WO2004051771A1 - リチウム二次電池用の正極活物質の製造方法 - Google Patents

リチウム二次電池用の正極活物質の製造方法 Download PDF

Info

Publication number
WO2004051771A1
WO2004051771A1 PCT/JP2003/015283 JP0315283W WO2004051771A1 WO 2004051771 A1 WO2004051771 A1 WO 2004051771A1 JP 0315283 W JP0315283 W JP 0315283W WO 2004051771 A1 WO2004051771 A1 WO 2004051771A1
Authority
WO
WIPO (PCT)
Prior art keywords
cobalt
lithium
positive electrode
average particle
composite oxide
Prior art date
Application number
PCT/JP2003/015283
Other languages
English (en)
French (fr)
Inventor
Kazushige Horichi
Manabu Suhara
Naoshi Saito
Megumi Uchida
Original Assignee
Seimi Chemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seimi Chemical Co., Ltd. filed Critical Seimi Chemical Co., Ltd.
Priority to AU2003284501A priority Critical patent/AU2003284501A1/en
Priority to JP2004556863A priority patent/JP4444117B2/ja
Publication of WO2004051771A1 publication Critical patent/WO2004051771A1/ja
Priority to US11/136,493 priority patent/US7192672B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • H01M4/1315Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx containing halogen atoms, e.g. LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention is directed to a method for producing a lithium cobalt complex oxide for a lithium secondary battery positive electrode, which has high volume capacity density, high safety, high charge / discharge cycle durability, high press density, and high productivity.
  • the present invention relates to a positive electrode for a lithium secondary battery containing a lithium-cobalt composite oxide, and a lithium secondary battery. Background art
  • non-aqueous electrolyte secondary batteries such as lithium secondary batteries that are small, lightweight and have high energy density.
  • the positive electrode active material for non-aqueous electrolyte solution for a secondary battery L i Co 0 2, L i N i 0 2, L i N i 08 Co 02 O 2, L iMn 2 ⁇ 4, L IMn_ ⁇ 2 etc.
  • a composite oxide of lithium and a transition metal is known.
  • lithium secondary batteries using lithium-cobalt composite oxide (LiCo ⁇ ⁇ ⁇ 2 ) as the positive electrode active material and using lithium alloy, graphite, carbon fiber, and other carbon as the negative electrode have a high 4 V class. Since a voltage can be obtained, it is widely used as a battery with high energy density.
  • Japanese Patent Application Laid-Open No. 6-243897 discloses that the average particle size of the positive electrode active material Li CoO 2 is 3 to 9 m, and the particle size is 3 to 15 m.
  • JP-A-2000-82466 discloses that the average particle size of lithium composite oxide particles is 0.1 to 50 / zm, and A positive electrode active material having two or more peaks in the particle size distribution has been proposed. It has also been proposed to mix two types of positive electrode active materials having different average particle diameters to obtain a positive electrode active material having two or more peaks in the particle size distribution.
  • the weight capacity density and charge / discharge cycleability of the positive electrode may be improved, but the production of the positive electrode raw material powder having two types of particle size distribution is complicated, and the volume capacity density of the positive electrode, low No product that satisfies all of the requirements for completeness, coating uniformity, weight capacity density, and cycleability has been obtained.
  • Japanese Patent Application Laid-Open No. 3-210368 discloses that 5 to 35% of Co atoms are replaced with W, Mn, Ta, Ti or Nb. It has been proposed to improve cycle characteristics. Further, Japanese Patent Application Laid-Open No.
  • H10-1031805 discloses that the c-axis length of the lattice constant is 14.051 A or less, and the crystallite diameter of the crystallite in the (1110) direction is It has been proposed to improve the cycle characteristics by using hexagonal LiCo 2 having a diameter of 45 to 10 O nm as a positive electrode active material.
  • Japanese Patent Application Laid-Open No. H10-72219 discloses a formula Li x N i,. Y N y 0 2 (where 0 ⁇ x, 1.1, 0 ⁇ y ⁇ l). ),
  • the primary particles are plate-shaped or columnar, and (cumulative volume-based cumulative 95%-volume-based cumulative 5% diameter) volume-based cumulative 5% diameter) is 3 or less, and the average particle size is 1
  • a lithium composite oxide having a molecular weight of up to 50 iiii has a high initial discharge capacity per weight and excellent charge / discharge cycle durability.
  • the present invention provides a method for producing a lithium cobalt composite oxide for a lithium secondary battery positive electrode having high volume capacity density, high safety, excellent charge / discharge cycle durability, high press density, and high productivity.
  • An object of the present invention is to provide a positive electrode for a lithium secondary battery, including a lithium cobalt composite oxide, and a lithium secondary battery.
  • the present inventor continued research to achieve the above object, and found that the average particle size of secondary particles formed by aggregating primary particles was A mixture containing a substantially spherical cobalt hydroxide of ⁇ and cobalt tetroxide having an average particle diameter of 2 to 10 ⁇ secondary particles formed by agglomeration of primary particles at a specific atomic ratio is used. Further, it has been found that the above-mentioned problems can be achieved by producing a lithium-cobalt composite oxide by firing these cobalt source, lithium source, and other metal sources at a specific range of temperature.
  • a cobalt hydroxide and a cobalt tetroxide having the above-mentioned specific properties as a copartite source are used.
  • the smaller particles of the latter will be inserted into the gaps between the relatively large former particles.
  • the tap density of the cobalt source composed of the two types of mixtures of the present invention is dramatically increased as compared with the case where cobalt hydroxide and copoxide trioxide are used alone. It is estimated that the productivity of the positive electrode of the lithium secondary battery manufactured from the product will also improve.
  • cobalt hydroxide having the above specific properties forms dense and substantially spherical positive electrode particles due to its high reactivity.
  • the compressive stress on the dense and substantially spherical cathode particles derived from cobalt hydroxide is efficiently propagated to the relatively brittle cobalt tetroxide-derived cathode particles, causing the particles to burst. It is dense and filled between spherical positive particles.
  • the lithium cobalt composite oxide composed of a mixture of cobalt hydroxide and cobalt tetroxide has a high press density and high density which could not be expected when each of the cobalt sources was used alone. It seems to be a compound.
  • the gist of the present invention is as follows. (1) This Leto source, and the mixture is fired in an oxygen-containing atmosphere containing lithium source, one general formula Li p Co x M y ⁇ z F a (where, M is a transition metal element or an alkaline earth metal other than Co 0.980 ⁇ x ⁇ l.000, 0 ⁇ y ⁇ 0.02, 1.9 ⁇ z ⁇ 2.
  • the cobalt source is a substantially spherical cobalt hydroxide having an average particle diameter of 8 to 20 m of secondary particles formed by aggregating primary particles; It is characterized by using a mixture containing cobalt trioxide having an average particle diameter of 2 to 10 im and a cobalt atomic ratio of 5: 1 to 1: 5, and firing at 700 to 1,050 ⁇ .
  • the cobalt source is a substantially spherical cobalt hydroxide having an average particle diameter of 8 to 20 m of secondary particles formed by aggregating primary particles; It is characterized by using a mixture containing cobalt trioxide having an average particle diameter of 2 to 10 im and a cobalt atomic ratio of 5: 1 to 1: 5, and firing at 700 to 1,050 ⁇ .
  • the average particle size after dispersing the secondary particles of cobalt hydroxide in pure water]) is 50 or less than the original average particle size D50. Production method.
  • the specific surface area is 0.5 to 20 m 2 / g, according to any one of the above (1) to (4). Production method.
  • the lithium-cobalt composite oxide has a (110) plane diffraction peak half width of 0.07 to 0.14 °, a specific surface area of 0.3 to 0.7 mVg, a heat generation start temperature of 160 ° C or more, and a press density of 3.15 to The production method according to any one of the above (1) to (5), which has 3.8 g / cm 3 .
  • Lithium-cobalt composite oxide for a lithium secondary battery positive electrode produced in the present invention have the general formula of lithium cobalt composite oxide for a lithium secondary battery positive electrode produced in the present invention have the general formula Li p Co x M y ⁇ z F a
  • M, p, x, y, z and a are defined above.
  • a complex oxide in which some of the oxygen atoms are substituted with fluorine atoms is formed. In this case, the safety of the obtained positive electrode active material is improved.
  • M is a transition metal element other than Co or an alkaline earth metal, and the transition metal element is a group 4, 5, 6, 7, 8, 9, 10, or 11 of the periodic table. Represents the transition metal.
  • M is at least one element selected from the group consisting of Ti, Zr, Hf, V, Nb, Ta, Mg, Ca, Sr, Ba, and A1.
  • Ti, Zr, Hf, Mg or Al are preferred from the viewpoints of capacity development, safety, cycle durability and the like.
  • both of M and F are present on the surface of the lithium cobalt oxide particles, preferably within 100 nm, particularly preferably within 30 nm from the surface of the lithium cobalt oxide particles.
  • the particles exist inside the particles because not only the effect of improving the battery characteristics is small, but also the battery characteristics may be deteriorated.
  • the presence or absence on the surface can be determined by performing spectroscopic analysis, for example, XPS analysis, on the positive electrode particles.
  • the lithium cobalt composite oxide of the present invention a mixture of a specific cobalt hydroxide and cobalt trioxide is used as a cobalt source.
  • the half width of the diffraction peak of the (001) plane at 20 19 ⁇ 1 ° and the diffraction of the (101) plane at 20 ° 38 ° 1 °, as measured by X-ray diffraction using CuKa as the source of cobalt hydroxide. If the half width of the peak is out of the range specified in the present invention, the object of the present invention is achieved because the powder becomes noble, the press density of the positive electrode decreases, and the safety decreases. I can't.
  • the specific surface area of cobalt hydroxide is smaller than 5 m 2 / g, the press density of the positive electrode decreases and the safety decreases. Conversely, if it exceeds 5 Om 2 Zg, the powder will be noble. In particular, the specific surface area is preferably from 10 to 3 Oml / g.
  • the press density of the cobalt hydroxide is less than 1.0 gZcm 3 , the powder becomes bulky, while when it exceeds 2.5 gZcm 3 , the press density of the positive electrode becomes low. I do not like it.
  • the press density of cobalt hydroxide is preferably from 1.0 to 2.5 gZcm 3 , particularly preferably from 1.3 to 2.2 gZcm 3 .
  • the press density of the cobalt hydroxide in the present invention means an apparent press density when the particle powder is press-compressed at a pressure of 0.3 t / cm 2 unless otherwise specified.
  • the press density of the lithium-cobalt composite oxide refers to the apparent press density when pressed at a pressure of 0.96 t / cm 2 .
