WO1999009641A1 - Procede et dispositif de regulation de l'application d'une pression au moyen d'un moteur d'asservissement - Google Patents

Procede et dispositif de regulation de l'application d'une pression au moyen d'un moteur d'asservissement Download PDF

Info

Publication number
WO1999009641A1
WO1999009641A1 PCT/JP1998/003616 JP9803616W WO9909641A1 WO 1999009641 A1 WO1999009641 A1 WO 1999009641A1 JP 9803616 W JP9803616 W JP 9803616W WO 9909641 A1 WO9909641 A1 WO 9909641A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressing force
speed
servomotor
control
servo motor
Prior art date
Application number
PCT/JP1998/003616
Other languages
English (en)
French (fr)
Inventor
Tetsuaki Kato
Koichi Okanda
Original Assignee
Fanuc Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Ltd filed Critical Fanuc Ltd
Priority to DE69840865T priority Critical patent/DE69840865D1/de
Priority to US09/269,070 priority patent/US6486629B2/en
Priority to EP98937815A priority patent/EP0933868B1/en
Publication of WO1999009641A1 publication Critical patent/WO1999009641A1/ja

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D17/00Control of torque; Control of mechanical power
    • G05D17/02Control of torque; Control of mechanical power characterised by the use of electric means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/19Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D15/00Control of mechanical force or stress; Control of mechanical pressure
    • G05D15/01Control of mechanical force or stress; Control of mechanical pressure characterised by the use of electric means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/41Servomotor, servo controller till figures
    • G05B2219/41379Estimate torque from command torque and measured speed
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/42Servomotor, servo controller kind till VSS
    • G05B2219/42087Speed and force loop
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/49132Control fixed clamping force

