cr Ti V Nb Zr Μο Να
1 発明例 0.51 1.23 0.32 0.023 0.017 0.0020 0.0025
2 発明例 0.54 1.87 0.82 0.023 0.017 0.0029 0.0035
3 発明例 0.56 1.43 1.21 0.008 0.008 0.0019 0.0026
4 発明例 0.52 1.17 0.45 0.012 0.030 0.0032 0.0036
5 発明例 0.54 1.20 0.30 0.021 0.019 0.0022 0.0042 0.25
6 発明例 0.54 1.22 0.35 0.024 0.021 0.0018 0.0052 0.21 0.021
7 発明例 0.55 1.21 0.32 0.022 0.024 0.0022 0.0062 0.015
8 発明例 0.55 1.19 0.41 0.024 0.021 0.0038 0.0068 0.025 0.21
9 発明例 1.丄 b Ό. OU U. υίά U. UUOO U. 丄
10 発明例 0.65 1.26 0.35 0.017 0.012 0.0025 0.0057 0.053
11 発明例 0.51 1.16 0.45 0.027 0.028 0.0035 0.0045 0.12
12 発明例 0.48 1.26 0.28 0.024 0.021 0.0019 0.0047 0.11
13 発明例 0.54 1.82 0.54 0.024 0.021 0.0029 0.0032
14 発明例 0.52 1.09 0.36 0.029 0.018 0.0037 0.0055
15 発明例 0.51 1.29 0.38 0.021 0.015 0.0032 0.0050
16 発明例 0.53 1.25 0.36 0.029 0.018 0.0037 0.0047
17 発明例 0.54 1.31 0.46 0.027 0.012 0.0017 0.0026
18 発明例 0.54 1.31 0.46 0.027 0.012 0.0017 0.0036
19 発明例 0.52 1.20 0.32 0.015 0.010 0.0027 0.0060
表 10
化 学 成 分
黒鉛率 平 均 最 大 k-^. J A 1 D 10 X C 1/3
Λ D I D d I c Dl (%) 粒 径 粒 径
Mn
1 明例 0.027 79 4.2 7.99 13.2
0.023 85 4.5 8.14 11.5
3 発明例 0.017 82 5.5 8.24 10.6
4 発明例 82 4.8 8.04 14.2
5 発*明 J例 J 0.029 72 4.2 8.14 12.6
6 発明例 0.019 85 5.9 8.14 8.9
7 発明例 0.029 82 5.0 8.19 12.5
8 発明 J例 J 0.030 76 4.6 8.19 10.3
9 発明 J例 0.036 73 4.1 8.04 14.3
10 発明例 0.021 85 3.9 8.66 14.5
11 発明例 0.022 86 4.8 7.99 13.5
12 発明例 0.034 0.0021 93 4.2 7.83 12.6
13 発明例 0.029 0.13 91 4.6 8.14 14.5
14 発明例 0.027 0.0021 0.0013 86 5.0 8.04 18.3
15 発明例 0.021 0.0025 0.031 88 4.7 7.99 12.0
16 発明例 0.023 0.0024 0.23 79 5.8 8.09 11.9
17 発明例 0.027 0.30 86 5.5 8.14 13.5
18 発明例 0.017 0.0060 86 5.5 8.14 13.5
19 発明例 0.0045 86 5.5 8.04 13.5
表 11
化 学 成 分
倫 J Γ P c total N Cr Ti V Nb Zr Mo Ni
20 発明例 0.32 1.23 0.42 0.013 0.027 0.0021 0.0036
21 発明例 0.32 1.27 0.54 0.023 0.012 0.0022 0.0040
22 発明例 0.26 1.83 0.51 0.003 0.015 0.0037 0.0048
23 発明例 0.32 1.17 0.45 0.020 0.025 0.0012 0.0020
24 発明例 0.25 1.20 0.60 0.026 0.020 0.0032 0.0042 0.21
25 発明例 0.34 1.32 0.25 0.022 0.025 0.0032 0.0065 0.25 0.022
26 発明例 0.35 1.21 0.36 0.019 0.022 0.0023 0.0065 0.023
27 発明例 0.35 1.19 0.81 0.027 0.023 0.0038 0.0055 0.035 0.25
28 発明例 0.23 1.16 0.52 0.028 0.023 0.0041 0.0050 0.040
29 発明例 0.35 1.26 0.55 0.027 0.019 0.0025 0.0046 0.048