  • the average particle diameter D50 of the cobalt hydroxide in a state where the secondary particles are dispersed in water is preferably 1Z4 or less, more preferably 1Z8 or less, before the average particle diameter D50 before being dispersed in water.
  • the average particle diameter D50 in a state of being dispersed in water is preferably 5 to 25 m, and particularly preferably 8 to 20 m. If the average particle size is not in the above range, the press density of the positive electrode decreases, and the large current discharge characteristics and the self-discharge characteristics decrease, which is not preferable.
  • the dispersion of cobalt hydroxide particles in pure water is performed while irradiating ultrasonic waves (42 KHz, 40 W) for 3 minutes.
  • the shape of the secondary particles of cobalt hydroxide is preferably substantially spherical.
  • the shape of the particles is substantially spherical, including spherical, rugby pole, polygonal, etc. It is preferable that the major axis / minor axis thereof is 21 to 1/1, particularly 1.5 Z 1-1 / 1. Among them, it is preferable to have a spherical shape as much as possible.
  • the half value width of the diffraction peak of the (220) plane at 20 31 ⁇ ⁇ ⁇ measured by X-ray diffraction using CuKo!
  • the specific surface area of cobalt trioxide is smaller than 0.5 m 2 / g, the reactivity during firing is reduced. On the other hand, if it exceeds 20 m 2 / g, the powder becomes bulky, which is not preferable.
  • the specific surface area is preferably from 10 to lm 2 / g.
  • the press density of cobalt trioxide is preferably 2.5 to 5 g / cm 3 , particularly preferably 3 to 4 g / cm 3 .
  • the average particle diameter D50 of the cobalt trioxide when its secondary particles are dispersed in water is preferably 2 to 10 / m, particularly preferably 1 to 5 m.
  • the average particle size is not in the above range, it is not preferable because it becomes difficult to insert large particles derived from the hydroxide copart into the gap.
  • the former / the latter When a mixture of cobalt hydroxide and cobalt tetroxide is used as a cobalt source, the former / the latter must have an atomic ratio of cobalt of 5Z1 to 1Z5. If the amount of cobalt hydroxide or cobalt tetroxide is larger than the above range, the powder becomes bulky or the press density of the positive electrode decreases, which is not preferable.
  • the ratio of cobalt hydroxide to cobalt tetroxide is preferably the cobalt atom ratio of the former / the latter, preferably 4/1 to 1/4, particularly preferably 3/2 to 2/3. It is.
  • the temperature at which the mixture of the above-mentioned cobalt source, lithium source, and the M element source and the fluorine source used as needed is fired in an oxygen-containing atmosphere is 700 to 150. is important. When the firing temperature is lower than 700, lithiation is incomplete. On the other hand, when the firing temperature is higher than 150 ° C, the charge / discharge cycle durability and the initial capacity decrease. In particular, the firing temperature is preferably from 900 to 100 ° C.
  • the present invention has the advantage of not using complex lithiation methods such as spray drying of slurries. Furthermore, it is not preferable to use a method as disclosed in Japanese Patent Application Laid-Open No.
  • Cobalt hydroxide and cobalt tetroxide having the above-mentioned specific properties used for producing the lithium-cobalt composite oxide of the present invention are produced by various methods, and the production methods are not limited.
  • a slurry containing cobalt hydroxide can be easily produced by continuously mixing a mixed solution of an aqueous solution of cobalt sulfate, ammonium hydroxide, and an aqueous solution of sodium hydroxide. By changing reaction conditions such as pH and stirring, cobalt hydroxide having the physical properties of the present invention can be obtained.
  • cobalt trioxide is produced by subjecting the hydroxide obtained above to a heat treatment.
  • the present invention is characterized in that a cobalt hydroxide having the above specific structure and a lithium source are mixed and fired.
  • a cobalt source is obtained by replacing a part of cobalt hydroxide or cobalt tetroxide with another cobalt source.
  • baluns such as battery characteristics and cathode manufacturing productivity In some cases can be improved.
  • Examples of other cobalt sources include oxycobalt hydroxide.
  • lithium carbonate or lithium hydroxide is preferably used as a lithium source.
  • a hydroxide, an oxide, a carbonate, and a fluoride are preferably selected.
  • a metal fluoride, L i F, such as MgF 2 is selected.
  • a mixed powder of cobalt hydroxide, a lithium source, a raw material of element M, and a fluorine source is calcined at 800 to 1,050 ° C in an oxygen-containing atmosphere for 5 to 20 hours as described above, and the obtained calcined product is cooled. Thereafter, the particles are pulverized and classified to produce lithium cobalt composite oxide particles.
  • the lithium-cobalt composite oxide of the present invention preferably has a residual alkali content of 0.03% by mass or less, particularly preferably 0.01% by mass or less.
  • a carbon-based conductive material such as acetylene black, graphite, Ketjen black and a binder are mixed with the powder of the composite oxide. It is formed by this.
  • the binder preferably used are polyvinylidene fluoride, polytetrafluoroethylene, polyamide, carboxymethylcellulose, and an acrylic resin.
  • the powder, conductive material and binder of the lithium-cobalt composite oxide of the present invention are used as a slurry or a kneaded material using a solvent or a dispersion medium, and the slurry or the kneaded material is supported on a positive electrode current collector such as an aluminum foil or a stainless steel foil by coating or the like.
  • a positive electrode for a lithium secondary battery is manufactured.
  • a porous polyethylene, a polypropylene film, or the like is used as a separator.
  • various solvents can be used as the solvent for the electrolyte solution of the battery, and among them, carbonate is preferable.
  • Carbonate can be either cyclic or chain. Examples of the cyclic carbonate include propylene carbonate and ethylene carbonate (EC). Examples of the chain carbonate include dimethyl carbonate, decyl carbonate (DEC), ethyl methyl carbonate (EMC), methyl propyl carbonate, and methyl isopropyl carbonate.
  • the above carbonate esters can be used alone or in combination of two or more. Further, it may be used by mixing with another solvent.
  • the combined use of a chain carbonate and a cyclic carbonate may improve discharge characteristics, cycle durability, and charge / discharge efficiency.
  • a vinylidene fluoride-hexafluoropropylene copolymer for example, manufactured by Atochem Co .; trade name: Kynar
  • a vinylidene fluoride One perfluoroprop A gel polymer electrolyte containing a ruvinyl ether copolymer may be used.
  • C 10 4 -, CF3SO3-, BF 4 -, PF 6 -, As F 6 -, SbF 6 _, CF 3 C_ ⁇ 2 -, (CF 3 S0 2) 2 N-any one or more lithium salts and Anion etc. are preferably used. It is preferable to add at a concentration of 0.2 to 2. Omo 1/1 (liter) to the electrolyte solvent or the polymer electrolyte composed of the lithium salt. Outside of this range, the ionic conductivity decreases and the electrical conductivity of the electrolyte decreases. Among them, 0.5 to 1.5 mol Zl is particularly preferred.
  • a material capable of occluding and releasing lithium ions is used as a negative electrode active material.
  • the material forming the negative electrode active material is not particularly limited.
  • the carbon material those obtained by thermally decomposing organic substances under various pyrolysis conditions, artificial graphite, natural graphite, soil graphite, expanded graphite, flaky graphite and the like can be used.
  • the oxide a compound mainly composed of tin oxide can be used.
  • the negative electrode current collector a copper foil, a nickel foil, or the like is used. Such a negative electrode is preferably manufactured by kneading the active material with an organic solvent to form a slurry, and applying the slurry to a metal foil current collector, drying and pressing to obtain the slurry.
  • the shape of the lithium battery using the lithium cobalt composite oxide of the present invention as the positive electrode active material is not particularly limited. Sheets, films, folds, rolled bottomed cylinders, and button shapes are selected according to the application. Example
  • Examples 1 to 5 and Examples 8 to 10 are Examples of the present invention, and Examples 6 to 7 are Comparative Examples.
  • a mixed solution of an aqueous solution of cobalt sulfate and ammonium hydroxide is continuously mixed with an aqueous solution of sodium hydroxide, and a cobalt hydroxide slurry is continuously synthesized by a known method.
  • a cobalt oxide powder was obtained.
  • scanning electron microscopy revealed that amorphous fine particles were aggregated and formed from substantially spherical secondary particles.
  • the average particle size D50 was 17.5 m
  • D10 was 7. ⁇ D90 was 26.4; tim.
  • the secondary particles When the cobalt hydroxide secondary particles were dispersed in pure water, the secondary particles were easily broken and a suspension mainly composed of primary particles was formed. It turned out to be weak.
  • the particle size distribution of the secondary particle powder was measured using a laser scattering particle size distribution analyzer after irradiating ultrasonic waves (42 kHz, 40 W) for 3 minutes using water as a dispersion medium. Was 0.35 mm and D90 was 1.6 mm. Also, the slurry after the measurement of the average particle diameter was dried, and as a result of scanning electron microscope observation, No secondary particle shape was observed.
  • the specific surface area of the cobalt hydroxide particles composed of the secondary particles was 17. lmVg, the press density was 1.75 g / cm 3 , and the particles were approximately spherical cobalt hydroxide powder in which the primary particles were weakly aggregated.
  • Cobalt tetroxide was similarly measured using a laser scattering particle size distribution analyzer with water as the dispersion medium. D50 was 2.8 ⁇ m, D10 was 1.6 ⁇ , and D90 was 4. ⁇ ⁇ . Cobalt tetroxide having a particle size and a specific surface area of 1.2 m 2 / g determined by the BET method was used. Observation of the cobalt trioxide by a scanning electron microscope revealed that the primary particles were aggregated to form secondary particles.
  • the powder of the above mixture of cobalt hydroxide and cobalt tetroxide (at a cobalt atomic ratio of 1: 1) and lithium carbonate powder were calcined and dry-mixed to LiCoO 2 .
  • the tap density of the obtained prepared powder was 1.30 g / cm 3 .
  • This prepared powder was fired in air at 950 ° C. for 12 hours.
  • the average particle size D50 was 8.9.
  • D90 was 21.9 ⁇ m.
  • the specific surface area determined by the BET method was 0.44 mVg.
  • the tap density was determined according to JISR9301-2-3.
  • the above powder, acetylene black, and polyvinylidene fluoride powder were mixed at a mass ratio of 90/5/5, and N-methylpyrrolidone was added to prepare a slurry.
  • the foil was coated on one side with a doctor blade 1 / mode. After drying and roll press rolling, a positive electrode sheet for a lithium battery was produced.
  • the density of the electrode layer measured from the thickness of the rolled positive electrode body and the weight per unit volume of the electrode layer was 3.45 g / cm 3 .
