WO1998054773A1 - Procede de production d'electrode pour cellules electrolytiques non aqueuses - Google Patents

Procede de production d'electrode pour cellules electrolytiques non aqueuses Download PDF

Info

Publication number
WO1998054773A1
WO1998054773A1 PCT/JP1998/002318 JP9802318W WO9854773A1 WO 1998054773 A1 WO1998054773 A1 WO 1998054773A1 JP 9802318 W JP9802318 W JP 9802318W WO 9854773 A1 WO9854773 A1 WO 9854773A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
electrode
weight
graphite
parts
Prior art date
Application number
PCT/JP1998/002318
Other languages
English (en)
French (fr)
Inventor
Tadayoshi Iijima
Shigeo Kurose
Tetsuya Takahashi
Original Assignee
Tdk Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk Corporation filed Critical Tdk Corporation
Priority to AU74523/98A priority Critical patent/AU7452398A/en
Priority to JP50047799A priority patent/JP4203866B2/ja
Priority to EP98921825A priority patent/EP0986117B1/en
Priority to DE69838325T priority patent/DE69838325T2/de
Priority to US09/423,640 priority patent/US6300008B1/en
Priority to KR10-1999-7010904A priority patent/KR100512769B1/ko
Publication of WO1998054773A1 publication Critical patent/WO1998054773A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells
    • H01M4/08Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0409Methods of deposition of the material by a doctor blade method, slip-casting or roller coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0416Methods of deposition of the material involving impregnation with a solution, dispersion, paste or dry powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • H01M4/0435Rolling or calendering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • H01M4/662Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles

Definitions

  • the present invention relates to a method for producing an electrode for a non-aqueous electrolyte battery, and more particularly, to an electrode active material layer containing an active material composed of a lithium composite oxide and a conductive agent composed of flake-like graphite.
  • the present invention relates to a method for producing an electrode for a non-aqueous electrolyte battery having excellent charge / discharge characteristics and physical characteristics of an active material layer.
  • lead-acid batteries and nickel-cadmium batteries have been used for these electronic devices, but they have not been able to adequately respond to the demand for miniaturization, weight reduction, and high energy density. .
  • a conductive agent is used because the electrical conductivity of the active material is poor except for some of them.
  • Japanese Patent Application Laid-Open No. Sho 62-15761 describes a non-aqueous electrolyte secondary battery using acetylene black as a conductive agent.
  • acetylene black is used as the conductive agent, the acetylene black has a large surface area, so that the adhesion of the electrode coating to the current collector is poor and the electrode coating is easily peeled off or the electrode coating becomes hard. There is a problem that the electrode is liable to be broken when the flexibility of the electrode is poor.
  • Acetylene black tends to take an aggregated form, and therefore, although the specific surface area is large, the ratio of the area where the surface of the acetylene black is in contact with the active material to the surface area of the entire acetylene black is not large. Reducing the amount of acetylene black in order to improve the physical properties of the electrode will reduce its effectiveness as a conductive agent.
  • Japanese Patent Application Laid-Open No. 4-215252 discloses the use of flaky graphite as a conductive agent for a positive electrode in a non-aqueous electrolyte secondary battery.
  • the graphite conductive agent there is no disclosure of a kneading operation under specific conditions.
  • the larger the amount of the conductive agent the easier it is to bring out the performance of the active material.
  • the capacity of the battery decreases. For this reason, efforts are being made to reduce the amount of conductive agent while deriving the performance of active materials.
  • non-aqueous electrolyte secondary batteries decreases with each use, resulting in deterioration.
  • One of the reasons for the deterioration of the battery is that the contact between the active material in the electrode and the conductive agent is deteriorated, and it is considered that electricity cannot be extracted outside.
  • an object of the present invention is to solve the above-mentioned problems of the prior art, improve the charge / discharge characteristics such as the discharge capacity and the charge / discharge cycle life, and improve the physical characteristics of the coating film for a nonaqueous electrolyte battery.
  • An object of the present invention is to provide a method for manufacturing an electrode. Summary of the Invention
  • the present inventor has found that when lithium composite oxide is used as an active material and flake-like graphite is used as a conductive agent, these are kneaded under specific conditions to reduce the amount. Good charge / discharge even with the amount of conductive agent The present inventors have found that an electrode having electrical characteristics and stable physical characteristics of a coating film can be obtained, and completed the present invention.
  • the present invention prepares an electrode active material mixture paint containing at least an active material composed of a lithium composite oxide, a conductive agent composed of flake-like graphite, and a binder.
  • a non-aqueous solution comprising kneading at least the active material, the graphite, a binder and Z or a solvent with a kneading device under a condition satisfying Wg Sa.
  • the lithium composite oxide is Li N i y M z 0 2 (where X is 0.8 x X 1.5, y + z is 0.8 x y + z 1. 2, z are 0 ⁇ z and 0.35, and M represents at least one element selected from Co, Mg, Ca, Sr, Al, Mn and Fe. ) Is preferable.
  • the specific surface area Sa of the lithium composite oxide measured by the BET method is preferably from 0.1 to 5 m 2 / g.
  • the specific surface area S g force of the graphite measured by the BET method is 3 to 30 m 2 Z g.
  • lithium as an active material is used. Since the composite oxide and the graphite exhibiting scalyness as the conductive agent are kneaded under specific conditions, sufficient electrode conductivity can be obtained with a small amount of the conductive agent. As a result, the amount of active material in the electrode unit volume can be increased, and a high charge / discharge capacity per electrode volume can be obtained. It also stabilizes the physical properties of the coating.
  • a lithium composite oxide is used as an active material.
  • the lithium composite oxide is Li x N i y M z 0 (where x is 0.8 x x 1.5, y + z is 0.8 x y + z ⁇ 1.
  • z are 0 ⁇ z ⁇ 0.35
  • M represents at least one element selected from Co, Mg, Ca, Sr, A1, Mn and Fe.
  • the metal M is more preferably C 0, and may be two or more metals.
  • the specific surface area S a by the BET method of the lithium composite oxide rather then preferred that a 0. l ⁇ 5 m 2 Z g, is 0.. 3 to 2 m 2 Roh g Is more preferable.
  • Li Metal 3 + 0 (where Metal is mainly Ni and Co, Mg, Ca, Sr, A At least one element selected from A1, Mn, and Fe is contained.)
  • a method of obtaining a slurry by reacting, drying the obtained slurry, and firing the slurry can be exemplified.
  • the basic metal salt is represented as Metal 2+ (OH) 2 — nk (A n _) k ⁇ m H 20 It is what is done.
  • Metal 2+ is mainly composed of Ni and at least one selected from Co, Mg, Ca, Sr, A1, Mn and Fe in some cases. Contains species elements.
  • k is 0.0 3 ⁇ k ⁇ 0.3
  • m is 0 ⁇ m x 2.
  • Basic metal salt represented by the formula in an aqueous solution of Metal 2 +, for the Metal 2 +, about 0.7 to 0.9 5 equivalents, preferable properly about 0.8 to 0.9 5 equivalents Alkali is added at about 80 under the following reaction conditions to react, then aged at 40 ° C to 70 ° C for 0.1 to 10 hours, and washed by water to remove by-products. be able to.
  • alkali used here include alkali metal hydroxides such as sodium hydroxide, alkaline earth metal hydroxides such as calcium hydroxide, and amines.
  • a basic metal salt selected from the compounds represented by this formula and one or more lithium compounds selected from lithium hydroxide, lithium carbonate or hydrates thereof are mixed in water.
  • the reaction is carried out at a reaction solution concentration of 5 to 25% by weight and at a reaction temperature of room temperature to 100 ° C to obtain slurry.
  • spray drying is performed to improve the uniformity of the shape of the composition.
  • This dried product is heated and baked for about 0.1 to 20 hours in a temperature range of about 700 to 100,000 in an oxidizing gas atmosphere containing air, oxygen, or ozone. By doing so, a lithium composite oxide can be obtained.
  • a method using a basic metal carbonate obtained from a water-soluble metal compound and a water-soluble lithium compound can be exemplified.
  • the water-soluble metal compounds used here include nitrates, sulfates, and metal chlorides.
  • This water-soluble metal compound is mainly composed of a nickel compound and has at least one element selected from C0, Mg, Ca, Sr, A1, Mn and Fe. It may be further mixed with a predetermined amount of another water-soluble metal compound so that it can be blended.
  • the basic metal carbonate may be a precipitate obtained by reacting a mixture of the above water-soluble metal compound with a compound selected from the group consisting of alkali carbonate, aluminum bicarbonate, ammonium carbonate and ammonium bicarbonate in water. Further, a precipitate obtained by reacting this reaction system in the presence of sodium hydroxide can be obtained by filtration and drying. In this case, in order to form a good precipitate, it is better to use the carbonate in a slightly excessive amount, and it is also important to control stirring conditions to control the specific surface area of the precipitate.
  • the basic metal carbonate thus obtained is mixed with a powder of a water-soluble lithium compound such as lithium carbonate or lithium hydroxide at a desired ratio of the metal and Li.
  • This mixture as a powder, is first heated to 300-500 ° C. in the presence of an inert gas or an oxygen-containing gas. By this heating, only the decomposition of the basic metal carbonate proceeds, and the carbon dioxide in the crystal structure is released. This heating is continued until the generation of carbon dioxide gas substantially ends, and all of the basic metal carbonate is converted into a metal oxide having many fine pores.
  • the molten water-soluble lithium compound penetrates into the fine pores of the metal oxide, and the two are brought into a very close contact state.
  • Ni becomes bivalent to trivalent, and a Li composite oxide is produced.
  • the basic metal carbonate used here has a larger specific surface area (for example, 100 m 2 / g or more), so that gas release and formation of micropores after pre-firing are more efficient.
  • the conductive agent will be described. Since graphite is cleaved, if this property is used to cleave graphite, the particle size will hardly decrease even if the specific surface area increases. However, the graphites are stack-heavy, and if you try to loosen the stack and give poor shearing force, it will be easy to make the stack unnecessarily. For example, if you try to grind graphite with a ball mill, it will be crushed, but the stack will also be brittle.
  • the stack is measured as a surface in the measurement gas, but the surface is not used effectively in terms of contact with the active material. When pressure is applied to the stack, the surfaces are cleaved and no longer can be measured with the measurement gas.
  • the scale-shaped graphite has low hardness and lubricity, and the active material has relatively high hardness. Therefore, when the active material and the grabite are kneaded, the active material is not broken much, and the scaly graphite is pulverized so as to be peeled off on the crystal surface.
  • dalafite having a scaly shape is used as the conductive agent.
  • a graphite is a natural graphite or an artificial graphite, and the shape thereof has a scale-like shape.
  • the scaly shape in the present invention means a shape in which thin layers such as a scaly shape, a scaly shape, a flaky shape, a laminar shape, and a mica shape are laminated.
  • the shape of the natural graphite varies depending on the place of production.
  • the shape of the natural graphite may be changed to the scale-like shape according to the present invention by post-processing such as pulverization and classification.
  • the artificial graphite exhibit the above-mentioned scaly shape immediately after the synthesis, but like the natural graphite, it may be formed into a scaly shape by post-processing such as pulverization and classification. Among these graphites, it is also preferable to have a classified graphite because of the scale-like structure. Graphite exhibiting such scaly shape is the Chuetsu Graphite Works.
  • LF series Showa Denko UFG series, L0NZA KS series.
  • Examples include the MICRO C ARB O-G series from Kansai Thermochemical, the Ecos Rikbon series from Ecos Giken, the scaly dalafite that occurs naturally, and the scale-like graphite.
  • the specific surface area S by the BET method of the graphite is preferably from 3 to 30 m 2 / g, and more preferably from 5 to 15 m 2 Zg.
  • the blending amount of the graphite as a conductive agent varies depending on the specific surface area of the active material and the like, but is preferably 0.1 to 15% by weight in the dried coating film, and 1 to 10% by weight. More preferred.
  • thermoplastic resins or polymers having rubber elasticity can be used as the binder.
  • binders include fluoropolymers, polyvinyl alcohol, carboxymethylcellulose, hydroxypropylcellulose, recycled cellulose ester, diacetylmethylcellulose, polyvinylchloride, polyvinylpyrrolidone, and polyethylene. , Polypropylene, EPDM, sulfonated EPDM, SBR, polybutadiene, polyethylene oxide and the like.
  • the fluorine-containing polymer preferably has an atomic ratio of fluorine atom to Z carbon atom of 0.75 to 1.5, more preferably 0.75 to 1.3. Is even more preferred. If this value is greater than 1.5. It is difficult to obtain sufficient battery capacity, while if it is less than 0.75, the binder tends to dissolve in the electrolyte.
  • fluorinated polymer examples include polytetrafluoroethylene, polyvinylidene fluoride, vinylidene fluoride 13-fluorinated ethylene copolymer, and ethylene-tetrafluoroethylene copolymer. And propylene-tetrafluoroethylene copolymer.
  • hydrogen in the main chain is A fluorine-containing polymer substituted with a phenyl group can also be used.
  • those exhibiting selective solubility are preferable.
  • a solvent such as N, N-dimethylformamide and N-methylpyrrolidone.
  • the amount of such a binder varies depending on the specific surface area of the active material and the conductive agent, the particle size distribution, the strength of the target electrode, and the like. However, the amount is preferably 2 to 20% by weight in the dry coating film, and 3 to 20% by weight. 15% by weight is more preferred.
  • the solvent for the electrode active material mixture paint is not particularly limited, and a general solvent capable of dissolving, diluting or preparing a dispersion such as emulsion can be used. be able to.
  • Specific examples of the solvent include saturated hydrocarbons such as hexane, aromatic hydrocarbons such as toluene and xylene, alcohols such as methanol, ethanol, propanol and butanol, and acetate.
