WO1997038223A1 - Bougie de prechauffage, son procede de fabrication, et detecteur de courant ionique - Google Patents

Bougie de prechauffage, son procede de fabrication, et detecteur de courant ionique Download PDF

Info

Publication number
WO1997038223A1
WO1997038223A1 PCT/JP1997/001254 JP9701254W WO9738223A1 WO 1997038223 A1 WO1997038223 A1 WO 1997038223A1 JP 9701254 W JP9701254 W JP 9701254W WO 9738223 A1 WO9738223 A1 WO 9738223A1
Authority
WO
WIPO (PCT)
Prior art keywords
ion current
current detection
heating element
electrode
insulator
Prior art date
Application number
PCT/JP1997/001254
Other languages
English (en)
French (fr)
Inventor
Yasuyuki Sato
Masamichi Shibata
Hiroyuki Murai
Atsushi Kurano
Original Assignee
Denso Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP16647096A external-priority patent/JP3814873B2/ja
Priority claimed from JP26367396A external-priority patent/JP3823393B2/ja
Priority claimed from JP26367296A external-priority patent/JP3785696B2/ja
Priority claimed from JP26367696A external-priority patent/JP3785698B2/ja
Priority claimed from JP26367596A external-priority patent/JP3785697B2/ja
Priority claimed from JP26367496A external-priority patent/JP3823394B2/ja
Priority claimed from JP26937196A external-priority patent/JP3785699B2/ja
Priority claimed from JP26937296A external-priority patent/JP3834889B2/ja
Priority claimed from JP04925997A external-priority patent/JP3605990B2/ja
Priority claimed from JP04925897A external-priority patent/JP3605989B2/ja
Priority claimed from JP05624197A external-priority patent/JP3704869B2/ja
Priority claimed from JP8602697A external-priority patent/JPH10110952A/ja
Priority claimed from JP8578497A external-priority patent/JPH10110950A/ja
Priority claimed from JP08578597A external-priority patent/JP3674231B2/ja
Priority to EP97915709A priority Critical patent/EP0834652B1/en
Priority to DE69731160T priority patent/DE69731160T2/de
Priority to US08/973,799 priority patent/US6483079B2/en
Application filed by Denso Corporation filed Critical Denso Corporation
Publication of WO1997038223A1 publication Critical patent/WO1997038223A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23QIGNITION; EXTINGUISHING-DEVICES
    • F23Q7/00Incandescent ignition; Igniters using electrically-produced heat, e.g. lighters for cigarettes; Electrically-heated glowing plugs
    • F23Q7/001Glowing plugs for internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P17/00Testing of ignition installations, e.g. in combination with adjusting; Testing of ignition timing in compression-ignition engines
    • F02P17/12Testing characteristics of the spark, ignition voltage or current
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P19/00Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition
    • F02P19/02Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition electric, e.g. layout of circuits of apparatus having glowing plugs
    • F02P19/028Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition electric, e.g. layout of circuits of apparatus having glowing plugs the glow plug being combined with or used as a sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P17/00Testing of ignition installations, e.g. in combination with adjusting; Testing of ignition timing in compression-ignition engines
    • F02P17/12Testing characteristics of the spark, ignition voltage or current
    • F02P2017/125Measuring ionisation of combustion gas, e.g. by using ignition circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2227/00Ignition or checking
    • F23N2227/42Ceramic glow ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/12Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23QIGNITION; EXTINGUISHING-DEVICES
    • F23Q7/00Incandescent ignition; Igniters using electrically-produced heat, e.g. lighters for cigarettes; Electrically-heated glowing plugs
    • F23Q7/001Glowing plugs for internal-combustion engines
    • F23Q2007/002Glowing plugs for internal-combustion engines with sensing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23QIGNITION; EXTINGUISHING-DEVICES
    • F23Q7/00Incandescent ignition; Igniters using electrically-produced heat, e.g. lighters for cigarettes; Electrically-heated glowing plugs
    • F23Q7/001Glowing plugs for internal-combustion engines
    • F23Q2007/004Manufacturing or assembling methods

Definitions

  • the present invention relates to a glow plug for promoting ignition and combustion of fuel, an ion current detection device using the glove lug, and a method for manufacturing a glove lug.
  • Japanese Patent Application Laid-Open No. 7-2595997 describes that a sleeve-shaped electrode insulated from the injection nozzle and the cylinder head of the engine is attached to the mounting seat of the fuel injection nozzle, and the electrode is detected outside. Connected to the circuit Thus, a method for detecting an ion current (degree of ionization of fuel gas) accompanying fuel combustion is disclosed.
  • US Pat. No. 4,739,731 discloses a sensor for detecting ion current (conductivity of ionized fuel gas) using a ceramic glove plug. That is, in this technique, a platinum conductive layer is attached to the surface of the heater (heating element) of the ceramic glove lug, and this conductive layer is insulated from the combustion chamber and the glow plug mounting bracket. Then, an external power source for measuring the ion current (250 V DC) is applied to the conductive layer to detect the ion current accompanying the fuel combustion.
  • ion current conductivity of ionized fuel gas
  • the ignition and combustion of the fuel is generally promoted by the heating action of the heating element at the beginning of the low temperature start of the engine.
  • the heating state of the heating element is usually continued until the engine is completely warmed up and the combustion state is stabilized (generally referred to as afterglow). Then, after the end of the afterglow, the heat generation action of the glove lug was stopped, and the ion current detection process was started.
  • the existing ion current detection device only exhibits a heating effect during the afterglow period, and cannot detect the ion current. Therefore, during such a period, the combustion state control using the detection result of the ion current cannot be performed, and there has been a problem that the combustion state cannot be optimally controlled. Specifically, during the afterglow period, for example, feedback control of ignition timing using the detection result of ion current and misfire detection processing cannot be performed, and the combustion state of the fuel is optimized. It was difficult to control.
  • a force is attached to the outer periphery of the ceramic heating portion during use, and an exposed electrode for ion current detection and a ground portion insulated therefrom (Braug housing ⁇ cylinder head) ) And the insulation resistance between them decreases.
  • the electrode portion is electrically connected to the ground portion, and a leakage current flows through the deposited carbon even though combustion ions are not originally generated.
  • the ion current waveform is different from the desired waveform due to the above-described leakage current, and the accuracy of the ignition timing detection process and the misfire detection process using the detection result deteriorates.
  • the insulation state between the exposed electrode and the earth part depends on the pressure in the combustion chamber, and especially during the compression stroke of the engine, the insulation resistance is low. The leakage current easily flows down.
  • the rapid change in temperature when using the glow plug could damage the ion current detection electrode due to thermal shock.
  • a large amount of expensive noble metal such as platinum is required to secure the heat resistance and wear resistance of the ion current detection electrode, there is a disadvantage that the glow plug itself becomes very expensive. .
  • the ion current detection electrode supported at the tip of the glow plug is exposed to a high-temperature flame, stress concentration tends to occur near the ion current detection electrode, and the ceramic glow plug may be damaged by cracks or the like. May occur.
  • an object of the present invention is to provide a glove lug that can detect a ion current with a simple configuration and with high accuracy, an ion current detection device using the glove lug, and a method of manufacturing a glow plug.
  • the present invention provides an ion current detection method capable of accurately detecting an ion current even during a glow period by a glove lug and, by using the detection result of the ion current, maintaining a good fuel combustion state.
  • a further object of the present invention is to provide an ion current detection device capable of detecting an ion current with high accuracy, and performing an ignition timing detection, a misfire detection and the like with high accuracy using the detection result.
  • a further object of the present invention is to provide a glove lug which is free from damage such as cracks, has excellent durability and is easy to manufacture, and a method for manufacturing the glove lug.
  • the ionic current is a current flowing through the ionized fuel gas in the combustion chamber, and the ion current detection electrode is sometimes called an ion detection electrode. Disclosure of the invention
  • the present invention provides a glove lug according to the present invention, wherein the glove lug is embedded in a heat-resistant insulator and heat-resistant insulator, and generates heat when energized by a pair of lead wires. It has a heating element and an ion current detection electrode that is also buried in a heat-resistant insulator and that is partially exposed to the flame generated in the combustion chamber and detects the state of ionization in the flame. I have.
  • the heating element of the glove lug plays a role of promoting the ignition and combustion of the fuel in the combustion chamber by the heating action when the heating element generates heat.
  • an ion current detection electrode embedded in the heat-resistant insulator detects the state of ionization in the combustion flame. That is, at the time of detecting the ion current, the ion current detecting electrode and the inner wall of the combustion chamber adjacent thereto form two electrodes for capturing the positive and negative ions present between the two during fuel combustion. .
  • the ion current can be detected accurately with a very simple configuration, and the information can be effectively used for combustion control.
  • an inexpensive ion current detection sensor can be provided.
  • the ion current detection electrode since a large part of the ion current detection electrode is embedded in the heat-resistant insulator and only a part of the electrode is exposed to the outside, a small amount of carbon adheres to the outer periphery of the glow plug. Even if this is the case, the electrode and the housing (the inner wall of the combustion chamber) must be Side) and the ion current is erroneously detected, which makes it difficult to cause such a problem. More preferably, an exposed portion of the ion current detecting electrode is provided at the tip of the glow plug, and the exposed portion and the housing (the inner wall side of the combustion chamber) are preferably separated as much as possible.
  • the heating element itself is buried inside the heat-resistant insulator, it does not cause a change in heat generation characteristics due to a decrease in resistance value or the like, and can maintain high heat generation performance for a long time. .
  • the heating element is not consumed by oxidation, its cross-sectional area is kept constant and its resistance value does not change. Further, it is possible to avoid such a problem that the heating element is damaged due to a thermal shock or the like in the combustion chamber.
  • the heating element and the ion current detection electrode are configured as follows.
  • the heating element and the ion current detection electrode are electrically connected to each other. More specifically, in the invention according to claim 3, the heating element and the ion current detection electrode are formed into a single body, whereas in the invention according to claim 4, the heating element and the ion current detection are formed.
  • a lead wire is interposed between the electrodes for use.
  • the heat generation performance of the heating element can be maintained for a long time, and the ion current detection performance can be maintained.
  • the configuration described in claim 3 can manufacture glove lugs most easily.
  • the heating element and the ion current are detected. And is insulated from the application electrode.
  • the heating element and the ion current detection electrode are energized through separate power supply paths, the ion current can be detected by the ion current detection electrode at the same time as the heating element generates heat. (That is, the combustion state can always be grasped.)
  • At least a portion of the ion current detecting electrode exposed to the flame is formed of a conductive ceramic material. In this case, even if the ion current detecting electrode is exposed to a high-temperature combustion gas, the oxidative consumption of the electrode is minimized. Therefore, the durability of the ion current detection performance by the glove lug is further improved.
  • the heating element and the ion current detection electrode are separately formed using a mixture of different compositions or a mixture of powders having different particle diameters.
  • the resistance value of the heating element and the resistance value of the ion current detection electrode will be different by performing the manufacturing as described above, and a glove lug (ion current detection sensor) suitable for the application will be provided. can do. That is, if the detection result of the ion current is to be used for, for example, misfire detection, only the presence or absence of the ion current needs to be determined, so that the resistance value of the ion current detection electrode can be made relatively large. It should be less than 5 ⁇ (however, the heating element is about 1 ⁇ ).
  • the detection result of the ion current is used for, for example, ignition timing detection, it is necessary to instantaneously detect the rise of the ion current, and therefore, it is desirable that the resistance of the ion current detection electrode be as small as possible. 0 k ⁇ or less is desirable).
  • the above-mentioned glove lug itself has a configuration in which the electrode for ion current detection and the housing (the inner wall side of the combustion chamber) are difficult to conduct even if a small amount of carbon adheres. During use, carbon deposits and builds up, which can be problematic. Therefore, the ion battery of claim 8 In the flow detection device, the adhered carbon is removed while maintaining the ion current detection state by using the glow plug according to claim 5, wherein the heat generation operation by the heating element and the ion current detection operation by the ion current detection electrode can be simultaneously realized. It proposes a configuration to do this.
  • switching means for turning on / off the energization state to the heating element
  • leakage current detection means for detecting a leakage current flowing from the ion current detection electrode at a predetermined time before fuel combustion, and If the leakage current is larger than a predetermined threshold value, an operating means for operating the switching means so as to temporarily energize the heating element is provided.
  • a leakage current flows prior to the original ion current waveform (before point A in Figs. 24A and 24B).
  • a leakage current is detected at a predetermined time (at the timing of fuel injection in FIGS. 24A and 24B), and based on the leakage current, the carbon around the glow plug is detected. Estimate the state of adhesion.
  • the heating element In such a state, the heating element generates heat to burn off the adhered carbon.
  • the desired ion turtle flow waveform for example, the waveform shown in Fig. 24A
  • processes such as ignition timing detection and misfire detection using the detection results. Can be implemented.
  • the leakage current is detected when the pressure in the combustion chamber rises. In this case, the presence or absence of the leakage current can be reliably detected.
  • a leakage current may be detected in accordance with the timing of the fuel injection into the combustion chamber. That is, the timing of the fuel injection corresponds to, for example, a time immediately before the combustion of the fuel when the combustion chamber pressure increases in a diesel engine. Therefore, under the situation where the force is attached as described above, the leakage current can be detected more reliably.
  • the invention according to claim 10 relates to a method for manufacturing a glove lug.
  • a heating element and an ion current detection electrode are generated, and then the heating element and the ion current detection electrode are heat-resistant. Enclose it with a conductive insulator and hot-press it at a specified temperature. Furthermore, a part of the heat-resistant insulator is cut to expose the ion current detection electrode to the outside.
  • a glove lug having the above-described specific configuration can be created without particularly complicated manufacturing steps, and a glow plug having an excellent ion current detecting function as described above can be easily manufactured. Will be available at
  • the heating element and the electrode for detecting the ionic current are provided on a thin plate-like heat-resistant insulating sheet material, and the sheet material is wound around a rod-shaped heat-resistant insulating central shaft. . Then, after heat-treating the heat-resistant insulating sheet material and the heat-resistant central shaft portion, a part of the heat-resistant insulating sheet material and the heat-resistant central shaft portion are cut so as to expose the ion current detecting electrode to the outside. Meanwhile c and has, in the invention according to claim 1 2, by preparing a plurality of laminated material made of a heat-resistant insulating material, of which heat generating body and Ion current detection on the particular laminate An electrode is provided.
  • a plurality of laminated materials are superimposed such that the laminated material provided with the heating element and the ion current detection electrode is substantially at the center, and the superposed plural laminated materials are subjected to heat treatment.
  • a part of the plurality of laminated materials is cut to expose the ion current detection electrodes to the outside.
  • the present invention uses a glove lug having a heating element that generates heat when energized by a pair of conductive wires, and uses the gion lug's ion current detection function to provide an ion current detection device. It is configured as follows. In such a glow plug, a pair of conductive wires (lead wires) and a heating element are insulated from a ground side such as a cylinder head.
  • the supply voltage from the power supply is applied to the pair of conductive wires, and the heat generating body generates heat.
  • This state corresponds to, for example, a state in which ignition and combustion of fuel are promoted when the engine is started at a low temperature.
  • the second state the path between the pair of conductive wires and the power supply is cut off, and the supply voltage from the power supply is applied between the heating element and the wall of the combustion chamber.
  • This state corresponds to the state when ion current is detected, and the ion current at that time is detected by the ion current detection means.
  • the voltage application to the heating element in the above two states is performed using a common conductive wire, and the switching operation between the two states is performed by switching means.
  • the configuration of the conductive wire connected to the heating element and the configuration related to the detection of the ion current can be simplified, and an inexpensive ion current detection device can be provided. Can be provided. In this case, despite the simple configuration as described above, the detection accuracy of the ion current does not decrease.
  • a power supply is connected to an electric path connecting the heating element and the wall of the combustion chamber via switching means.
  • the power supply is directly connected to an electric path connecting the heating element and the wall of the combustion chamber.
  • the ionic current associated with fuel combustion is originally a weak current
  • the ionic current can be detected with higher accuracy by configuring the power supply circuit without using a switching means that acts as an antibody.
  • a switch circuit having a plurality of switching contacts or a semiconductor switching element can be embodied as switching means, and has a certain resistance value itself. .
  • a power supply for applying a voltage to the pair of conductive wires in the first state and a power supply for applying a voltage between the heating element and the wall of the combustion chamber in the second state are described in claim 16.
  • the power supply may be configured by a separate power supply as described in the above, or may be configured by a common power supply as described in claim 17.
  • the ion current can be detected accurately with any of the configurations.
  • the ion current detection For example, a power source other than an on-vehicle battery is not required as a power source for use, and the configuration can be simplified.
  • one end of the power supply is connected to one of the conductive wires connected to the heating element, and the other end is connected to a cylindrical cylinder holder for holding a glove lug. Connected.
  • the configuration for applying a voltage between the heating element and the wall of the combustion chamber can be simplified.
  • a constant voltage circuit for keeping a voltage supplied by the power supply constant is provided between the power supply and one of the pair of conductive wires. Since the ion current is originally a weak current, if the applied voltage fluctuates greatly, the detected ion current value is affected and a detection error occurs. Then, due to this detection error, for example, when a misfire is detected using the magnitude (peak value, area, etc.) of the output of the ion current, a situation occurs in which the detection accuracy of the misfire is reduced. On the other hand, according to the above configuration, the detection accuracy of the ion current can be improved, and thus the accuracy of misfire detection and the like using the detection result of the ion current can be improved.
  • a plurality of glove lugs are connected in parallel, and the switching means performs a switching operation of the power supply path for each glove lug at the same time.
  • the switch circuit as the switching means and the detection resistor as the ionic current detection means can be shared, and the configuration can be further simplified.
  • the ion current of each cylinder can be detected in time series.
  • one of the conductive parts of the A voltage detector for detecting the ion current is disposed between the wire and the ground contact.
  • the voltage detector is composed of an amplifier circuit with a relatively simple structure that takes the potential difference from the ground. it can.