  • the punched-out positive electrode sheet was used as the positive electrode, a 500-nm-thick metal lithium foil was used as the negative electrode, and the negative electrode current collector was made of nickel foil. And the electrolyte contains 1M
  • LiPF6 / EC + DEC (1: 1) solution meaning a mixed solution of LiPF6 as a solute at a mass ratio of EC to DEC (1: 1). Solvents described below are also equivalent.
  • Two simple closed cell-type lithium batteries manufactured by the Company were assembled in an argon glove box.
  • the positive electrode active material was charged to 4.3 V at 25 ° C with a load current of 75 lg. lg was discharged to 1.5 V at a load current of 75 mA to determine the initial discharge capacity. Furthermore, the volume capacity density was determined from the density of the electrode layer and the capacity per weight. In addition, the battery was subjected to 30 charge / discharge cycle tests. As a result, 25 ° C, 2. 5 ⁇ 4. Initial volume capacity density of the positive electrode layer at 3V is 465mAh / cm 3 electrode layers, the initial weight capacity density was 163mAh / g-LiCo0 2, 30 times The capacity retention after the charge / discharge cycle was 97.2%.
  • the other battery uses the EC + DEC (1: 1) solution as the electrolyte above.
  • Each battery was charged at 4.3 V for 10 hours, disassembled in an argon glove box, taken out of the charged positive electrode sheet, washed, punched out with a diameter of 3 and sealed in an aluminum capsule with EC. Then, the temperature was increased at a rate of 5 ° C./min with a scanning differential calorimeter, and the exothermic onset temperature was measured. As a result, the heat generation starting temperature of the 4.3 V charged product was 161 ° C.
  • Example 1 the mixing ratio of the four trioxide cobalt Bok cobalt hydroxide 70: 30 except that the (this Leto atomic ratio) in the same manner as in Example 1, was synthesized LiCoO 2 powder.
  • the mixing ratio of cobalt tetroxide, cobalt hydroxide and lithium carbonate was adjusted to be LiCoO 2 after firing.
  • the tap density of the prepared powder was 1.7 g / cm 3 .
  • the obtained LiCoO 2 had an average particle diameter D50 of 7. lzm, o of 3.0 m, D90 of 17.6 m, and a specific surface area determined by the BET method of 0.50 m 2 / g. .
  • a positive electrode sheet using the above powder was prepared in the same manner as in Example 1, and the characteristics of the lithium secondary battery as a positive electrode active material were determined. As a result, the initial weight at 25 ° C and 2.5 to 43 V was obtained. capacity density is 161 li / g- LiCo0 2, the capacity retention after 30 charge and discharge cycles was 1% 97.. In addition, the heat generation starting temperature of the 4.3 V charged product was 162.
  • LiCoO 2 powder was synthesized in the same manner as in Example 1 except that the mixing ratio of cobalt tetroxide and cobalt hydroxide was changed to 30:70 (cobalt atomic ratio). The mixing ratio of cobalt trioxide, cobalt hydroxide and lithium carbonate was adjusted so that LiCoO 2 would be obtained after firing.
  • the tap density of the prepared powder was 1. lg / cm 3 .
  • the obtained LiCoO 2 had an average particle size D50 of 10. ln D10 and 6.D90 of 24.6 ⁇ m, and a specific surface area determined by the BET method of 0.52 m 2 / g.
  • the press density of the obtained LiCoO 2 powder at a press pressure of 0.96 t / cm 2 was 3.43 g / cm 3 .
  • the residual alkali amount of LiCoO 2 was 0.02% by weight.
  • a positive electrode sheet using the above powder was prepared in the same manner as in Example 1, and the characteristics of the lithium secondary battery as a positive electrode active material were determined. As a result, 25 ° (: 2.5 to 4.3 V, initial weight capacity density was 163iAh / g-LiCo0 2, the capacity retention after 30 charge and discharge cycles was 0% 98.. Further, the heat generation starting temperature of 4. 3V charged product at 160 ° C there were.
  • Example 1 the mixing ratio of tricobalt tetroxide cobalt hydroxide 60: 40 addition to the (cobalt atomic ratio) in the same manner as in Example 1, was synthesized LiCoO 2 powder.
  • the mixing ratio of cobalt tetroxide, cobalt hydroxide and lithium carbonate was adjusted to be LiCoO 2 after firing.
  • the tap density of the prepared powder was 1. lg / cm 3 .
  • the obtained LiCoO 2 had an average particle size D50 of 7.7, D10 of 3.8 m, D90 of 20.2 m, and a specific surface area of 0.47 m 2 / g determined by the BET method.
  • LiCoO 2 powder was obtained X-ray diffraction spectrum by using an X-ray diffractometer (manufactured by Rigaku Corporation RINT2100 type) for.
  • X-ray diffractometer manufactured by Rigaku Corporation RINT2100 type
  • the half value width of the diffraction peak of the (110) plane was 0.095 °.
  • the press density of the obtained LiCoO 2 powder at a press pressure of 0.96 t / cm 2 was 3.30 g / cm 3 .
  • the residual alkali amount of LiCoO 2 was 0.02% by weight.
  • a positive electrode sheet using the above powder was prepared in the same manner as in Example 1, and the characteristics of the lithium secondary battery as a positive electrode active material were determined.
  • weight capacity density was 161mAh / g-LiCo0 2
  • the capacity retention after 30 charge and discharge cycles was 97.4%.
  • the heat generation starting temperature of 4. 3V charged product was 16 C .
  • Example 1 a positive electrode active material was synthesized in the same manner as in Example 1 except that titanium oxide powder and lithium fluoride powder were added when mixing copartite tetroxide, cobalt hydroxide, and lithium carbonate.
  • the evening density of the prepared powder was 1.30 g / cm 3 , and as a result of elemental analysis, it was LiCo 0 997 Ti 0 ⁇ ⁇ , 998 F 0 002 .
  • the particle size distribution of the powder obtained by disintegrating the primary particles obtained by crushing the calcined product was measured using a laser scattering particle size distribution analyzer with water as a dispersion medium, and the average particle size D50 was 9.0 m. , D10 was 3. ⁇ D50 was 21., and a substantially spherical powder having a specific surface area of 0.43 m 2 / g determined by the BET method was obtained. The residual amount of the powder was 0.02% by weight.
  • the half value width of the diffraction peak of the (110) plane was 0 to 115.
  • the press density of the positive electrode powder was 3.35 g / cm 3 .
  • XPS spectroscopy revealed that titanium and fluorine were localized on the surface.
  • the above powder, acetylene black and polyvinylidene fluoride powder are mixed at a mass ratio of 90/5/5, N-methylpyrrolidone is added to make a slurry, and a doctor blade is formed on an aluminum foil having a thickness of 20 III. Was applied on one side. After drying and roll press rolling, a positive electrode sheet for a lithium battery was produced.
  • the punched-out positive electrode sheet was used for the positive electrode, a 500-m-thick lithium metal foil was used for the negative electrode, the nickel foil 20 m was used for the negative electrode current collector, and a 25- 1 m LiPF6 / EC + DEC (1: 1) solution (mixed solution of LiPF6 as a solute with a mass ratio of EC to DEC (1: 1)) The same applies to the solvent to be described later.)
  • Two simple closed cell lithium batteries made of stainless steel were assembled in an argon globox using).
  • the remaining batteries using EC + DEC (1: 1) solution as the electrolyte were charged at 4.3 V for 10 hours, disassembled in an argon glove box, and charged positive electrode. After taking out the sheet, washing the positive electrode sheet, punching it out into a band of 3 diameters, sealing it in an aluminum capsule with EC, and using a scanning differential calorimeter at a rate of 5 ° C / min. And the exothermic onset temperature was measured. As a result, the heat generation starting temperature of the 4.3 V charged product was 170 ° C.
  • Example 1 LiCoO 2 was synthesized in the same manner as in Example 1, except that only conolite tetroxide was used as the conorate source. The mixing ratio of cobalt trioxide and lithium carbonate was adjusted so that LiCoO 2 would be obtained after firing.
  • the tap density of the prepared powder was 2.5 g / cm3.
  • the press density of the obtained LiCoO 2 powder was 3.04 g / cm 3 .
  • a positive electrode sheet using the above powder was prepared in the same manner as in Example 1, and the characteristics of the positive electrode active material as a lithium secondary battery were determined.As a result, the results were obtained at 25 ° C and 2.5 to 4.3 V. initial weight capacity density was 159 li / g-LiCo0 2, the capacity retention after 30 charge and discharge cycles was 8% 94.. The onset of heat generation of the 43V-charged product was 161.
  • LiCoO 2 was synthesized in the same manner as in Example 1 except that cobalt hydroxide was used as the cobalt source. The mixing ratio of cobalt hydroxide and lithium carbonate was adjusted so that LiCoO 2 would be obtained after firing. The tap density of the prepared powder was 0.78 g / cm 3 . The apparent density of the obtained LiCoO 2 powder after pressing was 3.48 g / cm 3 .
  • a positive electrode sheet using the above powder was prepared in the same manner as in Example 1, and the characteristics of the positive electrode active material as a lithium secondary battery were determined. As a result, the initial values at 25, 2.5 to 4.3 V were obtained. Weight capacity density was 159mAh / g- LiCo0 2, the capacity retention after 30 charge and discharge cycles was 0% 97.. In addition, the heat generation starting temperature of the 4.3 V charged product was 160.
  • a positive electrode active material was synthesized in the same manner as in Example 5 except that aluminum hydroxide was used instead of titanium oxide. Chemical analysis, the composition is LiCo 0. 997 Al 0 003 0 , 998 F 0 002, press density of this powder was 3. 40g / cm 3. Aluminum and fluorine were present on the surface. The residual alkali amount was 0.02% by mass. The initial capacity was 160 mAh / g, the capacity retention rate after 30 cycles was 99.4%, and the onset of heat generation was 169 ° C.
  • a positive electrode active material was synthesized in the same manner as in Example 5, except that magnesium hydroxide was used instead of titanium oxide.
  • the composition was LiCo 0 99T Mg 0 0030, 998 F 0 002, and the press density of this powder was 3.40 g / cm 3 .
  • Magnesium and fluorine were present on the surface.
  • the residual amount of residual energy was 0.02% by mass.
  • the initial capacity was 159 mAh / g, the capacity retention rate after 30 cycles was 99.6%, and the heat generation temperature was 172 ° C.
  • a positive electrode active material was synthesized in the same manner as in Example 5, except that zirconium oxide was used instead of titanium oxide. Chemical analysis, the composition is LiCi Zro ⁇ O, 998 F D M2, press density of this powder was 3. 39g / cm 3. Aluminum and fluorine were present on the surface. The residual alkali amount was 0.02% by mass. The initial capacity was 161 mAh / g, the capacity retention rate after 30 cycles was 99.4%, and the exothermic onset temperature was 171 ° C. Industrial applicability
  • lithium for a lithium secondary electrode positive electrode having high volume capacity density, high safety, high charge / discharge cycle durability, high press density, and high productivity
  • a method for producing a cobalt composite oxide, a positive electrode for a lithium secondary battery including the produced lithium cobalt composite oxide, and a lithium secondary battery are provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

