WO1998017955A1 - Appareil de conditionnement d'air - Google Patents

Appareil de conditionnement d'air Download PDF

Info

Publication number
WO1998017955A1
WO1998017955A1 PCT/JP1997/002410 JP9702410W WO9817955A1 WO 1998017955 A1 WO1998017955 A1 WO 1998017955A1 JP 9702410 W JP9702410 W JP 9702410W WO 9817955 A1 WO9817955 A1 WO 9817955A1
Authority
WO
WIPO (PCT)
Prior art keywords
indoor
air conditioner
side electric
indoor unit
power supply
Prior art date
Application number
PCT/JP1997/002410
Other languages
English (en)
French (fr)
Inventor
Shigeki Inoue
Hirokazu Unno
Hironori Nirei
Original Assignee
Kabushiki Kaisha Toshiba
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Toshiba filed Critical Kabushiki Kaisha Toshiba
Priority to EP97930765A priority Critical patent/EP0935104A4/en
Publication of WO1998017955A1 publication Critical patent/WO1998017955A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/24Means for preventing or suppressing noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0003Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station characterised by a split arrangement, wherein parts of the air-conditioning system, e.g. evaporator and condenser, are in separately located units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to an air conditioner that supplies power to both an indoor unit and an outdoor unit from a common AC power supply connected to the indoor unit.
  • the split type air conditioner is composed of a compressor 21, a four-way valve 22, an outdoor heat exchanger 5, a cabinet tube 25, and an indoor heat exchanger 6. It has a refrigeration cycle formed.
  • an outdoor fan 24 having a drive motor 23 is provided for heat exchange of the heat exchanger 5, and similarly, a drive for heat exchange of the indoor heat exchanger 6 is provided.
  • An indoor fan 13 having a motor 12 is provided. Indoor heat exchanger 6, indoor fan 13 and drive motor 12 are included in the indoor unit, outdoor heat exchanger 5, compressor 21, four-way valve 22, outdoor fan 24 and outdoor fan
  • the motor 23 is included in the outdoor unit.
  • the four-way valve 22 is controlled so as to form the flow path indicated by the force M ⁇ , and as indicated by the arrow, the refrigerant flows from the compressor 21 to the four-way valve 22 and the outdoor heat. It circulates through the path returning to the compressor 21 through the exchanger 5, the capillary tube 25, the indoor heat exchanger 6, and the four-way valve 22. At this time, the outdoor heat exchanger 5 functions as a condenser, and the indoor heat exchanger 6 functions as an evaporator. Conversely, in the heating operation mode, the four-way valve 22 is switched so as to form the flow path indicated by ⁇ , and the refrigerant flows from the compressor 21 to the four-way valve 22 as shown by the arrow.
  • the indoor exchanger 6 functions as a condenser and the outdoor exchanger 6
  • the vessel 5 functions as an evaporator.
  • the capillary tube 25 has a decompression function to appropriately maintain the degree of superheat of the refrigerant.
  • a room temperature sensor 11 is provided on the air suction side of the indoor heat exchanger 6 to control the room temperature. In accordance with the detected room temperature of the room temperature sensor 11, a control circuit not shown in FIG. Start / stop and the number of revolutions during operation are controlled.
  • FIG. 5 shows an electric circuit for controlling the refrigeration cycle shown in FIG.
  • an indoor fan drive motor 12 is provided as an electric load in the indoor unit 1
  • a compressor motor 21M for driving the compressor 21 as an electric load for the outdoor unit 2 is operated with a four-way valve 22.
  • a four-way valve solenoid 22 M which switches according to the mode, and an outdoor fan drive motor 23 are provided.
  • the four-way valve solenoid 22M is energized during heating operation and deenergized during cooling operation.
  • the indoor unit-side electric load and the outdoor unit-side electric load each receive electric power from a common single-phase AC power supply 3 and are driven.
  • the setting signal from the remote controller 4 is received by the receiving unit 14 provided in the indoor unit 1.
  • the setting signal received by the receiving unit 14 is introduced to a control circuit 10 including a microcomputer.
  • the control circuit 10 further receives a room temperature detection signal from the room temperature sensor 11 and a position detection signal from a position sensor 12 d that detects the rotor position of the indoor fan drive motor 12 composed of a DC brushless motor. .
  • the control circuit 10 controls the indoor fan drive motor 12, compressor motor 21M, four-way valve solenoid 22M, and outdoor fan drive motor 23 to satisfy the conditions set by the remote controller 4. .
  • Drive power is supplied to the indoor unit 1 from the single-phase AC power supply 3, and the outdoor unit is Drive power is supplied to the vehicle 2 from the indoor unit 1 via the crossovers 9a, 9b, 9c, 9d.
  • One line of the AC power supply 3 is connected to one end of the compressor motor 21M via a switch contact 7a and a crossover 9a, and a four-way valve solenoid is connected via a switch contact 7b and a crossover 9b. 22 M, and further connected to one end of an outdoor fan drive motor 23 via a switch contact 7 c and a crossover 9 c.
  • the other line S of the AC power supply 3 is connected to the other ends of the compressor motor 21M, the four-way solenoid 22M and the outdoor fan drive motor 23 via the switch contact 7d and the crossover 9d. Connected in common.
  • the noise absorbers 8a, 8b, 8c are respectively connected between the load side of the switch contacts 7a, 7b, 7c and the load side of the switch contact 7d inside the indoor unit 1. Connected.
  • the control circuit 10 turns off all of the switch contacts 7a, 7b, 7c, and 7d and supplies power to the indoor fan drive motor 12
  • the switch contact 4 connected to the path is also turned off. If a command to start operation is given in the heating operation mode, all of these switch contacts are turned on. If the operation mode is cooling or dehumidification, the switch contact 7b connected in series with the four-way valve solenoid 22M is turned off, and the other switch contacts are turned on.