30 発明例 0.31 1.26 0.75 0.028 0.025 0.0033 0.0047 0.22
31 発明例 0.38 1.46 0.18 0.025 0.029 0.0015 0.0040 0.10
32 発明例 0.24 1.32 0.50 0.026 0.025 0.0039 0.0038
33 発明例 0.32 1.31 0.91 0.030 0.022 0.0042 0.0051
34 発明例 0.32 1.20 0.34 0.021 0.026 0.0042 0.0055
35 発明例 0.33 1.26 0.36 0.028 0.018 0.0037 0.0057
36 発明例 0.38 1.34 0.45 0.029 0.017 0.0026 0.0036
37 発明例 0.32 1.24 0.32 0.022 0.012 0.0030 0.0045
Figure imgf000035_0001
Figure imgf000035_0002
O z\ 挲
表 13
化 学 成 分
施 区 分 c Si Mn ρ S sol. Ν total Cr Ti V Nb Zr Mo Να
38 発明例 0.55 0.75 0.31 0.023 0.017 0.0020 0.0032
39 発明例 0.44 0.65 0.72 0.023 0.017 0.0021 0.0034
40 発明例 0.36 0.50 1.01 0.008 0.008 0.0019 0.0025
41 発明例 0.22 0.42 0.52 0.012 0.030 0.0042 0.0056
42 発明例 0.54 0.46 0.42 0.021 0.019 0.0022 0.0038 0.25
43 発明例 0.54 0.21 0.51 0.024 0.021 0.0032 0.0052 0.007
44 発明例 0.55 0.55 0.36 0.022 0.024 0.0022 0.0061 0.025
45 発明例 0.55 0.64 0.24 0.024 0.021 0.0048 0.0078 0.025 0.21
46 発明例 0.52 0. ο7 U. υυ Ό
47 発明例 0.65 0.51 0.38 0.017 0.012 0.0025 0.0051 0.053
48 発明例 0.51 0.35 0.48 0.027 0.028 0.0035 0.0045 0.12
49 発明例 0.48 0.65 0.19 0.024 0.021 0.0019 0.0056 0.11
50 発明例 0.54 0.78 0.62 0.024 0.021 0.0029 0.0043
51 発明例 0.52 0.25 0.25 0.029 0.018 0.0037 0.0062
52 発明例 0.51 0.35 0.54 0.021 0.015 0.0032 0.0055
53 発明例 0.33 0.45 0.27 0.029 0.018 0.0037 0.0058
54 発明例 0.44 0.32 0.29 0.027 0.012 0.0027 0.0064 0.11
55 発明例 0.54 0.62 0.29 0.027 0.012 0.0021 0.0048
56 発明例 0.52 0.32 0.29 0.027 0.012 0.0024 0.0058 0.010
表 14
化 学 成 分
黒鉛率 平 均 最 λ 施 区 分 10 X C 1/3
A1 Β Pb Ca Te Se Bi Mg (%) 粒 径 粒 径 Να
38 発明例 0.027 79 4.7 8.19 12.5
39 発明例 0.023 85 4.0 7.61 13.1
40 発明例 82 3.6 7.11 10.5
41 発明例 0.017 92 3.5 6.04 10.2
42 発明例 0.029 72 4.9 8.14 11.3
43 発明例 0.019 85 5.6 8.14 11.8
44 発明例 0.029 82 5.8 8.19 14.5
45 発明例 0.030 76 5.5 8.19 13.0
46 発明例 0.036 73 4.6 8.04 12.7
47 発明例 0.021 85 4.2 8.66 14.5
48 発明例 0.022 86 4.3 7.99 12.5
49 発明例 0.034 0.0021 93 4.4 7.83 13.6
50 発明例 0.029 0.13 91 5.2 8.14 15.2
51 発明例 0.027 0.0021 0.0013 86 5.4 8.04 14.4
52 発明例 0.021 0.0025 33 4.3 7.99 11.9
53 発明例 0.023 0.0024 46 4.1 6.91 12.0
54 発明例 0.027 67 4.8 7.61 14.3
55 発明例 0.027 0.0035 86 4.8 8.14 14.3
56 発明例 0.0041 86 4.8 8.04 14.3
表 15
化 学 成 分
施 区 分 c Si Mn P S sol. N total N Cr Ti V Nb Zr Mo
Να
57 比較例 0.55 1.23 0.34 0.019 0.017 0.0059 0.0068