大きい体積容量密度、高い安全性、大きい充放電サイクル耐久性、高いプレス密度、及び高い生産性を有する、リチウム二次電池正極用リチウムコバルト複合酸化物の製造方法を提供する。 一般式LipCoxMyOzFa(但し、MはCo以外の遷移金属元素又はアルカリ土類金属元素、0.9≦p≦1.1、0.980≦x≦1.000、0≦y≦0.02、1.9≦z≦2.1、x+y=1、0≦a≦0.02)で表されるリチウムコバルト複合酸化物の製造方法であって、上記コバルト源として、一次粒子が凝集してなる二次粒子の平均粒径が8~20μmの略球状の水酸化コバルトと、一次粒子が凝集してなる二次粒子の平均粒径が2~10μmの四三酸化コバルトとを、コバルト原子比で5:1~1:5の割合で含む混合物を使用し、かつ700~1050℃で焼成する。

Description

明 細 書 リチウムニ次電池用の正極活物質の製造方法 技術分野
本発明は、 大きい体積容量密度、 高い安全性、 大きい充放電サイクル耐久性、 高 いプレス密度、 及び高い生産性を有する、 リチウム二次電池正極用リチウムコパル ト複合酸化物の製造方法、 製造されたリチウムコバルト複合酸化物を含むリチウム 二次電池用正極、 及びリチウム二次電池に関する。 背景技術
近年、 機器のポータブル化、 コードレス化が進むにつれ、 小型、 軽量でかつ高工 ネルギー密度を有するリチウムニ次電池などの非水電解液二次電池に対する要求が ますます高まっている。 かかる非水電解液二次電池用の正極活物質には、 L i Co 02、 L i N i 02、 L i N i08Co02O2, L iMn24、 L iMn〇2などのリチウ ムと遷移金属の複合酸化物が知られている。
なかでも、 リチウムコバルト複合酸化物 (L i Co〇2) を正極活物質として用い、 リチウム合金、 グラフアイト、 カーボンファイバ一などのカーボンを負極として用 いたリチウム二次電池は、 4 V級の高い電圧が得られるため、 高エネルギー密度を 有する電池として広く使用されている。
しかしながら、 L i Co02を正極活物質として用いた非水系二次電池の場合、正 極電極層の単位体積当たりの容量密度及び安全性の更なる向上が まれるとともに、 充放電サイクルを繰り返し行うことにより、 その電池放電容量が徐々に減少すると いうサイクル特性の劣化、 重量容量密度の問題、 あるいは低温での放電容量低下が 大きいという問題などがあった。
これらの問題の一部を解決するために、 特開平 6— 243897号公報には、 正 極活物質である L i CoO2の平均粒径を 3〜 9 m、及び粒径 3〜; 15 mの粒子 群の占める体積を全体積の 75%以上とし、 かつ CuKo!を線源とする X線回折に よって測定される 20=約 19° と 45° 回折ピーク強度比を特定値とすることに より、 塗布特性、 自己放電特性、 サイクル性に優れた活物質とすることが提案され ている。更に、 該公報には、 L i Co02の粒径が 1 m以下又は 25 m以上の粒 径分布を実質的に有さないものが好ましい態様として提案されている。 しかし、 か かる正極活物質では、 塗布特性ならびにサイクル特性は向上するものの、 安全性、 体積容量密度、 重量容量密度を充分に満足するものは得られていない。
また、 正極の重量容量密度と充放電サイクル性を改良するために、 特開 2000 —82466号公報には、 リチウム複合酸化物粒子の平均粒径が 0. l〜50 /zm であり、かつ、粒度分布にピークが 2個以上存在する正極活物質が提案されている。 また併せて平均粒径の異なる 2種の正極活物質を混合して粒度分布にピークが 2個 以上存在する正極活物質とすることも提案されている。 かかる提案においては正極 の重量容量密度と充放電サイクル性が改善される場合もあるが、 2種類の粒径分布 を有する正極原料粉末を製造する煩雑さがあるとともに、 正極の体積容量密度、 安 全性、 塗工均一性、 重量容量密度、 サイクル性のいずれをも満足するものは得られ ていない。 また、 電池特性に関する課題を解決するために、 特開平 3— 2 0 1 3 6 8号公報 に C o原子の 5〜3 5 %を W、 Mn、 T a、 T i又は N bで置換することがサイク ル特性改良のために提案されている。また、特開平 1 0— 3 1 2 8 0 5号公報には、 格子定数の c軸長が 1 4. 0 5 1 A以下であり、 結晶子の (1 1 0 ) 方向の結晶子 径が 4 5〜1 0 O nmである、六方晶系の L i C o〇2を正極活物質とすることによ りサイクル特性を向上させることが提案されている。
更に、 特開平 1 0— 7 2 2 1 9号公報には、 式 L i xN i ,.yNy02 (式中、 0 <x く 1 . 1、 0≤y≤lである。)を有し、一次粒子が板状ないし柱状であり、かつ(体 積基準累積 9 5 %径ー体積基準累積 5 %径) 体積基準累積 5 %径) が 3以下で、 平均粒径が 1〜 5 0 iiiiを有するリチウム複合酸化物が、 重量あたりの初期放電容 量が高く、 また充放電サイクル耐久性に優れることが提案されている。
しかしながら、 上記従来の技術では、 リチウム複合酸化物を正極活物質に用いた リチウム二次電池において、 体積容量密度、 安全性、 塗工均一性、 サイクル特性更 には低温特性などの全てを充分に満足するものは未だ得られていない。 発明の開示
本発明は、 大きい体積容量密度、 高い安全性、 優れた充放電サイクル耐久性、 高 いプレス密度、 及び高い生産性を有するリチウムニ次電池正極用リチウムコバル卜 複合酸化物の製造方法、 製造されたリチウムコバルト複合酸化物を含む、 リチウム 二次電池用正極、 及びリチウム二次電池の提供を目的とする。
本発明者は、 上記の課題を達成するため研究を続けたところ、 リチウムコバルト 複合酸化物の製造原料であるコパルト源として、 一次粒子が凝集してなる二次粒子 の平均粒径が 8〜20 ΙΠの略球状の水酸化コバルトと、一次粒子が凝集してなる二次 粒子の平均粒径が 2〜10 ζπιの四三酸化コバル卜とを、特定の原子比比率で含む混合 物を使用し、 かつこれらのコバルト源、 リチウム源、 さらに他の金属源とを特定の 範囲の温度で焼成してリチウムコバルト複合酸化物を製造することにより上記の課 題を達成し得ることを見出した。
本発明でかかる構成を採用することにより何故に上記課題が達成されるかについ ては必ずしも明らかではないが、 コパルト源としての上記の特定の物性を有する水 酸化コバルトと四三酸化コバル卜とを特定のコバルト原子の比率で使用した場合に は、比較的大きい前者の粒子の間隙に、後者の小さい粒子が挿入されることになる。 これにより、 水酸化コバルトと四三酸化コパルトそれぞれ単独で使用した場合に比 ベて、 本発明の 2種類の混合物からなるコバルト源のタップ密度は飛躍的に高くな るため、 該リチウムコバルト複合酸化物から製造されるリチウムニ次電池の正極の 生産性も向上するものと推定される。 また、 上記の特定の物性を有する水酸化コバ ルトはその反応性の高さから緻密かつ略球状の正極粒子を形成する。 外部より圧力 をかけた場合、 水酸化コバルト由来の緻密かつ略球状の正極粒子への圧縮応力が比 較的もろい四三酸化コバルト由来の正極粒子に効率よく伝播されることにより粒子 が破壌され、 緻密かつ赂球状正極粒子間に充填される。 その結果、 水酸化コバルト と四三酸化コバルトとの混合物からなるリチウムコバル卜複合酸化物は、 コバル卜 源としてそれぞれ単独のものを使用した場合では予期できなかった高プレス密度か つ緻密性の高い化合物になるものと思われる。
かくして、 本発明は以下の構成を要旨とするものである。 (1) コノ レト源、 及びリチウム源を含む混合物を酸素含有雰囲気で焼成する、 一 般式 LipCoxMyzFa (但し、 Mは Co以外の遷移金属元素又はアルカリ土類金属元 素である。 0.9≤p≤l. 0.980≤x≤l.000、 0≤y≤0.02, 1.9≤z≤2. x+y=K 0≤a≤0.02) で表わされるリチウムコバルト複合酸化物の製造方法であって、 上記 コバルト源として、一次粒子が凝集してなる二次粒子の平均粒径が 8〜20 mの略球 状の水酸化コバルトと、 一次粒子が凝集してなる二次粒子の平均粒径が 2〜10 im の四三酸化コバルトとを、 コバルト原子比で 5: 1〜1: 5の割合で含む混合物を使用 し、 かつ 700〜1050^で焼成することを特徵とするリチウム二次電池の正極 用リチウムコバルト複合酸化物の製造方法。
(2) 水酸化コバルトの二次粒子を純水中に分散させた後の平均粒径]) 50が元の平 均粒径 D50に対して 1/4以下である上記 (1) に記載の製造方法。
(3) 水酸化コバルトの、 Cu- Κα線を用いた X線回折スペクトルで、 2 =19±Γ の (001) 面の回折ピークの半値幅が 0.18〜0.35° 、 20==38±Γ の (101) 面の回 折ピークの半値幅が 0.15〜0.35° であり、かつ比表面積が 5〜50m2/gである上記(1) 又は (2) に記載の製造方法。
(4) 水酸化コバルトが、 プレス密度が 1.0〜2.5g/cm3である上記 (1) 〜 (3) のいずれかに記載の製造方法。
(5)四三酸化コバルトが、 Cu-Κ 線を用いた X線回折スぺクトルで、 20=19±Γ の (001) 面の回折ピークの半値幅が 0.5。 以下、 20=38±1° の (101) 面の回折 ピークの半値幅が 0.5° であり、 比表面積が 0.5〜20m2/gである上記 ( 1 ) 〜 ( 4 ) のいずれかに記載の製造方法。
(6) リチウムコバルト複合酸化物が、その(110)面の回折ピークの半値幅が 0.07 〜0.14° 、 比表面積が 0.3〜0.7mVg、 発熱開始温度が 160°C以上、 かつプレス密度 が 3.15〜3.8g/cm3ある上記 (1) 〜 (5) のいずれかに記載の製造方法。
(7) 上記 (1) 〜 (6) のいずれかに記載の製造方法により製造されだリチウム コバルト複合酸化物を含むリチウム二次電池用正極。
(8) 上記 (7) に記載された正極を使用したリチウム二次電池。 発明を実施するための最良の形態
本発明で製造されるリチウム二次電池正極用のリチウムコバルト複合酸化物は、 一般式本発明で製造されるリチウム二次電池正極用のリチウムコバルト複合酸化物 は、一般式 LipCoxMyzFaで表される。かかる一般式における、 M、 p、 x、 y、 z及び aは上記に定義される。なかでも、 p、 x、 y、 z及び aは下記が好ましい。 0. 97≤p≤l. 03、 0. 990≤x≤ 1. 0、 0. 0005≤y≤0. 01、 1. 95≤z≤2. 05、 x + y=l、 0. 00 l≤a≤0. 01。 ここで、 aが 0より大きいときには、 酸素原子の一部がフッ素原子が置換された複合酸化物にな るが、 この場合には、 得られた正極活物質の安全性が向上する。
また、 Mは、 Coを除く遷移金属元素又はアルカリ土類金属であり、 該遷移金属 元素は周期表の 4族、 5族、 6族、 7族、 8族、 9族、 10族及び 11族の遷移金 属を表す。 なかでも、 Mは、 T i、 Z r、 Hf、 V、 Nb、 Ta、 Mg、 Ca、 S r、 B a、 及び A 1からなる群から選ばれる少なくとも 1つの元素が選択される。 なかでも、 容量発現性、 安全性、 サイクル耐久性などの見地より、 T i、 Z r、 H f、 Mg又は A lが好ましい。 本発明において、上記 M及び/又は Fを含有せしめる場合は、 M及び Fのいずれも コバルト酸リチウム粒子の表面乃至表面から好ましくは lOOnm以内、 特には好まし くは 30nm以内の実質上表層に存在していることが好適である。粒子の内部に存在し ていると、 電池特性の改良効果が小さいのみならず、 電池特性が低下する場合があ るので好ましくない。 表面に存在することにより、 少量の添加で電池性能の低下を 招来することなく、安全性、充放電サイクル特性等の重要な電池特性を改良できる。 表面に存在するか否かは正極粒子について、 分光分析例えば、 XP S分析を行うこ とにより判断できる。
本発明のリチウムコバルト複合酸化物は、 コバルト源として、 特定の水酸化コバ ル卜と四三酸化コバルトとの混合物が使用される。 水酸化コバルトとしては、 Cu K Kを線源とする X線回折によって測定される 2 θ = 1 9 ± 1 ° の (0 0 1) 面の 回折ピークの半値幅が 0. 18〜0. 35° であり、 かつ 20 = 38 ± 1 ° の (1 01) 面の回折ピークの半値幅が 0. 15〜0. 35であり、 かつ比表面積が 5〜 5 Om2Zgを有するものの使用が好ましい。
水酸化コバルトの CuKaを線源とする X線回折によって測定される、 20 = 1 9±1° の (001) 面の回折ピークの半値幅及び 20 = 38土 1° の (101) 面の回折ピークの半値幅が上記本発明で規定される範囲外の場合には粉体が崇高く なったり、 また正極のプレス密度が低下したり、 安全性が低下したりして本発明の 目的を達成することはできない。 上記の半値幅は、 なかでも、 20 =19±1° の (001)面の回折ピークの半値幅が 0. 22〜0. 30であり、 20 = 38±1° の (101) 面の回折ピークの半値幅が 0. 18〜0. 30° であるのが好適であ る。
また、 水酸化コバルトの比表面積が 5 m2/gより小さい場合には、 正極のプレス 密度が低下したり、安全性が低下する。 逆に 5 Om2Zgを超える場合には粉体が崇 高くなる。 特に、 比表面積は 10〜3 Oml/gが好適である。 また、 水酸化コバル 卜のプレス密度は、 1. 0 gZcm3よりも小さい場合には、 粉体が嵩高くなり、 一 方、 2. 5 gZcm3を超える場合には、 正極のプレス密度が低くなるので好まし くない。