Definitions

  • the present invention relates to a method and an apparatus for controlling a pressing force on another object by a movable body (for example, a welding tip of a welding gun for spot welding) driven and controlled by a servomotor.
  • a movable body for example, a welding tip of a welding gun for spot welding
  • the control of the pressing force (pressing force) on another object by the movable body that is driven and controlled by the servomotor generally involves applying a torque limit to the output of the speed control loop (that is, the torque command value). To prevent the support motor from generating more torque than the set torque.
  • the workpiece is sandwiched between the welding tips of the electrodes of the welding gun, and the workpiece is pressurized at a predetermined pressure determined by the output torque of the servomotor. Electricity is applied between the chips to weld the workpiece.
  • the servo motor that drives the welding gun is given a movement command in the pressurizing direction to move forward beyond the pressurizing point. Then, even if the electrode tip comes into contact with the peak and stops moving, the amount of movement by the move command still remains. The output torque command value increases. Therefore, a torque limit is applied to the torque command value to obtain a constant output torque. To press the work.
  • the tip of the welding gun becomes a panel, causing vibration in the pressing force, and the time required for the torque command value to the servo motor to reach the set torque limit value.
  • the time required for the torque command value to the servo motor to reach the set torque limit value There is a problem that it takes time to reach the set pressure and the cycle time becomes slow.
  • the acceleration torque of this movement will be consumed within the limited output torque, and eventually the pressing force Shortage will occur.
  • An object of the present invention is to provide a pressurization control method and apparatus using a servomotor that eliminates the vibration of the pressurization force, eliminates the delay of the pressurization force, and prevents shortage of the pressurization force. And I have.
  • a command is issued to the servomotor.
  • a command pressure I'm on the above pressing and with force estimated I by the observer, to form a control loop of the force, to full I over Dobakku controlling the pressing force £
  • the The speed of the movable body is detected, and feedback control of the speed is also performed.
  • the pressurizing control device using a servomotor is a device for pressing a movable body driven by a servomotor against another object.
  • the apparatus further includes speed feedback control means for detecting the speed of the movable body by the speed detection means and performing feedback control of the speed.
  • the pressing force of the movable body (welding chip) driven by the servomotor is controlled by feedback, so that the target pressing force can be generated with good response. And the work cycle time can be shortened. Also, by adjusting the gain of the force feed pack control and the gain of the speed loop provided in the force loop, it is possible to adjust the pressure so as not to generate vibration. Vibration does not occur during pressurization, and the target pressure can be generated constantly.
  • FIG. 1 is a block diagram of a control loop of a force applied to a servo motor to execute pressurization control by a servo motor according to the present invention.
  • Fig. 2 is a flow chart of the process in which the pressurization control shown in Fig. 1 is performed for each position ⁇ speed loop process cycle.
  • FIG. 3 is a block diagram of a disturbance observer used in the pressurization control shown in FIG.
  • FIG. 4 is a hardware block diagram of a control system for performing the pressurization control shown in FIG.
  • FIG. 1 shows a block diagram of the force control loop built into the servomotor that drives the welding tip for spot welding.
  • the block diagram of the control loop in Fig. 1 shows the term 1 of the transfer function of the gain A for force feedback control, the term 2 of the transfer function of the servo motor overnight, and the speed feedback. It consists of term 3 of the transfer function of velocity loop gain KV.
  • Kt is the torque constant of the servomotor that drives the welding tip of the welding gun
  • J is the inertia
  • S is the Laplace operator.
  • the value (A * (Fc—Td) -V * KV) obtained by subtracting the value (v * Kv) obtained by multiplying V by the speed loop gain KV is obtained as the torque command value Tc, and the servo motor is obtained.
  • the estimated pressure Td estimated by the disturbance estimation observer can be expressed by the following equation.
  • S K * 0 + D * 0 S (!)
  • S is the amount of movement since the welding tip abuts the workpiece, and V is the change in the amount of movement with time. That is, the speed.
  • the estimated disturbance detected by the disturbance estimation observer that is, the estimated pressing force is graphically displayed on a display screen of a display device such as a teaching pendant of the robot to which the welding gun is attached. Then, the gain K V of the speed loop is adjusted so that the oscillation of the estimated pressing force converges. Alternatively, the gain A of the above-described force control loop is adjusted so that the vibration of the estimated pressing force converges.
  • the welding gun is also controlled by a controller 10 such as a numerical controller that controls a robot equipped with the welding gun.
  • a controller 10 such as a numerical controller that controls a robot equipped with the welding gun.
  • FIG. 4 only the servomotor 14 for driving the welding tip of the welding gun is shown.
