WO1999038250A1 - Dispositif de commande de moteur pas-a-pas et dispositif d'entrainement de tete optique - Google Patents

Dispositif de commande de moteur pas-a-pas et dispositif d'entrainement de tete optique Download PDF

Info

Publication number
WO1999038250A1
WO1999038250A1 PCT/JP1999/000221 JP9900221W WO9938250A1 WO 1999038250 A1 WO1999038250 A1 WO 1999038250A1 JP 9900221 W JP9900221 W JP 9900221W WO 9938250 A1 WO9938250 A1 WO 9938250A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotation angle
rotor
drive
stepping motor
drive current
Prior art date
Application number
PCT/JP1999/000221
Other languages
English (en)
French (fr)
Inventor
Toru Kawabata
Yoshihiro Mushika
Masayoshi Shioya
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US09/381,483 priority Critical patent/US6222340B1/en
Priority to JP53816299A priority patent/JP4014655B2/ja
Publication of WO1999038250A1 publication Critical patent/WO1999038250A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P8/00Arrangements for controlling dynamo-electric motors of the kind having motors rotating step by step
    • H02P8/22Control of step size; Intermediate stepping, e.g. microstepping
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/48Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed
    • G11B5/54Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head into or out of its operative position or across tracks
    • G11B5/55Track change, selection or acquisition by displacement of the head
    • G11B5/5521Track change, selection or acquisition by displacement of the head across disk tracks
    • G11B5/5552Track change, selection or acquisition by displacement of the head across disk tracks using fine positioning means for track acquisition separate from the coarse (e.g. track changing) positioning means
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/085Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam into, or out of, its operative position or across tracks, otherwise than during the transducing operation, e.g. for adjustment or preliminary positioning or track change or selection
    • G11B7/0857Arrangements for mechanically moving the whole head
    • G11B7/08582Sled-type positioners