  • a capacitor is provided between one conductive wire of the glow plug and the voltage detector. Desirable. In this case, the DC component of the power supply voltage is cut by the capacitor. Therefore, for example, even if a relatively high voltage (for example, 50 V) power supply is used as a dedicated power supply for ion current detection, the high voltage is not directly applied to the voltage detector, and the voltage detector ( A voltage lower than the withstand voltage is always applied to the amplifier. As a result, problems such as damage to the voltage detector can be prevented. Incidentally, this configuration is particularly effective when the power supply voltage for ion current detection is 30 volts or more.
  • an ion current detection resistor is provided on the ground side of the power supply, and the ion current is detected from a potential difference between both terminals.
  • the voltage waveform corresponding to the ion current waveform is based on 0 volt. Therefore, even when a power supply voltage exceeding the withstand voltage of the voltage detector is used, an expensive and complicated voltage detector is not required.
  • a power supply for the heating element and a power supply for ion current detection are provided separately, and an ion current detection resistor is provided on the ground side of the latter power supply. It is desirable to provide This is because if the heating element and the ion current detection resistor are connected in series, the heat generation performance may be reduced during heat generation.
  • the glow plug according to claim 24 includes a heating element having a heating element, and the heating element protrudes into a combustion chamber for burning fuel.
  • the heating element is provided with an ion current detection electrode for the inner wall of the combustion chamber.
  • the heating element of the glow plug promotes ignition and combustion in the combustion chamber by the heat generation action when the heating element generates heat.
  • the heating element plays a role as an ion current detection electrode for detecting an ion current associated with fuel combustion.
  • the heating element and the inner wall of the combustion chamber adjacent to the heating element form two electrodes for capturing the positive and negative ions during fuel combustion existing between the heating element and the heating element.
  • the ion current can be detected with high accuracy despite its very simple configuration, and the information can be effectively used for combustion control.
  • an inexpensive ion current detection sensor can be provided.
  • the exposed portion is used as an ion current detection electrode for the inner wall of the combustion chamber.
  • the exposed portion of the heating element effectively functions as an ion current detecting electrode, and the same operation and effect as in claim 25 can be obtained.
  • the following operations and effects are newly obtained.
  • carbon is considered to adhere to the exposed part of the heating element due to the use of glove lugs, and the deposited carbon is burnt off by the heating operation of the heating element (for example, the glow operation when the engine is started at a low temperature).
  • the heating element is formed of a ceramic material as described in claim 26.
  • a structure is used in which a part of the heating element made of a ceramic material is exposed to the combustion chamber, oxidative consumption of the heating element can be minimized even when exposed to high-temperature combustion gas. Therefore, the durability of the glow plug can be further improved.
  • the heating state of the heating element by the glow plug and the ion current detection state by the glove lug are switched (switching means).
  • switching means such as an ion current detection resistor.
  • the switching means is operated so as to temporarily enter the ion current detection state at least immediately after the fuel ignition timing under the heating state of the heating element by the glow plug (operation means ). That is, for example, during the afterglow period when the engine is started at a low temperature, the role of promoting the ignition and combustion of the fuel is given top priority as the function of the glove lug. No processing was performed.
  • the ion current detection period is provided temporarily within a range in which the heat generation function of the glove lug is not impaired even under a heat generating state such as an afterglow period. Therefore, the ion current can be accurately detected even during the glow period by the glow plug, and the fuel combustion state can be maintained in a good state by using the detection result of the ion current.
  • the operating means includes the switching means so that the ion current is detected only for a predetermined period from the time of fuel injection into the combustion chamber. I try to operate.
  • the ion current detection period is set based on the fuel injection timing, so that the ion current detection period is set as short as possible to reliably detect the ion current. Reduction can be minimized.
  • the operating means is configured to switch between the heating element heating state and the ion current detection state at a predetermined frequency. Also in such a case, both the ion current detection function and the heating element heating function can be achieved during the afterglow period.
  • the glow plug is formed integrally with the heating element that is energized by the pair of lead wires and generates heat, a heat-resistant insulator that embeds the heating element, and the heating element.
  • An ion current detection electrode and detects ion current generated during fuel combustion using the glow plug. In this case, the ion current can be detected accurately with a very simple configuration, and the information can be effectively used for combustion control.
  • the heating state of the heating element by the glow plug and the ion current detection state by the glow plug are switched (switching means). In brief, the normal operation of this switching is as follows. For example, when the engine is started at a low temperature, the glove lug is maintained in a heating element heating state.
  • the state is switched from the body heat state to the ion current detection state. That is, the combustion ions are captured between the exposed electrode portion of the glove lug and the inner wall of the combustion chamber, and the ion current is detected by current detection means such as an ion current detection resistor.
  • a leak current flowing from the exposed electrode portion at a predetermined time before fuel ignition is detected in a state where an ion current is detected by a glove lug (leakage current detecting means). And the leakage current detection means If the detected leakage current is larger than a predetermined threshold value, the switching means is operated to temporarily shift from the ion current detection state to the heating element heating state (operation means).
  • the glove lug is set to a heating element heating state to burn off a bond.
  • a desired ion current waveform (for example, the waveform shown in Fig. 24A) can always be detected, and processing such as ignition timing detection and misfire detection using the detection results can be performed accurately. Can be.
  • the insulation resistance between the exposed electrode and the gas side depends on the pressure in the combustion chamber, and when the pressure rises, the insulation resistance decreases and leakage current easily flows. Therefore, in the invention described in claim 32, the leakage current is detected when the pressure in the combustion chamber rises. In this case, the presence or absence of a leakage current can be reliably detected.
  • the time of this pressure rise corresponds to, for example, a compression stroke in a diesel engine.
  • the leakage current is detected in accordance with the timing of fuel injection into the combustion chamber.
  • the timing of the fuel injection corresponds to, for example, in a diesel engine, when the pressure in the combustion chamber increases and immediately before the combustion of the fuel. Therefore, in the situation where carbon is attached as described above, leakage current can be detected more reliably. can do.
  • the operating means keeps the switching means in the heating element heat generation state for a time corresponding to the leakage current value detected by the leakage current detecting means.
  • the greater the amount of carbon attached to the outer periphery of the glow plug the greater the value of the leakage current. Therefore, if the holding time of the heating element heating state is determined according to the leakage current value, the adhesive force-bon can be surely burned off.
  • a high-pass filter is provided in a signal output unit of an ion current detector for detecting an ion current, The detection signal is input to the signal processing device.
  • the high-pass filter as a component, even if carbon adheres to the ion current detection electrode of the glow plug, the ion current generated during combustion and the leakage current due to insulation failure are separated. The ion current can be reliably detected. Further, if the combustion state information such as the ignition timing is determined based on the output waveform of the high-pass filter, the determination processing becomes easy.
  • the cutoff frequency of the high-pass filter may be set to about 50 Hz to 5 kHz, and more preferably, to a value within the range of 100 Hz to 500 Hz. It has been confirmed by the present inventors.
  • the threshold value for determining the leakage current by the operating means is set near the allowable maximum value.
  • the threshold value for judging the leakage current may be set to a lower value, but if the configuration of claim 35 described above is used, Even if a small amount of leakage current flows, the leakage current can be separated from the ionic current. Therefore, in claim 36
  • the threshold value for determining the leakage current is increased within the allowable range, the ion current can be detected more frequently, instead of reducing the frequency of burn-off processing of the adhesive force. The effect is that the state can be detected frequently.
  • the invention according to claim 37 is provided with comparison means for inputting the output signal of the high-pass filter and comparing the input signal with a combustion state detection threshold value. In this case, by comparing the output of the high-pass filter with the threshold value for detecting the combustion state, the detection processing of the combustion state can be easily realized.
  • a current-carrying heating element and an ion current detection electrode are disposed inside the insulator, and the ion current detection electrode is in contact with at least the flame.
  • the exposed portion is made of the above-mentioned conductive mixed sintered body, and contains at least one oxide of a rare earth element as a sintering aid. A part or all of the grain boundary phase is crystallized to become a second crystal phase containing the sintering aid.
  • the electrode for detecting an ion current in the present invention comprises a conductive ceramic or an insulating ceramic or a first crystal phase which is a crystal phase of both, and a grain boundary phase existing therebetween (FIG. 5). 6- Figure 59).
  • This grain boundary phase is generally amorphous glassy in the mixed sintered body.
  • the most significant feature of the grain boundary phase in the present invention is that part or all of the grain boundary phase is crystallized to become the second crystal phase (FIG. 60).
  • the energizing heating element and the ion current detecting electrode When disposing the energizing heating element and the ion current detecting electrode in the insulator, for example, as shown in FIGS. It is embedded in body powder and integrally molded. Alternatively, the molded product of the heating element and the molded product of the electrode for ion current detection are sandwiched between two separate molded insulators that have been separately prepared in advance. O
  • Molded products of these insulators, current-carrying heating elements, and ionic current detection electrodes are mainly composed of, for example, ceramic powders, which are these materials, paraffin and other resins.
  • the mixture is prepared by injection molding.
  • a sintering aid made of the rare earth element oxide is used in addition to the conductive ceramic particles and the insulating ceramic particles. Use the added raw material.
  • the mixed sintered body of this raw material is composed of the first crystal phase and the grain boundary phase therebetween, as described above, and part or all of the grain boundary phase is crystallized and the sintering aid is added.
  • the second crystal phase contains
  • the above-mentioned electric heating element or the insulator is made of the above-mentioned rare earth element oxide in addition to the conductive ceramic particles and the insulating ceramic particles. It is preferable to use a raw material to which a sintering aid has been added. Accordingly, the current-carrying heating element or the insulator can also have an excellent structure having the second crystal phase by crystallizing part or all of the grain boundary phase between the first crystal phases.
  • the glove plug of the present invention having the above-described structure also generates heat by passing an electric current through the energized heating element, thereby promoting ignition and combustion in the combustion chamber.
  • Two electrodes are formed between the inner wall of the combustion chamber and the state of ionization in the combustion flame. According to the present invention, the ion current can be detected accurately with the above configuration, and the information can be effectively used for combustion control.
  • the glove lug is provided with the original combustion chamber heating function (glowing function) and ion current detection function, the structure is compact and can be manufactured at low cost.
  • the ion current detection electrode has a car Bones may adhere, but the deposited carbon can be burned off by the heating action of the current-carrying heating element (for example, the glow operation when the engine is started at a low temperature). Therefore, the ion current can be accurately detected over a long period of time.
  • the ion current detecting electrode in the ion current detecting electrode, at least an exposed portion that comes into contact with the flame is made of a mixed sintered body having the above-described structure. That is, the structure of the mixed sintered body is composed of the first crystal phase and the grain boundary phase therebetween (FIG. 59), and part or all of the grain boundary phase is crystallized and contains the sintering aid. It has two crystal phases (Fig. 60).
  • the melting point and the corrosion resistance of the grain boundary phase can be improved as compared with the conventional case where the grain boundary phase has no second crystal phase and is an amorphous glass phase. Therefore, the thermal shock resistance, oxidation resistance, and corrosion resistance of the ion current detection electrode are improved to prevent their damage, thereby improving the reliability of the ion current detection accuracy and the reliability of the global plug. be able to.
  • the glove lug of the present invention has a simple structure because the current-carrying heating element, the lead wire, and the electrode for detecting the ion current are integrally provided inside the insulator. Therefore, according to the present invention, it is possible to provide a glove lug which has no problem of carbon adhesion, can accurately detect an ion current, has no damage to an ion current detection electrode, and has excellent durability. it can.
  • the total content of the sintering aid in the ion current detection electrode is equal to the total amount of the conductive ceramic and the insulating ceramic. It is preferably from 3 to 25% by weight. If the amount is less than 3% by weight, there is a problem that the densification of the mixed sintered body cannot be promoted and that it is difficult to form the second crystal phase in the grain boundary phase. On the other hand, when the content exceeds 25% by weight, the glass phase is However, there is a problem that the grain boundary phase has a low melting point and thermal shock and corrosion resistance deteriorate.
  • the second crystal phase in the ion current detection electrode is present in the grain boundary phase in an amount of 5% or more. If it is less than 5%, there is a problem that the above effects such as an increase in melting point, an improvement in oxidation resistance and an improvement in corrosion resistance due to the presence of the second crystal phase are not sufficiently exhibited.
  • the insulating ceramic is silicon nitride
  • the conductive ceramic is at least one kind of metal carbide, silicide, nitride, or boride. It is preferred that In this case, the second crystal phase can be easily formed.
  • the ion current detecting electrode provided on the glove lug according to claim 42 has an exposed portion exposed from the insulator so as to be exposed to a flame. It has a polished portion polished to a surface roughness Rz (10-point average roughness) of 30 m.
  • the surface roughness Rz of the polished part is indicated by the 10-point average roughness (Rz) specified in JISB 0601, and the value is 0.1 to 30 / m. Within the range.
  • Rz 10-point average roughness
  • the polished portion is polished using a grindstone or the like to control the surface roughness Rz within the specific range.
  • a desired surface roughness Rz is obtained by adjusting the grain size of the abrasive grains in the grindstone, the polishing conditions, and the like.
  • the energizing heating element and the ion current detecting electrode When disposing the energizing heating element and the ion current detecting electrode in the insulator, for example, as shown in FIGS. It is embedded in ceramic powder, which is a raw material of the insulator, and is integrally molded. Or, it was prepared separately in advance The energized heating element and the electrode for detecting the ion current are interposed between the two insulators. These insulator molded products or the integrally molded product of the electric heating element and the ionic current detection electrode are produced, for example, by injection molding these materials.
  • the energizing heating element and the ion current detecting electrode can be provided inside the insulator by printing.
  • a print formation for example, two formed forms (green sheets) of a ceramic material for forming an insulator are prepared, and the screen of one formed form is screen-printed or printed. This is performed by printing a current-carrying heating element made of a conductive material, its lead wire, and an electrode for detecting an ion current in a desired shape by printing, hot stamping, or the like.
  • the energized heating element, the lead wire, and the electrode for detecting the ionic current may be printed on two or more green compacts. Further, the energizing heating element and the ion current detection electrode may be printed and laminated on separate forming bodies. As a result, an insulator having a printed current-carrying heating element, a lead wire, and an ion current detection electrode built therein can be obtained.
  • the polished portion of the exposed portion of the ion current detection electrode is polished as described above. Thereby, a glove lug having a polished portion having the specific surface roughness Rz in the exposed portion of the ion current detection electrode can be obtained.
  • the glove plug of the present invention having the above-described structure also generates heat by passing an electric current through the energized heating element, thereby promoting ignition and combustion in the combustion chamber.
  • Two electrodes are formed between the inner wall of the combustion chamber and the state of ionization in the combustion flame.
  • the ion current can be detected with high accuracy by the above configuration, Can be effectively used for combustion control.
  • the glow plug is provided with the original function of heating the combustion chamber (glow function) and the ion current detection function, the structure is compact and can be manufactured at low cost.
  • the polished portion is provided on an exposed portion of the ion current detection electrode.
  • the polished portion has a surface roughness Rz in the range of 0.1 to 30. Therefore, the polished portion has many irregularities when viewed microscopically (Fig. 75).
  • the electric flux in the electric field between the ion current detecting electrode and the cylinder head adjacent thereto is concentrated on the convex portion of the irregularities. In the vicinity of the convex portion where the electric flux is concentrated, the potential gradient becomes steep. Due to this potential gradient, the charged particles in the combustion gas are attracted to the vicinity of the projection. Therefore, the ion current detection electrode having the polished portion with the specific surface roughness Rz can strongly attract charged particles in the combustion chamber, and can further improve the ion current detection accuracy.
  • the glove lug of the present invention has a simple structure because the current-carrying heating element, the lead wire, and the electrode for detecting the ion current are integrally provided inside the insulator. Therefore, according to the present invention, it is possible to provide a highly durable glow plug that can accurately detect an ionic current without causing a problem of adhesion of a ribbon.
  • the area of the exposed portion at the tip of the ion current detection electrode is preferably lxl O- 6 to 0.5 cm 2 . If the area (S) of the exposed portion of the ion current detection electrode is 0 ⁇ S, the ion output can be detected. However, when the area of the exposed portion in case of forming Ri by the printing is less than 1 X 1 0- 6 cm 2, the size of the exposed portion, for example, 1 0 X 1 0 zm following very small size and will However, there is a problem that productivity is deteriorated. On the other hand, if it exceeds 0.5 cm 2 , the portion occupied by the ion current detecting electrode becomes too large, and as a result, There is a problem that the body becomes smaller and productivity becomes worse.
  • the ion current detecting electrode can have a structure electrically connected to the current-carrying heating element.
  • the ion current detecting electrode and the current-carrying heating element can be integrally formed, thereby facilitating the production.
  • the invention according to claim 45 is a glow plug in which a current-carrying heating element, a lead wire, and an electrode for detecting an ion current are provided inside an insulator, and at least a tip of the electrode for detecting an ion current.
  • the part is covered with an insulating porous layer.
  • This insulating porous layer has a communication hole communicating from the surface of the ion current detection electrode to the inside of the flame, and is electrically insulating.
  • Such insulating porous layer examples Eba, 3 1 3 ⁇ 4, eight 1 2 0 3, 3 1 0 2, etc. as a main component was a Ceramic powder electrical insulation properties by sintering Make it.
  • an energizing heating element and the ion current detecting electrode are prepared in advance.
  • an insulator provided with a groove for burying them is prepared, and the energizing heating element and the ion current detection electrode are buried in the groove and integrally fired.
  • These energized heating elements, ion current detection electrodes, and insulators are manufactured using, for example, ceramic powder.
  • the glove lug of the present invention having the above configuration also generates heat by passing an electric current through the current-carrying heating element, thereby promoting ignition and combustion in the combustion chamber. Two electrodes are formed with the inner wall of the combustion chamber to detect the state of ionization in the combustion flame.
  • the ion current detection electrode Since the tip of the ion current detection electrode is covered with the insulating porous layer, the ion current detection electrode is not directly exposed to the flame. Therefore, the ion current detection electrode is There is no stress concentration due to the impact and no damage such as cracks. In addition, since the insulating porous layer has the communication holes, the ion current flows between the ion current detection electrode and the cylinder head through the communication holes, and is accurately detected.
  • the ion current can be accurately detected by the above configuration, and the information can be effectively used for combustion control.
