WO2019186631A1 - モータ駆動装置及び冷凍サイクル装置 - Google Patents

モータ駆動装置及び冷凍サイクル装置 Download PDF

Info

Publication number
WO2019186631A1
WO2019186631A1 PCT/JP2018/012074 JP2018012074W WO2019186631A1 WO 2019186631 A1 WO2019186631 A1 WO 2019186631A1 JP 2018012074 W JP2018012074 W JP 2018012074W WO 2019186631 A1 WO2019186631 A1 WO 2019186631A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
rotational speed
threshold value
rotation speed
refrigeration cycle
Prior art date
Application number
PCT/JP2018/012074
Other languages
English (en)
French (fr)
Inventor
正樹 金森
吉村 公志
志剛 李
直仁 神谷
Original Assignee
東芝キヤリア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝キヤリア株式会社 filed Critical 東芝キヤリア株式会社
Priority to PCT/JP2018/012074 priority Critical patent/WO2019186631A1/ja
Publication of WO2019186631A1 publication Critical patent/WO2019186631A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/18Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring with arrangements for switching the windings, e.g. with mechanical switches or relays
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters

Definitions

  • the present invention relates to a motor driving apparatus and a refrigeration cycle apparatus for driving a permanent magnet synchronous motor so-called open winding motor having a plurality of phase windings that are not connected to each other.
  • the motor driving apparatus for driving the open winding motor includes a first inverter connected to one end of each phase winding and a second inverter connected to the other end of each phase winding.
  • the voltage applied to the winding of the motor can be increased, so that it can be operated in a high rotation range.
  • the refrigeration cycle apparatus is required to operate with high efficiency and a wide rotation speed range from a low rotation range to a high rotation range. For this reason, a switch connected between the other ends of the respective phase windings is provided, and a star connection mode for star connection of the respective phase windings is set by closing the switch. It is considered to set an open winding mode in which each phase winding is opened by opening.
  • the star connection mode is used to drive only by one inverter, and in the high rotational speed range, the open winding mode is used to drive the motor by both the first inverter and the second inverter.
  • the star connection mode and the open winding mode it is possible to switch between the star connection mode and the open winding mode during operation. While the refrigeration cycle is stable, these modes can be switched without hindrance, but if this switching is performed while the motor speed is changing or the load of the refrigeration cycle is changing, the drive control of each inverter There may be a so-called step-out that is not synchronized with the actual rotation of the motor. For example, in the case of an air conditioner using a refrigeration cycle, if the step-out occurs, the compressor is stopped, and the room temperature may deviate from the set temperature, thereby impairing the reliability of the system.
  • An object of an embodiment of the present invention is to provide a motor driving device and a refrigeration cycle device excellent in reliability capable of switching between a star connection mode and an open winding mode without causing step-out.
  • the motor driving device drives a motor having a plurality of phase windings that are not connected to each other; connected to one end of each phase winding and connected to one end of each phase winding.
  • a switch connected in between; and a controller that controls the operation of the switch and the first and second inverters, and that maintains the rotational speed of the motor constant when the switch is opened and closed.
  • the figure which shows the structure of the refrigerating-cycle apparatus which concerns on one Embodiment The block diagram which shows the structure of one Embodiment.
  • the flowchart which shows control of the motor controller of one Embodiment.
  • the time chart which shows the relationship between the rotation speed of the open winding motor in one Embodiment, star-shaped connection mode, and open winding mode.
  • the figure which shows the defrost mode routine in the flowchart of FIG. The time chart which shows the relationship between the rotation speed of the open winding motor at the time of defrosting, and open winding mode in one Embodiment.
  • the time chart which shows the relationship between the rotation speed of the open winding motor at the time of defrosting, star connection mode, and open winding mode in one Embodiment.
  • FIG. 1 The structure of the refrigerating cycle apparatus of the air conditioner which concerns on one Embodiment of this invention is shown in FIG.
  • One end of an outdoor heat exchanger 3 is connected to a discharge port of a compressor 1 having an open-winding motor 1M as a drive motor via a four-way valve 2, and the outdoor heat exchanger 3
  • One end of the indoor heat exchanger 5 is connected to the other end via an electric expansion valve 4 that is a decompressor.
  • the other end of the indoor heat exchanger 5 is connected by piping to the suction port of the compressor 1 via the four-way valve 2.
  • the outdoor fan 6 is disposed in the vicinity of the outdoor heat exchanger 3, and the indoor fan 7 is disposed in the vicinity of the indoor heat exchanger 5.
  • the open-winding motor 1M hereinafter also referred to as the motor 1M
  • the four-way valve 2 the electric expansion valve 4, the outdoor fan 6, and the indoor fan 7 are driven and controlled by the controller 10.
  • the controller 10 causes the gas refrigerant discharged from the compressor 1 to flow to the outdoor heat exchanger 3 through the four-way valve 2 as indicated by solid line arrows in FIG.
  • the gas refrigerant that has flowed to the outdoor heat exchanger 3 releases heat to the outside air and condenses.
  • the liquid refrigerant flowing out of the outdoor heat exchanger (condenser) 3 flows into the indoor heat exchanger 5 while being decompressed by the electric expansion valve 4.
  • the liquid refrigerant that has flowed into the indoor heat exchanger 5 takes heat from the indoor air and evaporates.
  • the gas refrigerant flowing out from the indoor heat exchanger (evaporator) 5 passes through the four-way valve 2 and is sucked into the compressor 1.
  • the controller 10 switches the four-way valve 2 and causes the gas refrigerant discharged from the compressor 1 to flow through the four-way valve 2 to the indoor heat exchanger 4.
  • the gas refrigerant that has flowed into the indoor heat exchanger 4 releases heat into the indoor air and condenses.
  • the liquid refrigerant flowing out of the indoor heat exchanger (condenser) 4 is depressurized by the electric expansion valve 4 and flows to the outdoor heat exchanger 3.
  • the liquid refrigerant that has flowed to the outdoor heat exchanger 3 takes heat from the outside air and evaporates.
  • the gas refrigerant flowing out of the outdoor heat exchanger (evaporator) 3 passes through the four-way valve 2 and is sucked into the compressor 1.
  • a full-wave rectifier circuit 22 of a diode bridge is connected to the three-phase AC power source 20 via a noise filter 21, and a capacitor 24 is connected to the output end of the full-wave rectifier circuit 22 via a reactor 23.
  • the full-wave rectifier circuit 22, the reactor 23, and the capacitor 24 constitute a DC power supply 25 that outputs a DC voltage Vdc.
  • the inverter 30 connects IGBTs 31 and 32 in series, and connects U-phase series circuits IGBTs 33 and 34 in series, where the interconnection point of the IGBTs 31 and 32 is connected to one end of the phase winding Lu of the open-winding motor 1M.
  • the V-phase series circuit IGBTs 35 and 36 are connected in series at the interconnection point of the IGBTs 33 and 34 to one end of the phase winding Lv of the open winding motor 1M, and the interconnection point of the IGBTs 35 and 36 is an open winding.
  • the DC voltage Vdc of the DC power supply 25 is converted into a three-phase AC voltage of a predetermined frequency by switching of the IGBTs 31 to 36, and the open winding It is supplied to one end of each of the phase windings Lu, Lv, Lw of the wire motor 1M.
  • Regenerative diodes (also called free wheel diodes) 31a to 36a are connected in reverse parallel to the IGBTs 31 to 36.
  • the inverter 40 connects IGBTs 41 and 42 in series, and a serial circuit for U phase, IGBTs 43 and 44, in which the interconnection point of the IGBTs 41 and 42 is connected to the other end of the phase winding Lu of the open-winding motor 1M.
  • the V-phase series circuit IGBTs 45 and 46 are connected in series at the interconnection point of the IGBTs 43 and 44 to the other end of the phase winding Lv of the motor 1M, and the interconnection point of the IGBTs 45 and 46 is the open winding motor 1M.
  • the DC voltage Vdc of the DC power supply 25 is converted into a three-phase AC voltage of a predetermined frequency by switching of the IGBTs 41 to 46, and this is converted into the motor 1M.
  • the phase windings Lu, Lv, and Lw are supplied to the other ends.
  • Regenerative diodes (also called free wheel diodes) 41a to 46a are connected to the IGBTs 41 to 46 in antiparallel.
  • a normally open contact (referred to as a relay contact) 51a of a switch 51 is connected between the other end of the phase winding Lu of the motor 1M and the other end of the phase winding Lv.
  • a switch for example, a normally open contact (referred to as a relay contact) 52a of a relay 52 is connected.
  • the two relays 51 and 52 are driven by the controller 10 in complete synchronization.
  • the relay contacts 51a, 52a are closed, the other ends of the phase windings Lu, Lv, Lw are interconnected. That is, the phase windings Lu, Lv, Lw are star-connected.
  • the motor controller 60 opens and closes the relay contacts 51a, 52a and the inverter 30, according to the control contents of the main controller 10a, the air conditioning load of the refrigeration cycle apparatus, the detection result of the voltage detection unit 61, the detection result of the current detection unit 62, and the like. 40 operations are controlled.
  • the motor controller 60 controls the operation of the inverters 30 and 40 in order to keep the rotation speed of the motor 1M constant when the relay contacts 51a and 52a are opened and closed.
  • the first controller 60a and the 2nd control part 60b are included.
  • the first control section 60a when the first control unit 60a decreases the rotation speed N of the motor 1M, the first control section 60a is in a high rotation speed region (greater than the threshold value N1) before the rotation speed N reaches the threshold value (first threshold value) N1 ( ⁇ N2).