さらに、 水酸化コバルトのプレス密度は、 1. 0〜2. 5gZcm3、 特には 1. 3〜 2. 2 gZcm3であるのが好ましい。 なお、 本発明における水酸化コバルト のプレス密度は、 特に断りのない限り、 粒子粉末を 0.3 t/cm2の圧力でプレス圧縮し た時の見かけのプレス密度をいう。 また、 リチウムコバルト複合酸化物のプレス密 度は 0.96t/cm2の圧力でプレス圧縮した時の見かけのプレス密度をいう。
また、 上記水酸化コバルトは、 その二次粒子を水中に分散させた状態での平均粒 径 D50が水中に分散させる前の平均粒径 D50の好ましくは 1Z4以下、 好ましく は 1Z8以下であるのが好ましい。 この場合、 水中に分散させた状態での平均粒径 D50は、 好ましくは 5〜25 m、 特には 8〜 20 mであるのが好適である。 上記の平均粒径が上記の範囲にない場合には、 正極のプレス密度が低下したり、 大 電流放電特性や自己放電特性が低下したりして好ましくない。 なお、 上記水酸化コ バルト粒子の純水中への分散は超音波 (42KHz、 40W) を 3分間照射しなが ら行う。
さらに、 上記水酸化コバルトの二次粒子の形状は、 その略球形であることが好ま しい。粒子の形状が略球形とは、球状、 ラグビーポール状、多角体状などを含むが、 その有する長径/短径が好ましくは 2 1〜 1 / 1、 特には 1 . 5 Z 1〜1 / 1で あるのが好適である。 なかでも、 できるだけ球形の形状を有するのが好ましい。 一方、 四三酸化コバルトとしては、 CuKo!を線源とする X線回折によって測定さ れる 20 =31± Γ の (220) 面の回折ピークの半値幅が 0. 5° 以下であり、 かつ 20 =37± 1° の (311) 面の回折ピークの半値幅が 0. 5° 以下であり、 かつ比表面積が 0. 5〜20mVgを有するものが好ましい。 なかでも 20 =31土 Γ の (220) 面の回折ピ ークの半値幅が 0. 2〜0. 05° であり、 2 Θ =37± Γ の (311) 面の回折ピークの半値 幅が 0. 2〜0. 05° であるのが特に好適である。 上記本発明で規定される範囲外の場 合には粉体が嵩高くなつたり、焼成時の反応性が低下してしまうため好ましくない。 また、 四三酸化コバルトの比表面積が 0. 5m2/gより小さい場合には、 焼成時の反 応性が低下してしまう。逆に 20m2/gを超える場合には粉体が嵩高くなつてしまい好 ましくない。 なかでも、 比表面積は 10〜lm2/gが好適である。 さらに四三酸化コバ ルトのプレス密度は 2. 5〜5g/cm3、 特には 3〜4g/cm3であるのが好ましい。
また、 四三酸化コバルトは、 その二次粒子を水中に分散させた状態での平均粒径 D50が、 好ましくは 2〜10/ m、 特には 1〜5 mであるのが好適である。 上記の平均 粒径が上記の範囲にない場合には、 水酸化コパルト由来の大粒子の間隙への挿入が 困難になるため好ましくない。
上記水酸化コバルトと四三酸化コバルトとの混合物をコバル卜源とする場合、 前 者/後者がコバルトの原子比で、 5Z1〜1Z5であることが必要である。 上記の範囲 を超えて水酸化コバルト又は四三酸化コバルトが多い場合には、 粉体が嵩高くなつ たり、 正極のプレス密度が低下してしまい好ましくない。 なかでも、 水酸化コバル 卜と四三酸化コバルトの比率は、 前者/後者がコバルト原子比で、 好ましくは 4/1〜 1/4、 特に好ましくは 3/2〜2/3であるのが好適である。
本発明では、 上記のコバルト源、 リチウム源及び必要に応じて使用される M元素 源及びフッ素源の混合物を酸素含有雰囲気下において焼成する際の温度である、 7 0 0〜1 0 5 0は重要である。 焼成温度が、 7 0 0 より小さい場合にはリチウム 化が不完全となり、 逆に 1 0 5 0 °Cを超える場合には充放電サイクル耐久性や初期 容量が低下してしまう。 特に、 焼成温度は 9 0 0〜1 0 0 0 °Cが好適である。 本発 明ではスラリーの噴霧乾燥のごとき複雑なリチウム化法を用いない有利性がある。 更には、 特開 2 0 0 2— 6 0 2 2 5号公報に開示されるような方法、 即ち、 水系の スラリーを用いると、 二次粒子凝集体が崩壌するので好ましくない。 本発明は凝集 力の弱い水酸化コバルトニ次粒子を乾式で調合し、 焼成することに特徴がある。 本発明のリチウムコバルト複合酸化物の製造に使用される上記の特定の物性を有 する水酸化コバルトや四三酸化コバルトは、 種々の方法で製造され、 その製造法は 限定されない。例えば、硫酸コバルト水溶液と、水酸化アンモニゥムとの混合液と、 水酸化ナトリゥム水溶液とを連続的に混合することにより、 容易に水酸化コバルト を含むスラリーが製造できる。 そして、 この際の、 p H、 撹拌などの反応条件を変 えることにより本発明の物性を有する水酸化コバルトが得られる。 また、 四三酸化 コバルトは、 上記で得られた水酸化物を加熱処理して製造される。
本発明は上記特定構造を有する水酸化コバル卜とリチウム源を混合焼成すること を特徵とするが、 かかるコバルト源は、 水酸化コバルト又は四三酸化コバルトの一 部を他のコバルト源と置換すると更に電池特性あるいは正極製造生産性等のバラン スを改良できる場合がある。 他のコバルト源としては、 ォキシ水酸化コバルトなど が例示される。
本発明によりリチウムコバルト複合酸化物を製造する場合、リチウム源としては、 炭酸リチウムあるいは水酸化リチウムが好ましく使用される。 また、 必要に応じて 使用される元素 Mの原料としては好ましくは、 水酸化物、 酸化物、 炭酸塩、 フッ化 物が選択される。 フッ素源としては、 金属フッ化物、 L i F、 MgF2 などが選択 される。 水酸化コバルト、 リチウム源、 元素 Mの原料及びフッ素源の混合粉体を上 記のように 800〜1050°Cで酸素含有雰囲気で 5〜20時間焼成処理し、 得ら れた焼成物を冷却後、 粉砕、 分級することによりリチウムコバルト複合酸化物粒子 は製造される。
このようにして製造されるリチウムコバルト複合酸化物は、 その平均粒径 D 50 が好ましくは 5〜 15 m、 特に好ましくは 8〜12 ^m、 比表面積が好ましくは 0. 3〜0. 7m2/g、 特に好ましくは 0. 4〜0. 6m2Zg、 CuKo;を線源 とする X線回折によって測定される 20 = 66. 5土 1° の (110) 面回折ピー ク半値幅が好ましくは 0. 07〜0. 14° 特に好ましくは 0. 08〜0. 12° 、 かつプレス密度が好ましくは 3. 15〜3. 8 g/cm3、 特に好ましくは 3. 20 〜3. 55 g/cm3あるのが好適である。 また、 本発明のリチウムコバルト複合酸 化物は、 そこに含有される残存アルカリ量が 0. 03質量%以下が好ましく、 特に は 0. 01質量%以下であるのが好適である。
かかるリチウムコバルト複合酸化物からリチウム二次電池用の正極を製造する場 合には、 かかる複合酸化物の粉末に、 アセチレンブラック、 黒鉛、 ケッチェンブラ ックなどのカーボン系導電材と結合材を混合することにより形成される。 上記結合 材には、 好ましくは、 ポリフッ化ピニリデン、 ポリテトラフルォロエチレン、 ポリ アミド、 カルボキシメチルセルロース、 アクリル樹脂などが用いられる。
本発明のリチウムコバルト複合酸化物の粉末、 導電材及び結合材を溶媒又は分散 媒を使用し、 スラリー又は混練物とし、 これをアルミニウム箔、 ステンレス箔など の正極集電体に塗布などにより担持せしめてリチウム二次電池用の正極が製造され る。
本発明のリチウムコバルト複合酸化物を正極活物質に用いるリチウム二次電池に おいて、 セパレー夕としては、 多孔質ポリエチレン、 多 ¾1質ポリプロピレンのフィ ルムなどが使用される。 また、 電池の電解質溶液の溶媒としては、 種々の溶媒が使 用できるが、 なかでも炭酸エステルが好ましい。 炭酸エステルは環状、 鎖状いずれ も使用できる。 環状炭酸エステルとしては、 プロピレンカーボネート、 エチレン力 ーポネート (EC) などが例示される。 鎖状炭酸エステルとしては、 ジメチルカ一 ポネ一ト、ジェチルカーポネート(DEC)、ェチルメチルカーボネート(EMC)、 メチルプロピルカーポネ一ト、メチルイソプロピルカーポネ一トなどが例示される。 本発明では、 上記炭酸エステルを単独で又は 2種以上を混合して使用できる。 ま た、 他の溶媒と混合して使用してもよい。 また、 負極活物質の材料によっては、 鎖 状炭酸エステルと環状炭酸エステルを併用すると、 放電特性、 サイクル耐久性、 充 放電効率が改良できる場合がある。
また、 本発明のリチウムコバルト複合酸化物を正極活物質に用いるリチウム二次 電池においては、 フッ化ピニリデン一へキサフルォロプロピレン共重合体 (例えば アトケム社製:商品名カイナー) あるいはフッ化ビニリデン一パーフルォロプロピ ルビニルエーテル共重合体を含むゲルポリマー電解質としても良い。 上記の電解質 溶媒又はポリマー電解質に添加される溶質としては、 C 104—、 CF3SO3-, B F4—、 PF6—、 As F6—、 SbF6_、 CF3C〇2—、 (CF3S02) 2N—などを ァニオンとするリチウム塩のいずれか 1種以上が好ましく使用される。 上記リチウ ム塩からなる電解質溶媒又はポリマー電解質対して、 0. 2〜2. Omo 1 / 1 (リ ットル) の濃度で添加するのが好ましい。 この範囲を逸脱すると、 イオン伝導度が 低下し、 電解質の電気伝導度が低下する。 なかでも、 0. 5〜1. 5mo lZlが 特に好ましい。
本発明のリチウムコパルト複合酸化物を正極活物質に用いるリチウム電池におい て、 負極活物質には、 リチウムイオンを吸蔵、 放出可能な材料が用いられる。 この 負極活物質を形成する材料は特に限定されないが、 例えばリチウム金属、 リチウム 合金、炭素材料、周期表 14、又は 15族の金属を主体とした酸化物、炭素化合物、 炭化ケィ素化合物、 酸化ケィ素化合物、 硫化チタン、 炭化ホウ素化合物などが挙げ られる。 炭素材料としては、 種々の熱分解条件で有機物を熱分解したものや人造黒 鉛、 天然黒鉛、 土壌黒鉛、 膨張黒鉛、 鱗片状黒鉛などを使用できる。 また、 酸化物 としては、酸化スズを主体とする化合物が使用できる。負極集電体としては、銅箔、 ニッケル箔などが用いられる。 かかる負極は、 上記活物質を有機溶媒と混練してス ラリーとし、 該スラリーを金属箔集電体に塗布、 乾燥、 プレスして得ることにより 好ましくは製造される。
本発明のリチウムコバルト複合酸化物を正極活物質に用いるリチウム電池の形状 には特に制約はない。 シート状、 フィルム状、 折り畳み状、 巻回型有底円筒形、 ポ タン形などが用途に応じて選択される。 実施例
以下に実施例により本発明を具体的に説明するが、 本発明はこれらの実施例に限 定されないことはもちろんである。 なお、 下記において、 例 1〜例 5及び例 8〜例 10は本発明の実施例であり、 例 6〜例 7は、 比較例である。
<例1>
硫酸コバルト水溶液と水酸化アンモニゥムとの混合液を、 水酸化ナトリゥム水溶 液と連続的に混合して、 連続的に水酸化コバルトスラリーを公知の方法により合成 し、 凝集、 ろ過及び乾燥工程を経て水酸化コバルト粉体を得た。 得られた水酸化コ バルトは、 CUK E線を使用した粉末 X線回折において、 20 =19±1° の (001) 面の 回折ピーク半値幅は 0.27° であり、 20=38土 Γ の (101) 面の回折ピーク半値幅 は 0.23° であった。 また、 走査型電子顕微鏡観察の結果、 不定形の微粒子が凝集し て、 略球状の二次粒子から形成されていることがわかった。 走查型電子顕微鏡観察 の画像解析から求めた体積基準の粒度分布解析の結果、 平均粒径 D50が 17.5 m, D10が 7. Ι ΠΚ D90が 26.4;timであった。
この水酸化コバルト二次粒子を純水中に分散させたところ、 容易に二次粒子が崩 壊して、 一次粒子を主体とする懸濁液を形成したことから、 この二次粒子の凝集力 は弱いことがわかった。 また、 この二次粒子粉末の粒度分布をレーザー散乱式粒度 分布測定装置を用いて水を分散媒として超音波 (42kHz40W) を 3分間照射後測定し た結果、 平均粒径 D50が 0.75 m、 D10が 0.35 ΠΙ、 D90が 1.6 ΙΠであった。 また、 平均粒径の測定後のスラリーを乾燥し、 走査型電子顕微鏡観察の結果、 測定前の二 次粒子形状は認められなかつた。 二次粒子からなる水酸化コバルト粒子の比表面積 は 17. lmVgであり、 プレス密度が 1. 75g/cm3であり、 一次粒子が弱く凝集してなる 略球状の水酸化コバルト粉末であった。
四三酸化コバルトとしては、 レーザー散乱式粒度分布測定装置を用いて水を分散 媒として同様に測定した、 D50が 2. 8 ^m、 D10が 1. 6 ΙΠ、 D90が 4. Ο ΙΠの平均粒径 を有し、かつ BET法により求めた比表面積が 1. 2m2/gの四三酸化コバルトを用いた。 この四三酸化コバルトを走査型電子顕微鏡で観察した結果、 一次粒子が凝集して二 次粒子を形成していることがわかった。この四三酸化コノ レトの 2 0 =31 ± Γ の(220) 面の回折ピークの半値幅が 0. 11であり、 2 0 =37± 1 ° の (311) 面の回折ピークの 半値幅が 0. 135° であった。
上記の水酸化コバルトと四三酸化コバルトとの混合物 (コバルト原子比で 1: 1) 粉末と、 炭酸リチウム粉末とを焼成後 LiCo02となるように乾式混合した。 得られる 調合粉のタップ密度は 1. 30g/cm3であった。 この調合粉を空気中、 950°Cで 12時間 焼成した。 焼成物を解砕し得られた一次粒子が凝集してなる LiCo02粉末の粒度分布 をレーザー散乱式粒度分布測定装置を用いて水を分散媒として測定した結果、 平均 粒径 D50が 8. 9 ^ιη、 D10が 4 7 m、 D90が 21. 9 ^mであった。 また、 BET法により 求めた比表面積は 0. 44mVgであった。なお、本発明で、タップ密度は、 JISR9301-2-3 に従って求めた。