  • the digital servo circuit 12 is composed of a processor, ROM, RAM, etc., and performs servo control of position, speed, etc. digitally, and controls the force with which the welding chip presses the workpiece. Also perform Based on the current command of each phase output from the digital servo circuit 12, the servo motor 14 for driving the welding tip of the welding gun and the robot via the servo amplifier 13 composed of an inverter etc. The drive of each axis servo motor is controlled. The position and speed of the servomotor 14 are detected by a detector 15 composed of a pulse coder or the like attached to the motor shaft of the servomotor 14. The position and velocity feedback signals output from the detector 15 are fed back to the digital servo circuit 12.
  • the servo control system shown in FIG. 4 is known.
  • term 2 of KtZJS in FIG. 1 is divided into term 4 of Kt and term 5 of 1JS.
  • the disturbance estimation observer 6 in FIG. 3 estimates the disturbance torque based on the torque command Tc output from the speed loop and the like and the servo motor speed V.
  • K 4 is a parameter of the disturbance estimation observer.
  • Kt 'J' in Section 61 is a parameter value that is multiplied by the current value Tc as the torque command actually output to the servomotor, and is the value of the motor's nominal torque constant.
  • T disZ J is represented by the following equation.
  • T disZ J S (V — v a) + (v-v a) * K 3
  • the pressing force can be considered to be equal to the estimated disturbance torque Td obtained from the disturbance estimation observer.
  • the disturbance estimation observer shown in FIG. 3 is publicly known (see, for example, Japanese Patent Publication and Japanese Patent Application Laid-Open No. 7-117177). Instead of this disturbance estimation observer, another form of disturbance estimation observer is used.
  • the pressing force may be estimated using an observer.
  • the processor of the digital servo circuit 12 is positioned.
  • the control device 10 outputs a movement command value to each axis of the robot in each distribution cycle according to the teaching program, and outputs a movement command to move the welding gun attached to the robot wrist to a welding position. Then, after outputting a movement command to a position where the welding chip is pressed against the workpiece, a switching command to the pressing force control is output, and the flag F of the shared memory 11 is set to ⁇ 1 ''. Set to
  • the device 10 outputs a command to switch from the pressure control to the normal position ⁇ speed control, sets the flag F to “0”, and outputs the next movement command.
  • the control device 10 executes the above-described operation based on the teaching program.
  • the shared memory 11 reads various commands including the movement command, and executes the processing shown in FIG. 2 every position ⁇ speed loop processing cycle.
  • the processor of the digital servo circuit 12 judges whether the flag F for instructing the pressure control of the shared memory 11 is set to ⁇ 1 ”(step S1), and ⁇ 1”. If not set in the same way as before, the position is fed back from the commanded movement command value and the position / speed detector 15 and based on the speed feedback value.
  • the position loop processing and the speed loop processing are executed to obtain the torque command Tc (Step S2).
  • the obtained torque command Tc is transferred to the current loop (step S3).
  • the current loop processing is performed based on the torque command Tc, and the current command of each phase of the servo motor is performed. And drives and controls the servomotors of each axis via a servo amplifier such as an inverter.
  • the torque command Tc and the speed feedback value obtained in step S2 are shown in Fig. 3. Execute observer processing (note that the processing of this observer is already known, so the processing flowchart is omitted). Then, the disturbance estimation torque Td is obtained and stored in the register (step S4), and the processing of the position / speed loop processing cycle ends.
  • the above-described processing is repeatedly executed until the pressing force control command is output from the control device 10 and the flag F is set to “1”.
  • Step S 1 the pressurized command value F c sent from the controller 10, and the servo motor that drives the welding chip stored in the register
  • the torque control Tc is obtained by performing the force control loop process shown in FIG. 1 and the speed loop process in the force control loop. That is, the following equation is calculated to determine the torque command value Tc (step S6).
  • T c A * (F c — T d)-K v * ⁇ ⁇ 1 ⁇ (11) Transfer the torque command value T c obtained in this way to the current loop (step S 7), weld
  • the servo motor 14 for driving the chip is driven and controlled via the servo amplifier 13. Then, the process proceeds to step S4 described above to execute the observer process, and the disturbance estimated torque (estimated pressing force) Td is obtained and stored.
  • flag F is set to ⁇ 1 j
  • the processing of steps S1, S5 to S7, and S4 is executed every position and speed loop processing cycle, and feedback control of the applied pressure is performed.
  • the controller 10 When spot welding is completed and a welding completion signal is input to the controller 10 from the welding gun, the controller 10 outputs a switching signal from the pressure control to the normal position / speed loop control.
  • the flag "" is set to "0", and thereafter, the above-described movement command distribution is performed in the same manner as before, and the processor of the digital servo circuit 12 executes the step S1 for each position / speed loop processing cycle. Steps S4 to S4 are repeatedly executed.
  • the feedback value V of the speed becomes ⁇ 0 ”, and there is a slight deviation in the force between the pressurization command Fc and the estimated pressing force Td (The value obtained by multiplying the steady-state error by the gain A in the steady-state error becomes the torque command Tc, and the state becomes stable.
  • the estimated pressing force Td estimated by the disturbance estimation observer 6 may be added to the torque command Tc, and the added torque command may be used as a command to the servomotor. . That is, in Fig.
  • the output of item 3 (the value obtained by multiplying the speed feedback value by the gain Kv) is subtracted from the output from item 1 (the value obtained by multiplying the gain deviation by the gain A).
  • T c A * (F c — T d) — K v * v + T d