  • the open winding mode is set, and when the rotation speed N reaches the threshold value N1, the star connection mode is set while maintaining the rotation speed N at the threshold value N1 for a predetermined time ts.
  • the setting is held in the low rotation speed region (less than the threshold value N) after the rotation speed N reaches the threshold value N1.
  • the predetermined time ts is a time sufficiently including a response delay time from when the command is issued from the motor controller 60 to the relay driving unit 63 until the relays 51 and 52 are operated and the relay contacts 51a and 52a are actually opened and closed. .
  • As the fixed time ts at least one second is set. Considering the stable state of the refrigeration cycle, it is desirable to secure several tens of seconds.
  • the second control unit 60b When receiving the defrosting start command from the main controller 10a, the second control unit 60b sets the rotational speed N of the motor 1M to a set value Ndef lower than the threshold N1 if the open winding mode is set. The four-way valve 2 is switched while being lowered and kept constant at the set value Ndef. After this switching, the rotational speed N is increased to a value necessary for the defrosting operation of the heat pump refrigeration cycle. Then, when receiving the defrosting end command from the main controller 10a, the second control unit 60b lowers the rotational speed N to the set value Ndef and keeps the set value Ndef constant so that the four-way valve 2 is in the original state. Return to.
  • the second controller 60b lowers the rotational speed N of the motor 1M to the set value Ndef if the star connection mode is set.
  • the four-way valve 2 is switched while the set value Ndef is held constant.
  • the open winding mode is set while the rotational speed N is increased to the threshold value N2 and the threshold value N2 is held constant.
  • the rotational speed N is increased to a value necessary for the defrosting operation of the heat pump refrigeration cycle.
  • the 2nd control part 60b receives the defrost completion
  • the motor controller 60 determines whether or not the rotational speed N of the motor 1M has increased to the threshold value N2 (S5). While the rotational speed N increases toward the threshold value N2 (NO in S5, NO in S8), the process returns to S3, and the switching of the inverter 30 is performed so as to increase the rotational speed N to the target rotational speed Nt according to the air conditioning load. The PWM control is continued (S3).
  • the process returns to S3, and the inverter 30 is controlled so that the rotational speed N becomes the target rotational speed Nt corresponding to the air conditioning load.
  • the switching of the IGBTs 31 to 36 and the switching of the IGBTs 41 to 46 of the inverter 40 are connected to each other (coordinated) to perform PWM control.
  • a voltage ⁇ 3 times that in the star connection mode can be applied to the phase windings Lu, Lv, Lw, and the motor 1M can be operated at a high speed.
  • the process returns to S3, and the inverter 30 is controlled so that the rotational speed N becomes the target rotational speed Nt corresponding to the air conditioning load.
  • the switching of the IGBTs 31 to 36 is PWM controlled.
  • the motor controller 60 stops all the operations of the inverter 30 and the inverter 40 (S12).
  • the motor controller 60 determines whether or not the rotational speed N of the motor 1M has decreased to the set value Ndef (S22). While the rotational speed N decreases toward the set value Ndef (NO in S22), the motor controller 60 returns to S21 and performs PWM control of switching of the inverters 30 and 40 so as to decrease the rotational speed N to the set value Ndef. (S21).
  • the motor controller 60 keeps the rotational speed N constant at the set value Ndef over a predetermined time tx (S23). While the rotation speed N is kept constant at the set value Ndef, the motor controller 60 switches the four-way valve 2 from the heating channel to the defrosting (cooling) channel via the main controller 10a (S24). ).
  • the fixed time tx is a time that sufficiently includes the time required for switching the four-way valve 2. For example, 2 to 3 seconds is selected as the fixed time tx.
  • the motor controller 60 waits for a defrosting end command from the main controller 10a (S27).
  • the motor controller 60 returns to S26, and PWM for switching the inverters 30 and 40 so that the rotational speed N becomes the target rotational speed Nt suitable for the defrosting operation. Control continues (S26).
  • the motor controller 60 keeps the rotational speed N constant for the predetermined time tx (S36). While the rotation speed N is kept constant at the set value Ndef, the motor controller 60 returns the four-way valve 2 to the original heating flow path via the main controller 10a (S37). And a controller resets the defrost flag f to "0" (S38), and complete
  • the motor controller 60 keeps the rotational speed N constant at the set value Ndef over a predetermined time tx (S23). While the rotation speed N is kept constant at the set value Ndef, the motor controller 60 switches the four-way valve 2 from the heating channel to the defrosting channel via the main controller 10a (S24).
  • the motor controller 60 performs PWM control of switching of the inverter 30 so that the rotational speed N becomes the target rotational speed Nt suitable for the defrosting operation ( S39). Then, the motor controller 60 determines whether or not the rotational speed N of the motor 1M has increased to the threshold value N2 (S40). While the rotational speed N increases toward the threshold value N2 (NO in S40), the motor controller 60 returns to S39 and switches the inverter 30 so that the rotational speed N becomes the target rotational speed Nt suitable for the defrosting operation. The PWM control is continued (S39).
  • the motor controller 60 keeps the rotational speed N constant at the threshold value N2 over a predetermined time ts (S41). While the rotation speed N is kept constant at the threshold value N2, the motor controller 60 opens the relay contacts 51a and 52a, opens the other ends of the phase windings Lu, Lv, and Lw and connects the inverters 30 and 40 to each other.
  • the open winding mode to be operated is set (S42). By setting the open winding mode, a sufficient compression function that can cope with the defrosting operation can be exhibited. Subsequently, the motor controller 60 returns to S27 and waits for a defrosting end command from the main controller 10a (S27).
  • the motor controller 60 proceeds to S26 and performs switching of the inverters 30 and 40 so that the rotational speed N becomes the target rotational speed Nt suitable for the defrosting operation.
  • the PWM control is continued (S26).
  • the motor controller 60 When the defrosting end command is received from the main controller 10a (YES in S27), the motor controller 60 performs PWM control of switching of the inverters 30 and 40 so that the rotation speed N decreases to the set value Ndef (S28). Then, the motor controller 60 determines whether or not the rotational speed N has decreased to the set value Ndef (S29). While the rotation speed N decreases toward the set value Ndef (NO in S29), the motor controller 60 determines whether or not the star connection mode has been performed before defrosting (S30). Since it was the star connection mode before defrosting (YES in S30), the motor controller 60 provided that the defrosting flag f is “0” (YES in S31), and the rotational speed of the open winding motor 1M.
  • N It is determined whether or not N has decreased to the threshold value N1 (S32). While the rotational speed N decreases toward the threshold value N1 (NO in S32), the motor controller 60 returns to S28 and performs PWM control of switching of the inverters 30 and 40 to decrease the rotational speed N to the set value Ndef. Continue (S28).
  • the motor controller 60 keeps the rotational speed N constant at the threshold value N1 over a predetermined time ts (S33). While the rotation speed N is kept constant at the threshold N1, the motor controller 60 closes the relay contacts 51a and 52a, interconnects the other ends of the phase windings Lu, Lv, and Lw and operates the inverter 30 alone.
  • the star connection mode to be set is set (S34). Then, the motor controller 60 sets the defrost flag f to “1” (S35), returns to S28, and performs PWM control of switching of the inverter 30 to further lower the rotation speed N to the set value Ndef. Continue (S28). By setting the star connection mode, it is possible to apply a low level voltage that can correspond to the low load operation to the phase windings Lu, Lv, and Lw.
  • the motor controller 60 determines whether or not the rotational speed N has decreased to the set value Ndef (S29). While the rotation speed N decreases toward the set value Ndef (NO in S29), the motor controller 60 determines whether or not the star connection mode has been performed before defrosting (S30). In this case, the star connection mode was used before defrosting (YES in S30), but since the defrosting flag f is “1” (NO in S31), the motor controller 60 returns to S28 and sets the rotation speed N. The PWM control of switching of the inverter 30 is continued in order to lower it to the set value Ndef (S28).
  • the motor controller 60 keeps the rotational speed N constant for the predetermined time tx (S36). While the rotation speed N is kept constant at the set value Ndef, the motor controller 60 returns the four-way valve 2 to the original heating flow path via the main controller 10a (S37). And a controller resets the defrost flag f to "0" (S38), and complete
  • the refrigeration cycle when operating in the open winding mode before the defrosting operation, the refrigeration cycle is also a high capacity operation, and the high / low pressure difference of the refrigeration cycle is large.
  • the motor 1M speed is reduced to the set value Ndef, which is a low speed, to alleviate the high / low pressure difference.
  • Ndef the set value
  • step-out increases.
  • the switching open winding mode is not changed without shifting to the star connection mode. It is desirable to perform a frost operation.
  • SYMBOLS 1 Compressor, 1M ... Open winding motor, Lu, Lv, Lw ... Phase winding, 2 ... Four-way valve, 3 ... Outdoor heat exchanger, 4 ... Electric expansion valve, 5 ... Indoor heat exchanger, 10 ... Controller DESCRIPTION OF SYMBOLS 10a ... Main controller, 20 ... Three-phase alternating current power supply, 22 ... Full wave rectification circuit, 24 ... Capacitor, 25 ... DC power supply, 30 ... Inverter (1st inverter), 40 ... Inverter (2nd inverter), 51, 52 ... Relay, 51a, 52a ... Relay contact, 53u, 53v, 53w ... Current sensor, 60 ... Motor controller, 61 ... Voltage detection unit, 62 ... Current detection unit, 63 ... Relay drive unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