  • the control circuit 10 connects the switch contact 7a connected in series to the compressor motor 21M and the drive motor 23 for the outdoor fan.
  • the switch contact 7 c connected in series is turned off.
  • the switch contacts 7a, 7b, and 7b connected to the path for supplying power to the outdoor unit 2 are turned on.
  • the noise absorber 8a absorbs the noise generated in the crossover line 9a when the switch contact 7a is turned on and off.
  • the noise absorber 8b is the noise generated on the crossover line 9b when the switch contact 7b is on and off.
  • the noise absorber 8c absorbs noise generated on the line of the crossover 9c when the switch contact 7c is turned on and off.
  • Fig. 5 shows a circuit that obtains drive power from a general single-phase AC power supply 3.However, when drive power is obtained from a single-phase three-wire type distribution line, as shown in Fig. 6, a single-phase three-wire Type Connect one end of the compressor motor 21M to the voltage line 31 of the AC power supply 3A via the switch contact 7a and the crossover 9a to connect the switch contact 7b and the crossover 9b. To one end of the outdoor fan drive motor 23 via the switch contact 7c and the crossover 9c, and to the AC power supply 3A. The other end of the compressor motor 21M, the four-way valve 22M and the drive motor 23 for the outdoor fan are commonly connected to the neutral line 32 through the switch contact 7d and the crossover 9d. Connected.
  • Switch contacts 7 a , 7 b, 7 c, 7 d are provided for all the units, and while the air conditioner is stopped, of course, only the indoor fan 13 is operated by the drive motor 12, that is, only the indoor unit 1 In the case of the operation of the outdoor unit 2, all of the switch contacts 7 a, 7 b, 7 c, and 7 d are turned off, and the power to the outdoor unit 2 is completely cut off. Avoid electric shock even if people touch it.
  • the indoor fan drive motor 1 2 power ⁇ AC power supply 3 passes through a rectifying circuit 12 a, a smoothing capacitor 12 b, and a three-phase bridge-type transistor
  • the above-mentioned noise is particularly likely to occur. There is a risk of having a serious adverse effect.
  • the present invention prevents the rise of the impedance of the crossover line and the effect on the external electric equipment due to the noise generated on the indoor unit side even in a state where only the indoor unit is operated, such as when only the indoor air is blown. It is an object of the present invention to provide an air conditioner that can make the air conditioner hard to give.
  • the present invention provides an indoor unit connected to an AC power source to drive an indoor unit side load, and an outdoor unit side load is connected via a plurality of crossover wires connecting the indoor unit and the outdoor unit.
  • an air conditioner that drives and also independently drives the outdoor unit-side load by connecting each switching element to the path where the crossover is connected to the AC power source, when operating only the indoor unit-side load, On-state holding means for holding at least one in an on state is provided.
  • the AC power supply has a neutral phase, and only the switching elements connected to the neutral phase can be kept on.
  • the switching element is in the ON state, so there is no electric shock when a person touches the outdoor unit, but it is compared with the case where the switching element connected to the voltage phase is turned on. This can further increase the safety against electric shock when a person touches.
  • the indoor unit load is an indoor fan drive motor and this indoor fan drive motor is a DC motor
  • at least one of the open / close elements is turned off when the DC motor that generates high-frequency noise is an indoor fan drive motor. In this way, the noise level of the high-frequency component on the crossover can be kept low.
  • FIG. 1 is an electric circuit diagram showing a first embodiment of the present invention
  • FIG. 2 is an electric circuit diagram showing a second embodiment of the present invention
  • FIG. 3 is an electric circuit diagram showing a third embodiment of the present invention.
  • Fig. 4 is a refrigeration cycle system diagram of a conventional general split type air conditioner
  • Fig. 5 is a conventional electric circuit diagram for controlling the refrigeration cycle system shown in Fig. 4
  • Fig. 6 is a diagram shown in Fig. 4.
  • FIG. 9 is another conventional electric circuit diagram for controlling a refrigeration cycle system.
  • FIG. 1 is an electric circuit diagram showing a first embodiment of the present invention.
  • the same elements as those in FIG. 5 are denoted by the same reference numerals, and description thereof will be omitted.
  • the switch contacts 7a, 7b, 7c and 7d are turned off, and only the indoor unit 1 is operated, that is, only the indoor ventilation operation is performed.
  • the ON state holding circuit 15 that holds the switch contact 7d in the ON state is detected in the control circuit 10 as shown in FIG. And the configuration is different.
  • the switch contact 7 d is connected to the crossover 9 d to which the compressor motor 21 M, the four-way valve solenoid 22 M and the outdoor fan drive motor 23 are connected in common, and the line of the AC power supply 3.
  • the impedance of the crossovers 9a, 9b, 9c seen from the AC power supply 3 becomes low.
  • the indoor unit side load that is, when the command power from the remote controller is less than the indoor air blow command and only the indoor fan drive motor 12 is driven, the indoor unit Even if the fan 13 is operated from the stop or from the operation to the stop, and even if the noise is generated in the power supply line due to the variable speed drive, the noise level in the crossover at that time can be suppressed to be low. With this power, it is possible to prevent the adverse effects of noise on external electrical devices other than the air conditioner.