Description

T
明 細 書
サーボモータ による加圧制御方法及び装置
技 術 分 野
本発明は、 サーボモータ によ って駆動制御される可動 体 (例えば、 スポッ ト溶接用の溶接ガンの溶接チッ プ) による他の物体への押圧力の制御方法及び装置に関する < 背 景 技 術
サーボモータ によ って駆動制御される可動体による他 の物体への押圧力 (加圧力) の制御は、 一般に、 速度制 御ループの出力 (すなわち、 トルク指令値) に トルク リ ミ ツ トをかけて、 サ一ポモータから設定 トルク 以上の ト ルク を発生させないよ う に している。
例えば、 サーボモータ で駆動されるスポッ ト溶接用の 溶接ガンの場合は、 溶接ガンの電極部の溶接チッ プでも つてワーク を挟み、 サーポモータの出力 トルク による所 定圧力でワーク を加圧 し、 溶接チ ッ プ間を通電 しワーク を溶着させている。
この溶接ガンの場合、 溶接ガンを駆動するサーボモー タ に対 して、 加圧方向に対 して加圧点よ り も さ らに前進 する移動指令を与えてお く。 そ して、 電極チッ プがヮー クに当接して移動が停止 しても、 移動指令による移動量 がまだ残っているため、 さ らに電極チッ プを前進させよ う と して速度ループから出力される トルク指令値は増大 してい く。 そこで、 この トルク指令値に対して トルク リ ミ ツ 卜をかけて、 この制限された一定の出力 トルク によ つてワークを加圧するよ う に している。
上述した方法による と、 溶接ガンの先端部がパネとな つて加圧力に振動が生 じた り、 また、 サーポモータへの トルク指令値が設定された トルク リ ミ ッ 卜値に達するま で時間がかかり、 設定 した加圧力になるまで時間を要し サイ クルタ イムが遅く なる と いう 問題がある。 さ らに、 サーボモータ で駆動されるサーボガンの電極部の溶接チ ッ プが移動すれば、 この移動の加速 トルク分が制限され た出力 トルク内で消費される こ と にな リ、 結局加圧力に 不足が生 じる こ とになる。
発 明 の 開 示
本発明の目的は、 加圧力の振動をな く すと共に加圧力 の遅れをもな く し、 かつ加圧力不足が生 じないよ う に し たサーポモータ による加圧制御方法及び装置を提供する し と I おる。
上記目的を達成するため、 本発明によるサーボモータ による加圧制御方法では、 サーボモータ で駆動される可 動体の他の物体への押 し付け力を制御するにおいて、 上 記サーボモータ に指令される指令加圧力 と、 オブザーバ によ って推定 した上記押 し付け力と によ って、 力の制御 ループを形成し、 上記押圧力をフ ィ ー ドバック制御する £ なお、 好ま し く は、 上記可動体の速度を検出 し、 速度 のフィ 一 ドバック制御をも行う よ う にする。
また、 本発明によるサーボモータ による加圧制御装置 は、 サーボモータ で駆動される可動体の他の物体への押 し付け力の制御するものであって、 上記押 し付け力を推 定するオブザーバと、 サーボモータへ指令される加圧力 と上記オブザーバによ って推定 した上記押 し付け力によ つて力のフィー ドバッ ク制御を行う 力の制御ループ制御 手段と を備える。
なお、 好ま し く は、 さ らに、 速度検出手段によって上 記可動体の速度を検出 し、 速度のフ ィ ー ドバック制御を 行う速度フ ィ ー ドバック制御手段をも備える。
本発明はサーボモータ によ って駆動される可動体 (溶 接チ ッ プ) による押圧力 をフ ィ ー ドバッ ク制御するよ う に したから、 応答よ く 目標とする加圧力を発生する こ と ができ、 又、 作業のサイ クルタ イムを速 く する こ とがで きる。 又、 力のフ ィー ドパック制御のゲイ ンや力のルー プ内に設けられた速度ループのゲイ ンを調整する こ とに よ って加圧力に振動が発生 しないよ う に調整できるから、 加圧中に振動が発生する こ と もな く、 定常的に目標とす る加圧力を発生させる こ とができる。
図 面 の 簡 単 な 説 明
図 1 は、 本発明によるサーボモータ による加圧制御を 実行するため、 サーポモータ に対 して組んだ力の制御ル ープのブロ ッ ク線図である。
図 2 は、 図 1 に示す加圧制御を位置 ■ 速度ループ処理 周期毎に行う処理のフ ローチヤ一 卜である。
図 3 は、 図 1 に示す加圧制御で使用される外乱ォブザ ーバのブロ ッ ク線図である。 図 4 は、 図 1 に示す加圧制御を実行する制御系のハー ドウエアのプロ ック図である。
発 明 を 実施 す る た め の 最 良 の 形態 本発明による、 サーボモータ によ って駆動制御される 可動体による押圧力の制御方法を、 その可動体がサーボ モータ によ って駆動制御されるスポッ 卜溶接用の溶接ガ ンの溶接チッ プである場合を例に して、 以下に説明する。 スポッ 卜溶接用の溶接チッ プを駆動するサーボモータ に対 して組まれた力の制御ループのブロ ック線図を図 1 に示す。
この図 1 の制御ループのブロ ック線図は、 力のフ ィー ドバック制御のゲイ ン Aの伝達関数の項 1 と、 サーボモ 一夕 の伝達関数の項 2 と、 速度フ ィー ドバックの速度ル ープゲイ ン K V の伝達関数の項 3 とから成る。 なお、 項 2 における K t は溶接ガンの溶接チッ プを駆動するサー ポモータ の トルク定数、 J はイナ一シャ、 S はラプラス 演算子である。
被溶接体に対 して溶接チッ プが加える押 し付け力の目 標値と しての加圧指令 F c から、 サーボモータ に加わる 外乱を推定するオブザーバによ って推定された加圧力 T d を減算し、 その値 ( F c - T d ) にゲイ ン Aを乗じ、 その値 ( A * ( F c - T d ) ) から、 サーボモータの速 度フ ィ ー ドノくック値 V に速度ループゲイ ン K V を乗じた 値 ( v * K v ) を減じた値 ( A * ( F c — T d ) - V * K V ) を トルク指令値 T c と して求めて、 サーボモータ ( 2 ) を駆動制御する。
溶接チッ プのパネ定数を K、 ダンピング定数を D とす る と、 上記外乱推定オブザーバで推定される推定加圧力 T d は次の 1 式のよ う に表すことができる。
T d = K * e + D * v