オープン巻線モータの各相巻線の一端に第1インバータを接続し、オープン巻線モータの各相巻線の他端に第2インバータを接続する。さらに、オープン巻線モータの各相巻線の他端の相互間に開閉器を接続する。コントローラは、上記開閉器の開閉および上記第1および第2インバータの運転を制御するとともに、その開閉器の開閉に際し上記オープン巻線モータの回転数を一定に保持する。

Description

モータ駆動装置及び冷凍サイクル装置
 本発明は、互いに非接続状態の複数の相巻線を有する永久磁石同期モータいわゆるオープン巻線モータを駆動するモータ駆動装置及び冷凍サイクル装置に関する。
 空気調和機や熱源機などの冷凍サイクル装置に搭載される圧縮機の駆動用モータとして、互いに非接続状態の複数の相巻線を有する永久磁石同期モータいわゆるオープン巻線モータ(Open-Windings Motor)が知られている。
 このオープン巻線モータを駆動するモータ駆動装置は、各相巻線の一端に接続される第1インバータ、各相巻線の他端に接続される第2インバータを備える。オープン巻線モータでは、モータの巻線に印加する電圧を高めることができるため、高回転域での運転が可能となる。冷凍サイクル装置においては、高効率で、かつ低回転域から高回転域までの回転数幅の広い運転が要求される。このため、各相巻線の他端の相互間に接続される開閉器を設け、この開閉器の閉成により各相巻線を星形結線する星形結線モードを設定し、上記開閉器の開放により各相巻線を開放するオープン巻線モードを設定することが考えられている。低回転数域では星形結線モードとして、片側のインバータのみで駆動し、高回転数域ではオープン巻線モードとして第1インバータと第2インバータの両方でモータを駆動する。これにより幅広い回転数範囲を得ると共に低回転数域で高効率な運転が可能となる。
特開第4906836号 特開2016-048997号公報
 上記モータ駆動装置では、運転中に星形結線モードとオープン巻線モードとを切換えることを可能としている。冷凍サイクルの安定中においては、支障なくこれらのモードの切換えが可能であるが、モータの回転数の変化中や冷凍サイクルの負荷変動中に、この切換えを行った場合、各インバータの駆動制御とモータの実際の回転とが同期しなくなるいわゆる脱調が生じることがある。例えば冷凍サイクルを用いた空気調和機の場合、脱調が生じると、圧縮機の運転停止を引き起こし、室温が設定温度から逸脱する恐れがあり、システムとしての信頼性を損なう。
 本発明の実施形態の目的は、脱調を生じることなく星形結線モードとオープン巻線モードとを切換えることができる信頼性にすぐれたモータ駆動装置及び冷凍サイクル装置を提供することである。
 請求項1のモータ駆動装置は、互いに非接続状態の複数の相巻線を有するモータを駆動するものであって;前記各相巻線の一端に接続され、その各相巻線の一端への通電を制御する第1インバータと;前記各相巻線の他端に接続され、その各相巻線の他端への通電を制御する第2インバータと;前記各相巻線の他端の相互間に接続された開閉器と;この開閉器および前記第1および第2インバータの運転を制御するとともに、その開閉器の開閉に際し前記モータの回転数を一定に保持するコントローラと;を備える。
一実施形態に係る冷凍サイクル装置の構成を示す図。 一実施形態の構成を示すブロック図。 一実施形態のモータコントローラの制御を示すフローチャート。 一実施形態におけるオープン巻線モータの回転数と星形結線モードおよびオープン巻線モードとの関係を示すタイムチャート。 図3のフローチャートにおける除霜モードルーチンを示す図。 一実施形態における除霜時のオープン巻線モータの回転数とオープン巻線モードとの関係を示すタイムチャート。 一実施形態における除霜時のオープン巻線モータの回転数と星形結線モードおよびオープン巻線モードとの関係を示すタイムチャート。
 本発明の一実施形態に係る空気調和機の冷凍サイクル装置の構成を図1に示す。 
 オープン巻線モータ(Open-Windings Motor)1Mを駆動用モータとして有する圧縮機1の吐出口に、四方弁2を介して室外熱交換器3の一端が配管接続され、その室外熱交換器3の他端に減圧器である電動膨張弁4を介して室内熱交換器5の一端が配管接続されている。そして、室内熱交換器5の他端が上記四方弁2を介して圧縮機1の吸込口に配管接続されている。
 室外熱交換器3の近傍に室外ファン6が配置され、室内熱交換器5の近傍に室内ファン7が配置されている。オープン巻線モータ1M(以下、モータ1Mともいう)、四方弁2、電動膨張弁4、室外ファン6、および室内ファン7は、コントローラ10により駆動制御される。
 図1中の実線矢印で示すように冷房運転時、コントローラ10は、圧縮機1が吐出するガス冷媒を四方弁2を介して室外熱交換器3に流す。室外熱交換器3に流れたガス冷媒は、外気に熱を放出して凝縮する。この室外熱交換器(凝縮器)3から流出する液冷媒は、電動膨張弁4で減圧された状態で室内熱交換器5に流れる。室内熱交換器5に流れた液冷媒は、室内空気から熱を奪って蒸発する。この室内熱交換器(蒸発器)5から流出するガス冷媒は、四方弁2を通って圧縮機1に吸い込まれる。一方、図1中の破線矢印で示す暖房運転時には、コントローラ10は、四方弁2を切換え、圧縮機1が吐出するガス冷媒を四方弁2を介して室内熱交換器4に流す。室内熱交換器4に流れたガス冷媒は、室内空気に熱を放出して凝縮する。この室内熱交換器(凝縮器)4から流出する液冷媒は、電動膨張弁4で減圧されて室外熱交換器3に流れる。室外熱交換器3に流れた液冷媒は、外気から熱を奪って蒸発する。この室外熱交換器(蒸発器)3から流出するガス冷媒は、四方弁2を通って圧縮機1に吸い込まれる。
 この暖房運転時、蒸発器として機能する室外熱交換器3の表面に徐々に霜が付着し、そのままでは室外熱交換器3の熱交換量が低下する。対策として、コントローラ10は、室外熱交換器3の温度低下や暖房運転の経過時間などに基づいて室外熱交換器3の着霜量を判定し、着霜量が増えて室外熱交換器3の除霜が必要になった場合に、四方弁2の流路を切換えて、冷房運転時と同じ方向に冷媒が流れる除霜運転を実行する。すなわち、圧縮機1から吐出される高温のガス冷媒が四方弁2を通って室外熱交換器3に流れる。室外熱交換器3に流れたガス冷媒は、室外熱交換器3に付着した霜を解かす。室外熱交換器3を経た冷媒は、電動膨張弁4、室内熱交換器5、および四方弁2を通って圧縮機1に戻る。
 本実施形態のモータ駆動装置は、図2に示すように、モータ1Mの駆動回路およびコントローラ10を含む。モータ1Mは、互いに非接続状態の複数たとえば3つの相巻線Lu,Lv,Lwを有する永久磁石同期モータである。モータ1Mの3つの相巻線Lu,Lv,Lwは、低回転数で効率が向上するよう細径(巻線密度が高い)の巻線が用いられる。通常、細径の巻線を用いた場合、モータ1Mの回転数を上昇させるのに伴ってモータ1Mの誘起電圧が上昇し、モータ1Mを駆動するべくインバータから供給する印加電圧との差が小さくなり、早い段階で、それ以上回転数を上げられなくなる。そこで、後述するように低回転数域においては相巻線Lu,Lv,Lwを星形結線して使用し、高回転数域では相巻線Lu,Lv,Lwをオープン巻線状態で運転する。これによって、低回転数域での効率向上と高回転まで回し切ることのできる広い回転数可変幅を得ることができる。
 3相交流電源20にノイズフィルタ21を介してダイオードブリッジの全波整流回路22が接続され、その全波整流回路22の出力端にリアクタ23を介してコンデンサ24が接続されている。この全波整流回路22、リアクタ23、コンデンサ24により、直流電圧Vdcを出力する直流電源25が構成される。
 この直流電源25とモータ1Mの相巻線Lu,Lv,Lwの一端との間に、その相巻線Lu,Lv,Lwの一端への通電を制御するインバータ(第1インバータ;マスタインバータともいう)30が接続されている。上記直流電源25とモータ1Mの相巻線Lu,Lv,Lwの他端との間に、その相巻線Lu,Lv,Lwの他端への通電を制御するインバータ(第2インバータ;スレーブインバータともいう)40が接続されている。すなわち、インバータ30,40を同じ直流電源25に接続する電源共通方式が採用されている。なお、インバータ30,40を別々の直流電源に接続する電源絶縁方式を採用してもよい。