  • Ketones such as methylethylketon, methylisobutylketone, diisobutylketone, and cyclohexanone; esters such as ethylethylacetate and butylacetate; Monoters, amides such as N, N-dimethylformamide, N-methylpyrrolidone, N, N-dimethylacetamide, halogenated hydrocarbons such as ethylene chloride and chlorobenzene, water, Known solvents include various aqueous solutions and the like. Of these, amide solvents are preferred because they can dissolve the fluorine-containing polymer. These solvents can be used alone or in combination of two or more.
  • an active material comprising the above-described lithium composite oxide, a conductive agent comprising-scale-like graphite, a binder and Z or a solvent are used.
  • Sa, kneading of the active material When the compounding weight at the time of mixing is W a, the specific surface area of the graphite by the BET method is S g, and the compounding weight at the time of kneading the graphite is W g, a kneading apparatus is used under the conditions satisfying the following formula. Knead using
  • flake-like graphite has low hardness and lubricity, and the active material has relatively high hardness. Therefore, when the active material having a high weight ratio and the Dalaphite are kneaded, the active material is not broken much, and the scale-like graphite is pulverized so as to be peeled off from the crystal surface, and the graphite is reduced. The stack can be removed. As a result, the number of effective surfaces that can be in contact with the active material of the graphite increases, and the conductivity effect increases.
  • the active material is set to a high weight ratio as much as possible so as to satisfy the above formula with respect to the total amount of the conductive agent composed of scale-like graphite. Then, a binder solution, a binder and / or a solvent are added thereto, and the mixture is kneaded using a kneader.
  • the whole amount of the active material may be kneaded with the graphite, or a part of the active material may be kneaded with the graphite so as to satisfy the above formula, and then the binder is separately added.
  • An active material kneaded with a solution or a solvent may be mixed.
  • a shear force can be obtained by adding and kneading a liquid to the active material and graphite.
  • the liquid may be a solvent, but if higher shear is required, use a binder solution with a higher viscosity binder dissolved in the solvent. Good.
  • the binder When the binder is in a liquid state, it may be used as it is, but when the shearing force is too strong, it is preferable to use a binder solution having a viscosity increased by adding a solvent to the binder. It is particularly preferable to use a binder and a solvent in combination, since it is possible to make a selection while confirming various physical properties.
  • the final adjustment is performed to disperse the electrode active material mixture paint to the conditions of the applicator by dispersing it with a stirring mixer such as a hyper mixer, dissolver, sand grinder, etc. You can.
  • a kneader In the present invention, a kneader, a planetary mixer, a two-roll mill, a three-roll mill, a Bambari-mixer, or the like is used as the kneading device.
  • the kneader (kneading machine) is a rotary blade.
  • Examples of the single processing type include an open type 210 and a pressurized type 210.
  • the open type is somewhat unsuitable for achieving the object of the present invention, since a void is formed because the upper part is open. Since the pressurized type can minimize the gap, the effect of the present invention can be obtained most efficiently.
  • the continuous processing type kneader
  • Continuous processing type can be continuous including pre-processing such as pre-mixing, post-processing such as kneading, dilution and dissolution. It is preferred because of that.
  • rotary blades used in such a ladder include a ⁇ -type, a Z-type, a cam-type, a mouth-type, an S-type, a shoes-tail type, and a knurled type. Can be raised.
  • the 21st type include stand-alone types such as the MS-type pressurized kneader of Moriyama Seisakusho, KRC 21st Kurimoto Steel Works, Fuji Bowdanel, Kobe Works, Toshiba Machinery, etc.
  • a continuous type of machine such as an extruder, a tabletop type machine manufactured by Irie Shokai Co., Ltd., a kneading machine manufactured by Takabayashi Rika Co., Ltd., and a laboratory plastic mill manufactured by Toyo Seiki Co., Ltd.
  • Such small ones can be mentioned.
  • the prepared mixture paint is applied on a current collector and dried.
  • the current collector is not particularly limited, and may be any electronic conductor that does not chemically change when it is made into a battery.
  • aluminum, aluminum alloy, nickel, stainless steel, titanium and the like are used.
  • aluminum and stainless steel whose surface has been treated with carbon, nickel, and titanium are also used.
  • aluminum or aluminum alloy is preferred.
  • As the shape of the current collector a film, a net, a porous body, a foam, and the like are used in addition to a foil. A thickness of 1 to 100 / m is used, and a thickness of 1 to 50 m is particularly preferable.
  • the application of the electrode active material mixture paint on the current collector is performed by the reverse roll method, the direct opening method, the blade method, the knife method, the extruder nozzle method.
  • the coating can be performed by a generally well-known coating method such as a bar coating method, a dip method, a kiss coating method, and a squeezing method.
  • the extrusion nozzle method is preferred, and a good coating layer surface condition can be obtained by selecting the solvent composition of the mixture and the drying conditions so that the coating is performed at a speed of 5 to 100 mZ. be able to.
  • the drying temperature is preferably from 30 to 150 ° C, more preferably from 50 to 140 ° C.
  • the temperature is lower than 30 ° C, drying of the solvent becomes insufficient. If the temperature exceeds 150 ° C, the evaporation rate of the solvent is too rapid, so that the binder is unevenly distributed on the surface layer of the electrode, and the electrode characteristics deteriorate. Sometimes.
  • the thickness, length and width of the coating layer are determined by the final size of the battery. It is preferable that the thickness of the coating layer is adjusted after coating by a commonly used press working.
  • the processing pressure is preferably 0.2 to 10 tZcm, and the processing temperature is preferably 10 to 150 ° C.
  • Figure 1 is a schematic diagram of a charge and discharge capacity measurement cell used in Example (Description of the Invention
  • An active material mixture paint was prepared as follows.
  • PVDF polyvinylidene fluoride
  • the prepared mixture paint is applied on one side of a current collector made of 20-thick aluminum foil with a bladecoil overnight, dried at 120 ° C, and then the other side of the current collector Similarly, this mixture was applied and dried. This was compression-molded with a roller-one press and cut into a predetermined size to obtain an electrode of Example 1 having a mixture layer thickness of 65 m on one side.
  • Example 2 The same active material, conductive agent, binder and solvent as used in Example 1 were used ( 5.3 parts by weight of binder was dissolved in 47.7 parts by weight of solvent, and 53 parts by weight of binder solution was added. Produced.
  • Kneaded material A 61.7 parts by weight and kneaded material B47.3 parts by weight, binder solution 27 parts by weight and solvent 31 parts by weight were added and dissolved with a hypermixer.
  • An active material mixture paint was obtained.
  • the final composition of the mixture paint is the same as that of the mixture paint of Example 1.
  • the prepared mixture paint was applied to a current collector in the same manner as in Example 1 to produce an electrode of Example 2.
  • Example 2 An active material mixture paint was obtained in the same manner as in Example 1 except that the conductive agent of Example 1 was changed to KS44 (BET specific surface area: 8.7 m 2 / g) manufactured by L0NZA.
  • KS44 BET specific surface area: 8.7 m 2 / g
  • the prepared mixture paint was applied to a current collector in the same manner as in Example 1 to produce an electrode of Example 3.
  • Example 1 Except that the conductive agent of Example 1 was changed to flaky natural graphite (LF-18 A made of Chuetsu Graphite, BET specific surface area 5.2 m 2 / g), the active material mixture was operated in the same manner as in Example 1. Paint was obtained.
  • flaky natural graphite LF-18 A made of Chuetsu Graphite, BET specific surface area 5.2 m 2 / g
  • the prepared mixture paint was applied to a current collector in the same manner as in Example 1 to produce an electrode of Example 4.
  • Example 2 The same active material, conductive agent, binder and solvent as used in Example 1 were used ( 5.3 parts by weight of binder was dissolved in 47.7 parts by weight of solvent, and 53 parts by weight of binder solution was added. Produced.
  • the active material (78 parts by weight) and the conductive agent (10.4 parts by weight) were dry-mixed with a hyper mixer, and the mixture was charged into a pressurized mixer. To the mixture was added 13 parts by weight of the binder solution, and the mixture was kneaded for 30 minutes while cooling the jacket of the pressure kneader with water. The kneaded material was taken out and set as kneaded material C.
  • kneaded material D Charge 97 parts by weight of the active material into a pressure kneader, add 13 parts by weight of the binder solution to the mixture, and cool the jacket of the pressure kneader with water for 30 minutes. Kneaded. The kneaded material was taken out and was referred to as kneaded material D.
  • the prepared mixture paint was applied to a current collector in the same manner as in Example 1 to produce an electrode of Comparative Example 1.
  • Example 2 The same active material, conductive agent, binder and solvent as used in Example 1 were used ( 5.6 parts by weight of the binder was dissolved in 0.5 parts by weight of the solvent to prepare 56 parts by weight of the binder solution). did.
  • kneaded material E 40 parts by weight of the conductive agent was charged into a pressurized container, and 16 parts by weight of the above binder solution was added thereto.
  • the jacket of the pressurized container was kneaded for 30 minutes while being cooled with water.
  • the kneaded material was taken out and was referred to as kneaded material E.
  • the prepared mixture paint was applied to a current collector in the same manner as in Example 1 to produce an electrode of Comparative Example 2.
  • the prepared mixture paint was applied to a current collector in the same manner as in Example 1 to produce an electrode of Comparative Example 3.
  • the prepared mixture paint was applied to a current collector in the same manner as in Example 1 to produce an electrode of Comparative Example 4.
  • the disperser residence time was set to 15 minutes. The mixture was dispersed to obtain a mixture paint.
  • the prepared mixture paint was applied to a current collector in the same manner as in Example 1 to produce an electrode of Comparative Example 5.
  • Example 1 was repeated except that the conductive agent of Example 1 was changed to acetylene black (Denka black manufactured by Denki Kagaku Kogyo, BET specific surface area: 60.2 m 2 / g). In the same manner as in the above, an active material mixture paint was obtained.
  • acetylene black Denki Kagaku Kogyo, BET specific surface area: 60.2 m 2 / g.
  • the prepared mixture paint was applied to a current collector in the same manner as in Example 1 to produce an electrode of Comparative Example 6.
  • Example 1 to 4 and Comparative Examples 1 to 6 were cut into a length of 25 mm and a width of 20 mm, and the upper end was removed with a width of 5 mm to form a 20 mm square electrode layer. left.
  • a stainless wire was spot-welded as a lead to the upper end from which the electrode layer had been removed to form this electrode (working electrode).
  • a charge / discharge capacity measurement cell was prepared as shown in FIG. 1, and charge / discharge was performed as follows.
  • a lugine tube having a pair of counter electrodes (4) using a lithium plate connected to a stainless steel wire and a similar reference electrode (5) in a beaker (1) (6) and the electrode (working electrode) (3) created above were placed between the two counter electrodes.
  • the electrolyte solution (7) was prepared by dissolving 1 mo 1/1 lithium perchlorate in a 1: 1 (volume ratio) mixed solvent of ethylene carbonate and getylkaline as an electrolyte salt.
  • the cell for measurement was prepared by sealing 1) and lugine tube (6) with silicon stoppers (2) and (8), respectively.
  • This cell was charged and discharged 5 times at a constant current of 6 mA in the range from 3 V to 4.2 V (Potentia 1 vs. Li / Li + ). i
  • the capacity during ion occlusion was measured and used as the initial capacity.
  • the capacity of the fifth cycle was also measured, and the charge / discharge cycle characteristics were obtained.
  • Comparative Examples 1 to 5 the charge and discharge capacity was small and the cycle characteristics were inferior, although the final composition of the mixture paint was the same as in Examples 1 and 2.
  • Comparative Example 6 acetylene black was used as the conductive agent, and the adhesion was poor.
  • a lithium composite oxide as an active material and flaky graphite as a conductive agent are kneaded under specific conditions. Therefore, sufficient electrode conductivity can be obtained with a small amount of the conductive agent. As a result, the amount of active material in the electrode unit volume can be increased, and a high charge / discharge capacity per electrode volume can be obtained. It also stabilizes the physical properties of the coating.
  • the present invention contributes to improvement of charge / discharge characteristics such as discharge capacity and charge / discharge cycle life of a nonaqueous electrolyte battery, and improvement of physical characteristics of an electrode coating film.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Dispersion Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