= K * 0 + D * 0 S · · · ( "! ) なお、 S は溶接チッ プが被溶接体に当接してからの移 動量であり、 V はその移動量の時間に対する変化値、 す なわち速度である。
そこで、 図 1 よ り、
{ A ( F c 一 T d ) - K V * V } ( KtZ J S )
= v · · · · ( 1 ' )
( 1 ' ) 式において、 ( 1 ) 式と さ らに v = 0 S と から、
{ A [ F c 一 ( K * e + D * e s ) ]
- K V * Θ S } ( KtZ J S ) = Θ s
■ · · · ( 1 " )
( 1 " ) 式を F c について解く と、
F c = ( J / ( A * Kt) ) Θ S 2
+ [ ( Κ ν / A ) + D ] θ S + Κ * θ
·· · · ( 2 )
( 1 ) 式と ( 2 ) 式とから、 加圧指令 F c から推定加 圧力 T d までの伝達関数 T d / F c を求める と、
T d F c
= ( K + D S ) / { ( J / ( A * Kt) ) S 2 + [ ( K v / A ) + D ] S + K } ( 3 )
( 3 )式において、 S = 0、 即ち、 速度が Γ 0」 となった と きには、
T d / F c = K / K = 1 、
よ って、 T d = F c とな り、 目標加圧力を得る こ とが できる。
そ こで、 この溶接ガンを取付けたロボッ トの教示ペン ダン 卜等の表示装置の表示画面に外乱推定オブザーバで 検出 される推定外乱、 即ち推定加圧力をグラフ ィ ック表 示する。 そ して、 上記速度ループのゲイ ン K V を、 推定 加圧力の振動が収束するよ う に調整する。 または、 上記 力の制御ループのゲイ ン Aを、 推定加圧力の振動が収束 するよ う に調整する。
図 1 に示 した加圧制御を実行する制御系のハー ドゥエ ァを図 4のブロ ック図を用いて説明する。
溶接ガンを搭載する ロボッ トを制御する数値制御装置 等の制御装置 1 0 によ って溶接ガンも制御される。 図 4 では、 溶接ガンの溶接チッ プを駆動するサーボモータ 1 4のみ示されている。
制御装置 1 0から移動指令を含む各種制御信号が共有 メ モ リ 1 1 を介 してディ ジタルサーボ回路 1 2 に出力さ れる。 ディ ジタ ルサ一ボ回路 1 2 は、 プロセッサ, R O M , R A M等で構成され、 位置、 速度等のサーボ制御を ディ ジタル的に実行する と共に、 溶接チッ プが被溶接体 夯押 し付ける力の制御も実行する。 このディ ジタ ルサーボ回路 1 2から出力される各相の 電流指令に基づき、 イ ンバータ等で構成されるサーボア ンプ 1 3 を介して、 溶接ガンの溶接チッ プを駆動するサ ーポモータ 1 4及びロボッ ト各軸のサーボモータ はそれ ぞれ駆動制御される。 また、 サーボモータ 1 4の位置、 速度は、 サーボモータ 1 4のモータ軸に取り付けられた パルスコーダ等で構成される検出器 1 5 で検出される。 この検出器 1 5 の出力である位置、 速度フ ィー ドバック 信号は、 ディ ジタルサーボ回路 1 2 に帰還される。 なお、 図 4 に示すサ一ボ制御系自体は公知のものである。
次に、 溶接チ ッ プが被溶接体を押 し付ける力 (加圧力) を推定するために用いる外乱推定オブザーバ 6 の一例を 図 3 のプロ ック線図を用いて説明する。
図 3 においては、 図 1 の K t Z J S の項 2 を K t の項 4 と 1 J Sの項 5 と に分けている。
この図 3 の外乱推定オブザーバ 6 は、 速度ループ等か ら出力 される トルク指令 T c とサーボモータの速度 V と によ って外乱 トルク を推定する。
外乱推定オブザーバ 6 の項 6 2 の K 3 及び項 6 3の
K 4 はそれぞれ外乱推定オブザーバのパラメ ータである。 また、 項 6 1 の K t ' J ' は、 実際にサーボモータ に 出力 される トルク指令と しての電流値 T c に乗じるパラ メータ の値であ り、 モータのノ ミナル トルク定数の値
K t ' をノ ミナルイナ一シャの値 J ' で除した値である。 項 6 4 は積分項であ り、 項 6 1、 6 2及び 6 3 の出力を すべて加算した値を積分 して、 モータの推定速度 v a を 求める項である。
この図 3のブロ ック図を K t' / J ' = K tZ J と し て解析すると、
( T c* Kt+ T dis) ( 1 / J S ) = v ( 4 )
{ T c * ( K t/ J ) + ( v - v a) K 3
+ ( v - v a) ( K 4/ S ) } / ( 1 / S ) = v a
· ·■ · ( 5 )
( 4 ) 式よ り、
T c = ( v * J S — T dis) K t ( 6 )
( 5 ) 式に ( 6 ) 式を代入 して整理する と、
V S - ( T disZ J ) + ( V — v a) * K 3
+ ( V - V a) * K 4/ S = V aS —— ( 7 ) よって、 T disZ J は以下の式で表される。
T disZ J = S ( V — v a) + ( v - v a) * K 3
+ ( v - v a) * ( K 4/ S ) ( 8 )
( 8 ) 式よ り、
V — V a
= V err
= ( T dis/ J ) { 1 / [ S + K 3+ ( K 4/ S ) ] }
·■■■ ( 9 )
( 9 ) 式よ り、 項 6 3 の出力である積分値 Xは次の式で 表される。
X = V err * ( K 4ノ S )
= ( T dis J ) { K 4ノ [ S 2+ K 3S + K ] } ·■■ · ( 1 0 ) そこで、 ( 1 0 ) 式において、 パラメ ータ K 3 及び
K 4 を極が安定するよ う に選択する と、 X = T disZ J と近似する こ とができる。 そこで、 この積分値 X ( = T disZ J ) に項 6 5のパラメ ータ J ' Kt' を乗じて、 推定外乱 トルク T d ( トルク指令 T c の次元に合わせた 推定外乱 トルク) を求める。