  • electric power is supplied to the indoor fan drive motor 12 via the rectifier circuit 12a, the smoothing condenser 12b, and the three-phase bridge type transistor inverter circuit 12c.
  • the drive motor 12 is a DC brushless motor that includes the position sensor 12 d and drives the inverter circuit 12 c at a variable speed by pulse width modulation, high frequency noise is likely to be generated. Reduction effect
  • FIG. 2 is an electric circuit diagram showing a second embodiment of the present invention.
  • the same elements as those in FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted.
  • a single-phase three-wire AC power supply 3 A is used instead of the AC power supply 3 in Fig. 1, and its voltage line 31 is connected to the compressor motor 2 via a switch contact 7a and a crossover 9a.
  • One end of 1 M is connected, through a switch contact 7 b and a crossover 9 b, one end of a four-way valve solenoid 22 is connected, and further, through a switch contact 7 c and a crossover 9 c, Connected to one end of the outdoor fan drive motor 23, the compressor motor 21M, four-way via the relay contact 7d and the crossover 9d to the single-phase three-wire AC power supply 3A neutral 'line 32
  • the other ends of the valve solenoid 22M and the outdoor fan drive motor 23 are commonly connected.
  • the ON state holding circuit 15 detects a state in which only the indoor unit 1 is operating, such as an indoor air blowing operation, and thereby holds the switch contact 7d in the ON state.
  • a single-phase three-wire power distribution system grounds the secondary neutral of the power distribution single-phase transformer, pulls out the neutral line from there, and In this method, power is supplied to the load using three wires, the power supply and the voltage lines on both sides.
  • the driving power is obtained from one of the outer voltage lines 31 and the neutral line 32.
  • the switch contact 7 d is held in the on state by the on-state holding circuit 15, even if the switch contacts 7 a, 7 b, and 7 c are in the off state, the compressor motor 2 1 M, the four-way valve solenoid 22M and the outdoor fan drive motor 23 are each held at the ground potential via the switch contact 7d.
  • the indoor unit side electric load when only the indoor unit 1 is operated, for example, the operation of the indoor fan 13 is stopped.
  • the noise level generated in the crossover lines 7a, 7b, 7c to the outdoor unit 2 can be kept low.
  • adverse effects due to noise on external electrical equipment can be prevented.
  • the electric circuit of the outdoor unit 2 is maintained at the ground potential, there is no danger of electric shock even if a person touches the electric circuit, and the safety is further improved as compared with the first embodiment.
  • the compressor motor 21M, the four-way valve solenoid 22M, and the outdoor fan drive motor 23 that constitute the outdoor unit 2 are connected to a power supply line that is commonly connected.
  • Switch contact 7d is kept on, but for example, the switch contact 7d is kept off and any one or more of the other relay contacts 7a, 7b, 7c ,
  • the line impedance of the crossover as viewed from the AC power supply 3 can be kept low.
  • the indoor unit-side electric load driven by the AC power supply is the DC brushless type indoor fan drive motor 12, and the outdoor unit-side electric load is the ON / OFF drive type compressor motor 2 by the switch.
  • the load is 1 M, the four-way valve solenoid 22 M, and the outdoor fan drive module 23, the present invention can also be applied to a case where a load other than these is included. Further, the same effect can be obtained by a type in which the indoor fan drive motor 12 is driven by a tapper to change the speed. Also, as shown in FIG.
  • drive power is supplied to the compressor motor 21M via a rectifier circuit 21a, a smoothing capacitor 21b, and a three-phase prismatic transistor inverter circuit 21c as shown in FIG.
  • Unit 2 is provided with an outdoor control unit 10b, which is connected to the indoor control unit 10a via a communication line 9e, and transmits a control command signal from the indoor control unit 10a via a communication line 9e. Transmits it to the outdoor control unit 10b, and the outdoor control unit 10b receives this, and drives the inverter circuit 21c on and off by pulse width modulation to drive the compressor motor 21M at variable speed.
  • the same effect can be obtained by applying in this case, by providing the switch contact 7e also on the communication line 9e, the outdoor unit 2 can be reliably shut off from the indoor unit 1 force.
  • the switch contact 7e may not be provided.
  • the indoor unit is connected to an AC power source, and power is supplied from the indoor unit to the outdoor unit via a crossover to drive the outdoor unit-side electric load.
  • the air conditioner provided with an on-state holding circuit for holding at least one of the switching elements connected in series to each of the crossovers in an on-state, so that the crossover as viewed from the power supply line is provided.
  • the line impedance of the line can be kept low, and the effect of noise generated on the indoor unit side on external electrical equipment can be suppressed.
  • the AC power supply is a single-phase three-wire system having a neutral line
  • only the switching element connected to the neutral line is kept in an ON state, so that the switching element connected to the voltage line is turned ON.
  • the safety against electric shock can be improved as compared with the case where the power supply is turned on.
  • the indoor unit side electric load is an indoor fan drive motor and this indoor fan drive motor is powerful and a DC brushless motor that easily generates high frequency noise,
  • the noise level of the high-frequency component applied to the crossover for supplying power to the outdoor unit can be suppressed to a low level.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Signal Processing (AREA)
  • Air Conditioning Control Device (AREA)
  • Control Of Multiple Motors (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Description