58 比較例 0.49 1.19 0.40 0.021 0.020 0.0070 0.0091
59 比較例 0.52 1.20 0.29 0.015 0.012 0.0068 0.0095
60 比較例 0.35 1.18 0.35 0.021 0.026 0.0062 0.0075
61 比較例 0.35 1.21 0.31 0. Oil 0.019 0.0082 0.0105
62 比較例 0.53 0.75 0.41 0.029 0.027 0.0057 0, 0067
比較例 Λ U. Ρ Λ
63 4 λ0 u. by U.4 Λ U. \1Δί· W. Π u. Λ uΛuβoΙ V. U
64 比較例 0.36 0.72 0.34 0.024 0.021 0.0057 0.0069
65 比較例 0.58 0.35 0.50 0.021 0.026 0.0082 0.0124 0.01
66 比較例 0.46 0.38 0.34 0.023 0.019 0.0059 0.0079
67 比較例 0.36 0.40 0.34 0.024 0.021 0.0057 0.0084
68 比較例 0.55 1.21 0.32 0.024 0.026 0.0068 0.0083 0.11
69 比較例 0.44 1.06 0.35 0.021 0.022 0.0063 0.0092 0.014
70 比較例 0.47 0.71 0.50 0.029 0.021 0.0065 0.0087
71 比較例 0.53 1.12 0.36 0.022 0.027 0.0035 0.0045
72 比較例 0.51 1.21 0.35 0.019 0.019 0.0038 0.0058
73 比較例 0.36 1.22 0.35 0.014 0.022 0.0037 0.0049
表 16
実 化 学 成 分
干 ^ : ft 大 施 区 分 lOx C 1 3
A1 Β Pb Ca Te Se Bi Mg oJ ¾I 住 住 Να
57 比較例 65 3.4 8.19 13.8
58 比較例 u. uiy U. 58 3.2 7.88 11.7
59 比較例 52 3.4 8.19 14.8
60 比較例 55 4.2 7.05 8.7
61 比較例 54 4.7 7.05 12.7
62 比較例 48 4.6 8.09 10.5
63 比較例 42 4.5 7.72 12.9
64 比較例 0.021 0.0024 41 4.7 7.11 13.8
65 比較例 0.010 15 4.4 8.34 10.5
66 比較例 0.019 18 4.5 7.72 12.5
67 比較例 0.021 0.0024 16 1.5 7.11 10.0
68 比較例 0.015 85 4.3 8.19 25.1
69 比較例 0.027 0.0021 64 4.6 7.61 26.9
70 比較例 0.021 0.0021 79 3.6 7.78 31.0
71 比較例 0.028 0.0025 78 9.1 8.09 21.6
72 比較例 0.027 0.0028 89 9.4 7.99 14.8
73 比較例 0.022 0.0021 45 7.7 7.11 18.8
表 17
Figure imgf000040_0001
18
焼鈍硬さ
区 分 被削性 焼鈍時間 加熱時間 硬 さ
(HV)
発明例 150 6 1 19 3 446 発明例 150 6 120 3 450 発明例 150 6 118 3 521 発明例 150 6 125 3 385 発明例 150 t) 131 3 450 発明例 150 b 125 3 461 発明例 150 6 109 3 463 発明例 150 6 121 3 501 発明例 150 6 121 3 501 発明例 150 8 121 3 681 発明例 150 8 124 3 592 発明例 150 8 127 3 450 発明例 150 8 126 3 392 発明例 150 12 125 3 681 発明例 150 8 122 3 702 発明例 150 12 120 3 721 発明例 150 6 128 3 681 発明例 150 6 124 3 677 発明例 150 8 126 3 730 発明例 150 8 119 3 624 発明例 150 16 126 3 623 発明例 150 16 127 3 592 発明例 150 8 124 3 681 発明例 Ι οϋ 0 l D 3 b o3 発明例 150 8 120 3 693 発明例 150 8 123 3 672 発明例 150 8 123 3 672 発明例 150 8 123 3 672 表 19
Figure imgf000042_0001
産業上の利用可能性
本発明による冷間緞造用鋼は優れた表面硬度を有し、 かつ優れた 変形特性と被削性を有すると同時に、 圧延ままで、 または、 短時間 焼鈍の状態で使用可能であり、 しかも、 Cを鋼中に保持しているた めに熱処理によつて強度を著し く 向上させることができ、 容易かつ 高能率で機械部品を製造可能にしている。 さ らに本発明による冷間 鍛造用鋼は軟質化の焼鈍時間を短縮できる。