 インバータ30は、IGBT31,32を直列接続し、そのIGBT31,32の相互接続点がオープン巻線モータ1Mの相巻線Luの一端に接続されるU相用直列回路、IGBT33,34を直列接続しそのIGBT33,34の相互接続点がオープン巻線モータ1Mの相巻線Lvの一端に接続されるV相用直列回路、IGBT35,36を直列接続しそのIGBT35,36の相互接続点がオープン巻線モータ1Mの相巻線Lwの一端に接続されるW相用直列回路を含み、直流電源25の直流電圧VdcをIGBT31~36のスイッチングにより所定周波数の3相交流電圧に変換し、それをオープン巻線モータ1Mの相巻線Lu,Lv,Lwのそれぞれ一端へ供給する。IGBT31~36には、回生用ダイオード(フリー・ホイール・ダイオードともいう)31a~36aが逆並列接続されている。
 インバータ40は、IGBT41,42を直列接続しそのIGBT41,42の相互接続点がオープン巻線モータ1Mの相巻線Luの他端に接続されるU相用直列回路、IGBT43,44を直列接続しそのIGBT43,44の相互接続点がモータ1Mの相巻線Lvの他端に接続されるV相用直列回路、IGBT45,46を直列接続しそのIGBT45,46の相互接続点がオープン巻線モータ1Mの相巻線Lwの他端に接続されるW相用直列回路を含み、直流電源25の直流電圧VdcをIGBT41~46のスイッチングにより所定周波数の3相交流電圧に変換し、それをモータ1Mの相巻線Lu,Lv,Lwのそれぞれ他端へ供給する。IGBT41~46には、回生用ダイオード(フリー・ホイール・ダイオードともいう)41a~46aが逆並列接続されている。
 モータ1Mの相巻線Luの他端と相巻線Lvの他端との相互間に、開閉器たとえばリレー51の常開形接点(リレー接点という)51aが接続されている。モータ1Mの相巻線Lvの他端と相巻線Lwの他端との相互間に、開閉器たとえばリレー52の常開形接点(リレー接点という)52aが接続されている。この2つのリレー51,52は完全に同期してコントローラ10により駆動される。リレー接点51a,52aが閉成すると、相巻線Lu,Lv,Lwの他端が相互接続される。つまり、相巻線Lu,Lv,Lwが星形結線される。相巻線Lu,Lv,Lwの他端の相互接続点、すなわち、リレー接点51a,52a部分が星形結線の中性点となる。リレー接点51a,52aが開放すると、相巻線Lu,Lv,Lwの他端が開放し、これにより相巻線Lu,Lv,Lwが電気的に分離したオープン巻線状態となる。
 一方のインバータ30とモータ1Mとの間の通電ラインの各々に電流センサ53,53v,53wが配置され、これら電流センサ53,53v,53wの三相巻線分の検知信号がコントローラ10に送られる。
 コントローラ10は、上記冷凍サイクル装置を制御するとともに、その冷凍サイクル装置の空調負荷に応じてリレー接点51a,52aの開閉およびインバータ30,40の運転を制御するもので、メインコントローラ10a、モータコントローラ60、電圧検出部61、電流検出部62、リレー駆動部63、および上記リレー51,52を含む。電圧検出部61は、直流電源25の出力電圧Vdcを検出し、その検出結果をモータコントローラ60に通知する。電流検出部62は、モータ1Mに流れる電流を電流センサ53,53v,53wを介して検出し、その検出結果をモータコントローラ60に通知する。リレー駆動部63は、モータコントローラ60の指令に応じてリレー51,52を駆動する。メインコントローラ10aは、冷凍サイクル装置を制御するとともに、その制御内容を冷凍サイクル装置の空調負荷と共にモータコントローラ60に知らせる。
 モータコントローラ60は、メインコントローラ10aの制御内容、冷凍サイクル装置の空調負荷、電圧検出部61の検出結果、電流検出部62の検出結果などに応じて、リレー接点51a,52aの開閉およびインバータ30,40の運転を制御する。とくに、モータコントローラ60は、リレー接点51a,52aの開閉に際しモータ1Mの回転数を一定に保持するべくインバータ30,40の運転を制御するもので、その制御に関わる主要な機能として第1制御部60aおよび第2制御部60bを含む。
 第1制御部60aは、リレー接点51a,52aの閉成により相巻線Lu,Lv,Lwの他端を相互接続し、かつインバータ30を単独運転する星形結線モード、およびリレー接点51a,52aの開放により相巻線Lu,Lv,Lwの他端を開放し、かつインバータ30,40を互いに連系運転(協調運転ともいう)するオープン巻線モードを、メインコントローラ10aの制御内容および冷凍サイクル装置の空調負荷に応じて選択的に設定する。
 具体的には、第1制御部60aは、モータ1Mの回転数Nを上昇させる際に、回転数Nが閾値(第2閾値)N2に達する前の低回転数領域(閾値N2未満)では星形結線モードを設定し、回転数Nが閾値N2に達した時点でその回転数Nを一定時間tsにわたり閾値N2一定に保持した状態でオープン巻線モードを設定し、このオープン巻線モードの設定を回転数Nが閾値N2に達した後の高回転数領域(閾値N2以上)において維持する。さらに、第1制御部60aは、モータ1Mの回転数Nを下降させる際に、回転数Nが閾値(第1閾値)N1(<N2)に達する前の高回転数領域(閾値N1超)ではオープン巻線モードを設定し、回転数Nが閾値N1に達した時点でその回転数Nを一定時間tsにわたり閾値N1一定に保持した状態で星形結線モードを設定し、この星形結線モードの設定を回転数Nが閾値N1に達した後の低回転数領域(閾値N未満)において保持する。
 上記一定時間tsは、モータコントローラ60からリレー駆動部63に指令が出てからリレー51,52が作動して実際にリレー接点51a,52aが開閉するまでの応答遅れ時間を十分に含む時間である。一定時間tsとして、少なくとも1秒間以上が設定される。冷凍サイクルの安定状態を含めて考えると数十秒確保することが望ましい。
 第2制御部60bは、メインコントローラ10aから除霜開始指令を受けた際に、オープン巻線モードを設定している状態にあれば、モータ1Mの回転数Nを閾値N1より低い設定値Ndefへ下降させかつ設定値Ndef一定に保持した状態で四方弁2を切換え、この切換え後、回転数Nを上記ヒートポンプ式冷凍サイクルの除霜運転に必要な値まで上昇させる。そして、第2制御部60bは、メインコントローラ10aから除霜終了指令を受けた際に、回転数Nを設定値Ndefへ下降させかつ設定値Ndef一定に保持した状態で四方弁2を元の状態に復帰する。
 また、第2制御部60bは、メインコントローラ10aから除霜開始指令を受けた際に、星形結線モードを設定している状態にあれば、モータ1Mの回転数Nを設定値Ndefへ下降させかつ設定値Ndef一定に保持した状態で四方弁2を切換え、この切換え後、回転数Nを閾値N2へ上昇させかつ閾値N2一定に保持した状態でオープン巻線モードを設定し、この設定後、回転数Nを上記ヒートポンプ式冷凍サイクルの除霜運転に必要な値まで上昇させる。そして、第2制御部60bは、メインコントローラ10aから除霜終了指令を受けた際に、回転数Nを閾値N1へ下降させかつ閾値N1一定に保持した状態で星形結線モードを設定し、この設定後、回転数Nを設定値Ndefへ下降させかつ設定値Ndef一定に保持した状態で四方弁2を元の状態に復帰する。
 つぎに、モータコントローラ60が実行する制御を図3のフローチャートおよび図4のタイムチャートを参照しながら説明する。フローチャートのステップS1,S2…については、単にS1,S2…と略称する。
 [星形結線モードからオープン巻線モードへの切換え]