  • the original heat generating function (glowing function) and the ion current detecting function are added to the glow plug, the structure is compact and can be manufactured at low cost.
  • the heat-generating element since the heat-generating element is buried inside the insulator, it does not corrode due to the combustion flame, does not lower the resistance value, and does not change the heat-generating characteristics. It can be demonstrated and has excellent durability. That is, since the current-carrying heating element is not consumed by oxidation, its cross-sectional area is kept constant and its resistance value does not change. Further, problems such as damage to the heat generating element due to thermal shock in the combustion chamber can be avoided.
  • the above-mentioned insulator may adhere to the surface of the insulator as fuel burns, and the carbon adhered to the insulator generally generates heat from the heating element (for example, a glow operation when the engine is started at a low temperature). ). Therefore, the ion current can be accurately detected over a long period of time.
  • the structure of the glow plug of the present invention is simple because the above-mentioned current-carrying heating element, the lead wire and the electrode for detecting the ion current are integrally provided inside the above-mentioned insulator. Therefore, according to the present invention, there is no problem of carbon adhesion, the ion current can be detected with high accuracy, there is no damage such as cracks, the durability is excellent, and the manufacturing is easy. Plugs can be provided.
  • the thickness of the insulating porous layer is preferably 0.2 to 1.5 mm. If it is less than 0.2 mm, it may be damaged by cracks due to the thermal shock of the flame. On the other hand, if the thickness exceeds 1.5 mm, the thickness becomes large, so that stress concentration due to flame heat is likely to occur and cracks may occur.
  • the insulating porous layer and the insulator are made of the same material.
  • the bondability between the two is improved and the coefficients of linear expansion of the two become the same, so that the thermal shock resistance is improved.
  • the electrode for detecting ion current can be used also as a current-carrying heating element (FIG. 88).
  • the insulating porous layer covers the current-carrying heating element (that is, the electrode for ion current detection) at the tip of the main body of the glow plug.
  • the above-mentioned ion current detecting electrode can be made of a conductive ceramic material containing MoSi 2 , WC, TiN or the like, or a high melting point metal such as W, Mo, Ti or the like. .
  • the tip of the insulator has a hemispherical shape. In this case, by removing the sharp edge of the insulator, the turbulence of the combustion flame flow near the ion current detection part is suppressed, the detection performance is stabilized, and the concentration of thermal stress is suppressed, and the thermal shock is prevented. The effect that the property is improved is obtained.
  • the communication holes formed in the insulating porous layer of the present invention may have any diameter as long as they are connected from the surface of the porous layer to the electrode surface.
  • the tip of the glove lug of the present invention is immersed in a 50:50 alcohol aqueous solution of water and alcohol, and a voltage of, for example, 12 volts is applied between the tip and the aqueous solution, the current becomes Any communication hole may be used.
  • the invention as set forth in claim 49 from the first end of the heating element, which is electrically connected to the ion current detecting electrode in the middle of the heating element and becomes a positive side when a DC current is applied to the heating element.
  • R 1 be the electrical resistance of the first heating part of the heating element up to the center of the first connection where the ion current detection electrode is connected first, and the first resistance between the heating element and the ion current detection electrode
  • the electrical resistance of the second heating part in the heating element from the center of the connection part to the second end on the negative side of the heating element is R 2
  • the glow plug is configured so that the relation of R 2> r is satisfied, where r is the electrical resistance of r.
  • the first connection portion refers to a portion of the current-carrying heating element to which the ion current detection electrode is first connected in the path from the plus end to the minus end.
  • the reason for this definition is that one (FIG. 90) or a plurality (FIG. 91) of ion current detecting electrodes may be provided for the general heating element. Therefore, when a plurality of ion current detection electrodes are provided, a portion between the brass end and the nearest ion current detection electrode located closest to the brass end serves as a first heating portion, and the near ion current detection electrode is provided.
  • the second heating section is between the and the minus end (Fig. 91). Therefore, one or more ion current detecting electrodes may be connected to the second heat generating portion.
  • conductive ceramics such as silicide, carbide, nitride, and boride of metals such as MoB, WC, and Tin.
  • At least one oxide of a rare earth element is added as a sintering aid.
  • the insulating SiN 4 particles can be made of conductive M 0 Si It becomes a tissue wrapped by two particles, and expresses conductivity.
  • M 0 Si 2 having an average particle size of 1 m and S i N 4 having an average particle size of 15 m were used.
  • the average particle size of the sintering aid was similarly set to lm.
  • the mixing ratio of MoSi 2 and Si 3 N is appropriately selected within the range of 10 to 60: 90 to 40 (% by weight).
  • R 2> r
  • Shoyuisukezai has a total 1 0 wt% of Y 2 0 3 and A 1 2 0 externally added.
  • the sintering aids, oxides of rare earth elements other than Y 0, Yb 2 0, L a 0, N d 2 0 may be such, using one or more selected from these.
  • a mixture of a conductive ceramic and an insulating ceramic is used, but only the conductive ceramic may be used. Further, a mixture of metal powder and insulating ceramic may be used by using metal powder instead of the conductive ceramic in the mixture. Alternatively, metal powder only or metal wire may be used.
  • the insulator for example, a Mo S i is conductive Ceramic
  • the S i 3 N 4 is an insulating Sera Mi click as the basic component
  • Y 2 0 as a sintering material
  • a ceramic sintered body to which A10 was added.
  • Mo Si 2 and Si 3 N 4 with an average particle size of 0.6 m can be used.
  • the current-carrying heating element, the ion-current detection electrode, and the insulator be the same or close to each other because the difference in the coefficient of thermal expansion and the like becomes small.
  • an oxide of a rare earth element other than Y 20 for example, an oxide such as terbium, lanthanum, or neodymium, may be used, and one or more selected from these are used.
  • the electric resistance R2 of the second heating section is set to 0.1 to 5 ⁇ , and the electric resistance r of the ion current detection electrode is set to 0.05 to 2.5 ⁇ . It is preferable from the viewpoint of characteristics.
  • the energizing heating element and the ion current detecting electrode in the insulator, for example, as shown in FIG. Embed it inside and integrally mold. Connect the lead wires at the same time as molding.
  • a high melting point metal such as tungsten or molybdenum, or an alloy thereof is used.
  • an integrally formed product comprising the above-mentioned current-carrying heating element and the electrode for detecting the ion current is sandwiched between two separately formed insulator molded bodies.
  • These insulator molded products or the integrally molded product of the current-carrying heating element and the electrode for detecting the ionic current are prepared, for example, by pre-mixing the ceramic powder, which is these materials, and the resin material as a binder, and mixing the mixed materials. It is produced by injection molding. Then, it is fired.
  • the above-mentioned heat generating element and the electrode for detecting the ion current are located inside the insulator. It can also be provided by printing. As an example of such printing, for example, conductive printing by screen printing, pad printing, hot stamping, etc., on the surface of a green material formed form of a ceramic material for forming an insulator. The heating element made of conductive material, its lead wire, and the electrode for ion current detection are printed. Next, the green compact is wound and then fired. As a result, an insulator having a printed heating element, a lead wire, and an ion current detecting electrode built therein can be obtained.
  • Injection molded products or printed products are sintered by the hot curse method.
  • the conditions are, for example, 1 atmosphere in an argon gas atmosphere, 400 kg / cm 2 pressurization, a firing temperature of 180 ° C., and a holding time of 60 minutes.
  • the glove lug of the present invention generates heat by passing an electric current through the current-carrying heating element, and the generated heat promotes ignition and combustion in the combustion chamber. Further, the ion current detection electrode forms two electrodes with the inner wall of the adjacent combustion chamber to detect the state of ionization in the combustion flame.
  • the ion current can be accurately detected, and the information can be effectively used for combustion control.
  • the glove lug is provided with the original combustion chamber heating function (glowing function) and ion current detection function, the structure is compact and can be manufactured at low cost.
  • the electric resistance R2 of the second heating portion is formed to be larger than the electric resistance r of the ion current detecting electrode. Therefore, when carbon adheres to the surface of the insulator in the glow plug and carbon is electrically short-circuited between the ion current detection electrode and the cylinder head as described above (see FIG. 90). By applying a DC current to the current-carrying heating element, it is possible to reliably burn off the force between the ion current detection electrode and the cylinder head.
  • the electric resistance R 2 of the above-mentioned second heating part of the energizing heating element and the electric resistance r of the ion current detecting electrode become R 2
  • the DC current flows from the plus end to the cylinder head via the first heating section, the ion current detection electrode, and the adhesive bond. Therefore, carbon on the surface of the insulator generates heat, and the heat and the air in the combustion chamber burn and burn off the carbon. Therefore, a short circuit due to the adhesion of carbon can be easily eliminated. Therefore, the ion current can be accurately detected over a long period of time.
  • the current-carrying heating element since the current-carrying heating element is buried inside the insulator, it does not corrode due to the combustion flame, does not cause a decrease in resistance value, and does not cause a change in heat-generating characteristics, and exhibits high heat-generating performance for a long time Can be. That is, since the current-carrying heating element is not consumed by oxidation, its cross-sectional area is kept constant and its resistance value does not change. Further, it is possible to avoid problems such as damage to the current-carrying heating element due to thermal shock or the like in the combustion chamber.
  • the glove lug of the present invention has a simple structure because the current-carrying heating element, the lead wire, and the electrode for detecting the ion current are provided inside the insulator. Therefore, according to the present invention, a problem of carbon adhesion can be solved, an ion current can be detected with high accuracy, and a glove lug excellent in durability can be provided.
  • the electric resistance R 2 of the second heat generating portion has a value that is at least twice as large as the electric resistance r of the ion current detecting electrode. In this case, the carbon can be more reliably burned off.
  • the ion current detection electrode is one or more conductive ceramic materials consisting mainly of metal silicides, carbides, nitrides, and borides, or a mixture of conductive ceramic materials and insulating ceramic materials. Can be made. In this case, the heat resistance is improved, and the coefficient of expansion with the insulator can be easily adjusted and matched, so that the effect of improving the heat impact resistance is obtained.
  • the electrode for ion current detection comprises one or more refractory metal materials whose main components are metals having a melting point of 1200 ° C. or more, or a refractory metal. It can be made of a mixed material of a material and an insulative ceramic material. In the case of the former metal, since the raw material can be used in a linear form, the effect of reducing costs related to the material, processing, and assembly can be obtained.
  • the melting point is set to 1200 ° C.
  • the current-generating heating element of the glove lug is set to 1000 to 110 ° C. This is because the heat resistance of the ion current detection electrode was considered in order to generate heat in c.
  • Pt, Ir, Rh, Ru, and Pd are provided on the exposed portion of the ion current detection electrode exposed from the insulator.
  • one or more noble metals are provided. In this case, the effect of improving the wear resistance and oxidation resistance of the detection electrode can be obtained.
  • the ion current detecting electrode of the glove lug is electrically connected in the middle of the current-carrying heating element, and its tip is exposed from the insulator so as to be exposed to the flame.
  • the tip of the ion current detection electrode is located at least 2 mm away from the tip of the housing supporting the main body including the insulator and the ion current detection electrode. .
  • the energizing heating element and the electrode for detecting the ion current are disposed in an insulator.
  • an integrally molded product of both is prepared in advance, and this is embedded in ceramic powder, which is a raw material of an insulator, to be integrally molded.
  • the above-mentioned current-carrying heating element and the electrode for detecting the ion current are sandwiched between two separately prepared insulators. These insulator molded products or the integrally molded product of the electric heating element and the electrode for detecting the ionic current are produced, for example, by injection molding these materials.
  • the energizing heating element and the ion current detecting electrode may be provided by printing inside the insulator.
  • printing for example, two formed forms (green sheets) of a ceramic material for forming an insulator are prepared, and screen printing, padding, and the like are performed on the surface of one formed form.
  • the printing is performed by printing the heating element made of a conductive material, the lead wire, and the electrode for ion current detection in a desired shape by printing, hot stamping or the like.
  • the current-carrying heating element, the lead wire, and the ion current detection electrode may be printed and laminated on two or more formed bodies.
  • the current-carrying heating element and the ion current detection electrode may be printed on separate forming bodies, and may be electrically connected during lamination or after firing.
  • an insulator having a printed heating element, a lead wire, and an ion current detection electrode built therein is obtained.
  • the glove lug of the present invention having the above configuration also generates heat by passing an electric current through the current-carrying heating element, thereby promoting ignition and combustion in the combustion chamber.
  • Two electrodes are formed with the inner wall of the combustion chamber to detect the state of ionization in the combustion flame. According to the present invention, the ion current can be detected with high accuracy, and the information can be effectively used for combustion control.
  • the original combustion chamber heating function (global function) and ion current detection function are provided, so the structure is compact and it can be manufactured at low cost.
  • the tip position of the ion current detecting electrode is separated from the tip portion of the housing by 2 mm or more. For this reason, even if force is deposited on the surface of the glow plug body, the ion current can be reliably detected. That is, as shown in FIG. 96 described later, when the distance (L, FIG. 93) between the tip position of the ion current detection electrode and the tip of the housing is less than 2 mm, the distance is short. The lower the ion output detection rate becomes, the lower the ion output detection rate becomes. On the other hand, in which the distance is 2 mm or more, the ion output can be reliably detected.
  • the reason is considered as follows. If the distance (L) from the tip of the ion current detection electrode to the tip of the housing is less than 2 mm, the insulation resistance between the ion current detection electrode and the housing if carbon is deposited on the glow plug body. The drop in the ion current is so large that it is close to a short circuit, making it difficult to detect the ion current. On the other hand, in the present invention, since the distance (L) is 2 mm or more, even if carbon is deposited on the glove lug main body, a decrease in insulation resistance is small and a short circuit state does not occur.
  • the glove lug of the present invention can reliably detect an ionic current.
  • the glove lug of the present invention has a simple structure since the above-mentioned current-carrying heating element, the lead wire, and the nine poles for detecting the ion current are integrally provided inside the insulator. Therefore, according to the present invention, it is possible to provide a highly durable glow plug that can accurately detect an ion current without a problem of carbon adhesion.
  • the electric resistance of the entire energized heating element is R ( ⁇ )
  • the electric resistance from the positive end of the energized heating element to the tip of the ion current detecting electrode is defined as R ( ⁇ ).
  • B ( ⁇ ) it is preferable that the relation of B ( ⁇ ) ⁇ R ( ⁇ ) / 3 is satisfied.
  • the electric resistance B ( ⁇ ) When the electric resistance B ( ⁇ ) is very large, the resistance value of the circuit of the energized heat generator, the ion current detecting electrode, and the adhered carbon becomes large. In this case, even if the adhesive is present, a substantially normal current flows through the entire heating element, and the adhesive can be burned off by the heat generated by the heat-generating element. Therefore, it is possible to always exert the glove lug's original heat generating function, and it is possible to easily burn off the power pons accumulated on the glow plug main body.
  • the material of the current-carrying heating element and the ion current detection electrode, or the thickness of the current-carrying path is used. It can be done by changing the thickness, length, etc.
  • the mixing can be performed by adjusting the mixing ratio of the conductive ceramic powder and the insulating ceramic powder as the raw materials.
  • the length of the communication path it can be performed by changing the connection position of the ion current detection electrode to the energized heating element.
  • An invention according to claim 1 is a glow plug comprising a housing and a main body supported in the housing, wherein the main body includes: an insulator; A pair of lead wires that are electrically connected to both ends of the current-carrying heating element and the both ends of the current-carrying heating element and that are led out of the insulator; and a flame that is provided inside the insulator.
  • an ion current detection electrode for detecting the ionization state of the electrode, and the tip of the ion current detection electrode is exposed from the insulator so as to be exposed to the flame
  • the linear expansion coefficient of the ion current detection electrode is K
  • the linear expansion coefficient of the above-mentioned current-carrying heating element is ⁇
  • the linear expansion coefficient of the insulator is S
  • the glow plug has the relationship of ⁇ S and HK. .
  • an integrally molded article of both is prepared in advance, and the molded article is embedded in the insulator powder to be integrally molded.
  • an integrally molded product composed of the above-mentioned heating element and the electrode for detecting the ion current is sandwiched and arranged between two separately formed insulator molded bodies in advance.
  • These insulator molded products or the integrally molded product of the current-carrying heating element and the electrode for detecting the ionic current are prepared, for example, by mixing a ceramic powder and a resin containing paraffin as main components. It is produced by injection molding. After that, pressure baking including degreasing is performed, and a ceramic heater with ion current detection function is manufactured by grinding.
  • the glove lug of the present invention having the above configuration also generates heat by passing an electric current through the current-carrying heating element, thereby promoting ignition and combustion in the combustion chamber. Between the inner wall of the combustion chamber To form two electrodes and detect the state of ionization in the combustion flame. According to the present invention, the ion current can be detected accurately with the above configuration, and the information can be effectively used for combustion control. Also, since the glow plug is provided with the original function of heating the combustion chamber (glow function) and the ion current detection function, the structure is compact and can be manufactured at low cost.
  • the respective linear expansion coefficients H, K, and S of the current-carrying heating element, the ionic current detection electrode, and the insulator have the relationship of H ⁇ S and H ⁇ K as described above. That is, the current-carrying heating element has a larger linear expansion coefficient than any of the ion current detecting electrode and the insulator. Therefore, when the glove lug is used, the surface of the glow plug main body can always be maintained in a compressive stress state. That is, when producing the glove lug main body, as described above, the powder material is molded to about 1800. Sintered at a high temperature of C. This sintered body is considered to have almost no internal stress in the high temperature state immediately after sintering.
  • the temperature at which the glow plug is actually used is from room temperature to about 100 ° C., which is lower than the above-mentioned sintering temperature, so that the glove lug body is smaller than immediately after the above-mentioned sintering.
  • the linear expansion coefficients H, K, and S of the current-carrying heating element, the ion current detection electrode, and the insulator that constitute the main body have the above relationship, and the linear expansion of the insulator exposed on the surface and the ion current detection electrode
  • the linear expansion coefficient ⁇ of the current-carrying heating element embedded inside is larger than the coefficients K and S. Therefore, compressive stress always acts on the surface of the main body.