Definitions

  • the present invention relates to a control device for a stepping motor and a driving device for an optical head using the control device for the stepping motor.
  • Stepping motors have the characteristics of small size, high torque, and long life, and drive methods based on open-loop control that utilize their simple controllability are common.
  • this open-loop drive has problems such as loss of synchronism with the target motor rotation angle, motor vibration, and difficulty in achieving high-speed rotation.
  • an encoder is provided to the stepping motor, and the encoder is controlled while detecting the rotation angle of the motor. , And high-speed rotation can be improved.
  • U.S. Pat.No. 4,966,808 discloses two types of operation modes by switching between open-loop control of two-phase stepping mode and closed-loop control using two-phase stepping mode as DC mode.
  • the number of output pulses for one rotation of the encoder that detects the rotation angle of the stepping motor is set to an integral multiple of the number of magnetic poles of the rotor of the stepping motor.
  • the rotor is rotated from a stationary state, and the excitation current of the stepping motor is switched every time a predetermined number of pulses are output from the encoder with this rotation.
  • FIG. 7 shows a conventional device for performing closed loop control of a stepping motor.
  • the control unit 124 controls the driving of the stepping motor 125 based on one of the first operation mode and the second operation mode.
  • the opening of the stepping motor 125 is controlled by the open loop control in which the controller 124 outputs the current command value to the driver 121 at the timing generated by the controller 124.
  • the micro-step drive that controls the rotation angle of 129 overnight is performed.
  • the rotation angle of the mouth 129 of the stepping motor 125 is detected by the encoder 128, and the detected rotation angle is provided to the control unit 124.
  • the current command value is output from the control unit 124 to the drive unit 121, the rotor 125 of the stepping motor 125 is rotated at high speed by closed loop control.
  • the drive section 122 comprises an A-phase current driver 122 and a B-phase current driver 123 independently of each other.
  • the A-phase current driver 122 and the B-phase current driver 123 input the A-phase current command value and the B-phase current command value from the control unit 124 through the data selector 133.
  • the currents of the respective current command values are formed, and these currents are supplied to the A-phase stage 126 and the B-phase stage 127, thereby driving the stepping motor 125.
  • the A-phase current driver 122 and the B-phase current driver 123 are DZA converters that convert each digital data indicating the A-phase current command value and the B-phase current command value into each analog signal. And an amplifier for amplifying and outputting each analog signal.
  • the stepping motor 125 is a two-phase PM type having a step angle of 18 ° by two-phase excitation.
  • the stepping motors 1 and 2 are composed of a permanent magnet with NS poles magnetized every 72 ° and permanent magnets with 5 N poles and 5 S poles in one round. It is equipped with a two-phase excitation coil consisting of a stay 1 26 and a B-phase stay 127.
  • the A-phase stays 1 and 6 and the B-phase stays 1 and 2 have yokes that are magnetized with NS poles at an angle of 72 ° and form five NS poles in one round. , These yokes are arranged around the rotor 129.
  • the magnetic poles of the yoke of the A-phase stay 126 and the magnetic poles of the yoke of the B-phase stay 127 are offset from each other by 18 °.
  • a light-shielding plate 131 having a slit formed at every angle of 4.5 ° is fixed to the rotor shaft 130.
  • the period of 4.5 ° at which each slit of the light shielding plate 131 is formed is determined to be an integral fraction of the period of 72 ° at which each magnetic pole of the mouth 129 is formed. 1 16).
  • the photosensor 132 is a transmission type having a light emitting side LED and a light receiving side phototransistor, and an LED and a phototransistor arranged on both sides of the light shielding plate 131.
  • the slit of the light-shielding plate 131 is detected by receiving light with a phototransistor through the light source.
  • the phototransistor outputs an output signal according to the presence or absence of the slit of the light shielding plate 131.
  • the photo sensor 132 is housed in the housing 133 together with the light shielding plate 131, and prevents contamination due to factors such as breakage and dust.
  • the output of the photo sensor 132 is binarized by a binarization circuit 134.
  • the binarization circuit 134 does not simply compare the output of the photosensor 132 with the reference value and output a high-level signal and a single-level signal, but instead outputs the signal of the photosensor 132 between the two reference values.
  • the output signal is switched between high level and low level only when it changes, thereby preventing malfunction due to chattering.
  • the pulse signal output from the binarization circuit 134 is input to the control unit 124 and the hexadecimal power generator 135.
  • the count 135 Each time a pulse signal is input from the binarization circuit 134, the count 135 counts up in the range of the count value 0 to 15, and when the count value reaches 15, the count 135 increases at the timing of the next count-up. Initialize the count value to 0 and cycle from 0 to 15 The count value is output as a 4-bit binary number. When the clear signal from the control unit 124 is input, the counter 135 initializes its count value to zero.
  • the 4-input, 4-output code converter 1336 inputs the 4-bit count value from the counter 135, converts this count value to a 4-bit code, and outputs this code.
  • the relationship between these counts and codes is shown in the code table 81 in FIG.
  • the 4 bits indicating the code output from the code comparator 13 are called P bit, Q bit, P inverted bit, and Q inverted bit.
  • the count value input to the code converter 136 is represented by a decimal number, not an actual 4-bit binary number.
  • each bit indicating the code output from the code converter 1336 is obtained by dividing the pulse signal output from the binarization circuit 1334 by 1/16. is there.
  • the phases of the P bit and the Q pit from the code comparator 1336 are shifted from each other by four periods of the pulse signal output from the binarization circuit 134.
  • the other inverted bits of P and inverted bits of Q from Code Comparator 1336 are out of phase with each other by four periods of the pulse signal.
  • the data selector 1337 inputs the four P bits, the Q bit, the inverted P bit, and the inverted Q bit, and inputs a three-bit selection signal from the control unit 124 to the selection signal. Based on this, two bits are selected from the P bit, the Q bit, the inverted P bit and the inverted Q bit, and the selected two bits are output as the A-phase current command value and the B-phase current command value. These A-phase current command value and B-phase current command value are given to the drive unit 121, and the current of each current command value is supplied from the drive unit 121 to the A-phase It is supplied to the station 1 27 and the rotor 1 29 rotates.
  • the three bits that indicate the selection signal " ⁇ " are rotation direction data CW (1 bit) and motor initial state data C M (2 bits).
  • the rotation direction data CW indicates “1” when the stepping motor is rotated in a clockwise direction and “0” when rotated in a counterclockwise direction.
  • the motor initial state data CM indicates the excitation state of the stepping mode at the end of the first operation mode—the A-phase stage 125 and the B-phase stage 127.
  • the drive control in the second operation mode is performed after the stepping module 125 is once set to the one-phase excitation state by the micro step drive in the first operation mode.
  • control unit 124 determines the rotation direction of the mouth 129 of the stepping motor 125.
  • the rotation direction is clockwise.
  • the one-phase excitation state is set by the micro-step drive of the first operation mode, and the rotor 129 of the stepping motor 125 is rotated to the position of the state.
  • the control unit 124 After holding this one-phase excitation state for 1 to 2 ms, the control unit 124 outputs a clear signal to the counter 135 to set the count value to zero.
  • the control unit 124 outputs the rotation direction data CW and the motor initial state data CM to the data selector 1337.
  • the rotation direction data CW is set to “1”, and only the A-phase stage 1 26 starts from the state where it is excited in the positive direction.
  • Set “1” to CM These data values are always held until the second operation mode is switched to the first operation mode, that is, from the high-speed rotation state of the rotor 129 to the rotation angle control state.
  • the state becomes the second operation mode, and the respective currents of the A-phase current command value and the B-phase current command value are supplied from the drive unit 121 to the A-phase stay 1 26 and the B-phase stay 1 Is supplied to the rotor 27, and the rotor 1 29 rotates clockwise from the stationary position in the one-phase excitation state.
  • a pulse signal is output from the binarization circuit 134 every time the rotor 122 rotates by an angle of 4.5 °.
  • the count value of the counter 135 becomes “2”
  • the A-phase current command value becomes “1” (High)
  • the A-phase current command The value changes every eight periods of the pulse signal output from the binarization circuit S14.
  • the pulse signal of the sixth cycle of the binarization circuit 13 4 is output, the count value of the counter 13 5 becomes “6”, the B-phase current command value becomes “1”, and thereafter.
  • the B-phase current command value changes every eight periods of the pulse signal output from the binarization circuit 13 4.
  • the A-phase current command value and the B-phase current command value are selected from the P bit, Q bit, P inversion bit, and Q inversion bit based on the rotation direction and the stationary position in the one-phase excitation state. While the phase difference of four cycles of the pulse signal output from the binarization circuit 13 4 is held, the output from the binarization circuit 13 4 The pulse signal is updated every eight periods.
  • the currents of the A-phase current command value and the B-phase current command value continue to be supplied from the drive unit 12 1 to the A-phase stay 12 6 and the B-phase stay 12 7 Continue to rotate clockwise.
  • the A-phase stays 126 and B-phase stays 127 are always excited in a fixed relationship with the rotor angular position, and do not lose synchronism even if the load suddenly increases. Rotate.
  • the rotor 129 may be controlled to an arbitrary rotation angle by microstep driving.
  • the current of each of the A-phase stator 126 and the B-phase stator 127 as appropriate, it is possible to make the rotor 128 stationary at an arbitrary rotation angle.
  • the mode shifts to the second operating mode via the first operating mode.
  • the mouth 129 is rotated from an arbitrary rotation angle to the rotation angle in the one-phase excitation state by microstep driving, and this rotation requires extra time.
  • the one-phase excitation state of the mouth 129 must be maintained for a certain period of time.
  • the electromagnetic force between the rotor 12 and each stage 12 6 and 12 7 acts as a kind of spring force, and from this spring force and the mass of the rotor 12 9 a kind of resonance system is created.
  • vibration is generated in the rotor 12 9, and this vibration is attenuated, and the rotor 12 9 Waiting for a certain time until the rotation angle stabilizes.
  • the standby time of 10 to 20 ms is required. But this wait is too long.
  • the present invention has been made in view of the above-described conventional problems, and provides a control device for a stepping motor capable of rotating and driving a rotor from an arbitrary rotation angle in a very short time with a slight vibration.
  • An object of the present invention is to provide an optical head driving device using the control device of the stepping motor. Disclosure of the invention
  • a control device for a steering motor includes a mouth having a magnetic pole formed at a constant angle along a circumferential direction, and an excitation coil having a plurality of phases.
  • a drive current for the exciting coil corresponding to the rotation angle of the rotor detected by the rotation angle detection means in a microstep driving state for controlling a rotation angle is obtained by the drive current setting means, and the drive current is obtained.
  • the drive current setting means includes: a first data table storing drive currents of the exciting coil corresponding to respective rotation angles of the rotor in the micro step drive state; and A second data table storing driving currents of the exciting coil corresponding to the respective rotation angles of the predetermined time period; wherein the control means detects the rotation angle by the rotation angle detection means in the micro step driving state; A drive current to the excitation coil corresponding to the detected rotation angle of the rotor is determined from the first data table, and the drive current is applied to the excitation coil to start the rotary drive of the rotor, Subsequently, a drive current to the exciting coil corresponding to the rotation angle of the rotor detected by the rotation angle detection means is obtained from the second data table. 'And the driving current continues to drive rotation by giving to the exciting coil.
  • the rotation angle detection means includes: a first rotation angle detection means for detecting a rotation angle of the rotor based on a drive current of the excitation coil; and a second rotation including an encoder coupled to the rotor.
  • An angle detection unit wherein the rotation angle of the rotor detected by the first rotation angle detection means is used to determine a drive current of the exciting coil from the first data table, and the second rotation The rotation angle of the mouth detected by the angle detection means is used for obtaining the drive current of the exciting coil from the second data table.
  • the control means determines the drive obtained from the first data table. Setting the rotation angle of the rotor from the time when the rotor starts to drive to supply the current to the excitation coil to the time when the drive current obtained from the second data table starts to be supplied to the excitation coil; The overnight rotation angle is detected by the second rotation angle detection means.
  • the first rotation angle detection means has a rotation angle data table that stores a rotation angle of the rotatable device corresponding to a drive current of the excitation coil.
  • the stepping motor control device further includes a stepping motor having a rotor in which magnetic poles are formed at fixed angles along a circumferential direction, and a stepping motor having a plurality of phases of exciting coils.
  • a rotation angle detection means for outputting a periodic signal each time the motor rotates by an angle; a drive current setting means for setting each drive current of the exciting coil for each frequency division cycle; and a periodic signal from the rotation angle detection means.
  • a driving cycle is obtained from the second data table for each of the dividing cycles, and the driving current is applied to the exciting coil to rotate the rotor.
  • Control means for changing the frequency division ratio of the periodic signal according to the rotational speed of the night.
  • the optical head driving device of the present invention provides a recording medium having a magnetic pole formed at predetermined angles along a circumferential direction, and a stepping motor having a plurality of phases of exciting coils.
  • An optical head driving device for driving an optical head for performing recording or reproduction of an optical head comprising: a control device for driving and controlling the stepping mode, wherein the control device detects a rotation angle of the rotor.
  • Rotation angle detection means drive current setting means for setting each drive current of the excitation coil corresponding to each rotation angle of the rotor, and micro-step drive state for controlling the rotation angle of the rotor, the rotation in the micro-step drive state.
  • a drive current of the exciting coil corresponding to the rotation angle of the mouth detected by the angle detection means is obtained by the drive current setting means, and the drive current is obtained by the excitation current.
  • a control unit to shift to the rotational drive state of the rotor by providing the file.
  • FIG. 1 is a block diagram showing an embodiment of a control device for a stepping motor and a driving device for an optical head according to the present invention.
  • FIG. 2 is a diagram showing a rotation angle data table in which the rotation angles of the rotor corresponding to the A-phase current and the B-phase current in the control device for the steering mode of FIG. 1 are stored.
  • Fig. 3 shows the state of the stepping motor controller in Fig. 1 when the rotor starts rotating.
  • FIG. 3 is a diagram showing a first data table storing an A-phase current and a B-phase current.
  • FIG. 4 is a diagram showing a switching timing data table in which the timing of switching from the second operation mode to the third operation mode in the control device for the stepping motor of FIG. 1 is stored.
  • FIG. 5 is a diagram showing a second data table storing the A-phase current and the B-phase current during the rotation of the rotor in the control device for the stepping motor of FIG.
  • FIG. 6 is a simplified view of the structure of the steering mode shown in FIG.
  • FIG. 7 shows a conventional stepping motor control device.
  • FIG. 8 is a diagram showing a code table in the control device of the steering mode shown in FIG.
  • FIG. 9 is a diagram showing a data table in the control device of the stepping module shown in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a block diagram showing an embodiment of a stepping motor control device and an optical head drive device according to the present invention.
  • the optical head 54 of the optical head driving device 2 is moved by the stepping motor 25 of the stepping motor controller 1.
  • the lead screw 51 is connected to the shaft 30 of the stepping motor 25, and is rotatably supported by a bearing 52 fixed to the chassis 53. ing.
  • the pitch of the lead screw 51 is 3 mm.
  • the optical head 54 includes a light-emitting element, a light-receiving element, a lens, a lens actuator, etc., and irradiates a light beam to the optical disk 55 to optically record information on the optical disk 55 or record information. Read from optical disk 55.
  • a guide shaft 57 penetrates the optical head 54, and a nut piece 56 is fixed.
  • the nut piece 56 is screwed into the lead screw 51 and the nut piece 56 is urged to the left or right with respect to the lead screw 51 to eliminate the play of the screw.
  • the optical head 54 is reciprocated linearly.
  • the optical disk 55 is rotated by a spindle motor 58.
  • the tracks of the optical disk 55 are traced by the optical head 54.
  • the distance between adjacent tracks on the optical disk 55 is very narrow, about 1 m, and the direction of the light beam is required to accurately follow the irradiation spot of the light beam of the light head 54 on this track.
  • a tracking head for fine adjustment of the optical head 54 is mounted on the optical head 54.
  • the range in which the irradiation spot of the light beam can be moved by the tracking actuator is narrow.
  • the range in which the spot can be moved is about ⁇ 50 im.
  • the position of the optical head 54 is finely adjusted by rotating the stepping motor 25, so that the target track is set within a range in which the light beam irradiation bot can be moved by the tracking work.
  • the stepping motor 25 is a two-phase PM type with a step angle of 18 ° due to two-phase excitation. Therefore, when the stepping motor 25 is driven by two-phase excitation, the lead screw 51 connected to the rotor shaft 30 is rotated by a step angle of 18 °. The pitch of the lead screw 51 is 3 mm. In this case, when the lead screw 51 is rotated by a step angle of 18 ° by two-phase excitation, the optical head 54 moves by 150. Therefore, as long as the stepping motor 25 is driven by the two-phase excitation, the optical head 54 is moved by 150 m at a time, and the light spot of the light beam is moved by the tracking actuator. You can put the target track within ⁇ 50m range Not necessarily.
  • the rotation angle of the low motor 29 of the stepping motor 25 is finely adjusted to less than 18 °, thereby gradually moving the light head 54 gradually. Move and place the target track within a ⁇ 50 m range where the light beam irradiation spot can be moved by the tracking function.
  • micro-stepping which divides the step angle of 18 ° into 16 steps
  • the lead screw 51 connected to the rotor shaft 30 is rotated by 1 microstep (1.125.)
  • the optical head 54 moves by 9.375 m, it is possible to put the eye track in the range of ⁇ 50 im.
  • the optical head driving device 2 not only the rotatable rotor 29 is rotated by a step angle of 18 ° by two-phase excitation, but also the irradiation spot of the light beam by the tracking work is performed.
  • Micro-step drive is used to rotate the rotor 29 in smaller increments so that the target track is within the movable range of ⁇ 50 m.
  • Moving the optical head 54 from the track currently being scanned to another track is called a seek.
  • the address of the current position of the optical disk 55 being accessed is read by the optical head 54, and the moving direction and moving distance are determined based on the address of the current position and the target ⁇ : address of the target. And determine how to move the optical head 54.
  • the light head can be driven only by the tracking mechanism without rotating the rotor 29 of the stepping motor 25. 5 Move 4
  • the low beam 29 of the stepping motor 25 is gradually rotated by micro-step driving to move the irradiation spot of the light beam of the optical head 54 to the vicinity of the target track. . Further, if the moving distance is long, the mouth 29 of the stepping motor 25 is rotated at a high speed to move the optical head 54 quickly.
  • the rotor 29 of the stepping motor 25 is at an arbitrary rotation angle by microstep driving, the rotor 29 is immediately rotated at a high speed from the arbitrary rotation angle. It can be driven, and there is no time lag when switching from micro-step drive to high-speed rotation drive.
  • the mouth 129 is once rotated from an arbitrary rotation angle to the rotation angle in the one-phase excitation state, and the rotation angle of the rotor 129 is stabilized. After waiting for a certain period of time, and after that, the high-speed rotation drive of the Robe 129 will cause a significant time lag before shifting from micro-step drive to high-speed rotation drive.
  • the first operation mode, the second operation mode, and the third operation mode are sequentially set, and the drive of the stepping motor 25 is controlled based on these operation modes.
  • the microstep driving unit 16 is selected, and the output of the microstep driving unit 16 is applied to the driving unit 21 via the command value selector 12, and the driving unit 21 is selected.
  • the stepping motor 25 is microstep driven.
  • the forced drive unit 15 is selected, the output of the forced drive unit 15 is applied to the drive unit 21 via the command value selector 12, and the stepping mode is performed by the drive unit 21.