 メインコントローラ10aから運転開始指令を受けた場合(S1のYES)、モータコントローラ60は、リレー接点51a,52aを閉成して相巻線Lu,Lv,Lwの他端を相互接続しかつインバータ30を単独運転(インバータ40は停止)する星形結線モードを設定する(S2)。そして、モータコントローラ60は、モータ1Mの回転数Nを空調負荷に応じた目標回転数Ntへ上昇させるべく、インバータ30のIGBT31~36のスイッチングをPWM(Pulse Width Modulation)制御する(S3)。
 メインコントローラ10aから除霜開始指令を受けていない場合(S4のNO)、モータコントローラ60は、モータ1Mの回転数Nが閾値N2まで上昇したかどうかを判定する(S5)。回転数Nが閾値N2へ向かって上昇する間(S5のNO,S8のNO),上記S3に戻り、回転数Nを空調負荷に応じた目標回転数Ntへ上昇させるべく、インバータ30のスイッチングのPWM制御を続ける(S3)。
 [星形結線モードからオープン巻線モードへの切換え]
 回転数Nが上昇して閾値N2に達した場合(高回転数領域;S5のYES)、モータコントローラ60は、回転数Nを一定時間tsにわたり閾値N2一定に保持する(S6)。回転数Nを閾値N2一定に保持している間、モータコントローラ60は、リレー接点51a,52aを開放して相巻線Lu,Lv,Lwの他端を開放しかつインバータ30,40を連系運転(協調運転)するオープン巻線モードを設定する(S7)。通常、空調機等の運転開始時には空調負荷が重い、すなわちモータ1Mの高回転数運転が必要な状態であることが多く、ほとんどの場合、運転開始時はこのフローを流れる。
 そして、モータコントローラ60は、メインコントローラ10aから運転停止指令を受けていなければ(S11のNO)、上記S3に戻り、回転数Nが空調負荷に応じた目標回転数Ntとなるよう、インバータ30のIGBT31~36のスイッチングおよびインバータ40のIGBT41~46のスイッチングを互いに連系(協調)してPWM制御する。このオープン巻線モードの設定により、星形結線モード時の√3倍の電圧を相巻線Lu,Lv,Lwに印加することができ、モータ1Mを高回転で運転することが可能となる。
 [オープン巻線モードから星形結線モードへの切換え]
 回転数Nが下降して閾値N1に達した場合(低回転数領域;S5のNO,S8のYES)、モータコントローラ60は、回転数Nを一定時間tsにわたり閾値N1一定に保持する(S9)。回転数Nを閾値N1一定に保持している間、モータコントローラ60は、リレー接点51a,52aを閉成して相巻線Lu,Lv,Lwの他端を相互接続しかつインバータ30を単独運転する星形結線モードを設定する(S10)。そして、モータコントローラ60は、メインコントローラ10aから運転停止指令を受けていなければ(S11のNO)、上記S3に戻り、回転数Nが空調負荷に応じた目標回転数Ntとなるよう、インバータ30のIGBT31~36のスイッチングをPWM制御する。この星形結線モードの設定により、低負荷運転に対応し得る低レベルの電圧を相巻線Lu,Lv,Lwに印加することができる。
 メインコントローラ10aから運転停止指令を受けた場合(S11のYES)、モータコントローラ60は、インバータ30およびインバータ40の全ての運転を停止する(S12)。
 [除霜運転]
 メインコントローラ10aから除霜開始指令を受けた場合(S4のYES)、モータコントローラ60は、除霜モードルーチンを実行する(S20)。この除霜モードルーチンを図5のフローチャートおよび図6・図7のタイムチャートにより説明する。
 [オープン巻線モードを設定している状況での除霜開始]
 オープン巻線モードを設定している状況で除霜を開始する場合、モータコントローラ60は、図6に示すように、回転数Nが設定値Ndefへ下降するよう、インバータ30,40のスイッチングをPWM制御する(S21)。除霜運転のために四方弁2を切換えると、冷凍サイクルの高圧側と低圧側が瞬時に切換わり、冷凍サイクルにおいて大きな負荷変動が発生する。そこで、四方弁2の切換え前にモータ1Mの回転数Nを低回転数である設定値Ndefまで低下させ、これにより冷凍サイクルの高低圧差を小さくして負荷変動を緩和するようにしている。そして、モータコントローラ60は、モータ1Mの回転数Nが設定値Ndefまで下降したかどうかを判定する(S22)。回転数Nが設定値Ndefに向かって下降する間(S22のNO)、モータコントローラ60は、上記S21に戻り、回転数Nを設定値Ndefへ下降させるべく、インバータ30,40のスイッチングのPWM制御を続ける(S21)。
 回転数Nが下降して設定値Ndefに達した場合(S22)、モータコントローラ60は、回転数Nを一定時間txにわたり設定値Ndef一定に保持する(S23)。回転数Nを設定値Ndef一定に保持している間、モータコントローラ60は、メインコントローラ10aを介して四方弁2を暖房用の流路から除霜用(冷房用)の流路に切換える(S24)。
 上記一定時間txは、四方弁2の切換えに要する時間を十分に含む時間である。一定時間txとして、例えば2~3秒間が選定される。
 続いて、モータコントローラ60は、現時点の設定がオープン巻線モードなので(S25のYES)、回転数Nが除霜運転に適した目標回転数Ntとなるよう、インバータ30,40のスイッチングを互いに連系してPWM制御する(S26)。ここで、目標回転数Ntとして、出来るだけ除霜運転を早く終了させるためにモータ1Mの最高回転数に近い高回転が設定される。
 続いて、モータコントローラ60は、メインコントローラ10aの除霜終了指令を待つ(S27)。除霜終了指令を受けない場合(S27のNO)、モータコントローラ60は、上記S26に戻り、回転数Nが除霜運転に適した目標回転数Ntとなるよう、インバータ30,40のスイッチングのPWM制御を続ける(S26)。
 メインコントローラ10aから除霜終了指令を受けた場合(S27のYES)、モータコントローラ60は、回転数Nが設定値Ndefへ下降するよう、インバータ30,40のスイッチングをPWM制御する(S28)。これも、除霜運転開始の時と同様に四方弁2の切換え前に冷凍サイクルの高低圧差を小さくして四方弁2の切換え前後の負荷変動を緩和するためである。そして、モータコントローラ60は、回転数Nが設定値Ndefまで下降したかどうかを判定する(S29)。回転数Nが設定値Ndefに向かって下降する間(S29のNO)、モータコントローラ60は、除霜前が星形結線モードであったかどうかを判定する(S30)。除霜前は星形結線モードではないので(S30のNO)、上記S28に戻り、回転数Nを設定値Ndefへ下降させるべく、インバータ30,40のスイッチングのPWM制御を続ける(S28)。なお、メインコントローラ10aにおける除霜終了の判定は、室外熱交換器3の温度、除霜運転開始からの時間、モータ電流値等の様々な公知の条件を用いることができる。
 回転数Nが下降して設定値Ndefに達した場合(S29のYES)、モータコントローラ60は、回転数Nを一定時間txにわたり設定値Ndef一定に保持する(S36)。回転数Nを設定値Ndef一定に保持している間、モータコントローラ60は、メインコントローラ10aを介して四方弁2を元の暖房用の流路に復帰する(S37)。そして、コントローラは、除霜フラグfを“0”にリセットし(S38)、除霜モードルーチンを終了する。
 [星形結線モードを設定している状況での除霜開始]
 星形結線モードを設定している状況で除霜を開始する場合、モータコントローラ60は、図7に示すように、回転数Nが設定値Ndefへ下降するよう、インバータ30のスイッチングをPWM制御する(S21)。そして、モータコントローラ60は、オープン巻線モータ1Mの回転数Nが設定値Ndefまで下降したかどうかを判定する(S22)。回転数Nが設定値Ndefに向かって下降する間(S22のNO)、モータコントローラ60は、上記S21に戻り、回転数Nを設定値Ndefへ下降させるべく、インバータ30のスイッチングのPWM制御を続ける(S21)。
 回転数Nが下降して設定値Ndefに達した場合(S22)、モータコントローラ60は、回転数Nを一定時間txにわたり設定値Ndef一定に保持する(S23)。回転数Nを設定値Ndef一定に保持している間、モータコントローラ60は、メインコントローラ10aを介して四方弁2を暖房用の流路から除霜用の流路に切換える(S24)。