  • the compressive stress always acts on the surface of the main body when the glow plug is used.
  • this compressive stress state is more advantageous for damage such as cracks than in the tensile stress state. Therefore, the glow plug of the present invention can prevent the surface of the main body from being damaged.
  • the current-carrying heating element is buried inside the rod-shaped insulator, combustion There is no corrosion due to the flame, no decrease in resistance value and no change in heat generation characteristics, and high heat generation performance can be exhibited over a long period of time. That is, since the current-carrying heating element is not consumed by oxidation, its cross-sectional area is kept constant and its resistance value does not change. In addition, it is possible to avoid problems such as breakage of the current-carrying heating element due to thermal shock or the like in the combustion chamber.
  • the glove lug of the present invention has a simple structure because the energizing element, the lead wire, and the ion current detecting electrode are integrally provided inside the insulator.
  • each of the linear expansion coefficients K, H, and S is 0 ⁇ H—S ⁇ 2.
  • K ⁇ 2 is preferably in the relationship of 0 X 1 0- 6 (/ ° C).
  • H ⁇ S When H ⁇ S is less than 0, it is as described above. On the other hand, if the H- S exceeds 2. 0 X 1 0- 6 has a tensile stress of the energization heater is increased, there is a problem that the resistance value of the energization heater rises rapidly at long-term use . Further, when the above H ⁇ K is less than 0, it is as described above. On the other hand, the H- K is 2. 0 X 1 0- 6 similarly to the case of more than, there is a problem that the resistance value of the passing ⁇ heat body rises rapidly at long-term use.
  • the ion current detecting electrode is preferably made of at least one kind of conductive ceramic material of a metal silicide, carbide, nitride, or boride.
  • it can be made of a mixed material of a conductive ceramic material and an insulating ceramic material.
  • the heat resistance is improved, and the coefficient of expansion with the insulator can be easily adjusted and matched. The effect of improving the thermal shock resistance is obtained.
  • the electrode for ion current detection comprises one or more refractory metal materials whose main components are metals having a melting point of 1200 ° C. or more, or a refractory metal. It can be made of a mixed material of a material and an insulating ceramic material. In the case of the former metal, since the raw material can be used in a linear form, the effect of reducing costs related to the material, processing, and assembly can be obtained.
  • the high-temperature strength and the oxidation resistance are improved, and the coefficient of linear expansion between the heating element and the insulator can be easily adjusted and combined, so that an effect with excellent durability can be obtained.
  • the reason why the above melting point is set to 1200 ° C. is that the heat resistance of the ion current detection electrode is taken into consideration in order to heat the current-carrying heating element of the global plug to 100 ° C. to 110 ° C. It is.
  • an insulator In the invention according to claim 60, an insulator, a heat-generating body provided inside the insulator, and an ion current detection device arranged inside the insulator for detecting a state of ionization in the flame.
  • a glove lug having an electrode for detecting the ion current, provided on the surface of the insulator so as to cover a portion of the electrode for detecting the ion current exposed from the insulator, and electrically connected to the electrode for detecting the ion current.
  • a connected conductive layer is provided.
  • the conductive layer is provided with an area larger than the area of the exposed portion so as to cover the exposed portion of the ion current detecting electrode from the insulator.
  • the conductive layer is electrically connected to the ion current detection electrode and has conductivity itself. Therefore, the conductive layer plays a role of substantially enlarging the area of the exposed portion of the ion current detection electrode.
  • the energizing heating element and the ion current detecting electrode are the raw material of the insulator It is embedded in ceramic powder and integrally molded.
  • the energizing heating element and the ion current detection electrode are sandwiched between two separate insulators that have been separately manufactured in advance.
  • a mixture of these material powders and a resin containing paraffin wax as a main component is injection-molded. It is produced by the following. Next, pressure sintering including degreasing is performed and firing is performed. Then, a ceramic heater with an ion current detection function is manufactured by cylindrical grinding and spherical grinding.
  • the energizing heating element and the ion current detecting electrode may be provided by printing inside the insulator.
  • An example of such printing is as follows. For example, a desired shape is formed on a surface of a formed form (green sheet) of a ceramic material for forming an insulator by screen printing, node printing, hot stamping, or the like. This is done by printing a current-carrying heating element made of a conductive material, its lead wires, and an electrode for ion current detection. Next, the formed body is wound and then fired.
  • an insulator having a printed current-carrying heating element, a lead wire, and an electrode for ion current detection can be obtained.
  • the electrode for detecting the ion current is exposed on the surface of the insulator.
  • the conductive layer on the surface of the insulator for example, first, the shape, roughness, and the like of the insulator are adjusted as necessary.
  • a conductive layer is printed in a desired shape on the surface of the insulator by pad printing, cylindrical screen printing, or the like, and is baked. Further, the conductive layer can be formed by plasma coating, vapor deposition, or other methods.
  • the glove lug of the present invention having the above configuration also generates heat by passing an electric current through the current-carrying heating element as in the above-described invention, and the heat generated causes ignition and combustion in the combustion chamber. It promotes burning, and the ion current detection electrode forms two electrodes with the inner wall of the adjacent combustion chamber to detect the state of ionization in the combustion flame. According to the present invention, the ion current can be detected with high accuracy, and the information can be effectively used for combustion control. Also, since the glow plug is provided with the original function of heating the combustion chamber (glow function) and the ion current detection function, the structure is compact and can be manufactured at low cost.
  • a conductive layer electrically connected to the above-mentioned ion current detecting electrode is provided on the surface of the insulator. Therefore, the conductive layer functions as an exposed portion of the ion current detection electrode, and the area thereof is increased. Therefore, the ion current can be detected more reliably. Therefore, the ion current can be detected with higher accuracy than in the case where the conductive layer is not provided, and the fuel control can be further improved.
  • the structure of the glow plug of the present invention is simple because the above-mentioned heating element, lead wire, and electrode for detecting the ion current are integrally provided inside the insulator. Therefore, according to the present invention, there is no problem of carbon adhesion, and the area where the ion current detection electrode is substantially exposed to the flame can be increased, and the ion current can be detected accurately.
  • the conductive layer has an edge portion formed by partially exposing the insulator. In this case, the edge portion exhibits the property of adsorbing ions more easily than other smooth portions (edge effect). Therefore, the responsiveness of the detection of the ion current is improved, and, for example, the rising angle at the time of detecting the ion current described later can be made steep and the beak value can be increased.
  • edge portion formed by partially exposing the insulator from the conductive layer is, for example, a case where the conductive layer is formed to have a mesh structure or the like and the insulator is exposed between the meshes as described later.
  • insulating and conductive layer It also includes an edge portion formed at a boundary portion with the exposed portion of the body.
  • the edge portion has a square cross section.
  • the angular edge portion can be obtained, for example, by forming a stepped shape without smoothing the boundary portion with the insulator as shown in a 47th embodiment described later. In this case, the wedge effect can be further increased.
  • the conductive layer may have a network structure, and the surface of the insulator may be exposed between the networks (FIG. 10). 3 to Figure 106).
  • the conductive layer may have a network structure, and the surface of the insulator may be exposed between the networks (FIG. 10). 3 to Figure 106).
  • a large number of square edge portions can be formed in each mesh portion, and the above-described edge effect can be more reliably exerted.
  • the conductive layer can be made of metal or conductive ceramic.
  • the metal it is particularly preferable to use a mixture of a refractory metal and an active metal.
  • the adhesion between the insulator and the conductive layer can be enhanced by the active metal, and the durability can be enhanced by the refractory metal.
  • high melting point metal examples include noble metals such as platinum and gold, nickel, iron and chromium, and these can be used alone or in combination.
  • active metal examples include titanium, zirconium, hafnium, and vanadium, and these can be used alone or in combination.
  • the combination of gold and nickel should be at least 90% by weight, and the rest should be active vanadium. In this case, gold and nickel exhibit conductivity while maintaining durability, and vanadium enhances adhesion to the insulator.
  • the conductive ceramic silicides, carbides, nitrides, and borides of various metals can be used.
  • the silicide is better.
  • oxide ceramics such as aluminum oxide and silicon dioxide
  • the thickness of the conductive layer is preferably 1 to 20 m. If it is less than 1 ⁇ m, there is a problem that the conductive layer becomes thin due to abrasion because the combustion wave or the combustion residue violently collides, and the durability is lost. On the other hand, if it exceeds 20 m, there is a problem that the thermal expansion coefficient differs greatly from that of the insulator, causing cracks due to cold heat and peeling off from the insulator. The following is good.
  • a sixth aspect of the present invention is an aspect of the glove lug according to the first aspect, wherein the first insulating substrate is provided as an insulator, and the covered insulating substrate disposed on a front surface of the first insulating substrate. And a second insulating plate laminated on the side of the lining of the first insulating substrate, wherein the heating element is formed by printing between the front side of the first insulating substrate and the coated insulating substrate, and a pair of lead wires generates heat.
  • a current-carrying heat generator and a lead wire are printed and formed between the front surface of the first insulating substrate and the coated insulating substrate, and the ionic current is applied between the first insulating substrate and the second insulating substrate.
  • a detection electrode is provided. Therefore, heat is generated by passing an electric current through the conductive heating element, and the generated heat promotes ignition and combustion in the combustion chamber.
  • the ion current detection electrode forms two electrodes with the inner wall of the adjacent combustion chamber to detect the state of ionization in the combustion flame.
  • the ion current can be accurately detected, and the information can be effectively used for combustion control.
  • the original combustion chamber heating function (global function) and ion current detection function are provided, so the structure is compact and can be manufactured at low cost.
  • the current-carrying heating element is embedded in a printed state between the first insulating substrate and the coated insulating substrate. Therefore, it is possible to exhibit high heat generation performance over a long period of time without causing a decrease in resistance value and change in heat generation characteristics without corrosion due to the combustion flame, and it is excellent in durability.
  • the current-carrying heating element since the current-carrying heating element is not consumed by oxidation, its cross-sectional area is kept constant and its resistance value does not change. In addition, it is possible to avoid problems such as damage to the current-carrying heating element due to thermal shock or the like in the combustion chamber.
  • carbon may adhere to the surface of the electrode for ion current detection due to fuel combustion, but the adhesion force is due to the heat generated by the current-carrying heating element (for example, when the engine is started at low temperatures). It can be burned off by gross operation. Therefore, the ion current can be accurately detected over a long period of time.
  • the energizing heating element is provided, for example, by printing on the front surface of the first insulating substrate.
  • printing as will be described later, for example, screen printing, pad printing, hot stamping, etc. are performed on the surface of a formed material (green sheet) of a ceramic material for forming the first insulating substrate.
  • This is done by printing a conductive heating element made of a conductive material and a lead wire in a desired shape.
  • the energized heat generator and the lead wire can be printed on the coated insulating substrate.
  • the second insulating substrate, the first insulating substrate, and the coated insulating substrate are stacked in this order.
  • these substrates are formed into a ceramic material forming form, and they are stacked and fired to be bonded by firing. Alternatively, connect Join using adhesive.
  • the energizing heating element and the lead wire are formed by printing between the first insulating substrate and the coated insulating substrate. Therefore, the energizing heating element and the lead wire can be arranged in a thin layer of 0.05 to 0.02 mm in the glove lag, and the glove lag becomes compact. In addition, the current-carrying heating elements and lead wires are not exposed to the fuel flame as described above, and therefore have excellent durability.
  • the glow plug of the present invention is provided with the energizing heating element, the lead wire, and the electrode for detecting the ion current integrally with the covering insulating substrate, the first insulating substrate, and the second insulating substrate. So the structure is simple. Therefore, according to the present invention, there can be provided a glove lug having excellent durability, which can accurately detect an ionic current without causing a problem of adhesion of a carbon fiber.
  • the glow plug characterized in that the outer surfaces of the first insulating substrate and the coated insulating substrate have curved portions. In this case, the laminated body of the first insulating substrate, the second insulating substrate, and the coated insulating substrate can be easily processed into a circular cross section by using the curved surface portion on the outer surface (FIG. 4). See).
  • the first insulating substrate and the second insulating substrate are laminated, and a heat-generating body and both ends of the heat-generating body are provided therebetween.
  • a glow plug is provided with a pair of connected lead wires and an ion current detection electrode for detecting the state of ionization in a flame.
  • a conductive heating element, a lead wire, and an ion current detecting electrode can be provided in parallel between the first insulating substrate and the second insulating substrate. See form). Therefore, it is easy to manufacture glove rugs.
  • the ion current detection electrode Is preferably printed on the front surface of the second insulating substrate.
  • the above-mentioned ion current detecting electrode is printed and formed on the second insulating substrate in advance, and the first insulating substrate may be laminated thereon, thereby facilitating manufacture.
  • the ion current detecting electrode is a conductive wire and is sandwiched between a front side surface of the second insulating substrate and a back side surface of the first insulating substrate. Preferably, they are provided.
  • the ion current detecting electrode may be prepared in a wire state in advance, and may be disposed between the first insulating substrate and the second insulating substrate. Therefore, it is easy to manufacture a global plug.
  • the conductive wire includes a metal wire, a sintered body of a ceramic material, and the like.
  • the tip of the ion current detection electrode is exposed to the tip of the second insulating substrate so as to be exposed to the flame.
  • the effect of improving the response and detection accuracy (S / N ratio) of the ion current detection can be obtained.
  • the ion current detecting electrode can be made of one or more kinds of conductive ceramic materials of MoSi 2 , WC, and Tin. .
  • the heat resistance is improved, and the coefficient of expansion with the insulator can be easily adjusted and combined, so that the effect of improving the thermal shock resistance can be obtained.
  • the electrode for ion current detection can be made of one or more kinds of high melting point metals of W, Mo, and Ti.
  • the raw material can be used in a linear form, the effect of reducing the cost of the material, processing, and assembly can be obtained.
  • Pt, Ir, Rh, Ru, and Pd are provided on the exposed portion of the ion current detection electrode exposed from the second insulating substrate.
  • at least one noble metal is provided. In this case, Consumption resistance of the detection electrode ⁇ The effect of improving oxidation resistance is obtained.
  • the tip of the rod-shaped insulator has a hemispherical shape.
  • the turbulence of the combustion flame flow near the ionic current detection unit is suppressed, the detection performance is stabilized, and the concentration of thermal stress is suppressed, and the heat resistance is reduced. The effect that the property is improved is obtained.
  • the invention according to claim 76 is a modification of the glove lug according to claim 1, wherein the insulator is a rod-shaped insulator, the heating element is printed and formed inside the rod-shaped insulator, and a pair of lead wires is provided. Are electrically connected to both ends of the heating element and led out of the rod-shaped insulator, and the ion current detection electrode is electrically insulated from the electric heating element and is disposed inside the rod-shaped insulator. Has become.
  • the ion current detection electrode forms two electrodes with the inner wall of the adjacent combustion chamber, and detects the state of ionization in the combustion flame.
  • the ion current can be accurately detected, and the information can be effectively used for combustion control.
  • the glove lug is provided with the original combustion chamber heating function (glowing function) and the ion current detection function, the structure is compact and can be manufactured at low cost.
  • the current-carrying heating element since the current-carrying heating element is buried inside the rod-shaped insulator in a printed state, it does not corrode due to the combustion flame, does not cause a decrease in resistance value, and does not cause a change in heating characteristics. High heat generation performance can be exhibited over a long period of time. That is, since the current-carrying heating element is not consumed by oxidation, its cross-sectional area is kept constant and its resistance value does not change. In addition, it is possible to avoid problems such as breakage of the current-carrying heating element due to thermal shock or the like in the combustion chamber.
  • carbon may adhere to the surface of the electrode for ion current detection during fuel combustion, and the attached carbon causes the heat generated by the current-carrying heating element. It can be burned out due to cropping (for example, glow operation when the engine is started at low temperature). Therefore, the ion current can be accurately detected over a long period of time.
  • the electric heating element is provided inside the rod-shaped insulator by printing.
  • printing as will be described later, for example, screen printing, node printing, and the like are performed on the surface of a green molded body (green sheet) of a ceramic material for forming a rod-shaped insulator. This is performed by printing a conductive heating element and a lead wire made of a conductive material in a desired shape using a hot stamp or the like. The green compact is then wound and then fired.
  • a hollow portion is provided in the center portion along the axial direction when the above-mentioned formed body is wound, and before or after the above-mentioned firing, the electrically insulating material is formed.
  • the rod-shaped ion current detection electrode is inserted and fixed in the hollow part via the above.
  • the current-carrying heating element and the lead wire are formed by printing inside the rod-shaped insulator. Therefore, the current-carrying heating element and the lead wire can be disposed in the glove lug in a thin layer of 0.05 to 0.02 mm, and the glove lug becomes compact. The current-carrying heating elements and lead wires are not exposed to the fuel flame, so they have excellent durability.
  • the glove lug of the present invention has a simple structure since the above-mentioned heat generating element, the lead wire, and the electrode for detecting the ion current are integrally provided inside the rod-shaped insulator. Therefore, according to the present invention, it is possible to provide a glow plug which can accurately detect an ion current without a problem of carbon adhesion and has excellent durability.
  • the insulator has a rod-like shape including an electrically insulating central shaft having a hollow portion and an insulating substrate coated on the outer periphery of the central shaft.
  • Heating element is printed between the center shaft and the insulating substrate inside the rod-shaped insulator, and a pair of leads are electrically connected to both ends of the heating element and led out of the rod-shaped insulator.
  • the ion current detecting electrode is electrically insulated from the heating element and inserted and fixed in the hollow portion of the center shaft. In this case, since it is composed of the rod-shaped insulator, the central shaft, and the insulating substrate, its manufacture is easy. Further, the same effect as the above-mentioned claim 76 can be obtained.
  • the heat-generating body is printed and formed on the inner surface of the insulating substrate.
  • the energizing heating element and the lead wire are printed and formed on a sheet-shaped insulating substrate in advance, and this can be wound around the center shaft, which facilitates manufacture.
  • a formed body of a central shaft having a hollow portion and made of an electrically insulating ceramic material is used. Prepare, insert the ion current detection electrode into the hollow part,
  • the energizing heating element and the lead wire are formed on the surface of the formed body of the insulating substrate made of an electrically insulating ceramic material by printing, and then the formed body of the central shaft is formed on the printing surface of the insulating substrate. And place the above insulating substrate around the center shaft.