Claims

請 求 の 範 囲
1. 重量%で、
C : 0.1〜 1.0 %、
Si : 0.1-2.0 %、
Mn: 0.01〜1.50%、
P : 0.100 %以下、
S : 0.500 %以下、
を含み、 sol. N : 0.005%以下に制限し、 残部は Feおよび不可避的 不純物からなり、 鋼中組織にしめるパーライ 卜の比率 (検鏡面にお けるパ一ライ 卜 占有面積率 Z検鏡面積) 力 < 120x ( C %) %以下 ( 但し、 100%以下。 ) 、 かつ最表層硬度がビッカース硬度 HVで 450 ( C %) +90以上であるこ とを特徴とする表層硬度と焼鈍による 軟質化特性に優れた冷間鍛造用鋼。
2. 請求項 1記載の化学成分に加え、 Cr: 0.01〜0.70%、 Mo: 0. 05〜0.50%のうち 1種または 2種を含み、 鋼中組織にしめるパーラ ィ トの比率 (検鏡面におけるパーライ ト 占有面積率 Z検鏡面積) が
120 X ( C %) %以下、 かつ最表層硬度がピツカ—ス硬度 HVで 450 X ( C %) 十 90以上である こ とを特徴とする表層硬度と焼鈍による 軟質化特性に優れた冷間鍛造用鋼。
3. 請求項 1 または請求項 2 に記載の化学成分に加え、 Ti : 0.01 〜0.20%、 V : 0.05-0.50%、 Nb: 0.01〜0.10%、 Zr: 0.01〜0· 30 %、 A1 : 0.001〜0.050 %のうち 1種または 2種以上を含み、 鋼中 組織にしめるパ一ライ 卜の比率 (検鏡面におけるパ一ライ ト 占有面 積率 Ζ検鏡面積) が 120x ( C %) %以下、 かつ最表層硬度がビッ カース硬度 HVで 450 x ( C %) + 90以上である こ とを特徴とする表 層硬度と焼鈍による钦質化特性に優れた冷間鍛造用鋼。
4. 請求項 1 ないし請求項 3 のいずれかに記載の化学成分に加え 、 B : 0.0001-0.0060%を含み、 鋼中組織にしめるパーライ 卜の比 率 (検鏡面におけるパ一ライ 卜 占有面積率 Z検鏡面積) が 120 X ( C % ) %以下かつ、 最表層硬度がビッカー ス硬度 HVで 450 X ( C % ) + 90以上である こ とを特徴とする表層硬度と焼鈍による軟質化特 性に優れた冷間鍛造用鋼。
5. 請求項 1 ないし請求項 4 のいずれかに記載の化学成分に加え 、 Pb: 0. 01-0.30%、 Ca: 0. 0001〜0. 0020%、 Te : 0. 001〜0· 100 %、 Se: 0.01-0.50%、 Bi : 0.01〜0.50%を含み、 鋼中組織にしめ るパーライ 卜の比率 (検鏡面におけるパーライ ト 占有面積率/検鏡 面積) が 120 X ( C %) %以下、 かつ最表層硬度がピツカ—ス硬度 で 450 X ( C % ) 十 90以上であることを特徴とする表層硬度と焼 鈍による軟質化特性に優れた冷間鍛造用鋼。
6. 請求項 1 ないし請求項 5 のいずれかに記載の化学成分に加え 、 Mg: 0.0005〜0.0200%を含み、 鋼中組織にしめるパーライ 卜の比 率 (検鏡面におけるパーライ ト 占有面積率 Z検鏡面積) が 120x ( C % ) %以下、 かつ最表層硬度がビッカース硬度 HVで 450 X ( C % ) 十 90以上であるこ とを特徴とする表層硬度と焼鈍による軟質化特 性に優れた冷間鍛造用鋼。
7. 重量%で、
C : 0. 1〜 1.0 %、
Si : 0.1〜2.0 %、
Mn: 0. 01〜: L 50%、
P : 0.100 %以下、
S : 0.500 %以下、
を含み、 sol. N : 0.005%以下に制限し、 残部は Feおよび不可避的 不純物からなり、 鋼中 Cが黒鉛と して存在する比率 (黒鉛率 : 黒鉛 と して析出した炭素量 Z鋼中炭素含有量) が 20%を越える組織を有 し、 黒鉛の平均粒径が 10 X ( C %) 1/3 / m以下、 かつ最大粒径が m以下である ことを特徴とする冷間加工性、 被削性および高周 波焼入れ性に優れた冷間鍛造用鋼。
8. 請求項 7 の化学成分に加え、 Cr: 0.01〜0.70%、 Mo : 0.05〜 0.50%のうち 1種または 2種を含み、 鋼中 Cが黒鉛と して存在する 比率 (黒鉛率 : 黒鉛と して析出した炭素量 Z鋼中炭素含有量) が 20 %を越える組織を有し、 黒鉛の平均粒径が 10 X ( C % ) 1/3 / m以 下、 かつ最大粒径が 20 m以下であるこ とを特徴とする冷間加工性 、 被削性および高周波焼入れ性に優れた冷間鍛造用鋼。