 続いて、モータコントローラ60は、現時点の設定が星形結線モードなので(S25のNO)、回転数Nが除霜運転に適した目標回転数Ntとなるよう、インバータ30のスイッチングをPWM制御する(S39)。そして、モータコントローラ60は、モータ1Mの回転数Nが閾値N2まで上昇したかどうかを判定する(S40)。回転数Nが閾値N2に向かって上昇する間(S40のNO)、モータコントローラ60は、上記S39に戻り、回転数Nが除霜運転に適した目標回転数Ntとなるよう、インバータ30のスイッチングのPWM制御を続ける(S39)。
 回転数Nが上昇して閾値N2に達した場合(S40のYES)、モータコントローラ60は、回転数Nを一定時間tsにわたり閾値N2一定に保持する(S41)。回転数Nを閾値N2一定に保持している間、モータコントローラ60は、リレー接点51a,52aを開放して相巻線Lu,Lv,Lwの他端を開放しかつインバータ30,40を連系運転するオープン巻線モードを設定する(S42)。このオープン巻線モードの設定により、除霜運転に対応し得る十分な圧縮機能力を発揮できる。続いて、モータコントローラ60は、上記S27に戻ってメインコントローラ10aの除霜終了指令を待つ(S27)。
 除霜終了指令を受けない場合(S27のNO)、モータコントローラ60は、上記S26に移行し、回転数Nが除霜運転に適した目標回転数Ntとなるよう、インバータ30,40のスイッチングのPWM制御を続ける(S26)。
 メインコントローラ10aから除霜終了指令を受けた場合(S27のYES)、モータコントローラ60は、回転数Nが設定値Ndefへ下降するよう、インバータ30,40のスイッチングをPWM制御する(S28)。そして、モータコントローラ60は、回転数Nが設定値Ndefまで下降したかどうかを判定する(S29)。回転数Nが設定値Ndefに向かって下降する間(S29のNO)、モータコントローラ60は、除霜前が星形結線モードであったかどうかを判定する(S30)。除霜前は星形結線モードだったので(S30のYES)、モータコントローラ60は、除霜フラグfが“0”であることを条件に(S31のYES)、オープン巻線モータ1Mの回転数Nが閾値N1まで下降したかどうかを判定する(S32)。回転数Nが閾値N1に向かって下降する間(S32のNO)、モータコントローラ60は、上記S28に戻り、回転数Nを設定値Ndefへ下降させるべく、インバータ30,40のスイッチングのPWM制御を続ける(S28)。
 回転数Nが下降して閾値N1に達した場合(S32のYES)、モータコントローラ60は、回転数Nを一定時間tsにわたり閾値N1一定に保持する(S33)。回転数Nを閾値N1一定に保持している間、モータコントローラ60は、リレー接点51a,52aを閉成して相巻線Lu,Lv,Lwの他端を相互接続しかつインバータ30を単独運転する星形結線モードを設定する(S34)。そして、モータコントローラ60は、除霜フラグfを“1”にセットし(S35)、かつ上記S28に戻り、回転数Nを設定値Ndefへとさらに下降させるべく、インバータ30のスイッチングのPWM制御を続ける(S28)。星形結線モードを設定したことにより、低負荷運転に対応し得る低レベルの電圧を相巻線Lu,Lv,Lwに印加することができる。
 続いて、モータコントローラ60は、回転数Nが設定値Ndefまで下降したかどうかを判定する(S29)。回転数Nが設定値Ndefに向かって下降する間(S29のNO)、モータコントローラ60は、除霜前が星形結線モードであったかどうかを判定する(S30)。この場合、除霜前は星形結線モードであったが(S30のYES)、除霜フラグfが“1”なので(S31のNO)、モータコントローラ60は、上記S28に戻り、回転数Nを設定値Ndefへと下降させるべく、インバータ30のスイッチングのPWM制御を続ける(S28)。
 回転数Nが下降して設定値Ndefに達した場合(S29のYES)、モータコントローラ60は、回転数Nを一定時間txにわたり設定値Ndef一定に保持する(S36)。回転数Nを設定値Ndef一定に保持している間、モータコントローラ60は、メインコントローラ10aを介して四方弁2を元の暖房用の流路に復帰する(S37)。そして、コントローラは、除霜フラグfを“0”にリセットし(S38)、除霜モードルーチンを終了する。
 除霜運転に関し、四方弁2の切換え前に一旦低回転数である設定値Ndefにモータ1Mの回転数を低下させる必要がある。この設定値Ndefは、通常であれば、星形結線モードで運転すべき低回転数(<N1)であるが、星形結線モードとオープン巻線モードとを切換えるためにはリレー接点51a,52aの開閉動作が必要である。リレー接点51a,52aには切換え回数に応じた寿命がある。そこで、オープン巻線モードで運転している状況下では、リレー接点51a,52aを切換えることなく、オープン巻線モードのままで回転数を変化させて、リレー接点51a,52aの寿命を延長させる。また、四方弁2切換えの前後に、一旦オープン巻線モード状態のままで低回転数の設定値Ndef運転することで、モータ1Mの効率が低下するが、極めて短時間の一時的な運転であり、運転全体から見れば、それほど大きな効率低下とはならない。
 また、除霜運転前にオープン巻線モードで運転している場合には、冷凍サイクルも高能力運転となっており、冷凍サイクルの高低圧差が大きい状態にある。四方弁2の切換え前に、一旦低回転数である設定値Ndefにモータ1Mの回転数を低下させて高低圧差の緩和を図ってはいるが、高低圧差が大きい状態においてオープン巻線モードから星形結線モードへと切換えた場合には、脱調の可能性が高まる。この問題を回避するためにもオープン巻線モードで運転をしている状態で除霜運転に入る場合は、途中に星形結線モードへ移行することなく、切換オープン巻線モード状態のままで除霜運転を実行することが望ましい。
 [まとめ]
 以上のように、星形結線モードとオープン巻線モードとを切換えるためのリレー接点51a,52aの開閉に際し、モータ1Mの回転数Nを閾値N2一定または閾値N1一定に保持するようにしたので、星形結線モードとオープン巻線モードとの切換えに際してインバータ30,40の駆動制御とオープン巻線モータ1Mの実際の回転とが同期しなくなるいわゆる脱調を生じない。脱調によるモータ1Mの停止を防ぐことができる。
 上記実施形態では、開閉器がリレー接点51a,52aである場合を例に説明したが、半導体スイッチを開閉器として用いることもできる。
 上記実施形態では、圧縮機の駆動用モータとして用いるオープン巻線モータを例に説明したが、他の用途に用いるオープン巻線モータについても同様に実施できる。
 上記実施形態では、インバータ30,40を同じ直流電源25に接続する電源共通方式を採用したが、インバータ30,40を別々の直流電源に接続する電源絶縁方式においても、同様に実施できる。
 その他、上記実施形態および変形例は、例として提示したものであり、発明の範囲を限定することは意図していない。この新規な実施形態および変形例は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、書き換え、変更を行うことができる。これら実施形態や変形は、発明の範囲は要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
 1…圧縮機、1M…オープン巻線モータ、Lu,Lv,Lw…相巻線、2…四方弁、3…室外熱交換器、4…電動膨張弁、5…室内熱交換器、10…コントローラ、10a…メインコントローラ、20…3相交流電源、22…全波整流回路、24…コンデンサ、25…直流電源、30…インバータ(第1インバータ)、40…インバータ(第2インバータ)、51,52…リレー、51a,52a…リレー接点、53u,53v,53w…電流センサ、60…モータコントローラ、61…電圧検出部、62…電流検出部、63…リレー駆動部