明 細 書 空気調和機
(発明の技術分野)
本発明は、 室内ュニット側に接続された共通の交流電源から、 室内ュニット及 び室外ュニッ卜の両者に給電される空気調和機に関する。
(従来の技術)
スプリッ ト型の空気調和機は、 図 4に示されているように、 圧縮機 2 1、 四方 弁 2 2、 室外熱交換器 5、 キヤビラリ一チューブ 2 5、 及び室内熱交換器 6によ つて形成される冷凍サイクルを備えている。 ここで、 換器 5の熱交換を {£ϋするために駆動モータ 2 3を有する室外ファン 2 4力設けられ、 同様に、 室 内熱交換器 6の熱交換を ί£ϋするために駆動モータ 1 2を有する室内ファン 1 3 が設けられている。 室内熱交換器 6、 室内ファン 1 3及び駆動モータ 1 2は室 内ュニッ卜に含まれ、 室外熱交換器 5、 圧縮機 2 1、 四方弁 2 2、 室外ファン 2 4及び室外ファン用 |g¾モータ 2 3は室外ュニッ卜に含まれる。
冷房又は除湿の運転モードでは四方弁 2 2力M ^で示した流路を形成するよう に制御され、 矢印で示したように、 冷媒は圧縮機 2 1から、 四方弁 2 2、 室 外熱交換器 5、 キヤピラリーチューブ 2 5、 室内熱交換器 6、 及び四方弁 2 2を 通って圧縮機 2 1へ戻る経路で循環する。 このとき、 室外熱交換器 5は凝縮器と して機能し、 室内熱交換器 6は蒸発器として機能する。 反対に、 暖房の運転モー ドでは四方弁 2 2が∞で示した流路を形成するように切換えられ、 «矢印で 示したように、 冷媒は圧縮機 2 1から、 四方弁 2 2、 室内熱交換器 6、 キヤビラ リーチューブ 2 5、 室外 換器 5、 及び四方弁 2 2を通って圧縮機 2 1へ戻る ∞で循環する。 このとき、 室内 換器 6は凝縮器として機能し、 室外 換 器 5は蒸発器として機能する。 キヤビラリ一チューブ 2 5は冷媒の過熱度を適切 に保つ減圧機能を有している。
室温を制御するために室内熱交換器 6の空気吸込み側に室温センサ 1 1力設け られ、 この室温センサ 1 1の検出室温に応じて図 4では図示を省略した制御回路 によって圧縮機 2 1の運転/停止、 および運転時の回転数が制御される。
図 5は、 図 4に示した冷凍サイクルを制御する電気回路を示すものである。 図 中、 図 4と同一の符号を付したものはそれぞれ同一の要素を示している。 ここで、 室内ュニット 1内の電気負荷として室内ファン用駆動モータ 1 2力設けられ、 室 外ュニット 2の電気負荷として圧縮機 2 1を駆動する圧縮機モータ 2 1 M、 四方 弁 2 2を運転モードに応じて切り換える四方弁ソレノィド 2 2 M、 及び室外ファ ン用駆動モータ 2 3力設けられている。 四方弁ソレノイド 2 2 Mは、 暖房運転の ときに付勢され、 冷房運転のときは消勢される。 これらの室内ュニッ卜側電気負 荷及び室外ュニット側電気負荷はそれぞれ共通の単相交流電源 3から電力を得て 駆動される。
運転 Z停止の指令、運転モード (除湿 ·冷房運転/暖房運転) の選択、 室温の 設定等を行うためにリモートコントローラ 4力備えられている。 リモートコント ローラ 4からの設定信号が室内ュニット 1に設けられた受信ュニット 1 4で受信 される。 受信ュニット 1 4で受信された設定信号はマイクロコンピュータを含む 制御回路 1 0に導入される。 制御回路 1 0にはさらに、 室温センサ 1 1から室温 検出信号が、 また直流ブラシレスモータからなる室内ファン用駆動モータ 1 2の ロータ位置を検出する位置センサ 1 2 dから位置検出信号がそれぞれ導かれる。 制御回路 1 0はリモートコントローラ 4での設定条件を満たすベく、 室内ファン 用駆動モータ 1 2、 圧縮機モータ 2 1 M、 四方弁ソレノィド 2 2 M及び室外ファ ン用駆動モータ 2 3を制御する。
室内ュニット 1に対して単相交流電源 3から駆動電力が供給され、 室外ュニッ ト 2に対しては室内ユニット 1から渡り線 9 a , 9 b , 9 c , 9 dを介して駆動 電力が供給される。 交流電源 3の一方のライン が、 開閉器接点 7 a及び渡り線 9 aを介して圧縮機モータ 2 1 Mの一端に接続され、 開閉器接点 7 b及び渡り線 9 bを介して四方弁ソレノイド 2 2 Mの一端に接続され、 さらに、 開閉器接点 7 c及び渡り線 9 cを介して室外ファン用駆動モータ 2 3の一端に接続されている。 交流電源 3の他方のライン Sが、 開閉器接点 7 d及び渡り線 9 dを介して、 圧縮 機モータ 2 1 M、 四方弁ソレノィド 2 2 M及び室外ファン用駆動モータ 2 3の各 他端に共通に接続されている。 なお、 室内ュニット 1の内部で、 開閉器接点 7 a , 7 b , 7 cの各負荷側と開閉器接点 7 dの負荷側との間にそれぞれノイズ吸収器 8 a , 8 b , 8 c力く接続されている。