上記の UCo02粉末 10gを純水 100g中に分散し、ろ過後 0. 1Nの HC 1で電位差滴定 を行い残存アルカリ量を求めたところ 0. 02重量%であった。 また、上記粉末につい て X線回折装置 (理学電機社製 RINT2100型) を用いて X線回折スペクトルを得た。 CuK a線を使用した粉末 X線回折において、 2 0 =66. 5± 1 ° の (110) 面の回折ピー ク半値幅は 0. 095° であり、 プレス密度は 3. 40g/cm3であった。
上記の粉末とアセチレンブラックと、ポリフッ化ビニリデン粉末とを 90/5/5の質 量比で混合し、 N-メチルピロリドンを添加してスラリーを作製し、 厚さ 20 mのァ ルミ二ゥム箔にドクターブ 1/ードを用いて片面塗工した。 乾燥し、 ロールプレス圧 延することによりリチウム電池用の正極体シートを作製した。 圧延後の正極体の厚 みと電極層の単位体積当りの重量から電極層の密度を測定したところ 3. 45g/cm3で あった。
そして、上記正極体シートを打ち抜いたものを正極に用い、厚さ 500 imの金属リ チウム箔を負極に用い、 負極集電体にニッケル箔 を使用し、 セパレー夕には 厚さ の多孔質ポリプロピレンを用い、 さらに電解液には、 濃度 1Mの
LiPF6/EC+DEC (1: 1) 溶液 (LiPF6を溶質とする ECと DECとの質量比 (1: 1) の混 合溶液を意味する。 後記する溶媒もこれに準じる。 ) を用いてステンレス製簡易密 閉セル型リチウム電池をアルゴングローブボックス内で 2個組み立てた。
上記電解液としてもちいた EC+DEC (1: 1) 溶液を用いた 1個の電池については、 25°Cにて正極活物質 lgにっき 75 の負荷電流で 4. 3Vまで充電し、 正極活物質 lg にっき 75mAの負荷電流にて 1. 5Vまで放電して初期放電容量を求めた。 さらに電極 層の密度と重量あたりの容量から体積容量密度を求めた。また、この電池について、 引き続き充放電サイクル試験を 30回行った。 その結果、 25°C、 2. 5〜4. 3Vにおける 正極電極層の初期体積容量密度は 465mAh/cm3電極層であり、 初期重量容量密度は、 163mAh/g-LiCo02であり、 30回充放電サイクル後の容量維持率は 97. 2%であった。 また、 他方の電池は上記電解液として EC+DEC (1: 1) 溶液を用いた残りの電池につ いては、 それぞれ 4. 3Vで 10時間充電し、 アルゴングローブボックス内で解体し、 充電後の正極シートを取り出し、 その正極体シートを洗浄後、 径 3顧に打ち抜き、 ECとともにアルミカプセルに密閉し、走査型差動熱量計にて 5°C/分の速度で昇温し て発熱開始温度を測定した。 その結果、 4. 3V充電品の発熱開始温度は 161°Cであつ た。
ぐ例
例 1において、 四三酸化コバル卜と水酸化コバルトの混合比を 70: 30 (コノ レト 原子比) としたほかは例 1と同様にして、 LiCo02粉末を合成した。 四三酸化コバル トと水酸化コバルトと炭酸リチウムの混合比は焼成後 LiCo02となるように調合した。 調合粉のタップ密度は 1. 7g/cm3であった。得られた LiCo02は、平均粒径 D50が 7. l zm、 oが 3. 0 m、 D90が 17. 6 mであり、 BET法により求めた比表面積が 0. 50m2/gで あった。
上記粉末について X線回折装置(理学電機社製 RINT2100型) を用いて X線回折ス ぺクトルを得た。 CuK a線を使用した粉末 X線回折において、 2 0 = 66. 5 ± Γ の(110) 面の回折ピークの半値幅は 0. 097° であった。粉末のプレス密度は 3. 15g/cm3であり、 残存アルカリ量は 0. 02重量%であった。
例 1と同様にして、 上記粉末を使用した正極体シートを作製し、 リチウム二次電 池の正極活物質としての特性を求めた結果、 25°C、 2. 5〜4 3Vにおける、 初期重量 容量密度は、 161 li/g- LiCo02であり、 30回充放電サイクル後の容量維持率は 97. 1 % であった。 また、 4. 3V充電品の発熱開始温度は 162 であった。
く例 3 >
例 1において、 四三酸化コバル卜と水酸化コバルトの混合比を 30: 70 (コバルト 原子比) としたほかは例 1と同様にして、 LiCo02粉末を合成した。 四三酸化コバル 卜と水酸化コバルトと炭酸リチウムの混合比は焼成後 LiCo02となるように調合した。 調合粉のタップ密度は 1. lg/cm3であった。得られた LiCo02は、平均粒径 D50が 10. l n D10が 6. D90が 24. 6 ^mであり、 BET法により求めた比表面積が 0. 52m2/gで めった。
LiCo02粉末について X線回折装置(理学電機社製 RINT2100型) を用いて X線回折 スペクトルを得た。 CuK o!線を使用した粉末 X線回折において、 2 0 =66. 5± 1 ° の (110)面の回折ピークの半値幅は 0, 099° であった。得られた LiCo02粉末のプレス 圧力 0. 96t/cm2でのプレス密度は 3. 43g/cm3であった。 LiCo02の残存アルカリ量は 0. 02 重量%であった。
例 1と同様にして、 上記粉末を使用した正極体シートを作製し、 リチウム二次電 池の正極活物質としての特性を求めた結果、 25° (:、 2. 5〜4. 3Vにおける、 初期重量 容量密度は、 163iAh/g-LiCo02であり、 30回充放電サイクル後の容量維持率は 98. 0% であった。 また、 4. 3V充電品の発熱開始温度は 160°Cであった。
ぐ例 4 >
例 1において、 四三酸化コバルトと水酸化コバルトの混合比を 60: 40 (コバルト 原子比) としたほかは例 1と同様にして、 LiCo02粉末を合成した。 四三酸化コバル トと水酸化コバルトと炭酸リチウムの混合比は焼成後 LiCo02となるように調合した。 調合粉のタップ密度は 1. lg/cm3であった。得られた LiCo02は、平均粒径 D50が 7. 7 、 D10が 3. 8 m、 D90が 20. 2 mであり、 BET法により求めた比表面積が 0. 47m2/gで あった。 LiCo02粉末について X線回折装置(理学電機社製 RINT2100型) を用いて X線回折 スペクトルを得た。 CuK «線を使用した粉末 X線回折において、 2 0 =66. 5± Γ の
(1 10)面の回折ピークの半値幅は 0. 095 ° であった。得られた LiCo02粉末のプレス 圧力 0. 96t/cm2でのプレス密度は 3. 30g/cm3であった。 LiCo02の残存アルカリ量は 0. 02 重量%であった。
例 1と同様にして、 上記粉末を使用した正極体シートを作製し、 リチウム二次電 池の正極活物質としての特性を求めた結果、 25° (:、 2. 5〜4 3Vにおける、 初期重量 容量密度は、 161mAh/g-LiCo02であり、 30回充放電サイクル後の容量維持率は 97. 4% であった。 また、 4. 3V充電品の発熱開始温度は 16 Cであった。
<例 5 >
例 1において、 四三酸化コパルトと水酸化コバルトと炭酸リチウムを混合するに あたり、 さらに酸化チタン粉末とフッ化リチウム粉末を添加した他は例 1と同様に して正極活物質を合成した。
調合粉の夕ップ密度は 1. 30g/cm3であり、元素分析の結果、 LiCo0 997Ti0 ^β, 998F0 002 であった。 その焼成物を解砕し得られた一次粒子が凝集してなる粉末の粒度分布を レーザー散乱式粒度分布測定装置を用いて水を分散媒として測定した結果、 平均粒 径 D50が 9. 0 m、 D10が 3. Ο ΠΚ D50が 21. であり、 BET法により求めた比表 面積が 0. 43m2/gの略球状の粉末を得た。 この粉末の残存アル力リ量は 0. 02重量%で あった。
この粉末について、 X線回折装置 (理学電機社製 RINT2100型) を用いて L線回折 スペクトルを得た。 CuK o!線を使用した粉末 X線回折において、 2 0 =66. 5± 1° の
(110)面の回折ピーク半値幅は 0- 115であった。正極粉末のプレス密度は 3. 35g/cm3 であった。 XPS分光分析により調べた結果、チタンとフッ素は表面に局在していた。 上記の粉末と、 アセチレンブラックと、 ポリフッ化ビニリデン粉末とを 90/5/5 の質量比で混合し、 N-メチルピロリドンを添加してスラリーを作製し、 厚さ 20 III のアルミニウム箔にドクターブレードを用いて片面塗工した。 乾燥し、 ロールプレ ス圧延することによりリチウム電池用の正極体シ一トを作製した。
そして、上記の正極体シートを打ち抜いたものを正極に用レ、厚さ 500 mの金属 リチウム箔を負極に用い、 負極集電体にニッケル箔 20 mを使用し、 セパレー夕に は厚さ 25 mの多孔質ポリプロピレンを用い、 さらに電解液には、 濃度 1Mの LiPF6/EC+DEC (1: 1) 溶液 (LiPF6を溶質とする ECと DECとの質量比 (1: 1) の混 合溶液を意味する。 後記する溶媒もこれに準じる。 ) を用いてステンレス製簡易密 閉セル型リチウム電池をアルゴングロ一ブポックス内で 2個組み立てた。
上記電解液としてもちいた EC+DEC (1: 1) 溶液を用いた 1個の電池については、 25°Cにて正極活物質 lgにっき 75mAの負荷電流で 4. 3Vまで充電し、 正極活物質 lg にっき 75mAの負荷電流にて 1. 5Vまで放電して初期放電容量を求めた。 さらに電極 層の密度と重量あたりの容量から体積容量密度を求めた。また、この電池について、 引き続き充放電サイクル試験を 30回行った。 その結果、 初期重量容量密度は、 160 li/g-LiCo02であり、 30回充放電サイクル後の容量維持率は 99. 4%であった。 また、 他方の電池は上記電解液として EC+DEC (1: 1) 溶液を用いた残りの電池に ついては、それぞれ 4. 3Vで 10時間充電し、アルゴングローブボックス内で解体し、 充電後の正極シートを取り出し、 その正極体シ一トを洗浄後、 径 3匪に打ち抜き、 ECとともにアルミニウム製カプセルに密閉し、走査型差動熱量計にて 5°C/分の速度 で昇温して発熱開始温度を測定した。その結果、 4. 3V充電品の発熱開始温度は 170°C であった。
ぐ例 6 >
例 1おいて、四三酸化コノルトのみをコノ レト源とした他は例 1と同様にして LiCo02 を合成した。 四三酸化コバルトと炭酸リチウムの混合比は焼成後 LiCo02となるよう に調合した。 調合粉のタップ密度は 2. 5g/cm3であった。 得られた LiCo02粉末のプ レス密度は 3. 04g/cm3であった。
例 1と同様にして、 上記粉末を使用した正極体シートを作製し、 リチウム二次電 池として正極活物質をしての特性を求めた結果、 25°C、 2. 5〜4. 3Vにおける、 初期 重量容量密度は 159 li/g-LiCo02であり、 30回充放電サイクル後の容量維持率は 94. 8%であった。 また、 4 3V充電品の発熱開始温度は 161 であった。
ぐ例 7〉
例 1おいて、水酸化コバルトのみをコバル卜源とした他は例 1と同様にして LiCo02 を合成した。 水酸化コバルトと炭酸リチウムの混合比は焼成後 LiCo02となるように 調合した。 調合粉のタップ密度は 0. 78g/cm3であった。 得られた LiCo02粉末のプレ ス後の見かけ密度は 3. 48g/cm3であった。
例 1と同様にして、 上記粉末を使用した正極体シートを作製し、 リチウム二次電 池として正極活物質をしての特性を求めた結果、 25 、 2. 5〜4. 3Vにおける、 初期 重量容量密度は 159mAh/g- LiCo02であり、 30回充放電サイクル後の容量維持率は 97. 0%であった。 また、 4. 3V充電品の発熱開始温度は 160 であった。
<例 8 >
例 5において、 酸化チタンの替わりに水酸化アルミニウムを用いたほかは例 5と 同様に正極活物質を合成した。化学分析の結果、その組成は、 LiCo0.997Al0 0030, 998F0 002 であり、 この粉末のプレス密度は 3. 40g/cm3であった。 またアルミニウムとフッ素 は表面に存在していた。残存アルカリ量は 0. 02質量%であった。初期容量は 160mAh/g、 30サイクル後の容量維持率は 99. 4%、 発熱開始温度は 169°Cであった。
ぐ例 9 >
例 5において、 酸化チタンの替わりに水酸化マグネシウムを用いたほかは例 5と 同様に正極活物質を合成した。化学分析の結果、その組成は、 LiCo0 99TMg0 0030 , 998F0 002 であり、 この粉末のプレス密度は 3. 40g/cm3であった。 またマグネシウムとフッ素 は表面に存在していた。残存アル力リ量は 0. 02質量%であった。初期容量は 159mAh/g、 30サイクル後の容量維持率は 99. 6%、 発熱開始温度は 172°Cであった。
<例 1 0 >
例 5において、 酸化チタンの替わりに酸化ジルコニウムを用いたほかは例 5と同 様に正極活物質を合成した。 化学分析の結果、 その組成は、 LiCi Zro ^O, 998FD M2 であり、 この粉末のプレス密度は 3. 39g/cm3であった。 またアルミニウムとフッ素 は表面に存在していた。残存アルカリ量は 0. 02質量%であった。初期容量は 161mAh/g、 30サイクル後の容量維持率は 99. 4%、 発熱開始温度は 171°Cであった。 産業上の利用可能性
本発明によれば、 大きい体積容量密度、 高い安全性、 大きい充放電サイクル耐久 性、 高いプレス密度、 及び高い生産性を有する、 リチウム二次電¾正極用リチウム コバルト複合酸化物の製造方法、 製造されたリチウムコバルト複合酸化物を含む、 リチウム二次電池用正極、 及びリチウム二次電池が提供される。