溶接ガンの溶接チッ プが被溶接体を押圧 している状態 では、 その押圧力は外乱推定オブザーバから得られる推 定外乱 トルク T d に等 しいと見なすこ とができる。 なお、 図 3 に示 した外乱推定オブザーバは公知 (例えば、 日本 の特許公報、 特開平 7 — 1 1 0 7 1 7号参照) であ り、 この外乱推定オブザーバに代えて他の形態の外乱推定ォ ブザーバを用いて押圧力を推定するよ う に してもよい。 次に、 ディ ジタ ルサーボ回路 1 2のプロセ ッサが位置
■ 速度ループ処理周期毎実施する処理を図 1 のフ ローチ ヤー 卜 を用いて説明する。
制御装置 1 0は、 教示プロ グラムに したがって、 ロボ ッ ト各軸に対 して移動指令値を分配周期毎出力 し、 ロボ ッ 卜手首に取付けられた溶接ガンを溶接位置までの移動 指令を出力 し、 さ らに溶接チッ プを被溶接体に押圧する 位置まで移動指令を出力 した後に、 加圧力制御への切 り 替え指令を出力 し、 共有メ モ リ 1 1 のフラグ Fを 「 1 」 にセ ッ 卜する。
そ して、 溶接ガンから溶接完了の信号を受信 した制御 装置 1 0 は、 加圧力制御から通常の位置 ■ 速度制御への 切 り替え指令を出力 し上記フラグ F を 「 0」 に し、 次の 移動指令を出力する。 制御装置 1 0 は上述した動作を教 示プログラムに基づいて実行する。
一方、 ディ ジタルサ一ボ回路 1 2 のプロセッサは、 共 有メ モ リ 1 1 が移動指令を含む各種の指令を読取り、 図 2 に示す処理を位置 ■ 速度ループ処理周期毎実行する。 ディ ジタルサ一ボ回路 1 2 のプロセ ッサは、 共有メ モ リ 1 1 の加圧力制御を指令する フラグ Fが Γ 1 」 にセッ 卜 されているか判断し (ステッ プ S 1 ) 、 Γ 1 」 にセッ 卜 されていなければ、 従来と 同様に、 指令された移動指 令値と位置 · 速度検出器 1 5 から フ ィ ー ドバック されて < る位置 ■ 速度のフ ィ一 ドバック値に基づいて、 位置ル ープ処理、 速度ループ処理を実行し トルク指令 T c を求 める (ステッ プ S 2 ) 。
そ して求め られた トルク指令 T c を電流ループに引き 渡し (ステッ プ S 3 ) 、 電流ループ処理では、 この トル ク指令 T c に基づいて電流ループ処理を行いサーボモー タの各相の電流指令を求めイ ンバータ等のサーボアンプ を介 して各軸のサーボモータ を駆動制御する。
また、 少な く と も溶接ガンの溶接チッ プを駆動するサ ーボモータ 1 4 に対しては、 ステッ プ S 2 で求めた トル ク指令 T c と速度フ ィー ドバック値よ り 図 3 に示したォ ブザーバの処理 (なおこのオブザーバの処理はすでに公 知であるので処理のフ ローチャー トは省略する) を実行 し、 外乱推定 トルク T d を求めレジスタ に記憶し (ステ ッ プ S 4 ) 、 当該位置 ' 速度ループ処理周期の処理を終 了する。 以下、 制御装置 1 0 よ り加圧力制御指令が出力 されフラグ Fが 「 1 」 にセ ッ トされるまで上述した処理 を繰り返し実行する こ と になる。
一方、 制御装置 1 0 よ り加圧力制御指令が出力されフ ラグ Fが Γ 1 J にセッ ト されると、 ディ ジタルサーボ回 路 1 2 のプロセ ッサは、 該フラグ F力、' Γ 1 」 にセッ ト さ れている こ と を検出 し (ステッ プ S 1 ) 、 制御装置 1 0 から送られて く る加圧指令値 F c 、 レジスタ に記憶され ている溶接チッ プを駆動するサーボモータ 1 4の外乱推 定 トルク T d 、 即ち推定加圧力を読み取ると共に、 位置 ■ 速度検出器 1 5 から フ ィー ドバック されて く る速度フ イー ドバック値 V を読み取る (ステッ プ S 5 ) 。 そ して、 図 1 に示す力の制御ループ処理及び該力の制御ループ内 の速度ループ処理を行って トルク指令 T c を求める。 即 ち、 次の式の演算を行って トルク指令値 T c を求める (ステッ プ S 6 ) 。
T c = A * ( F c — T d ) - K v * ν ·■■ · ( 1 1 ) こ う して求められた トルク指令値 T c を電流ループに 引き渡し (ステッ プ S 7 ) 、 溶接チッ プを駆動するサー ボモータ 1 4 をサーボアンプ 1 3 を介して駆動制御する。 そ して、 前述したステッ プ S 4 に移行してオブザーバの 処理を実行し外乱推定 トルク (推定加圧力) T d を求め 記憶する。 以下、 フラグ Fが Γ 1 j にセ ッ ト されている 限り、 ステッ プ S 1 、 S 5 〜 S 7、 S 4の処理を位置 ' 速度ループ処理周期毎実行し、 加圧力のフ ィ ー ドバック 制御を行う。
スポッ ト溶接が終了 し、 溶接ガンから溶接完了信号が 制御装置 1 0 に入力 される と、 制御装置 1 0 は加圧力制 御から通常の位置 · 速度ループ制御へ切 り替え信号を出 力 し上記フラグ「 を 「 0」 にセッ ト し、 以後、 従来と同 様の前述した移動指令の分配を行い、 ディ ジタルサーボ 回路 1 2のプロセ ッサは位置 · 速度ループ処理周期毎ス テツ プ S 1 〜 S 4の処理を繰り返し実行する。
なお、 上記力の制御ループでは、 定常状態では、 速度 のフ ィ ー ドバック値 V が Γ 0 」 とな り、 加圧指令 F c と 推定加圧力 T d との力の偏差がわずかある状態 (定常偏 差) でこの定常偏差にゲイ ン Aを乗じた値が トルク指令 T c となって安定 した状態となる。 この定常偏差をな く すために、 外乱推定オブザーバ 6 で推定 した推定加圧力 T d を上記 トルク指令 T c に加算して、 この加算した 卜 ルク指令をサーボモータへの指令と してもよい。 即ち、 図 1 において、 項 1 からの出力 (力の偏差にゲイ ン Aを 乗じた値) から項 3 の出力 (速度フ ィー ドバック値にゲ イ ン K v を乗じた値) を減じた後、 さ らに推定加圧力 T d を加算してサーボモータ ( 2 ) への トルク指令と と ても よい。 この場合には、 F c = T d とな リ カの偏差が 「 0」 となっても、 推定加圧力 T d 力 トルク指令と して 与え られるから、 推定加圧力 T d が加圧指令 F c と一致 するよ う に制御される こ とになる。
また、 この場合の処理は、 図 2 においてステップ S 6 の トルク指令 T c を求める ( 1 1 ) 式において、 推定加 圧力 T d を加算して、
T c = A * ( F c — T d ) — K v * v + T d
とすればよい。

Claims

請 求 の 範 囲
サーボモータで駆動される可動体の他の物体への押 し付け力を制御するにおいて、
上記サーボモータ に指令される指令加圧力と、 ォブ ザーバによ って推定 した上記押 し付け力と によって、 力の制御ループを形成し、 上記押圧力をフ ィ ー ドバッ ク制御するよ うに した
サーボモータ による加圧制御方法。
上記可動体の速度を検出 し、 速度のフ ィー ドバック 制御をも行う よ う に した請求の範囲第 1 項記載のサー ボモータ による加圧制御方法。
上記推定押 し付け力を表示 して、 該推定押 し付け力 の振動が収束するよ う に上記速度フ ィー ドパックのゲ イ ンを調整するよ う に した請求の範囲第 2項記載のサ ーボモータ による加圧制御方法。
上記推定押 し付け力を表示して、 該推定押 し付け力 の振動が収束するよ う に、 上記力の制御ループの加圧 指令と推定押 し付け力の差を増幅するゲイ ンを調整す るよ う に した、 請求の範囲第 1 項, 第 2項又は第 3項 に記載のサーボモータ による加圧制御方法。
サーボモータで駆動される可動体の他の物体への押 し付け力の制御する制御装置であって、
上記押 し付け力を推定するオブザーバと、
サーボモータへ指令される加圧力と上記オブザーバ によ って推定 した上記押 し付け力によ って力のフ ィー ドバック制御を行う 力の制御ループ制御手段と
を備える こ と を特徴とするサーボモータ による加圧制 御装置。
さ らに、 速度検出手段によって上記可動体の速度を 検出 し、 速度のフ ィ ー ドバック制御を行う速度フィー ドバック制御手段をも備える、 請求の範囲第 5項記載 のサーボモータ による加圧制御装置。
上記可動体とは口ポッ トの手首に取り付けられた溶 接ガンの溶接チ ッ プである、 請求の範囲第 5項または 6項に記載のサーボモータ による加圧制御装置。
加圧力制御指令を出力する制御装置と、
上記制御装置からの加圧力制御指令に基づいて可動 体をサーボモータで駆動 して他の物体に向けて押 し付 けるときの、 その押 し付け力を推定する押 し付け力推 定手段と、
上記サーボモータ の実速度を検出する速度検出手段 上記サーボモータへの トルク指令 T c を、 以下の式, T c = A * ( F c — T d ) — K v * ν
を用いて算出 し出力する トルク指令手段、 ただ し、 上 の式において、 Α及び Κ V は係数であ り、 F c は上記 制御装置から出力される加圧力制御指令であり、 丁 d は上記押 し付け力推定手段で推定された押 し付け力で あり、 V は上記速度検出手段で検出 されたサーボモー タの速度である、 と を含むサーボモータ による加圧制御装置。
9. 上記 トルク指令手段は、 サーポモータへの トルク指 令 T c を上記の式を用いる こと に代えて、 以下の式、 T c = A * ( F c - T d ) - K v * ν + Τ d を用いて算出 し出力するよ うに した、
請求の範囲 8項記載の、 サーポモータ による加圧制御 装置。
1 0. 上記 トルク指令手段が トルク指令 T c の算出に用 いる押 し付け力 T d の値は、 前回に出力 した トルク指 令 T c と、 その トルク指令出力の時に上記速度検出手 段が出力 した速度 V とから、 上記押 し付け力推定手段 が算出 した値である、
請求の範囲第 8項または 9項記載の、 サーボモータ に よる加圧制御装置。
PCT/JP1998/003616 1997-08-13 1998-08-13 Procede et dispositif de regulation de l'application d'une pression au moyen d'un moteur d'asservissement WO1999009641A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE69840865T DE69840865D1 (de) 1997-08-13 1998-08-13 Regelvorrichtung und verfahren zum pressen durch servomotoren
US09/269,070 US6486629B2 (en) 1997-08-13 1998-08-13 Method for controlling force application with servo motor and appartus therewith
EP98937815A EP0933868B1 (en) 1997-08-13 1998-08-13 Controller and control method for pressing by servo motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP23175997A JP3322826B2 (ja) 1997-08-13 1997-08-13 サーボモータによる加圧制御方法及び装置
JP9/231759 1997-08-13

Publications (1)

Publication Number Publication Date
WO1999009641A1 true WO1999009641A1 (fr) 1999-02-25

Family

ID=16928594

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/003616 WO1999009641A1 (fr) 1997-08-13 1998-08-13 Procede et dispositif de regulation de l'application d'une pression au moyen d'un moteur d'asservissement

Country Status (5)