  • the invention according to claim 80 is the global plug according to claim 1,
  • the insulator is a rod-shaped insulator, the heating element is provided inside the rod-shaped insulator, and a pair of lead wires is electrically connected to both ends of the heating element and led out of the rod-shaped insulator.
  • the configuration is such that the ion current detection electrode is provided on the outer peripheral portion of the rod-shaped insulator in a groove provided along the axial direction thereof, and is electrically insulated from the heating element.
  • the surface of a green body formed of a ceramic material for forming the rod-shaped insulator is used.
  • Screen printing, pad printing, hot-shooting, etc. to print the energized heat-generating body and lead wire made of a conductive material in the desired shape, and then wind the formed body around the separately manufactured center shaft. Turn and then bake (see Embodiment 58, FIG. 126A to FIG. 126D).
  • a groove extending in the axial direction is formed in the outer periphery of the rod-shaped insulator in advance, and before or after the firing, the rod-shaped ion current detection is formed in the groove. Place and fix the electrodes for use.
  • the glove lug of the present invention generates heat by passing an electric current through the above-mentioned current-carrying heating element, and the heat generation promotes ignition and combustion in the combustion chamber. Further, the ion current detection electrode forms two electrodes between the inner wall of the adjacent combustion chamber and detects the state of ionization in the combustion flame.
  • the ion current can be accurately detected, and the information can be effectively used for combustion control.
  • the glow plug is provided with the original function of heating the combustion chamber (glow function) and the ion current detection function, the structure is compact and can be manufactured at low cost.
  • the current-carrying heating element is buried inside the rod-shaped insulator, it does not corrode due to burning flame, does not cause a decrease in resistance value, and does not cause a change in heat-generating characteristics, and has high heat-generating performance for a long time It can be used and has excellent durability. That is, since the current-carrying heating element is not consumed by oxidation, its cross-sectional area is kept constant and its resistance value does not change.
  • the ion current detecting electrode may be arranged in the above-mentioned groove of the rod-shaped insulator, the glove lug can be easily manufactured.
  • carbon ions may adhere to the surface of the electrode for ion current detection due to fuel combustion, and the carbon adhered to the electrode may generate heat due to the current-carrying heating element (for example, when the engine is started at low temperature at low temperature). One operation). Therefore, the ion current can be accurately detected over a long period of time.
  • the glow plug of the present invention has a simple structure because the current-carrying heating element, the lead wire and the electrode for detecting the ion current are integrally provided inside the rod-shaped insulator. Therefore, according to the present invention, it is possible to provide a glow plug which is capable of accurately detecting an ionic current without causing a problem of adhesion of a rubber ribbon, has excellent durability, and is easy to manufacture.
  • an insulating covering material is filled on the ion current detecting electrode provided in the groove so as to cover the ion current detecting electrode. It is preferred that In this case, the ion current detection electrode can be easily fixed to the rod-shaped insulator.
  • the insulating coating material for example, an electrically insulating ceramic material is used.
  • the energizing heating element and the lead wire are formed by printing on the inner surface of the insulating substrate. This place In this case, it is easy to manufacture because the energizing heating element and the lead wire are printed and formed on a sheet-shaped insulating substrate in advance and wound around a center shaft.
  • the energizing heating element and the lead wire can be disposed in the glow plug in a thin layer of 0.005 to 0.02 mm, and the glow plug becomes compact.
  • the tip of the ion current detecting electrode is exposed at the tip of the rod-shaped insulator so as to be exposed to the flame.
  • the effect of improving the responsiveness of ion current detection and the detection accuracy can be obtained.
  • the ion current detection electrode can be made of one or more conductive ceramic materials of MoSi 2 , WC, and Tin.
  • the heat resistance is improved, and the coefficient of expansion with the insulator can be easily adjusted and combined, so that the effect of improving the thermal shock resistance can be obtained.
  • the ion current detecting electrode can be made of one or more kinds of high melting point metals of W, Mo, and Ti.
  • the material can be used in the form of a line or a plate, the effect of reducing the cost of the material, processing, and assembly can be obtained.
  • At least one of Pt, Ir, Rh, Ru, and Pd is provided on the exposed portion of the ion current detecting electrode exposed from the rod-shaped insulator. Is preferably provided. In this case, the effect of improving the wear resistance and oxidation resistance of the detection electrode can be obtained.
  • the tip of the rod-shaped insulator has a hemispherical shape.
  • the turbulence of the combustion flame flow near the ion current detector is suppressed, the detection performance is stabilized, and the concentration of thermal stress is suppressed and the heat resistance is reduced. The effect that the impact property is improved is obtained.
  • the energization heating element is provided on the surface of the formed body of the insulating substrate made of an electrically insulating ceramic material. And print forming lead lines,
  • a center shaft forming body made of an electrically insulating ceramic material is placed on the printing surface of the insulating substrate, and the insulating substrate is wound around the outer periphery of the center shaft, and both ends of the insulating substrate in the winding direction are wound.
  • a groove along the axial direction is formed between
  • the ion current detecting electrode is arranged inside the outer groove
  • a method for manufacturing a glove lug which comprises heating the above-mentioned body and firing the above-mentioned center shaft and insulating substrate.
  • FIG. 1 is an overall configuration diagram showing an outline of a glow plug according to an embodiment of the present invention.
  • FIG. 2 is an enlarged cross-sectional view showing a main part of the glove lug according to the first embodiment.
  • FIG. 3 is an explanatory view showing the procedure for manufacturing a glow plug.
  • FIG. 4 is an explanatory view showing the procedure for manufacturing a global plug.
  • Figure 5 is an explanatory diagram showing the procedure for manufacturing glove lugs.
  • FIG. 6 is an explanatory view showing a glow plug manufacturing procedure.
  • Fig. 7 shows an outline of the ion current detection system, and is a configuration diagram showing a heating element heating state.
  • FIG. 8 shows an outline of the ion current detection system, and is a configuration diagram showing an ion current detection state.
  • Fig. 9 is a flowchart showing the switching process of the switch circuit.
  • FIG. 10 is a diagram showing an example of an ion current waveform.
  • Figure 11 is a graph showing the heat generation characteristics of glove lugs.
  • FIG. 12 is an enlarged cross-sectional view showing a main part of a global plug according to the second embodiment.
  • FIG. 13 is an enlarged cross-sectional view showing a main part of a glove lug according to the third embodiment.
  • FIG. 14 is an enlarged cross-sectional view showing a main part of a glove lug according to the fourth embodiment.
  • FIG. 15 is an explanatory view showing a procedure for manufacturing a glow plug according to the fourth embodiment.
  • FIG. 16 is an explanatory view showing the procedure of manufacturing a global plug according to the fourth embodiment.
  • FIG. 17 is an enlarged cross-sectional view showing a main part of a global plug according to a fifth embodiment.
  • FIG. 18A, FIG. 18B, FIG. 19A, and FIG. 19B are cross-sectional views showing an enlarged main part of a glove lug according to the sixth embodiment.
  • FIG. 20 is an enlarged cross-sectional view showing a main part of a global plug according to a seventh embodiment.
  • FIG. 21 is an explanatory view showing a procedure for manufacturing a glow plug according to the seventh embodiment.
  • FIG. 22 is a configuration diagram showing an outline of an ion current detection system according to a seventh embodiment.
  • FIG. 23 is a flowchart showing a glow relay switching process.
  • FIGS. 24A and 24B show examples of ion current waveforms.
  • FIG. 25 is a configuration diagram showing an outline of another ion current detection system according to the seventh embodiment.
  • FIG. 26 is a diagram for explaining the relationship between the resistance value of the ion current detection electrode and the ion current waveform.
  • FIG. 28 is a graph showing the relationship between the amount of mixed Na + Ca + K impurities and the bending strength under a high temperature condition of ⁇ 1200 ° C.
  • FIG. 29 is a graph showing the relationship between temperature and bending strength for each of the impurities of 0.1% or less, the Ca content of 1%, the K content of 1%, and the Na content of 1%.
  • FIG. 30A, FIG. 30B, FIG. 30C, and FIG. 30D are perspective views for explaining a glove lug manufacturing procedure in another embodiment.
  • FIG. 31 is a perspective view for explaining a glove lug manufacturing procedure in another embodiment.
  • FIG. 32A, FIG. 32B, and FIG. 32C are perspective views for explaining a glove lug manufacturing procedure in another embodiment.
  • FIG. 33 is a perspective view for explaining a procedure for manufacturing a glow plug in another embodiment.
  • FIG. 34 is a configuration diagram showing an outline of an ion current detection system according to an eighth embodiment.
  • FIG. 35 is a configuration diagram showing an outline of an ion current detection system according to a ninth embodiment.
  • FIG. 36 is a configuration diagram showing an outline of an ion current detection system according to the tenth embodiment.
  • FIG. 37 is a configuration diagram showing an outline of an ion current detection system according to the first embodiment.
  • FIG. 38 is a configuration diagram showing an outline of an ion current detection system according to the first and second embodiments.
  • FIG. 39 is a time chart showing an ion current waveform for each cylinder in the 12th embodiment.
  • FIG. 40 is a configuration diagram showing an outline of an ion current detection system according to the thirteenth embodiment.
  • FIG. 41 is a time chart showing a voltage waveform corresponding to an ion current in the thirteenth embodiment.
  • FIG. 42 is a configuration diagram showing an outline of an ion current detection system according to the fourteenth embodiment.
  • FIG. 43 is a time chart showing a voltage waveform corresponding to an ion current in the fourteenth embodiment.
  • FIG. 44 is a configuration diagram showing an outline of an ion current detection system according to the fifteenth embodiment.
  • FIG. 45 is a time chart showing a voltage waveform corresponding to the ion current in the fifteenth embodiment.
  • FIG. 46 is a configuration diagram showing an outline of an ion current detection system according to Embodiments 16 and 17 of the present invention.
  • FIG. 47 is a time chart for explaining the operation in the 16th embodiment more specifically.
  • FIG. 48 is a flowchart showing a procedure for switching ON / OFF of a transistor in the 16th embodiment.
  • FIG. 49 is a flowchart showing a fuel ignition timing feedback procedure in the sixteenth embodiment.
  • FIG. 50 is a time chart for more specifically explaining the operation of the seventeenth embodiment.
  • Fig. 51 is a diagram for setting the time for temporarily holding the switch circuit in the heating element heating state under the ion current detection state.
  • FIG. 52 is a time chart showing the operation of processing the ion current in the eighteenth embodiment.
  • FIG. 53 shows a graph for setting the time for temporarily holding the switch circuit in the heating element heating state under the ion current detection state in another embodiment.
  • FIG. 54A is a cross-sectional view of the glove lug main body in the nineteenth embodiment
  • FIG. 54B is a cross-sectional view taken along line AA of FIG. 54A.
  • FIG. 55 is an overall explanatory diagram of a glove lug in the nineteenth embodiment.
  • FIG. 56 is a drawing substitute photograph (magnification: 350 ⁇ ) showing the mixed sintered body structure of the ion current detection electrode in the ninth embodiment.
  • FIG. 57 is a drawing-substitute photograph (magnification: 1000) showing the mixed sintered body structure of the ion current detecting electrode in the nineteenth embodiment.
  • FIG. 58 is a drawing-substituting photograph (magnification: 20000) showing the mixed sintered body structure of the ion current detecting electrode in the nineteenth embodiment.
  • FIG. 59 is an explanatory diagram showing a mixed sintered body structure of an ion current detection electrode in the nineteenth embodiment.
  • FIG. 60 is an enlarged explanatory view of a portion M in FIG.
  • FIG. 62 is a perspective view of a molded body of a current-carrying heating element in the nineteenth embodiment.
  • FIG. 63 is a perspective view of a molded body of an ion current detection electrode in the nineteenth embodiment.
  • FIG. 64 is a glow plug operation circuit diagram in the nineteenth embodiment.
  • FIG. 65 is a flowchart of the glow plug operation system at the time of starting the glow plug in the ninth embodiment.
  • FIG. 66A is a waveform diagram showing a normal ion current in the nineteenth embodiment.
  • FIG. 66B is a diagram showing an ion current at the time of smoking in the nineteenth embodiment.
  • FIG. 67 is a smoldering determination flowchart in the nineteenth embodiment.
  • FIG. 68 is a glow plug operation circuit diagram according to the 25th embodiment.
  • FIG. 69A is a cross-sectional view of the glove lug main body according to the 26th embodiment.
  • FIG. 69B is a sectional view taken along line BB in FIG. 69A.
  • FIG. 70 is a glove lug operation circuit diagram in the 26th embodiment.
  • FIG. 71 is a flow chart for determination of fanning in the 26th embodiment.
  • FIG. 72 is a glove lug operation circuit diagram as a modified example of FIG. 70.
  • FIG. 73 is a cross-sectional view of a glow plug main body in the twenty-seventh embodiment.
  • FIG. 74 is a schematic view showing an ion current detection effect of a polished portion in the twenty-eighth embodiment.
  • FIG. 75 is a waveform chart showing an ion current waveform according to the 28th embodiment.
  • FIG. 76 is a waveform chart showing an ion current waveform according to a comparative example compared with the twenty-eighth embodiment.
  • FIG. 77 is a graph showing the relationship between the surface roughness R z of the polished portion and the ion current detection accuracy in the twentieth embodiment.
  • FIG. 78 is a schematic cross-sectional view showing the shape of the ion current detection electrode in the thirtieth embodiment.
  • FIG. 79 shows the shape of the ion current detecting electrode in the 30th embodiment.
  • FIG. 80 is a schematic cross-sectional view showing a shape of an ion current detection electrode in the thirtieth embodiment.
  • FIG. 81A is a sectional view of a glove lug main body according to the 32nd embodiment.
  • FIG. 81B is a cross-sectional view taken along line AA in FIG. 81A.
  • FIG. 82 is an overall explanatory diagram of a global plug according to the 32nd embodiment.
  • FIG. 83 is an explanatory view of an insulating porous layer in the 32nd embodiment.
  • FIG. 84A is a perspective view of a current-carrying heating element according to the 32nd embodiment.
  • FIG. 84B is a perspective view of the ion current detection electrode of the thirty-second embodiment.
  • FIG. 85 is an explanatory view of a method for manufacturing a glove lug main body according to the 32nd embodiment.
  • FIGS. 86A and 86B are explanatory diagrams of the method of manufacturing the glow plug body following FIG. 85.
  • FIG. 87 is a cross-sectional view of a glove lug main body in the thirty-fourth embodiment.
  • FIG. 88 is a cross-sectional view of the glove lug main body according to the thirty-fifth embodiment.
  • FIG. 89A is a cross-sectional view of the glow plug main body according to the 36th embodiment.
  • FIG. 89B is a cross-sectional view taken along the line BB in FIG. 89A.
  • FIG. 90 is an explanatory diagram of an operation and effect in the 37th embodiment.
  • FIG. 91 is an overall explanatory diagram of a glove lug in the forty-first embodiment.
  • FIG. 92A is a cross-sectional view of the glove lug main body according to the fourth embodiment.
  • FIG. 92B is a cross-sectional view taken along line AA in FIG. 92A.
  • FIG. 93 is an explanatory view showing electric resistances R ( ⁇ ) and B ( ⁇ ) in the 42nd embodiment.
  • FIG. 94 is an explanatory view of a method for manufacturing a glove lug main body according to the fourth embodiment.
  • FIG. 95 shows the position of the ion current detecting electrode in the 42nd embodiment. Explanatory drawing which shows the example which changed.
  • FIG. 96 is an explanatory diagram showing the relationship between the distance L and the ion output detection rate in the fourth embodiment.
  • FIG. 97 is an explanatory diagram showing the relationship between the amount of conductor added to the insulating ceramic and the coefficient of linear expansion in the 46th embodiment.
  • FIG. 98A is a cross-sectional view of the glove lug main body in the 47th embodiment.
  • FIG. 98B is a sectional view taken along line AA in FIG. 98A.
  • FIG. 99 is an overall explanatory diagram of a glove lug in the 47th embodiment.
  • FIG. 100 is an explanatory view of a method for manufacturing a glove lug main body in the 47th embodiment.
  • FIG. 101 is an explanatory view showing important points at the time of ion current detection in the 47th embodiment.
  • FIG. 102A is a cross-sectional view showing an arrangement state of a conductive layer in the 48th embodiment.
  • FIG. 102B is a bottom view showing an arrangement state of the conductive layer in the 48th embodiment.
  • FIG. 103 is an explanatory view showing a pattern of a conductive layer in the 49th embodiment.
  • FIG. 104 is an explanatory view showing a pattern of a conductive layer in the 49th embodiment.
  • FIG. 105 is an explanatory view showing a pattern of a conductive layer in the 49th embodiment.
  • FIG. 106 is an explanatory view showing a pattern of a conductive layer in the 49th embodiment.
  • FIG. 107 is an explanatory view showing a pattern of a conductive layer according to another embodiment.
  • C FIG. 108 is an illustration showing a pattern of a conductive layer according to still another embodiment. Clear view.
  • FIG. 109A is a cross-sectional view of the glove lug main body according to the 50th embodiment.
  • FIG. 109B is a cross-sectional view taken along the line BB in FIG. 109A.
  • FIG. 110A is a cross-sectional view of a glow plug main body according to the fifty-first embodiment.
  • FIG. 110B is a cross-sectional view taken along line A—A in FIG. 110A.
  • FIG. 11 is an overall explanatory diagram of a glove lug in the fifteenth embodiment.
  • FIG. 112 is an explanatory view of a method of manufacturing a glow plug main body according to the fifteenth embodiment.
  • FIG. 11 is an explanatory view of the method for manufacturing the glove lug main body
  • FIG. 114 is an explanatory view of the method for manufacturing the glow plug main body
  • FIG. 115A is a cross-sectional view of the glove lug main body according to the fifth embodiment.
  • FIG. 115B is a cross-sectional view taken along line B_B in FIG. 115A.
  • FIG. 116A is a cross-sectional view of the glow plug body according to the fifth embodiment.