Claims

請求 の 範 囲
1. コバルト源、 及びリチウム源を含む混合物を酸素含有雰囲気で焼成する、 一般 式 LipCoxMyzFa (但し、 Mは Co以外の遷移金属元素又はアルカリ土類金属元素、 0.9≤p≤l. L 0.980≤x≤l.000, 0≤γ≤0.02, 1.9≤z≤2. x+y=l、 0≤a≤0.02) で表わされるリチウムコバルト複合酸化物の製造方法であって、 上記コバルト源と して、一次粒子が凝集してなる二次粒子の平均粒径が 8〜20^mの略球状の水酸化コ バルトと、一次粒子が凝集してなる二次粒子の平均粒径が 2〜10 imの四三酸化コバ ルトとを、 コバルト原子比で 5: 1〜1: 5の割合で含む混合物を使用し、 かつ 700〜 1050でで焼成することを特徴とするリチウムニ次電池の正極用リチウムコバルト複 合酸化物の製造方法。
2. 水酸化コバルトの二次粒子を純水中に分散させた後の平均粒径 D50が元の平均 粒径 D50に対して 1/4以下である請求項 1に.記載の製造方法。
3. 7j酸化コバルトの、 Cu- K«線を用いだ X線回折スペクトルで、 2Θ=19±Γ の (001) 面の回折ピークの半値幅が 0.18〜0.35° 、 20=38±Γ の (101) 面の回折 ピークの半値幅が 0.15〜0.35° であり、 かつ比表面積が 5〜50mVgである請求項 1 又は 2,に記載の製造方法。
4. 水酸化コバルトが、 プレス密度が 1.0〜2.5g/cm3である請求項 1〜 3のいずれ かに記載の製造方法。
5. 四三酸化コバルトが、 Cu-Kひ線を用いた X線回折スペクトルで、 20=31士 Γ の (220) 面の回折ピークの半値幅が 0.5° 以下、 20=37±Γ の (311) 面の回折 ピークの半値幅がひ.5° 以下であり、比表面積が 0'.5〜20m2/gである請求項 1〜 4の いずれかに記載の製造方法。
6. リチウムコバルト複合酸化物が、 その (110) 面の回折ピークの半値幅が 0.07 〜0.14° 、 比表面積が 0.3〜0.7ni2/g、 発熱開始温度が 160で以上、 かつプレス密度 が 3.15〜3.8g/cm3ある請求項 1〜 5の ずれかに記載の製造方法。
7. 請求項 1 ~ 6のいずれかに記載の製造方法により製造されたリチウムコパルト 複合酸化物を含むリチウムニ次電池用正極。
8. 請求項 7に記載された正極を使用したリチウム二次電池。
PCT/JP2003/015283 2002-11-29 2003-11-28 リチウム二次電池用の正極活物質の製造方法 WO2004051771A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2003284501A AU2003284501A1 (en) 2002-11-29 2003-11-28 Method for preparing positive electrode active material for lithium secondary cell
JP2004556863A JP4444117B2 (ja) 2002-11-29 2003-11-28 リチウム二次電池用の正極活物質の製造方法
US11/136,493 US7192672B2 (en) 2002-11-29 2005-05-25 Process for producing positive electrode active material for lithium secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-348289 2002-11-29
JP2002348289 2002-11-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/136,493 Continuation US7192672B2 (en) 2002-11-29 2005-05-25 Process for producing positive electrode active material for lithium secondary battery

Publications (1)

Publication Number Publication Date
WO2004051771A1 true WO2004051771A1 (ja) 2004-06-17

Family

ID=32462909

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/015283 WO2004051771A1 (ja) 2002-11-29 2003-11-28 リチウム二次電池用の正極活物質の製造方法

Country Status (7)