明 細 書 非水電解質電池用電極の製造方法
技術分野
本発明は、 非水電解質電池用電極の製造方法に関し、 より詳しく は、 リ チウム複合酸化物からなる活物質と、 鱗片状を呈するグラフアイ トか らなる導電剤とを含む電極活物質層を有し、 充放電特性と活物質層の物 理的特性に優れる非水電解質電池用電極を製造する方法に関する。 背景技術
近年の電子分野の発展はめざま しく、 ビデオカメ ラ、 液晶カメ ラ、 携 帯電話、 ラ ップ ト ップコンピュータ一、 ワープロ等の小型化、 軽量化が 進み、 それらの電源と して、 より小型、 軽量でしかも高工ネルギ一密度 を有する電池の開発への要求が高まつている。
従来、 これらの電子機器には鉛電池や二ッケルカ ドミ ゥム電池が使わ れてきたが、 これらは小型化、 軽量化、 高エネルギー密度化の要求に対 して十分に応えることができていない。
このような要求に応える電池と して、 負極に金属リチウムやリチウム を吸蔵 · 脱離できる物質を用いる非水電解液二次電池の開発が進められ- リ チウムコバルト酸化物 ( L i C o 0 2 ) を正極材料と して用いたもの がすでに実用化されている。 この電池は、 これまでの小型二次電池に比 ベて高電圧、 かつ高エネルギー密度であるという特性を有する。 そのた め、 コ一 ドレス機器の駆動用電源と しての期待が大き く 、 従来の電池よ り も小型軽量な二次電池を作ることができる。
また、 さ らなる小型化、 軽量化、 高エネルギー密度化を実現するため に、 活物質等の研究開発が盛んになされ、 正極活物質と してはリチウム ニッケル複合酸化物 L i N i 0 2 も提案されている。
ところで、 非水電解質電池の電極では、 一部のものを除いては活物質. の電気伝導度が悪いため、 導電剤が使用される。
例えば、 特開昭 6 2— 1 5 7 6 1号公報には、 導電剤と してァセチレ ンブラ ッ クを用いた非水電解質二次電池が記載されている。 導電剤と し てアセチレンブラ ッ クを用いた場合は、 アセチレンブラ ッ クの表面積が 大きいことから電極塗膜の集電体への付着性が悪く剝がれやすいとか、 電極塗膜が固く なり電極の柔軟性が悪く なつて電極が割れやすく なると いう問題ある。 アセチレンブラ ッ クは集合した形態をと りやすく 、 この ため比表面積が大きい割にはァセチレンブラ ッ クの表面が活物質と接触 している面積とァセチレンブラ ッ ク全体の表面積の比は大き く ない。 電 極の物理的特性の改善を目的と してアセチレンブラ ッ クの量を減らせば- 導電剤と しての効果が低く なつてしま う。
これに対して、 導電剤と してグラフアイ 卜を用いた場合は電極塗膜の 柔軟性はよいのだが、 ダラファイ トは多量に用いないと導電剤と しての 効果が発揮されにく い。 例えば、 特開平 1 一 1 0 5 4 5 9号公報には、 L i M n 2 0 4 及びグラフアイ トを主体とする正極と負極と非水電解液 よりなり、 上記し i M n 2 0 4 及びグラフアイ 卜の合計量中のグラファ ィ 卜量が 8〜 2 2重量%である非水電解液二次電池が開示されている。 これはグラフアイ トを導電剤と して使用する場合には、 グラフアイ トを 多量に添加しないと効果が発揮されないことを意味している。
特開平 4 - 2 1 5 2 5 2号公報には、 非水電解質二次電池において、 正極の導電剤と して鱗片状黒鉛を用いることが開示されている。 このよ うに、 黒鉛導電剤に関する開示はあるものの、 特定条件の混練操作の開 示はない。 一般的には、 導電剤の量が多い方が活物質の有する性能を引き出しや すい。 しかし、 電極に導電剤を多く入れると単位体積中の活物質量が減 つてしまい、 その結果、 電池と しては容量が減ってしまう ことになる。 このため活物質の性能を引き出しながら、 導電剤量を少なくするように 努力されている。
しかしながら、 従来の電極合剤塗料の調製方法では、 十分な電極導電 性を得るためには、 多量の導電剤を電極合剤中に添加する必要があつた その結果と して、 電極体積当たりあるいは電極重量当たりの充放電容量 が低下するという問题があつた。
また、 非水電解質二次電池は使用を重ねるごとに容量が減っていく劣 化が起こる。 この電池の劣化原因の一つに、 電極中の活物質と導電剤と の接触性が悪く なり、 外部に電気が取り出せなく なるという ことが考え られる。
このような観点から、 グラフアイ 卜からなる導電剤量をできるだけ少 なく しつつ、 且つ電極中の活物質と導電剤との接触性を良好に維持する ことが望ま しい。 発明の開示
発明の目的
そこで、 本発明の目的は、 上記従来技術の問題点を解決し、 放電容量 及び充放電サイ クル寿命等の充放電特性の向上と、 塗膜の物理的特性が 改善された非水電解質電池用電極の製造方法を提供することにある。 発明の概要
本発明者は鋭意研究した結果、 活物質と してリチウム複合酸化物およ び導電剤と して鱗片状を呈するグラファィ 卜を用いた場合に、 これらを 特定条件下で混練することによって、 少ない導電剤量でも、 良好な充放 電特性と、 安定した塗膜の物理的特性を有する電極が得られることをこ とを見出し、 本発明を完成した。
すなわち、 本発明は、 リチウム複合酸化物からなる活物質と、 鱗片状 を呈するグラフアイ 卜からなる導電剤と、 結合剤とを少なく と も含む電 極活物質合剤塗料を調製し、 この活物質合剤塗料を集電体上に塗布する 非水電解質電池用電極の製造方法であって、 前記活物質の B E T法によ る比表面積を S a、 前記活物質の混練時の配合重量を W a、 前記グラフ アイ 卜の B E T法による比表面積を S g、 前記グラフアイ 卜の混練時の 配合重量を Wgと したときに、 下記式 :
Wa 0. 5xS
Wg Sa を満足する条件で、 少なく と も前記活物質と、 前記グラフアイ 卜と、 結 合剤及び Z又は溶剤とを混練装置により混練して合剤塗料を調製するこ とを含む、 非水電解質電池用電極の製造方法である。
本発明において、 リチウム複合酸化物が、 L i N i y Mz 02 (こ こで、 Xは 0. 8く Xく 1. 5、 y + zは 0. 8く y + zく 1. 2、 z は 0≤ zく 0. 3 5である。 Mは、 C o、 Mg、 C a、 S r、 A l、 M n及び F eから選ばれる少なく と も 1種の元素を表す。 ) であることが 好ま しい。
また、 本発明において、 リチウム複合酸化物の B E T法による比表面 積 S aが、 0. l〜 5 m2 / gであることが好ま しい。
さ らに、 本発明において、 グラフアイ 卜の B E T法による比表面積 S g力 、 3〜 3 0 m2 Z gであることが好ま しい。
本発明によれば、 活物質合剤塗料調製時に、 活物質と してのリチウム 複合酸化物及び導電剤と しての鱗片伏を呈するグラフアイ トを、 特定条 件下で混練するので、 少ない導電剤量で十分な電極導電性が得られる。 その結果、 電極単位体積中の活物質量を多くすることができ、 電極体積. 当たりの高い充放電容量が得られる。 また、 塗膜の物理的特性も安定す る。
発明の詳細な説明
本発明において活物質と して、 リチウム複合酸化物を用いる。 リ チウ ム複合酸化物と しては、 例えば、 L i x C o 02 ( 0 < ≤ 1 . 0 ) 、 L i N i 0 ( 0 < x≤ 1 . 0 ) , L i 1 + x M n -x 0 ( 0 ≤ x ≤ 1 / 3 ) 、 L i (M, M n ) 2 04 (M = C r , C o , A 1 , B ) など が挙げられる。 本発明においては、 リチウム複合酸化物が、 L i x N i y Mz 0 (ここで、 xは 0. 8 く xく 1 . 5、 y + z は 0. 8 く y + z < 1 . 2、 z は 0 ≤ z < 0. 3 5である。 Mは、 C o、 M g、 C a、 S r、 A 1、 M n及び F eから選ばれる少なく と も 1種の元素を表す 。 ) であることが、 高容量、 安価である点からとりわけ好適である。 こ の場合に、 金属 Mは C 0がより好ま しく 、 2種類以上の金属でもよい。 また、 本発明においては、 上記リチウム複合酸化物の B E T法による 比表面積 S aは、 0. l〜5 m2 Z gであることが好ま し く、 0. 3〜 2 m2 ノ gであることがより好ま しい。
このようなリチウム複合酸化物の製造方法と しては、 例えば、 L i M etal3 + 0 (ここで、 Metalは N i を主体と して、 C o、 M g、 C a、 S r、 A 1、 M n及び F eから選ばれる少なく とも 1種の元素を含む) 焼成時に揮散する陰ィォンをそれぞれ含むアル力 リ性水溶性リチウム化 合物と塩基性金属塩とを水媒体中で反応させてスラ リ一を得て、 得られ たスラ リ 一を乾燥した後、 焼成する方法を例示することができる。