一般に、 空気調和機の停止時には、 制御回路 1 0が、 開閉器接点 7 a , 7 b , 7 c , 7 dの全てをオフ状態にすると共に、 室内ファン用駆動モータ 1 2に対す る電力供給経路に接続されている開閉器接点 4をもオフ状態にする。 また、 暖房 運転モードで運転開始の指令が与えられれば、 これらの開閉器接点を全てオン状 態にする。 もし、 冷房又は除湿の運転モードであれば、 四方弁ソレノイド 2 2 M に直列に接続された開閉器接点 7 bをオフ状態にして、 これ以外の開閉器接点を オン状態にする。
室温センサ 1 1によって検出された室温が室温設定値に一致したとき、 制御回 路 1 0は圧縮機モータ 2 1 Mに直列に接続された開閉器接点 7 a及び室外ファン 用駆動モータ 2 3に直列に接続された開閉器接点 7 cをオフ状態にする。 また、 室内ュニット 1のみで送風運転をする場合には、 開閉器接点 4のみをオン状態に し、 室外ュニット 2に電力を供給する経路に接続された開閉器接点 7 a , 7 b ,
7 c , 7 dの全てをオフ状態とする。 なお、 ノイズ吸収器 8 aは開閉器接点 7 a のオン オフ時に渡り線 9 aのラインに発生するノイズを吸収し、 ノイズ吸収器
8 bは開閉器接点 7 bのオン Zオフ時に渡り線 9 bのラインに発生するノイズを 吸収し、 ノイズ吸収器 8 cは開閉器接点 7 cのオン Zオフ時に渡り線 9 cのライ ンに発生するノィズを吸収する。
図 5は、 一般的な単相交流電源 3から駆動電力を得る回路を示しているが、 単 相三線式の配電線から駆動電力を得る場合には、 図 6に示すように、 単相三線式 交流電源 3 Aの電圧ライン 3 1に、 開閉器接点 7 aおよび渡り線 9 aを介して圧 縮機モ一タ 2 1 Mの一端を接続し、 開閉器接点 7 bおよび渡り線 9 bを介して四 方弁ソレノイド 2 2 Mの一端を接続し、 さらに、 開閉器接点 7 c及び渡り線 9 c を介して室外ファン用駆動モータ 2 3の一端に接続すると共に、 交流電源 3 Aの ニュートラル ·ライン 3 2に、 開閉器接点 7 d及び渡り線 9 dを介して圧縮機モ —タ 2 1 M、 四方弁ソレノィド 2 2 M及び室外ファン用駆動モータ 2 3の各他端 を共通に接続している。
図 5及び図 6に示した従来の空気調和機においては、 室外ュニット 2に含まれ る圧縮機モータ 2 1 M、 四方弁ソレノィド 2 2 M及び室外ファン用駆動モータ 2 3の各電力供給経路の全てに開閉器接点 7 a, 7 b , 7 c , 7 dを設け、 空気調 和機の停止中はもちろんのこと、 駆動モータ 1 2により室内ファン 1 3のみの運 転、 すなわち室内ュニット 1のみの運転を行う場合においても、 開閉器接点 7 a , 7 b , 7 c, 7 dの全てをオフ状態にして、 室外ユニット 2への通電を完全に遮 断し、 停止している室外ュニット 2に人が触れても感電しないようにする。
このように、 開閉器接点 7 a , 7 b , 7 c , 7 dの全てをオフ状態にし、 渡り 線 9 a, 9 b, 9 c, 9 dを含む室外ユニット 2の各電気負荷をフローティング 状態にすると、 渡り線を含む各ラインのインピーダンスが、 電源側から見て高く なる。 この状態で送風運転時等、 室内ュニット 1のみを運転すると、 電源ライン に室内ファン用駆動モータ 1 2のオン Zオフに際してノイズが発生し、 ラインィ ンピ一ダンスの高い渡り線がこのノィズすなわち放射ノィズの影響を受けやすく なる。 すなわち、 渡り線に発生するノイズレベルが高くなつて、 他の外部電気機 器の運転に悪影響を及ぼすという不都合があつた。
また、 図 5に示すように、 室内ファン用駆動モータ 1 2力^ 交流電源 3から整 流回路 1 2 a、 平滑コンデンサ 1 2 b及び 3相プリッジ型トランジスタ ·ィンバ 一夕回路 1 2 cを介して駆動電力が供給され、 制御のために位置検出素子 1 2 d を備えるような回転速度可変型の直流ブラシレスモータである場合には、 特に上 述のノイズを発生しやすいので、 外部電気機器に対し大きな悪影響を及ぼすおそ れがある。
(発明の概要)
本発明は、 室内への送風のみを行う運転時等、 室内ュニットのみを運転する状 態でも、 渡り線ラインのインピーダンスの上昇を防ぐと共に、 室内ュニット側で 発生するノイズによる外部電気機器への影響を与え難くすることができる空気調 和機を提供することを目的とする。