  • High speed rotation of the rotor 29 is started from an arbitrary rotation angle by forced drive, that is, macro step drive, overnight.
  • the drive pattern generation unit 13 is selected, and the output of the drive pattern generation unit 13 is applied to the drive unit 21 via the command value selector 12.
  • the high-speed rotation drive of the stepping motor 25 is continued.
  • the driving means 21 includes an A-phase current driver 22 and a B-phase current driver 23 which are independent from each other.
  • the A-phase current driver 22 and the B-phase current driver 23 are provided with the A-phase current command value and the B-phase current command value through the command value selector 12, and the respective current commands These currents are supplied to the A-phase stage 26 and the B-phase stage 27, thereby driving the stepping mode 25.
  • the A-phase current driver 22 and the B-phase current driver 23 are provided with a DZA converter that converts each digital signal indicating the A-phase current command value and the B-phase current command value into each analog signal. And an amplifier for amplifying and outputting each analog signal.
  • the stepping module 25 is a two-phase PM type with a step angle of 18 ° due to two-phase excitation. Stepping motor 25, angle 72.
  • the NS pole is magnetized every time, and the N pole and S pole are magnetized with 5 poles in one turn. And a two-phase excitation coil consisting of 27.
  • the A phase stay 26 and the B phase stay 27 are angles 72.
  • NS poles are magnetized every time, and each yoke has five poles in one turn to form NS poles. These yokes are arranged around the rotor 29.
  • the magnetic poles of the yoke of the A-phase stay 26 and the magnetic poles of the yoke of the B-phase stay 27 are shifted from each other by 18 °.
  • a light-shielding plate 31 having a slit formed at every angle of 4.5 ° (22.5 ° in the electrical angle described later) is fixed to the rotor shaft 30.
  • the 4.5-degree cycle at which each slit of the light-shielding plate 31 is formed is a fraction of the cycle of the angle 72-degree (electrical angle 360 °) at which each magnetic pole of the rotor 29 is formed. (Here, 1 Z1 6).
  • the 5 "period has been determined.
  • the photosensor 32 is of a transmissive type that includes an LED on the light emitting side and a phototransistor on the light receiving side, and has an LED and a phototransistor arranged on both sides of the light-shielding plate 31.
  • the slit of the light shielding plate 31 is detected by receiving light with the phototransistor through the slit of 1.
  • the phototransistor outputs an output signal according to the presence or absence of the slit in the light shielding plate 31.
  • the photo sensor 32 is housed in the housing 33 together with the light shielding plate 31 and is contaminated by factors such as breakage and dust. Is preventing.
  • the output of the photosensor 32 is binarized by a binarization circuit 34.
  • the binarization circuit 34 does not simply compare the output of the photosensor 32 with a reference value and output high-level and mouth-level signals. The high level and the low level of the output signal are switched only when the interval changes, thereby preventing malfunction due to chattering.
  • the pulse signal output from the binarization circuit 34 is input to the control unit 11 and the drive pattern generation unit 13.
  • the micro-step driving section 16 is for performing micro-step driving in the first operation mode as described above, and according to the target rotation angle given by the control section 11, the A-phase current driver 2 Change the A-phase current command value and B-phase current command value for 2 and B-phase current driver 23, and supply them to A-phase stay 26 and B-phase stay 27 of stepping mode 25, respectively.
  • the rotor 29 is rotated to the target rotation angle. This target rotation angle is controlled with high resolution.
  • the relationship between the rotation angle of the rotor 29 and the current ratio depends on the state of the magnetic circuit and the load of the steering motor 25.
  • the respective A-phase current command values and the respective B-phase current command values for positioning the rotor 29 at the respective rotation angles at equal intervals are obtained, and the respective A-phase current command values and the respective A-phase current command values corresponding to the respective rotation angles are obtained.
  • a function for obtaining the respective A-phase current command values and the respective B-phase current command values corresponding to the respective rotation angles is created in advance, and the A-phase current command values and the corresponding A-phase current command values corresponding to the desired rotation angles are prepared.
  • the B-phase current command value is derived based on the function. For example, a step angle of 18 ° (electrical angle 90 °) by two-phase excitation is divided into 16 and a microstep of a rotational angle of 1.125 ° (electrical angle 5.625. When rotating 9, it is necessary to generate an A-phase current command value and a B-phase current command value consisting of 8 bits for the 16-step (4-bit) microstep command. An overnight table is configured, and the 8 bits indicating the A-phase current command value and the B-phase current command value are incremented or decremented to control the rotation of the stepping motor 25 in an arbitrary rotation direction.
  • Such micro-step driving is performed based on a known technique.
  • the electrical angle is set to, and the actual angle of the rotor 29 is set to 0.
  • electrical angle and actual angle The relationship is represented by the following equation (1).
  • N is any integer from 0 to 4.
  • the forcible driving section 15 is for performing the forcible driving of the second operation mode following the first operation mode as described above, and the first operation mode notified from the control section 11 is provided.
  • the angle position detecting section 14 detects the A-phase current and the B-phase current flowing in the A-phase stay 26 and the B-phase stay 27 in the first operation mode, and determines whether the current is positive or negative. Then, a ratio of the respective currents is obtained, and a rotation angle ⁇ of the rotor 29 is obtained by referring to a rotation angle data table 61 shown in FIG. ⁇ is notified to the control unit 11.
  • the rotation angle in the rotation angle data table 61 and the other data tables 62, 63, and 64 described later is 0 ° when only the A-phase stay 26 is excited in the positive direction. All are expressed in electrical angles with clockwise as the positive direction.
  • the rotation angle data table 61 four columns are provided corresponding to the positive / negative of the A-phase current and the positive / negative of the B-phase current in the A-phase stay 26, and the A-phase current and B- The rotation angle ⁇ corresponding to the current ratio of the phase current is determined.
  • the rotation angle ⁇ is 45 °. Since the relationship between the current ratio and the rotation angle ⁇ is peculiar to the stepping motor, the contents of the rotation angle data table 61 must be changed if the structure of the stepping motor is different. Even if the structure of the stepping motor is the same, if the characteristics of the stepping motor vary due to manufacturing errors, etc., it is necessary to measure and set the contents of the data table for each stepping motor. There is.
  • the control unit 11 forcibly drives the rotation angle ⁇ of the rotor 29 in the first operation mode and the rotation direction (clockwise or counterclockwise) of the rotor 29 corresponding to the movement direction of the optical head 54.
  • the forced drive unit 15 refers to the first data table 62 of FIG. 3 built in the forced drive unit 15 and determines the A-phase current command value and the B-phase current value corresponding to the rotation angle ⁇ of the mouth 29.
  • the current command values are read, and the current command values are given to the A-phase current driver 22 and the B-phase current driver 23.
  • first data table 62 In the first data table 62, four rotation angle ranges are set for each of the clockwise direction and the counterclockwise direction of the row 29, and each A-phase current command value and Each B-phase current command value is set. Therefore, eight sets of A-phase current command values and B-phase current command values are set.
  • the rotation angle ⁇ ⁇ of the rotor 29 is in the range of 0 ° ⁇ 90 ° due to the micro-step drive in the first operation mode, and the mouth 29 is rotated clockwise by the forced drive in the second operation mode.
  • the ⁇ phase is excited in the negative direction and the ⁇ phase is excited in the positive direction.
  • the ⁇ phase current command value and ⁇ phase B-phase current command value for exciting 7 in the positive direction is selected.
  • the respective magnetic poles of the rotor 29 having the rotation angle ⁇ ⁇ ⁇ ⁇ in the first operation mode were appropriately excited by the A-phase current and the B-phase current.
  • the magnetic force of the A-phase stay 26 and the B-phase stay 27 acts to generate a large rotational torque in a predetermined direction at the mouth 29, thereby activating the high-speed rotation of the rotor 29. .
  • An A-phase current command value and a B-phase current command value for further rotating the rotor 29 up to the advanced rotation angle are selected from the first data table 62. Therefore, irrespective of the rotation angle of the rotor 29 before the start of rotation, it is possible to avoid the dead center and start with almost the maximum torque.
  • the drive pattern generating section 13 performs the third operation mode following the second operation mode as described above, and is for continuing the high-speed rotation drive of the stepping motor 25.
  • control unit 11 refers to the switching timing data table 63 in FIG. 4 built in the control unit 11 and sets timing for switching from the second operation mode to the third operation mode.
  • each count value is set for each of the four rotation angle ranges for the clockwise direction and the counterclockwise direction of the row 29.
  • These rotation angle ranges divide the 360 ° rotation angle into 16 small rotation angle ranges of 22.5 °, and these small rotation angle ranges are shifted by 90 ° from each other as one set of four small rotation angle ranges. It is divided into four sets.
  • the control unit 11 selects the count value corresponding to the rotation direction of the rotor 29 in the second operation mode and the rotation angle ⁇ of the rotor 29 in the first operation mode by referring to the switching timing table 63. .
  • the control unit 11 activates the second operation mode by controlling the forced driving unit 15.
  • Control unit 1 1 Starts counting the pulse signals from the binarization circuit 34, and when the counted value reaches the counted value selected from the switching timing data table 63, the start of the third operation mode is started. Instruct generation unit 13.
  • the count value of the pulse signal from the value conversion circuit 34 reaches “4”
  • the third operation mode is started.
  • the rotation angle ⁇ ⁇ of the lowway 29 in the first operation mode is within the rotation angle range of “22.5. + ⁇ ⁇ 90.
  • the count value 3 is selected from the switching timing table 63, and the low and high speeds 29 are rotated by the forced driving in the second operation mode, and the count value of the pulse signal from the binarization circuit 34 reaches “3”. Then, the third operation mode is started.
  • the rotation angle of the mouth 29 is 0. , 90 °, 180. , 270. , 360 °.
  • the drive pattern generation unit 13 is notified from the control unit 11 of the rotation angle ⁇ of the rotor 29 in the first operation mode and the rotation direction of the rotor 29 in the second operation mode.
  • the drive pattern generator 13 reads the A-phase current command value and the B-phase current command value from the second data table 64 with reference to the second data table 64 shown in FIG.
  • the current command values are given to the A-phase current driver 22 and the B-phase current driver 23.
  • Route 3 A-phase current command value and B-phase current command value when the 7th pulse signal is input from 4, 1 A-phase current command value and B-phase current command value when the 1st pulse signal is input, 1 Sets the A-phase current command value and B-phase current command value when the fifth pulse signal is input.
  • the 7th pulse signal is input, the 1st pulse signal is input, and the 15th pulse signal is input.
  • Each A-phase current command value and B-phase current command value are selected, and each of the four When the pulse signal is further input, it returns to the A-phase current command value and B-phase current command value when the third pulse signal was input. Select the A-phase current command value and the B-phase current command value when the first, first, fifth, and third pulse signals are input.
  • the rotation angle of the rotor 29 in the first operation mode is continued at the rotation angle ⁇ power ⁇ .
  • the start time of the third operation mode is detected, and after this disclosure time point, the A-phase current command value and the B-phase current command value are changed at a constant rotation angle cycle.
  • the drive pattern generator 13 is composed of a programmable counter, etc.
  • the pulse signal from the digitizing circuit 34 is divided and counted, and the third, seventh, and eleventh in the second data table 64 are obtained by changing the ratio of the division. Eye, 15th pulse signal is detected.
  • the programmable counter receives three pulse signals from the binarization circuit 34, it counts up to input the third pulse signal. Is detected. After this, the programmable counter counts up each time four pulse signals are input from the binarization circuit 34 to count the pulse signals of the 7th, 11th, 15th, etc. Detect input.
  • microstep driving in the first operation mode by the microstep driving unit 16 forced driving in the second operation mode by the forced driving unit 15, and continuation of high-speed rotation in the third operation mode by the driving pattern generation unit 13 Is performed.
  • the control unit 11 controls the command value selector 12 to control the A-phase current command value and the B-phase current command value output from any one of the micro-step drive unit 16, the forced drive unit 15, and the drive pattern generation unit 13.
  • the phase current command value is selected and given to the drive unit 21.
  • the timing of switching from the first operation mode to the second operation mode that is, the timing of switching from the output of the microstep drive unit 16 to the output of the forced drive unit 15 by the command value selector 12 is determined by the control unit 1 1 Is decided appropriately.
  • the control unit 11 switches the micro step driving unit 16 to the forced driving unit 15 to the command value selector 1 2 And start the compulsory driving unit 15.
  • the timing of switching from the second operation mode to the third operation mode that is, the timing of switching from the output of the forced drive unit 15 to the output of the drive pattern generation unit 13 by the command value selector 12 is the same as that described above.
  • the control unit 11 instructs the command value selector 12 to switch from the forced drive unit 15 to the drive pattern generation unit 13 and activates the drive pattern generation unit 13.
  • the control means 11 determines the rotation direction of the stepping motor 25.
  • the rotation direction is clockwise.
  • the first operation mode is selected, and the A-phase current command value and the B-phase current command value are transmitted from the microstep driver 16 to the A-phase current driver 22 and the B-phase current driver 23 through the command value selector 12.
  • the current command value is output.
  • the mouth 29 of the stepping motor 25 is stationary at an arbitrary rotation angle ⁇ .
  • control means 11 forcibly drives the rotation angle ⁇ of the rotor 29 in the first operation mode and the rotation direction of the mouth 29 corresponding to the moving direction of the optical head 54 to the forcible driving section 15.
  • control means 11 controls the command value selector 12 to connect the forced drive unit 15 to the ⁇ -phase current driver 22 and the B-phase current driver 23.
  • the forced drive unit 15 refers to the first data table 62, reads the A-phase current command value and the B-phase current command value corresponding to the rotation angle ⁇ ⁇ ⁇ ⁇ in the first operation mode, and reads the A-phase current command value and the B-phase current command value.
  • the rotation of the stepping motor 25 is started.
  • the controller 11 refers to the switching timing data table 63 and sets the timing for switching from the second operation mode to the third operation mode.
  • the control procedure 11 controls the command value selector 12 to connect the drive pattern generator 13 to the A-phase current driver 22 and the B-phase current driver 23.
  • the drive pattern generating unit 13 repeatedly reads the A-phase current command value and the B-phase current command value from the second data table 64 with reference to the second data table 64, and reads the A-phase current command value and the B-phase current command value. Apply the phase current command value to the A-phase current driver 22 and the B-phase current driver 23 sequentially. Thus, the rotation of the stepping motor 25 is continued.
  • the rotation angle of the rotor 29 before the rotation of the stepping motor 25 starts is detected by the angular position detection unit 14. Also, the rotation angle after the start of rotation is 4.5 By counting the pulse signal output from the binarization circuit 34, 4.5. It is detected with a resolution of (electric angle 22.5 °). Therefore, the rotation angle can be accurately detected both when the stepping motor 25 stops and when it rotates, and the rotation angle control of the stepping motor 25 from the stop to the rotation can be performed accurately. For example, as the A-phase current command value and the B-phase current command value at the start of the third operation mode, the A-phase current command value and the B-phase current command value in the second operation mode are similar to the general two-phase excitation pattern.
  • the rotation angle of the row 29 is set to a position advanced by the rotation angle 90 ° in the direction of rotation with respect to the value, and the rotation angle of the row 29 of the stepping motor 25 is set to the advance angle before this position.
  • the operation mode is switched from the second operation mode to the third operation mode.
  • each time the rotor 29 of the stepping motor 25 further advances the rotation angle 90 ° (in this embodiment, Each time four pulse signals are output from the binarization circuit 3 4), the A-phase current command value and the B-phase current command value are rotated 90 degrees.
  • the rotor 29 is updated to the one for rotating the rotor 29 to the advanced position, so that the mouth 29 is always driven ahead by an almost constant advance angle.
  • virtual S poles 44 are generated at the respective positions by combining the magnetic fields.
  • the command value by the forcible driving in the second operation mode is the A-phase current command value and the B-phase current value for exciting the negative Evening 2 7 B-phase current command value for exciting in the positive direction.
  • a pulse signal is output from the binarization circuit 34.
  • the switching timing data table 63 when the four pulse signals # 1 to # 4 are counted, the mode is shifted from the second operation mode to the third operation mode.
  • the command value immediately after entering the third operation mode is the A-phase current command value for exciting the ⁇ -phase stay 26 in the negative direction and the B-phase stay 27 in accordance with the second data table 64.
  • the lead angle is in the range of 135 ° to 157.5 ° is that the positional relationship between the low light 29, the light emitting plate 31 and the photosensor 32 is not adjusted, and therefore the pulse signal output from the binarization circuit 34 Is varied in the range of angle 22.5 °. This degree of variation does not significantly affect the characteristics of the stepping motor 25.
  • the pulse 29 further rotates, and the pulse signal is output from the binarization circuit 34.
  • the command value includes the A current command value for exciting in the positive direction and the negative current value.
  • the row 29 advances by an angle corresponding to each of the three pulse signals P5 to P7, that is, the angle 67.5 ° with respect to the position at the start of the third operation mode.
  • the command value includes the A-phase current command value for exciting in the positive direction and the command value.
  • the virtual S-pole 44 is advanced by 90 ° for each of the four pulse signals, so that the advance angle 1 remains constant at 157.5 ° to 180 °.
  • the command value of the forced drive in the second operation mode is According to the 1-day / night table 62, a ⁇ -phase current command value for exciting in the negative direction and a B-phase current command value for exciting in the positive direction.
  • a pulse signal is output from the binarization circuit 34.
  • the mode shifts from the second operation mode to the third operation mode.
  • the forced drive unit 15 that performs the second operation mode and the drive pattern generation unit 13 that performs the third operation mode are provided independently, but in each case, the binarization circuit 34 and the angular position Since the command is output based on the output of the detection unit 14, Both may be integrated. Further, the angular position detection unit 14 may not be provided independently, and the target rotation angle set in the control unit 11 may be substituted. In other words, the control unit 11 sets the target rotation angle of the rotor 29, gives the target rotation angle to the microstep drive unit 16, and controls the stepping motor 25 by the microstep drive unit 16.
  • the control section 11 can detect the rotation angle of the roof 29. Further, respective functions corresponding to the contents of the tables 61, 62, 63, 64 may be set in advance, and the respective control parameters may be obtained based on these functions. Absent. Industrial applicability
  • the rotor since the rotor can be started from an arbitrary rotation angle, it is not necessary to rotate the mouth to the rotation angle by one-phase excitation as in the related art. Takes no extra time for.
  • the optical head is moved (seeked) in the radial direction of the disk because it is not necessary to hold the rotation angle of the mouth by one-phase excitation and wait until the vibration of the rotor attenuates as in the past. For this reason, if the stepping mode of the present invention is applied to a general CD-ROM device or the like, the time corresponding to the conventional standby time of 10 to 20 ms can be reduced.
  • the rotor does not vibrate as in the prior art, if the stepping mode of the present invention is applied to an optical disk device or the like in order to adjust the focus of the optical head, the focus servo of the optical head is adversely affected. I will not give.
  • the stepping motor since the advance angle ⁇ is changed to an optimum value according to the rotation speed of the stepping motor, the stepping motor can be operated stably from low-speed rotation to high-speed rotation, and the stepping motor is applied. In optical disk devices, etc. The seek time can be greatly reduced,