Claims (8)

  1.  互いに非接続状態の複数の相巻線を有するモータのモータ駆動装置であって、
     前記各相巻線の一端に接続され、その各相巻線の一端への通電を制御する第1インバータと、
     前記各相巻線の他端に接続され、その各相巻線の他端への通電を制御する第2インバータと、
     前記各相巻線の他端の相互間に接続された開閉器と、
     前記開閉器の開閉および前記第1および第2インバータの運転を制御するとともに、その開閉器の開閉に際し前記モータの回転数を一定に保持するコントローラと、
     を備えることを特徴とするモータ駆動装置。
  2.  前記コントローラは、開閉器の開閉に際し前記モータの回転数を、前記開閉器の応答遅れ時間を含む一定時間にわたり、一定に保持する
     ことを特徴とする請求項1に記載のモータ駆動装置。
  3.  前記コントローラは、前記開閉器の閉成により前記各相巻線の他端を相互接続する星形結線モード、および前記開閉器の開放により前記各相巻線の他端を開放するオープン巻線モードを、負荷に応じて選択的に設定する
     ことを特徴とする請求項1に記載のモータ駆動装置。
  4.  前記コントローラは、前記開閉器の閉成により前記各相巻線の他端を相互接続しかつ前記第1インバータを単独運転する星形結線モード、および前記開閉器の開放により前記各相巻線の他端を開放しかつ前記第1および第2インバータを互いに連系運転するオープン巻線モードを、負荷に応じて選択的に設定する
     ことを特徴とする請求項1に記載のモータ駆動装置。
  5.  前記コントローラは、前記モータを低回転数領域で駆動する場合に前記星形結線モードを設定し、前記モータを高回転数領域で駆動する場合に前記オープン巻線モードを設定する
     ことを特徴とする請求項3または請求項4に記載のモータ駆動装置。
  6.  前記コントローラは、
     前記モータの回転数を上昇させる際に、その回転数が第2閾値に達する前の低回転数領域において前記星形結線モードを設定し、前記回転数が前記第2閾値に達した場合にその回転数をその第2閾値一定に保持した状態で前記オープン巻線モードを設定し、このオープン巻線モードの設定を前記回転数が前記第2閾値に達した後の高回転数領域において維持する、
     前記モータの回転数を下降させる際に、その回転数が第1閾値(<前記第2閾値)に達する前の高回転数領域において前記オープン巻線モードを設定し、前記回転数が前記第1閾値に達した場合にその回転数をその第1閾値一定に保持した状態で前記星形結線モードを設定し、この星形結線モードの設定を前記回転数が前記第1閾値に達した後の低回転数領域において保持する
     ことを特徴とする請求項3または請求項4に記載のモータ駆動装置。
  7.  請求項1ないし請求項6のいずれか1項に記載のオープン巻線モータを圧縮機の駆動用モータに用い、前記圧縮機、四方弁、凝縮器、減圧器及び蒸発器を順次接続したヒートポンプ式冷凍サイクルを備えることを特徴とする冷凍サイクル装置。
  8.  前記コントローラは、
     前記ヒートポンプ式冷凍サイクルの除霜開始に際し、前記オープン巻線モードを設定している状態にあれば、前記モータの回転数を前記第1閾値より低い設定値へ下降させかつその設定値一定に保持した状態で前記四方弁を切換え、この切換え後、前記モータの回転数を前記ヒートポンプ式冷凍サイクルの除霜運転に必要な値まで上昇させ、前記ヒートポンプ式冷凍サイクルの除霜終了に際し、前記モータの回転数を前記設定値へ下降させかつその設定値一定に保持した状態で前記四方弁を元の状態に復帰する、
     前記ヒートポンプ式冷凍サイクルの除霜終了に際し、前記星形結線モードを設定している状態にあれば、前記モータの回転数を前記設定値へ下降させかつその設定値一定に保持した状態で前記四方弁を切換え、この切換え後、前記モータの回転数を前記第2閾値へ上昇させかつその第2閾値一定に保持した状態で前記オープン巻線モードを設定し、この設定後、前記モータの回転数を前記ヒートポンプ式冷凍サイクルの除霜運転に必要な値まで上昇させ、前記ヒートポンプ式冷凍サイクルの除霜終了に際し、前記モータの回転数を前記第1閾値へ下降させかつその第1閾値一定に保持した状態で前記星形結線モードを設定し、この設定後、前記モータの回転数を前記設定値へ下降させかつその設定値一定に保持した状態で前記四方弁を元の状態に復帰する、
     ことを特徴とする請求項7に記載の冷凍サイクル装置。
PCT/JP2018/012074 2018-03-26 2018-03-26 モータ駆動装置及び冷凍サイクル装置 WO2019186631A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/012074 WO2019186631A1 (ja) 2018-03-26 2018-03-26 モータ駆動装置及び冷凍サイクル装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/012074 WO2019186631A1 (ja) 2018-03-26 2018-03-26 モータ駆動装置及び冷凍サイクル装置