上記目的を達成するために本発明は、 室内ュニットを交流電源に接続して室内 ュニッ 卜側負荷を駆動し、 室内ュニット及び室外ュニットを接続する複数の渡り 線を介して、 室外ュニット側負荷を駆動すると共に、 渡り線が交流電源に接続さ れる経路にそれぞれ開閉要素を接続して室外ュニット側負荷を独立に駆動する空 気調和機において、 室内ュニット側負荷のみを運転するに当たって、 開閉要素の 少なくとも一つをオン状態に保持するオン状態保持手段を備える。 これによつて 電源ラインから見た渡り線のラインインピーダンスを低く抑えると共に、 室内ュ ニット側で発生するノィズの影響を受け難くすることができる。
交流電源がニュートラル相を有し、 このニュートラル相に接続された開閉要素 のみをオン状態に保持するようにすることができる。 これにより、 電源の種類に 拘わらず、 開閉要素がオン状態であるから室外ュニッ卜に人が触ったら感電する いうものではないが、 電圧相に接続される開閉要素をオン状態にする場合と比較 すれば人が触つた場合の感電に対する安全性をより高めることができる。 室内ュニット側負荷を室内ファン駆動モータとし、 この室内ファン駆動モータ を直流モータとすることにより、 高周波ノィズを発生しゃすい直流モータを室内 ファン駆動モータとしたときに、 開閉要素の少なくとも一つをォン状態にするこ とで、 渡り線に掛かる高周波成分のノイズレベルを低く抑えることができる。
(図面の簡単な説明)
添付図面において、
図 1は、 本発明の第 1の実施例を示す電気回路図、
図 2は、 本発明の第 2の実施例を示す電気回路図、
図 3は、 本発明の第 3の実施例を示す電気回路図、
図 4は、 従来の一般的なスプリット型空気調和機の冷凍サイクル系統図、 図 5は、 図 4に示した冷凍サイクル系統を制御する従来の電気回路図、 図 6は、 図 4に示した冷凍サイクル系統を制御する従来の他の電気回路図で ある。
(実施例)
以下、 図面に示す好適な実施例を参照して本発明を詳細に説明する。
図 1は本発明の第 1の実施例を示す電気回路図である。 図中、 図 5と同一の要 素には同一の符号を付してその説明を省略する。 ここでは、 空気調和機の停止時 には、 全ての開閉器接点 7 a, 7 b , 7 c , 7 dをオフにすると共に、 室内ュニ ット 1のみの運転、 すなわち室内の送風運転のみをしている状態を検出し、 これ によつて開閉器接点 7 dをォン状態に保持するォン状態保持回路 1 5が制御回路 1 0中に新たに付加された点が図 5のものと構成を異にしている。 ここでは、 開 閉器接点 7 dは、 圧縮機モータ 2 1 M、 四方弁ソレノイド 2 2 M及び室外ファン 用駆動モータ 2 3が共通に接続されている渡り線 9 dと、 交流電源 3のライン S との間に接続されている。 したがって、 交流電源 3から見た渡り線 9 a, 9 b , 9 cのインピーダンスは低くなる。 この結果、 室内ュニット側負荷のみを運転した場合、 すなわち、 リモートコン トロ一ラからの指令力 <室内への送風指令だけであって、 室内ファン用駆動モータ 1 2のみを駆動した場合において、 室内ファン 1 3の停止から運転、 又は、 運転 から停止、 さらには、 変速駆動に伴うノイズ力電源ラインに生じたとしても、 そ の時の渡り線におけるノイズレベルを低く抑えることができる。 した力つて、 空 気調和機以外の外部電気機器へのノイズによる悪影響を防止することができる。 特に本実施例のように、 室内ファン用駆動モータ 1 2に対し整流回路 1 2 a、 平滑コンデサン 1 2 b、 3相プリッジ型トランジス ·タインバータ回路 1 2 cを 介して電力力供給され、 しかも駆動モータ 1 2が位置センサ 1 2 dを備えて、 ィ ンバータ回路 1 2 cをパルス幅変調により可変速駆動する直流ブラシレスモータ である場合には、 高周波ノイズを発生しやすいため、 本発明によるノイズ低減効
'o
図 2は本発明の第 2の実施例を示す電気回路図である。 図中、 図 1と同一の要 素には同一の符号を付してその説明を省略する。 ここでは、 図 1中の交流電源 3 の代わりに単相三線式交流電源 3 Aが用いられ、 その電圧ライン 3 1に、 開閉器 接点 7 aおよび渡り線 9 aを介して、 圧縮機モータ 2 1 Mの一端を接続し、 開閉 器接点 7 bおよび渡り線 9 bを介して、 四方弁ソレノイド 2 2 Mの一端を接続し、 さらに、 開閉器接点 7 cおよび渡り線 9 cを介して、 室外ファン駆動モータ 2 3 の一端に接続すると共に、 単相三線式交流電源 3 Aのニュートラル'ライン 3 2 に、 リレー接点 7 dおよび渡り線 9 dを介して、 圧縮機モータ 2 1 M、 四方弁ソ レノィド 2 2 M及び室外ファン駆動モータ 2 3の各他端を共通に接続している。 オン状態保持回路 1 5は、 室内送風運転等、 室内ュニット 1のみを運転している 状態を検出し、 これによつて、 開閉器接点 7 dをオン状態に保持する。