9. 請求項 7 または請求項 8記載の化学成分に加え、 Ti : 0.01〜 0. 20% ^ V : 0.05-0.50%. Nb: 0. 01〜0. 10%、 Zr: 0. 01〜0.30% 、 A1 : 0.001〜0.050 %のうち 1種または 2種以上を含み、 鋼中 C が黒鉛と して存在する比率 (黒鉛率 : 黒鉛と して析出した炭素量 Z 鋼中炭素含有量) が 20%を越える組織を有し、 黒鉛の平均粒径が 10 X ( C %) 1/ 3 m以下、 かつ最大粒径が m以下であることを 特徵とする冷間加工性、 被削性および高周波焼入れ性'に優れた冷間 鍛造用鋼。
10. 請求項 7 ないし請求項 9 のいずれかに記載の化学成分に加え 、 B : 0.0001〜0.0060%を含み、 鋼中 Cが黒鉛と して存在する比率
(黒鉛率 : 黒鉛と して析出した炭素量 Z鋼中炭素含有量) が 20%を 越える組織を有し、 黒鉛の平均粒径が lOx ( C %) 1/3 m以下、 かつ最大粒径が 20/i m以下であることを特徴とする冷間加工性、 被 削性および高周波焼入れ性に優れた冷間鍛造用鋼。
11. 請求項 7 ないし請求項 10のいずれかに記載の化学成分に加え 、 Pb: 0. 01〜0.30%、 Ca: 0. 0001- 0. 0020%、 Te: 0. 001-0. 100 %、 Se : 0.01〜0.50%、 Bi : 0.01~0.50%を含み、 鋼中 Cが黒鉛と して存在する比率 (黒鉛率 : 黒鉛と して析出した炭素量 Z鋼中炭素 含有量) が 20%を越える組織を有し、 黒鉛の平均粒径が 10X ( C % ) 1 /3 /z m以下、 かつ最大粒径が 20 m以下であることを特徴とす る冷間加工性、 被削性および高周波焼入れ性に優れた冷間鍛造用鋼
12. 請求項 7 ないし請求項 11のいずれかに記載の化学成分に加え 、 Mg: 0.0005〜0.0200%を含み、 鋼中 Cが黒鉛と して存在する比率
(黒鉛率 : 黒鉛と して析出した炭素量 Z鋼中炭素含有量) が 20%を 越える組織を有し、 黒鉛の平均粒径が lOx ( C %) 1/3 u m以下、 かつ最大粒径が 20 m以下である ことを特徴とする冷間加工性、 被 削性および高周波焼入れ性に優れた冷間鍛造用鋼。
13. 請求項 1 ないし請求項 6 のいずれかに記載の化学成分を有す る鋼に対して、 鋼中組織にしめるパーライ 卜の比率 (検鏡面におけ るパーライ ト 占有面積率/検鏡面積) が 120x ( C %) %以下、 か っ最表層硬度がビッカース硬度 HVで 450 X ( C %) + 90以上となる よ うオーステナィ 卜温度域またはオーステナイ ト — フ ェライ ト 2相 域で圧延終了後、 直ちに 1 °C/ s 以上で急冷し、 復熱温度を 650°C 以下に制御することを特徴とする表層硬度と焼鈍による軟質化特性 に優れた冷間鍛造用鋼の製造方法。
PCT/JP1999/001049 1998-03-04 1999-03-04 Aciers a forger a froid et leur procede de fabrication WO1999045162A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US09/403,238 US6419761B1 (en) 1998-03-04 1999-03-04 Steels for cold forging and process for producing the same
KR1019997010117A KR100349008B1 (ko) 1998-03-04 1999-03-04 냉간 단조용 강 및 그 제조방법
DE69931601T DE69931601T2 (de) 1998-03-04 1999-03-04 Stähle zum kaltschmieden und verfahren zu deren herstellung
EP99937950A EP1045044B1 (en) 1998-03-04 1999-03-04 Steels for cold forging and process for producing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP10/67642 1998-03-04
JP06764198A JP4119516B2 (ja) 1998-03-04 1998-03-04 冷間鍛造用鋼
JP06764298A JP4119517B2 (ja) 1998-03-04 1998-03-04 冷間鍛造用鋼およびその製造方法
JP10/67641 1998-03-04