Country Link
US (1) US6486629B2 (ja)
EP (1) EP0933868B1 (ja)
JP (1) JP3322826B2 (ja)
DE (1) DE69840865D1 (ja)
WO (1) WO1999009641A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10820949B2 (en) * 1999-04-07 2020-11-03 Intuitive Surgical Operations, Inc. Medical robotic system with dynamically adjustable slave manipulator characteristics
JP4279531B2 (ja) * 2002-09-30 2009-06-17 アルプス電気株式会社 力覚付与入力装置
JP3629022B2 (ja) * 2002-10-11 2005-03-16 ファナック株式会社 スポット溶接ガン及びスポット溶接ガンの加圧力制御方法
JP4168046B2 (ja) 2005-07-21 2008-10-22 ファナック株式会社 スポット溶接ガンのサーボ制御装置
JP3796261B1 (ja) * 2005-12-02 2006-07-12 山洋電気株式会社 モータの負荷イナーシャ推定方法
US7379262B2 (en) * 2006-10-25 2008-05-27 Samsung Electronics Co., Ltd. Higher-order state estimator for low TMR in hard disk drives
JP4394139B2 (ja) * 2007-07-03 2010-01-06 ファナック株式会社 スポット溶接ガンの加圧力の異常を診断する方法
JP4595017B2 (ja) * 2009-02-16 2010-12-08 ファナック株式会社 サーボダイクッションの制御装置
DE102009058607A1 (de) * 2009-12-17 2011-06-22 KUKA Laboratories GmbH, 86165 Verfahren und Vorrichtung zum Steuern eines Manipulators
US9447849B1 (en) * 2013-04-19 2016-09-20 Redwood Robotics, Inc. Robot manipulator with modular torque controlled links
US20180021949A1 (en) * 2016-07-20 2018-01-25 Canon Kabushiki Kaisha Robot apparatus, robot controlling method, program, and recording medium
JP6577527B2 (ja) 2017-06-15 2019-09-18 ファナック株式会社 学習装置、制御装置及び制御システム
JP7067107B2 (ja) * 2018-02-19 2022-05-16 セイコーエプソン株式会社 ロボット制御装置及びロボットシステム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05116094A (ja) * 1991-10-29 1993-05-14 Fanuc Ltd 異常負荷検出方法
JPH06161507A (ja) * 1992-11-25 1994-06-07 Toyo Electric Mfg Co Ltd 制御装置
JPH06339292A (ja) * 1993-04-02 1994-12-06 Fanuc Ltd 外乱負荷推定による力制御方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59136811A (ja) 1983-01-26 1984-08-06 Hitachi Ltd 事故状態集中監視装置
DE3439495A1 (de) 1983-10-31 1985-05-09 General Electric Co., Schenectady, N.Y. Elektronisch stellbare nachgiebigkeit
JPS61208513A (ja) 1985-03-14 1986-09-16 Fujitsu Ltd 移動体制御装置
JPS61251915A (ja) 1985-04-30 1986-11-08 Fujitsu Ltd 移動体制御方式
US4812722A (en) * 1987-10-26 1989-03-14 Cams, Inc. Multi-mode force control circuit
JPH03118618A (ja) * 1989-09-30 1991-05-21 Fanuc Ltd 制振効果を持つスライディングモード制御による制御方式
US5331264A (en) * 1993-04-15 1994-07-19 Fanuc Robotics North America, Inc. Method and device for generating an input command for a motion control system
JP3114440B2 (ja) * 1993-07-22 2000-12-04 日産自動車株式会社 スポット溶接装置
JPH07110717A (ja) * 1993-08-19 1995-04-25 Fanuc Ltd モータの制御方式
JPH07104856A (ja) 1993-10-01 1995-04-21 Fanuc Ltd 振動制御方法
JP3362379B2 (ja) 1994-05-26 2003-01-07 松下電工株式会社 力制御装置における力の検出方法
JPH08281447A (ja) * 1995-04-17 1996-10-29 Dengensha Mfg Co Ltd 電動式複数ガンの切換システム
JPH08309140A (ja) 1995-05-18 1996-11-26 Toshiba Corp ガス吸着プロセスの制御装置
JP3093798B2 (ja) * 1995-09-19 2000-10-03 株式会社 安川電機 自動溶接条件設定装置
JP3655378B2 (ja) * 1995-11-28 2005-06-02 ファナック株式会社 サーボモータの外乱負荷推定方法
JP3668325B2 (ja) * 1996-06-13 2005-07-06 川崎重工業株式会社 溶接ガンの加圧制御方法
JP2943731B2 (ja) * 1996-10-28 1999-08-30 トヨタ自動車株式会社 溶接装置
JP3070498B2 (ja) * 1996-12-03 2000-07-31 松下電器産業株式会社 ロボットの制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05116094A (ja) * 1991-10-29 1993-05-14 Fanuc Ltd 異常負荷検出方法
JPH06161507A (ja) * 1992-11-25 1994-06-07 Toyo Electric Mfg Co Ltd 制御装置
JPH06339292A (ja) * 1993-04-02 1994-12-06 Fanuc Ltd 外乱負荷推定による力制御方法

Also Published As

Publication number Publication date
EP0933868A4 (en) 2004-05-06
JPH1165676A (ja) 1999-03-09
US20010040439A1 (en) 2001-11-15
DE69840865D1 (de) 2009-07-16
EP0933868B1 (en) 2009-06-03
EP0933868A1 (en) 1999-08-04
JP3322826B2 (ja) 2002-09-09
US6486629B2 (en) 2002-11-26

Similar Documents

Publication Publication Date Title
EP1667001B1 (en) Controller
US6340875B1 (en) Robot controller
WO1999009641A1 (fr) Procede et dispositif de regulation de l&#39;application d&#39;une pression au moyen d&#39;un moteur d&#39;asservissement
EP2014426A2 (en) Machining robot control apparatus
US5986422A (en) Control mode changing over method for servo control system
WO1989006066A1 (en) Method of speed control for servomotor
JPH10216953A (ja) 溶接ガン電極の摩耗量検出方法および溶接方法
JPH06339292A (ja) 外乱負荷推定による力制御方法
JP3668325B2 (ja) 溶接ガンの加圧制御方法
JP3795854B2 (ja) レーザ加工装置
JP3526888B2 (ja) 溶接ガン加圧力制御方法
JP3287151B2 (ja) 組立用ロボットの力制御装置
KR970002259B1 (ko) 서보모터의 제어방법
JP2000015342A (ja) 電動式ベンダの制御方法および制御装置
JPH0392911A (ja) スライディングモード制御によるロボット制御方法
JPH0792702B2 (ja) 制御装置
JPH06114763A (ja) ロボット可動部の位置決め方法及びその装置
CN109308050B (zh) 数值控制装置
JP3301190B2 (ja) 主軸運転切り換え方法
JPH03270865A (ja) 多自由度作業機械の位置と力の制御装置
JPH06214656A (ja) 制振要素を持つスライディングモード制御方法
JPH0749188B2 (ja) 切削加工用ロボットの繰返し制御方法
JP3205850B2 (ja) ロボット制御装置
JPH0227409A (ja) サーボモータの制御装置
JP2003131703A (ja) モータ制御装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1998937815

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09269070

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1998937815

Country of ref document: EP