Description

明 細 書 ステツビングモータの制御装置及び光へッドの駆動装置 技術分野
本発明は、 ステッピングモー夕の制御装置、 及び該ステッピングモー夕の制御 装置を用いた光へッドの駆動装置に関する。 背景技術
ステッピングモー夕は小型、 高トルク、 高寿命といった特徴を有し、 その簡易 な制御性を利用した開ループ制御による駆動方法が一般的である。 しかし、 この 開ループ制御による駆動では、 モータの回転角度が目標から外れる脱調、 モー夕 の振動、 高速回転の達成が困難である等の課題がある。 一方、 閉ループ制御によ る駆動方法では、 ステッピングモータにエンコーダを付与し、 このエンコーダに よってモータの回転角度を検出しつつ該モータを制御するので、 制御系が複雑化 するものの、 脱調や振動を抑制し、 高速回転性を向上させることができる。 米国特許第 4 , 9 6 3 , 8 0 8号には、 2相ステッピングモ一夕の開ループ制 御、 及び 2相ステツビングモー夕を D Cモー夕として用いる閉ループ制御を切り 替え、 2種類の 作モ一ドで、 2相ステッピングモータを利用することが可能な 構成が記載されている。 また、 ここには、 ステッピングモータの回転角度を検出 するエンコーダの 1周分の出力パルス数をステッピングモータのロータの磁極数 の整数倍としておき、 ステッピングモータを 1相励磁して、 ロー夕を所定位置に 静止させた状態からロータを回転させ、 この回転に伴い、 エンコーダから所定数 のパルスが出力される度に、 ステッピングモータの励磁電流を切り替え、 これに よってエンコーダの出力パルスとステッピングモー夕の励磁電流間の位相差を無 調整で所定誤差以下に抑えるという技術も併せて記載されている。 図 7は、 ステッピングモータを閉ル一プ制御するための従来の装置を示してい る。
図 7において、 制御部 1 2 4は、 第 1動作モード及び第 2動作モードのいずれ かに基づいてステツビングモー夕 1 2 5を駆動制御する。 第 1動作モードでは、 制御部 1 2 4によって発生されるタイミングで、 制御部 1 2 4から駆動部 1 2 1 に電流指令値を出力するという開ループ制御により、 ステッピングモー夕 1 2 5 の口一夕 1 2 9の回転角度を制御するというマイクロステップ駆動を行う。 また、 第 2動作モードでは、 ステッピングモ一夕 1 2 5の口一夕 1 2 9の回転角度をェ ンコーダ 1 2 8によって検出して、 該検出された回転角度を制御部 1 2 4に与え、 制御部 1 2 4から駆動部 1 2 1に電流指令値を出力するといぅ閉ループ制御によ り、 ステッピングモータ 1 2 5のロー夕 1 2 9を高速回転させる。
駆動部 1 2 1は、 相互に独立した A相電流ドライバ 1 2 2及び B相電流ドライ バ 1 2 3からなる。 A相電流ドライバ 1 2 2及び B相電流ドライバ 1 2 3は、 制 御部 1 2 4からデ一夕セレクタ 1 3 7を介して A相電流指令値及び B相電流指令 値を入力し、 該各電流指令値の電流を形成して、 これらの電流を A相ステ一夕 1 2 6及び B相ステ一夕 1 2 7に供給し、 これによつてステッピングモータ 1 2 5 を駆動する。 具体的には、 A相電流ドライバ 1 2 2及び B相電流ドライバ 1 2 3 は、 A相電流指令値及び B相電流指令値を示すそれぞれのデジタルデータを各ァ ナログ信号に変 する DZA変換器と、 該各アナログ信号を増幅して出力する増 幅器とから構成されている。
ステッピングモータ 1 2 5は、 2相 P M型で、 2相励磁によるステップ角が 1 8 ° のものである。 ステッピングモ一夕 1 2 5は、 角度 7 2 ° 毎に N S極が着磁 され、 1周で N極及び S極が 5極ずっ着磁された永久磁石からなるロー夕 1 2 9 と、 A相ステ一夕 1 2 6及び B相ステ一夕 1 2 7からなる 2相の励磁コイルとを 備えている。 A相ステ一夕 1 2 6及び B相ステ一夕 1 2 7は、 角度 7 2 ° 毎に N S極が着磁され、 1周で 5極ずつの N S極を形成するそれぞれのヨークを有し、 これらのヨークがロータ 129の周囲に配置されている。 A相ステ一夕 126の ヨークの各磁極と B相ステ一夕 127のヨークの各磁極は、 18° 相互にずれて 配置されている。
ロータ軸 130には、 角度 4. 5° 毎にスリットを形成した遮光板 131を固 定している。 遮光板 131の各スリットが形成される角度 4. 5° の周期は、 口 一夕 129の各磁極が形成される角度 72° の周期の整数分の 1となるように決 められる (ここでは 1 16) 。 特に、 ステッピングモー夕 125の相数が 2相 であるため、 2の倍数分の 1、 つまり 1Z16==1Z (2 X 8) の関係も満たす ように、 各スリットが形成される角度 4. 5° の周期が決定されている。
フォトセンサ 132は、 発光側の LED及び受光側のフォトトランジスタを備 え、 遮光板 131の両側に LEDとフォ卜トランジスタを配置した透過型であり、 LEDから出射された光を遮光板 131のスリットを介してフォ卜トランジスタ で受光することにより遮光板 131のスリットを検出する。 フォトトランジスタ は、 遮光板 131のスリットの有無に応じた出力信号を出力する。 フォトセンサ 132は、 遮光板 131と共にハウジング 133内に収容され、 破損やホコリ等 の要因による汚損を防いでいる。
フォトセンサ 132の出力は、 2値化回路 134により 2値化される。 2値化 回路 134は、 単に、 フォトセンサ 132の出力を基準値と比較して、 ハイレべ ル及び口一レベルの信号を出力するのではなく、 フォトセンサ 132の出力が 2 つの基準値間を変化したときにのみ出力信号のハイレベルとローレベルを切り替 えており、 これによつてチヤタリングによる誤動作を防いでいる。
2値化回路 134から出力されたパルス信号は、 制御部 124及び 16進の力 ゥン夕 135に入力される。
カウン夕 135は、 2値化回路 134から 1つのパルス信号を入力する度に、 計数値 0〜 15の範囲で力ゥントアップし、 該計数値が 15に達すると、 次の力 ゥントアップのタイミングで該計数値を 0に初期化し、 0〜15の範囲で循環す る計数値を 4ビットの 2進数として出力する。 また、 カウンタ 1 3 5は、 制御部 1 2 4からのクリア信号を入力すると、 その計数値を 0に初期化する。
4入力 4出力のコードコンバータ 1 3 6は、 カウン夕 1 3 5からの 4ビットの 計数値を入力し、 この計数値を 4ビットのコードに変換して、 このコードを出力 する。 これらの計数値とコードの関係を図 8のコードテ一ブル 8 1に示す。 ここ で、 コードコンパ一夕 1 3 6から出力されるコードを示す 4ビットを Pビット、 Qビット、 Pの反転ビット、 Qの反転ビットと呼ぶことにする。 また、 コードコ ンバ一夕 1 3 6に入力される計数値を実際の 4ビッ卜の 2進数ではなく 1 0進数 で示している。
コードテーブル 8 1から判るように、 コードコンバータ 1 3 6から出力される コードを示すそれぞれのビットは、 2値化回路 1 3 4から出力されたパルス信号 を 1ノ 1 6に分周したものである。 コードコンパ一夕 1 3 6からの Pビッ卜と Q ピットは、 2値化回路 1 3 4から出力されるパルス信号の 4周期分だけ位相が相 互にずれている。 同様に、 コードコンパ一夕 1 3 6からの他の Pの反転ビットと Qの反転ビットも、 該パルス信号の 4周期分だけ位相が相互にずれている。
データセレクタ 1 3 7は、 4つの Pビット、 Qビット、 Pの反転ビット及び Q の反転ビッ卜を入力すると共に、 制御部 1 2 4から 3ビッ卜の選択信号を入力し、 この選択信号に基づいて Pビット、 Qビット、 Pの反転ビット及び Qの反転ビッ 卜のうちから 2つを選択し、 この選択した 2つのビットを A相電流指令値、 B相 電流指令値として出力する。 これらの A相電流指令値及び B相電流指令値は、 駆 動部 1 2 1に与えられ、 駆動部 1 2 1から該各電流指令値の電流が A相ステ一夕 1 2 6及び B相ステ一夕 1 2 7に供給され、 ロータ 1 2 9が回転する。
選択信 "^を示す 3ビットの内訳は、 回転方向データ CW ( 1ビット) と、 モー 夕初期状態データ C M ( 2ビット) である。
回転方向データ CWは、 ステッピングモ一夕 1 2 5を時計回り方向に回転させ るときに 「1」 、 反時計回り方向に回転させるときに 「0」 を示す。 モータ初期状態データ C Mは、 第 1動作モードの終了時点でのステツピングモ —夕 1 2 5の A相ステ一夕 1 2 6及び B相ステ一夕 1 2 7の励磁状態を示す。 第 1動作モードのマイクロステップ駆動によりステツピングモ一夕 1 2 5を 1相励 磁状態に一旦設定した後に、 第 2動作モードの駆動制御が行われる。 第 1動作モ ードの 1相励磁状態には、 A相ステ一夕 1 2 6のみを正方向に励磁した状態、 B 相ステ一夕 1 2 7のみを正方向に励磁した状態、 A相ステ一夕 1 2 6のみを負方 向に励磁した状態、 B相ステ一夕 1 2 7のみを負方向に励磁した状態という 4状 態があり、 該各状態のいずれから第 2動作モードへの切替えが行われるかにより、 該各状態の上記順序で、 モー夕初期状態デ一夕 C Mに 「1」 、 「2」 、 「3」 、 · 「4」 のいずれかが与えられる。
回転方向データ CW及びモータ初期状態データ C Mと、 データセレクタ 1 3 7 によって選択され出力される 2っビットとの対応関係を図 9のテーブル 8 2に示 す。 このテーブル 8 2において, モータ初期状態デ一夕 C Mは、 実際の 2ビット の 2進数ではなく 1 0進数で表示する。
次に、 この様な構成のステッピングモータの制御装置の動作を説明する。
まず、 制御部 1 2 4は、 ステッピングモ一夕 1 2 5の口一夕 1 2 9の回転方向 を決定する。 例えば、 回転方向を時計回り方向とする。 そして、 第 1動作モード のマイクロステップ駆動により 1相励磁状態を設定して、 該状態の位置までステ ッビングモータ 1 2 5のロー夕 1 2 9を回転させる。
1相励磁状態には、 前述のように 4種類があり、 ロータ 1 2 9の位置も 4種類 あるが、 通常は、 静止位置より決定された回転方向にロータ 1 2 9を回転させた ときに、 ロー夕 1 2 9が最初に到達する位置である。 ここでは、 A相ステ一夕 1 2 6のみを正方向に励磁した状態の位置とする。
この 1相励磁状態を 1〜 2 m s保持した後、 制御部 1 2 4は、 カウンタ 1 3 5 にクリア信号を出力して計数値を 0にする。 また、 制御部 1 2 4は、 データセレ クタ 1 3 7に回転方向データ CW、 モータ初期状態データ C Mを出力する。 ここでは、 回転方向が時計回り方向であるため、 回転方向データ CWに 「1」 をセットし、 A相ステ一夕 1 2 6のみを正方向に励磁した状態から起動するため、 モータ初期状態データ CMに 「1」 をセットする。 これらのデータの値は、 第 2 動作モードが第 1動作モードに切替わるまで、 つまりロー夕 1 2 9の高速回転状 態から回転角度制御状態になるまで常に保持される。
回転方向データ CWに 「1」 をセットし、 モ一夕初期状態データ C Mに 「1」 をセットした場合は、 テーブル 8 2から判るように、 データセレクタ 1 3 7から 出力される A相電流指令値及び B相電流指令値は、 Pビット及び Qビットとなる。 そして、 カウン夕 1 3 5の計数値がクリアされた時点では, コードテ一ブル 8 1 によれば、 A相電流指令値及び B相電流指令値 (Pビット及び Qビット) が共に 「0」 (ローレベル) となる。 このとき、 第 2動作モード状態となって、 A相電 流指令値及び B相電流指令値のそれぞれの電流が駆動部 1 2 1から A相ステ一夕 1 2 6及び B相ステ一夕 1 2 7に供給され、 1相励磁状態の静止位置から時計回 り方向にロータ 1 2 9が回転する。
こうして第 2動作モード状態でロー夕 1 2 9の回転が開始されると、 ロータ 1 2 9が角度 4 . 5 ° だけ回転する度に、 2値化回路 1 3 4からはパルス信号が出 力され、 2周期目のパルス信号が出力されると、 カウンタ 1 3 5の計数値が 「2」 となって、 A相電流指令値が 「1」 (H i g h ) となり、 以降 A相電流指 令値が 2値化回 S l 3 4から出力されるパルス信号の 8周期毎に変化する。 同様 に、 2値化回路 1 3 4の 6周期目のパルス信号が出力されると、 カウンタ 1 3 5 の計数値が 「6」 となって、 B相電流指令値が 「1」 となり、 以降 B相電流指令 値が 2値化回路 1 3 4から出力されるパルス信号の 8周期毎に変化する。
すなわち、 A相電流指令値及び B相電流指令値は、 回転方向及び 1相励磁状態 の静止位置に基づいて Pビット、 Qビット、 Pの反転ビット及び Qの反転ビット のうちから選択され、 2値化回路 1 3 4から出力されるパルス信号の 4周期分の 位相差を保持しつつ、 ロータ 1 2 9の回転に伴い、 2値化回路 1 3 4から出力さ れるパルス信号の 8周期毎に更新される。
A相電流指令値及び B相電流指令値のそれぞれの電流が駆動部 1 2 1から A相 ステ一夕 1 2 6及び B相ステ一夕 1 2 7に供給され続け、 ロー夕 1 2 9が時計回 り方向に回転し続ける。 A相電流指令値 「1」 及び 「0」 に対応して A相ステー 夕 1 2 6を正、 負方向に励磁し、 また B相電流指令値 「1」 及び 「0」 に対応し て B相ステ一夕 1 2 7を正、 負方向に励磁する。 これにより、 A相ステ一夕 1 2 6及び B相ステ一夕 1 2 7はそれぞれ常にロータの角度位置と一定の関係で励磁 され、 急激な負荷の増大等に対しても脱調することなく回転する。
ところで、 先に述べた 4つの 1相励磁状態による 4つの回転角度だけでなく、 マイクロステップ駆動によりロータ 1 2 9を任意の回転角度に制御することがあ る。 つまり、 周知の様に A相ステ一タ 1 2 6及び B相ステ一夕 1 2 7のそれぞれ の電流を適宜に調節することによって、 ロー夕 1 2 9を任意の回転角度に静止さ せることがある。
従来の装置においては、 ロー夕 1 2 9を任意の回転角度に静止させている状態 からロー夕 1 2 9を回転駆動するときにも、 第 1動作モードを経て第 2動作モー ドへと移行する必要がある。 従って、 第 1動作モードの開始時には、 マイクロス テツプ駆動により任意の回転角度から 1相励磁状態の回転角度まで口一夕 1 2 9 を回転させており、 この回転に余分な時間を要する。