Publications (1)

Publication Number Publication Date
WO1999045162A1 true WO1999045162A1 (fr) 1999-09-10

Family

ID=26408858

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/001049 WO1999045162A1 (fr) 1998-03-04 1999-03-04 Aciers a forger a froid et leur procede de fabrication

Country Status (6)

Country Link
US (1) US6419761B1 (ja)
EP (1) EP1045044B1 (ja)
JP (1) JP4119516B2 (ja)
KR (1) KR100349008B1 (ja)
DE (1) DE69931601T2 (ja)
WO (1) WO1999045162A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1270757A1 (en) * 2000-02-10 2003-01-02 Sanyo Special Steel Co., Ltd. Machine structural steel being free of lead, excellent in machinability and reduced in strength anisotropy

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4435954B2 (ja) * 1999-12-24 2010-03-24 新日本製鐵株式会社 冷間鍛造用棒線材とその製造方法
US7789974B2 (en) * 2000-12-20 2010-09-07 Nippon Steel Corporation High-strength spring steel wire
JP3898959B2 (ja) * 2002-02-19 2007-03-28 新日本製鐵株式会社 快削鋼
JP5217403B2 (ja) * 2006-12-08 2013-06-19 Jfeスチール株式会社 被削性および疲労特性に優れた機械構造用鋼材
JP5679115B2 (ja) * 2011-02-25 2015-03-04 Jfeスチール株式会社 冷間加工性、被削性および焼入れ性に優れた高炭素鋼管およびその製造方法
KR101417260B1 (ko) 2012-04-10 2014-07-08 주식회사 포스코 재질 균일성이 우수한 고탄소 열연강판 및 이의 제조방법
RU2556449C1 (ru) * 2014-06-02 2015-07-10 Юлия Алексеевна Щепочкина Сталь
KR101449511B1 (ko) * 2014-07-29 2014-10-13 한국기계연구원 가공 경화형 항복비 제어강 및 그 제조방법
KR101965521B1 (ko) 2014-11-18 2019-04-03 신닛테츠스미킨 카부시키카이샤 냉간 단조 부품용 압연 봉강 또는 압연 선재
EP3222742B8 (en) * 2014-11-18 2019-08-21 Nippon Steel Corporation Rolled steel bar or rolled wire material for cold-forged component
CN108060353B (zh) * 2017-12-19 2019-11-22 安徽天一重工股份有限公司 一种盾构机盘形滚刀刀圈合金
KR101988759B1 (ko) * 2017-12-20 2019-06-12 주식회사 포스코 내식성 및 충격인성이 우수한 체결용 선재, 이를 이용한 체결용 부품 및 이들의 제조방법
KR102042063B1 (ko) * 2017-12-21 2019-11-08 주식회사 포스코 흑연화 열처리용 강재 및 피삭성이 향상된 흑연강
US20220235441A1 (en) * 2020-01-22 2022-07-28 Posco Wire rod for graphitization heat treatment, graphite steel, and manufacturing method therefor
KR20230052013A (ko) * 2021-10-12 2023-04-19 주식회사 포스코 절삭성능이 우수한 유황 첨가 흑연강 선재, 강선, 흑연강 및 그 제조방법