Publications (1)

Publication Number Publication Date
WO2019186631A1 true WO2019186631A1 (ja) 2019-10-03

Family

ID=68059390

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/012074 WO2019186631A1 (ja) 2018-03-26 2018-03-26 モータ駆動装置及び冷凍サイクル装置

Country Status (1)

Country Link
WO (1) WO2019186631A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112468041A (zh) * 2021-01-28 2021-03-09 四川大学 基于二极管箝位的双三相开绕组永磁同步发电机系统
WO2021111598A1 (ja) * 2019-12-05 2021-06-10 東芝キヤリア株式会社 モータ駆動装置及び冷凍サイクル装置
FR3108219A1 (fr) * 2020-03-16 2021-09-17 Alstom Transport Technologies Circuit d’entraînement de traction et procédé de pilotage d’un tel circuit

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008022665A (ja) * 2006-07-14 2008-01-31 Sharp Corp モータ駆動装置、圧縮機駆動装置及び空調・冷凍装置
JP2009273348A (ja) * 2008-04-07 2009-11-19 Mitsubishi Electric Corp 電動機駆動装置および冷凍空気調和装置ならびに電動機駆動方法
JP2012135161A (ja) * 2010-12-24 2012-07-12 Hitachi Appliances Inc 空気調和機
JP2013070548A (ja) * 2011-09-26 2013-04-18 Toshiba Corp モータ制御装置、圧縮機およびヒートポンプ装置
US20130271056A1 (en) * 2010-11-05 2013-10-17 Lti Drives Gmbh Pitch motor drive circuit which can operate in emergency mode
WO2017150639A1 (ja) * 2016-03-04 2017-09-08 日本電産株式会社 電力変換装置、モータ駆動ユニット、電動パワーステアリング装置およびリレーモジュール

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008022665A (ja) * 2006-07-14 2008-01-31 Sharp Corp モータ駆動装置、圧縮機駆動装置及び空調・冷凍装置
JP2009273348A (ja) * 2008-04-07 2009-11-19 Mitsubishi Electric Corp 電動機駆動装置および冷凍空気調和装置ならびに電動機駆動方法
US20130271056A1 (en) * 2010-11-05 2013-10-17 Lti Drives Gmbh Pitch motor drive circuit which can operate in emergency mode
JP2012135161A (ja) * 2010-12-24 2012-07-12 Hitachi Appliances Inc 空気調和機
JP2013070548A (ja) * 2011-09-26 2013-04-18 Toshiba Corp モータ制御装置、圧縮機およびヒートポンプ装置
WO2017150639A1 (ja) * 2016-03-04 2017-09-08 日本電産株式会社 電力変換装置、モータ駆動ユニット、電動パワーステアリング装置およびリレーモジュール

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021111598A1 (ja) * 2019-12-05 2021-06-10 東芝キヤリア株式会社 モータ駆動装置及び冷凍サイクル装置
JPWO2021111598A1 (ja) * 2019-12-05 2021-06-10
JP7242901B2 (ja) 2019-12-05 2023-03-20 東芝キヤリア株式会社 モータ駆動装置及び冷凍サイクル装置
FR3108219A1 (fr) * 2020-03-16 2021-09-17 Alstom Transport Technologies Circuit d’entraînement de traction et procédé de pilotage d’un tel circuit
EP3883125A1 (fr) * 2020-03-16 2021-09-22 ALSTOM Transport Technologies Circuit d'entraînement de traction et procédé de pilotage d'un tel circuit
CN112468041A (zh) * 2021-01-28 2021-03-09 四川大学 基于二极管箝位的双三相开绕组永磁同步发电机系统

Similar Documents

Publication Publication Date Title
JP2019176554A (ja) モータ駆動装置
US8164292B2 (en) Motor controller of air conditioner
JP2555464B2 (ja) 冷凍サイクル装置
EP1906116A2 (en) Control device of motor for refrigerant compressor
WO2019186631A1 (ja) モータ駆動装置及び冷凍サイクル装置
JP2009216324A (ja) 空気調和機
JP6305546B2 (ja) 電動機駆動装置及びこれを用いた空気調和装置あるいは冷凍空調装置
CN109863689B (zh) 电动机驱动装置及空调机
CN109891736B (zh) 电动机驱动装置及空调机
JP4060429B2 (ja) 空気調和機
JP2019198152A (ja) モータ駆動装置
CN112272917B (zh) 电机驱动装置及制冷循环应用设备
JP2015087076A (ja) 空気調和機
JPS6349640Y2 (ja)
JP6980930B2 (ja) モータ駆動装置及び冷凍サイクル装置
JP7255015B2 (ja) モータ駆動装置及び冷凍サイクル装置
JP7242901B2 (ja) モータ駆動装置及び冷凍サイクル装置
JP7322279B2 (ja) 冷凍サイクル装置
JP7305867B2 (ja) モータ駆動装置および冷凍サイクル装置
US11506437B2 (en) Refrigerating cycle device having wiring switch part that switches between wiring states
JP2006250449A (ja) 空気調和機
US20210270511A1 (en) Motor driving apparatus and air conditioner including the same
JP2021044976A (ja) 空気調和装置
JP2000014131A (ja) 電源装置
WO2017183179A1 (ja) 電動機駆動装置および冷凍サイクル装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18912247

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18912247

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP