WO1997040230A1 - Materiau de base non impregne servant de substrat textile pour la fabrication de cuir artificiel, cuir artificiel constitue de ce materiau, et procede de fabrication associe - Google Patents

Materiau de base non impregne servant de substrat textile pour la fabrication de cuir artificiel, cuir artificiel constitue de ce materiau, et procede de fabrication associe Download PDF

Info

Publication number
WO1997040230A1
WO1997040230A1 PCT/JP1997/001354 JP9701354W WO9740230A1 WO 1997040230 A1 WO1997040230 A1 WO 1997040230A1 JP 9701354 W JP9701354 W JP 9701354W WO 9740230 A1 WO9740230 A1 WO 9740230A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
base material
impregnated
matrix
binder
Prior art date
Application number
PCT/JP1997/001354
Other languages
English (en)
French (fr)
Inventor
Hiroshi Honna
Makoto Yoshida
Michikage Matsui
Original Assignee
Teijin Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Limited filed Critical Teijin Limited
Priority to US08/981,445 priority Critical patent/US5993944A/en
Priority to DE69714962T priority patent/DE69714962T2/de
Priority to EP97917438A priority patent/EP0855461B1/en
Priority to KR1019970709619A priority patent/KR100353299B1/ko
Publication of WO1997040230A1 publication Critical patent/WO1997040230A1/ja

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/12Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins
    • D06N3/121Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins with polyesters, polycarbonates, alkyds
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/04Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres having existing or potential cohesive properties, e.g. natural fibres, prestretched or fibrillated artificial fibres
    • D04H1/06Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres having existing or potential cohesive properties, e.g. natural fibres, prestretched or fibrillated artificial fibres by treatment to produce shrinking, swelling, crimping or curling of fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/44Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
    • D04H1/46Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/541Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres
    • D04H1/5412Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres sheath-core
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/541Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres
    • D04H1/5418Mixed fibres, e.g. at least two chemically different fibres or fibre blends
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/542Adhesive fibres
    • D04H1/549Polyamides
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/542Adhesive fibres
    • D04H1/55Polyesters
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0002Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0002Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate
    • D06N3/0013Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate using multilayer webs
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/12Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins
    • D06N3/14Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins with polyurethanes
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/12Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins
    • D06N3/14Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins with polyurethanes
    • D06N3/145Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins with polyurethanes two or more layers of polyurethanes
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/541Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres
    • D04H1/5414Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres side-by-side
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/904Artificial leather
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • Y10T428/24438Artificial wood or leather grain surface
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
    • Y10T428/24826Spot bonds connect components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2929Bicomponent, conjugate, composite or collateral fibers or filaments [i.e., coextruded sheath-core or side-by-side type]
    • Y10T428/2931Fibers or filaments nonconcentric [e.g., side-by-side or eccentric, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/2964Artificial fiber or filament
    • Y10T428/2967Synthetic resin or polymer
    • Y10T428/2969Polyamide, polyimide or polyester

Definitions

  • Non-impregnated base material useful as a base fabric for artificial leather, artificial leather comprising the same, and methods for producing them Technical field to which the invention pertains
  • the present invention relates to a non-impregnated base material, and more particularly to a non-impregnated base material excellent in leather-like texture, air permeability, and lightweight, useful as a base fabric for artificial leather, and a non-impregnated base material comprising the same.
  • a non-impregnated base material excellent in leather-like texture, air permeability, and lightweight, useful as a base fabric for artificial leather, and a non-impregnated base material comprising the same.
  • Conventional technology Conventional technology
  • the force of the base layer being dense and the lower layer having a rough structure.
  • This urethane impregnation stage requires advanced control technology and impregnation with urethane.
  • the base material has excellent texture and durability, it has a dense structure with resin clogged between the fibers, so it has poor air permeability and is required to be lightweight. It is difficult to combine this with performance.
  • urethane impregnation uses a solvent, the manufacturing process is complicated, productivity is low, and environmental problems arise.
  • An object of the present invention is to solve the above-mentioned drawbacks of the prior art, and to provide a lightweight base cloth for artificial leather having a small amount of binder, having a leather-like texture, having excellent breathability and elastic recovery ability, and being lightweight.
  • An object of the present invention is to provide a useful non-impregnated type substrate and a method for producing the same.
  • Another object of the present invention is to provide a novel base fabric for artificial leather, in which an elastomer layer is formed on the surface of the non-impregnated type base material of the present invention, and a method for producing the same.
  • the conventional impregnation method in which the weight ratio of the elastic polymer relative to the total weight of the base material is set to a high level of 25 to 45% to obtain a desired texture of artificial leather
  • the elastic polymer it is surprising that when giving a particular structural change to a known cushioning material consisting of a matrix arrowhead fiber and a binder fiber, the elastic polymer It has been found that even in the region where the proportion is 25% or less, the cushion material can be converted into artificial leather having particularly improved air permeability.
  • the present inventors have found that the feeling required when converting to artificial leather is not only due to the structure of the substrate surface but also to the structure inside the substrate. I also found out.
  • the object of the present invention is:
  • the ratio of the elastic polymer to the total weight of the base material is in the range of 2.5 to 25% by weight
  • the density is in the range of 0.15 to 0.45 gr / cm 3 ;
  • the elastic polymer constituting the binder fiber is:
  • d-1 Part of the matrix fiber is fused and covered with the elastic polymer over its entire circumference, and d-2. Although the fiber is coated with the elastic polymer over its entire circumference, a part of the interface between the two fibers is in a fused state, and the remaining interface is in a non-contact state. Is formed, and at that time,
  • the number ratio of the completely fused portion to the partially fused portion is in the range of 35:65 to 75:25: and
  • the non-impregnated type substrate is N-impregnated type substrate
  • a method for producing a non-impregnated base material fused to kusu male fiber includes the following steps (f) and (g) sequentially, and further, at any stage before the step (g), at a part of an intersection between the matrix fiber and the binder fiber, the fibers are combined with each other. It has been found that a method for producing a non-impregnated base material useful as a base fabric for artificial leather, which includes a step in which formation of a fused portion of the base material is inhibited, is provided.
  • the proportion of the elastic polymer to the total weight of the substrate must be in the range of 2.5 to 25%. If the proportion is less than 2.5%, the number of single bond units and multiple bond units in the internal structure of the base material is too small, and the required elasticity of the base material cannot be exhibited. On the other hand, if the proportion exceeds 25%, on the contrary, the above two types of binding units are too present inside the base material, so that the base material has a rubber-like and hard feel. . From the above viewpoint, the ratio is more preferably in the range of 5 to 15%. In the present invention, the density of the substrate is 0.1 5-0. Should be in the 4 5 gr range of Z cm 3.
  • the density is less than 0.15 gr / cm 3 , the leather has a rough structure, so that a leather-like texture cannot be obtained. Conversely, when the density exceeds 0.45 gcm 3 , the bulkiness is poor, so that it is difficult to reduce the weight and lacks flexibility.
  • FIGS. 1 to 4 are cross-sectional views of the non-impregnated base material according to the present invention, which are electron micrographs (about 350 times) of the scattered bonding units and the fused portion. It is a copy and is a diagram for facilitating the explanation and understanding of the state of the bonding unit and the fused portion. That is, in Figs. 1 to 4, 1 is the matrix fiber, 2 is the elastic polymer arranged on the binder fiber so as to be exposed on the male fiber surface, and 3 is the core arranged on the binder fiber. Each part is represented.
  • the non-impregnated base material of the present invention is composed of the above 1, 2 and 3, in which case the above-mentioned c-11 portion and c-12 portion are formed.
  • the c-1 and c-2 parts are composed of the above-mentioned d-1 part (4 and 5 in the figure) and d-2 part (6 and 7 in the figure), respectively. It is formed from the elastic connection point (8 in the figure) of requirement e.
  • c-11 portion (single bond unit) is formed, and further, the c-11 portion is composed of d-1 portion (completely fused portion) 4 and d-2. 6 (partial fusion parts).
  • a c-12 portion (complex bonding unit) is formed, and the c-2 portion is a d-1 portion (completely fused portion) 5 and a d-2 portion (partially fused portion). Part 7).
  • the part where the elastic polymer 2 and the plurality of matrix fibers 1 are completely physically bonded (completely fused portion) 5 and the elastic polymer 2 and the plurality of matrix fibers 1 Has an incomplete physical bonding part (partial fusion bonding part) 7, so that the rubber-like feel of the base cloth can be eliminated and the base cloth strength can be compatible. Can be measured.
  • the number of matrix starvation is preferably in the range of 2 to 5.
  • some of the matrix fibers have a circumference of 65% or more of the circumference of the fiber in a non-contact state with the elastic polymer. No.
  • the non-contact portion exceeds 65%, even if a fused portion is formed at a portion in contact with the elastic polymer, the fused fiber substantially causes the matrix fiber to be formed in the base material. Since it is not fixed in place, a substrate with a supple feel can be obtained.
  • some matrix fibers have a peripheral portion exceeding 35% of the perimeter of the fiber cross section in contact with the elastic polymer.
  • the contact portion exceeds 35%, the matrix fiber is substantially fixed in the base material when a fused portion is formed at a portion in contact with the elastic polymer. By doing so, it is possible to maintain the strength required as a base material.
  • the formation of the elastic coupling point 8 of the requirement e allows the elastic recovery ability, which is one of the characteristics required for the base material, to be improved even if the base material is not impregnated. It can be maintained at the same level as wood.
  • the number ratio of d-1 portions (completely fused portions) 4 and 5 and d-2 portions (partially fused portions) 6 and 7 is 35:65 to 5: 6 5: Must be in the range of 35.
  • the ratio of the completely fused portion is less than 35% (the ratio of the partially fused portion exceeds 65%)
  • the physical properties of the base material deteriorate with time.
  • it exceeds 65% the ratio of the partially fused portion is not 35% II
  • the completely fused portion formed in the base material is too large, and the texture of the obtained base material is rubber-like. It becomes something.
  • the total number of d-1 portions (completely fused portions) 4 and 5 and d-2 portions (partially fused portions) 6 and 7 and the elastic bonding point (e Point) is in the range of 95 : 5 to 75:25. If the ratio at which the elastic coupling points are formed is small, it is difficult to exhibit sufficient elastic recovery performance as a substrate. Conversely, if the ratio is large, the texture of the obtained substrate tends to be rubbery because the number of elastic bonding points in the substrate is too large.
  • FIG. 9 shows an electron micrograph of a cross section of a conventionally known non-impregnated substrate obtained in Comparative Example 1, and FIG. The electron micrographs of the cross sections of the conventionally known impregnated substrates are shown respectively.
  • the substrate in FIG. 9 is substantially composed of a completely fused portion. No partially welded part is seen at. And it is clear that the base material of the present invention expresses a better texture than the conventionally known non-impregnated type base fabric due to the formation of the partially fused portion.
  • the base material is impregnated with polyurethane. Although the polyurethane itself has a fine structure, it is clear that the air permeability is inferior to that of the non-impregnated substrate of the present invention when viewed as the whole substrate.
  • the weight ratio of the mixing ratio of the matrix fiber and the binder fiber is preferably in the range of 95: 5 to 50:50. If the matrix arrowhead fiber exceeds 95% by weight, it is difficult to form a sufficient number of bonding units. On the other hand, if the binder fiber exceeds 50% by weight, the base material tends to have a rubber-like and hard texture.
  • a release agent is attached to the fiber surface of some matrix male fibers.
  • the release agent refers to a release agent having a function of inhibiting fusion between the matrix fiber and the binder fiber. The adhesion of the release agent makes it possible to relatively easily form the partially fused portion in the internal structure described above.
  • the ratio of the matrix fiber (A-1) to which the release agent has adhered to the matrix fiber (A-2) to which the release agent has not adhered is expressed in terms of weight ratio. It is preferably in the range of 9: 1 to 20:80.
  • the amount of the matrix fiber (A-1) exceeds 99% by weight, the number of the completely fused portions between the matrix fiber and the binder fiber decreases. Too high, the obtained substrate lacks the elongation.
  • the above-mentioned matrix male fiber (A-2) is present in an amount exceeding 80% by weight, the number of the completely fused portions formed is too large, and the obtained base material is a rubber line. It has a hard, hard texture.
  • the release agent is preferably in the range of 0.1 to 5.0% by weight based on the fiber weight of the matrix fiber (A-1). If this value is less than 0.1% by weight, the effect of forming the above-mentioned partially fused portion of the release agent is difficult to exert. Conversely, if it exceeds 5.0% by weight, the tensile strength of the base material tends to decrease. .
  • examples of the release agent include silicone such as dimethylpolysiloxane, epoxy-modified polysiloxane, amino-modified polysiloxane, methylhydrodienepolysiloxane, and methoxypolysiloxane.
  • silicone such as dimethylpolysiloxane, epoxy-modified polysiloxane, amino-modified polysiloxane, methylhydrodienepolysiloxane, and methoxypolysiloxane.
  • Compounds such as fluorinated compounds, tetrafluoroethylene resin, tetrafluoroethylene copolymer, and modified fluorinated resin, among others. Silicon compounds are preferred from the viewpoint of performance and performance, and polysiloxanes are more preferred, and dimethylpolysiloxane is most preferred.
  • the matrix male fiber has a single fiber stamenity preferably in the range of 0.5 to 50 denier. If the force is smaller than 0.5 denier, the strength of the base material is low. Conversely, if it exceeds 50 denier, the obtained base material becomes rigid, so that 1.0 to 20 denier is particularly preferable.
  • the matrix fiber may be either a long fiber or a short fiber, but the fiber length is 1 in view of the uniform dispersibility of the matrix fiber in the base material. It is preferably in the range from 0 to 200 mm, particularly preferably in the range from 20 to 150 mm.
  • the matrix fiber be crimped, and the crimp degree at that time is 5 to 50%, and the crimping is performed.
  • the number is preferably in the range of 5 to 30 pieces / inch, but in order to further improve the above entangled state, the degree of crimp is 5 to 30%, It is particularly preferred that the number be in the range of 5 to 20 inches.
  • the cross-sectional shape of the matrix fiber may be circular, flat, irregular or hollow, but it can contribute to the lightness of the base material, and furthermore, the bend of the fiber It is preferable to use a hollow cross section that can exhibit flexibility because of its low strength.
  • the tensile strength of the matrix fiber of the present invention is preferably in the range of 1 to 10 gZde. If the strength is less than 1 gZde, the strength of the substrate will be low. Conversely, if the strength exceeds 10 de, the fiber becomes rigid and it is difficult to exhibit the flexibility of the base material. In particular, the tensile strength is preferably from 2 to 8 g de.
  • the binder fiber is preferably composed of an elastic polymer and an inelastic polymer, and the elastic polymer is preferably exposed on the surface of the fiber. Is preferably exposed so as to occupy 30% of the fiber surface of the binder fiber. If the elastic polymer is not exposed on the surface so as to occupy 30% or more, the function as a binder-fiber, that is, the ability to form a fusion bonded portion is lacked.
  • the specific form of the binder fiber may be either a side-by-side-type or a sheath-core-type force. The latter is preferable.
  • the inelastic polymer becomes the core portion, and the core portion may be concentric or eccentric with respect to the sheath portion.
  • coil-like elastic crimp is developed, which is more preferable.
  • the cross-sectional shape of the binder fiber may be any of circular, flat, irregular or hollow.
  • the thickness of the binder fiber is in the range of 1.0 to 50 denier, particularly in the range of 1 to 20 denier. Either long fibers or short fibers may be used as the binder fiber, but it is preferable to use short fibers in view of the fact that it is preferable to disperse the binder uniformly.
  • the single-weave length at that time is preferably from 10 to 200 mm, more preferably from 20 to 150 mm. mm.
  • the binder fiber when using the binder fiber having the above configuration, it is preferable that the binder fiber is composited so as not to be separated from each other when the binder fiber is subjected to the heat and pressure treatment.
  • binder fibers having fibers that are easily separated from each other are used, it is difficult to form the above-mentioned elastic bonding points where the intersections of the binders are fused by an elastic polymer.
  • polyester-based resins are particularly preferred in terms of physical properties such as heat resistance and strength.
  • Polyester-based inelastic polymers include, for example, ordinary polyethylene terephthalate, polybutylene terephthalate, polyhexaethylene terephthalate, and polyethylene. To the mouth, xantelevate rate, bolivarovalactone and the like can be mentioned. Of these, the polyethylene terephthalate and the polybutylene terephthalate are preferred.
  • the elastic polymer used in the present invention is not particularly limited as long as it is thermoplastic. Polyurethane-based elastomers and polyester-based elastomers are preferred, and polyester elastomers are particularly preferred. One is preferred.
  • a low-melting-point polyol having a number-average molecular weight of about 50,000 to 600,000, for example, dihydric epoxy ether at both ends, Dihydroxypolyester at both ends, dihydroxycarbonyl carbonate at both ends, dihydroxypolyesteramide at both ends, etc., and organic diisocarbonate having a molecular weight of 500 or less, such as p.p'-diphenylmetarene Chemistry, tri-range chemistry, isophorone chemistry, hydrogenated diphenyl methane chemistry, xylylene chemistry, 2,6— chemistry Tilcubate mouth, hexamethylene diisosinate, etc., and a chain extender with a molecular weight of 500 or less, such as glycol and amino alcohol Or a polymer obtained by reaction with triol.
  • polymers particularly preferred ones are poly (tetramethylene glycol), poly ( ⁇ -cabrolactone), or poly (ethylene glycol) having dihydroxyl-butylene adenylate at both terminals.
  • organic diisocyanate ⁇ , ⁇ ′-diphenylmethanediisocyanate is preferable.
  • chain extender ⁇ , ⁇ -bishydroxyethoxybenzene and 1,4-butanediol are preferred.
  • various stabilizers, ultraviolet absorbers and the like may be incorporated in the polymer as required.
  • thermoplastic ester is used as a hard segment, and a polyalkylene glycol is copolymerized as a soft segment to form a polyetherester bromide.
  • a copolymer produced from the following (I), ( ⁇ ) and (m) is preferred.
  • ( ⁇ ) 1.4-butanediol ethylene glycol, trimethylene glycol, tetramethylene glycol, pentamethylenglycol, hexamethylene glycol, neobentyl glycol, decamethylenglycol, etc.
  • Selected from aliphatic diols alicyclic diols such as 1,1-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, tricyclodecane dimethanol, and ester-forming derivatives thereof.
  • At least one species and (HI) Polyethylene glycol having an average molecular weight of about 400 to 500, poly 1,2-propylene glycol, poly 1,3-bromo glycol, ethylene oxide and propylene At least one of polyalkylene glycols such as a copolymer with ethylene oxide and a copolymer of ethylene oxide and tetrahydrofuran.
  • polyester-based elastomers in particular, polybutylene terephthalate is used as a hard segment, and polyoxybutylene is used as the hard segment in view of the fusion property with matrix fibers, temperature characteristics, and strength. Preference is given to block copolymerized polyether polyesters using a soft segment as the call.
  • the polyester portion constituting the hard segment is polybutylene terephthalate having a main acid component as a terephthalic acid component and a main diol component as a butylene glycol component.
  • part of this acid component (usually 30 mol% or less based on the total acid component) may be replaced by another dicarboxylic acid component or oxycarboxylic acid component, and similarly, the glycol component Some (typically 30 mol% or less, based on the total glycol components) are butylene glycol
  • —It may be substituted by a dioxy component other than the diol component.
  • the polyether moiety constituting the soft segment may be a polyether substituted with a dioxy component other than butylene glycol.
  • various stabilizers, ultraviolet absorbers, etc. may be added as required.
  • the melting point of the elastic polymer is 30 to 120 higher than that of the inelastic polymer. C, especially preferably 40 to 80 ° C lower.
  • the melting point of an elastic polymer is usually 120 to 220. C, preferably between 140 and 180 ° C.
  • the melting point of the inelastic volume Rimmer usually 2 0 0 to 3 0 0 e C, and rather the preferred 2 2 0-2 6 0. C.
  • the melting point is a value measured by the DSC method, and the melting point is regarded as the melting point when no melting point exists.
  • the term “inelastic polymer” refers to a 50% elongation measured when a film or a fiber is formed. Long recovery is defined as less than 50%, preferably less than 20%, and elastic polymer is defined as having a recovery of 50% or more, preferably 70% or more. As defined.
  • the non-elastic polyester fibers forming the matrix fiber in the present invention include ordinary polyethylene terephthalate, polybutylene terephthalate, and polyhexamethylene terephthalate. Rate, polytetramethylentelephthalate, poly (1,4-dimethylcyclohexaneterephthalate), polybivalolactone, or a monoester composed of these copolymer esters It is a fiber or a mixed fiber of those fibers, or a composite fiber composed of two or more of the above polymers.
  • the cross-sectional shape of the single fiber may be circular, flat, irregular, or hollow.
  • a single arrowhead made of polyethylene terephthalate, polybutylene terephthalate or a copolymer thereof is preferred.
  • the matrix fibers include high shrinkage fibers.
  • the high-shrinkable fiber is a fiber having a shrinkage of 20 to 70%, preferably 30 to 60% when immersed in 70 pieces of warm water for 1 minute.
  • the highly shrinkable fibers include nylon fibers and polyester fibers. Polyester fibers are preferred in terms of physical properties such as heat resistance and strength. Polyester-based highly shrinkable fibers include ordinary polyethylene terephthalate, polybutylene terephthalate, polyhexamethylene terephthalate, and poly-1,4- Highly shrinkable fibers such as dimethylcyclohexanatelev latet and Boliviva's lactone can be mentioned.
  • a self-extensible fiber as the matrix fiber, since the entangled state of the fiber in the base material is improved.
  • the self extensible fiber without substantive shrinkage when immersed for 1 minute in the 7 0 hand hot water, under an atmosphere of 1 8 0 e C after the treatment, and was held for 1 minute
  • Self-extensible fibers include nylon-based or polyester-based fibers.
  • the matrix fiber of the present invention ordinary fibers (regular fibers) can be used by mixing the highly shrinkable fibers and / or self-extensible fibers.
  • a high-shrinkable fiber and a self-extensible fiber in combination as a matrix fiber.
  • the proportion of highly contractile fiber: self-extensible fiber is 50: 50- by weight; L00: 0, especially 70: 30-90. : It is desirable to mix and use both so as to be within the range of 10.
  • non-impregnated base material of the present invention it is preferable that at least two or more nonwoven fabrics having different mixing ratios of the matrix fiber and the binder fiber are laminated.
  • the cotton mixing ratio of the binder fibers between the nonwoven fabrics in the adjacent state satisfy the following general formula (I).
  • W 1 and W 2 represent the binder-fiber mixing ratio (wt%) in each of the adjacent nonwoven fabric layers.
  • the mixing ratio of the matrix fibers between the laminated non-woven fabrics and the adjacent non-woven fabrics satisfies the following general formula (II).
  • Ml and M2 represent the mixing ratio (wt%) of the high shrinkage fiber in the matrix fiber in each of the adjacent nonwoven fabric layers. If this (Ml-M2) exceeds 40, the texture is not good because the shrinkability and the confounding property differ between adjacent nonwoven fabrics.
  • the 20% elongation recovery rate of the non-impregnated type substrate is in the range of 50% to 90% for both axes orthogonal to the plane in all directions on a plane orthogonal to the thickness direction.
  • being in the range of 50 to 90% in both the above-mentioned two axes means that there is little anisotropy in the above-mentioned elongation ratio in a plane perpendicular to the thickness direction.
  • the non-impregnated type base material has two to two stiffnesses which are perpendicular to the thickness direction in all directions on a plane whose stiffness measured by the cantilever method is orthogonal to the thickness direction. It is preferably in the range of 0 cm.
  • being in the range of 2 to 20 cm in both the above-mentioned two axes means that the anisotropy in the above-mentioned rigidity is small in a plane perpendicular to the thickness direction. More preferably, the stiffness is in the range of 2 to 15 cm.
  • the air permeability in the thickness direction is preferably in the range of 10 to 100 cm 3 / cm 2 / sec.
  • the air permeability is less than 10 cm 3 / cm 2 / sec, the air permeability is poor. Conversely, if it exceeds 100 cm 3 / cm 2 / sec, it is not preferable because the structure becomes coarse.
  • the porosity of the non-impregnated base material of the present invention is preferably in the range of 65 to 90%.
  • the porosity is represented by the general formula (III).
  • Porosity (%) (1—substrate density Z short fiber density) X 100 ⁇ (III) If the porosity is less than 65%, air permeability is poor, and conversely, it exceeds 90%. It is not preferable because it has a rough structure.
  • the non-impregnated base material of the present invention can be converted into a base fabric for artificial leather by forming an elastomer layer on its surface.
  • the porous structure and the elastomer layer are uniform.
  • it is a spherical aggregate.
  • the elastomer has such a structure As a result, the porosity is improved, so that the soft cloth and softness can be exhibited as a base cloth for artificial leather.
  • the porous structure means that the surface layer has a shape as shown in FIG. 11 in an arbitrary cross section cut in parallel to the thickness direction, and the spherical aggregate refers to the surface layer. Means that it has a shape as shown in Fig. 12 in an arbitrary cross section cut parallel to the thickness direction.
  • the elastomer layer may be either a polyester elastomer or a polyester elastomer. Since no harmful gas is generated during incineration, the polyester elastomer is used. It is most preferable to use
  • the dosegment portion is a crystalline polyester containing an aromatic dicarboxylic acid component as a main acid component, and the soft segment portion is a polyether or a low-crystalline polyester.
  • the soft segment portion is a polyether or a low-crystalline polyester.
  • step f the web is subjected to a forced entanglement treatment to orient the fabric in a state parallel or quasi-parallel to the thickness direction, and further, to perform a shrinkage treatment on the web.
  • the quasi-parallel state means that the orientation of the fiber is approximately the thickness direction 45. Intersect at less than angle.
  • the air permeability in the thickness direction of the substrate can be increased, and the substrate can be flexibly bent, for example, like an accordion. it can.
  • the web can be used as a base material having a dense structure, and the strength and elongation of the base material can be increased, so that a leather-like texture can be obtained.
  • the shrinking treatment is preferably performed so that the area shrinkage ratio becomes 20 to 70%.
  • the shrinkage ratio is less than 20%, the entangled structure of the fibers is rough. It has low durability such as strength, and it is difficult to obtain a satisfactory stiffness in texture.
  • the shrinkage exceeds 70%, the apparent density increases, making it difficult to reduce the weight of the base material. It tends to lack flexibility in texture.
  • a shrinkage treatment method for example, a method of performing in hot water or dry heat is appropriate. A method of performing in shrinkage in warm water is appropriate because a heat is likely to occur unless heat is uniformly applied.
  • the heating conditions for the shrinkage treatment 65 to 75 ° C when the treatment is performed in warm water and 100 to 150 ° C when the treatment is performed in dry heat are appropriate.
  • the heating time may be appropriately set so that the area shrinkage ratio is appropriate.
  • step g the nonwoven fabric obtained in step f is subjected to pressure and heat treatment at the bonding temperature of the binder fiber.
  • the bonding temperature of the binder fiber means a temperature that is equal to or higher than the melting temperature of the binder component (elastic polymer) and lower than the decomposition temperature.
  • each fiber in the base material is easily compressed under pressure, so that a base material having a more dense structure can be manufactured.
  • the pressurizing / heating treatment at least a part of at least some of the points where the elastic bolimers disposed on the binder fiber are in contact with each other are fused to form the nonwoven fabric. It is preferable to form a mesh structure in the vicinity.
  • this network structure By forming this network structure, even if it is a non-impregnated type substrate, that is, even if the content of the elastic polymer is small, the strong elongation is not inferior to that of the impregnated type substrate. It becomes easy to exhibit the deterioration resistance such as.
  • the pressure and heat treatment method may be appropriately changed depending on the use and purpose of the base material, but it is preferable to have a certain degree of clearance to obtain a bulky texture. It is preferable that the thickness be in the range of 60 to 90% based on the thickness before the pressure heat treatment. For this purpose, for example, a method in which the nonwoven fabric obtained in the step f is treated with a pair of heating rollers, a method in which the nonwoven fabric is treated with a heat press, and the like, may be used.
  • the pressure is preferably in the range of 10 to 1500 kg / cm. When the linear pressure is within this range, it is used for artificial leather. It is easy to produce a base material having a rounded leather-like stiffness, which is important when used, and having an appropriate apparent density, light weight and air permeability.
  • the matrix fiber and the binder fiber are applied to the surface of a part of the matrix fiber at any stage before the step g. At a part of the intersection, it is necessary to perform a treatment to prevent fusion of the fibers.
  • a non-impregnated base material having a soft and rounded stiffness having a completely fused portion and a partially fused portion in an internal structure. Wood can be obtained.
  • a treatment of attaching a release agent to the surface of a part of the matrix male fiber is preferable from the viewpoint of cost and the like. It can be mentioned as a means.
  • a method of mechanically breaking the welded part after pressurizing and heating, and a method of selecting a combination of a polymer in which the binder component and the matrix component are incompatible are used. It doesn't matter.
  • a method of attaching the release agent a method of impregnating the base material in an aqueous solution of the release agent and controlling the amount of the attachment with a mangle, a method for covering a part or the whole of the matrix fiber to be used.
  • a method in which a release agent is previously attached can be employed.
  • step f it is preferable that at least two kinds of binders having different mixing ratios of the binder fibers are laminated and subjected to a forced entanglement treatment and a shrinkage treatment.
  • a forced entanglement treatment and a shrinkage treatment By laminating webs having different mixing ratios, by forming such a lamination form, for example, it is possible to imitate the structure of natural leather in which the front side is dense and the back side is rough. Because of this, it is possible to further approximate the texture of natural leather.
  • the above-mentioned laminating means is capable of uniformly heating the whole as compared with a method of passing through a pair of mouth rollers in which a non-heated mouth roller and a heating roller are combined.
  • the matrix fiber used in the production method of the present invention has a birefringence in the range of 0.02 to 0.14 after a treatment for 5 minutes at 200 ° C dry heat.
  • the crystallinity at that time is preferably in the range of 10 to 35%.
  • the birefringence is less than 0.02
  • the fiber strength becomes insufficient, and when it exceeds 0.14, the fiber becomes rigid.
  • the crystallinity is less than 10%, the elastic modulus becomes too strong, and if it exceeds 35%, the elongation of the fiber becomes low, resulting in a rigid substrate.
  • the matrix arrowhead fiber used in the method has a shrinkage ratio of 20 to 70% when kept in hot water at 70 ° C for 1 minute, and the short fiber after the retention is 18%. It preferably contains high shrinkable staple fibers having an elongation in the range of 5 to 50% after treatment for 1 minute under dry heat.
  • the high shrinkable fiber can be obtained by a method known per se, for example, by melt-spinning and then drawing at a temperature from the glass transition temperature to the crystallization temperature. More specifically, for example, after melt-spinning polyethylene terephthalate, it is stretched 2.4 to 2.7 times with hot water at 60 to 65 ° C, and dried at 65 or less. You can get it.
  • the matrix fiber used in the production method of the present invention does not substantially shrink in 70 ° C. hot water and has an extensibility of 5 to 5 after being treated under dry heat at 180 ° C. for 1 minute. It is preferable to contain self-extensible short fibers in the range of 0%. By dispersing the self-extensible fibers in the nonwoven fabric as described above, it is possible to further improve the entangled state of the fibers in the web during the shrinkage treatment. it can.
  • the self-extensible male fiber can be obtained by a known method, specifically, a polyester such as polyethylene terephthalate or polybutylene terephthalate, or other aromatic or aliphatic polyester. Melt spinning of a dicarboxylic acid component or a copolymer obtained by copolymerizing a glycol component, Then 60-65. It can be obtained by a method of stretching 2 to 4 times in warm water of C, followed by heat treatment in warm water at 85 to 95, and drying at 100 or less.
  • a polyester such as polyethylene terephthalate or polybutylene terephthalate, or other aromatic or aliphatic polyester.
  • Melt spinning of a dicarboxylic acid component or a copolymer obtained by copolymerizing a glycol component Then 60-65. It can be obtained by a method of stretching 2 to 4 times in warm water of C, followed by heat treatment in warm water at 85 to 95, and drying at 100 or less.
  • one surface of the base material is pressurized and heated by embossing to give a number of irregularities on the surface and to form a regular density distribution of the fused portion in the plane direction. It can also be done.
  • embossing the substrate it is possible to achieve an unprecedented leather-like waveform density gradient structure, and it is possible to enhance the adhesion between the substrate and the surface layer.
  • the obtained artificial leather has a soft and stiff leather-like texture, and has excellent release strength.
  • the binder fusion parts are regularly distributed in the base material. Due to the difference in the partial pressure of the base material due to the uneven portion of the embossing roll, the number of binder-fused portions in the thickness direction of the concave portions on the base surface is larger than that in the thickness direction of the convex portions on the base surface. . It is preferable that the ratio of the binder fused portion per unit volume in the thickness direction of the concave portion and the convex portion (concave portion: convex portion) is 50:50 to 67:33.
  • the embossing process is performed at a temperature higher than the melting point of the binder fiber and lower than the decomposition temperature.
  • the pressure at this time is preferably 5 to 500 kcm. If it is less than 5 kg Z cm, the effect of the embossing roll is small, and if it is more than 500 kg Z cm, the bulk density increases and the texture becomes hard, which is not preferable.
  • a web serving as a base material is subjected to heat treatment at a temperature equal to or higher than the melting point of the binder fiber using an embossing roll.
  • the means for embossing include a hot roll and a hot breath, but there is no particular limitation.
  • a hot roll it is preferable to carry out a preheat treatment immediately before.
  • the temperature of the heat fusion treatment is related to the pressure, a temperature lower than the melting point of the polymer constituting the tube and 5 to 50 higher than the melting point of the heat fusion polymer is preferable.
  • a certain degree of clarity is required to obtain a bulky texture during the heat fusion process. Clearance is related to pressure, but 50 to 95% of the substrate is preferred.
  • a surface layer is provided on the substrate by a known method.
  • the means will be described later, but the wet method and the laminating method are preferred.
  • the wet method is preferred for improving the force adhesion.
  • the artificial leather formed by embossing can retain the embossed pattern even after the surface coating, so that an embossed pattern having a leather-like pattern should be used during the heat treatment for fusion.
  • the conventional heat treatment step and emboss patterning step can be omitted in one step, which is advantageous in terms of the process.
  • Conversion of the non-impregnated base material of the present invention to artificial leather can be carried out by a method known per se for producing artificial leather on the obtained base material.
  • the strength of applying a finishing treatment such as surface smoothing and application of a surface coating layer ⁇ In particular, it is preferable to apply a coating layer made of an elastomer to the surface layer.
  • the layer is soluble in water.
  • a solution composition in which the elastomer is dissolved in a polar solvent that does not dissolve the elastomer at a specific temperature or lower is used.
  • the polar solvent As the polar solvent at this time, (1) water-miscible, (2) the polyester elastomer to be used can be dissolved by heating or the like, (3) When the solution composition in which the elastomer is dissolved is cooled to a specific temperature or lower by cooling or the like, the phase It is desirable to select a solvent that satisfies the three requirements that the solution composition can gel and whiten with the separation.
  • NMP N-methyl bilolidone
  • DMF N ,,-dimethylformamide
  • ⁇ —dimethyl acetate, and the like.
  • ⁇ -methyl sulfide, ⁇ , ⁇ -dimethylformamide is preferred.
  • DMF is 20.
  • This polar solvent may be used alone or in combination of two or more. Further, other solvents, inorganic salts, additives and the like may be added as long as the above properties are not impaired.
  • the concentration of the polyester elastomer in the above solution composition is preferably within a range of 1 to 50% based on the total weight of the solution composition.
  • the concentration of the elastomer is less than 1%, it is difficult to maintain the film form, and if it exceeds 50%, the porosity of the surface layer becomes too small and the surface becomes flexible. Is not preferred because it does not occur. More preferably, the concentration of the polyester elastomer is 3 to 35% by weight.
  • the heating and dissolving temperature at the time of heating and dissolving the polyester-based elastomer in a polar solvent depends on the molecular structure of the polyester-based elastomer used, or may vary depending on the elastomer concentration, the type of polar solvent, etc. Any temperature may be used as long as it is necessary to uniformly dissolve the polyester-based elastomer, but it is usually in the range of the dissolution starting temperature to 200, and 50 to 150. More preferably, it is in the range of C.
  • the liquid material cast on the substrate surface is Then, when cooled, gelation occurs due to phase separation and a film is formed.
  • gelation refers to a state in which a transparent solution composition in which a poly (ester elastomer) is uniformly dissolved drowns in white and maintains a liquid form.
  • the cooling method and cooling temperature for causing gelation are not particularly limited, but it is usually preferable to cool within 5 hours, especially within 2 hours. The cooling may be performed by using.
  • the internal structure of the obtained film-like material becomes a porous structure or a spherical aggregate, and the elastomeric surface layer becomes uniform by the internal structure, so that air permeability is improved. Good.
  • the extraction treatment is performed directly without causing gelation, the thickness direction, that is, the surface layer portion and the substrate portion do not form a uniform structure, and the air permeability is poor. Become.
  • the polar solvent is then extracted from the film-like material obtained as described above with an aqueous solvent.
  • the aqueous solvent means water or an aqueous solution in which at least one of an inorganic salt, a lower aliphatic alcohol, a polar solvent and the like is dissolved.
  • the temperature of the aqueous solvent used is not particularly limited, and is usually 0 to: L00, preferably in the range of 5 to 80.
  • the method for the extraction is not particularly limited.
  • the film-like substance gelled on the surface of the substrate is immersed in an aqueous solvent together with the substrate or washed with an aqueous solvent. You can choose a method.
  • the time required for extraction depends on the extraction method chosen, typically within 5 hours, more preferably within 3 hours.
  • the film thus obtained is dried, and finally becomes a polyester elastomer surface layer having a thickness of several m to 1 m.m.
  • the drying temperature at this time is lower than the melting temperature of the polyester elastomer, and the drying may be performed under normal pressure or under reduced pressure.
  • the drying temperature is usually 1 5 0 e C or less, is rather preferred not more than 1 3 0 hand.
  • the structure and performance of the polyester elastomer surface layer in the artificial leather of the present invention are affected by the material used for the surface layer and the method for producing the surface layer.
  • the film density is determined by the polyester elastomer in the solution composition.
  • the porosity of the polyester elastomer surface layer is in the range of 20 to 80%, and the core structure of the porous structure or spherical aggregate is 0.1 to 5%. Om is preferred.
  • the porosity of the surface is less than 20%, the air permeability of the surface is poor, and the surface as the artificial leather becomes film-like, and the texture such as flexibility is poor. Conversely, if it exceeds 80%, the surface structure becomes too rough, resulting in poor durability.
  • any conventionally known formation method can be applied. For example, after coating an organic solvent solution of polyurethane on the surface of a non-impregnated type substrate, it is miscible with the organic solvent that is a non-solvent of polyurethane and dissolves polyurethane.
  • Coagulation in a coagulation bath with water, or coating a non-impregnated substrate with W / 0 type emulsion in which water is finely dispersed in an organic solvent solution or dispersion of polyurethane After that, a method of selectively evaporating the organic solvent to solidify the polyurethane may be appropriately selected.However, in order to obtain a surface structure with good air permeability, a porous structure having fine pores communicating with the inside is particularly preferable.
  • the porous polyurethane layer is preferably continuous porous.
  • the communicating porous polyurethane layer preferably has air permeability secured by the communicating holes from the non-coated surface of the non-impregnated type substrate to the surface of the coating layer.
  • Polyurethane and its good and poor solvents and mixtures of good and poor solvents Any method such as a method of applying a mixed solution of either a mixed solvent or a mixed solvent of a good solvent and a non-solvent so as to scatter a large number of dots and then forming a finished polyurethane film May be appropriately selected.
  • a temperature lower than the melting point of the polymer constituting the binder and one component of the binder present in the non-impregnated base material is adhered to each other by using a hot-melt type adhesive which melts at a temperature to obtain artificial leather.
  • the method of forming an object is preferable because the peel strength of the surface layer is improved.
  • a sheet-like material is prepared by using a binder fiber and a matrix fiber, and the sheet-like material is subjected to a pressurization / heating treatment to perform a sheet.
  • a method for producing a leather-like sheet-like material that densifies the surface layer of the material.
  • the publication describes that the surface of the sheet is densified by pressing and heating with a heating roller or the like.
  • the appearance and feel of the surface layer are necessary, but this alone cannot provide a base material for artificial leather that has the unique soft and soft texture of natural leather. It will have a natural texture.
  • the present invention pays particular attention to the internal structure of the base material, so that the completely fused portion and the partially fused portion have a specific ratio at the intersection of the binder fiber and the matrix fiber. By mixing them together, the completely fused portions are scattered in the base material, and the stretch recovery performance and supple soft texture useful as artificial leather are achieved. effect
  • the non-impregnated base material of the present invention is excellent in air permeability and lightweight, and has a leather-like texture.
  • the manufacturing process of the base material is relatively easy, and there is no need to use a solvent, and since it does not use urethane, there is no cyanogen generated by baking, which is also environmentally advantageous. .
  • artificial leather produced by forming an elastomer layer on the surface of the non-impregnated base material of the present invention uses a new non-impregnated base material, it has never been provided before.
  • the base material is applied to sports shoes, etc., it becomes lighter, less stuffy and fits the body.
  • Intrinsic viscosities were measured under 35 conditions using an equal weight solvent mixture of phenol and tetrachloroethane.
  • the melting beak temperature was taken as the melting point, using a heat suggestive diffractometer 990 (DSC) manufactured by DuPont and measured at a heating rate of 2 (TCZ).
  • DSC heat suggestive diffractometer 990
  • Fiber shrinkage (%) X100 (3) Fiber length before shrinkage Elongated fiber length
  • Substrate shrinkage (%) 1 x 1 100 (5) Area of substrate before shrinkage
  • the ratio of the sum of the completely fused part and the partially fused part to the number of elastic bonding points The sample is cut so that the cross section of the base material of the sample is exposed, and this arbitrary cross section is obtained by photographing with an electron microscope. The number of completely fused portions and the number of partially fused portions included in the electron micrograph (350 times) were counted, and the number ratio was calculated. In addition, 10 electron micrographs were taken for the same sample, and the average value was obtained.
  • the slack length ( mm ) of the sample was determined from the rise of the initial stress and the rise after standing (2 g stress), and the ratio (%) to the elongation of 15 O mm was calculated by the following equation (6).
  • the elongation recovery rate was 120%.
  • the measurement was performed in accordance with the 45 ° cantilever method described in JISL-106.
  • the stiffness was measured by measuring two axes perpendicular to the plane in all directions in a plane perpendicular to the thickness direction of the substrate. (Axes A and B)
  • a leather that has a leather-like rounded stiffness and a soft texture, and has a different stiffness and flexibility between the front and back sides of the base fabric like leather.
  • Dimethyl terephthalate one Bok (hereinafter, sometimes abbreviated as DMT n), Isophthalate (hereinafter sometimes abbreviated as IA), tetramethylen glycol (sometimes abbreviated as TMG) and polytetramethylene glycol (hereinafter abbreviated as PTMG)
  • DMT n Dimethyl terephthalate one Bok
  • IA Isophthalate
  • TMG tetramethylen glycol
  • PTMG polytetramethylene glycol
  • the IA used was a slurry, and the PTMG used had a number average molecular weight of 2000.
  • This thermoplastic elastomer has an intrinsic viscosity of 1.0 dl / g and a melting point of 1702. C, elongation at break 1 4 2 0% 3 0 0% elongation stress is 0.3 kg Roh mm 2, 3 0 0% elongation recovery ratio 7 3% 50% elongation recovery ratio was 8 1% .
  • thermoplastic elastomer is arranged as a sheath part, and polybutylene terephthalate as an inelastic polymer (melting point: 222, intrinsic viscosity: 0.875 d1 /, 50% (The elongation recovery rate of 0%) is placed in the core, and the composite spinning is carried out by a common method so that the weight ratio of the core component: sheath component is 50:50 based on the entire male fiber.
  • a binder fiber was created.
  • the composite fiber is an eccentric sheath-core composite fiber. This fiber was stretched 2.0 times, pressed and crimped, cut into 64 mm, dried, and then subjected to an oil agent. The thickness of the obtained binder fiber was 9 denier.
  • Inelastic high-shrinkage fibers made of polyethylene terephthalate were used.
  • the silicone adhesion rate to the matrix fibers in the substrate was 0.5% by weight, and then drying was performed in a 120.C atmosphere. Next, after preheating for 3 minutes in an atmosphere of 170 ° C, the sample was immediately heated to 200 using a calendar roll.
  • the obtained base material was leather-like soft and had a rounded stiffness
  • the physical properties of the obtained base material are shown in Table 1.
  • a substrate was obtained in the same manner as in Example 1 except that the mixing ratio of the binder fiber and the matrix fiber was changed. Table 1 shows the results.
  • Example 1 the mixing ratio of the binder fiber and the matrix fiber was changed as shown in Table 1, and further, a web A and a web B having different mixing ratios were prepared, and the webs were overlaid.
  • the laminate was subjected to the same operation as in Example 1 to obtain a substrate.
  • Table 1 shows the results. Obtained The base material was more leather-like and soft, and preferred.
  • the mixing ratio of the binder fiber and the mixing ratio of the binder fiber between the laminated and adjacent nonwoven fabrics are expressed by the following general formula (I) and
  • W1 and W2 represent the mixing ratio (wt%) of the binder and one fiber in each of the adjacent nonwoven fabric layers.
  • 11 and 12 represent the mixing ratio (wt%) of the high shrinkage fibers in the matrix fibers in each of the adjacent nonwoven fabric layers.
  • Example 1 the mixing ratio of the binder fiber and the matrix male fiber was changed as shown in Table 1. Further, webs C, D, and E having different mixing ratios were prepared, and the web was prepared. A laminate was obtained by laminating the laminate, and the same operation as in Example 1 was performed on the laminate to obtain a base material. Table 1 shows the results. The obtained base material was softer than leather of Example 4, and was more desirable because of its stiffness.
  • the mixing ratio of the binder fiber and the mixing ratio of the binder fiber between the laminated non-woven fabrics adjacent to each other satisfied the following general formulas (I) and (II).
  • W1 and W2 represent the mixing ratio (wt%) of the binder and one fiber in each of the adjacent nonwoven fabric layers.
  • Ml and M2 represent the mixing ratio (wt%) of the high shrinkage fibers in the matrix fibers in each of the adjacent nonwoven fabric layers.
  • a non-impregnated substrate was obtained in the same manner as in Example 1, except that the substrate was not passed through the aqueous silicon solution.
  • the texture of the substrate is rubber It was not suitable for use as a leather base fabric. Table 1 shows the results.
  • a base material was obtained in the same manner as in Example 1, except that the density of the base material was changed as shown in Table 1. Table 1 shows the results.
  • a substrate was obtained in the same manner as in Example 1 except that the proportion of the elastic polymer in the entire substrate was changed as shown in Table 1. Table 1 shows the results.
  • Example 1 'Example 3
  • Example 4 3 ⁇ 4ife 5 Comparative example 1 Comparative example 3
  • Reference example 3 Lima ratio (w) 10 5 15 10 10 10 10 10 40
  • 70% of polybutylene terephthalate is occupied by polybutylene terephthalate based on the total weight of the hard segment component of the elastomer, and is a soft segment component.
  • the polyester ether elastomer having a melting point of 150 ° C and a polyether ether elastomer occupying 70%, based on the total weight of the soft segment component of the elastomer, and DMF. was dissolved by weight to give a weight ratio of 20:80.
  • the lysate was cast on a substrate obtained by performing the procedure of Example 1 and allowed to cool at room temperature for 30 minutes. After visually confirming that the entire coating layer that was cast became cloudy, the substrate was immersed in warm water at 50 ° C for 30 minutes, and then dried at 80 ° C.
  • the obtained surface coating layer was a single layer of a porous polyester elastomer having white and good surface uniformity, and had a porosity of 65%.
  • the artificial leather made of the non-impregnated base material thus obtained had a leather-like softness and a rounded texture.
  • Table 2 shows the physical property values of the obtained base material.
  • the obtained artificial leather was excellent in both light resistance ( ⁇ ) and texture.
  • the hard segment component 50% of polybutylene terephthalate is occupied by polybutylene terephthalate based on the total weight of the hard segment component of the elastomer, and the soft segment component is elas- tomer.
  • Toma no Soft Polyoxytetramethylethylene glycol occupies 50% based on the total weight of the components, and a polyester ether elastomer having a melting point of 174 ° C and DMF are in a weight ratio of 20:80.
  • the solution was dissolved under the following conditions.
  • a surface coating was performed in the same manner as in Example 6 except for using the dissolved material.
  • the obtained surface coating layer was white, and became a spherical aggregated polyester elastomer layer having good surface uniformity, and the porosity was 45%.
  • the artificial leather made of the non-impregnated base material thus obtained had a texture similar to that of the artificial leather obtained in Example 6, which was leather-like soft and round.
  • the surface of the non-impregnated base material obtained by performing the operation of Example 1 was coated with a conventional polyurethane-based elastomer.
  • the artificial leather made of the non-impregnated base material obtained had poorer air permeability and a slightly lower light resistance ( ⁇ ) than the artificial leather obtained by performing the operations of Examples 6 and 7. O It has a soft, leathery and rounded texture.
  • a surface-coated nonwoven fabric was obtained in the same manner as in Example 6, except that the aqueous solution of silicon was not passed through the base fabric.
  • the surface-coated nonwoven fabric had high elasticity and was rubber-like, and was not suitable for use as artificial leather. Comparative Example 6
  • Example 6 an artificial leather made of a non-impregnated base material was obtained by performing the same operation except that gelation was not performed when the surface was coated with the polyester-based elastomer.
  • the surface layer of the artificial leather is transparent and has a film shape with a porosity of 5%.
  • the artificial leather has an air permeability of 0 cm 3 Z cm 2 / s, and has a strong elasticity and is rubber-like, so that the artificial leather is used as an artificial leather. was not suitable. Table 2
  • a mixture of 20% by weight of binder fiber and 80% by weight of matrix fiber obtained by the operations of Reference Examples 1 and 2 was passed through a carding machine, and then subjected to a cross lay method.
  • a tube was prepared and subjected to a forced entanglement treatment with a two-dollar punch (150 punches / cm 2 ), shrinkage treatment in warm water for 1 minute at 70 ° C, and 120 ° C in an atmosphere. Drying was performed. The area shrinkage was 55%.
  • embossing was immediately performed under the conditions of 190 and 50 kgcm (clearance is 70% of the base material thickness). .
  • the resulting base material had a leather-like softness and a rounded stiffness.
  • an 18% strength polyurethane-dimethylformaldehyde solution is coated on the embossed side of the base material with a basis weight of 800 g nom 2 , then immersion-coagulated, washed with water, and dried to produce artificial leather.
  • Table 3 shows the physical property values of the obtained artificial leather.
  • An artificial leather was obtained in the same manner as in Example 9 except that the embossed pattern was variously changed. Table 3 shows the results.
  • FIG. 1 is a cross-sectional view of the non-impregnated base material of the present invention, which is taken from the electron micrograph of FIG. 5 (at a magnification of 350).
  • FIG. 2 is a cross-sectional view of the non-impregnated base material of the present invention, which is taken from the electron microscope photograph (at a magnification of 350) of FIG.
  • FIG. 3 is a cross-sectional view of the non-impregnated base material of the present invention, taken from an electron microscopic photograph (at a magnification of 350) of FIG.
  • FIG. 4 is a cross-sectional view of the non-impregnated base material of the present invention, taken from the electron micrograph (at a magnification of 350) of FIG.
  • FIG. 5 is an electron micrograph ( ⁇ 350) of a completely fused portion, which is a single bonding unit, scattered in the non-impregnated base material of the present invention.
  • FIG. 6 is an electron micrograph (magnification: 350) of a partially fused portion, which is a single bonding unit, scattered in the non-impregnated base material of the present invention.
  • FIG. 7 is an electron micrograph (magnification: 350) of a completely fused portion, which is a composite bonding unit, scattered in the non-impregnated substrate of the present invention.
  • FIG. 8 is an electron micrograph (350 times) of a partially fused portion, which is a composite bonding unit, scattered in the non-impregnated base material of the present invention.
  • FIG. 9 is an electron micrograph (magnification: 300) of a cross section of the non-impregnated base fabric obtained in Comparative Example 1.
  • FIG. 10 is an electron micrograph ( ⁇ 350) of a cross section of the urethane-impregnated base fabric obtained in Comparative Example 2.
  • Figure 11 is an electron micrograph (magnification: 350) of a porous structure, which is one form of the internal structure of the surface layer of the elastomer.
  • Figure 12 is a photomicrograph ( ⁇ 350) of a spherical aggregate that is one form of the internal structure of the surface layer of the elastomer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Nonwoven Fabrics (AREA)
  • Synthetic Leather, Interior Materials Or Flexible Sheet Materials (AREA)
  • Laminated Bodies (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Description

明 細 書 人工皮革用基布と して有用な非含浸型基材、 それよりなる人工皮革 およびそれらの製造方法 発明の属する技術分野
本発明は、 非含浸型基材に関し、 さ らに詳し く は、 皮革様風合い および通気性並びに軽量性に優れた、 人工皮革用基布と して有用な 非含浸型基材およびそれよりなる人工皮革に関する。 従来の技術
従来より、 人工皮革用基材においては、 不織布にバイ ンダーと し て弾性ポ リマー、 主にウ レタ ンを含浸させた構造の基材の提案が数 多く なされてきた (特公昭 4 2 - 1 8 5 9 9号公報、 特開平 7— 1 4 5 5 6 9号公報、 特公昭 6 2— 2 9 5 4 8号公報等) 。 これらの 提案は、 織維形状のポリマ一から成る不織布のみではコ シ等の風合 い面、 強度の面および形態保持性等の耐久性面において満足でき る レベルに到達するのが難しいという観点からなされたものである。 天然皮革においては周知の通り、 基体上層が緻密で下層が粗な構 造とな っている力 このウ レタ ン含浸段階では、 高度な制御技術を 要し、 さ らに、 ウ レタ ンを含浸した基材は風合い面、 耐久性面にお いて優れたものになるが、 繊維間に樹脂が詰ま つた密な構造となつ ているため、 通気性が悪く、 さ らに、 軽量化と要求される性能との 兼備が難しい。 またウ レタ ンの含浸は溶剤を使用 しているため、 製 造工程が.複雑で生産性が低く、 また、 環境面でも問題が生じる。
—方、 特開昭 5 2— 8 7 2 0 1号公報においては、 非弾性ポ リ マ 一と弾性ポ リマーとからなると共に、 弾性ボリマーが雄維表面の少 なく と も一部を占めている複合繊維を使用してシ一 ト状物を形成し、 次いで前記弾性ポ リマーの熱融着温度以上の温度で加圧加熱処理す るこ とにより シー ト状物の表面層を緻密化せしめる方法が提案され ているが、 該公報に記載の方法では、 該シー ト状物の表面構造を緻 密化するこ とを主眼に置いており、 確かにシー ト状物の表面に限つ て述べるな らば天然皮革様の外観を有するものは得られるが、 皮革 用と して用いる場合には、 ゴムライ クな、 硬い風合いとなるという 欠点があつた。 発明が解決しよ ό とする課題
本発明の目的は、 上記従来技術の欠点を解消し、 少ないバイ ンダ 一量で、 皮革様風合いを有し、 通気性および弾性回復能に優れ、 且 つ軽量な人工皮革用基布と して有用な非含浸型基材ぉよびその製造 方法を提供することにある。
本発明の他の目的は、 本発明の非含浸型基材の表面にエラス 卜マ 一層を形成した、 新規な人工皮革用基布およびその製造方法を提供 するこ とにある。 課題を解決するための手段
本発明者らの研究によれば、 基材全重量に占める弾性ポリマーの 重量割合を 2 5〜 4 5 %の高い水準に設定して所望の人工皮革の風 合いを得てきた従来の含浸方式に対して、 驚く べきこ とに、 マ ト リ ッ クス鏃維とバイ ンダ一繊維とから構成される公知のク ッ シ ョ ン材 に特定の構造変化を与えるとき、 上記の弾性ポリ マーの割合が 2 5 %以下の領域でも、 該ク ッ ショ ン材は特に通気性が格段に改善され た人工皮革に転換されるこ とが判明した。
さ らに本発明者らは、 人工皮革に転換するときに要求される風合 いは、 単に基材表面の構造に起因するだけではなく、 その基材内部 の構造に起因するところが大であること も究明した。
すなわち、 本発明によれば、 前記本発明の目的は、
マ ト リ ックス織維と、 弾性ポリ マーがその表面に配されたバイ ンダ 一繊維とから構成され、 且つ該バイ ンダ一繊維は該マ ト リ ッ クス繊 維中に分散しながらマ ト リ ッ クス繊維に融着している繊維集合体に、 以下の a〜 eの要件を同時に満足させてなることを特徴とする人工 皮革用基布と して有用な非含浸型基材により達成されるこ とが見出 された。
a . 基材全重量に占める弾性ボ リマ一の割合は 2 .5〜 2 5重量%の 範囲にあること ;
b . 密度が 0.1 5〜 0 .4 5 g r / c m 3の範囲にあるこ と ; c . バイ ンダー繊維を構成する弾性ポリ マーが、
c — 1 . 個々のマ 卜 リ ツ クス繊維に融着してなる単独結合単位、 および
c - 2. 近接伏態にある複数本のマ ト リ ッ クス繊維に集合的に融 着してなる複合結合単位が散在すること ;
d . 該単独結合単位および複合結合単位にあっては、
d— 1 . 一部のマ ト リ ッ クス繊維が、 その全周長に亘つて弾性ポ リマーにより被覆されながら融着されている完全融着部、 および d— 2 . 他の一部のマ ト リ ッ クス繊維が、 その全周長に亘つて弾 性ポ リ マーにより被覆されながらも、 両者の界面の一部は融着状態 にあり、 その余の界面部は非接触状態にあるよう な部分融着部が形 成され、 その際、
d — 3 . 該完全融着部と部分融着部との個数比率が、 3 5 : 6 5 〜 7 5 : 2 5の範囲にあること : そ して
e . バイ ンダ一繊維同士の交差点においては弾性ポ リ マーにより融 着された弾性結合点が形成されているこ と。
さ らに、 本発明によれば、 前記非含浸型基材は、
マ ト リ ツ クス繊維と、 弾性ボ リマ一がその表面に配されたバイ ン グー繊維とから構成され、 且つ該バイ ンダー繊維は該マ 卜 リ ッ クス 繊維中に分散しながらマ 卜 リ ッ クス雄維に融着している非含浸型基 材の製造方法であって、 該方法は下記 f および gの工程を逐次的に含み、 さ らに、 工程 gの前の任意の段階で、 マ ト リ ッ クス繊維とバイ ンダー繊維 との交差点の一部において、 該繊維同士の融着部の形成が阻害され るような工程を含む、 人工皮革用基布と して有用な非含浸型基材の 製造方法が提供されることが見出された。
f . 少なく ともマ ト リ ックス繊維とバイ ンダー繊維とを含むゥエ ツ ブに、 強制絡合処理および収縮処理を施す工程。
g - かく して得られた不織布に、 上記バイ ンダー繊維の融着温度で 加圧 · 加熱処理を行う工程。
本発明の非含浸型基材は、 基材全重量に占める弾性ボ リマーの割 合が 2 . 5 〜 2 5 %の範囲にあることが必要である。 該割合が 2 . 5 %未満であると、 基材の内部構造中において、 単独結合単位並びに 複合結合単位が少なすぎ、 必要とされる基材の弾性を発揮するこ と が出来なく なる。 一方、 該割合が 2 5 %を越えると、 逆に基材の内 部において、 上記 2種の結合単位が存在しすぎるので、 基材と して ゴムライクな、 硬い風合いを有するものとなってしまう。 上記の観 点から、 該割合は 5 ~ 1 5 %の範囲にあるのがさ らに好ま しい。 本発明において、 基材の密度は 0 . 1 5 〜 0 . 4 5 g r Z c m 3の範 囲にあることが必要である。 該密度が 0 . 1 5 g rノ c m 3未満であ ると粗な構造であるため皮革様コ シのある風合いが得られない。 逆 に該密度が 0 . 4 5 g c m 3を越えると嵩高性が乏しいため軽量 化が難しく また柔钦性に欠ける。
本発明の基材はさ らに前掲の c 〜 eの要件をも同時に満足する必 要がある。 本発明のこれら c 〜 eの要件を、 添付図面を用いて具体 的にかつ.詳細に説明する。 図 1 〜図 4は、 本発明による非含浸型基 材の断面図において、 散在する結合単位および融着部の電子顕微鏡 写真 (約 3 5 0倍) である図 5〜図 8の、 それぞれを写し取ったも のであり、 結合単位および融着部の状態の説明並びに理解を容易に なら しめるための図である。 すなわち、 図 1 ~ 4において、 1 はマ ト リ ックス織維、 2はノくィ ンダー繊維に雄維表面に露出するように配された弾性ポ リマー、 3 はバイ ンダー繊維に配されたコア部をそれぞれ表している。
こ こで、 図 1 ~ 4を通して特徴的なこ とは、 本発明の非含浸型基 材は上記 1、 2および 3から構成され、 その際、 前述の c一 1部分 および c 一 2部分が形成されており、 該 c一 1および c — 2部分は それぞれ前述の d— 1部分と (図中 4および 5 ) 、 d — 2部分 (図 中 6および 7 ) とから構成され、 さ らに前述の要件 eの弾性結合点 (図中 8 ) から形成されていることにある。
本発明の基材においては、 c 一 1部分 (単独結合単位) が形成さ れており、 さ らに、 該 c 一 1部分が、 d — 1部分 (完全融着部) 4 と d — 2部分 (部分融着部) 6 とから成る。 弾性ポリ マー 2が単独 のマ ト リ ッ クス纔維 1 と完全に物理的な結合を有している部分 (完 全融着部) 4 と弾性ポリ マー 2 と複数本のマ ト リ ックス繊維 1 とが 不完全な物理的な結合部分 (部分融着部) 6 とを有しているこ とに より、 柔軟でコ シのある皮革様風合いを有する基布を得るこ とがで きる。
また、 本発明によって c 一 2部分 (複合結合単位) が形成されて おり、 さ らに、 該 c — 2部分は d— 1部分 (完全融着部) 5 と d — 2部分 (部分融着部) 7 とから成る。 弾性ポ リマー 2 と複数のマ ト リ ッ クス繊維 1 とが完全に物理的な結合を有している部分 (完全融 着部) 5および弾性ポリマー 2 と複数のマ ト リ ッ クス織維 1 とが不 完全な物理的結合部分 (部分融着部) 7の二種類の融着部分を有 し ているこ とにより、 基布のゴムライ クな風合いの消失と、 基布強度 との両立,をはかるこ とができる。 さ らに、 融着部分が大きすぎると 基布の地合いが悪化しすることから、 マ ト リ ッ クス饑維の本数は 2 〜 5本の範囲にあることが好ま しい。
こ こで、 一部のマ ト リ ッ クス繊維は、 その繊維横断面周長の 6 5 %以上の周長部分が弾性ポ リマーと非接触伏態にあるこ とが好ま し い。 該非接触部分が 6 5 %を越えるこ とで、 弾性ボリ マーと接触し ている部分で融着部を形成しても、 その融着部分によって該マ ト リ ッ クス繊維が基材中で実質的に固定されないので、 しなやかな風合 いの基材を得ることができる。
また、 一部のマ ト リ ッ クス繊維は、 その繊維横断面周長の 3 5 % を越える周長部分が弾性ポ リマーと接触状態にあるこ とが好ま しい。 該接触部分が 3 5 %を越えるこ とで、 弾性ボ リマーと接触している 部分で融着部を形成したときに該マ ト リ ッ クス繊維が、 基材中で実 質的に固定されるこ とにより、 基材と して必要な強度を保持する こ とができる。
さ らに、 要件 eの弾性結合点 8が形成されているこ とによって、 基材と しての要求特性の一つである弾性回復能を、 非含浸型基材で あっても含浸型基材と同等なレベルに保持するこ とができる。
また、 本発明の基材においては、 d— 1部分 (完全融着部) 4お よび 5 と、 d — 2部分 (部分融着部) 6および 7 との個数比率が 3 5 : 6 5 〜 6 5 : 3 5の範囲にあることが必要である。 該完全融着 部の比率が 3 5 %未満である (部分融着部の比率が 6 5 %を越える) と基材物性の経時劣化が激しい。 逆に 6 5 %を越える (部分融着部 の比率が 3 5 %未 IIである) と、 基材中に形成される完全融着部が 多すぎて、 得られる基材の風合いがゴムライ クな ものとなる。
さ らに、 本発明の基材においては、 d— 1部分 (完全融着部) 4 および 5 と、 d— 2部分 (部分融着部) 6および 7 との合計個数と 弾性結合点 ( e点) 8 との個数比率が 9 5 : 5 〜 7 5 : 2 5の範囲 にあることが好ま しい。 該弾性結合点が形成されている比率が少な いと、 基材と して十分な弾性回復性能を発揮し難い。 逆に該比率が 多いと、 基材内の弾性結合点が多すぎて得られる基材の風合いがゴ ムライ クな ものとなり易い。
比較と して、 図 9 に比較例 1 において得られた、 従来公知の非含 浸型基材の断面の電子顕微鏡写真図、 図 1 0に参考例 3 において得 られた、 従来公知の含浸型基材の断面の電子顕微鏡写真図をそれぞ れ示す。
本発明の基材の断面を撮影した写真図 5〜 8 と、 これらの図面と を比較すると明らかなように、 図 9において基材は実質的に完全融 着部から構成されており、 本発明における部分融着部は見受けられ ない。 そして、 この部分融着部が形成されている こ とにより本発明 の基材が、 従来公知の非含浸型基布と比べて優れた風合いを発現し ているこ とは明らかである。 また、 図 1 0において基材はポ リ ウ レ タ ンによって含浸されている。 ポ リ ウ レタ ン自体が微細構造を取つ ている ものの、 基材全体と してみたとき、 本発明の非含浸型基材と く らベて通気度に劣るのは明らかである。
本発明において、 マ ト リ ッ クス繊維とバイ ンダー繊維との混綿率 の重量比が 9 5 : 5〜5 0 : 5 0の範囲にあるこ とが好ま しい。 マ ト リ ッ クス鏃維が 9 5重量%を越えて存在すると十分な数の結合単 位を形成しにく い。 一方、 バイ ンダー繊維が 5 0重量%を越えて存 在すると基材がゴムライ クな、 硬い風合いの物になり易い。
一部のマ ト リ ッ クス雄維の繊維表面には離型剤が付着しているこ とが好ま しい。 こ こで、 離型剤とは、 マ ト リ ッ ク ス繊維とバイ ンダ 一繊維との融着を阻害する機能を有する ものを言う。 この離型剤が 付着しているこ とにより、 前記した内部構造中における部分融着部 を比較的簡単に形成するこ とが出来る。
本発明において、 離型剤が付着したマ ト リ ッ クス繊維 ( A— 1 ) と、 離型剤が付着していないマ ト リ ックス繊維 ( A— 2 ) との比が 重量比で、 9 9 : 1〜2 0 : 8 0の範囲にあるこ とが好ま しい。 該 マ ト リ ッ.クス繊維 ( A— 1 ) が 9 9重量%を越えて存在すると、 マ 卜 リ ッ クス繊維とバイ ンダ一織維との完全融着部の形成される数が 少なく なりすぎるので、 得られる基材の強伸度に欠ける。 逆に、 上 記マ ト リ ッ クス雄維 (A— 2 ) が 8 0重量%を越えて存在すると、 上記完全融着部の形成される数が多すぎ、 得られる基材がゴムラ イ クな、 硬い風合いのものになってしま う。
さ らに、 該離型剤はマ ト リ ッ クス繊維 (A— 1 ) の繊維重量を基 準と して、 0 . 1 ~ 5 . 0重量%の範囲にあることが好ま しい。 こ の 値が 0 . 1重量%未満であると、 離型剤の上記部分融着部を形成する 効果が発揮されにく い。 逆に 5 . 0重量%を越えると基材の引っ張り 強度の低下が起こ り易く なる。 。
ここで、 離型剤と しては、 例えば、 ジメチルポ リ シロキサン、 ェ ポキシ変性ポ リ シロキサ ン、 ァ ミ ノ変性ポ リ シロキサ ン、 メ チルハ ィ ドロ ジエンポ リ シロキサン、 メ トキシポリ シロキサン等のシ リ コ ン系化合物、 テ ト ラ フルォ ロエチレ ン樹脂、 テ 卜 ラフルォロェチ レ ン系共重合体、 変性フ ッ素化樹脂等のフ ッ素系化合物等を挙げるこ とができ、 なかでも加工性、 コ ス ト、 性能の面からシ リ コ ン系化合 物が好ま しく、 さ らに、 ポ リ シロキサンが好ま し く、 ジメ チルポ リ シロキサンが最も好ま し く 用いるこ とが出来る。
本発明において、 マ ト リ ッ クス雄維は、 その単繊維雄度が、 0 . 5 〜 5 0デニールの範囲にあるこ とが好ま しい力 0 . 5デニールより も小さいと基材の強度が低く なり、 逆に 5 0デニールを越えると得 られる基材が剛直なものとなるため、 1 . 0〜 2 0デニールが特に好 ま しい。 また、 マ ト リ ッ ク ス繊維は長繊維を用いても短繊維を用い てもどちらでも良いが、 マ ト リ ッ クス繊維の基材中での均一分散性 の面からその繊維長が 1 0〜 2 O O m mの範囲にあるこ とが好ま し く、 2 0 ~ 1 5 0 m mの範囲にあることが特に好ま しい。 また、 繊 維同士の交絡状態が良好になるので、 該マ ト リ ッ クス繊維には捲縮 が付与されていたほうが好ま し く、 その際の捲縮度が 5 〜 5 0 %、 捲縮数が, 5 ~ 3 0個/イ ンチの範囲にあることが好ま しいが、 上記 の交絡状態をさ らに良好なものとするために、 該捲縮度は 5〜 3 0 %、 捲縮数が 5〜 2 0個 ィ ンチの範囲にあるのが特に好ま しい。 マ ト リ ッ クス繊維の断面形状は円形、 偏平、 異型または中空の何 れであってもよいが、 基材の軽量性に寄与でき、 さ らに、 繊維の曲 げ強度も弱いのでしなやかさを発揮するこ とのできる中空断面であ るこ とが好ま しい。
本発明のマ ト リ ツ クス繊維はその引つ張り強度が 1 ~ 1 0 g Z d eの範囲にあることが好ま しい。 該強度が 1 g Z d e未満であると、 基材の強度が低く く なる。 逆に該強度が 1 0 d eを越えると、 繊維と して剛直なものとなり、 基材のしなやかさを発揮するこ とが 難しい。 特に、 該引っ張り強度は 2 〜 8 g d e であることが好ま しい。
本発明において、 バイ ンダー繊維が、 弾性ポリ マーと非弾性ポ リ マ一とから構成され、 該弾性ボ リマーがその繊維表面に露出 してい るこ とが好ま し く、 特に、 該弾性ボ リマーがバイ ンダー繊維の繊維 表面の 3 0 %を占めるように露出しているこ とが好ま しい。 該表面 に、 弾性ポ リマーが 3 0 %以上を占めるように露出していないと、 バイ ンダ一繊維と しての機能、 すなわち融着結合部を形成する能力 に欠けるものとなる。
具体的なバイ ンダー維維の形態と しては、 サイ ド · バイ ' サイ ド 型、 またはシース ' コア型の何れであってもよい力 <、 好ま しいのは 後者である。 この場合、 非弾性ポリマーがコア部となり、 このコア 部はシース部に対して同心円状あるいは偏心状にあってもよい。 特 に偏心状にある場合には、 コイ ル状弾性捲縮が発現するのでより好 ま しい。 バイ ンダー繊維の断面形状は円形、 偏平、 異型または中空 の何れであつてもよい。
バイ ンダー繊維の単繊維繊度は小さいと弾性が不足しやすく、 大 きすぎると基材表面が剛直になりやすい。 よってバイ ンダー繊維の 太さは 1 .〜 5 0デニール、 特に 1 〜 2 0デニールの範囲にあるこ と が好ま しい。 バイ ンダー繊維は、 長繊維を用いても短繊維を用いて もどち らでもよいが、 該バイ ンダ一雄維が均一に分散したほうが好 ま しいこ とを考えると短繊維を用いたほうがよく、 そのときの単織 維長は 1 0 〜 2 0 0 m mが好ま しく、 より好ま し く は 2 0 ~ 1 5 0 m mである。
さ らに、 上記の構成を採るバイ ンダー繊維を用いると きには、 該 バイ ンダ一繊維を加熱 · 加圧処理した際に、 互いに分離しないよ う に複合化されていることが好ま しい。 互いに分離しやすいものを配 したバイ ンダー繊維を用いると、 前述した、 バイ ンダー同士の交差 点が弾性ポ リマーにより融着された弾性結合点が形成されにく い。
こ こで、 このよ う なバイ ンダー繊維を構成するポ リ マーと して、 例えば、 非弾性ポリ マーと しては、 熱可塑性の非弾性ボ リマ一であ れば特に制限されない力 なかでもナイ ロ ン系、 ボ リエステル系力く 好ま し く、 耐熱性、 強度等の物性面においてポ リ エステル系が特に 好ま しい。 ポ リ エステル系の非弾性ボ リ マーと しては、 例えば通常 のボ リ エチ レンテ レフ夕 レー ト、 ボ リ ブチレ ンテ レフ タ レ一 卜、 ボ リ へキサメ チレ ンテ レフ タ レー ト、 ボ リ一 1 . 4一ジメ チルシク 口へ キサンテレフ夕 レー ト、 ボリ ビバロラク ト ン等が挙げられる。 これ らの中でボ リ エチレ ンテ レフ タ レー トおよびポ リ ブチ レ ンテ レフ 夕 レー トが好ま しい。
本発明で用いる弾性ボ リマーは、 熱可塑性であれば特に制限はな い力く、 ポ リ ウ レタ ン系エラス トマ一やポ リ エステル系エラス 卜マー が好ま し く、 特にボ リエステルエラス 卜マ一が好ま しい。
例えばポ リ ウ レタ ン系エラス 卜マ一と しては、 数平均分子量が 5 0 0〜 6 0 0 0程度の低融点ポ リオ一ル、 例えば両末端ジヒ ド□キ シポ リ エーテル、 両末端ジヒ ドロキシポ リエステル、 両末端ジヒ ド ロキ シボ リ カーボネー ト、 両末端ジ ヒ ドロキ シポ リ エステルア ミ ド 等と、 分子量 5 0 0以下の有機ジイ ソ シァネー ト、 例えば p . p '— ジフ エニルメ タ ン ジイ ソ シァネー ト、 ト リ レ ン ジイ ソ シァネー ト、 イ ソホロ ンジイ ソシァネー ト、 水素化ジフヱニルメ タ ン ジイ ソ シァ ネー ト、 キシ リ レ ン ジイ ソ シァネー ト、 2 , 6—ジイ ソ シァネー ト メ チルカブ口エー ト、 へキサメチレンジイ ソ シァネー ト等と、 分子量 5 0 0以下の鎖伸長剤、 例えばグリ コール、 ァ ミ ノアルコールある いは ト リオールとの反応により得られるポリマーが典型的である。 これらのポ リマーのうち、 特に好ま しいものはボ リオールと してポ リテ 卜ラメチレングリ コール、 ポリ一 ε—カブロラク ト ンあるいは 両末端ジヒ ドロキシボリ ブチレンアジべ一トを用いたポ リ ゥ レ夕 ン である。 この場合、 有機ジイ ソ シァネー ト と しては ρ , ρ '— ジフエ ニルメ タ ンジイ ソ シァネー トが好適である。 また鎖伸長剤と しては、 ρ , ρ—ビスヒ ドロキシエ トキシベンゼンおよび 1 , 4一ブタ ンジォ —ルが好適である。 もちろんポ リマー中には各種安定剤、 紫外線吸 収剤等必要に応じて配合されていてもよい。
また、 ポ リ エステル系エラス トマ一と しては、 熱可塑性ポ リエス テルをハー ドセグメ ン ト と し、 ポリアルキレングリ コールをソフ ト セグメ ン ト と して共重合してなるボ リエーテルエステルブロ ッ ク共 重合体、 より具体的には、 下記 ( I ) 、 ( π ) および ( m ) から製 造される共重合体が好ま しい。
( I ) テレフタル酸、 イ ソフタル酸、 フ夕ル酸、 2 . 6—ナフタ レン ジカルボン酸、 2 , 7 —ナフタ レ ンジカルボン酸、 ジフエ二ルー 4 , 4 '—ジカルボン酸、 ジフヱノキシエタンジカルボン酸、 3 —スルホ イ ソフタル酸ナ ト リ ゥ厶等の芳香族ジカルボン酸、 1 . 4 ー シク ロへ キサン ジカルボン酸等の脂環式ジカルボン酸、 コハク酸、 シユウ酸、 アジビン酸、 セバシ ン酸、 ドデカンジ酸、 ダイマ一酸等の脂肪族ジ カルボン酸またはこれらのエステル形成性誘導体から選ばれた少な く と も 1種、
( Π ) 1 . 4—ブタ ンジオール、 エチレングリ コール、 ト リ メ チレン グリ コール、 テ トラメチレングリ コール、 ペンタ メ チレ ングリ コー ル、 へキサメチレングリ コール、 ネオベンチルグリ コール、 デカメ チレングリ コール等の脂肪族ジオール、 1 , 1 ー シク ロへキサン ジメ 夕ノール、 1 , 4 —シク ロへキサンジメ タ ノール、 ト リ シク ロデカ ン ジメ タノール等の脂環式ジオール、 およびこれらのエステル形成性 誘導体から選ばれた少なく と も 1種、 および ( HI ) 平均分子量が約 4 0 0〜 5 0 0 0程度のボ リエチレングリ コ ール、 ポリ 一 1 , 2 —プロピレングリ コール、 ポ リ 一 1 , 3 —ブロ ビ レングリ コール、 エチレンォキシ ドとプロピレンォキシ ドとの共重 合体、 エチレンォキシ ドとテ トラ ヒ ドロフラ ンとの共重合体等のポ リアルキレングリ コールのうち少なく と も 1種。
前記したポリ エステル系エラス 卜マーにおいて、 就中、 マ ト リ ツ クス繊維との融着性や温度特性、 強度の面から、 ボ リ ブチレンテレ フタ レー トをハー ドセグメ ン ト と し、 ポ リオキシブチレ ングリ コー ルをソ フ トセグメ ン 卜とするブロ ッ ク共重合ポリエーテルポ リエス テルが好ま しい。 この場合、 ハー ドセグメ ン トを構成するポ リエス テル部分は、 主たる酸成分をテレフタル酸成分と し主たるジオール 成分をブチレングリ コール成分とするボ リ ブチレンテレフ夕 レー ト である。 もちろん、 この酸成分の一部 (通常、 全酸成分を基準と し て 3 0モル%以下) は他のジカルボン酸成分やォキシカルボン酸成 分で置換されていてもよ く、 同様にグリ コール成分の一部 (通常、 全グリ コ一ル成分を基準と して 3 0モル%以下) はブチ レ ングリ コ
—ル成分以外のジォキシ成分で置換されていてもよい。
またソフ 卜セグメ ン トを構成するボリエーテル部分は、 ブチレ ン グリ コール以外のジォキシ成分で置換されたボリ ェ一テルであつて もよい。 なお、 ポ リマー中には、 各種安定剤、 紫外線吸収剤等必要 に応じて配合されていてもよい。
さ らに、 弾性ポリマーの融点は、 非弾性ボ リマーの融点より も 3 0 ~ 1 2 0。C、 特に 4 0〜 8 0 °C低いこ とが好ま しい。 弾性ボリ マ 一の融点は、 通常 1 2 0〜 2 2 0。C、 好ま し く は 1 4 0〜 1 8 0 °C である。 また、 非弾性ボ リマーの融点は、 通常 2 0 0〜 3 0 0 eC、 好ま し く は 2 2 0 ~ 2 6 0。Cである。 なお本発明では、 融点は D S C法によつて測定される値と し、 融点が存在しないものにおいては 钦化点を融点とみな した。 なお、 本発明において非弾性ポ リ マーと は、 フ ィ ルムも しく は繊維を形成したときに、 測定された 5 0 %伸 長回復率が 5 0 %未満、 好ま しく は 2 0 %以下のものと して定義さ れ、 また弾性ボ リマーとは、 該回復率が 5 0 %以上、 好ま し く は 7 0 %以上のものと して定義した。
本発明におけるマ ト リ ッ クス纖維を形成する非弾性ポ リ エステル 系繊維とは、 通常のポ リ エチレ ンテ レフ 夕 レー ト、 ポ リ ブチ レ ンテ レフ 夕 レー ト、 ボ リ へキサメ チ レ ンテレフタ レー 卜、 ポ リ テ ト ラ メ チ レ ンテ レフタ レー ト、 ボ リ一 1 , 4 ー ジメ チルシク ロへキサンテレ フタ レー ト、 ポ リ ビバロラ ク ト ンま たはこれらの共重合体エステル からなる単繊維ない しそれら繊維の混綿体、 または上記のポ リマー のう ち 2種以上からなる複合繊維等である。 単繊維の断面形状は円 形、 偏平、 異形または中空のいずれであってもよい。 と りわけポ リ エチ レ ンテ レフ タ レー ト、 ポ リ ブチ レンテ レフ夕 レー ト またはそれ らの共重合体からなる単鏃維が好ま しい。
本発明においては、 マ ト リ ッ クス繊維と して、 高収縮性繊維を含 むこ とが好ま しい。 こ こで、 高収縮性繊維とは、 7 0ての温水に 1 分間浸漬する条件で 2 0〜 7 0 %、 好ま しく は 3 0〜 6 0 %の収縮 率を有する繊維のこ とをいい、 該高収縮性繊維の例と して、 ナイ 口 ン系繊維、 ボリ エステル系纖維を挙げるこ とが出来るが、 耐熱性、 強度等の物性面においてポ リエステル系繊維が好ま しい。 ポ リエス テル系高収縮性繊維と しては、 通常のポ リエチレンテレフタ レー ト、 ポ リ ブチレ ンテ レフ タ レー ト、 ポ リ へキサメ チレ ンテ レフ タ レ一 ト、 ポ リ 一 1 , 4 ー ジメ チルシク ロへキサ ンテ レフ 夕 レー 卜、 ボ リ ビバ'口 ラク ト ン等の高収縮性繊維を挙げることができる。
さ らに、 本発明ではマ ト リ ッ クス織維と して自己伸長性繊維を含 むと基材中の繊維の交絡状態が良好になるので好ま しい。 こ こで、 自己伸長性繊維とは 7 0ての温水中に 1分間浸漬処理したときに実 質的に収縮せず、 該処理後 1 8 0 eCの雰囲気下、 1分間保持したと きの伸長率が 5 %以上である繊維のことをいい、 自己伸長性繊維と しては、 ナイ ロ ン系あるいはボ リエステル系繊維を挙げるこ とが出 来 。
本発明のマ ト リ ッ クス繊維と しては、 通常の繊維 (レギュラー織 維) に前記高収縮性繊維および/または自己伸張性繊維を混綿して 使用するこ とができる。 しかし本発明の非含浸型基材と しての効果 を顕著にするためには、 高収縮性繊維および自己伸張性繊維を組み 合わせてマ ト リ ッ クス繊維と して使用するこ とが好ま しい。 殊にマ ト リ ッ クス雄維と しては、 高収縮性繊維 : 自己伸張性繊維の割合が 重量で 5 0 : 5 0〜; L 0 0 : 0、 特に 7 0 : 3 0〜 9 0 : 1 0の範 囲となるように両者を混綿して使用するのが望ま しい。
本発明の非含浸型基材においてはマ 卜 リ ッ クス繊維とバイ ンダー 繊維との混綿率がそれぞれ異なる不織布が少なく と も 2層以上積層 されているこ とが好ま しい。
このような積層形態と し、 結合単位数に厚み方向の勾配を持たせ るこ とで、 例えば、 天然皮革の有する、 表面側が密、 裏面側が粗と なるよ うな構造を模するこ とができ、 天然皮革様の風合いにさ らに 近似させるこ とが出来る。
さ らに、 該積層状態にある基材において、 隣接状態にある不織布 間でのバイ ングー繊維の混綿率が下記一般式 ( I ) を満足するこ と が好ま しい。
1 0 ≤ i W l - W 2 ! ≤ 3 0 · · · ( I )
(式中、 W 1 ぉょびW 2 は、 隣接する夫々の不織布層中のバイ ンダ —繊維の混綿率 (w t %) を表す。 )
この (W 1 — W 2 ) が 1 0未満であると、 積層による効果が少ない。 —方 3 0を越えると物性の差が大き く風合いが好ま しく ない。
またさ らに、 積層され、 隣接状態にある不織布間でのマ ト リ ッ ク ス繊維の混綿率が下記一般式 (Π) を満足するこ とが好ま しい。
0 ≤ | M 1 - M 2 | ≤ 4 0 · · · ( I I)
(式中、 M l および M 2は、 隣接する夫々の不織布層中のマ ト リ ツ クス繊維中の高収縮繊維の混綿率 (w t %) を表す。 この (M l — M 2 ) が 4 0を越えると、 隣接する不織布間で収縮 性や交絡性が異なるため風合いが好ま し く ない。
本発明では、 非含浸型基材の 2 0 %伸長回復率が厚み方向と直交 する平面上での全方位のうち該平面上で直交する二軸が共に 5 0〜 9 0 %の範囲にあることがよい。 こ こで、 上記二軸において共に 5 0〜 9 0 %の範囲にあるとは、 すなわち、 厚み方向と直交する平面 において上記伸長回複率に異方性が少ないという こ とを意味する。 本発明において非含浸型基材は、 カ ンチレバー法によ り測定した 剛钦度が厚み方向と直交する平面上での全方位のうち該平面上で直 交する二拳由が共に 2〜 2 0 c mの範囲にあるこ とが好ま しい。 こ こ で、 上記二軸において共に 2〜 20 c mの範囲にあるとは、 すなわ ち、 厚み方向と直交する平面において上記剛軟度に異方性が少ない という ことを意味する。 該剛钦度は 2〜 1 5 c mの範囲にあるこ と がさ らに好ま しい。
本発明の非含浸型基材において、 厚み方向の通気度が 1 0〜 1 0 0 c m3/ c m2/ s e cの範囲にあるこ とが好ま しい。 該通気度が 1 0 c m3/ c m2/ s e c未満であると、 通気性が乏しい。 逆に 1 0 0 c m3/ c m2/ s e cを越えると粗な構造になるため好ま し く ない。
本発明の非含浸型基材は、 その空隙率が 6 5 ~ 9 0 %の範囲にあ るこ とが好ま しい。 こ こで、 該空隙率とは一般式 (III) によって示 される。
空隙率(%)= (1 —基材密度 Z短織維密度) X 100 · · · (III) 該空隙率が 6 5 %未満であると通気性が乏しく、 逆に 9 0 %を越 えると粗な構造になるため、 好ま しく ない。
本発明の非含浸型基材は、 その表面にエラス トマ一層を形成する ことにより人工皮革用基布に転換するこ とができるが、 その際該ェ ラス トマ一層が均一な多孔質構造体および/または球状集合体とな つているこ とが好ま しい。 該エラス トマ一がこのような構造をと る こ とによって空隙率が向上するので、 人工皮革用基布と して柔らか な風合いと しなやかさを発揮することができる。
こ こで、 多孔質構造体とは、 表面層を厚み方向と平行に切断した 任意の横断面において図 1 1 に示すよ な形態となっていることを 言い、 球状集合体とは、 表面層を厚み方向と平行に切断した任意の 横断面において図 1 2に示すよ うな形態となっているこ とを言う。
該エラス トマ一層はポ リエステル系エラス トマ一であっても、 ポ リ ゥ レタ ン系エラス トマ一であってもどちらでもよいカ^ 焼却時に 有害ガスが発生しないこ とからポ リエステル系エラス トマ一を用い るのが最も好ま しい。
ポ リ エステル系エラス トマ一と しては、 ドセグメ ン 卜部分を、 芳香族ジカルボン酸成分を主たる酸成分とする結晶性ボ リエステル と し、 ソフ トセグメ ン ト部分をポリエーテル、 低結晶性ポリエステ ル、 非結晶性ポ リエステルからなる群より選ばれる少な く と も一種 のポ リ マーとするこ とが好ま しい。
本発明の非含浸型基材の製造方法においては、 図面をもって説明 した前述の要件 a eを満足するように不織布を熱成形して該基材 を得るに際し f および gの工程を逐次的に含む必要がある。 すなわ ち、 工程 f においてゥュ ッブに強制絡合処理を施し、 厚み方向と平 行または準平行状態に織維を配向させる こと、 さ らに該ゥヱ ッブに 収縮処理を施すことが望ま しい。 ここで、 準平行状態とは、 大略繊 維の配向が厚み方向と 4 5。 未満の角度で交わる ことをいう。 繊維 の配向伏態を前記の通り にするこ とで、 基材の厚み方向に対する通 気度を高く することができ、 さ らに該基材を例えばァコーディ オン のように.しなやかに曲げることができる。 また、 収縮処理を施すこ とにより該ウェブを密な構造の基材と して該基材の強伸度を上げ、 皮革様のコ シのある風合いにすることが出来る。
こ こで該収縮処理は、 面積収縮率が 2 0 ~ 7 0 %になるように施 すのがよい。 該収縮率が 2 0 %未満であると、 繊維の交絡構造が粗 になり易く 強度等の耐久性能が低く、 風合い面で満足できるコ シが 出にく く、 逆に該収縮率が 7 0 %を越えると見掛け密度が高く な り、 基材の軽量化が難しく風合い面で柔钦性に欠け易い。 収縮処理方法 と しては、 例えば温水中あるいは乾熱中で行う方法が適当である力 均一に熱が加わらないと シヮになり易いので、 温水中で行う方法が 適当である。 収縮処理時の加熱条件と して、 温水中で該処理を施す 場合は 6 5 〜 7 5 °C 乾熱中で施す場合には 1 0 0〜 1 5 0 °Cが適 当である。 加熱時間については、 面積収縮率が適当な物となるよ う に適宜設定すればよい。
また、 工程 g と して、 前述の工程 f によって得られた不織布に対 して、 バイ ンダー繊維の接着温度で加圧 · 加熱処理が施される。 こ こで、 バイ ンダー繊維の接着温度とは、 バイ ンダー成分 (弾性ポ リ マ一) の溶融温度以上分解温度未満のこ とをいう。 この、 加圧 · 加 熱処理を施すこ とにより、 基材中の各々の繊維が加圧下に容易に圧 縮されるので、 さ らに密な構造の基材を製造することができ る。 そ の際、 該加圧 · 加熱処理を行う こ とによって、 バイ ンダー織維に配 されている弾性ボリマー同士が相互に接触している点の少な く と も 一部を融着させて不織布中に網目構造を形成することが好ま しい。 この網目構造を形成するこ とにより、 非含浸型基材であっても、 す なわち弾性ポ リ マーの含有量が少な く ても、 含浸型基材と比べて遜 色の無い強伸度等の耐劣化性を発揮しやすく なる。
この加圧 · 加熱処理方法と しては、 基材の用途、 目的等により適 宜変更すればよいが、 嵩高な風合いを得るためにある程度のク リ ア ラ ンスがあったほうが好ま しく、 加圧 ' 加熱処理を施す前の厚みを 基準と して 6 0 〜 9 0 %の範囲とするのが好ま しい。 このためには、 例えば工程 f により得られた不織布を一対の加熱ローラ一により処 理する方法、 熱ブレスにより処理する方法等を行えばよ く、 その際 の加圧条件と しては、 線圧で 1 0〜 1 5 0 0 k g , c mの範囲にあ るこ とが好ま しい。 該線圧がこの範囲にあると、 人工皮革用途と し て用いるときに重要な、 丸みのある皮革様のコ シを有し、 且つ適度 な見掛け密度、 軽量性および通気性を有するような基材を製造し易 い。
さ らに、 本発明の製造方法においては、 工程 gの前の任意の段階 で一部のマ ト リ ッ クス繊維の織維表面に、 該マ ト リ ッ クス織維とバ ィ ンダー繊維との交差点の一部において、 該織維同士の融着が阻害 されるような処理を施すこ とが必要である。
該処理を施すこ とによ り、 加圧 · 加熱後の処理後、 完全融着部と 部分融着部とを内部構造に有する、 柔軟で丸みのあるコ シを有する 風合いの非含浸型基材を得るこ とができ る。 例えばこの、 融着が阻 害されるような好ま しい方法と して、 一部のマ ト リ ッ クス雄維の繊 維表面に離型剤を付着させる処理は、 コス ト等の面から好ま しい手 段と して挙げる ことができる。 しかしその方法の外にも加圧 · 加熱 後機械的に融着部を破壊する方法、 バイ ンダー成分とマ ト リ ッ クス 成分が非相溶であるボリ マーの組合せを選ぶ方法等を用いても構わ ない。 この離型剤を付着させる方法と しては、 離型剤水溶液中に基 材を含浸させ、 マングルにて付着量を制御する方法、 使用するマ ト リ ッ ク ス繊維の一部または全体に、 予め離型剤を付着させておく 方 法等を採ることが出来る。
本発明の製造方法において、 工程 f において、 バイ ンダー繊維の 混綿率が異なる少なく と も 2種のゥエツブを積層し、 強制絡合処理 および収縮処理を施すこ とが好ま しい。 混綿率が異なるウエ ッブを 積層するこ とにより、 このような積層形態を形成するこ とにより、 例えば、 天然皮革の有する、 面側が密、 裏面側が粗となるような 構造を模するこ とができるので、 天然皮革様の風合いにさ らに近似 させるこ とが出来る。 前記の積層手段は、 非加熱の口一ラーと加熱 ローラ一とを組みあわせた一対の口一ラーに通過させる方法に比べ て、 全体に均一に加熱できるこ とから、 基材内部での完全融着部お よび部分融着部が確実に形成されるので好ま しい。 本発明の製造方法において用いるマ ト リ ッ クス繊維は、 2 0 0 °C の乾熱で 5分間の処理を行つた後の複屈折率が 0 . 0 2 〜 0 . 1 4の 範囲にあり、 且つその際の結晶化度が 1 0〜 3 5 %の範囲にあるこ とが好ま しい。 該複屈折率が 0 . 0 2未満であると繊維の強度が不足 し、 逆に 0 . 1 4を越えると剛直なものとなってしま う。 一方、 上記 結晶化度が 1 0 %未満であると弾性率が強く なりすぎて しまい、 逆 に 3 5 %を越えると繊維の伸度が低く なり剛直な基材となってしま 本発明の製造方法において用いるマ 卜 リ ッ クス鏃維は、 7 0 °C温 水中で 1分間保持したと きの収縮率が 2 0〜 7 0 %であって、 且つ 該保持後の短織維を 1 8 0ての乾熱下 1 分間処理した後の伸長性が 5〜 5 0 %の範囲にある高収縮性短繊維を含んでいるこ とが好ま し い。 上記のような高収縮性短繊維が不織布中に分散しているこ とに より、 均一でシヮの発生の起こ らない収縮処理を行いやすく なる。 上記高収縮性繊維は、 それ自体公知の方法、 例えば溶融紡糸した 後、 ガラス転移温度以上結晶化温度以下の温度で延伸するこ とによ つて得られる。 より具体的には、 例えばポリエチレンテ レフタ レー トを溶融紡糸した後、 6 0〜 6 5 °Cの温水で 2 . 4 〜 2 . 7倍に延伸 し、 6 5て以下で乾燥するこ とによって得るこ とが出来る。
本発明の製造方法において用いるマ 卜 リ ッ クス繊維は、 7 0 °C温 水中で実質的に収縮せずに、 1 8 0ての乾熱下 1 分間処理した後の 伸長性が 5 〜 5 0 %の範囲にある目己伸長性短繊維を含んでいるこ とが好ま しい。 上記のような自己伸長性繊維が不織布中に分散して いるこ とにより、 収縮処理を行つた際にウエ ッブ内の繊維同士の交 絡状態をさ らに良好なものとするこ とができる。
該自己伸長性雄維は公知の方法により、 具体的にはポ リエチレン テレフタ レ一 卜、 ポ リブチレンテレフタ レー 卜等のポ リ エステルや、 これらポ リ エステルに他の芳香族または脂肪族のジカルボン酸成分、 あるいはグリ コ一ル成分を共重合したコポ リエステルを溶融紡糸し、 次いで 6 0〜 6 5。Cの温水中で 2 ~ 4倍に延伸し、 次いで 8 5 ~ 9 5での温水中で熱処理し、 1 0 0 以下で乾燥する方法によつて得 るこ とができる。
さ らに本発明においては、 基材の片面にエンボス加工により加圧 · 加熱処理して表面に多数の凹凸形状を付与させかつ平面方向に対 して融着部の規則的な密度分布を形成させるこ と もでき る。 この基 材のエンボス加工によって、 従来にない皮革様波形密度勾配構造を 達成するこ とができ、 また基材と表面層との接着を高めるこ とが可 能となる。 さらに得られた人工皮革は柔軟でコ シのある皮革様風合 いで、 剝離強度に優れたものとなる。
このように基材 (ゥヱブ) を凹凸柄のあるエンボスロールで加熱 • 加圧処理するこ とにより、 基材内に規則的にバイ ンダー融着部が 分布する。 エンボスロールの凹凸部による基材の部分的圧力の違い により、 基体表面の凸部の厚み方向のバイ ンダー融着部に比べ、 基 体表面の凹部の厚み方向のバイ ンダー融着部が多く なる。 凹部と凸 部の厚み方向の単位体積当たりのバイ ンダー融着部の割合 (凹部 : 凸部) は 5 0 : 5 0〜 6 7 : 3 3 となるこ とが好ま しい。
エンボスロールの、 模様は規則的であれば特に制限はないが、 凹 部と凸部の面積比が (凹部 : 凸部) = 5 : 9 5 - 9 5 : 5であるこ とが好ま しい。 この範囲外ではエンボスロールが基材に与える上記 効果が少ない。 またエンボスロールの凹部から凸部までの厚み方向 の長さ力、 基材の厚みの 3〜 5 0 %であるこ とが好ま しい。 3 %未 満であると、 エンボスロールが基材に与える上記効果が少なく、 ま た 5 0 %を越えると挫屈が生じやすく なる。
エンボス処理時の温度はバイ ンダー繊維の融点以上分解温度未満 で行なう。 その際の圧力は 5〜 5 0 0 k c mが好ま しい。 5 k g Z c m未満であると、 エンボスロールの効果が少なく、 また 5 0 0 k g Z c mよ り大きい場合、 嵩密度が高く なり、 風合いが硬く な るため好ま しく ない。 エンボス加工を行なうには、 基材となるウェブをエ ンボスロール を用いて、 バイ ンダ一繊維の融点以上の温度で加熱処理を行なう。 エンボス処理の手段と しては熱ロール、 熱ブレス等が挙げられるが 特に制限はない。 熱ロールを使用する場合、 直前に予熱処理を行な うのが好ま しい。 熱融着処理温度は圧力との関係もあるが、 該ゥ ブを構成するポ リマーの融点未満で熱融着ポ リマーの融点より 5〜 5 0て高い温度が良好である。 また熱融着処理の際、 嵩高な風合い を得るためにある程度のク リアラ ンスが必要である。 ク リアラ ンス は圧力との関係もあるが基材の 5 0〜 9 5 %が好ま しい。
次に該基材の上に、 公知の方法で表面層の付与を行な う。 その手 段は後述するが、 湿式法およびラ ミ ネー ト法が挙げられる力 接着 性を向上させるためには湿式法が好ま しい。 このようにエンボス加 ェによる人工皮革は、 表面コー 卜後においてもエンボス柄を保持す るこ とが可能であるため、 融着熱処理の際、 皮革様模様を有するェ ンボス柄を使用するこ とにより、 従来の熱処理工程とエ ンボス柄付 け工程の 2工程を 1工程に省略できるため、 工程的にも有利となる。 本発明の非含浸型基材を人工皮革に転換するに当たつては、 得ら れた基材に対して人工皮革を製造するそれ自体公知の方法で行な う 二 とができ る。 表面平滑化、 表面コー ト層の付与等の仕上げ処理を 施せばよい力 <、 特にその表面層にエラス 卜マ一よりなるコー ト層を 付与するこ とが好ま しい。
本発明の前記基材の表面にコー ト層を付与して、 人工皮革を製造 する方法においては、 例えば、 エラス トマ一層をボリエステル系ェ ラス トマ一とする場合、 水に対して可溶性である該エラ ス トマ一を、 特定の温度以下では該エラス トマ一を溶解しない極性溶媒中に溶解 させた溶液組成物を用いる。 この際の極性溶媒と しては、 ( 1 ) 水 と混和性を有する、 ( 2 ) 用いるポ リ エステルエラス トマ一を加熱 等によ り溶解することができる、 ( 3 ) さ らに、 該エラス トマ一が 溶解した溶液組成物を冷却等により特定温度以下にした際に、 相分 離に伴って溶液組成物がゲル化し白化するこ とができる、 という三 つの要件を満足するような溶媒から選ぶことが望ま しい。
このような極性溶媒と して、 N —メチルビロ リ ドン (以下、 N M Pと略記するこ と もある。 ) 、 N , Ν —ジメ チルホルムア ミ ド (以下、 D M F と略記するこ ともある。 ) 、 Ν , Ν —ジメ チルァセ トア ミ ド等 を例示することができる。 これらのうち、 Ν —メ チルビ口 リ ド ン、 Ν , Ν— ジメ チルホルムア ミ ドが好ま しく、 例えば D M Fは、 2 0。C 近辺ではポ リエステル系エラス トマーを溶解して 2 5重量%溶液を 調製するこ とができない力 溶媒を 1 2 0 °Cに加熱するこ とによ り、 均一に溶解するこ とができる。 この溶液組成物を基布上に流延し、 冷却するとやがてゲル化し白化する。
この極性溶媒は、 1種のみを用いても、 2種以上を併用してもよ い。 また、 上記特性を損なわない限り、 他の溶媒や無機塩、 添加剤 等を加えてもかまわない。
上記溶液組成物中のポリエステル系エラス 卜マーの濃度は、 該溶 液組成物の全重量を基準と して、 1 ~ 5 0 %の範囲内にあるこ と力 < 好ま しい。
該エラス トマ一濃度が 1 %より少ないとフィ ルムゃシ一 卜の形態 を保持するのが難し く、 また 5 0 %を越えると、 表面層の空隙率が 小さ く なりすぎて表面の しなやかさが生じないので好ま しく ない。 ポ リ エステルエラス トマ一濃度は 3 ~ 3 5重量%である ことがより 好ま しい。
上記した、 ポ リエステル系エラス 卜マーを極性溶媒に加熱溶解す る際の加熱溶解温度は、 用いるポリエステル系エラス トマ一の分子 構造ある.いはェ ス トマー濃度、 極性溶媒の種類等によって異なる 力 該ポ リ エステル系エラス ト マ一が均一に溶解するために必要な 温度であればよいが、 通常は溶解開始温度〜 2 0 0ての範囲であり、 5 0〜 1 5 0。Cの範囲にあるのがさ らに好ま しい。
本発明の製造方法によれば、 基材表面上に流延された液伏物は次 いで冷却されることにより、 相分離に伴うゲル化を生じ膜状物とな る。 本発明でいうゲル化とは、 ボリエステルエラス トマ一が均一に 溶解した透明な溶液組成物が白色に溺り、 なおかつ液状物の形態を 保持した状態のことである。 ゲル化を生じさせるための冷却方法、 冷却温度等は特に限定されないが、 通常は 5時間以内、 特に 2時間 以内に冷却することが好ま しいが、 室温で放熱しても、 また氷冷や 冷却装置を用いて冷却を行ってもよい。
該ゲル化を生じさせるこ とにより、 得られた膜状物の内部構造が、 多孔質構造および または球状集合体となり、 該内部構造によりェ ラス トマー表面層が均一なものとなるので通気性がよい。 一方、 ゲ ル化を生じさせるこ とな く、 抽出処理を直接行う と、 厚さ方向、 す なわち表層部分と基材部分とが均一な構造を形成せず、 通気性が乏 しいものしく なる。
上記のように して得られた膜状物は、 次いで水性溶媒によつて極 性溶媒が抽出される。 本発明において、 水性溶媒とは、 水、 または 無機塩や低級脂肪族アルコール、 極性溶媒等の少なく と も 1種を溶 解した水溶液を意味する。 用いる水性溶媒の温度は特に限定されな い力く、 通常は 0〜: L 0 0て、 好ま し く は 5〜 8 0 の範囲内にある のがよい。 該抽出の方法と しては特に限定されないが、 例えば基材 表面上でゲル化している膜状物を、 基材とと もに水性溶媒に浸漬す る、 または水性溶媒で洗净する等の方法を選択するこ とができる。 また、 抽出に要する時間は選択する抽出方法によって異なる力'、 通 常は 5時間以内、 より好ま しく は 3時間以内である。
このようにして得られた膜状物は乾燥され、 最終的に厚みが数 m〜 1 m .m程度のボリエステルエラス トマ一表面層となる。 この際 の乾燥温度はポ リエステルエラス トマ一の融解温度以下であれば特 に問題はな く、 また、 乾燥は常圧下で行っても、 減圧下で行っても どち らでも良い。 該乾燥温度は、 通常は 1 5 0 eC以下、 好ま し く は 1 3 0て以下である。 本発明の人工皮革におけるボ リエステルエラス トマ一表面層の構 造および性能は、 該表面層に使用する材料、 該表面層の製造方法に よって影響され、 例えば膜密度は溶液組成物中のポリエステルエラ ス トマ一港度に影響される力、 ボリエステルエラス 卜マー表面層の 空隙率は 2 0 ~ 8 0 %の範囲にあり、 多孔質構造体または球状集合 体のコア怪は 0 . 1 ~ 5 . O mにあるこ とが好ま しい。 該表面の空 隙率が 2 0 %未満であると、 表面の通気性に劣る、 また人工皮革と しての表面がフ ィ ルム状となり、 柔軟性等の風合いが劣る。 逆に 8 0 %を越えると、 表面構造が粗になりすぎて、 耐久性に劣る ものと なる。
一方、 非含浸型基材の表面にウ レタ ン系エラス トマ一より なるコ 一ト層を付与する方法と しては、 従来公知のボ リ ウ レタ ンは全て適 用するこ とができ、 また、 そのコー ト層を形成する方法と しては従 来公知の形成方法のいずれも適用できる。 例えば、 ポ リ ウ レタ ンの 有機溶剤溶液を非含浸型基材の表面にコーティ ングした後、 ポ リ ウ レタ ンの非溶剤で且つボ リ ウ レタ ンを溶解している有機溶剤と混和 性のある凝固浴中で凝固させる方法、 あるいはポ リ ウ レタ ンの有機 溶剤溶液または分散液に水を微分散させた W / 0 タイプのェマルジ ヨ ンを非含浸型基材の表面にコーティ ングしたのち、 有機溶剤を選 択的に蒸発させてポ リ ウ レタ ンを凝固させる方法等を適宜選択すれ ばよいが、 通気性の良い表面構造とする為、 特に、 内部に連通微細 孔を有する多孔質ポ リ ウ レタ ン層は、 連続多孔質である こ とが好ま しい。
すなわち、 連通多孔質ポ リ ウ レタ ン層は、 非含浸型基材の非コー ティ ング表面から、 コーティ ング層表面にかけて連通孔によって通 気性が確保されているこ とが好ま し く、 多孔質ボ リ ウ レタ ン層を形 成する際に多孔調整剤 (凝固調整剤) を用いる方法、 仕上げポ リ ウ レタ ン皮膜を形成する際に先立って、 多孔質ボ リ ウ レタ ン層の表面 に、 ポ リ ウ レタ ンと、 その良溶剤、 貧溶剤、 良溶剤と貧溶剤との混 和溶剤、 または良溶剤と非溶剤との混和溶剤のいずれかとの混合溶 液を点状に多数散在するように塗布してから仕上げボ リ ウ レタ ン皮 膜を形成する方法等、 任意の方法を適宜選択すればよい。
他にも、 予めエラス トマ一により膜状物のみを 成した後、 該ェ ラス トマ一と非含浸型基材内中に存在するバイ ンダ一成分を構成す るポ リ マーの融点以下の温度で融解する熱溶融型接着剤を用いて、 該膜状物と該非含浸型基材とを接着し人工皮革を得る方法を挙げる ことができるが、 上述したよう に基材の表面に直接膜状物を形成す る方法は、 表面層の剥離強度が向上するので好ま しい。 作用
本発明と構成が類似した技術と して、 特開昭 5 2— 8 7 2 0 1 号 公報に記載の技術を挙げることが出来る。 該公報によれば、 バイ ン ダ一繊維とマ ト リ ッ クス繊維とを用いてシー ト状物を作成し、 該シ 一ト状物に対して加圧 · 加熱処理を行ってシ一 ト状物の表面層を緻 密化せしめる皮革様シ一 ト状物の製造方法が提案されている。
つま り、 該公報においては、 シー ト状物の表面を加熱ローラー等 により加圧 · 加熱処理することで緻密化するこ とが記載されている 力 該シー ト状物を人工皮革用基材と して用いる場合には、 確かに 表面層の外観、 手触り等も必要ではあるが、 それだけでは天然皮革 独特の しなやかな柔らかい風合いを有する人工皮革用基材は提供す るこ とができずゴムライ クな風合いのものになってしま う。
本発明は特にこの基材において、 その内部構造に注目 し、 バイ ン ダー繊維とマ ト リ ツ クス繊維との交差点において、 完全融着部と部 分融着部とを特定の割合となるように混在させることによって、 基 材の中で完全融着部を散在させ、 人工皮革と して有用な、 伸長回復 性能並びに しなやかな柔らかい風合いを達成する ものである。 効果 本発明の非含浸型基材は、 通気性並びに軽量性に優れており、 皮 革様風合いを伴っている
さ らに、 その基材の製造工程は比較的容易であり、 溶剤を用いる 必要がないことや、 ウ レタ ンを使用しないため焼 によるシア ンガ スが発生しない等、 環境面においても有利である。
また、 本発明の非含浸型基材の表面にエラス トマ一層を形成して 製造した人工皮革は、 新規な非含浸型基材を用いるこ とから、 今ま でには無かったので、 例えば該基材をスポーツシューズ等に適用 し た場合、 軽く て、 ム レ感の少ない、 また体にフィ ッ ト しゃすいもの になる。 実施例
以下、 実施例により本発明をさ らに詳細に説明するが、 本発明は これにより何等制限を受けるものではない。
なお、 実施例中の各値は以下の方法により測定した。
1 . ボ リエステル系弾性体の固有粘度の測定 :
フエノールとテ トラク ロルェタ ンとの等重量混合溶剤を用い、 3 5ての条件下で固有粘度を測定した。
2 . 融点の測定 :
D u P o n t 社製、 熱示唆分折計 9 9 0型 ( D S C ) を使用 し、 昇温速度 2 (TC Z分で測定し、 溶融ビーク温度を融点と した。
3 . 钦化点の測定 :
微量融点測定装置 (柳本製作所製) を用い、 約 3 gのポ リ マ一を 2枚のカバ一ガラスの間に挟み、 ビンセッ トで軽く抑えながら、 昇 温速度約 1 0。C Z分で昇温し、 ボリマーの熱変化を観察する。 その 際ボ リ マーが钦化して流動し始めた温度を钦化点と した。
4 . 溶融粘度の測定 :
加熱処理温度下で、 エラス トマ一を剪断速度 1 0 ~ 1 0 0 0 0 s e c - 1の範囲にて見掛けの溶融粘度を測定し、 校正曲線から剪断速 度 l O O O s e c - 1のときの溶融粘度を求めた。
5 . 繊維あるいは基材の収縮率および伸長率 :
( I ) 繊維の収縮率および伸長率 :
下記数式 ( 3 ) および ( 4 ) によって算出した <
収縮繊維長
繊維の収縮率(%) = X 1 0 0 ( 3 ) 収縮前繊維長 伸長繊維長
繊維の伸長率(%) = X 1 0 0 ( 4 ) 伸長前繊維長
(II) 基材の収縮率 :
下記数式 ( 5 ) によって算出した c
収縮基材面積
基材の収縮率(%) = 1一 X 1 0 0 ( 5 ) 収縮前基材面積
6 . 完全融着部と部分融着部との個数比率
サンプルの基材横断面が露出するように切断し、 この任意の横断 面を電子顕微鏡によ り撮影して得た電子顕微鏡写真 ( 3 5 0倍) [図 5〜図 8の写真とほぼ同じ大きさのもの ; 以下同じ] に含まれ る完全融着部の数と部分融着部の数とを目視にて数え、 その個数比 率を算出した。 なお、 同一のサンブルに対して電子顕微鏡写真は 1 0枚撮影し、 その平均値を求めた。
7 . 完全融着部と部分融着部との合計と、 弾性結合点との個数比率 サンブルの基材横断面が露出するように切断し、 この任意の横断 面を電子顕微鏡により撮影して得た電子顕微鏡写真 ( 3 5 0倍) に 含まれる完全融着部の数と部分融着部の数とを数え、 その個数比率 を算出した。 なお、 同一のサンブルに対して電子顕微鏡写真は 1 0 枚撮影し、 その平均値を求めた。
8 . 基材の 2 0 %伸長回復率 :
引張り速度 5 0 m m/ m i nで元の長さの 1 2 0 %となるように 引張り、 その後、 戻し速度 5 O mm/m i nで元の零点に戻し、 2 分間放置後に再び引張り速度 5 0 mm m i nで引張った。 初期の 応力の立ち上がりと放置後の立ち上がり ( 2 g応力) から試料の緩 み長さ (m m) を求め、 伸長量 1 5 O mmに対する比率 (%) を下 記数式 ( 6 ) により算出し、 1 2 0 %伸長回復率とした。
なお、 該伸長回復率の測定は、 基材の厚み方向と直交する平面状 での全方位のう ち該平面状で直交する二軸を測定した。 (軸 Aおよ び軸 B とする。 )
緩み長さ
2 0 %伸張回復率(%) = X 1 0 0 ( 6 )
5 0 9 . 基材の剛钦度 :
J I S L - 1 0 9 6 に記載されている 4 5 ° カ ンチレバー法に 準拠して測定した。 なお、 該剛钦度の測定は、 基材の厚み方向と直 交する平面状での全方位のうち該平面状で直交する二軸を測定した。 (軸 Aおよび軸 Bとする。 )
1 1 . 基材の厚み方向の通気度 :
通気度計 F X 3 3 0 0 (スイス国、 テクステス ト社製) を用いて、 面積が 1 0 0 c m :のオリフ ィ スにより、 1 2 4 P aの差圧で測定し た。
1 2 . 基材の風合い :
無差別に 5名の熟練者を選びだし、 製造した各種の基材に対して 官能検査を行って、 触感による相対的な比較を行った。 なお、 表 1 中の評価は、 以下の通り と した。
◎ 皮革様丸みのあるコシと、 柔钦な風合いとを有し、 且つ、 皮革と同様に基布の表側と裏側とでコ シと柔钦性とが異なる もの。
〇 皮革様丸みのあるコシと、 柔钦な風合いとを有す るもの。
X 皮革様丸みのコシに欠け、 柔钦性にも欠けるもの。 1 3 .挫屈性 :
2 0 c m X 2 0 c mの人工皮革を曲率 5 m m程度に折り曲げ、 折 曲部を指先で摘みながら順次折局部を移動させていき、 折り曲がり 部分の丸みの状態を観察する。
〇 丸みがあって角のないもの。
△ 多少角が感じられるもの。
X 角が発生するもの。
参考例 1
バイ ンダー繊維の製造 :
ジメチルテレフタレ一 卜 (以下、 D M Tと略記することもある n ) 、 イ ソフタ レー ト (以下、 I Aと略記すること もある。 ) 、 テ トラ メ チレングリ コール (以下、 T M Gと略記すること もある。 ) および ポリ テ トラメチレングリ コール (以下、 P T M Gと略記すること も ある。 ) とを用いて重縮合反応を行い、 ポリエーテルポ リエステル ブロ ッ ク共重合エラス トマ一を得た。 その際の割合は、 全酸成分を 基準と してモル比で、 D MT : I A = 8 5 : 1 5 と し、 TM Gを全 酸成分を基準と してモル比で 1 .4 5倍と し、 また P TM Gを、 該ェ ラス トマー全重量を基準と して 5 5 %と した。 なお、 I Aはスラ リ —状の ものを、 P T MGは数平均分子量 2 0 0 0のものを用いた。 この熱可塑性エラス トマーの固有粘度は 1 .0 d l / g、 融点 1 7 2 。C、 破断伸度は 1 4 2 0 %、 3 0 0 %伸長応力は 0.3 k gノ m m2、 3 0 0 %伸長回復率は 7 3 %、 5 0 %伸長回復率は 8 1 %であった。 この熱可塑性エラス トマ一をシース部と して配し、 非弾性ポ リ マ 一と してのポリ ブチレンテレフ夕レー ト (融点 2 2 4て、 固有粘度 0.8 7 5 d 1 / , 5 0 %伸長回復率 0 %) をコア部に配して、 コ ァ成分 : シース成分の重量比が雄維全体を基準と して、 5 0 : 5 0 になるように常法により複合紡糸して、 バイ ンダー繊維を作成した。 なお、 この複合繊維は、 偏心シース ' コア型複合繊維である。 この 繊維を 2 .0倍に延伸し押し込み捲縮を付与した後 6 4 mmに切断し、 乾燥処理後、 油剤を付与した。 なお、 得られたバイ ンダー繊維の太 さは 9デニールであった。
参考例 2
マ ト リ ッ クス繊維の製造 :
ポ リ エチレンテレフタ レー トからなる非弾性高収縮性繊維 ^用い た。
この非弾性高収縮性短繊維の 2 0 0て乾熱処理 ( 5分) 後の複屈 折率は 0 .0 8 9で、 結晶化度は 0.2 9であった。 また該短繊維の 7 0。Cの温水に 1分間浸漬したときの収縮率は 4 5 %であり、 5 0 %弾性回復率は 0 %であった。 参考例 3
ウ レタ ン含浸基材の製造方法 :
目付 300 g/m3、 厚み 1.0mmのポリエステル短繊維不織布 に、 ボ リ ウ レタ ンのジメ チルホルムア ミ ド溶液 (皋度 1 3 % ) を含 浸させて、 ウ レタ ン含浸型基材を製造した。 結果を表 1に示す。 実施例 1
参考例 1および参考例 2の操作により得られた、 バイ ンダー繊維 25重量%と、 マ ト リ ッ クス繊維 7 5重量%とを混綿し、 カー ド機 に通した後、 ク ロス レイ法でゥ ヱブを作成し、 作成したゥヱブに二 — ドルパ ンチ ( 1 000パンチ c m で強制絡合処理を施し、 7 0 °C温水中で 1分間収縮処理し、 マングルで絞った後、 この基材を シ リ コ ン (P o 1 o n— MNK、 信越化学工業) 0.27重量%水溶 液中に通し、 水分保持率が 20 0重量%になるようにある程度ク リ ァラ ンスをとつてマングルで絞った。 該基材中のマ ト リ ッ クス繊維 に対するシ リ コ ン付着率は 0.5重量%であった。 その後、 1 2 0。C 雰囲気中で乾燥を行った。 面積収縮率は 40 %であった。 次に 1 7 0 °C雰囲気中で 3分間予熱をかけた後すぐにカ レ ンダーロールを用 いて 2 00てで融着熱処理を行った。 得られた基材は皮革様柔钦で、 且つ丸みのあるコシがある ものとなった。 得られた基材の物性値を 表 1に示す。
実施例 2、 3
実施例 1において、 バイ ンダー繊維とマ 卜 リ ッ クス繊維の混綿率 を変更すること以外は実施例 1 と同様の操作を行って基材を得た。 結果を表 1に示す。
実施例 4
実施例 1において、 バイ ンダー繊維とマ ト リ ッ クス繊維との混綿 率を表 1の様に変更し、 さ らに、 該混率の異なるゥヱブ Aとウェブ Bとを作成し該ウェブを重ねあわせて積層体と し、 該積層体に実施 例 1と同様な操作を行って基材を得た。 結果を表 1に示す。 得られ た基材はより皮革様柔钦で、 コ シを伴い好ま しいものであった。 こ の際、 該積層され、 隣接状態にある不織布間でのバイ ンダー繊維の 混綿率およびバイ ンダー繊維の混綿率は下記一般式 ( I ) および
(II) を満足していた。
1 0≤ | W1 -W2 | ≤ 30 · · · ( I )
(式中、 W1および W2は、 隣接する夫々の不織布層中のバイ ンダ 一繊維の混綿率 (w t %) を表す。 )
0≤ | M 1 -M 2 | ≤ 40 , · . (II)
(式中、 11ぉょび\12は、 隣接する夫々の不織布層中のマ ト リ ツ クス繊維中の高収縮繊維の混綿率 (w t %) を表す。 )
実施例 5
実施例 1において、 バイ ンダ一繊維とマ ト リ ッ クス雄維との混綿 率を表 1の様に変更し、 さらに、 該混率の異なるウェブ C、 ウェブ D、 ウェブ Eを作成し該ゥュブを重ねあわせて積層体と し、 該積層 体に実施例 1と同様な操作を行って基材を得た。 結果を表 1に示す。 得られた基材は実施例 4より も皮革様柔炊で、 コ シを伴い好ま しい ものであった。
この際、 該積層され、 隣接状態にある不織布間でのバイ ンダー繊 維の混綿率およびバイ ンダー繊維の混綿率は下記一般式 ( I ) およ び (II) を満足していた。
1 0≤ | W 1 -W 2 | ≤ 30 · · · ( I )
(式中、 W 1および W2は、 隣接する夫々の不織布層中のバイ ンダ 一繊維の混綿率 (w t %) を表す。 )
0≤ | M 1 -M 2 | ≤ 40 · · · (II)
(式中、 M lおよび M2は、 隣接する夫々の不織布層中のマ ト リ ツ クス繊維の中の高収縮繊維の混綿率 (w t %) を表す。 )
比铰例 1
実施例 1において、 基材をシリ コン水溶液中に通さないこと以外 は同様の操作を行って非含浸型基材を得た。 該基材の風合いはゴム ライ クであり皮革用基布と して用いるのは適さなかった。 結果を表 1 に示す。
比較例 2、 3
実施例 1 において、 基材の密度を表 1 の様に変軍すること以外は、 実施例 1 と同様の操作を行って基材を得た。 結果を表 1 に示す。
比較例 4
実施例 1 において、 基材全体に占める弾性ポ リ マーの割合を表 1 の様に変更すること以外は実施例 1 と同様の操作を行って基材を得 た。 結果を表 1 に示す。
例 1 ' 施 ¾3 実 ite例 4 ¾ife例 5 比校例 1 比 ^例 3 参 例3 リマ-割合 (w ) 10 5 15 10 10 10 10 10 10 40
65:35 70:30 65:35 70:30 68:32 86:14 66:34 64:36 55:45 ―
74.26 74:26 71 :Z9 70:30 68:32 80.20 70:30 71:29 80.20 ― i Ws /し出ノ 0.28 0.28 0. 9 0.28 0.28 0.28 0.14 0.50 0.28 0.40 - 曰 tri 1 O/m2)ノ 300 300 300 300 300 300 300 300 300 450 ill - i\'イソ々'一 f¾" 80:20 90: 10 70:30 80:20 80:20 80:20 80:20 80:20 80:20 60:40
Η 'ιί ^ 1 J - w l ¾ノ 1.0 1.0 1.0 1.0 1.0 0.0 1.0 1.0 5.0 0.3
80/80 74/74 82/82 80/80 80/80 80/80 76/76 79/79 77/77 70/70
( A/fil|B)
晴 Φ) 、 10/9 9/9 12/1 12/12 12/12 16/16 «J/9 16/16 7/6 16/16 ilfi気 l¾!(cm3/cm2/sec 28 34 25 28 25 30 50 12 25 0 at 125pa)
引'; lり強度 (kg/cm) 5.0 4.5 6.0 5.5 5.0 9.0 4.0 7.0 3.5 10.0 風合い 〇 〇 〇 ◎ ® X X X O 〇
Wl to 20
W2 30 10
W2' 30
M 1 90 80
M2 70 90
M2' 70
表 1 から も明らかなよ うに、 本発明の実施例と比較例 1および比 較例 2 とを比べると、 実施例 1 〜 5のすベてにおいて伸張回復率お よび剛钦度が良好であるこ とが明らかである。 一方、 比較例 1の非 含浸型基材を見ると通気度は高いものの、 風合い 劣っており、 人 ェ皮革用基布と して有用に用いるこ とが出来ない。 また、 参考例 3 のウ レタ ン含浸型基材を見ると、 伸張回復率および剛钦度は良好で あるものの、 通気性が劣っている。
実施例 6
ハ ー ドセグメ ン ト成分と して、 エラス トマ一のハ一 ドセグメ ン 卜 成分の全重量を基準と して 7 0 %がポ リ ブチレンテレフタ レー トを 占め、 ソフ トセグメ ン ト成分と して、 エラス 卜マーのソフ トセグメ ン 卜成分の全重量を基準と してポリオキシテ 卜ラメチレングリ コ 一 ノレ力《 7 0 %を占め、 融点 1 5 0 °Cのポリ エステルエーテルエラス 卜 マ一と、 D M F とを重量比で 2 0 : 8 0 となるように 1 2 5て下で 溶解した。
該溶解物を実施例 1の操作を実施して得られた基材上に流廷し、 室温で 3 0分間放冷した。 流廷した被覆層の全体が白濁したこ と 目 視にて確認した後、 基材ごと 5 0 °Cの温水中に 3 0分間浸漬させた 後、 8 0 °Cで乾燥をおこなった。 得られた表面被覆層は白色で表面 の均一性が良好な多孔質ポ リエステルエラス トマ一層であり、 空隙 率は 6 5 %であつた。
このよう にして得られた非含浸型基材よりなる人工皮革は、 皮革 様柔钦で、 且つ丸みのあるコシを有する風合いとなった。 得られた 基材の物性値を表 2に示す。 得られた人工皮革は耐光性 (〇) およ び風合いも共に優れていた。
実施例 Ί
ハ 一 ドセグメ ン ト成分と して、 エラス トマ一のハー ドセグメ ン 卜 成分の全重量を基準と して 5 0 %がポリ ブチレンテレフタ レー トを 占め、 ソフ トセグメ ン ト成分と して、 エラス トマ一のソフ トセグメ ン ト成分の全重量を基準と してポリオキシテ トラ メチレ ングリ コ 一 ルが 5 0 %を占め、 融点 1 7 4 °Cのポリエステルエーテルエラス 卜 マーと、 D M F とを重量比で 2 0 : 8 0 となるように 1 2 5て下で 溶解した。
該溶解物を用いること以外は実施例 6 と同様の操作を行って表面 被覆を行った。 得られた表面被覆層は白色で、 表面の均一性が良好 な球状集合体ポ リエステルエラス トマ一層となり、 空隙率は 4 5 % であった。
このようにして得られた非含浸型基材よりなる人工皮革は、 実施 例 6で得られた人工皮革と同様、 皮革様柔钦で、 且つ丸みのあるコ シを有する風合いとなっ た。
実施例 8
実施例 1の操作を実施して得られた非含浸型基材上に、 従来のボ リ ウ レタ ン系エラス トマ一による表面被覆を行つた。 得られた非含 浸型基材よりなる人工皮革は、 実施例 6および 7の操作を実施して 得られた人工皮革と比較して通気性が劣り、 また耐光性は多少悪い (△) が、 皮革様柔钦で、 且つ丸みのあるコ シを有する風合いとな つた o
比較例 5
実施例 6 において、 基布にシ リ コ ン水溶液に通さないこ と以外は 同様の操作を行い表面被覆不織布を得た。 該表面被覆不織布は、 弾 性が強く ゴムライ クであり人工皮革と して用いるのは適さなかつた。 比較例 6
実施例 6 において、 ポ リ エステル系エラス トマ一による表面被覆 を行うに際し、 ゲル化を行わないこ と以外は同様の操作を行って非 含浸型基材よりなる人工皮革を得た。 該人工皮革の表面層は透明で 空隙率が 5 %でフィ ルム状となり、 該人工皮革の、 通気性が 0 c m 3 Z c m 2/ s、 また弾性が強く ゴムライ クであり人工皮革と しては 適していなかった。 表 2
Figure imgf000039_0001
実施例 9
参考例 1および参考例 2の操作により得られた、 バイ ンダ一繊維 2 0 %重量%とマ ト リ ツ クス繊維 8 0重量%とを混綿し、 カー ド機 に通した後、 クロスレイ法でゥュブを作製し、 作^したゥヱブに二 — ドルパンチ ( 1 5 0 0パンチ/ c m 2) で強制絡合処理を施し、 7 0て温水中で 1分間収縮処理し、 1 2 0て雰囲気中で乾燥を行った。 面積収縮率は 5 5 %であった。 次に 1 7 0 °C雰囲気中で 3分間予熱 をかけた後、 すぐに 1 9 0 、 5 0 k g c m条件でエ ンボス処理 を行った (ク リ アラ ンスは基材の厚みの 7 0 % ) 。 その際、 凹凸部 の面積比は (凹部 : 凸部) = ( 5 0 : 5 0 ) で、 凹部と凸部の厚み 方向の長さが、 基材の厚み 2 0 %のエンボス抦を使用した。 得られ た基材は皮革様柔钦で、 かつ丸みのあるコシを有するものとなった。 次いで基材のエンボス処理した側に、 1 8 %濃度のポリ ウレタン一 ジメチルホルムアルデヒ ド溶液を 8 0 0 gノ m 2の目付でコーティ ン グしたのち、 水浸凝固、 水洗、 乾燥して人工皮革を作製した。 得ら れた人工皮革の物性値を表 3に示す。
実施例 1 0および 1 1
実施例 9において、 ェンボス柄を種々変更すること以外は実施例 9と同様の操作を行って人工皮革を得た。 結果を表 3に示す。
表 3
考 ^Δ ίίΐεί例Τ7 l We例 11 エンボス条件
(凹部:凸部) 面積比 50:50 90:10 50:50 基材に対する凹凸深さ割合 20% 20% 5%
Λ 皮革物性
目付 ( ) 420 420 420 厚み (誦) 1.40 1.45 1.35 密度 (g cm3) 0.30 0.29 0.31 鱸部割合
(凹部:凸部) 58:42 52:48 52:48 剝離麵 kg/cm) 3.5 3.1 3.3 剛软度 (cm) 7.7 8.5 8.3 腿性 〇 〇 〇 風合い ◎ ◎ ◎
[図面の簡単な説明]
図 1 は、 本発明の非含浸型基材の断面図であって、 図 5の電子顕 微鏡写真図 ( 3 5 0倍) から写し取ったものである。
図 2は、 本発明の非含浸型基材の断面図であって、 図 6の電子顕 微鏡写真図 ( 3 5 0倍) から写し取ったものである。
図 3 は、 本発明の非含浸型基材の断面図であって、 図 7の電子顕 微鏡写真図 ( 3 5 0倍) から写し取ったものである。
図 4は、 本発明の非含浸型基材の断面図であって、 図 8の電子 顕微鏡写真図 ( 3 5 0倍) から写し取ったものである。
図 5は、 本発明の非含浸型基材中に散在する、 単独結合単位であ る完全融着部を撮影した電子顕微鏡写真図 ( 3 5 0倍) である。 図 6は、 本発明の非含浸型基材中に散在する、 単独結合単位であ る部分融着部を撮影した電子顕微鏡写真図 ( 3 5 0倍) である。 図 7は、 本発明の非含浸型基材中に散在する、 複合結合単位であ る完全融着部を撮影した電子顕微鏡写真図 ( 3 5 0倍) である。 図 8は、 本発明の非含浸型基材中に散在する、 複合結合単位であ る部分融着部を撮影した電子顕微鏡写真図 ( 3 5 0倍) である。 図 9は、 比較例 1 において得られた非含浸型基布の断面を撮影し た電子顕微鏡写真図 ( 3 0 0倍) である。
図 1 0は、 比铰例 2において得られたウレタ ン含浸型基布の断面 を撮影した電子顕微鏡写真図 ( 3 5 0倍) である。
図 1 1は、 エラス トマ一表面層の内部構造の一形態である多孔質 構造を撮影した電子顕微鏡写真図 ( 3 5 0倍) である。
図 1 2は、 エラス トマ一表面層の内部構造の一形態である球状集 合体を撮影した顕微鏡写真図 ( 3 5 0倍) である。
[符号の説明]
1 マ 卜 リ ツ クス纔維
2 バイ ンダー鏃維表面に露出するように配された弾性ポ リマ一 3 バイ ンダー繊維に配されたコア部 単独結合単位である完全融着部分 複合結合単位である完全融着部 単独結合単位である部分融着部 複合結合単位である部分融着部 弾性結合点