塩基性金属塩は、 Metal2+ ( O H) 2nk (A n_) k · m H 2 0で表さ れるものである。 ここで、 Metal2 +には、 N iを主体と して、 場合によ つては C o、 M g、 C a、 S r、 A 1、 M n及び F eから選ばれる少な く と も 1種の元素を含む。 A は、 硝酸イオン、 塩素イオン、 臭素ィォ ン、 酢酸イオン、 炭酸イオン等の n価 (n = l〜 3 ) のァニオンを表わ す。 また、 kは、 0. 0 3 ≤ k≤ 0. 3、 mは、 0≤mく 2である。 この式で示される塩基性金属塩は、 Metal 2 +の水溶液に、 Metal2 +に 対して、 約 0. 7〜 0. 9 5当量、 好ま しく は約 0. 8〜 0. 9 5当量 のアルカ リ を約 8 0で以下の反応条件下で加えて反応させた後、 4 0 °C 〜 7 0 °Cで 0. 1〜 1 0時間熟成し、 水洗により副生物を取り除く こと により製造することができる。 ここで用いるアルカ リ と しては、 水酸化 ナ ト リ ゥム等の水酸化アル力 リ金属、 水酸化カルシウム等の水酸化アル カ リ土類金属、 ア ミ ン類等が挙げられる。
この式で示される化合物より選択される塩基性金属塩と、 水酸化リチ ゥム、 炭酸リチウム又はこれらの水和物などの中から選択される 1種ま たは複数のリチウム化合物とを水中で、 反応液の濃度と しては 5〜 2 5 重量%の範囲で、 また反応温度は室温〜 1 0 0 °Cの範囲で反応を行いス ラ リ ーを得る。 そして、 組成物の形状の均一性を向上させるために噴霧 乾燥を行う。
この乾燥物を空気や酸素あるいはオゾン等を含む酸化力を有したガス 雰囲気下で、 約 7 0 0〜 1 0 0 0での温度領域で、 約 0. 1〜 2 0時間 加熱処理して焼成することにより、 リチウム複合酸化物を得ることがで きる。
本発明に使用される リ チウム複合酸化物の別の製造方法と して、 水溶 性金属化合物から得られる塩基性炭酸金属と水溶性リチゥム化合物とを 使用する方法を例示することができる。
ここで用いられる水溶性金属化合物は、 硝酸塩、 硫酸塩、 金属塩化物 等であり、 この水溶性金属化合物は、 ニッケル化合物を主体と して、 C 0、 M g、 C a、 S r、 A 1、 M n及び F eから選ばれる少なく と も 1 種の元素が配合できるように、 さ らに所定量の別の水溶性金属化合物を 混合したものでよい。
塩基性炭酸金属は、 上記水溶性金属化合物の混合物と、 炭酸アルカ リ、 重炭酸アル力 リ、 炭酸ァンモニゥム及び重炭酸ァンモニゥムからなる群 から選ばれる化合物とを水中で反応させて得られる沈殿物や、 さ らにこ の反応系に水酸化ナ ト リ ゥムを存在させて反応させて得られる沈澱物を、 濾過、 乾燥することによって得られる。 この場合に、 良好な沈殿を生成 させるには、 炭酸根が若干過剰となるように使用するのが良く 、 沈殿の 比表面積を制御するために攪拌条件を制御すること も重要である。
このようにして得られた塩基性炭酸金属に、 炭酸リチウム、 水酸化リ チウム等の水溶性リ チウム化合物の粉末を、 前記金属と L i を所望の比 率で混合する。 この混合物を、 粉末のまま先ず不活性ガス又は酸素含有 ガスの存在下で、 3 0 0〜 5 0 0 °Cに加熱する。 この加熱により、 塩基 性炭酸金属の分解のみが進行し、 結晶構造中の炭酸ガスが離脱する。 こ の加熱を炭酸ガスの発生が実質的に終了するまで続け、 塩基性炭酸金属 のすベてを多数の微細な孔を有する酸化金属に変換する。
炭酸ガスの発生が実質的に終了した後、 さ らに昇温すると、 溶融した 水溶性リチウム化合物が酸化金属の微細孔中に侵入し、 両者が極めて密 接な接触状態になる。 ここで酸素ガス又は酸素富化空気の存在下で 7 0 0 ~ 9 0 0 °Cの温度で焼成すると、 N i は 2価から 3価になり、 L i 複 合酸化物が生成する。
ここで用いる塩基性炭酸金属は、 比表面積が大きな (例えば、 1 0 0 m 2 / g以上) ものほど、 ガス放出と予備焼成後の微細孔生成が効率化 されるために好ま しい。 次に導電剤について説明する。 グラフアイ トは劈開性があるため、 こ の性質を利用してグラフアイ トを劈開させれば比表面積が増えても粒径 はほとんど小さ く ならない。 ただしグラフアイ トはスタ ッ ク しゃすく、 . スタ ッ ク したものをほぐそう と して下手に剪断力等をあたえると、 余計 にスタ ッ クさせてしまいやすい。 例えばボールミ ル等でグラファイ トを 粉砕しょう とすると、 粉砕はされるがスタ ッ ク もしゃすい。
スタ ック したものは測定気体では面と して測定されるが、 活物質との 接触という点ではその面は有効に利用されていない。 スタ ッ ク したもの に圧を加えると面同士がく つついて測定気体でも測定されなくなってい
< o
鱗片状を呈するグラフアイ トは硬度が低く潤滑性があり、 活物質は比 較的硬度が高い。 従って、 活物質と前記グラブアイ トを混練すると、 活 物質はあま り壊されないで、 鱗片状を呈するグラフアイ トは結晶面では がれるように粉砕される。
そこで、 本発明において導電剤と して、 鱗片状を呈するダラファイ ト を用いる。 このようなグラフアイ 卜は、 天然黒鉛あるいは人造黒鉛であ つて、 その形状が鱗片状を呈するものである。 本発明における鱗片状と は、 鱗片状、 鱗状、 薄片状、 層状、 雲母状などの薄層が積層された形状 を指す。 具体的に天然黒鉛は、 その産地によって形状が異なるが、 粉砕、 分級などの後加工によって、 形状を本発明でいう鱗片状を呈するように したものであってもかまわない。 また人造黒鉛は、 合成直後から上記の 鱗片状を呈するものが好ま しいが、 天然黒鉛同様に、 粉砕、 分級などの 後加工で鱗片状を呈するようにしてもよい。 これらの黒鉛の中でも、.鱗 片伏構造がそろうなどの理由から分級した黒鉛がもつと も好ま しい。 このような鱗片状を呈するグラフアイ トと しては、 中越黒鉛工業所の
L F シリ ーズ、 昭和電工の U F Gシリ ーズ、 L 0 N Z Aの K S シリ ーズ. 関西熱化学の M I C RO C ARB O— Gシリーズ、 ェコス技研のェコス 力一ボンシリ 一ズ、 天然に産する鱗片状ダラファイ ト、 鱗状グラフアイ トなどが挙げられる。
本発明において、 上記グラフアイ 卜の B E T法による比表面積 S は、 3〜 3 0 m2 /gであることが好ま しく 、 5〜 1 5 m2 Zgであること がより好ま しい。
また、 導電剤と してのグラフアイ トの配合量は、 活物質の比表面積等 により異なるが、 乾燥塗膜中の 0. 1〜 1 5重量%が好ま しく、 1〜 1 0重量%がより好ま しい。
本発明において結合剤と しては、 熱可塑性樹脂またはゴム弾性を有す るポリマ一を、 一種または二種以上を混合して用いることができる。 結 合剤の例と しては、 フッ素系ポリマ一、 ポリ ビニルアルコール、 カルボ キシメ チルセルロース、 ヒ ドロキシプロ ピルセルロース、 再生セル口一 スジァセチルセルロース、 ポリ ビニルク ロ リ ド、 ポリ ビニルピロ リ ドン、 ポリエチレン、 ポリ プロピレン、 E P DM、 スルホン化 E P DM、 S B R、 ポリ ブタジエン、 ポリエチレンォキシ ド等をはじめと して公知のも のを挙げることができる。
これらの中でも含フ ッ素系ポリマーは、 フ ッ素原子 Z炭素原子の原子 比が 0. 7 5以上 1. 5以下であるものが好ま しく 、 0. 7 5以上 1. 3以下であるものがさらに好ま しい。 この値が、 1. 5より大きい場合. 電池の容量が充分には得られにく く、 一方、 0. 7 5未満の場合、 電解 液に結合剤が溶解する傾向がある。
このような含フッ素系ポリ マーと しては、 ポリ テ トラフルォロェチレ ン、 ポリ フッ化ビニリデン、 フ ッ化ビニリデン一三フ ッ化工チレン共重 合体、 エチレン—テ トラフルォロエチレン共重合体、 プロピレンーテ ト ラフルォロェチレン共重合体等が挙げられる。 また主鎖の水素をアルキ ル基で置換した含フッ素系ポリマーも用いることができる。
これらの中でも選択溶解性を示す (電解液に対する溶解性が低く 、 溶 解可能な溶媒がある) ものが好ま しい。 例えば、 フッ化ビニリデン系ポ リ マーの場合、 電解液に用いられるカーボネー 卜系の溶媒等には溶解し にく いが、 N , N —ジメチルホルムア ミ ド、 N —メチルピロ リ ドン等の 溶剤には溶解可能である。
このような結合剤の配合量は、 活物質や導電剤の比表面積、 粒度分布、 目的とする電極の強度等により異なるが、 乾燥塗膜中の 2 ~ 2 0重量% が好ま しく 、 3〜 1 5重量%がより好ま しい。