  • FIG. 116B is a cross-sectional view taken along line C-C in FIG. 116A.
  • FIGS. 117A and 117B are explanatory diagrams of a method for manufacturing a glove lug according to the fifty-fourth embodiment.
  • FIG. 118A is a cross-sectional view of the glow plug body in the 55th embodiment.
  • FIG. 118B is a cross-sectional view taken along line DD in FIG. 118A.
  • FIG. 119 is a cross-sectional view corresponding to line DD of FIG. 118A of another glow plug main body in the 55th embodiment.
  • FIG. 1208 is a cross-sectional view of the glow plug body in the 56th embodiment.
  • FIG. 120B is a cross-sectional view taken along line AA in FIG. 12 OA.
  • FIG. 121 is an overall explanatory diagram of the glove lug according to the 56th embodiment.
  • FIG. 122 is an explanatory diagram of a method for manufacturing a glove lug main body according to a 56th embodiment.
  • FIG. 123 is a cross-sectional view of the glove lug main body according to the fifty-seventh embodiment.
  • FIG. 12B is a cross-sectional view taken along the line BB in FIG.
  • FIG. 124A is a cross-sectional view of the glove lug main body according to the fifty-eighth embodiment.
  • Fig. 124B is a cross-sectional view taken along line A-A in Fig. 124A.
  • FIG. 125 is an overall explanatory diagram of the global plug of the 58th embodiment.
  • 12A to 12D are explanatory diagrams of a method of manufacturing a glow plug main body according to the fifty-eighth embodiment.
  • a ceramic glow plug (hereinafter simply referred to as a glove lug) used as a start-up assist device for a diesel engine is provided.
  • the glove lug of the present embodiment is provided in a combustion chamber (vortex chamber) formed in a cylinder head of a diesel engine, and a part of the grommet is exposed to the combustion chamber. It is like that.
  • the glow plug plays a role in promoting the ignition and combustion of the fuel injected from the fuel injection nozzle when the engine is started at a low temperature.
  • the glove lug in the present embodiment has a role of detecting active ions present in the combustion flame zone at the time of fuel combustion, in addition to the above-described starting assist function.
  • FIG. 1 shows the entire configuration of the glove lug 1 in the present embodiment.
  • a glove lug 1 has a substantially cylindrical metal housing 4, and an outer peripheral surface of the housing 4 is used to attach the glow plug 1 to a cylinder head described later.
  • a male screw portion 43 and a hexagonal portion 44 are formed.
  • a tubular protection tube 46 is welded to the upper part of the housing 4.
  • the housing 4 holds a ceramic heat generating portion 6.
  • the ceramic heat generating portion 6 includes a conductive U-shaped heating element 7 and an insulating heat-resistant insulator 8. It comprises an ion current detection electrode 14 integrally formed with the heating element 7 and two tungsten lead wires 9 a and 9 b connected to both ends of the heating element 7 and embedded in the insulator 8. ing.
  • the heating element 7 is mostly embedded in the heat-resistant insulator 8 and is held firmly.
  • the end surface of the ion current detection electrode 14 8 is provided on the same plane as the outer peripheral surface.
  • the heating element 7 and the ion current detection electrode 14 are integrally formed, the two members 7 and 14 are always in an electrically connected state.
  • the exposed portion of the heat generator 7 and the inner wall of a vortex chamber 17 (broken line) of the diesel engine described later form a counter electrode for detecting an ion current.
  • conductive tips 10a and 10b embedded in a heat-resistant insulator 8 are connected to the upper ends of the tungsten lead wires 9a and 9b, respectively.
  • Leads 11a and 11b are connected to the tubes 10a and 10b, respectively.
  • These two lead wires 11a and lib are the external signal input wires of the glow plug 1.
  • the housing 4 and the protection tube 46 are electrically insulated from the lead wires 11a and lib by an insulating tube 12D and a rubber bush 12E.
  • the lead wires 11a and 11b are fixed together with the rubber bush 12E by the tightening force of the protection tube 46.
  • the heating element 7, the ion current detection electrode 14, and the heat-resistant insulator 8 of the ceramic heating section 6 are all conductive ceramic powder (in the present embodiment, molybdenum silicide M 0 Si 2 powder). It is composed of a sintered body composed of a mixture of a ceramic powder and insulating ceramic powder (in the present embodiment, silicon nitride SiaN 4 powder).
  • the average particle diameter of the heating element 7 and Mo S i 2 powder in the ion current detection electrode 14 is rather smaller than that of S i 3 N powder, the average particle size of the Mo S i 2 powder in the heat insulator 8 However, it is the same as or larger than that of SiaN powder. That is, by changing the particle size of each powder, the heating element 7 and the ion current detection electrode 14 and the heat-resistant insulator 8 are separately formed.
  • the heating element 7, the ion current detection electrode 14, and the heat-resistant insulator 8 were composed of Mo Si 2 powder and Si 3 N 4 powder. Has been changed.
  • the heating element 7 and the ion current detecting electrode 1 4 and the heat insulator 8 if Shimese the mixing ratio of the Mo S i 2 powder and S i 3 N 4 powder, the former (the heating element 7 and the ion current detection electrode 14) is Mo S i 2 powder 6 0 ⁇ 70wt%, the S i N powder and 40 ⁇ 30Wt%, the latter (heat insulators 8) is 20-30 wt-% of M o S i 2 powder, The content of Si 3 N 4 powder is 80 to 70 wt%. Moreover, both, and Y 2 0 3 and A 1 0 is added a total of about 1 Ow t% as aids.
  • the heating element 7 and the ion current detection electrode 14 use the small-diameter MoSi 2 powder (conductive ceramic powder) to convert the large-diameter SiN 4
  • the powder insulating ceramic powder
  • the powder surrounds and is connected to each other, so that current flows through the heating element 7 and the ion current detection electrode 14, and the heating element 7 generates heat.
  • small-diameter Si 3 N 4 powder insulating ceramic powder
  • M 0 Si 2 powder conductive ceramic powder
  • a method of manufacturing the ceramic heating section 6 will be described with reference to FIGS.
  • a binder is mixed with a mixture of Mo Si 2 powder and Si 3 N 4 powder to form a paste, and a heating element 7, an ion current detection electrode 14 and a heat-resistant insulator 8 are each desired.
  • Injection molding At this time, as shown in FIG. 3, the plurality of heating elements 7 and the ion current detection electrodes 14 were connected via the connection bar 28, and the tungsten lead wires 9a and 9b were connected. Molded in a state. Then, each of the heating element 7 and the ion current detection electrode 14 is cut at an intermediate portion of the ion current detection electrode 14 (dashed line portion in FIG. 3).
  • the insulating portions 8a and 8b for forming the heat-resistant insulator 8 are formed in a pair of semi-cylindrical shapes, and the insulating portions 8a and 8b face each other.
  • a groove 29 for accommodating the heating element 7, the lead wires 9a and 9b, and the ion current detecting electrode 14 in a predetermined portion is formed on the surface.
  • the heat generating element 7 and the ion current detecting electrode 14 are arranged integrally in the groove 29 so as to be surrounded by the insulating portions 8a and 8b. Hot breath at 800 ° C. Thereafter, by cutting the outer periphery of the ceramic heat generating portion 6 along the broken line in FIG. 6, a cylindrical ceramic heat generating portion 6 having a spherical tip is obtained. At this time, the heating element 7 is entirely embedded with the heat-resistant insulator 8, whereas the end face of the ion current detection electrode 14 is exposed at the tip of the ceramic heating section 6.
  • FIGS. 7 and 8 are configuration diagrams each showing an outline of the ion current detection system in the present embodiment.
  • Fig. 7 shows the heating state of the glow plug 1 (heating element 7), that is, the state for promoting the ignition and combustion of the fuel at the time of starting the engine
  • Fig. 8 shows the ion current accompanying the fuel combustion. This shows a state in which is detected by glove lug 1.
  • a screw hole 16 is formed in a cylinder head 45 of a diesel engine, and a glow plug 1 is screwed into the screw hole 16. That is, when screwing the glow plug 1 into the cylinder 45, the hexagonal part 44 is sandwiched by a predetermined tool, and the male thread part 43 of the plug 1 is screwed. The mosquitoes should be screwed into 6
  • the tip of the ceramic heat generating portion 6 of the glove lug 1 is arranged to protrude into a swirl chamber 17 formed in the cylinder head 45.
  • a main combustion chamber 19 provided above the biston 18 communicates with the swirl chamber 17, and the swirl chamber 17 forms a part of the combustion chamber.
  • the tip of the fuel injection nozzle 20 is provided in the swirl chamber 17, and fuel is injected from the fuel injection nozzle 20 into the swirl chamber 17.
  • a switch circuit 25 is provided between the battery 34 composed of a 12 V (volt) DC power supply and the glove lug 1, and the switch circuit 25 has two two-position switching circuits. The electric path between the battery 34 and the glove lug 1 is switched according to the operation state of the switch 25. Switch circuit
  • Reference numeral 25 denotes an electronic control unit (hereinafter referred to as an ECU).
  • ECU electronice control unit
  • the lead wires 11a and lib of the glow plug 1 are connected to the terminals 23a and 24a of the switching switch 25, respectively.
  • the switching switch 25 has two contacts 23 b, 23 c and 24 b, 24 c each selectively connected to the terminals 23 a and 24 a.
  • the connection between the terminal 23a and the contact 23b is closed, and the connection between the terminal 24a and the contact 24b is closed.
  • the brass side of the battery 34 is connected to the one lead wire 11a of the glove lug 1 via the terminal 23a and the contact 23b, and to the other lead wire 11b.
  • the negative side of the battery 34 is connected via the terminal 24a and the contact 24b.
  • the connection between the terminal 23a and the contact 23c is closed, and the connection between the terminal 24a and the contact 24c is closed. . That is, both the switching switches 25 are in the open state.
  • the battery voltage is applied to the lead wire 11a via the ion current detection resistor 26 of the electric path (the path shown by the two-dot chain line in FIG. 8) provided in parallel with the switching switch 23.
  • a battery voltage is applied between the ion current detection electrode 14 formed at the tip of the ceramic heating section 6 and the cylinder head 45, and the active ions in the combustion flame zone are discharged. As it occurs, the ion current flows along the path shown by the two-dot chain line in FIG.
  • the resistance value of the ion current detection resistor 26 is about 500 k ⁇ , and the ion current flowing through the ion current detection resistor 26 is a potential difference between both ends of the resistor 26. Is detected by
  • the detection principle of the ion current will be briefly described.
  • the fuel injected by the fuel injection nozzle 20 is subjected to combustion in the swirl chamber 17, a large amount of ionized positive ions and negative ions are generated in the combustion flame zone.
  • the ion current detection electrode 14 captures negative ions and
  • the brass ions are captured in the cylinder head 45.
  • a current path shown in FIG. 8 is formed, and the ion current flowing through this current path is detected as a potential difference between both ends of the ion current detection resistor 26.
  • the ECU 30 is mainly composed of a well-known micro-computer consisting of a CPU, ROM, RAM, input / output circuits, etc. and an A / D converter (both not shown). Input the detection signal detected by the potentiometer 27.
  • the ECU 30 includes a detection signal of a water temperature sensor 36 for detecting the temperature of the engine cooling water and a detection signal of a rotation speed sensor 32 for detecting the engine rotation speed according to the engine crank angle.
  • the ECU 30 detects the water temperature Tw and the engine speed Ne based on the detection signals of the sensors 36 and 32.
  • the ECU30 causes the heating element 7 of the glow plug 1 to generate heat during the low-temperature start of the diesel engine to promote the ignition and combustion of the fuel.
  • a switching command signal is output to the switch circuit 25, and the circuit of the present system is set to the ion current detection state to detect the combustion ion current.
  • the switch circuit 25 is maintained in a heating element heating state.
  • the switching process of the switch circuit 25 will be described with reference to the flowchart of FIG. FIG. 9 is executed by interruption processing for a predetermined time.
  • step 110 determines whether or not the engine has been warmed up in step 110 and the switch circuit 25 is in an ion current detection state.
  • step 110 is determined as negative, and the ECU 30 reads the water temperature Tw and the engine speed Ne in the subsequent step 120.
  • the ECU 30 determines in step 130 whether or not the water temperature Tw is equal to or higher than a predetermined warm-up completion temperature (in the present embodiment, 60 ° C.). Then, it is determined whether or not the engine speed Ne reaches a predetermined speed (in the present embodiment, 2000 rpm) or more. In such a case, if both steps 130 and 140 are negatively determined, the ECU 30 has not completed warming-up of the engine and needs to generate heat by the glove lug 1 (heating element 7). And go to step 150. Also step 1 If a positive determination is made for either 30 or 140, the ECU 30 determines that the engine has been completed or that heat generated by the glove lug 1 (heating element 7) is not necessary, and step 1 Go to 60.
  • a predetermined warm-up completion temperature in the present embodiment, 60 ° C.
  • step 150 the ECU 30 keeps the switch circuit 25 in the heating element heat generation state (the state of FIG. 7), and thereafter ends this processing. In this state, the ignition and combustion of the fuel are promoted by the heat generation of the glow plug 1.
  • the ECU 30 shifts the switch circuit 25 from the heating element heating state to the ion current detection state (the state in FIG. 8), and thereafter ends this routine.
  • the ion current generated during fuel combustion is detected by the ion current detection resistor 26.
  • step 160 may be, for example, a case where the engine speed Ne temporarily increases in the racing state. In this case, the engine warm-up is performed. Not completed yet. Therefore, even if the switch circuit 25 once transitions to the ion current detection state, the ECU 30 makes a negative determination of step 110 in the next processing, and returns to steps 13 0 and 14. The determination process of 0 is performed again. Then, when the engine speed Ne temporarily stops increasing and the engine speed Ne decreases (Ne 00 000 rpm), the switch circuit 25 returns to the heating element heating state again. (Step 150).
  • FIG. 10 is a current waveform diagram when an oscilloscope is used to observe the ion current generated during fuel combustion.
  • the waveform in which the voltage sharply rises immediately after the compression TDC is the ion current waveform due to fuel combustion
  • point A corresponds to the combustion start position, that is, the ignition timing.
  • two peaks are observed in this ion current waveform. That is, in the early stage of the combustion, the first peak B1 is observed by the active ions in the diffusion flame zone, and in the second half of the combustion, the second peak B2 is observed by the re-ionization due to the increase in the in-cylinder pressure.
  • the ECU 30 detects the actual ignition timing from the first peak B1 of the ion current waveform, and detects the ignition timing in order to eliminate the difference between the detected actual ignition timing and the target ignition timing. Execute feedback control. Further, the ECU 30 detects a combustion state such as abnormal combustion or misfire from the second peak B2 of the ion current waveform, and reflects the detection result in the fuel injection control. By reflecting the ion current in the fuel injection control of the engine in this way, it becomes possible to control the operating state of the engine finely.
  • the glow plug 1 is embedded in the heat-resistant insulator 8 and the heat-resistant insulator 8, and is formed by a pair of lead wires 9a and 9b (11a, 11b).
  • a heating element 7 that generates heat when energized is provided, and an ion current detection electrode 14 that is formed integrally with the heating element 7 and that detects an ionization state in the combustion flame. That is, the ion current detection electrode 14 was configured so that a part (end face) thereof was exposed to the flame generated in the swirl chamber 17. According to this configuration, when the ion current is detected, the ion current detection electrode 14 and the inner wall of the swirl chamber 17 adjacent thereto capture combustion ions (brass and negative ions) generated during fuel combustion. To form two electrodes. As a result, despite the very simple configuration, the ion Current as an inexpensive ion current sensor.
  • Plug 1 can be provided.
  • the ion current detecting electrode 14 (and the heat generating portion 7) is formed of a conductive ceramic material. As a result, even when exposed to high-temperature combustion gas, the ion current detection The oxidation consumption of the electrode 14 is minimized, and the durability of the ion current detection performance of the glow plug 1 can be further improved.
  • the ceramic heating part 6 (heating element 7, ion current detection electrode 14 and heat-resistant insulator 8) of the plug 1 is connected to the conductive ceramic powder ( It was formed from a mixture of M 0 S i 2 powder) and insulating ceramic powder (S i 3 N 4 powder). Therefore, it is possible to provide the ceramic heat generating portion 6 having excellent heat resistance and wear resistance. In addition, the ceramic heat generating section 6 can maintain a good start assist function when the engine is started at a low temperature.
  • the ceramic heating part 6 (heating element 7, ion current detection electrodes 14, 4) was prepared from a mixture of conductive ceramic powder and insulating ceramic powder.
  • the heat-resistant insulator 8) was formed, and the outer peripheral surface of the heat-resistant insulator 8 was cut to expose the ion current detection electrode 14 to the outside. According to such a process, the glow plug 1 having the above-mentioned ion current detecting function can be manufactured by a simple method without requiring a particularly complicated manufacturing process.
  • a switch circuit 25 is provided, and the switch circuit 25 is used to switch between a heating element heating state and an ion current detection state. That is, the voltage application in the two states is performed using the common lead wires 11a and 11b, and the switching between the two states is selectively performed by the switch circuit 25. Therefore, in the present ion current detection device, the wiring configuration of the lead wires 11a and 11b connected to the heating element 7 and other configurations relating to the detection of the ion current can be simplified, and the ion current detection can be performed at low cost.
  • An apparatus can be provided.
  • the present ion current detection device is applied to a diesel engine, and a heating element 7 is connected to one end of a battery 34.
  • a heating element 7 is connected to one end of a battery 34.
  • One of the lead wires 11a was connected, and the other end was connected to a cylinder head 45.
  • the configuration of the counter electrode (the ion current detection electrode 14 and the wall of the vortex chamber 17) required for detecting the ion current can be simplified.
  • the ion current detection device of the present embodiment detects the active ion of the combustion flame zone in the combustion chamber of the diesel engine, it detects the ion current in a state where the combustion ion density is high. And the detection accuracy can be improved. Therefore, it is possible to accurately detect the combustion state of the diesel engine and reflect the detection result in the fuel injection control.
  • the battery 34 supplies the direct current between the ion current detection electrode 14 and the cylinder head 45 directly without passing through the switch circuit 25 (contact 23 c). Since the power supply is applied, adverse effects such as noise due to the switching operation of the switch circuit 25 can be eliminated. That is, the resistance of each contact of the switch circuit 25 increases due to oxidation, and when such a contact resistance increases, it may be difficult to detect an originally weak ion current. However, in the present embodiment, the above-mentioned problems can be solved.
  • FIG. 12 is a cross-sectional view showing a main part of a glow plug according to the second embodiment.
  • the ion current detection electrode 14 is provided at the tip (spherical portion) of the heat-resistant insulator 8.
  • the side face of the heat-resistant insulator 8 is provided on the side surface.
  • An ion current detection electrode '14A is provided. That is, the end surface of the ion current detection electrode 14 A is exposed on the same side surface of the heat-resistant insulator 8.
  • the ion current detection electrode 14A is integrally formed with the heating element 7, and both members 14A and 7 are in an electrically connected state. Further, since the heating element 7 itself is protected by the heat-resistant insulator 8, the heat generation characteristics thereof are not impaired. ⁇ Third Embodiment >>
  • FIG. 13 is a cross-sectional view showing a main part of a glow plug according to the third embodiment.
  • the ion current detection electrode 14 B is electrically connected to the heating element 7 via the lead wire 9 c at the tip of the heat-resistant insulator 8.
  • the composition of the heating element 7 and the ion current detection electrode 14B are the same. Even with such a configuration, the object of the present invention can be achieved.
  • FIG. 14 is a cross-sectional view showing a main part of a glow plug according to the fourth embodiment.
  • the end face of the ion current detection electrode It is characterized by having a relatively large area.
  • the electrode 14C for detecting the ion current has a horizontal cross-section when the glow plug is viewed from below (not shown). Even with such a configuration, the object of the present invention can be achieved. In particular, in this configuration, since the ion current detection electrode 14C has a large area exposed to the combustion flame, it is possible to detect the ion current with higher accuracy.
  • the heating element 7 and the ion current detection electrode 14 C were formed by injection molding a mixture of Mo Si 2 powder and Si 3 N 4 powder to obtain the shape shown in FIG. Molded into
  • the plurality of heating elements 7 and the ion current detection electrodes 14 C are formed in a connected state via the connecting bar 28.
  • each of the heating elements 7 and the electrode 14C for detecting the ion flow are cut at an intermediate portion of the connecting bar 28 (a dashed line portion in FIG. 15).
  • the heating element 7 and the ion current detection electrode 14 C are surrounded by a heat-resistant insulator 8 and hot-pressed at 170 to 180 ° C.
  • a heat-resistant insulator 8 When the outer peripheral portion of the ceramic heat generating portion 6 is cut along the broken line in FIG. 16, the cylindrical heat generating portion 6 having a spherical end and a cylindrical shape is obtained.
  • the heating element 7 is entirely buried in the heat-resistant insulator 8, but the end face of the ion current detection electrode 14 C is exposed in a horizontal shape at the tip of the ceramic heating section 6. It will be.
  • FIG. 17 is a cross-sectional view illustrating a main part of a glove lug according to the fifth embodiment. That is, in each of the above embodiments, the outer peripheral surface of the heat-resistant insulator 8 and the exposed end surface of the ion current detecting electrode are the same plane. In this state, as shown in FIG. 17, the ion current detection electrode 14 D protrudes from the outer peripheral surface of the heat-resistant insulator 8. Also in this case, the object of the present invention can be achieved similarly to the above embodiments. Further, according to such a configuration, the exposed area of the ion current detection electrode 14D is increased, so that the ion current detection accuracy is improved.
  • the shape of the protruding portion of the ion current detection electrode 14 D may be arbitrary, such as a conical shape, a pyramid shape, a columnar shape, a J shape, an inverted T shape, and the like. It may be provided.
  • FIG. 18A, FIG. 18B, FIG. 19A, and FIG. 19B are cross-sectional views showing a main part of a glove lug according to the sixth embodiment.
  • the heating element and the ion current detection electrode are integrally formed and electrically connected (except for the third embodiment) or electrically connected via a common lead wire. (Third embodiment).
  • the heating element and the ion current detection electrode are formed separately, and both members (the heating element and the ion current detection electrode) are separated from each other. Are taken out and the two members are electrically connected.
  • the glove lugs in FIG. 18A and FIG. 18B show examples in which an ion current detection electrode 14E is provided at the tip (spherical portion) of the heat-resistant insulator 8.
  • lead wires 9a and 9b are taken out from both ends of the U-shaped heating element 7, and one of the lead wire 9b and the ion current detection electrode 14E are connected.
  • the extracted lead wire 9 d is connected inside the heat-resistant insulator 8.
  • the structure of the heating element 7 and the electrode 14E for detecting the ion current and the lead wires 9b, 9d, and 9e are almost the same as those in FIG.
  • the signal input section has a different configuration. That is, the lead wire 9 e is It is exposed on the side surface of the thermal insulator 8, and this exposed portion is connected to the external lead wire 9 f via the annular conductor 55.
  • the lead wires 9 b and 9 d are electrically connected by a conductive layer 57 provided on the end surface of the heat-resistant insulator 8.
  • the glow plugs of FIGS. 19A and 19B show an example in which a ring-shaped ion current detection electrode 14F is provided on the side surface of the heat-resistant insulator 8.
  • the lead wires 62, 63 are taken out from both ends of the U-shaped heating element 7, and one of them is connected to the lead wire 6 3 and the ion current detection electrode 14 F
  • the lead wire 64 extracted from the inside is connected inside the heat-resistant insulator 8.
  • the structure of the heating element 7 and the electrode 14F for detecting the ion current and the lead wires 62 to 64 are substantially the same as in FIG. 19A, but the signal input section from the outside is used.
  • the lead wire 62 is exposed on the side surface of the heat-resistant insulator 8, and this exposed portion is connected to the external lead wire 66 via the annular conductor 65.
  • the lead wires 6 3 and 6 4 are electrically connected by a conductor 67 provided on the end face of the heat-resistant insulator 8.
  • the ion current can be detected with a simple configuration and with high accuracy as in the above embodiments.
  • the heat generation performance of the heat generating element 7 can be maintained for a long time, and the desired effect of the present invention can be obtained.
  • the heating element and the ion current detection electrode are electrically connected.
  • the embodiment is characterized in that the heating element and the ion current detection electrode are electrically insulated from each other, and an ion current detection device using the global plug configured as described above is embodied. .
  • FIG. 20 is a cross-sectional view showing a main part of glove lug 1 in the present embodiment.
  • a heat generator 7 and an ion current detection electrode 14G are embedded separately in a heat-resistant insulator 8 of a ceramic heat generator 6, and a tip of the heat generator 6 is attached to the heat generator 7.
  • a part (tip surface) of the ion current detection electrode 14 G is exposed.
  • One of the pair of lead wires 72, 73 connected to both ends of the heating element 7, one of the lead wires 72 is taken out from the side of the heat-resistant insulator 8 and is electrically connected to the housing 4,
  • the other lead wire 73 is led out of the heat-resistant insulator 8 while being insulated from the housing 4.
  • the lead wire 74 connected to the ion current detection electrode 14 G is led to the outside of the heat-resistant insulator 8 while being insulated from the lead wire 73 on the heating element 7 side and the housing 4. Has been.
  • a binder is kneaded with the mixture with the powder, and the mixture is pasteurized.
  • the heating element 7, the ion current detection electrode 14G, and the heat-resistant insulator 8 are each formed by injection molding into a desired shape.
  • the heat-resistant insulator 8 is divided and formed into a semi-cylindrical shape, between which the heating element 7, the lead wires 72, 73 connected to the heating element 7, and the ion current detecting electrode 14
  • the G and the lead wire 74 connected thereto are accommodated and arranged in predetermined positions, that is, in the grooves 75 formed in the heat-resistant insulator 8.
  • the integrated body is heated at 170 to 180 ° C. White breath.
  • a ceramic tip with a spherical and cylindrical tip is generated. Hot part 6 is obtained.
  • the heating element 7 is entirely embedded with a heat-resistant insulator 8, whereas the end face of the ion current detection electrode 14G is located at the ceramic heating section 6. Will be exposed at the tip of the.
  • the housing 4 of the glow plug 1 is screwed into a head 45 of an engine cylinder, and the tip of the ceramic heat generating portion 6 of the plug 1 is formed in a head 45 of a cylinder.
  • the vortex chamber 17 is arranged so as to protrude.
  • the tip of a fuel injection nozzle 20 that injects fuel into the swirl chamber 17 is disposed in the swirl chamber 17.
  • One lead wire 72 of the heating element 7 is grounded via the housing 4, and the other lead wire 73 is connected to the positive of a battery 3 4 rated at 12 V (volt) via a glow relay 76.
  • the glow relay 76 is set to 0N / 0FF in response to a command signal from the ECU30, and is normally kept in the 0FF state. That is, when the global relay 76 is turned on in accordance with a command from the ECU 30, the heating element 7 is heated by the power supply from the battery 34, and the relay 76 is turned off when the relay 76 is turned off. Then, the heat generation state is stopped.
  • the lead wire 74 connected to the ion current detection electrode 14 G is always connected to the brass side of the battery 34 via the ion current detection resistor 26. Therefore, according to the above configuration, the ion current is detected every time the fuel is burned by the fuel injection by the fuel injection nozzle 20.
  • the resistance value of the ion current detection resistor 26 is about 50 OkQ, and the ion current flowing through the ion current detection resistor 26 is a potential difference between both ends of the resistor 26 as a potentiometer. Detected by 27 and input to ECU 30.
  • FIG. 23 is executed by the ECU 30 in accordance with the power-on accompanying the operation of the ignition key.
  • step 201 the ECU 30 first determines in step 201 whether or not the engine has been warmed up. At the start of the engine start, step 201 is judged negative, and the ECU 30 reads the water temperature Tw and the engine speed Ne at the following step 202.
  • the ECU 30 determines in step 203 whether or not the water temperature Tw is equal to or higher than a predetermined warm-up completion temperature (60 ° C. in the present embodiment). It is determined whether or not the engine speed Ne has reached a predetermined speed (in the present embodiment, 2000 rpm). In such a case, if both steps 203 and 204 are negatively determined, the ECU 30 has not completed warming-up of the engine and needs to generate heat by the glove lug 1 (heating element 7). And proceed to step 205. If any of steps 203 and 204 is affirmatively determined, the ECU 30 considers that the engine has been completed or that heat generated by the glove lug 1 (heating element 7) is unnecessary. Go to step 206.
  • a predetermined warm-up completion temperature 60 ° C. in the present embodiment.
  • the ECU 30 sets the glow relay 76 to the 0 N state, and then returns to step 201. In this state, the ignition and combustion of the fuel are promoted by the heat generated by the glow plug 1.
  • Step 2 0 6 E CU 3 0 is then transitions the glow some truth array 7 6 from ON state to the OFF state, then Note c returns to Step 2 0 1, Step 2 0 4 is affirmative
  • step 206 it is considered that the engine speed Ne temporarily increases in the racing state, and in this case, the temporary increase in the engine speed Ne stops.
  • the glow relay 76 is returned to the ON state (heating element heating state) again (step 205).
  • the global relay 76 is turned off (step 206), and at the same time, the ECU 30 makes an affirmative decision in step 201 and makes a decision in step 20. Go to 7. Then, the ECU 30 reads the current value I p detected by the ion current detection resistor 26 at the time of the fuel injection timing by the fuel injection nozzle 20 in step 207, and in the following step 208 It is determined whether or not the current value Ip is equal to or greater than a predetermined threshold value Ith. This current value I p corresponds to the value of the leakage current flowing due to the force attached to the outer periphery of the ceramic heat generating portion 6.
  • step 208 is negative (Ip ⁇ Ith)
  • the ECU 30 returns to step 201. In such a case, it is determined that no carbon is attached to the outer periphery of the ceramic heat generating portion 6 or the attached carbon is less than an allowable amount, and the glow relay 76 is held in the 0 FF state.
  • step 208 determines whether step 208 is determined to be affirmative (in the case of Ip ⁇ Ith)
  • the ECU 30 proceeds to step 209 and turns the glow relay 76 on from the previous 0FF state to the ON state (heating element). (Exothermic state). That is, if the step 208 is determined to be affirmative, it is considered that force exceeding an allowable amount has adhered to the outer periphery of the ceramic heat generating portion 6. In this case, the insulation resistance between the ion current detection electrode 14G and the ground side (housing 4 and cylinder head 45 side) decreases due to the adhesive force, and a leakage current flows (I p I th). Therefore, in order to burn off the adhered carbon, the glow relay 76 is turned on to cause the heating element 7 to generate heat.
  • the ECU 30 keeps the ON state of the glow relay 76 for a predetermined time (2 seconds in the present embodiment) in step 210, and then turns on the glow relay 76 in step 211. Return to the OFF state. Then, return to step 201 again. Thereafter, the ECU 30 controls the glow relay 76 to ON / OFF control in an optimal state while monitoring the leakage current in step 207. You.
  • the switching means described in claims is constituted by the glow relay 76.
  • step 207 in FIG. 23 corresponds to the leakage current detecting means described in the claims, and steps 208 to 211 correspond to the operating means described in the claims.
  • FIGS. 24A and 24B are current waveform diagrams when observing the ion current generated during fuel combustion using an oscilloscope. However, FIG. 24A shows a state in which no force is attached to the outer periphery of the ceramic heat generating portion 6, and FIG. 24B shows a state in which carbon is attached to the outer periphery of the ceramic heat generating portion 6.
  • the waveform in which the voltage sharply rises immediately after the fuel injection timing is the ion current waveform due to fuel combustion
  • point A corresponds to the combustion start position, that is, the ignition timing.
  • the current value is kept substantially at “0” at the timing of the fuel injection.
  • two peaks are observed in this ion current waveform. In other words, in the early stage of combustion, the first peak B11 was observed by active ions in the diffusion flame zone, and in the second half of combustion, the second peak B12 was observed by reionization due to the rise in cylinder pressure. You.
  • the ECU 30 detects the actual ignition timing from the first peak B11 of the ion current waveform, and detects the ignition timing in order to eliminate the difference between the detected actual ignition timing and the target ignition timing.
  • One feedback control is performed.
  • the ECU 30 detects a combustion state such as abnormal combustion or misfire from the second peak B12 of the ion current waveform, and reflects the detection result in the fuel injection control. By reflecting the ion current in the fuel injection control of the engine in this way, it is possible to control the operating state of the engine finely.
  • a leakage current exceeding the allowable level (threshold value Ith) is observed at the timing of fuel injection. Therefore, the state Then, the adhesive force is removed by the heating action of the heating element 7 (Steps 209 to 211 in FIG. 23 are performed). If such a state is left unattended, the leakage current value will gradually increase, and it may be difficult to distinguish it from the first mountain B11 in due course. Inconvenience is also avoided.
  • the ion current detection system of the present embodiment may be configured as shown in FIG.
  • two DC power supplies are provided, one of which is a heating element power supply 7 7 for generating heat from the heating element 7, and the other is for the ion current detection for detecting the ion current.
  • Power supply 7-8 In this case, between one lead wire 73 of the heating element 7 and the power supply 77 for the heating element, a glow relay 76 for 0 N / 0FF of the heating operation of the glove lug 1 is provided.
  • An ion current detection resistor 26 is provided between the ion current detection electrode 14 G lead wire 74 and the ion current detection power supply 78.
  • the heating element power supply 77 is, for example, a 12 V (volt) DC power supply (general vehicle battery), and the ion current detection power supply 78 is, for example, a 50 V (volt) DC power supply. Power supply is used.
  • the heating element 7 and the ion current detection electrode 14G are insulated. In this case, since the heating element 7 and the ion current detection electrode 14 G are energized by different power supply paths, the heating element 7 is heated while simultaneously generating the ion current detection electrode 14 G. Can detect the ion current (that is, the combustion state can be grasped). Can be grasped).
  • the current value I p as the leakage current is detected at the timing of the fuel injection, and if the current value I p is equal to or more than the predetermined threshold value I th, The globe relay 76 is operated so that the heating element 7 generates heat (steps 209 to 211 in FIG. 23).
  • the state of carbon adhesion on the outer periphery of the ceramic heating part 6 is estimated, and if the amount of carbon adhesion is considered to exceed the allowable value, the glove lug 1 The exothermic action burns off the attached carbon.
  • the leakage current (current value I p) is detected at the timing of fuel injection.
  • the timing of the fuel injection corresponds to the time immediately before the combustion of the diesel engine is increased and the fuel is burned. Therefore, the leakage current can be reliably detected under the situation where the force is attached as described above.
  • the heating element and the ion current detection electrode are mixed with the same composition (same particle size) (small-diameter Mo Si 2 powder and large-diameter Si 3 N 4 powder).
  • the heating element and the ion current detection electrode may be formed of a mixture having different compositions.
  • the resistance value of the heating element and the resistance value of the ion current detecting electrode become different values.
  • the diameter of MoSi 2 powder as conductive ceramic powder is heated. Make it larger than the body (or reduce the diameter of Si 3 N 4 powder as an insulating ceramic powder) and increase its resistance value. Such production is performed according to the purpose of the global plug.
  • the resistance value of the ion current detection electrode can be made relatively large, for example, about 5 M ⁇ . The following is acceptable (however, the heating element is about 1 ⁇ ).
  • the detection result of the ion current is used for, for example, ignition timing detection, it is necessary to instantaneously detect the rise of the ion current. Therefore, it is desirable that the resistance of the ion turret detection electrode be as small as possible. k ⁇ or less is desirable).
  • the rise of the ion current becomes slower as the resistance value of the ion current detecting electrode increases.
  • the resistance value becomes smaller, so that a heating element as a conductive member and an electrode for ion current detection can be formed. If “the particle size of Mo Si 2 powder> the particle size of Si 3 N 4 powder”, the resistance value increases and a heat-resistant insulator as an insulating member can be formed. In terms of changing the mixing ratio of each powder, the resistance value decreases as the mixing ratio of MoSi 2 powder increases, and the resistance value increases as the mixing ratio of Si 3 N 4 powder increases. Becomes larger. (3)
  • two terminals may be provided at one end of the glow plug 1 to form a two-wire glow plug. In this case, the lead wires 11a and 11b as conductive wires are electrically connected to the two terminals.