Country Link
US (1) US7192672B2 (ja)
JP (1) JP4444117B2 (ja)
KR (1) KR20050084852A (ja)
CN (1) CN100337351C (ja)
AU (1) AU2003284501A1 (ja)
TW (1) TW200423458A (ja)
WO (1) WO2004051771A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004182564A (ja) * 2002-12-05 2004-07-02 Nippon Chem Ind Co Ltd コバルト酸リチウム、その製造方法及び非水電解質二次電池
JP2006024406A (ja) * 2004-07-07 2006-01-26 Matsushita Electric Ind Co Ltd 非水電解液電池の活物質用四酸化三コバルトとその製造方法
US7018741B2 (en) 2002-02-15 2006-03-28 Seimi Chemical Co., Ltd. Particulate positive electrode active material for a lithium secondary cell
WO2006123711A1 (ja) * 2005-05-17 2006-11-23 Agc Seimi Chemical Co., Ltd. リチウム二次電池正極用のリチウム含有複合酸化物の製造方法
JP2006351487A (ja) * 2005-06-20 2006-12-28 Sony Corp 正極活物質およびその製造方法、並びに電池
JP2007119340A (ja) * 2005-09-29 2007-05-17 Seimi Chem Co Ltd リチウム含有複合酸化物の製造方法
JP2007145695A (ja) * 2005-10-31 2007-06-14 Agc Seimi Chemical Co Ltd リチウム含有複合酸化物の製造方法
JPWO2006123710A1 (ja) * 2005-05-17 2008-12-25 Agcセイミケミカル株式会社 リチウム二次電池正極用のリチウム含有複合酸化物の製造方法
US7501209B2 (en) 2002-09-03 2009-03-10 Seimi Chemical Co., Ltd. Process for producing a lithium-cobalt composite oxide for a positive electrode for a lithium secondary cell
US7998452B2 (en) * 2008-11-28 2011-08-16 Ningbo Jinhe New Materials Co., Ltd. Spherical tricobalt tetraoxide and method of preparing the same
JP2015023021A (ja) * 2013-07-19 2015-02-02 三星エスディアイ株式会社Samsung SDI Co.,Ltd. リチウム二次電池用正極活物質、その製造方法、これを含む正極およびリチウム二次電池
WO2015019851A1 (ja) * 2013-08-08 2015-02-12 シャープ株式会社 正極活物質、正極及びリチウムイオン二次電池
JP2018190700A (ja) * 2016-10-12 2018-11-29 株式会社半導体エネルギー研究所 正極活物質粒子、および正極活物質粒子の作製方法
WO2020130129A1 (ja) * 2018-12-20 2020-06-25 住友化学株式会社 リチウム二次電池用正極活物質前駆体、リチウム二次電池用正極活物質前駆体の製造方法、及びリチウム二次電池用正極活物質の製造方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100382363C (zh) * 2002-09-26 2008-04-16 清美化学股份有限公司 锂二次电池用正极活性物质及其制备方法
WO2005031899A1 (ja) * 2003-09-26 2005-04-07 Mitsubishi Chemical Corporation リチウム二次電池正極材用リチウム複合酸化物粒子、並びにそれを用いたリチウム二次電池用正極及びリチウム二次電池
KR100824247B1 (ko) * 2004-04-02 2008-04-24 에이지씨 세이미 케미칼 가부시키가이샤 리튬 2 차 전지 정극용 리튬 함유 복합 산화물의 제조 방법
WO2007142275A1 (ja) * 2006-06-09 2007-12-13 Agc Seimi Chemical Co., Ltd. 非水電解質二次電池用正極活物質及びその製造方法
WO2008078784A1 (ja) * 2006-12-26 2008-07-03 Santoku Corporation 非水電解質二次電池用正極活物質、正極及び二次電池
CN102315428B (zh) * 2010-06-29 2013-03-20 比亚迪股份有限公司 一种正极材料的制备方法
CN102931377A (zh) * 2012-11-23 2013-02-13 天津力神电池股份有限公司 一种电池负极片及其制备的锂离子电池
KR102195722B1 (ko) 2014-06-19 2020-12-28 삼성에스디아이 주식회사 리튬 이차 전지용 리튬 코발트 산화물, 그 제조방법 및 이를 포함한 양극을 구비한 리튬 이차 전지
KR102217105B1 (ko) * 2017-09-19 2021-02-22 주식회사 엘지화학 이차전지용 양극 활물질 전구체, 양극 활물질 및 이를 포함하는 리튬 이차전지
JP6940716B2 (ja) * 2019-02-27 2021-09-29 三井金属鉱業株式会社 活物質、それを用いた正極合剤及び固体電池
CN112850801B (zh) * 2019-11-28 2023-10-31 荆门市格林美新材料有限公司 一种大颗粒四氧化三钴的制备方法
CN114188528B (zh) * 2021-11-26 2023-06-02 南通金通储能动力新材料有限公司 一种低残碱量、高容量保持率三元正极材料的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002037629A (ja) * 2000-07-25 2002-02-06 Kee:Kk リチウム含有コバルト複合酸化物及びその製造法
JP2002060225A (ja) * 2000-08-18 2002-02-26 Ishihara Sangyo Kaisha Ltd コバルト酸リチウム凝集体、コバルト酸化物凝集体及びそれらの製造方法並びに該コバルト酸リチウム凝集体を用いてなるリチウム電池
JP2002075369A (ja) * 2000-09-04 2002-03-15 Kee:Kk 高容量リチウムイオン二次電池
JP2003002660A (ja) * 2001-06-20 2003-01-08 Seimi Chem Co Ltd リチウムコバルト複合酸化物の製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0732017B2 (ja) 1989-10-06 1995-04-10 松下電器産業株式会社 非水電解質二次電池
JPH06243897A (ja) 1992-12-24 1994-09-02 Fuji Photo Film Co Ltd 非水二次電池
JPH09306546A (ja) * 1996-05-15 1997-11-28 Shin Kobe Electric Mach Co Ltd 非水電解質二次電池用正極板及び非水電解質二次電池
JP3943168B2 (ja) 1996-08-30 2007-07-11 日本化学工業株式会社 リチウム複合酸化物、その製造方法およびリチウム二次電池用正極活物質
JP3489391B2 (ja) 1997-05-14 2004-01-19 日亜化学工業株式会社 リチウムイオン二次電池用正極活物質及びその製造方法
JPH11273678A (ja) * 1998-03-23 1999-10-08 Sumitomo Metal Mining Co Ltd 非水系電解質二次電池用正極活物質およびその製造方法ならびに該正極活物質を用いた非水系電解質二次電池
JP2000082466A (ja) 1998-07-02 2000-03-21 Nippon Chem Ind Co Ltd 正極活物質及び非水電解質二次電池
JP2002093417A (ja) * 2000-09-11 2002-03-29 Mitsubishi Cable Ind Ltd Li−Co系複合酸化物、ならびにそれを用いた正極板およびリチウムイオン二次電池
AU2003264374A1 (en) 2002-09-03 2004-03-29 Seimi Chemical Co., Ltd. Process for producing lithium cobalt composite oxide for positive electrode of lithium secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002037629A (ja) * 2000-07-25 2002-02-06 Kee:Kk リチウム含有コバルト複合酸化物及びその製造法
JP2002060225A (ja) * 2000-08-18 2002-02-26 Ishihara Sangyo Kaisha Ltd コバルト酸リチウム凝集体、コバルト酸化物凝集体及びそれらの製造方法並びに該コバルト酸リチウム凝集体を用いてなるリチウム電池
JP2002075369A (ja) * 2000-09-04 2002-03-15 Kee:Kk 高容量リチウムイオン二次電池
JP2003002660A (ja) * 2001-06-20 2003-01-08 Seimi Chem Co Ltd リチウムコバルト複合酸化物の製造方法

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7018741B2 (en) 2002-02-15 2006-03-28 Seimi Chemical Co., Ltd. Particulate positive electrode active material for a lithium secondary cell
US7501209B2 (en) 2002-09-03 2009-03-10 Seimi Chemical Co., Ltd. Process for producing a lithium-cobalt composite oxide for a positive electrode for a lithium secondary cell
JP2004182564A (ja) * 2002-12-05 2004-07-02 Nippon Chem Ind Co Ltd コバルト酸リチウム、その製造方法及び非水電解質二次電池
JP2006024406A (ja) * 2004-07-07 2006-01-26 Matsushita Electric Ind Co Ltd 非水電解液電池の活物質用四酸化三コバルトとその製造方法
JP4694799B2 (ja) * 2004-07-07 2011-06-08 パナソニック株式会社 非水電解液電池の活物質用四酸化三コバルトの製造方法
US8163198B2 (en) 2005-05-17 2012-04-24 Agc Seimi Chemical Co., Ltd. Process for producing lithium-containing composite oxide for positive electrode of lithium secondary battery
WO2006123711A1 (ja) * 2005-05-17 2006-11-23 Agc Seimi Chemical Co., Ltd. リチウム二次電池正極用のリチウム含有複合酸化物の製造方法
JP5132307B2 (ja) * 2005-05-17 2013-01-30 Agcセイミケミカル株式会社 リチウム二次電池正極用のリチウム含有複合酸化物の製造方法
JPWO2006123711A1 (ja) * 2005-05-17 2008-12-25 Agcセイミケミカル株式会社 リチウム二次電池正極用のリチウム含有複合酸化物の製造方法
JPWO2006123710A1 (ja) * 2005-05-17 2008-12-25 Agcセイミケミカル株式会社 リチウム二次電池正極用のリチウム含有複合酸化物の製造方法
JP5132308B2 (ja) * 2005-05-17 2013-01-30 Agcセイミケミカル株式会社 リチウム二次電池正極用のリチウム含有複合酸化物の製造方法
JP2006351487A (ja) * 2005-06-20 2006-12-28 Sony Corp 正極活物質およびその製造方法、並びに電池
JP2007119340A (ja) * 2005-09-29 2007-05-17 Seimi Chem Co Ltd リチウム含有複合酸化物の製造方法
JP2007145695A (ja) * 2005-10-31 2007-06-14 Agc Seimi Chemical Co Ltd リチウム含有複合酸化物の製造方法
US7998452B2 (en) * 2008-11-28 2011-08-16 Ningbo Jinhe New Materials Co., Ltd. Spherical tricobalt tetraoxide and method of preparing the same
JP2015023021A (ja) * 2013-07-19 2015-02-02 三星エスディアイ株式会社Samsung SDI Co.,Ltd. リチウム二次電池用正極活物質、その製造方法、これを含む正極およびリチウム二次電池
WO2015019851A1 (ja) * 2013-08-08 2015-02-12 シャープ株式会社 正極活物質、正極及びリチウムイオン二次電池
JP2018190700A (ja) * 2016-10-12 2018-11-29 株式会社半導体エネルギー研究所 正極活物質粒子、および正極活物質粒子の作製方法
JP2022153404A (ja) * 2016-10-12 2022-10-12 株式会社半導体エネルギー研究所 リチウムイオン二次電池の作製方法
JP2023096104A (ja) * 2016-10-12 2023-07-06 株式会社半導体エネルギー研究所 リチウムイオン二次電池
JP2023157994A (ja) * 2016-10-12 2023-10-26 株式会社半導体エネルギー研究所 リチウムイオン二次電池及び電子機器
WO2020130129A1 (ja) * 2018-12-20 2020-06-25 住友化学株式会社 リチウム二次電池用正極活物質前駆体、リチウム二次電池用正極活物質前駆体の製造方法、及びリチウム二次電池用正極活物質の製造方法

Also Published As

Publication number Publication date
CN1717823A (zh) 2006-01-04
KR20050084852A (ko) 2005-08-29
AU2003284501A1 (en) 2004-06-23
US7192672B2 (en) 2007-03-20
US20050214645A1 (en) 2005-09-29
CN100337351C (zh) 2007-09-12
JP4444117B2 (ja) 2010-03-31
TW200423458A (en) 2004-11-01
TWI327383B (ja) 2010-07-11
JPWO2004051771A1 (ja) 2006-04-06

Similar Documents

Publication Publication Date Title
WO2004051771A1 (ja) リチウム二次電池用の正極活物質の製造方法
JP4268392B2 (ja) リチウム二次電池用の正極活物質及びその製造方法
JP4280012B2 (ja) リチウム遷移金属複合酸化物
US7981547B2 (en) Process for positive electrode active substance for lithium secondary battery
JP4318313B2 (ja) リチウム二次電池用の正極活物質粉末
JP4276442B2 (ja) リチウム二次電池用正極活物質粉末
JP4167654B2 (ja) リチウム二次電池正極用のリチウムコバルト複合酸化物の製造方法
JP4833058B2 (ja) リチウム二次電池正極用のリチウム含有複合酸化物の製造方法
WO2004082046A1 (ja) リチウム二次電池用正極活物質粉末
WO2007037234A1 (ja) リチウム二次電池正極用のリチウム含有複合酸化物の製造方法
JP4470053B2 (ja) リチウムコバルト複合酸化物の製造方法
WO2004088776A1 (ja) リチウム二次電池用の正極活物質の製造方法
JP4773636B2 (ja) リチウムコバルト複合酸化物の製造方法
JP3974396B2 (ja) リチウム二次電池用正極活物質の製造方法
JP4199506B2 (ja) リチウム二次電池用の正極活物質の製造方法
JP4209646B2 (ja) 二次電池正極用のリチウムコバルト複合酸化物の製造方法
JP4359092B2 (ja) 二次電池正極用のリチウムコバルト複合酸化物の製造方法
JP4472430B2 (ja) リチウム二次電池正極用のリチウム複合酸化物の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020057006489

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2004556863

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11136493

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 20038A43095

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020057006489

Country of ref document: KR

122 Ep: pct application non-entry in european phase