周知の如く、 単相三線式の配電システムは、 配電用単相変圧器の二次側中性点 を接地してそこからニュートラル ·ラインを引き出し、 このニュートラル ·ライ ンと両外側の両電圧ラインとの 3線で負荷に電力を供給する方式である。 本実施 例は外側の一方の電圧ライン 3 1およびニュートラル ·ライン 3 2から駆動電力 を得る。 ここで、 オン状態保持回路 1 5により開閉器接点 7 dをオン状態に保持 したとすれば、 開閉器接点 7 a, 7 b , 7 cがオフ状態にあっても、 圧縮機モー 夕 2 1 M、 四方弁ソレノィド 2 2 M及び室外ファン用駆動モータ 2 3はそれぞれ 開閉器接点 7 dを介して接地電位に保持される。
したがって、 この第 2の実施例によれば、 図 1に示した第 1の実施例と同様に 室内ュニット 1のみを運転した場合の室内ュニット側電気負荷、 例えば室内ファ ン 1 3の運転 Z停止、 あるいは変速駆動に伴ぅノィズが電源ラインに生じたとし ても、 室外ユニッ ト 2への渡り線 7 a, 7 b, 7 cのラインに発生するノイズレ ベルを低く抑えることができ、 これにより、 外部電気機器へのノイズによる悪影 響を防ぐことができる。 その場合、 室外ュニット 2の電気回路を接地電位に保持 するため、 これに人が触っても感電の虞れがなく、 第 1の実施例よりもさらに安 全性が向上する。
なお、 第 1及び第 2の魏例では、 室外ュニッ 卜 2を構成する圧縮機モータ 2 1 M、 四方弁ソレノィド 2 2 M及び室外ファン用駆動モータ 2 3力共通接続され た給電ラインに接続された開閉器接点 7 dをオン状態に保持したが、 例えば、 開 閉器接点 7 dをオフ状態に保持し、 これ以外のリレー接点 7 a, 7 b, 7 cのい ずれか一つ又は複数をォン状態に保持しても、 交流電源 3から見た渡り線のライ ンィンピ一ダンスを低く抑えることができる。
なおまた、 上記実施例では、 交流電源によって駆動される室内ュニット側電気 負荷が直流ブラシレスタイプの室内ファン駆動モータ 1 2であり、 室外ュニット 側電気負荷が開閉器によるオンオフ駆動タイプの圧縮機モータ 2 1 M、 四方弁ソ レノイド 2 2 M及び室外ファン駆動モ一夕 2 3であるとして説明したが、 これら 以外の負荷を含む場合にも本発明を適用することができる。 さらには、 室内ファン駆動モータ 1 2をタツプリレ一により変速駆動するタイ プのものでも同様の効果力得られる。 また、 圧縮機モータ 2 1 Mに、 図 3に示す ように、 整流回路 2 1 a、 平滑コンデンサ 2 1 b、 3相プリツジ式トランジスタ インバータ回路 2 1 cを介して駆動電力を供給すると共に、 室外ュニット 2に室 外制御部 1 0 bを設けて、 室内制御部 1 0 aと通信線 9 eを介して接続し、 室内 制御部 1 0 aからの制御指令信号を通信線 9 eを介して室外制御部 1 0 bに送信 し、 室外制御部 1 O bがこれを受信して、 パルス幅変調によりインバー夕回路 2 1 cをオンオフ駆動して圧縮機モータ 2 1 Mを可変速駆動するものに適用しても 同様の効果が得られる。 この場合には、 通信線 9 eにも開閉器接点 7 eを設ける ことにより室外ュニット 2を室内ュニッ ト 1力、ら確実に遮断することができる。 ただし、 フォト力ブラ等で通信線自体が電気的に絶縁されている場合には、 開閉 器接点 7 eを設けなくても良い。
以上の説明によって明らかなように、 本発明によれば、 室内ュニットを交流電 源に接続し、 室内ュニッ卜から渡り線を介して室外ュニッ卜に電力を供給して室 外ュニット側電気負荷を駆動する空気調和機において、 室内ュニットのみを運転 するに当たって、 各渡り線に直列に接続された開閉要素の少なくとも一つをオン 状態に保持するオン状態保持回路を備えることにより、 電源ラインから見た渡り 線のラインインピーダンスを低く抑えると共に、 室内ュニット側で発生するノィ ズの外部電気機器に対する影響を抑止することができる。
また、 交流電源がニュートラルラインを有する単相 3線式である場合、 この二 ユートラルラインに接続された開閉要素のみをォン状態に保持することにより、 電圧ラインに接続される開閉要素をォン状態にする場合と比較して感電に対する 安全性をより高めることができる。
室内ュニット側電気負荷が室内ファン駆動モータであり、 この室内ファン駆動 モータ力く、 高周波ノイズを発生しやすい直流ブラシレスモー夕であったとしても、 開閉要素の少なくとも一つをオン状態にすることによって、 室外ュニッ卜への電 力供給のための渡り線に掛かる高周波成分のノイズレベルを低く抑えることがで さる。

Claims

請求の 範囲
1. 交流電源に接続される室内ュニット側電気負荷を有する室内ュニットと、 それぞれ開閉要素及び渡り線を介して前記交流電源に接続される複数の室外ュニ ット側電気負荷を有する室外ュニッ卜とを含む空気調和機において、
前記室外ュニット側電気負荷を運転することなく前記室内ュニット側電気負荷 のみを運転するとき、 前記交流電源と前記室外ュニット側電気負荷との間に電流 閉回路を形成することなく、 前記複数の開閉要素のうちの少なくとも一つをォン 状態に保持するォン状態保持手段を備えたことを特徴とする空気調和機。
2. 前記交流電源が ffl 3線式配電線のニュートラルラインおよび一方の電 圧ラインとの間から得られ、 前記ォン状態保^段が前記二ユートラルラインに 接続された開閉要素のみをォン状態に保持することを特徴とする請求項 1に記載 の空気調和機。
3. 前記室内ュニット側電気負荷が、 直流ブラシレスモータからなる室内フ ァン用駆動モータであることを特徴とする請求項 1または 2に記載の空気調和機。
PCT/JP1997/002410 1996-10-22 1997-07-11 Appareil de conditionnement d'air WO1998017955A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP97930765A EP0935104A4 (en) 1996-10-22 1997-07-11 AIR CONDITIONING

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP8279271A JPH10122637A (ja) 1996-10-22 1996-10-22 空気調和機
JP8/279271 1996-10-22

Publications (1)

Publication Number Publication Date
WO1998017955A1 true WO1998017955A1 (fr) 1998-04-30

Family

ID=17608848

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/002410 WO1998017955A1 (fr) 1996-10-22 1997-07-11 Appareil de conditionnement d'air

Country Status (7)

Country Link
EP (1) EP0935104A4 (ja)
JP (1) JPH10122637A (ja)
KR (1) KR100392495B1 (ja)
CN (1) CN1109222C (ja)
ID (1) ID18599A (ja)
TW (1) TW332852B (ja)
WO (1) WO1998017955A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000130825A (ja) 1998-10-26 2000-05-12 Toshiba Kyaria Kk 空気調和機の室外機用駆動制御ユニット
JP3815463B2 (ja) * 2003-08-27 2006-08-30 松下電器産業株式会社 分離型空気調和機
EP1973025B1 (de) 2007-03-22 2009-11-25 Baumüller Nürnberg Gmbh Temperaturüberwachung bei Leistungsschaltern
JP5658969B2 (ja) * 2010-10-15 2015-01-28 日立アプライアンス株式会社 空気調和機
WO2018063101A1 (en) * 2016-09-27 2018-04-05 Chitipalungsri Somsak Quality inspection system for remote air conditioner installation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04113149A (ja) * 1990-09-03 1992-04-14 Sanyo Electric Co Ltd 空気調和機
JPH05196286A (ja) * 1992-01-22 1993-08-06 Matsushita Electric Ind Co Ltd 空気調和機の電磁ノイズ抑制装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3123783B2 (ja) * 1991-09-24 2001-01-15 三洋電機株式会社 空気調和機の運転モード設定装置
JPH07190466A (ja) * 1993-12-27 1995-07-28 Daikin Ind Ltd 冷房付燃焼式暖房機の電源ラインフィルタ
JP3118376B2 (ja) * 1994-08-19 2000-12-18 三洋電機株式会社 空気調和機

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04113149A (ja) * 1990-09-03 1992-04-14 Sanyo Electric Co Ltd 空気調和機
JPH05196286A (ja) * 1992-01-22 1993-08-06 Matsushita Electric Ind Co Ltd 空気調和機の電磁ノイズ抑制装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0935104A4 *

Also Published As

Publication number Publication date
CN1109222C (zh) 2003-05-21
EP0935104A4 (en) 2001-02-07
JPH10122637A (ja) 1998-05-15
KR20000049108A (ko) 2000-07-25
EP0935104A1 (en) 1999-08-11
ID18599A (id) 1998-04-23
TW332852B (en) 1998-06-01
KR100392495B1 (ko) 2003-07-22
CN1233320A (zh) 1999-10-27

Similar Documents

Publication Publication Date Title
KR0156058B1 (ko) 공기 조화장치
JPH1114124A (ja) 空気調和機
WO1998017955A1 (fr) Appareil de conditionnement d&#39;air
WO2019186631A1 (ja) モータ駆動装置及び冷凍サイクル装置
US6369544B1 (en) Furnace and air conditioner blower motor speed control
JP2000308353A (ja) 電源装置
JP4259668B2 (ja) 空気調和機
JP3815463B2 (ja) 分離型空気調和機
JP2000166241A (ja) 電源装置
JPH0854138A (ja) 空気調和機
EP3550693B1 (en) Power converting apparatus and home appliance including the same
JP4190098B2 (ja) 空気調和機の制御装置
JPH0886499A (ja) 空気調和機
JP2000224858A (ja) 電源装置
JP2003004283A (ja) 空気調和機
JP3101380B2 (ja) 空気調和機の電源装置
JPS59221546A (ja) 空気調和機
JP2001065947A (ja) 空気調和機の制御方法
JPH10132364A (ja) 空気調和機
JP3272260B2 (ja) 電源制御回路
JP3754151B2 (ja) 空気調和機
JP4242979B2 (ja) 空気調和機
JPH08152179A (ja) Ptcヒータを用いる空気調和機の制御方法
KR102260614B1 (ko) 공기조화기
JP2859066B2 (ja) 空気調和機

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 97198748.3

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR SG VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1019997003188

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1997930765

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1997930765

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019997003188

Country of ref document: KR

WWR Wipo information: refused in national office

Ref document number: 1019997003188

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1997930765

Country of ref document: EP