また、 電極活物質合剤塗料用の溶剤と しては、 特に限定されることな く 、 前記の結合剤を溶解、 希釈またはェマルジヨ ンの様な分散体を作成 可能な一般の溶剤を使用することができる。 溶剤と して、 具体的には、 へキサン等の飽和炭化水素類、 トルエン、 キシレン等の芳香属炭化水素 類、 メ タノール、 エタノール、 プロパノール、 ブ夕ノール等のアルコ一 ル類、 アセ ト ン、 メチルェチルケ ト ン、 メチルイ ソプチルケ ト ン、 ジィ ソブチルケ ト ン、 シクロへキサノ ン等のケ ト ン類、 酢酸ェチル、 酢酸ブ チル等のエステル類、 テ トラ ヒ ドロフラ ン、 ジォキサン、 ジェチルエー テル等のェ一テル類、 N, N —ジメチルホルムア ミ ド、 N —メチルピロ リ ドン、 N , N —ジメチルァセ トア ミ ド等のァ ミ ド類、 エチレンク ロラ ィ ド、 クロルベンゼン等のハロゲン化炭化水素、 水、 各種水溶液等をは じめと して公知の溶剤を挙げることができる。 これらのなかでも、 ア ミ ド系の溶剤が含フ ッ素系ポリマ一を溶解可能なため好ま しい。 これらの 溶剤は、 単独でも 2種以上の混合したものでも使用することができる。 本発明においては、 以上述べたリチゥム複合酸化物からなる活物質と - 鱗片状を呈するグラフアイ 卜からなる導電剤と、 結合剤及び Z又は溶剤 とを、 前記活物質の B E T法による比表面積を S a、 前記活物質の混練 時の配合重量を W a、 前記グラフアイ 卜の B E T法による比表面積を S g、 前記グラフアイ 卜の混練時の配合重量を W gと したときに、 下記式 を満足する条件で、 混練装置を使用して混練する。
W a 0 . 5 X S g
W g S a このような条件に合致するように、 グラフアイ 卜の全量に対して、 活 物質を高い重量比率で用いて混練操作を行う ことにより、 グラフアイ ト の少ない量で導電性効果が発揮される。
すなわち、 鱗片状を呈するグラファイ トは硬度が低く潤滑性があり、 活物質は比較的硬度が高い。 従って、 高い重量比率の活物質と前記ダラ ファイ トとを混練すると、 活物質はあま り壊されないで、 鱗片状を呈す るグラフアイ トは結晶面ではがれるように粉砕され、 グラフアイ 卜のス タ ッ クを取り除く ことができる。 その結果、 グラフアイ 卜の活物質と接 触できる有効な面が多く なり、 導電性効果が高く なる。
混練の具体的操作と しては、 まず鱗片状を呈するグラフアイ 卜からな る導電剤の全量に対して、 上記数式を満たすように、 活物質を可能な範 囲で高い重量比率に設定して配合し、 そこに結合剤溶液、 結合剤及び/ 又は溶剤を加え、 混練機を使用して混練するとよい。
この操作において、 活物質の全量をグラフアイ 卜と混練してもよいし、 あるいは、 上記数式を満たすように、 活物質の一部の量をグラフアイ ト と混練して、 その後、 別途結合剤溶液又は溶剤と混練された活物質を混 合してもよい。
活物質とグラファイ トに液体を加えて混練することで剪断力を得るこ とができる。 この液体は溶剤であってもよいが、 より高い剪断力を必要 とするときは、 粘度の高い結合剤を溶剤に溶かした結合剤溶液を用いる とよい。 また、 結合剤が液状の場合はそのまま用いてもよいが、 剪断力 が強すぎる場合は結合剤に溶剤を加えて粘度を く した結合剤溶液を用 いることがよい。 とく に諸物性を確認しながら選択することが可能であ るため、 結合剤と溶剤を併用することが好ま しい。
この混練操作の後、 目的とする合剤塗料の最終配合比となるように、 所望の材料を加えるとよい。 また、 必要に応じて、 ハイパーミ キサー、 ディ ゾルバ一、 サン ドグライ ンダ一 ミ ル等の攪拌混合機による分散を行 つて、 電極活物質合剤塗料を塗布機の条件にあうように最終調整を行つ てもよい。
混練時には、 使用する混練機の混練容積に見合う材料量を配合して、 十分に混練を行う必要がある。 また、 混練機に空隙がないように混練操 作しないと、 グラフアイ 卜の粉砕が不十分になり、 本発明の目的を達成 し難く なる。
本発明において混練装置と しては、 二一ダー、 プラネタ リ 一 ミ キサー- 二本ロールミ ル、 三本ロールミ ル、 バンバリ 一 ミ キサー等が使用される c ニーダー (捏和機) は回転ブレー ドと混練槽との間で剪断を与える装置 をいう。 二一ダ一の形式には、 単独処理型、 連続処理型があるが、 その いずれを使用してもよい。
単独処理型の例と しては、 オープン型二一ダ一、 加圧型二一ダ一など が挙げられる。 オープン型は上部が開放されているために、 空隙が生じ てしま うので、 本発明の目的を達成することにはやや不向きである。 加 圧型は空隙を最小限に設定することができるので、 最も効率よ く本発明 の効果を得ることができる。 また、 連続処理型のニーダ一は、 送り出し
(フィ ー ド) 構造を有するため、 加圧型に比べてわずかに空隙が生じる 力 、 本発明の効果を損なう ことはない。 連続処理型の二一ダ一は、 予備 混合などの前処理、 混練、 希釈 · 溶解などの後処理を含めて連続化でき ることから好ま しい。
このような二一ダ一に用いられる回転ブレー ドの具体例と しては∑型、 Z型、 カム型、 口一ラ型、 S型、 フイ ツ シュテール型、 ノくンバリ ー型な どを掲げることができる。
二一ダ一の具体例と しては、 森山製作所の M S式加圧式ニーダーなど の単独型二一ダー、 栗本鉄鋼所の K R C二一ダ一、 不二バウダネル、 神 戸製鉄所、 東芝機械などのェクス トル一ダーなどの連続二一ダー、 さら に、 株式会社入江商会製の卓上型二—ダー、 高林理化株式会社製の捏和 機、 株式会社東洋精機のラボプラス ト ミ ルゃブラベンダ一のような小型 のものを挙げることができる。
調製された合剤塗料を集電体上に塗布し乾燥する。 集電体は特に限定 されるものではなく 、 電池化した際に、 化学変化しない電子伝導体であ れば何でもよい。 例えば、 アルミニウム、 アルミニウム合金、 ニッケル、 ステン レス、 チタ ン等が用いられる。 これらのほかに、 アルミニウムや ステン レスの表面がカーボン、 ニッケル、 チタ ンで処理されたものも用 いられる。 特に、 アルミ ニウムあるいはアルミ ニウム合金が好ま しい。 集電体の形状と しては、 箔の他、 フィ ルム、 ネッ ト、 多孔質体、 発泡体 等が用いられる。 厚みは 1〜 1 0 0 / mのものが用いられ、 特に 1〜 5 0 mが好ま しい。
集電体上への電極活物質合剤塗料の塗布は、 リバースロール法、 ダイ レク ト口一ル法、 ブレ一ド法、 ナイフ法、 ェクス トル一ジョ ンノズル法. カーテン法、 グラ ビアロール法、 バ一コー ト法、 ディ ップ法、 キスコ一 ト法、 スクイズ法などの一般的によく知られた塗布法によつて行う こと ができる。 中でもェクス トルージョ ンノズル法が好ま しく 、 5〜 1 0 0 m Z分の速度で塗布されるように、 合剤の溶剤組成、 乾燥条件を選定す ることにより、 良好な塗布層の表面状態を得ることができる。 乾燥温度は 3 0〜 1 5 0 °Cが好ま しく 、 5 0〜 1 4 0 °Cが更に好ま し い。 3 0 °C未満では溶剤の乾燥が不十分となり、 1 5 0 °Cを越えると溶 剤の蒸発速度が急激すぎるために電極の表層に結合剤が偏在することと なり、 電極特性が劣化することがある。
また塗布層の厚み、 長さや巾は、 最終的な電池の大きさにより決定さ れる。 塗布層の厚みは塗布後に、 一般に採用されているプレス加工によ つて調整することが好ま しい。 その加工圧は、 0. 2〜 1 0 t Z c m、 加工温度は、 1 0 ~ 1 5 0 °Cが好ま しい。 図面の簡単な説明
第 1図は、 実施例で用いられた充放電容量測定用セルの概略図である ( 発明を実施するための形態
以下に実施例を挙げて本発明をさ らに具体的に説明するが、 本発明は これら実施例に限定されるものではない。
[実施例 1 ]
活物質合剤塗料を以下のように作製した。
(塗料配合組成)
活物質 : L i N i 8 C 0 2 02 9 2重量部
B E T比表面積 0. 5 m2 Z g
導電剤 : L ON Z A製 G r a p h i t e K S 2 5 4重量部
B E T比表面積 1 1. 8 m2 Zg
結合剤 : エルファ トケムジャパン K Y N A R 7 4 1 4重量部 ポリ フ ッ化ビニリ デン (P V D F)
溶剤 : N—メチルー 2—ピロ リ ドン (NMP) 6 7重量部 結合剤 4重量部を溶剤 3 6重量部に溶解し、 結合剤溶液 4 0重量部を 作製した。 活物質 9 2重量部と導電剤 4重量部をハイパー ミキサーで乾 式混合し、 この混合物を加圧二一ダ一に投入した。 この混合物に上記結 合剤溶液 1 3重量部を加え、 加圧二一ダ一のジャケッ 卜を水冷しながら、 3 0分間混練した。 この混練物を取り出し、 結合剤溶液 2 7重量部と溶 剤 3 1重量部を加えて、 ハイパーミ キサーにて溶解し、 活物質合剤塗料 を得た。
調製された合剤塗料を、 ブレー ドコ一夕一にて 2 0 厚のアルミ 二 ゥム箔からなる集電体の片面に塗布し、 1 2 0 °Cで乾燥した後、 集電体 他面に同様にこの合剤を塗布 · 乾燥した。 これをローラ一プレス機にて 圧縮成型し、 所定の大きさに切断し、 片面の合剤層厚さ 6 5 mの実施 例 1 の電極を得た。
[実施例 2 ]
実施例 1 で用いたのと同じ活物質、 導電剤、 結合剤及び溶剤を用いた ( 結合剤 5 . 3重量部を溶剤 4 7 . 7重量部に溶解し、 結合剤溶液 5 3 重量部を作製した。
活物質 8 8重量部と導電剤 7重量部をハイパー ミ キサ一で乾式混合し. この混合物を加圧二一ダ一に投入した。 この混合物に上記結合剤溶液 1 3重量部を加え、 加圧ニーダ一のジャケッ トを水冷しながら、 3 0分間 混練した (混練時重量比 W a : W g = 5 0 : 4 ) 。 この混練物を取り出 し、 混練物 Aと した。
活物質 9 7重量部を加圧二一ダ一に投入し、 これに上記結合剤溶液 1 3重量部を加え、 加圧二一ダ一のジャケッ 卜を水冷しながら、 3 0分間 混練した。 この混練物を取り出し、 混練物 Bと した。
混練物 A 6 1 . 7重量部と混練物 B 4 7 . 3重量部と結合剤溶液 2 7重量部と溶剤 3 1重量部とを加えて、 ハイパー ミ キサーにて溶解し. 活物質合剤塗料を得た。 この合剤塗料の最終配合組成は、 実施例 1の合 剤塗料と同じである。
調製された合剤塗料を、 実施例 1 と同様にして集電体に塗布し、 実施 例 2の電極を作製した。
[実施例 3 ]
実施例 1の導電剤を L 0 N Z A製の K S 4 4 (B E T比表面積 8. 7 m2 /g) に変更した以外は、 実施例 1 と同様の操作で活物質合剤塗料 を得た。
調製された合剤塗料を、 実施例 1 と同様にして集電体に塗布し、 実施 例 3の電極を作製した。
[実施例 4 ]
実施例 1の導電剤を鱗片状天然黒鉛 (中越黒鉛製 L F - 1 8 A、 B E T比表面積 5. 2 m2 /g) に変更した以外は、 実施例 1 と同様の操作 で活物質合剤塗料を得た。
調製された合剤塗料を、 実施例 1 と同様にして集電体に塗布し、 実施 例 4の電極を作製した。
[比較例 1 ]
実施例 1で用いたのと同じ活物質、 導電剤、 結合剤及び溶剤を用いた ( 結合剤 5. 3重量部を溶剤 4 7. 7重量部に溶解し、 結合剤溶液 5 3 重量部を作製した。
活物質 7 8重量部と導電剤 1 0. 4重量部をハイパーミキサ—で乾式 混合し、 この混合物を加圧二一ダ一に投入した。 この混合物に上記結合 剤溶液 1 3重量部を加え、 加圧ニーダ一のジャケッ トを水冷しながら、 3 0分間混練した。 この混練物を取り出し、 混練物 Cとした。
活物質 9 7重量部を加圧ニーダ一に投入し、 これに上記結合剤溶液 1 3重量部を加え、 加圧ニーダ一のジャケッ トを水冷しながら、 3 0分間 混練した。 この混練物を取り出し、 混練物 Dと した。
混練物 C 3 9重量部と混練物 D 7 0 . 3重量部と結合剤溶液 2 6 . 7重量部と溶剤 3 1重量部とを加えて、 ハイパー ミ キサーにて溶解し、 活物質合剤塗料を得た。 この合剤塗料の最終配合組成は、 実施例 1 の合 剤塗料と同じである。
調製された合剤塗料を、 実施例 1 と同様にして集電体に塗布し、 比較 例 1 の電極を作製した。
[比較例 2 ]
実施例 1 で用いたのと同じ活物質、 導電剤、 結合剤及び溶剤を用いた ( 結合剤 5 . 6重量部を溶剤 5 0 . 重量部に溶解し、 結合剤溶液 5 6 重量部を作製した。
導電剤 4 0重量部を加圧二一ダ一に投入し、 これに上記結合剤溶液 1 6重量部を加え、 加圧二一ダ一のジャケッ トを水冷しながら、 3 0分間 混練した。 この混練物を取り出し、 混練物 Eと した。
活物質 9 7重量部を加圧二—ダ一に投入し、 これに上記結合剤溶液 1 3重量部を加え、 加圧ニーダ一のジャケッ トを水冷しながら、 3 0分間 混練した。 この混練物を取り出し、 混練物 Fと した。
混練物 E 5 . 6重量部と混練物 F 1 0 4 . 3重量部と結合剤溶液 2 6 . 1重量部と溶剤 3 1重量部とを加えて、 ハイパー ミ キサ一にて溶 解し、 活物質合剤塗料を得た。 この合剤塗料の最終配合組成は、 実施例 1 の合剤塗料と同じである。
調製された合剤塗料を、 実施例 1 と同様にして集電体に塗布し、 比較 例 2の電極を作製した。
[比較例 3 ]
実施例 1 で用いたのと同じ活物質、 導電剤、 結合剤及び溶剤を用いた, 結合剤 4重量部を溶剤 3 6重量部に溶解し、 結合剤溶液 4 0重量部を 作製した。
活物質 9 2重量部と導電剤 4重量部をへンシ ルミ キサ一で乾式混合 し、 この混合物に上記結合剤溶液 1 3重量部を加え、 ヘンシェルミ キサ. —のジャケッ トを水冷しながら、 3 0分間混合した。 この混合物に、 結 合剤溶液 2 7重量部と溶剤 3 1重量部を加えて溶解し、 活物質合剤塗料 を得た。
調製された合剤塗料を、 実施例 1 と同様にして集電体に塗布し、 比較 例 3の電極を作製した。
[比較例 4 ]
実施例 1で用いたのと同じ活物質、 導電剤、 結合剤及び溶剤を用いた c 結合剤 4重量部を溶剤 3 6重量部に溶解し、 結合剤溶液 4 0重量部を 作製した。
活物質 9 2重量部と導電剤 4重量部をハイパー ミ キサ一で乾式混合し、 この混合物に上記結合剤溶液 4 0重量部と溶剤 3 1重量部を加えて、 3 0分間攪拌混合して、 活物質合剤塗料を得た。
調製された合剤塗料を、 実施例 1 と同様にして集電体に塗布し、 比較 例 4の電極を作製した。
[比較例 5 ]
比較例 4で得た活物質合剤塗料をさ らに、 分散メディ ァをジルコニァ ビーズと したピン型サン ドグライ ンダ一 ミ ル ( S G M ) を用いて、 分散 機滞留時間 1 5分となるように分散し、 合剤塗料を得た。
調製された合剤塗料を、 実施例 1 と同様にして集電体に塗布し、 比較 例 5の電極を作製した。
[比較例 6 ]
実施例 1 の導電剤をァセチレンブラ ッ ク (電気化学工業製デンカブラ ッ ク、 B E T比表面積 6 0 . 2 m 2 / g ) に変更した以外は、 実施例 1 と同様の操作で活物質合剤塗料を得た。
調製された合剤塗料を、 実施例 1 と同様にして集電体に塗布し、 比較 例 6の電極を作製した。
実施例 1 ~ 4及び比較例 1〜 6で得られた各電極について、 以下の評 価を行った。
(付着性)
J I S K 5 4 0 0 8. 5. 1 碁盤目法に準じて試験を行い、 活物質塗膜のアルミ二ゥム箔への付着性を調べた。 アルミニゥム箔の両 面に塗布した塗膜の片面を引搔き試験器 (E R I C H S E N MOD E
L 2 9 5 1 mm間隔 1 1枚刃) を用いて碁盤目状に切り傷をつけ J
I Sに準じて点数をつけた。
(電極特性)
実施例 1〜 4及び比較例 1〜 6の試料を、 縦 2 5 mm、 横 2 0 mmに 切断し、 上端部を 5 mmの幅で電極層を除去して 2 0 mm角の電極層を 残した。 電極層を除去した上端部にリ一ドとしてステンレス線をスポッ 卜溶接し、 この電極 (作用極) を作成した。
第 1図に示したように充放電容量測定用セルを作製し、 下記のように して充放電を行つた。
すなわち、 第 1図を参照して、 ビーカ一(1) 中に、 ステンレス線に接 続したリチウム板を用いた一対の対極(4) と、 同様の参照極(5) を有す るルギン管(6) と、 さらに両対極の中間に上記で作成した電極 (作用 極) (3) とを配置した。 電解液(7) には、 電解質塩として 1 m o 1 / 1 の過塩素酸リチウムをエチレンカーボネィ トとジェチルカ一ボネィ 卜の 1 : 1 (容積比) 混合溶媒に溶解したものを用い、 ビーカー(1) 及びル ギン管(6) をそれぞれシリ コン栓(2) (8) で封じて測定用セルを作成し た。 そしてこのセルに、 6 m Aの定電流で 3 Vから 4 . 2 V ( P o t e n t i a 1 vs. L i / L i + ) までの範囲で充放電を 5回繰り返して行 い、 1回目の L i イオン吸蔵時の容量を測定し、 初期容量とした。 また、 5回目の容量も測定し、 充放電サイクル特性とした。
以上の結果を表 1に示す。
表 1
Figure imgf000023_0001
表 1 より、 実施例 1〜4では、 本発明の特定条件で活物質及びグラフ アイ トを混練したので、 充放電容量が大きく、 二次電池の寿命を示唆す るサイクル特性も向上している。 また、 活物質塗膜のアルミニウム箔へ の付着性も良好であり、 碁盤目試験でも高得点を得ている。
これに対して、 比較例 1〜 5ではいずれも、 合剤塗料の最終配合組成 は実施例 1及び 2と同じであるにもかかわらず、 充放電容量は小さく、 サイクル特性が劣る。 比較例 6では、 導電剤としてアセチレンブラック を用いており、 付着性に劣る。
本発明は、 その精神または主要な特徴から逸脱することなく、 他のい ろいろな形態で実施することができる。 そのため、 前述の実施例はあら ゆる点で単なる例示にすぎず、 限定的に解釈してはならない。 さらに、 請求の範囲の均等範囲に属する変更は、 すべて本発明の範囲内のもので あ O o 産業上の利用可能性
以上のように、 本発明によれば、 活物質合剤塗料調製時に、 活物質と してのリチウム複合酸化物及び導電剤と しての鱗片状を呈するグラファ ィ トを、 特定条件下で混練するので、 少ない導電剤量で十分な電極導電 性が得られる。 その結果、 電極単位体積中の活物質量を多くすることが でき、 電極体積当たりの高い充放電容量が得られる。 また、 塗膜の物理 的特性も安定する。
本発明は、 非水電解質電池の放電容量及び充放電サイクル寿命等の充 放電特性の向上と、 電極塗膜の物理的特性の改善に貢献する。

Claims

請 求 の 範 囲
1. リチウム複合酸化物からなる活物質と、 鱗片状を呈するダラ フアイ 卜からなる導電剤と、 結合剤とを少なく とも含む電極活物質合剤 塗料を調製し、 この活物質合剤塗料を集電体上に塗布する非水電解質電 池用電極の製造方法であって、 前記活物質の B E T法による比表面積を S a、 前記活物質の混練時の配合重量を W a、 前記グラフアイ 卜の B E T法による比表面積を S g、 前記グラフアイ トの混練時の配合重量を Wgとしたときに、 下記式:
Wa 0. 5 X S g
Wg S a を満足する条件で、 少なく とも前記活物質と、 前記グラフアイ 卜と、 結 合剤及びノ又は溶剤とを混練装置により混練して合剤塗料を調製するこ とを含む、 非水電解質電池用電極の製造方法。
2. リチウム複合酸化物が、 L i x N i y Mz 02 (ここで、 X は 0. 8 < χ < 1. 5、 y + zは 0. 8 < y + z < l . 2、 zは 0≤ z < 0. 3 5である。 Mは、 C o、 Mg、 C a、 S r、 A l、 Mn及び
F eから選ばれる少なく とも 1種の元素を表す。 ) である、 請求の範囲 第 1項に記載の非水電解質電池用電極の製造方法。
3. リチウム複合酸化物の B E T法による比表面積 S aが、 0. l〜5 m2 /gである、 請求の範囲第 2項に記載の非水電解質電池用電 極の製造方法。
4. グラフアイ トの B E T法による比表面積 S gが、 3 ~ 3 0 m2 である、 請求の範囲第 2項又は第 3項に記載の非水電解質電池 用電極の製造方法。
PCT/JP1998/002318 1997-05-27 1998-05-27 Procede de production d'electrode pour cellules electrolytiques non aqueuses WO1998054773A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AU74523/98A AU7452398A (en) 1997-05-27 1998-05-27 Method of producing electrode for non-aqueous electrolytic cells
JP50047799A JP4203866B2 (ja) 1997-05-27 1998-05-27 非水電解質電池用電極の製造方法
EP98921825A EP0986117B1 (en) 1997-05-27 1998-05-27 Method for producing electrode for non-aqueous electrolyte battery
DE69838325T DE69838325T2 (de) 1997-05-27 1998-05-27 Verfahren zur herstellung einer elektrode für batterie mit nichtwässrigem elektrolyten
US09/423,640 US6300008B1 (en) 1997-05-27 1998-05-27 Method for producing electrode for non-aqueous electrolyte battery
KR10-1999-7010904A KR100512769B1 (ko) 1997-05-27 1998-05-27 비수성 전해질 전지용 전극의 제조방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP13666097 1997-05-27
JP9/136660 1997-05-27

Publications (1)

Publication Number Publication Date
WO1998054773A1 true WO1998054773A1 (fr) 1998-12-03

Family

ID=15180529

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/002318 WO1998054773A1 (fr) 1997-05-27 1998-05-27 Procede de production d'electrode pour cellules electrolytiques non aqueuses

Country Status (7)

Country Link
US (1) US6300008B1 (ja)
EP (1) EP0986117B1 (ja)
JP (1) JP4203866B2 (ja)
KR (1) KR100512769B1 (ja)
AU (1) AU7452398A (ja)
DE (1) DE69838325T2 (ja)
WO (1) WO1998054773A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11339780A (ja) * 1998-05-27 1999-12-10 Tdk Corp 非水電解質二次電池用電極の製造方法
EP1089365B1 (en) * 1999-10-01 2016-07-20 Tosoh Corporation Lithium manganese oxide, and process for its production and secondary cell employing it
DE10033578A1 (de) * 2000-07-11 2002-01-24 Emtec Magnetics Gmbh Leitfähige Polymerzusammensetzung auf der Basis von Graphit
KR100570747B1 (ko) * 2003-11-20 2006-04-12 삼성에스디아이 주식회사 리튬 이차 전지용 양극 및 이를 포함하는 리튬 이차 전지
JP2005191425A (ja) * 2003-12-26 2005-07-14 Tdk Corp キャパシタ用電極の製造方法
JP4781004B2 (ja) 2005-04-28 2011-09-28 パナソニック株式会社 非水電解液二次電池
WO2013031526A1 (en) * 2011-08-26 2013-03-07 Semiconductor Energy Laboratory Co., Ltd. Power storage device
KR101417746B1 (ko) * 2013-04-22 2014-07-10 상명대학교서울산학협력단 4전극 전도도 측정장치
JP6484895B2 (ja) 2013-07-26 2019-03-20 エルジー・ケム・リミテッド エネルギー密度が向上した二次電池用電極及びそれを含むリチウム二次電池
JP2022107520A (ja) * 2021-01-08 2022-07-21 株式会社半導体エネルギー研究所 正極活物質の作製方法及び二次電池

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07114915A (ja) * 1993-10-15 1995-05-02 Fuji Photo Film Co Ltd 非水二次電池
JPH08222223A (ja) * 1995-02-13 1996-08-30 Japan Storage Battery Co Ltd 非水電解液二次電池
JPH09171816A (ja) * 1995-12-21 1997-06-30 Japan Storage Battery Co Ltd 電池用電極の製造方法及びその電極を用いた電池
JPH09298061A (ja) * 1996-03-04 1997-11-18 Sharp Corp 非水系二次電池
JPH1074517A (ja) * 1996-08-29 1998-03-17 Murata Mfg Co Ltd リチウム二次電池
JPH1092429A (ja) * 1996-09-13 1998-04-10 Toshiba Corp 非水溶媒二次電池の製造方法及び非水溶媒二次電池
JPH10114528A (ja) * 1996-08-13 1998-05-06 Murata Mfg Co Ltd リチウムニッケル複合酸化物の製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4945014A (en) 1988-02-10 1990-07-31 Mitsubishi Petrochemical Co., Ltd. Secondary battery
DE69411637T2 (de) 1993-04-28 1998-11-05 Fuji Photo Film Co Ltd Akkumulator mit nicht-wässrigem Elektrolyt
EP0959514A3 (en) 1994-12-09 2001-06-06 Japan Storage Battery Company Limited Organic electrolyte secondary cell
JPH0992282A (ja) * 1995-09-21 1997-04-04 Toshiba Battery Co Ltd リチウム二次電池
US5792574A (en) 1996-03-04 1998-08-11 Sharp Kabushiki Kaisha Nonaqueous secondary battery
EP0824087B1 (en) 1996-08-13 1999-10-27 Murata Manufacturing Co., Ltd. Manufacturing method of lithium complex oxide comprising cobalt or nickel
EP0827223B1 (en) 1996-08-29 1999-11-03 Murata Manufacturing Co., Ltd. Lithium secondary battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07114915A (ja) * 1993-10-15 1995-05-02 Fuji Photo Film Co Ltd 非水二次電池
JPH08222223A (ja) * 1995-02-13 1996-08-30 Japan Storage Battery Co Ltd 非水電解液二次電池
JPH09171816A (ja) * 1995-12-21 1997-06-30 Japan Storage Battery Co Ltd 電池用電極の製造方法及びその電極を用いた電池
JPH09298061A (ja) * 1996-03-04 1997-11-18 Sharp Corp 非水系二次電池
JPH10114528A (ja) * 1996-08-13 1998-05-06 Murata Mfg Co Ltd リチウムニッケル複合酸化物の製造方法
JPH1074517A (ja) * 1996-08-29 1998-03-17 Murata Mfg Co Ltd リチウム二次電池
JPH1092429A (ja) * 1996-09-13 1998-04-10 Toshiba Corp 非水溶媒二次電池の製造方法及び非水溶媒二次電池

Also Published As

Publication number Publication date
DE69838325D1 (de) 2007-10-11
AU7452398A (en) 1998-12-30
US6300008B1 (en) 2001-10-09
EP0986117B1 (en) 2007-08-29
EP0986117A1 (en) 2000-03-15
DE69838325T2 (de) 2008-05-15
KR100512769B1 (ko) 2005-09-07
KR20010012936A (ko) 2001-02-26
JP4203866B2 (ja) 2009-01-07
EP0986117A4 (en) 2001-04-18

Similar Documents

Publication Publication Date Title
KR100512771B1 (ko) 비수성 전해질 전지용 전극의 제조방법
JP4216669B2 (ja) リチウム・ニッケル・マンガン・コバルト複合酸化物並びにそれを正極活物質として用いたリチウムイオン二次電池
WO2004082046A1 (ja) リチウム二次電池用正極活物質粉末
WO2005020354A1 (ja) リチウム二次電池用の正極活物質粉末
WO2004051771A1 (ja) リチウム二次電池用の正極活物質の製造方法
EP2665111A2 (en) Lithium ion secondary battery
KR20080080938A (ko) 비수용성 전해질 2차 전지 및 비수용성 전해질 2차 전지용 양극 활성 재료
JP4529288B2 (ja) 非水電解質二次電池用電極
JP3244227B2 (ja) 非水電解液二次電池
JPH1145706A (ja) 非水電解質電池用電極の製造方法
WO1998054778A1 (fr) Accumulateur electrolytique non aqueux
JP4203866B2 (ja) 非水電解質電池用電極の製造方法
JP2003017056A (ja) リチウム二次電池正極活物質用リチウム遷移金属複合酸化物およびそれを用いたリチウム二次電池
KR100512768B1 (ko) 비수성 전해질 전지용 전극
JP4410315B2 (ja) 非水電解質電池用電極
JPH1145707A (ja) 非水電解質電池用電極の製造方法
JP3132504B2 (ja) 非水電解液二次電池
JP4994725B2 (ja) リチウム複合金属酸化物の製造方法
KR100502531B1 (ko) 무수 전해질 전지용 전극의 제조방법
JP2003217665A (ja) 固体電解質電池の製造方法
JPH1145705A (ja) 非水電解質電池用電極の製造方法
JP2008063202A (ja) プロトン含有型ニッケル系遷移金属酸化物の製造方法およびそれを用いた非水電解質二次電池
JPH1145704A (ja) 非水電解質電池用電極の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM GW HU ID IL IS JP KE KG KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1998921825

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09423640

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1019997010904

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1998921825

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: CA

WWP Wipo information: published in national office

Ref document number: 1019997010904

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019997010904

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1998921825

Country of ref document: EP