Claims

請求の範囲
1. 非弾性のマ ト リ ックス繊維と、 弾性ボ リ マ一がその表面に配さ れたバイ ンダー繊維とから構成され、 且つ該バイ ンダー繊維は該マ 卜 リ ッ クス繊維中に分散しながらマ 卜 リ ッ クス繊維に融着している 繊維集合体が、 以下の a〜 eの要件を同時に満足するこ とを特徴と する人工皮革用基布と して有用な非含浸型基材。
a . 基材全重量に占める弾性ボ リマーの割合は 2 .5〜 2 5 %の範囲 にある 二 と ;
b . 密度力' 0 .1 5〜0 .4 5 g r Z c m3の範囲にあるこ と ; c . バイ ンダー繊維を構成する弾性ポ リ マー力 \
c - 1 . 単独のマ ト リ ッ クス織維に融着してなる単独結合単位、 および
c一 2 . 近接状態にある複数本のマ ト リ ッ クス雄維に集合的に融 着してなる複合結合単位が散在すること ;
d . 該単独結合単位および複合結合単位にあっては、
d — 1 . —部のマ ト リ ッ クス繊維が、 その全周長に亘つて弾性ポ リマ一により被覆されながら融着されている完全融着部、 および d - 2 . 他の一部のマ ト リ ッ クス繊維が、 その全周長に亘つて弾 性ポ リ マーによ り被覆されながらも、 両者の界面の一部は融着状態 にあり、 その余の界面部は非接触状態にあるような部分融着部が形 成され、 その際、
d — 3 . 該完全融着部と部分融着部との個数比率が、 3 5 : 6 5 〜 7 5 : 2 5の範囲にあること ; そ して
e . バイ ンダー織維同士の交差点においては、 弾性ボ リ マーによ り 融着された弾性結合点が形成されているこ と。
2. 基材全重量に占める弾性ボ リマーの割合が 5〜 1 5 %の範囲に ある、 請求項 1記載の非含浸型基材。
3. 近接状態にあるマ ト リ ッ クス繊維の本数が 2 ~ 5本の範囲にあ る、 請求項 1記載の非含浸型基材。
4. 完全融着部と部分融着部との合計個数と弾性結合点との個数比 率が 9 5 : 5 〜 5 0 : 5 0の範囲にある、 請求項 1記載の非含浸型 基材。
5. マ ト リ ッ クス繊維とバイ ンダー繊維との混綿比が重量比で 9 5 : 5 〜 5 0 : 5 0の範囲にある、 請求項 1記載の非含浸型基材。
6. —部のマ ト リ ッ クス鏃維は、 その繊維横断面周長の 6 5 %以上 の周長部分が弾性ボ リマーと非接触伏態にある、 請求項 1記載の非 含浸型基材。
7. 一部のマ ト リ ッ クス繊維は、 その繊維横断面周長の 3 5 %を越 える周長部分が弾性ポ リ マ一と接触状態にある、 請求項 1記載の非 含浸型基材。
8. 一部のマ ト リ ッ クス維維の纖維表面には、 離型剤が付着してい る、 請求項 1記載の非含浸型基材。
9. 離型剤が付着したマ ト リ ッ クス繊維 ( A— 1 ) と、 離型剤が付 着していないマ ト リ ッ クス織維 (A— 2 ) との比が重量比で、 9 9 : 1 〜 2 0 : 8 0の範囲にある、 請求項 8記載の非含浸型基材。
1 0. 離型剤の付着量がマ ト リ ッ クス繊維 ( A— 1 ) の繊維重量を 基準と して、 0 . 1 〜 5 . 0重量%の範囲にある、 請求項 9記載の非 含浸型基材。
1 1 . 離型剤がシ リ コ ン系化合物である、 請求項 8記載の非含浸型 基材。
1 2. シ リ コ ン系化合物力 ボ リ シロキサンである、 請求項 1 1記 載の非含浸型基材。
1 3. バイ ンダー繊維が、 弾性ポリ マーと非弾性ポ リ マーとから構 成され、 該弾性ボリマーがその繊維表面に露出している、 請求項 1 記載の非含浸型基材。
1 4. 弾性ボリ マーがバイ ンダー緘維の繊維表面積の 3 0 %以上を 占めるよう に露出している、 請求項 1記載の非含浸型基材。
1 5. バイ ングー繊維を構成する弾性ポ リマーと非弾性ポ リ マーと 力 該バイ ンダー繊維を加熱 · 加圧処理した際に、 互いに分離しな いように複合化されている、 請求項 1 3記載の非含浸型基材。
1 6. 弾性ボ リ マーがボ リエステル系エラス 卜マーである、 請求項 1 3記載の非含浸型基材。
1 7. 非弾性ボ リマーがボ リ ブチレンテレフタ レ一 トである、 請求 項 1 3記載の非含浸型基材。
1 8. マ ト リ ッ クス繊維の少な く と も一部に高収縮性繊維が混綿さ れている、 請求項 1記載の非含浸型基材。
1 9. マ ト リ ッ クス繊維の少な く と も一部に自己伸長性繊維が混綿 されている、 請求項 1記載の非含浸型基材。
2 0. 高収縮性繊維が、 非弾性ボリ エステル系ボ リマ一からなる、 請求項 1 8記載の非含浸型基材。
2 1. 高収縮性繊維が、 非弾性ナイ ロン系ポ リマーからなる、 請求 項 1 8記載の非含浸型基材。
2 2. 自己伸長性繊維が、 非弾性ポ リエステル系ポリマーからなる、 請求項 1 9記載の非含浸型基材。
2 3. 目己伸長性繊維が、 非弾性ナイ ロ ン系ボ リ マーからなる、 請 求項 1 9記載の非含浸型基材。
2 4. 2 0 %伸長回復率が厚み方向と直交する平面上での全方位の うち該平面上で直交する二軸が共に 5 0〜 9 0 %の範囲にある、 請 求項 1 記載の非含浸型基材。
2 5. カ ンチレバー法により測定した剛钦度が厚み方向と直交する 平面上での全方位のうち該平面上で直交する二軸が共に 2〜 2 0 c mの範囲にある、 請求項 1記載の非含浸型基材。
2 6. 厚み方向の通気度力 1 0〜 1 0 0 c m 3Z c m 2ノ s e c a t 1 2 4 P aの範囲にある、 請求項 1 記載の非含浸型基材。
2 7. マ ト リ ツ クス織維とバイ ンダー繊維との混綿率がそれぞれ異 なる不織布が少なく とも 2層積層されており、 かつ隣接状態にある 不織布間でのバイ ンダー繊維の混綿率が下記一般式 ( I ) を満足す るこ とを特徴とする、 請求項 1記載の非含浸型基材。
1 0≤ | W1 -W2 | ≤ 30 · · · ( I )
(式中、 W1および W2は、 隣接する夫々の不織布層中のバイ ンダ 一繊維の混綿率 (w t %) を表す。 )
28. 該基材は、 その平面方向に対して、 融着部の規則的な密度分 布を有している、 請求項 1記載の非含浸型基材。
29. 該基材は、 その表面が多数の凹凸形状を有している請求項 1 記載の非含浸型基材。
30. 請求項 1記載の基材の表面にエラ ス トマ一層が形成されてい るこ とを特徴とする、 人工皮革用基布。
3 1. エラス トマー層が均一な多孔質構造体または球伏集合体より 実質的になる、 請求項 3 0記載の人工皮革用基布。
32. エラス トマ一層がポ リ エステル系エラス ト マ一よ り実質的に なる、 請求項 3 0記載の人工皮革用基布。
33. エラス 卜マ一層がポ リ ウ レタ ン系エラス トマ一よ り実質的に なる、 請求項 3 0記載の人工皮革用基布。
34. 非弾性のマ ト リ ッ クス繊維と、 弾性ポ リマーがその表面に露 出するように配されたバイ ンダー繊維とから構成され、 且つ該バイ ンダー繊維は該マ ト リ ッ クス纖維中に分散しながらマ 卜 リ ッ クス繊 維に融着している請求項 1記載の非含浸型基材の製造方法であつて、 該方法は下記 f および gの工程を逐次的に含み、 さ らに、
工程 gの前の任意の段階で、 マ ト リ ッ クス繊維とバイ ンダー繊維 との交差点の一部において、 該繊維同士の融着部の形成が阻害され るような工程を含む、 請求項 1記載の人工皮革用基布と して有用な 非含浸型基材の製造方法。
f .少な く と もマ ト リ ツ クス繊維とバイ ンダー繊維とを含むゥヱ ッブ に、 強制絡合処理および収縮処理を施す工程。
g .かく して得られた不織布に、 上記バイ ンダー繊維の融着温度で加 圧 · 加熱処理を行う工程。
3 5. 工程 f において、 該バイ ンダー繊維の混綿率が異なる少なく とも 2種のゥ ッブを樓層し、 強制絡合処理および収縮処理を施す、 請求項 3 4記載の非含浸型基材の製造方法。
3 6. マ ト リ ッ クス繊維とバイ ンダー繊維との融着を阻害する処理 力 マ ト リ ックス繊維表面に離型剤を付着させる処理である、 請求 項 3 4記載の非含浸型基材の製造方法。
3 7. マ 卜 リ ッ クス繊維力《、 2 0 0ての乾熱で 5分間の処理を行つ た後の複屈折率が 0 . 0 2〜 0 . 1 4の範囲にあり、 且つその際の結 晶化度が 1 0 ~ 3 5 %の範囲にある、 請求項 3 4記載の非含浸型基 材の製造方法。
3 8. マ ト リ ツ クス雄維が、 Ί 0て温水中で 1分間保持したときの 収縮率が 2 0 ~ 7 0 %であって、 且つ該保持後の短繊維を 1 8 0 °C の乾熱下 1分間処理した後の伸長性が 5 ~ 5 0 %の範囲にある高収 縮性短繊維を含む、 請求項 3 4記載の非含浸型基材の製造方法。
3 9. マ ト リ ツ クス繊維力 7 0 °C温水中で実質的に収縮せずに、
1 8 0 °Cの乾熱下 1分間処理した後の伸長性が 5 ~ 5 0 %の範囲に ある自己伸長性短繊維を含む、 請求項 3 4記載の非含浸型基材の製 造方法。
4 0. 加圧 ' 加熱処理により、 バイ ンダー繊維に配されている弾性 ポリマー同士が相互に接触している点の、 少なく とも一部を融着さ せて不織布中に網目構造を形成する、 請求項 3 4記載の非含浸型基 材の製造方法。
4 1 . 強制絡合が二一 ドルパンチにより施される、 請求項 3 4記載 の非含浸型基材の製造方法。
4 2. 加圧 ♦加熱処理時の圧力条件が、 線圧で 1 0〜 1 5 0 0 k g Z c mである、 請求項 3 4記載の非含浸型基材の製造方法。
4 3. エンボス ロールにより加圧 · 加熱処理して表面に多数の凹凸 形状を有しかつ平面方向に対して融着部の規則的な密度分布を形成 させる請求項 3 4記載の非含浸型基材の製造方法。
4 4. 請求項 3 0記載の非含浸型基材ょりなる人工皮革用基布を製 造するに際し、 エラス トマ一と、 水と混和し得る極性溶媒とからな る溶媒組成物を請求項 1 記載の非含浸型基材の表面に流廷し、 次い で冷却ゲル化した後、 水性溶媒によって該溶媒組成物から該極性溶 媒を抽出するこ とを特徴とする、 人工皮革用基布の製造方法。
4 5. エラス トマ一力 ハー ドセグメ ン ト部分を、 芳香族ジカルボ ン酸を主たる酸成分とする結晶性ポ リ エステルと し、 ソフ トセグメ ン 卜部分をポ リ エーテル、 低結晶性ポ リ エステル、 非結晶性ボ リ エ ステルからなる群より選ばれる少なく と も一種のボ リ マーとする、 請求項 4 4記載の人工皮革用基布の製造方法。
4 6. エラス トマ一のソ フ トセグメ ン 卜部分がボ リ エ一テルのみか ら構成される、 請求項 4 4記載の人工皮革用基布の製造方法。
4 7. 結晶性ポ リ エステルのハー ドセグメ ン ト部分が、 テレフ タル 酸、 イ ソフタル酸、 およびこれらのエステル形成性誘導体、 2 . 6— ナフタ レンジカルボン酸からなる群より選ばれる少なく と も一種の ジカルボン酸成分から構成される、 請求項 4 4記載の人工皮革用基 布の製造方法。
4 8 . 極性溶媒が、 N , N—ジメ チルホル厶ア ミ ド、 N , N—ジメ チ ノレァセ トア ミ ド、 および N—メ チルビロ リ ドリ ンよりなる群から選 ばれた少な く と も一種の溶媒から主と してなる、 請求項 4 4記載の 人工皮革用基布の製造方法。
4 9. 請求項 3 0記載の非含浸型基材よりなる人工皮革用基布を製 造するに際し、 請求項 1 記載の非含浸型基材の表面に先ず多孔質ボ リ ウ レ タ ン層を形成し、 さ らに仕上げポ リ ウ レタ ン皮膜を形成する こ とを特徴とする、 非含浸型基材よりなる人工皮革用基布の製造方 法。
PCT/JP1997/001354 1996-04-22 1997-04-18 Materiau de base non impregne servant de substrat textile pour la fabrication de cuir artificiel, cuir artificiel constitue de ce materiau, et procede de fabrication associe WO1997040230A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US08/981,445 US5993944A (en) 1996-04-22 1997-04-18 Non-impregnated type substrate useful as base fabric for artificial leather, artificial leather made therefrom, and process for their production
DE69714962T DE69714962T2 (de) 1996-04-22 1997-04-18 Als grundlage für kunstleder geeignetes nichtimprägniertes basismaterial, kunstleder damit und verfahren zur herstellung
EP97917438A EP0855461B1 (en) 1996-04-22 1997-04-18 Non-impregnated base material useful as a base fabric for artificial leather, artificial leather thereof and process for their production
KR1019970709619A KR100353299B1 (ko) 1996-04-22 1997-04-18 인조피혁용기포로서유용한비함침형기재,그로부터제조한인조피혁및그의제조방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP8/99966 1996-04-22
JP9996696 1996-04-22

Publications (1)

Publication Number Publication Date
WO1997040230A1 true WO1997040230A1 (fr) 1997-10-30

Family

ID=14261424

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/001354 WO1997040230A1 (fr) 1996-04-22 1997-04-18 Materiau de base non impregne servant de substrat textile pour la fabrication de cuir artificiel, cuir artificiel constitue de ce materiau, et procede de fabrication associe

Country Status (7)

Country Link
US (1) US5993944A (ja)
EP (1) EP0855461B1 (ja)
KR (1) KR100353299B1 (ja)
CN (1) CN1078916C (ja)
DE (1) DE69714962T2 (ja)
TW (1) TW438927B (ja)
WO (1) WO1997040230A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0969139A3 (en) * 1998-06-30 2003-10-08 Kuraray Co., Ltd. Manufacturing process for leather-like sheet
JP2014227637A (ja) * 2013-05-24 2014-12-08 旭化成せんい株式会社 人工皮革用不織布及び人工皮革
WO2019004180A1 (ja) * 2017-06-27 2019-01-03 セーレン株式会社 合成皮革

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI223019B (en) * 1999-03-16 2004-11-01 Kuraray Co Artificial leather sheet substrate and production process thereof
US6716776B2 (en) 1999-05-13 2004-04-06 Teijin Limited Nonwoven fabric made from filaments and artificial leather containing it
DE69920177T2 (de) * 1999-05-19 2005-09-22 Teijin Ltd. Vliesstoffbahn aus Filamenten und diese enthaltendes Kunstleder
AU6539400A (en) * 1999-08-13 2001-03-13 Gore Enterprise Holdings, Inc. Fibrous polymeric material and its composites
US6562457B1 (en) 2001-10-31 2003-05-13 E. I. Du Pont De Nemours And Company Polyether ester elastomer comprising polytrimethylene ether ester soft segment and tetramethylene ester hard segment
US6599625B2 (en) 2001-10-31 2003-07-29 E. I. Du Pont De Nemours And Company Polyether ester elastomer comprising polytrimethylene ether ester soft segment and trimethylene ester hard segment
US6852823B2 (en) 2002-08-09 2005-02-08 E. I. Du Pont De Nemours And Company Polyurethane and polyurethane-urea elastomers from polytrimethylene ether glycol
US20040242099A1 (en) * 2003-05-29 2004-12-02 Kuraray Co., Ltd. Leather-like sheet and production method thereof
KR100601767B1 (ko) 2003-08-28 2006-07-19 가부시키가이샤 구라레 인공 피혁 및 그 제조 방법
US7645353B2 (en) 2003-12-23 2010-01-12 Kimberly-Clark Worldwide, Inc. Ultrasonically laminated multi-ply fabrics
US8267681B2 (en) 2009-01-28 2012-09-18 Donaldson Company, Inc. Method and apparatus for forming a fibrous media
EP2668326B1 (en) 2011-01-28 2016-03-30 Donaldson Company, Inc. Method and apparatus for forming a fibrous media
WO2012103547A1 (en) 2011-01-28 2012-08-02 Donaldson Company, Inc. Method and apparatus for forming a fibrous media
TW201237231A (en) * 2011-03-03 2012-09-16 San Fang Chemical Industry Co Artificial leather having composite fiber and method for making the same
US9957647B2 (en) * 2012-06-22 2018-05-01 Toray Industries, Inc. False-twisted low-fused polyester yarn and multilayer-structure woven or knitted fabric
JP6677540B2 (ja) * 2016-03-15 2020-04-08 セーレン株式会社 車両用複合表皮材
CN109475215B (zh) * 2016-07-07 2021-11-23 株式会社黛怡茜 化妆品
WO2018225671A1 (ja) 2017-06-09 2018-12-13 東洋紡株式会社 長繊維不織布およびそれを用いたフィルター補強材
KR102148958B1 (ko) * 2020-03-09 2020-08-27 고은영 생분해성 친환경 소재 및 이의 제조 방법
TWI779532B (zh) * 2021-03-24 2022-10-01 三芳化學工業股份有限公司 人工皮革結構及其製造方法
TW202302959A (zh) * 2021-06-30 2023-01-16 三芳化學工業股份有限公司 創新之皮革及其製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4942772A (ja) * 1972-08-30 1974-04-22
JPS5620656A (en) * 1979-07-30 1981-02-26 Asahi Chemical Ind Substrate fabric for simulated leather

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5287201A (en) * 1976-01-09 1977-07-20 Mitsubishi Rayon Co Production of leather like sheet article
JPS62104979A (ja) * 1985-10-28 1987-05-15 Toray Ind Inc 人工皮革状布帛の製造方法
JPH0762302B2 (ja) * 1986-07-03 1995-07-05 株式会社クラレ 繊維絡合体およびその製造法
JP2708689B2 (ja) * 1993-02-03 1998-02-04 リンナイ株式会社 燃焼装置
JP3142099B2 (ja) * 1993-11-24 2001-03-07 株式会社クラレ 平滑な皮革様シート状物の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4942772A (ja) * 1972-08-30 1974-04-22
JPS5620656A (en) * 1979-07-30 1981-02-26 Asahi Chemical Ind Substrate fabric for simulated leather

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0855461A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0969139A3 (en) * 1998-06-30 2003-10-08 Kuraray Co., Ltd. Manufacturing process for leather-like sheet
JP2014227637A (ja) * 2013-05-24 2014-12-08 旭化成せんい株式会社 人工皮革用不織布及び人工皮革
WO2019004180A1 (ja) * 2017-06-27 2019-01-03 セーレン株式会社 合成皮革
JPWO2019004180A1 (ja) * 2017-06-27 2020-04-23 セーレン株式会社 合成皮革
US11060240B2 (en) 2017-06-27 2021-07-13 Seiren Co., Ltd. Synthetic leather

Also Published As

Publication number Publication date
DE69714962D1 (de) 2002-10-02
KR19990028305A (ko) 1999-04-15
CN1196766A (zh) 1998-10-21
US5993944A (en) 1999-11-30
EP0855461B1 (en) 2002-08-28
EP0855461A1 (en) 1998-07-29
CN1078916C (zh) 2002-02-06
KR100353299B1 (ko) 2002-11-18
EP0855461A4 (en) 2000-07-26
TW438927B (en) 2001-06-07
DE69714962T2 (de) 2003-05-28

Similar Documents

Publication Publication Date Title
WO1997040230A1 (fr) Materiau de base non impregne servant de substrat textile pour la fabrication de cuir artificiel, cuir artificiel constitue de ce materiau, et procede de fabrication associe
JP4464119B2 (ja) 人工皮革用基材、これをベースとする各種人工皮革、および人工皮革用基材の製造方法
KR20000006532A (ko) 피혁형시트의제조방법
TWI312021B (ja)
JP4560511B2 (ja) 銀付き調人工皮革
KR102337556B1 (ko) 시트상물 및 그의 제조 방법
JP2004211262A (ja) 耐摩耗性の良好な皮革様シート
JP4145434B2 (ja) 皮革様シートおよびその製造方法
JP4346766B2 (ja) 皮革様シートおよびその製造方法
JP4046901B2 (ja) 多成分系繊維およびそれを用いた皮革様シート
JPS6045656A (ja) 人工皮革シ−トの製造方法
JP4194719B2 (ja) 皮革様シートおよびその製造方法
JP3409554B2 (ja) 皮革様シート状物およびその製造方法
JP4017786B2 (ja) 多成分系繊維およびそれを用いた皮革様シート
JPH11200255A (ja) 人工皮革用基布として有用な非含浸型基材およびその製造方法
JP4429751B2 (ja) 伸縮性を有する皮革様シート基体およびその製造方法
JP3983645B2 (ja) ヌバック調人工皮革
JP3961327B2 (ja) 皮革様シート
JP3973783B2 (ja) 皮革様シート
KR100368622B1 (ko) 필라멘트로부터 만들어진 부직포 및 그것을 함유하는 인공피혁
JP2001248023A (ja) 多成分系繊維およびそれを用いた皮革様シート
JP2003253571A (ja) タテ方向伸縮性に優れた人工皮革及びその製造方法
JP2022034525A (ja) 人工皮革基材、立毛人工皮革及び人工皮革基材の製造方法
JP2003313784A (ja) 皮革様シート
JP2007204863A (ja) ヌバック調人工皮革の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 97190761.7

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1997917438

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1019970709619

Country of ref document: KR

Ref document number: 08981445

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1997917438

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019970709619

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019970709619

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1997917438

Country of ref document: EP