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02145745A (ja) * 1988-11-28 1990-06-05 Daido Steel Co Ltd 冷間鍛造用鋼
JPH03146618A (ja) * 1989-10-30 1991-06-21 Kawasaki Steel Corp 冷間鍛造用鋼の製造方法
JPH0526850B2 (ja) * 1986-02-21 1993-04-19 Nippon Steel Corp
JPH075960B2 (ja) * 1985-07-22 1995-01-25 大同特殊鋼株式会社 冷間鍛造用鋼の製造方法
JPH07242990A (ja) * 1994-02-28 1995-09-19 Nippon Steel Corp 冷間加工性と焼入れ性に優れた冷間鍛造用鋼
JPH08283847A (ja) * 1995-04-12 1996-10-29 Nippon Steel Corp 靱性に優れた冷間鍛造用黒鉛鋼の製造方法
JPH08291366A (ja) * 1995-04-19 1996-11-05 Nippon Steel Corp 靱性に優れる冷間加工用微細黒鉛均一分散鋼
JPH09157786A (ja) * 1995-12-04 1997-06-17 Nippon Steel Corp 靭性に優れた黒鉛均一分散鋼及びその製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3721641C1 (de) * 1987-07-01 1989-01-12 Thyssen Stahl Ag Verfahren zur Herstellung von Warmband
JPH0637685B2 (ja) * 1988-06-30 1994-05-18 川崎製鉄株式会社 被削性、焼入性に優れた熱間圧延鋼材
DE3934037C1 (ja) * 1989-10-12 1991-02-14 Thyssen Stahl Ag, 4100 Duisburg, De
JPH0526850A (ja) 1991-07-22 1993-02-02 Sony Corp 熱伝導度測定装置
JP3146618B2 (ja) 1992-04-28 2001-03-19 株式会社豊田自動織機製作所 床面清掃車のダストボックス
JPH075960A (ja) 1993-06-18 1995-01-10 Akita Denshi Kk コンピュータ
US5476556A (en) * 1993-08-02 1995-12-19 Kawasaki Steel Corporation Method of manufacturing steel for machine structural use exhibiting excellent free cutting characteristic, cold forging characteristic and post-hardening/tempering fatigue resistance
KR100210867B1 (ko) * 1994-02-24 1999-07-15 아사무라 타카싯 냉간 가공성, 절삭성 및 경화능이 우수한 미세 흑연이 균일하게 분산된 강재 및 그 제조방법
JP3577411B2 (ja) * 1997-05-12 2004-10-13 新日本製鐵株式会社 高靭性ばね鋼
JP3715744B2 (ja) * 1997-05-26 2005-11-16 新日本製鐵株式会社 破壊切断して使用する熱間鍛造用非調質鋼
JPH10324947A (ja) * 1997-05-26 1998-12-08 Nippon Steel Corp 黒鉛均一分散用鋼材