また、 ロータ 1. 2 9の回転角度が安定するまで、 口一夕 1 2 9の 1相励磁状態 を一定時間保持しなければならない。 これは、 ロー夕 1 2 9と各ステ一夕 1 2 6 , 1 2 7間の電磁力が一種のばね力として作用し、 このばね力とロータ 1 2 9の質 量から一種の共振系が構成されており、 回転しているロー夕 1 2 9を所定の回転 角度で停止させようとするとロータ 1 2 9に振動が発生するためであり、 この振 動が減衰し、 ロータ 1 2 9の回転角度が安定するまでの一定時間を待機している。 ロー夕 1 2 9に振動が発生している間は、 口一夕 1 2 9が時計回り及び反時計回 りに往復回転するので、 エンコーダ 1 2 8の出力をカウンタ 1 3 5により計数し て、 ロータ 1 2 9の回転角度を検出しても、 この検出された回転角度はロータ 1 2 9の実際の回転角度に対して大きな誤差を含む。 このため、 ロー夕 1 2 9の減 衰振動が完全に収まるまで、 カウンタ 1 3 5の計数値を初期化するためのクリア 信号の出力を待つ必要がある。 この時間は、 1 0 ~ 2 0 m s程度であり、 ステツ ビングモー夕 1 2 5の適用対象によっては無視できない程の長さである。 例えば、 ステッピングモー夕 1 2 5を一般的な C D— R OM装置等に適用し、 ステツピン グモータ 1 2 5によって光ヘッドをディスクの半径方向に移動させる場合、 1 0 ~ 2 0 m sの待機時間が生じることになるが、 この待機時間は長過ぎる。
更に、 ステッピングモータ 1 2 5を光ディスク装置等に適用し、 ステッピング モータ 1 2 5によって光ヘッドのフォーカスを制御する場合、 ロータ 1 2 9の減 衰振動が光へッドに伝わり、 光へッドのフォーカスサーボに悪影饗を与える。 そこで、 本発明は、 上記従来の課題に鑑みなされたもので、 口一夕の振動を伴 わずかつ極めて短時間で、 ロータを任意の回転角度から回転駆動することが可能 なステッピングモータの制御装置、 及び該ステッピングモ一夕の制御装置を用、 ^ た光へッドの駆動装置を提供することを目的とする。 発明の開示
上記従来の課題を解決するために、 本発明のステツビングモー夕の制御装置は、 円周方向に沿つ 一定の角度毎に磁極が形成された口一夕、 及び複数相の励磁コ ィルを有するステッピングモータと、 前記口一夕の回転角度を検出する回転角度 検出手段と、 前記ロータの各回転角度に対応して前記励磁コイルの各駆動電流を 設定する駆動電流設定手段と、 前記ロー夕の回転角度を制御するマイクロステツ プ駆動状態のときに前記回転角度検出手段によって検出された前記ロータの回転 角度に対応する前記励磁コイルの駆動電流を前記駆動電流設定手段によって求め、 該駆動電流を該励磁コイルに与えることにより該ロータの回転駆動状態に移行す る制御手段とを備えている。 1実施形態では、 前記駆動電流設定手段は、 前記マイクロステップ駆動状態に ある前記ロータの各回転角度に対応して前記励磁コイルの各駆動電流を記憶した 第 1データテーブル、 及び前記回転駆動状態にある該ロ一夕の各回転角度に対応 して該励磁コイルの各駆動電流を記憶した第 2データテーブルを有し、 前記制御 手段は、 前記マイクロステップ駆動状態のときに前記回転角度検出手段によって 検出された前記ロー夕の回転角度に対応する前記励磁コイルへの駆動電流を該第 1データテーブルから求め、 該駆動電流を該励磁コイルに与えることにより該ロ 一夕の回転駆動を開始し、 引き続いて前記回転角度検出手段によって検出された 該ロータの回転角度に対応する前記励磁コィルへの駆動電流を前記第 2データテ 一ブルから求め、'該駆動電流を該励磁コイルに与えることにより回転駆動を継続 している。
1実施形態では、 回転角度検出手段は、 前記励磁コイルの駆動電流に基づいて 前記ロー夕の回転角度を検出する第 1回転角度検出手段と、 前記ロータに連結さ れたエンコーダからなる第 2回転角度検出手段を有し、 前記第 1回転角度検出手 段によって検出された該ロー夕の回転角度は、 前記第 1データテーブルから前記 励磁コイルの駆動電流を求めるために用いられ、 前記第 2回転角度検出手段によ つて検出された該口一夕の回転角度は、 前記第 2デ一夕テーブルから前記励磁コ ィルの駆動電流を求めるために用いられる。
1実施形態で 、 前記制御手段は、 前記マイクロステップ駆動状態のときに前 記第 1回転角度検出手段によって検出された前記口一夕の回転角度に基づいて、 前記第 1データテーブルから求めた駆動電流を前記励磁コイルに与える該ロータ の回転駆動開始時点より前記第 2データテ一ブルから求めた駆動電流を前記励磁 コイルに与え始める時点までの該ロータの回転角度を設定し、 前記設定された口 一夕の回転角度は、 前記第 2回転角度検出手段によって検出される。
1実施形態では、 前記第 1回転角度検出手段は、 前記励磁コイルの駆動電流に 対応する前記ロー夕の回転角度を記憶した回転角度データテーブルを有する。 また、 本発明のステッピングモータの制御装置は、 円周方向に沿って一定の角 度毎に磁極が形成されたロータ、 及び複数相の励磁コイルを有するステツビング モータと、 前記口一夕が一定回転角度だけ回転する度に、 周期信号を出力する回 転角度検出手段と、 分周周期毎の前記励磁コイルの各駆動電流を設定する駆動電 流設定手段と、 前記回転角度検出手段からの周期信号を分周して分周周期を求め、 この分周周期毎に駆動電流を前記第 2データテーブルから求め、 該駆動電流を該 励磁コイルに与えることにより前記ロータを回転駆動しており、 該ロ一夕の回転 速度に応じて該周期信号の分周比を変更する制御手段とを備えている。
また、 本発明の光ヘッドの駆動装置は、 円周方向に沿って一定の角度毎に磁極 が形成された口一夕、 及び複数相の励磁コイルを有するステッピングモー夕によ つて、 記録媒体への記録もしくは再生を行うための光ヘッドを駆動する光ヘッド の駆動装置であって、 前記ステッピングモー夕を駆動制御するための制御装置を 備え、 前記制御装置は、 前記ロータの回転角度を検出する回転角度検出手段と、 前記ロー夕の各回転角度に対応して前記励磁コイルの各駆動電流を設定する駆動 電流設定手段と、 前記ロータの回転角度を制御するマイクロステップ駆動状態の ときに前記回転角度検出手段によつて検出された前記口一夕の回転角度に対応す る前記励磁コィルの駆動電流を前記駆動電流設定手段によつて求め、 該駆動電流 を該励磁コイルに与えることにより該ロータの回転駆動状態に移行する制御手段 とを備えている。 図面の簡単な説明
図 1は、 本発明に係わるステツピングモ一夕の制御装置及び光へッドの駆動装 置の 1実施形態を示すブロック図である。
図 2は、 図 1のステツビングモー夕の制御装置における A相電流及び B相電流 に対応するロータの回転角度を記憶した回転角度データテーブルを示す図である。 図 3は、 図 1のステッピングモー夕の制御装置におけるロータの回転起動時の A相電流及び B相電流を記憶した第 1データテーブルを示す図である。
図 4は、 図 1のステッピングモータの制御装置における第 2動作モードから第 3動作モードに切り換えるタイミングを記憶した切り換えタイミングデ一タテ一 ブルを示す図である。
図 5は、 図 1のステッピングモータの制御装置におけるロー夕の回転時の A相 電流及び B相電流を記憶した第 2データテーブルを示す図である。
図 6は、 図 1のステツビングモー夕の構造を簡略化して示す図である。
図 7は、 従来のステッピングモータの制御装置である。
図 8は、 図 8のステツビングモー夕の制御装置におけるコードテーブルを示す 図である。
図 9は、 図 8のステツピングモ一夕の制御装置におけるデータテ一ブルを示す 図である。 発明を実施するための最良の形態
以下、 本発明の 1実施形態を添付図面を参照しつつ説明する。
図 1は、 本発明に係わるステッピングモータの制御装置及び光へッドの駆動装 置の 1実施形態を示すブロック図である。 本実施形態においては、 光ヘッドの駆 動装置 2の光へッド 5 4は, ステッピングモー夕の制御装置 1のステッピングモ 一夕 2 5によって移動される。
光ヘッドの駆動装置 2において、 リードスクリュー 5 1は、 ステッピングモー 夕 2 5の口一夕軸 3 0に連結され、 シャーシ 5 3に固定された軸受け 5 2等によ つて回転自在に軸支されている。 例えば、 リードスクリユー 5 1のネジのピッチ は 3 mmである。 光ヘッド 5 4は、 発光素子、 受光素子、 レンズ、 レンズァクチ ユエ一夕等を備え、 光ビームを光ディスク 5 5に照射して、 光学的に情報を光デ イスク 5 5に記録したり、 情報を光ディスク 5 5から読み取る。 光ヘッド 5 4に は, ガイドシャフト 5 7が貫通し、 ナットピース 5 6が固定されている。 このナ ットピース 5 6をリードスクリユー 5 1と螺合させ、 このナツトピース 5 6をリ ードスクリユー 5 1に対して図面上左右のいずれかに付勢することによりネジの 遊びを無くしている。 ステッピングモータ 2 5によってリードスクリユー 5 1を 回転させると、 これに伴い光ヘッド 5 4が直線的に往復移動される。 光ディスク 5 5は、 スピンドル'モータ 5 8によって回転駆動される。
光ディスク 5 5に情報を記録したり、 光ディスク 5 5から情報を読み取るとき には、 光ヘッド 5 4によって光ディスク 5 5のトラックをトレースしている。 光 ディスク 5 5における相互に隣接するトラックとトラックの間隔は約 1 mと非 常に狭く、 このトラックに光へッド 5 4の光ビームの照射スポットを正確に追従 させるために、 光ビームの方向を微調整するためのトラッキングァクチユエ一夕 を光へッド 5 4に搭載している。
更に、 トラッキングァクチユエ一タによって光ビームの照射スポットを移動し 得る範囲が狭く、 例えば書き換え可能な光ディスクの記録再生装置の場合は、 該 移動し得る範囲が ± 5 0 i m程度である。 このため、 ステッピングモータ 2 5を 回転させて光ヘッド 5 4の位置を微調整することによって、 トラッキングァクチ ユエ一夕によって光ビームの照射スボットを移動し得る範囲に目標のトラックを 入れている。
ここで、 ステッピングモー夕 2 5は、 2相 P M型で、 2相励磁によるステップ 角が 1 8 ° のも^である。 このため、 2相励磁によりステッピングモータ 2 5を 駆動すると、 ロータ軸 3 0に連結されているリードスクリユー 5 1をステップ角 1 8 ° ずつ回転させることになる。 また、 リードスクリユー 5 1のネジのピッチ は 3 mmである。 この場合、 リードスクリユー 5 1を 2相励磁によりステップ角 1 8 ° だけ回転させると、 光へッド 5 4が 1 5 0 だけ移動する。 従って、 2 相励磁によりステッピングモー夕 2 5を駆動する限り、 光へッド 5 4を 1 5 0 mずつ移動させることになり、 トラッキングァクチユエ一夕によって光ビームの 照射スポッ卜を移動し得る ± 5 0 m範囲に目標のトラックを入れることができ るとは限らない。
そこで、 ステッピングモー夕 2 5をマイクロステップ駆動することにより、 ス テツビングモー夕 2 5のロー夕 2 9の回転角度を 1 8 ° 未満で微調整し、 これに よって光へッド 5 4を少しずつ移動させて、 トラッキングァクチユエ一夕によつ て光ビームの照射スポッ卜を移動し得る ± 5 0 m範囲に目標のトラックを入れ る。
ステップ角 1 8 ° を 1 6分割するマイクロステツフ 区動を適用した場合、 ロー タ軸 3 0に連結されているリードスクリュー 5 1を 1マイクロステップ (1 . 1 2 5。 ) だけ回転させると、 光ヘッド 5 4が 9 . 3 7 5 mだけ移動するので、 ± 5 0 i m範囲に目棒のトラックを入れることが可能になる。
この様に光へッドの駆動装置 2においては、 2相励磁によりロー夕 2 9をステ ップ角 1 8 ° ずつ回転させるだけでなく、 トラッキングァクチユエ一夕によって 光ビームの照射スポットを移動し得る ± 5 0 m範囲に目標の卜ラックを入れる ために、 マイクロステップ駆動によりロータ 2 9をより細かな角度ずつ回転させ る。
現在走査しているトラックから別のトラックへと光へッド 5 4を移動させるこ とをシークと称する。 このシークを行うときには、 アクセスされている光デイス ク 5 5の現在位置のアドレスを光へッド 5 4によって読み取り、 この現在位置の アドレスと目標 ¾:置のアドレスに基づいて移動方向と移動距離を求め、 光へッド 5 4の移動方法を決定する。
例えば、 移動距離が極めて短くて、 数本のトラックの幅を含む程度の距離であ れば、 ステッピングモー夕 2 5のロータ 2 9を回転させることなく、 トラツキン グァクチユエ一夕のみによって光へッド 5 4を移動させる。
また、 移動距離が l mm程度になると、 マイクロステップ駆動によりステツピ ングモー夕 2 5のロー夕 2 9を少しずつ回転させて、 光ヘッド 5 4の光ビームの 照射スポットを目標のトラック近傍まで移動させる。 更に、 移動距離が長ければ、 ステツビングモータ 2 5の口一夕 2 9を高速回転 させて、 光ヘッド 5 4を速やかに移動させる。
本実施形態においては、 後で述べる様にマイクロステツプ駆動によりステツピ ングモー夕 2 5のロータ 2 9が任意の回転角度にあっても、 該任意の回転角度か らロ一夕 2 9を直ちに高速回転駆動することができ、 マイクロステップ駆動から 高速回転駆動へと移行するときのタイムラグが全くない。 これに対して、 先に述 ベた従来の装置においては、 口一夕 1 2 9を任意の回転角度から 1相励磁状態の 回転角度まで一旦回転させ、 ロータ 1 2 9の回転角度が安定するまでの一定時間 を待機し、 この後にロー夕 1 2 9を高速回転駆動しているので、 マイクロステツ プ駆動から高速回転駆動へと移行するまでに大幅なタイムラグが発生する。 本実施形態における光ヘッドの駆動装置 2においては、 第 1動作モード、 第 2 動作モード及び第 3動作モードを順次設定し、 これらの動作モードに基づいて、 ステッピングモ一夕 2 5を駆動制御する。 第 1動作モードでは、 マイクロステツ ブ駆動部 1 6が選択され、 このマイクロステツブ駆動部 1 6の出力が指令値セレ クタ 1 2を介して駆動部 2 1に加えられ、 この駆動部 2 1によってステッピング モータ 2 5がマイクロステップ駆動される。 また、 第 2動作モードでは、 強制駆 動部 1 5が選択され、 この強制駆動部 1 5の出力が指令値セレクタ 1 2を介して 駆動部 2 1に加えられ、 この駆動部 2 1によってステッピングモ一夕 2 5が強制 駆動、 つまりマ クロステップ駆動による任意の回転角度からロータ 2 9の高速 回転が起動される。 更に、 第 3動作モードでは、 駆動パターン発生部 1 3が選択 され、 この駆動パターン発生部 1 3の出力が指令値セレクタ 1 2を介して駆動部 2 1に加えられ、 この駆動部 2 1によってステッピングモータ 2 5の高速回転駆 動が継続される。
駆動手段 2 1は、 相互に独立した A相電流ドライバ 2 2及び B相電流ドライバ 2 3からなる。 A相電流ドライバ 2 2及び B相電流ドライバ 2 3は、 指令値セレ クタ 1 2を介して A相電流指令値及び B相電流指令値を与えられ、 該各電流指令 値の電流を形成して、 これらの電流を A相ステ一夕 2 6及び B相ステ一夕 2 7に 供給し、 これによつてステッピングモー夕 2 5を駆動する。 具体的には、 A相電 流ドライバ 2 2及び B相電流ドライバ 23は、 A相電流指令値及び B相電流指令 値を示すそれぞれのデジ夕ルデー夕を各アナログ信号に変換する DZA変換器と、 該各アナログ信号を増幅して出力する増幅器とから構成されている。
ステッピングモ一夕 2 5は, 2相 PM型で、 2相励磁によるステップ角が 1 8° のものである。 ステッピングモータ 2 5は、 角度 7 2。 毎に NS極が着磁さ れ、 1周で N極及び S極が 5極ずっ着磁された永久磁石からなる口一夕 2 9と、 A相ステ一夕 2 6及び B相ステ一夕 2 7からなる 2相の励磁コイルとを備えてい る。 A相ステ一夕 2 6及び B相ステ一夕 2 7は、 角度 7 2。 毎に NS極が着磁さ れ、 1周で 5極ずつの NS極を形成するそれぞれのヨークを有し、 これらのョ一 クがロータ 2 9の周囲に配置されている。 A相ステ一夕 2 6のヨークの各磁極と B相ステ一夕 2 7のヨークの各磁極は、 1 8° 相互にずれて配置されている。 ロータ軸 3 0には、 角度 4. 5° (後で述べる電気角度では 2 2. 5° ) 毎にス リットを形成した遮光板 3 1を固定している。 遮光板 3 1の各スリットが形成さ れる角度 4. 5° の周期は、 ロー夕 2 9の各磁極が形成される角度 7 2° (電気 角度 3 6 0 ° ) の周期の整数分の 1となるように決められる (ここでは 1 Z1 6) 。 特に、 ステッピングモー夕 2 5の相数が 2相であるため、 2の倍数分の 1、 つまり 1 1 6 = 1 (2 X 8) の関係も満たすように、 各スリットが形成され る角度 4. 5" の周期が決定されている。
フォトセンサ 3 2は、 発光側の LED及び受光側のフォトトランジスタを備え、 遮光板 3 1の両側に LEDとフォ卜トランジスタを配置した透過型であり、 LE Dから出射された光を遮光板 3 1のスリットを介してフォトトランジスタで受光 することにより遮光板 3 1のスリットを検出する。 フォトトランジスタは、 遮光 板 3 1のスリットの有無に応じた出力信号を出力する。 フォトセンサ 3 2は、 遮 光板 3 1と共にハウジング 3 3内に収容され、 破損やホコリ等の要因による汚損 を防いでいる。
フォトセンサ 3 2の出力は、 2値化回路 3 4により 2値化される。 2値化回路 3 4は、 単に、 フォトセンサ 3 2の出力を基準値と比較して、 ハイレベル及び口 —レベルの信号を出力するのではなく、 フォトセンサ 3 2の出力が 2つの基準値 間を変化したときにのみ出力信号のハイレベルとローレベルを切り替えており、 これによつてチヤタリングによる誤動作を防いでいる。
2値化回路 3 4から出力されたパルス信号は、 制御部 1 1及び駆動パターン発 生部 1 3に入力される。
マイクロステップ駆動部 1 6は、 先に述べた様に第 1動作モードのマイクロス テツプ駆動を行うためのものであり、 制御部 1 1から与えられた目標の回転角度 に応じて A相電流ドライバ 2 2及び B相電流ドライバ 2 3に対する A相電流指令 値及び B相電流指令値を変化させ、 ステッピングモー夕 2 5の A相ステ一夕 2 6 及び B相ステ一夕 2 7に流すそれぞれの電流の比を変えて、 ロータ 2 9を該目標 の回転角度に回転させる。 この目標の回転角度は高分解能で制御される。
ロー夕 2 9の回転角度と電流比との関係は、 ステツビングモー夕 2 5の磁気回 路及び負荷の状態に依存する。 ロータ 2 9を等間隔の各回転角度に位置決めする ための各 A相電流指令値及び各 B相電流指令値を求めて、 該各回転角度に対応さ せて該各 A相電流指令値及び該各 B相電流指令値を記録したデータテーブルを予 め作成しておき、 _任意の回転角度に対応する A相電流指令値及び B相電流指令値 を該データテーブルから読み出す。 あるいは、 該各回転角度に対応する該各 A相 電流指令値及び該各 B相電流指令値を求めるための関数を予め作成しておき、 任 意の回転角度に対応する A相電流指令値及び B相電流指令値を該関数に基づいて 導出する。 例えば、 2相励磁によるステップ角 1 8 ° (電気角度 9 0 ° ) を 1 6 分割して回転角度 1 . 1 2 5 ° (電気角度 5 . 6 2 5。 ) のマイクロステップで口 一夕 2 9を回転させる場合は、 1 6段階 (4ビット) のマイクロステップ指令に 対して 8ビットからなる A相電流指令値及び B相電流指令値を発生するようにデ 一夕テーブルを構成しておき、 A相電流指令値及び B相電流指令値を示す 8ビッ トをインクリメント又はデクリメントすることにより、 任意の回転方向にステツ ビングモー夕 2 5を回転制御する。
この様なマイクロステツプ駆動は、 周知の技術に基づいて行われるものである。 ここで、 電気角度を とし、 ロータ 2 9の実際の角度を 0。とすると、 電気角 と実際の角度 0。関係は次の式 (1 ) で表される。
Θ 0 = 0 / 5 + 7 2 N …… ( 1 )
ただし、 Nは 0〜4のうちの任意の整数である。
以降では、 特に断らない限り、 全ての角度を電気角度とする。
強制駆動部 1 5は、 先に述べた様に第 1動作モードに引き続いて第 2動作モ一 ドの強制駆動を行うためのものであり、 制御部 1 1から通知される第 1動作モー ドにおけるロー夕 2 9の回転角度 Θに基づいて A相電流ドライバ 2 2及び B相電 流ドライバ 2 3に対する A相電流指令値及び B相電流指令値を設定する。
ここで、 角度位置検出部 1 4は、 第 1動作モードにおける A相ステ一夕 2 6及 び B相ステ一夕 2 7に流れる A相電流及び B相電流を検出し、 該各電流の正負及 び該各電流の比を求め、 該角度位置検出部 1 4に内蔵の図 2に示す回転角度デ一 夕テーブル 6 1を参照して、 ロータ 2 9の回転角度 Θを求め、 この回転角度 Θを 制御部 1 1に通知する。
尚、 回転角度データテーブル 6 1及び後で述べる他の各データテーブル 6 2 , 6 3 , 6 4における回転角度は、 A相ステ一夕 2 6のみを正方向に励磁したとき に 0 ° となり、 時計回りを正方向とする電気角度で全て表している。
回転角度データテーブル 6 1においては、 A相ステ一夕 2 6の A相電流の正負 及び B相電流の正負に対応して 4つの欄が設けられ、 該各欄毎に、 A相電流と B 相電流の電流比に対応する回転角度 Θが定められている。
例えば、 A相電流及び B相電流が共に正であり、 A相電流と B相電流の電流比 が 「1」 であれば、 回転角度 Θが 4 5 ° となる。 この様な電流比に対する回転角度 Θの関係は、 ステッピングモー夕に固有のも のであるから、 ステッピングモータの構造が異なれば、 この回転角度データテー ブル 6 1の内容を変更する必要がある。 また、 ステッピングモ一夕の構造が同一 であっても, 製造上の誤差等によってステッピングモータの特性にばらつきがあ れば、 各ステッピングモー夕毎に、 データテーブルの内容を測定して設定する必 要がある。
制御部 1 1は、 第 1動作モードにおけるロータ 2 9の回転角度 Θ、 及び光へッ ド 5 4の移動方向に対応するロータ 2 9の回転方向 (時計回り又は反時計回り ) を強制駆動部 1 5に通知する。 強制駆動部 1 5は、 該強制駆動部 1 5に内蔵の図 3の第 1データテーブル 6 2を参照して、 口一夕 2 9の回転角度 Θに対応する A 相電流指令値及び B相電流指令値を読み取り、 該各電流指令値を A相電流ドライ バ 2 2及び B相電流ドライバ 2 3に与える。
第 1データテーブル 6 2においては、 ロー夕 2 9の時計回り方向及び反時計回 り方向別に、 4つの回転角度範囲が設定され、 これらの回転角度範囲に対応して 各 A相電流指令値及び各 B相電流指令値が設定されている。 従って、 8組の A相 電流指令値及び B相電流指令値が設定されている。
例えば、 第 1動作モードのマイクロステツプ駆動によりロー夕 2 9の回転角度 Θが 0 ° ≤Θく 9 0 ° の範囲にあり、 第 2動作モードの強制駆動により時計回り に口一夕 2 9を回転させるときには、 ΓΑ相を負方向に励磁、 Β相を正方向に励 磁」 、 つまり Α相ステ一夕 2 6を負方向に励磁するための Α相電流指令値及び Β 相ステ一夕 2 7を正方向に励磁するための B相電流指令値が選択される。 これら の A相電流指令値及び B相電流指令値によって示される A相電流及び B相電流を A相ステ一夕 2 6及び B相ステ一夕 2 7に供給すると、 ロー夕 2 9には時計回り 方向に大きな回転トルクが生じ、 回転角度 Θからの高速回転が開始される。 すなわち、 第 2動作モードにおいては、 第 1動作モードにおける回転角度 Θの ロー夕 2 9の各磁極に対して、 A相電流及び B相電流によって適宜に励磁された A相ステ一夕 26及び B相ステ一夕 27の磁力を作用させ、 これにより口一夕 2 9に所定方向の大きな回転トルクを生じさせ、 該ロ一夕 29の高速回転を起動し ている。 ここでは、 第 1動作モードにおけるロー夕 29の回転角度に対し、 4 5 ° 〜 135。 進んだ回転角度までロータ 29を更に回転させるための A相電流 指令値及び B相電流指令値が第 1データテーブル 62から選択される。 従って、 回転開始前のロータ 29の回転角度にかかわらず、 死点を避け、 ほぼ最大のトル クで起動することができる。
駆動パターン発生部 13は、 先に述べた様に第 2動作モードに引き続いて第 3 動作モードを行い、 ステッピングモー夕 25の高速回転駆動を継続するためのも のである。
ここで、 制御部 1 1は、 該制御部 1 1に内蔵の図 4の切り換えタイミングデ一 夕テーブル 63を参照し、 第 2動作モードから第 3動作モードに切り換えるタイ ミングを設定する。
切り換えタイミングデータテーブル 63においては、 ロー夕 29の時計回り方 向及び反時計回り方向別に、 4つの回転角度範囲に対応してそれぞれの計数値が 設定されている。 これらの回転角度範囲は、 360 ° の回転角度を 22.5° の 16の各小回転角度範囲に分け、 これらの小回転角度範囲を相互に 90° ずれた 4つの各小回転角度範囲を 1組として 4組に分けたものである。
例えば、 「0。 +ηΧ 90° ≤Θ<22.5° + ηΧ 90° 、 η = 0〜3」 と いう回転角度範囲は、 0° 〜22.5。 、 90° ~1 12.5° 、 180° 〜20 2.5° 及び 270° ~292.5。 という 4つの各小回転角度範囲からなる。 制御部 1 1は、 切り換えタイミングデ一夕テーブル 63を参照し、 第 2動作モ —ドにおけるロータ 29の回転方向及び第 1動作モードにおけるロータ 29の回 転角度 Θに対応する計数値を選択する。 制御部 11は、 強制駆動部 15を制御す ることにより第 2動作モードを起動する。 第 2動作モードを起動すると、 口一夕 29が回転するので、 2値化回路 34からパルス信号が出力される。 制御部 1 1 は、 2値化回路 34からのパルス信号の計数を開始し、 この計数値が上記切り換 えタイミングデータテーブル 63から選択された計数値に達すると、 第 3動作モ ードの開始を駆動パターン発生部 13に指示する。
例えば、 第 2動作モードにおけるロー夕 29の回転方向が時計回りであって、 第 1動作モードにおけるロータ 29の回転角度 Θが 「0° +nx 90° ≤Θく 2 2.5。 + η Χ 9 0。 、 η=0〜3」 の回転角度範囲に入っていれば、 計数値 4 が切り換えタイミングデ一夕テーブル 63から選択され、 第 2動作モードの強制 駆動により口一夕 29が回転し、 2値化回路 34からのパルス信号の計数値が 「4」 に達したときに、 第 3動作モードが開始される。 また、 第 1動作モードに おけるロー夕 29の回転角度 Θが 「22.5。 +η Χ 90。 ≤Θ<45 ° + n x 90° 、 n=0〜3」 の回転角度範囲に入っていれば、 計数値 3が切り換えタイ ミングデ一夕テーブル 63から選択され、 第 2動作モードの強制駆動によりロー 夕 29が回転し、 2値化回路 34からのパルス信号の計数値が 「3」 に達したと きに、 第 3動作モードが開始される。
この結果、 第 2動作モードから第 3動作モードに切り換えられるときには、 口 一夕 29の回転角度が 0。 、 90° 、 180。 、 270。 、 360° のいずれか に特定される。
また、 駆動パターン発生部 13は、 第 1動作モードにおけるロータ 29の回転 角度 Θ及び第 2 ¾作モードにおけるロータ 29の回転方向を制御部 1 1から通知 される。 駆動パターン発生部 13は、 該駆動パターン発生部 13に内蔵の図 5に 示す第 2データテーブル 64を参照して、 A相電流指令値及び B相電流指令値を 第 2データテーブル 64から読み取り、 該各電流指令値を A相電流ドライバ 22 及び B相電流ドライバ 23に与える。
第 2データテーブル 64においては、 ロー夕 29の時計回り方向及び反時計回 り方向別に、 4つの回転角度範囲が設定され、 これらの回転角度範囲毎に、 第 2 動作モードから第 3動作モードへの切り換え直後 (第 3動作モードの開始時点) の A相電流指令値及び B相電流指令値、 該切り換えの後に 2値化回路 3 4から 3 個目パルス信号を入力したときの A相電流指令値及び B相電流指令値、 2値化回 路 3 4から 7個目パルス信号を入力したときの A相電流指令値及び B相電流指令 値、 1 1偭目パルス信号を入力したときの A相電流指令値及び B相電流指令値、 1 5個目パルス信号を入力したときの A相電流指令値及び B相電流指令値を設定 している。
例えば、 第 1動作モードにおけるロータ 2 9の回転角度 Θが 0 ° ≤Θ< 9 0 ° の範囲にあり、 第 2動作モードの強制駆動により時計回りにロー夕 2 9を回転さ せるときには、 第 2動作モードから第 3動作モードへの切り換え直後 (第 3動作 モードの開始時点) に Α相ステ一夕 2 6を負方向に励磁するための Α相電流指令 値及び B相ステ一夕 2 7を負方向に励磁するための B相電流指令値が選択され、 2値化回路 3 4から 3個目のパルス信号を入力したときに正方向に励磁するため の A相電流指令値及び負方向に励磁するための B相電流指令値が選択され, 7個 目のパルス信号を入力したとき、 1 1個目のパルス信号を入力したとき、 1 5個 目のパルス信号を入力したときも、 それぞれの A相電流指令値及び B相電流指令 値が選択され、 弓 Iき続いて 4個の各パルス信号を更に入力したときには上記 3個 目パルス信号を入力したときの A相電流指令値及び B相電流指令値に戻り、 以降 同様に 4個の各パルス信号を入力する度に、 上記 7個目、 上記 1 1個目、 上記 1 5個目、 上記 3個目のパルス信号を入力したときの A相電流指令値及び B相電流 指令値を順次選択する。
すなわち、 第 3動作モードにおいては、 第 2動作モードの強制駆動により口一 夕 2 9の回転が起動された後、 第 1動作モードにおけるロー夕 2 9の回転角度 Θ 力^の回転を継続するために、 該第 3動作モードの開始時点を検出し、 この開示 時点以降、 一定の回転角度周期で、 A相電流指令値及び B相電流指令値を変更し ている。
駆動パターン発生部 1 3は、 プログラマブルカウンタ等により構成され、 2値 化回路 3 4からのパルス信号を分周して計数し、 該分周の比を変更することによ つて、 第 2デ一タテ一ブル 6 4における 3個目、 7個目、 1 1個目、 1 5個目の パルス信号を検出している。 つまり、 第 3動作モードの開始時点においては、 プ ログラマブルカウン夕は、 2値化回路 3 4から 3個の各パルス信号を入力すると、 カウントアップすることによって 3個目の各パルス信号の入力を検出する。 この 後、 プログラマブルカウンタは、 2値化回路 3 4から 4個の各パルス信号を入力 する度に、 カウントアップすることによって 7個目、 1 1偭目、 1 5個目等のパ ルス信号の入力を検出する。
この様にマイクロステップ駆動部 1 6による第 1動作モードのマイクロステツ プ駆動、 強制駆動部 1 5による第 2動作モードの強制駆動、 駆動パターン発生部 1 3による第 3動作モードの高速回転の継続が行われる。 制御部 1 1は、 指令値 セレクタ 1 2を制御することにより、 マイクロステップ駆動部 1 6、 強制駆動部 1 5及び駆動パターン発生部 1 3のいずれかより出力された A相電流指令値及び B相電流指令値を選択して駆動部 2 1に与える。 第 1動作モードから第 2動作モ ードに切り換えるタイミング、 つまり指令値セレクタ 1 2によってマイクロステ ップ駆動部 1 6の出力から強制駆動部 1 5の出力に切り換えるタイミングは、 制 御部 1 1が適宜に決める。 例えば、 光ヘッド 5 4の移動開始時点を該切り換え夕 イミングとし、 このタイミングの時点で、 制御部 1 1は、 マイクロステップ駆動 部 1 6から強制 動部 1 5への切り換えを指令値セレクタ 1 2に指示し、 強制駆 動部 1 5を起動する。 また、 第 2動作モードから第 3動作モードに切り換える夕 イミング、 つまり指令値セレクタ 1 2によって強制駆動部 1 5の出力から駆動パ ターン発生部 1 3の出力に切り換えるタイミングは、 先に述べた第 3動作モード の開始時点である。 この開始時点で、 制御部 1 1は、 強制駆動部 1 5から駆動パ 夕一ン発生部 1 3への切り換えを指令値セレクタ 1 2に指示し、 駆動パターン発 生部 1 3を起動する。
次に、 この様な構成のステツビングモー夕の制御装置の一連の動作を再度簡単 に説明する。
ステッピングモータ 2 5をある回転角度以上回転させようとする場合、 まず、 制御手段 1 1は、 ステッピングモ一夕 2 5の回転方向を決定する。 ここでは回転 方向は時計回り方向とする。 このとき、 第 1動作モードが選択されており、 マイ クロステップ駆動部 1 6から指令値セレクタ 1 2を通じて A相電流ドライバ 2 2 及び B相電流ドライバ 2 3へと A相電流指令値及び B相電流指令値が出力される。 通常は、 ステッピングモ一夕 2 5の口一夕 2 9が任意の回転角度 Θで静止状態に ある。
次に、 制御手段 1 1は、 第 1動作モードにおけるロータ 2 9の回転角度 Θ、 及 び光へッド 5 4の移動方向に対応する口一夕 2 9の回転方向を強制駆動部 1 5に 通知する。 また、 制御手段 1 1は、 指令値セレクタ 1 2を制御して、 強制駆動部 1 5を Α相電流ドライバ 2 2及び B相電流ドライバ 2 3に接続する。 強制駆動部 1 5は、 第 1データテーブル 6 2を参照し、 第 1動作モードにおける回転角度 Θ に対応する A相電流指令値及び B相電流指令値を読み取り、 A相電流指令値及び B相電流指令値を A相電流ドライバ 2 2及び B相電流ドライバ 2 3に与える。 こ れにより、 ステッピングモータ 2 5の回転が起動される。
次に、 制御部 1 1は、 切り換えタイミングデータテーブル 6 3を参照し、 第 2 動作モードから第 3動作モードに切り換えるタイミングを設定する。 この夕イミ ングで、 制御手学 1 1は、 指令値セレクタ 1 2を制御して、 駆動パターン発生部 1 3を A相電流ドライバ 2 2及び B相電流ドライバ 2 3に接続する。 駆動パター ン発生部 1 3は、 第 2データテーブル 6 4を参照して、 A相電流指令値及び B相 電流指令値を第 2データテーブル 6 4から繰り返し読み取り、 A相電流指令値及 び B相電流指令値を A相電流ドライバ 2 2及び B相電流ドライバ 2 3に逐次与え る。 これにより、 ステッピングモータ 2 5の回転が継続される。
本実施形態では、 ステッピングモータ 2 5の回転開始前のロータ 2 9の回転角 度は、 角度位置検出部 1 4により検出される。 また、 回転開始後の回転角度は、 2値化回路 3 4から出力されたパルス信号を計数することにより、 4 . 5。 (電 気角度 2 2 . 5 ° ) の分解能で検出される。 従って、 ステッピングモ一夕 2 5の 停止時及び回転時のいずれにおいても、 回転角度を正確に検出することができ、 停止から回転に至るステッピングモータ 2 5の回転角度制御を正確に行うことが できる。 例えば、 第 3動作モードの開始時点の A相電流指令値及び B相電流指令 値として、 一般的な 2相励磁パターンと同様に、 第 2動作モードにおける A相電 流指令値及び B相電流指令値に対し回転方向に回転角度 9 0 ° 進んだ位置にロー 夕 2 9を回転させるためのものを設定し、 ステッピングモー夕 2 5のロー夕 2 9 の回転角度が該位置手前の進み角度 Ψに達したタイミングで、 第 2動作モードか ら第 3動作モードへの切替を行い、 引き続いてステップングモ一夕 2 5のロータ 2 9が更に回転角度 9 0 ° 進む毎に (本実施形態では 2値化回路 3 4より 4個の 各パルス信号が出力される毎に) 、 A相電流指令値及び B相電流指令値を回転角 度 9 0。 進んだ位置にロータ 2 9を回転させるためのものに更新し、 これによつ て常にほぼ一定の進み角度 だけ先行して、 口一夕 2 9を駆動する。
この様な進み角度 Ψを先行させたロー夕 2 9の駆動方法を図 6を用いて説明す る。 図 6においては、 説明を簡単化するために、 1組の N S極のみを形成した口 一夕 2 9 (実際には 5組の N S極を口一夕 2 9に形成している) を示し、 この口 —タ 2 9を電気角度 3 6 0 ° (実際の回転角度 7 2 ° に対応する) 回転させるも のとする。 また、 4 4は仮想 S極、 4 5はパルス信号の発生位置である。
例えば、 A相ステ一夕一 2 6を正方向に励磁し、 B相ステ一夕一 2 7を正方向 に励磁すると、 磁界の合成による仮想 S極 4 4が A ==十, B = +の位置に発生す る。 他の状態に励磁した場合も、 同様に、 磁界の合成による仮想 S極 4 4がそれ ぞれの位置に発生する。
ここで、 口一夕 2 9の N極が回転角度 Θ = 0 ° の位置とする。 このとき、 第 2 動作モードの強制駆動による指令値は、 第 1データテーブル 6 2によれば、 Α相 ステ一夕 2 6を負方向に励磁するための A相電流指令値及び B相ステ一夕 2 7を 正方向に励磁するための B相電流指令値である。 この場合、 仮想 S極 44が A- -, B =十の位置に発生し、 進み角度 Ψ= 135° となり、 ロー夕 29の回転が 開始される。
ロータ 29の回転に伴い、 2値化回路 34よりパルス信号が出力される。 切り 換えタイミングデータテーブル 63に従って、 4つの各パルス信号 Ρ1〜Ρ4を計 数した時点で、 第 2動作モードから第 3動作モードに移行する。 第 3動作モード に入った直後の指令値は、 第 2デ一夕テーブル 64に従って、 Α相ステ一夕 26 を負方向に励磁するための A相電流指令値及び B相ステ一夕 27を負方向に励磁 するための B相電流指令値である。 この場合、 仮想 S極 44が A = _, B =—の 位置に発生し、 この位置が第 2動作モードの位置に対し 90° 進み、 進み角度^ = 135° 〜 157. 5° となる。 進み角度 が 135 ° 〜 157. 5 ° の範囲 にあるのは、 ロー夕 29、 竭光板 31及びフォトセンサ 32の位置関係が無調整 であり、 このため 2値化回路 34より出力されるパルス信号の位相が角度 22. 5° の範囲でばらつくためである。 この程度のばらつきは、 ステッピングモータ 25の特性に大きな影響を与えない。
第 3動作モードにおいては、 ロー夕 29が更に回転し、 2値化回路 34よりパ ルス信号が出力される。 第 2デ一夕テーブル 64に従って、 3つの各パルス信号 P5〜P7を計数した時点で、 最初の相切り替えが行われ、 指令値は、 正方向に励 磁するための A 電流指令値及び負方向に励磁するための B相電流指令値となる。 この場合、 仮想 S極 44が A = + , B=—の位置に発生し、 この位置が第 3動作 モードの開始時点の仮想 S極 44に対し 90° 進む。 一方、 この時点で、 ロー夕 29は、 第 3動作モードの開始時点の位置に対し、 3つの各パルス信号 P5〜P7 に相当する角度、 つまり角度 67. 5° だけ進む。 よって、 この時点での進み角 度^は、 第 3動作モードの開始時点の進み角度^に対して、 角度 22. 5° だけ 大きくなり、 進み角度 Ψ= 157. 5° 〜180° となる。 これは、 回転数が高 いときのステ一夕コイルのィンダクタンス成分による電流の遅れの影響を補正す るためである。 これによつて、 口一夕 29は、 更に回転し、 2値化回路 34より パルス信号が出力される。
更に、 第 2データテーブル 64に従って、 4つの各パルス信号 P8〜P11を計 数した時点で、 2回目の相切り替えが行われ、 指令値は、 正方向に励磁するため の A相電流指令値及び正方向に励磁するための B相電流指令値となる。 この場合、 仮想 S極 44が A = + , B = +の位置に発生し、 この位置が第 3動作モードにお ける最初の相切り替え時の仮想 S極 44に対し 90° 進む。 一方、 この時点での ロータ 29は、 第 3動作モードの開始時点の位置に対し、 4つの各パルス信号 P 8〜P 11に相当する角度、 つまり 90° 進む。 よって、 進み角度 Ψに変化はなく、 進み角度 Ψ= 1 57. 5。 〜180。 となる。
以降同様に, 4つ各パルス信号毎に仮想 S極 44を 90° 進めるので、 進み角 度 Ψは 1 57. 5 ° 〜: 180 ° のまま一定となる。
また、 回転角度 Θ = 45° から時計廻り方向に口一夕 29を回転させる場合、 回転角度 Θ=0° からの回転の場合と同様に、 第 2動作モードにおける強制駆動 の指令値は、 第 1デ一夕テーブル 62に従って、 負方向に励磁するための Α相電 流指令値及び正方向に励磁するための B相電流指令値となる。 この場合、 仮想 S 極 44が A =—, B = +の位置に発生し、 進み角度 Ψ=90° となり、 口一夕 2 9の回転が開始される。 ロータ 29の回転に伴い、 2値化回路 34よりパルス信 号が出力される。 切り換えタイミングデータテーブル 63に従って、 2つの各パ ルス信号 Ρ 3, Ρ 4を計数した時点で、 第 2動作モードから第 3動作モードに移行 する。 このとき、 回転角度 Θ=0° からの回転の場合と全く同じ位置に、 ロータ 29の回転位置がある。 従って、 以降の駆動手順も回転角度 G)=0° からの回転 の場合と全く同様である。
本実施例では. 第 2動作モードを行う強制駆動部 1 5と、 第 3動作モードを行 う駆動パターン発生部 1 3を独立して設けているが、 いずれも 2値化回路 34と 角度位置検出部 14の出力に基づいて指令を出力するという点では同一なので、 両者を一体化しても良い。 また、 角度位置検出部 1 4を独立して設けず、 制御部 1 1において設定される目標の回転角度を代用しても構わない。 つまり、 制御部 1 1によってロータ 2 9の目標の回転角度を設定し、 この目標の回転角度をマイ クロステップ駆動部 1 6に与え、 マイクロステップ駆動部 1 6によってステツビ ングモ一夕 2 5を制御して、 ロー夕 2 9を目標の回転角度に回転させ、 角度位置 検出部 1 4によってロータ 2 9の回転角度を検出しているので、 角度位置検出部 1 4を格別に設けなくても、 制御部 1 1においてロー夕 2 9の回転角度を検出す ることが可能である。 また、 各デ一夕テ一ブル 6 1 , 6 2 , 6 3 , 6 4の内容に 対応するそれぞれの関数を予め設定しておき、 これらの関数に基づいてそれぞれ の制御パラメータを求めても構わない。 産業上の利用の可能性
以上説明した様に本発明によれば、 ロー夕を任意の回転角度から起動すること ができるので、 従来の様に 1相励磁による回転角度まで口一夕を回転させる必要 が無く、 この回転のための余分な時間を要しない。
また、 従来の様に 1相励磁による口一夕の回転角度で保持して、 ロータの振動 が減衰するまで待機する必要がないため、 光へッドをディスクの半径方向へ移動 (シーク) するために、 本発明のステッピングモ一夕を一般的な C D— R OM装 置等に適用すれば、 従来の待機時間に相当する時間 1 0〜 2 0 m sを削減するこ とができる。
更に、 従来の様にロータの振動が発生しないので、 光ヘッドのフォーカスを調 整するために、 本発明のステッピングモー夕を光ディスク装置等に適用すれば、 光へッドのフォーカスサーボに悪影響を与えることがない。
また、 本発明では、 ステッピングモー夕の回転数に応じて進み角度 Ψを最適な 値に変更するので、 低速回転から高速回転までステッピングモー夕を安定に動作 させることができ、 ステツビングモー夕を適用した光ディスク装置等においては シーク時間等を大幅に短縮することができる,

Claims

請求の範囲
1 . 周方向に沿って一定の角度毎に磁極が形成されたロー夕、 及び複数相の励磁 コイルを有するステッピングモータと、
前記ロータの回転角度を検出する回転角度検出手段と、
前記ロータの各回転角度に対応して前記励磁コイルの各駆動電流を設定する駆 動電流設定手段と、
前記ロータの回転角度を制御するマイクロステツプ駆動状態のときに前記回転 角度検出手段によって検出された前記ロータの回転角度に対応する前記励磁コィ ルの駆動電流を前記駆動電流設定手段によって求め、 該駆動電流を該励磁コイル に与えることにより該ロータの回転駆動状態に移行する制御手段とを備えるステ ッビングモ一夕の制御装置。
2 . 前記駆動電流設定手段は、 前記マイクロステップ駆動状態にある前記ロータ の各回転角度に対応して前記励磁コイルの各駆動電流を記憶した第 1デ一夕テ一 ブル、 及び前記回転駆動状態にある該ロータの各回転角度に対応して該励磁コィ ルの各駆動電流を記憶した第 2デ一夕テーブルを有し,
前記制御手段は、 前記マイクロステップ駆動状態のときに前記回転角度検出手 段によつて検出された前記ロー夕の回転角度に対応する前記励磁コィルへの駆動 電流を該第 1データテーブルから求め、 該駆動電流を該励磁コイルに与えること により該ロ一夕の回転駆動を開始し、 引き続いて前記回転角度検出手段によって 検出された該ロ一夕の回転角度に対応する前記励磁コイルへの駆動電流を前記第 2デ一夕テーブルから求め、 該駆動電流を該励磁コイルに与えることにより回転 駆動を継続する請求項 1に記載のステッピングモータの制御装置。
3 . 回転角度検出手段は、 前記励磁コイルの駆動電流に基づいて前記ロータの回 転角度を検出する第 1回転角度検出手段と、 前記ロー夕に連結されたエンコーダ からなる第 2回転角度検出手段を有し、 前記第 1回転角度検出手段によって検出された該口一夕の回転角度は、 前記第 1データテーブルから前記励磁コィルの駆動電流を求めるために用いられ、 前記第 2回転角度検出手段によって検出された該ロー夕の回転角度は、 前記第 2デ—夕テーブルから前記励磁コイルの駆動電流を求めるために用いられる請求 項 2に記載のステッピングモータの制御装置。
4 . 前記制御手段は、 前記マイクロステップ駆動状態のときに前記第 1回転角度 検出手段によって検出された前記ロータの回転角度に基づいて、 前記第 1データ テーブルから求めた駆動電流を前記励磁コイルに与える該ロ一夕の回転駆動開始 時点より前記第 2データテーブルから求めた駆動電流を前記励磁コイルに与え始 める時点までの該ロータの回転角度を設定し、
前記設定されたロー夕の回転角度は、 前記第 2回転角度検出手段によって検出 される請求項 3に記載のステツピングモ一夕の制御装置。
5 . 前記第 1回転角度検出手段は、 前記励磁コイルの駆動電流に対応する前記口 一夕の回転角度を記憶した回転角度データテーブルを有する請求項 2に記載のス テツピングモ一夕の制御装置。
6 . 円周方向に沿って一定の角度毎に磁極が形成されたロータ、 及び複数相の励 磁コイルを有するステツビングモータと、
前記ロー夕が一定回転角度だけ回転する度に, 周期信号を出力する回転角度検 出手段と、
分周周期毎の前記励磁コイルの各駆動電流を設定する駆動電流設定手段と、 前記回転角度検出手段からの周期信号を分周して分周周期を求め、 この分周周 期毎に駆動電流を前記第 2データテーブルから求め、 該駆動電流を該励磁コイル に与えることにより前記ロー夕を回転駆動しており、 該ロ一夕の回転速度に応じ て該周期信号の分周比を変更する制御手段とを備えるステッピングモー夕の制御 装置。
7 . 円周方向に沿って一定の角度毎に磁極が形成されたロー夕、 及び複数相の励 磁コイルを有するステツビングモータによって、 記録媒体への記録もしくは再生 を行うための光へッドを駆動する光へッドの駆動装置において、
前記ステツピングモータを駆動制御するための制御装置を備え、
前記制御装置は、
前記ロータの回転角度を検出する回転角度検出手段と、
前記ロータの各回転角度に対応して前記励磁コイルの 駆動電流を設定する駆 動電流設定手段と、
前記口一夕の回転角度を制御するマイクロステップ駆動状態のときに前記回転 角度検出手段によって検出された前記ロー夕の回転角度に対応する前記励磁コィ ルの駆動電流を前記駆動電流設定手段によって求め、 該駆動電流を該励磁コイル に与えることにより該ロ一夕の回転駆動状態に移行する制御手段とを備える光へ ッドの駆動装置。
PCT/JP1999/000221 1998-01-23 1999-01-21 Dispositif de commande de moteur pas-a-pas et dispositif d'entrainement de tete optique WO1999038250A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US09/381,483 US6222340B1 (en) 1998-01-23 1999-01-21 Stepping motor control device and optical head drive device
JP53816299A JP4014655B2 (ja) 1998-01-23 1999-01-21 ステッピングモータの制御装置及び光ヘッドの駆動装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP10011069A JPH11215894A (ja) 1998-01-23 1998-01-23 ステッピングモータの制御装置
JP10/11069 1998-01-23

Publications (1)

Publication Number Publication Date
WO1999038250A1 true WO1999038250A1 (fr) 1999-07-29

Family

ID=11767703

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/000221 WO1999038250A1 (fr) 1998-01-23 1999-01-21 Dispositif de commande de moteur pas-a-pas et dispositif d'entrainement de tete optique

Country Status (6)

Country Link
US (1) US6222340B1 (ja)
JP (2) JPH11215894A (ja)
KR (1) KR100354200B1 (ja)
CN (1) CN1175555C (ja)
TW (1) TW423207B (ja)
WO (1) WO1999038250A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2820252A1 (fr) * 2001-01-31 2002-08-02 Midi Ingenierie Systeme de controle de moteurs sans balais
JP2015033277A (ja) * 2013-08-06 2015-02-16 キヤノン株式会社 サーボ装置、及びサーボ装置の制御方法
JP2015231242A (ja) * 2014-06-03 2015-12-21 日本電産サンキョー株式会社 Dcモータおよびdcモータの制御方法

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4465117B2 (ja) * 1998-11-12 2010-05-19 パナソニック株式会社 ステッピングモータの制御装置
JP3978348B2 (ja) * 2002-02-14 2007-09-19 株式会社日立エルジーデータストレージ 光ディスク装置及び光ピックアップの移動制御方法
US20030169011A1 (en) * 2002-03-08 2003-09-11 Toshiba Tec Kabushiki Kaisha Drive method of stepping motor
US20030206502A1 (en) * 2002-05-02 2003-11-06 Xiao Lin Method and apparatus for providing motor control in an optical disk drive system
US6762575B2 (en) * 2002-06-25 2004-07-13 Trimble Navigation Limited Electronic rotor pointing with high angular resolution
US7616536B2 (en) * 2003-05-21 2009-11-10 Koninklijke Philips Electronics N.V. Apparatus for radial tracking in an optical disc drive using tracking an error signal derived from wobble-induced signal components and/or data-induced signal components of a detector output
KR100555556B1 (ko) 2004-02-10 2006-03-03 삼성전자주식회사 스테핑 모터 제어 방법
CN100380470C (zh) * 2004-12-30 2008-04-09 上海乐金广电电子有限公司 光盘装置中的牵引电机控制设备及其方法
US7239108B2 (en) * 2005-01-31 2007-07-03 Texas Instruments Incorporated Method for stepper motor position referencing
JP2006352940A (ja) * 2005-06-13 2006-12-28 Seiko Epson Corp ステッピングモータ制御装置、印刷装置、ステッピングモータ制御方法、および、ステッピングモータ制御プログラム
JP4561662B2 (ja) * 2006-03-22 2010-10-13 ティアック株式会社 光ディスク装置
JP4797731B2 (ja) * 2006-03-22 2011-10-19 ティアック株式会社 光ディスク装置
US7342377B2 (en) * 2006-05-24 2008-03-11 Kabushiki Kaisha Toshiba Stepping-motor control apparatus and method of controlling the apparatus
JP4890138B2 (ja) * 2006-07-24 2012-03-07 ローム株式会社 モータの駆動回路および電子機器
KR100889961B1 (ko) * 2007-04-30 2009-03-24 (주)컨벡스 스텝 모터 위치 오차 보정 방법 및 시스템
US7948100B2 (en) * 2007-12-19 2011-05-24 General Electric Company Braking and positioning system for a wind turbine rotor
JP5637682B2 (ja) * 2009-12-24 2014-12-10 キヤノン株式会社 駆動制御装置、撮像装置、及び駆動制御方法
JP5338776B2 (ja) * 2010-08-31 2013-11-13 ブラザー工業株式会社 ステッピングモータ制御装置及び画像読取装置
JP5660851B2 (ja) * 2010-10-28 2015-01-28 Juki株式会社 ステッピングモータの駆動装置
JP6525659B2 (ja) * 2015-03-25 2019-06-05 キヤノン株式会社 モータ制御装置およびモータ制御方法
JP6565774B2 (ja) * 2016-04-12 2019-08-28 京セラドキュメントソリューションズ株式会社 ステッピングモーター制御装置及びステッピングモーター制御方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0574319B2 (ja) * 1988-02-25 1993-10-18 Canon Kk
JPH10150798A (ja) * 1996-09-20 1998-06-02 Matsushita Electric Ind Co Ltd ステッピングモータ制御装置
JPH10304699A (ja) * 1997-04-24 1998-11-13 Pioneer Electron Corp ステッピングモータの制御装置及び制御方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4761598A (en) * 1987-06-15 1988-08-02 Lovrenich Rodger T Torque-angle stabilized servo motor drive
DE3874280T2 (de) 1987-10-21 1993-01-21 Canon Kk Motorregelvorrichtung.
JP2675461B2 (ja) 1991-09-12 1997-11-12 三菱電機株式会社 限流形回路遮断器
DE19511865C1 (de) * 1995-03-31 1996-06-05 Daimler Benz Ag Einrichtung zum Antrieb eines Stellelements mittels eines Schrittmotors
US6016044A (en) * 1995-09-11 2000-01-18 Alaris Medical Systems, Inc. Open-loop step motor control system
US5914579A (en) * 1997-10-02 1999-06-22 Dana Corporation Direct current command generation for a stepper motor drive
US6100662A (en) * 1999-06-30 2000-08-08 Warner Electric Technology, Inc. Step motor stabilization control

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0574319B2 (ja) * 1988-02-25 1993-10-18 Canon Kk
JPH10150798A (ja) * 1996-09-20 1998-06-02 Matsushita Electric Ind Co Ltd ステッピングモータ制御装置
JPH10304699A (ja) * 1997-04-24 1998-11-13 Pioneer Electron Corp ステッピングモータの制御装置及び制御方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2820252A1 (fr) * 2001-01-31 2002-08-02 Midi Ingenierie Systeme de controle de moteurs sans balais
WO2002061936A1 (fr) * 2001-01-31 2002-08-08 Midi Ingenierie Systeme de controle de moteurs sans balais
JP2015033277A (ja) * 2013-08-06 2015-02-16 キヤノン株式会社 サーボ装置、及びサーボ装置の制御方法
JP2015231242A (ja) * 2014-06-03 2015-12-21 日本電産サンキョー株式会社 Dcモータおよびdcモータの制御方法

Also Published As

Publication number Publication date
TW423207B (en) 2001-02-21
JP4014655B2 (ja) 2007-11-28
JPH11215894A (ja) 1999-08-06
CN1262810A (zh) 2000-08-09
KR20010005649A (ko) 2001-01-15
US6222340B1 (en) 2001-04-24
KR100354200B1 (ko) 2002-09-28
CN1175555C (zh) 2004-11-10

Similar Documents

Publication Publication Date Title
WO1999038250A1 (fr) Dispositif de commande de moteur pas-a-pas et dispositif d&#39;entrainement de tete optique
EP1538738B1 (en) Stepping motor controller and method for controlling a stepping motor
JP4165915B2 (ja) ステッピングモータ制御装置
WO2000030244A1 (fr) Dispositf de commande d&#39;un moteur pas a pas
KR100739958B1 (ko) 모터 제어 회로 및 모터 제어 방법
JPS61198477A (ja) 磁気デイスク用記録/読み出し装置
JP4261752B2 (ja) 駆動装置
JP3403283B2 (ja) 情報記憶装置
US20070047406A1 (en) Optical disk apparatus
JP2007066451A5 (ja)
KR100264070B1 (ko) 기록재생 장치
JP4269380B2 (ja) モータ駆動回路及びディスク装置
US6072656A (en) Stepping motor control method
US11183954B2 (en) Motor driving device and control method thereof
JP4261748B2 (ja) 駆動装置
JP2541417B2 (ja) ディスク装置及びこの起動制御方法
JPH09180203A (ja) 光ディスク制御装置
JP4399783B2 (ja) ステッピングモータの駆動装置
JP2007087541A (ja) 光ディスク装置
JPH0638595A (ja) 駆動モータの制御装置
JPH06189598A (ja) ステッピングモータの駆動制御装置
JPH11113290A (ja) ステッピングモータ駆動方法およびディスク装置
JP2000137525A (ja) 物体移動装置及び光学的情報記録再生装置
JPH02153772A (ja) 記録装置
JPH09271199A (ja) モータ駆動装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99800331.X

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

WWE Wipo information: entry into national phase

Ref document number: 1019997008717

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 09381483

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1019997008717

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019997008717

Country of ref document: KR