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH075960B2 (ja) * 1985-07-22 1995-01-25 大同特殊鋼株式会社 冷間鍛造用鋼の製造方法
JPH0526850B2 (ja) * 1986-02-21 1993-04-19 Nippon Steel Corp
JPH02145745A (ja) * 1988-11-28 1990-06-05 Daido Steel Co Ltd 冷間鍛造用鋼
JPH03146618A (ja) * 1989-10-30 1991-06-21 Kawasaki Steel Corp 冷間鍛造用鋼の製造方法
JPH07242990A (ja) * 1994-02-28 1995-09-19 Nippon Steel Corp 冷間加工性と焼入れ性に優れた冷間鍛造用鋼
JPH08283847A (ja) * 1995-04-12 1996-10-29 Nippon Steel Corp 靱性に優れた冷間鍛造用黒鉛鋼の製造方法
JPH08291366A (ja) * 1995-04-19 1996-11-05 Nippon Steel Corp 靱性に優れる冷間加工用微細黒鉛均一分散鋼
JPH09157786A (ja) * 1995-12-04 1997-06-17 Nippon Steel Corp 靭性に優れた黒鉛均一分散鋼及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1045044A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1270757A1 (en) * 2000-02-10 2003-01-02 Sanyo Special Steel Co., Ltd. Machine structural steel being free of lead, excellent in machinability and reduced in strength anisotropy
EP1270757A4 (en) * 2000-02-10 2004-11-10 Sanyo Special Steel Co Ltd LEAD-FREE MACHINE STEEL WITH EXCELLENT WORKABILITY AND REDUCED ANISOTROPY OF STRENGTH
US7195736B1 (en) 2000-02-10 2007-03-27 Sanyo Special Steel Co., Ltd. Lead-free steel for machine structural use with excellent machinability and low strength anisotropy
US7445680B2 (en) 2000-02-10 2008-11-04 Sanyo Special Steel Co., Ltd. Lead-free steel for machine structural use with excellent machinability and low strength anisotropy

Also Published As

Publication number Publication date
KR100349008B1 (ko) 2002-08-17
DE69931601T2 (de) 2007-04-26
EP1045044B1 (en) 2006-05-31
JP4119516B2 (ja) 2008-07-16
EP1045044A1 (en) 2000-10-18
DE69931601D1 (de) 2006-07-06
US6419761B1 (en) 2002-07-16
KR20010012168A (ko) 2001-02-15
EP1045044A4 (en) 2002-08-07
JPH11246939A (ja) 1999-09-14

Similar Documents

Publication Publication Date Title
KR100974737B1 (ko) 극연질고탄소열연강판의 제조방법
KR102021216B1 (ko) 산세성 및 담금질 템퍼링 후의 내지연파괴성이 우수한 볼트용 선재, 및 볼트
WO2012073485A1 (ja) 冷間鍛造性に優れた浸炭用鋼およびその製造方法
WO2012043074A1 (ja) 肌焼鋼およびその製造方法
KR101965520B1 (ko) 냉간 단조 부품용 압연 봉강 또는 압연 선재
WO2012108460A1 (ja) 浸炭用鋼、浸炭鋼部品、及び、その製造方法
KR101934176B1 (ko) 냉간 단조용 강재
WO1999045162A1 (fr) Aciers a forger a froid et leur procede de fabrication
JP4464862B2 (ja) 耐結晶粒粗大化特性と冷間加工性に優れた軟化焼鈍の省略可能な肌焼用鋼
KR102570145B1 (ko) 고탄소 열연 강판 및 그 제조 방법
KR20130004307A (ko) 템퍼링 연화 저항성이 우수한 강 부품
JP2010255095A (ja) 異物環境下での転動疲労特性に優れた軸受部品の製造方法
JP6569845B1 (ja) 高炭素熱延鋼板およびその製造方法
JP2014031525A (ja) 冷間鍛造用鋼材
KR102569074B1 (ko) 고탄소 열연 강판 및 그 제조 방법
JP5489497B2 (ja) 焼入性に優れたボロン鋼鋼板の製造方法
WO2019244504A1 (ja) 機械部品の製造方法
JP4488228B2 (ja) 高周波焼入れ用鋼材
KR20190109463A (ko) 고탄소 열연 강판 및 그 제조 방법
JP4119517B2 (ja) 冷間鍛造用鋼およびその製造方法
JP2022143388A (ja) 冷間鍛造用鋼
JP2023021615A (ja) 冷間鍛造用鋼
KR20220087978A (ko) 절삭성 및 연자성이 우수한 흑연화 열처리용 선재 및 흑연강
JP2021109989A (ja) 優れた結晶粒度特性を有する機械構造用鋼

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 09403238

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1999937950

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1019997010117

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1999937950

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019997010117

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019997010117

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1999937950

Country of ref document: EP