  • a switch circuit 25 including two two-position switching switches 25 is used to switch between the heating element heating state and the ion current detection state, but this may be changed.
  • the switch may be changed to a semiconductor switch (transistor, thyristor, or the like) capable of controlling a large current, and may be any means capable of switching between the above two states.
  • the glow relay 76 as the switching means may be changed to a semiconductor switch or the like. Good.
  • a common DC power supply (vehicle battery 34) is used in the heating element heating state and the ionic current detection state.
  • a configuration using two DC power supplies may be used.
  • a heating element power supply for generating heat from the heating element 7 and an ion current detection power supply for detecting an ion current are prepared.
  • 12 V (volt) is used as the heating element power supply.
  • a DC power supply of 50 V (volt) is used as the power supply for detecting the ion current.
  • the switch circuit 25 is operated by the control program (the routine in FIG. 9) executed by the ECU 30, and thereby the heating element heating state and the ion current detection state are determined. Although it was configured to switch between these, this may be changed.
  • the heating element may be in the heating state only for a predetermined time (about 1 to 2 minutes) after the engine is started, and after the predetermined time has elapsed, the heating element may be automatically switched from the heating element heating state to the ion current detection state. No.
  • the switching operation between the above two states may be mechanically performed. Specifically, a configuration may be adopted in which a bimetal and a switching switch that operates by deformation thereof are employed, and the two states are switched by the operation of the switch.
  • the ion current detection electrode is formed by the following (7). — It may be composed of the materials shown in (1) to (7-5).
  • the electrode for ion current detection with high melting point metal Configure the electrode for ion current detection with high melting point metal.
  • the heating temperature of the heating element is 100 to 1200. Since it is C, it is 1 3 0 0.
  • High melting point materials of C or higher are desirable.
  • a noble metal such as Ir, Rh, Ru, and Os, and an alloy material thereof are used. In this case, since the noble metal does not generate nitride-silicide with respect to silicon nitride as an insulating ceramic material, the electrode for ion current detection has excellent sinterability and excellent durability. Is obtained.
  • the thermal expansion coefficient of the ion current detection electrode can be easily adjusted.
  • the ion current detection electrode can be manufactured at low cost.
  • an ion current detection electrode having excellent sintering properties and durability and easily adjusting the coefficient of thermal expansion can be obtained.
  • the electrode for detecting the ion current is composed of a conductive ceramic material.
  • a conductive ceramic material include metal silicides, borides, carbides, nitrides and Use that mixture.
  • the insulating ceramic material and the ion current detection electrode can be fired simultaneously, the workability is improved.
  • a semiconductor material (e.g., S i C + S i 3 N 4) constituting the ion current detecting electrode at.
  • it functions as an insulator at normal temperature and functions as an ion current detection electrode at high temperatures.
  • the ion current detection electrode is composed of an alloy material containing impurities such as Na, Ca, K, and Mg equal to or less than a predetermined value (eg, 0.5% or less).
  • a predetermined value eg, 0.5% or less.
  • the high-temperature strength of the ion current detection electrode is increased, and the performance such as thermal shock is improved.
  • a sufficient bending strength (approximately 700 MPa) can be obtained at 5% or less.
  • the ion current detection electrode is formed by the injection molding method.
  • the ion current detection electrode may be formed by a printing method. May be formed by a printing method).
  • the electrode formed as a sintered body may be incorporated in a heat-resistant insulator. Further, as a method of manufacturing the green plug 1, the following methods (8-1), (8-2), and (8-3) may be applied.
  • FIGS. 30A to 30D show a manufacturing method in which a heat-resistant insulating sheet is wound in a cylindrical shape to produce a ceramic heat generating portion 6.
  • FIG. 30A raw materials composed of a ceramic material, a resin binder, and the like are mixed to produce a thin sheet 91 (FIG. 30A).
  • FIG. 30B on the front side of the sheet 91, a heat generating body 92 and an ion current detecting electrode 93 are formed by screen printing using a conductive base. I do.
  • the ion current detection electrode portion 93 is provided in a shape slightly protruding from the tip of the U-shaped heating element portion 92.
  • lead wires 94a and 94b are formed by printing. Further, in the state of FIG. 30B, a coating material composed of a ceramic material and a resin binder is coated and printed on the front side of the sheet 91. This is done by eliminating the steps between the printed surface, such as the heating element 92 and the electrode 93 for detecting the ion current, and the sheet surface, and flattening the sheet. Implemented to improve the adhesion between 91 and the central shaft. Note that, on the back surface of the sheet 91, the terminal portions 95a and 95b are printed and formed by a conductive paste so as to be electrically connected to the lead wire portions 94a and 94b.
  • a cylindrical central shaft 96 made of the same material as the sheet 91 (mixed material composed of ceramic material, resin binder, etc.) was prepared, and the central shaft 96 was formed as shown in FIG. 30C.
  • the surface of the sheet on which the heat generating part 92 and the ion current detecting electrode part 93 are printed is The sheet 91 is wound around the center shaft portion 96 so as to be on the inside.
  • an axially extending groove portion 99 is formed between both end surfaces 97 and 98 of the sheet 91 in the winding direction.
  • the groove portion 99 is formed by making the width of the sheet 91 in the winding direction smaller than the outer diameter of the center shaft portion 96. After the end faces 97 and 98 of the sheet 91 are brought into contact with each other, one of the overlapping end faces may be cut off along the axial direction, and a groove portion 99 may be formed therebetween.
  • the groove 99 is filled with an insulating coating material 100 made of a ceramic material. Further, after a degreasing treatment is performed by preheating, the main heating is performed to integrally fire the sheet 91 and the central shaft portion 96. At this time, the sheet 91 and the central shaft portion 96 are in close contact with each other due to firing shrinkage, and the gap between the groove portions 99 is narrowed. Then, the terminal portions 95a and 9513 connected to the lead wire portions 94a and 94b are subjected to ⁇ 11 plating and Ni plating. Finally, when the tip of the cylindrical body shown in FIG. 30D is ground into a spherical state, a ceramic heat generating portion 6 as shown in FIG.
  • the heating element 7 (heating element section 92) is entirely buried in the heat-resistant insulator 8 (sheet 91 and center shaft section 96), while the ion current detection electrode 14 The end face of the (ion current detection electrode section 93) is exposed at the tip of the ceramic heating section 6.
  • FIGS. 31 and 32A to 32C show a manufacturing method in which a plurality of heat-resistant insulating materials are laminated to produce the ceramic heat generating portion 6.
  • FIG. 31 in the present embodiment, first, a first laminated material 101 having a thin plate shape and second and third laminated materials 102 and 103 having a substantially semi-cylindrical shape are provided. And are prepared.
  • Each of the first to third laminated materials 101 to 103 is a formed form (green sheet) of an electrically insulating ceramic material, and is made of a ceramic material, a resin binder, or the like. Mixing raw materials and press molding Have been.
  • a heating element 104 and an ion current detecting electrode 105 are formed by screen printing using a conductive paste.
  • the ion current detection electrode 105 is provided in a shape slightly protruding from the tip of the U-shaped heating element 104.
  • the lead wire portions 106a and 106b are formed by printing using a conductive paste.
  • the first laminated material 101 is placed at the center, and the second and third laminated materials 102 and 103 are superimposed on both surfaces thereof, and these are preheated.
  • the first to third laminated materials 101 to 103 are integrally fired by performing the main heating.
  • the above-mentioned one piece (a) is ground into a cylindrical shape, and as shown in FIG. 32C, the ends of the lead wire portions 106a, 106b are formed.
  • the terminals are subjected to Cu plating and Ni plating to make the terminal 107.
  • Fig. 33 the first to fifth laminated materials made of similar heat-resistant insulating materials (mixed materials such as ceramic materials and resin binders), all of which are in the shape of a book, are shown. 1 to 115 are prepared, of which the surface of the third laminated material 113 located at the center is heated by the screen printing using a conductive paste and the heating element part 116 and the ion The current detection electrodes 1 17 are formed. At this time, the ion current detecting electrode portion 117 is provided in a shape slightly protruding from the tip of the U-shaped heating element portion 116. Similarly, the lead wire portions 118a and 118b are formed by printing with a conductive paste. Have been.
  • the first to fifth laminated materials 11 1 1 to 11 15 are superimposed, subjected to a degreasing treatment by preliminary heating, and then subjected to main heating to perform the first to fifth laminated materials 11 1 1 to 1 15 are integrally fired. Thereafter, when the integrated material of the laminated material is ground into a columnar shape and its tip is ground into a spherical state, a ceramic heat generating portion 6 as shown in, for example, FIG. 2 is obtained.
  • the heating element 7 (heating element section 1 16) is entirely embedded in the heat-resistant insulator 8 (first to fifth laminated materials 11 1 to 1 15), while the ion current
  • the H end face of the detection electrode 14 (ion current detection electrode section 117) is exposed at the tip of the ceramic heating section 6.
  • a plurality of heat-resistant insulating materials prepared first may be the same sheet material, for example, compared with the embodiment of (8-2) described above.
  • the versatility of the heat-resistant insulating material prepared in advance will be improved.
  • the method for producing (8-1), (8-2), and (8-3) also produces the global plug 1 having the specific configuration described above and having an excellent ion current detecting function. The inconvenience of complicating steps in the manufacturing process can be avoided.
  • the first step would be as follows. After manufacturing a rectangular parallelepiped or another cube, the manufacturing method may be changed so that the ceramic heating element 6 having a spherical end and a cylindrical shape is ground. Further, in the manufacturing method of (8-2) or (83-1), the number of the laminated materials made of the heat-resistant insulating material may be arbitrary, and the laminated material arranged substantially at the center of the plurality of laminated materials may be used. Any structure may be used as long as the heat generating body and the ion current detecting electrode are provided in the first stage.
  • the heating element and the ion current detection electrode are provided separately.
  • any material that can be manufactured so that the ion current detection electrode is exposed after the last grinding process can be used.
  • the heating element and the ion current detection electrode are provided separately.
  • a coil-shaped metal wire for example, a tungsten wire
  • a part of the metal wire is used to detect ion current that is exposed to a combustion flame.
  • the electrodes are electrically connected.
  • an inexpensive glove lug having an ion current detection function can be provided.
  • the heat generation performance of the heating element can be maintained for a long time.
  • the leakage current (current value IP) was detected at the timing of the fuel injection (step 207 in FIG. 23).
  • the leakage current may be detected at a predetermined crank angle before TDC.
  • the predetermined crank angle is given as a pulse output timing of a predetermined number obtained from the detection signal of the rotation speed sensor 32. If force is attached to the outer periphery of the glove lug, the insulation resistance between the exposed electrode and the earth side depends on the pressure in the combustion chamber. Therefore, it is sufficient that the leakage current is detected before the fuel is ignited and the in-cylinder pressure is high, that is, during the compression stroke.
  • the glow relay 76 is turned ON for a predetermined time (two seconds) set in advance (the heating element).
  • the holding time of the 0 N state may be set according to the current value Ip read in step 207 of FIG.
  • the holding time is set to be longer as the current value I p (leakage current) becomes larger. In this case, the adhesive force can be more reliably removed.
  • a constant current / constant voltage circuit 80 may be provided at a position indicated by a broken frame. In this case, it is possible to avoid such a problem that the voltage applied to the ion current detection electrode 14G drops under the heating state of the heating element (the state where the glow relay 76 is 0 N). As a result, stable detection accuracy can be secured. Further, since only the constant current / constant voltage circuit 80 is added as described above, a complicated circuit configuration is not required, and no cost increase is caused.
  • the glow plug of the present invention was applied to the ion current detection device that detects combustion ions in the combustion chamber of a diesel engine having a vortex chamber.
  • the glove lug of the present invention may be applied to a so-called direct injection type engine that performs injection.
  • the glove lug can be applied to other devices. For example, in a device that burns unburned fuel in the exhaust pipe of a gasoline engine, it is possible to detect combustion ions accompanying the burning of the unburned fuel by the glove lug of the present invention. In this case, the combustion state of the unburned fuel can be determined from the ion current detected by the device.
  • FIGS. 34 to 36 illustrations of the same components as the first embodiment, such as the fuel injection nozzle 20, the ECU 30, and the sensors, are omitted.
  • the housing 4 holds a ceramic heating portion 6 as a heating element portion.
  • the ceramic heating portion 6 is composed of a conductive U-shaped heating element 7 and an insulating heat-resistant insulator 8. And two tungsten lead wires 9 a and 9 b connected to both ends of the heating element 7 and buried in the insulator 8. Most of the heating element 7 is buried in the heat-resistant insulator 8 and is held firmly, but as shown in the enlarged view of the main part of Fig. 37, at the tip of the ceramic heating section 6 Only a part of the heating element 7 is exposed from the heat-resistant insulator 8.
  • the exposed portion of the heating element 7 and the inner wall of a vortex chamber 17 (broken line) of a diesel engine described later form a counter electrode for detecting an ion current. That is, in the first embodiment, the ion current detecting electrode 14 is formed integrally with the heating element 7, but in the eighth embodiment, a part of the heating element 7 itself is formed of a heat-resistant insulator. It is exposed to the outside from 8. In the first embodiment, a current supplied to the heating element 7 and a current supplied to the ion current detection electrode are obtained from a single power supply (battery 34). In the embodiment, these power sources are divided.
  • Both the heating element 7 and the heat-resistant insulator 8 of the ceramic heating section 6 are made of conductive ceramic powder (in this embodiment, molybdenum silicide MoSi 2 powder) and insulating ceramic powder (this In the embodiment, the sintered body is made of a mixture of silicon nitride (Si 3 N 4 powder) and has approximately the same blending ratio.
  • the average particle size of Mo S i 2 powder is smaller than that of Si 3 N 4 powder
  • heat-resistant insulator 8 the average particle size of M 0 Si 2 powder is It is the same as or larger than that of the SiN powder.
  • the heating element 7 and the heat-resistant insulator 8 are separately formed by changing the particle size of each powder.
  • the heating element 7 is configured such that a small-diameter MoSi 2 powder (conductive ceramic powder) is replaced with a large-diameter Si 3 N 4 powder (insulating ceramic powder). (Powder), so that current flows through the heating element 7 and the heating element 7 generates heat.
  • the small-diameter SiN powder (insulating ceramic powder) is interposed between the large-diameter MoSi powder (conductive ceramic powder), so that both are in series.
  • the resistance is higher than that of the heating element 7 and an insulating layer is formed.
  • the ceramic heat generating portion 6 first, a mixture of MoSi 2 powder and Si 3 N 4 powder is kneaded with a binder to form a paste, and the heat generating member 7 and the heat resistant material are heat-resistant.
  • Each of the conductive insulators 8 is injection-molded into a desired shape.
  • the heating element 7 is arranged so as to be wrapped by the heat-resistant insulator 8, so that the heating element 7 is in a range of 1700 to 1800. After hot breathing at C, it is cut into a cylindrical shape as a ceramic heating part 6. Further, the heat-resistant insulator 8 is cut at the end of the ceramic heat-generating portion 6 to expose a part of the heat-generating member 7 from the heat-resistant insulator 8.
  • FIG. 7 showing the first embodiment shows a heating state of the glove lug 1 (heating element 7), that is, a state for promoting ignition and combustion of fuel when the engine is started, and FIG. Although the state in which the ionic current associated with fuel combustion is detected by the glove lug 1 is shown, in the eighth embodiment, the former heating element heating state (the state in FIG. 7) corresponds to the “first state”. The latter ion current detection state (the state in FIG. 8) corresponds to the “second state”.
  • two DC power supplies are provided.
  • One of them constitutes a heating element power supply 34 for causing the heating element 7 to generate heat, and the other constitutes an ion current detection power supply 35 for detecting an ion current.
  • a 12 V (volt) DC power supply (general vehicle-mounted battery) is used as the heating element power supply 34, and 50 V (volt) is used as the ion current detection power supply 35.
  • DC power supply is used.
  • Each of the power supplies 34, 35, and the glow plug 1 are connected via a two-position switching circuit 25 having two movable pieces 23, 24. According to the switching operation of 5, the first and second states are switched.
  • the switch circuit 25 holds the ion current detection state at normal times when a command signal from an electronic control unit (hereinafter, referred to as ECU) 30 is not input, and when a command signal from the ECU 30 is input, The heating element is in the heating state while maintaining the ion current detection state. At this time, the two movable pieces 23 and 24 of the switching switch 25 are interlocked.
  • terminals 23a and 24a respectively connected to the movable pieces 23 and 24 of the switching switch 25 are connected to the lead wires 11a and lib of the glove lug 1.
  • the switching switch 25 has two contacts 23 b, 23 c, 24 b, and 24 c each selectively connected to the terminals 23 a and 24 a. I do.
  • the brass side of the heating element power supply 34 is connected to one lead wire 11 a of the glow plug 1 via the terminal 23 a and the contact 23 b, and the other lead wire 1 1 a b has a power supply for heating element 34 and a power supply for ion current detection via terminal 24a and contact 24b.
  • the negative side of 5 is connected. That is, the heating element 7 is in a heating state. Is held.
  • the contact 24 b is also connected to a part of the cylinder head 45.
  • the ion current is always detected. That is, the plus side of the ion current detection power supply 35 is connected to one lead wire 1 la of the glow plug 1 via the resistor 26, and the other lead wire 1 lb is connected to the terminals 24 a and 2 b. It is connected to the minus side of the ion current detection power supply 35 via 4 b or is open. As a result, in each case, the voltage of the ion current detection power supply 35 was placed between the exposed part of the heating element 7 formed at the tip of the ceramic heating part 6 and the cylinder head 45. Is applied, and an ionic current flows with the generation of active ions in the combustion flame zone.
  • An ion current detection resistor 26 having a predetermined resistance value (100 k ⁇ in this embodiment) is connected between the brass side of the ion current detection power supply 35 and the contact 23 c.
  • the ion current flowing through the ion current detection resistor 26 is detected by a potentiometer 27 as a potential difference between both ends of the resistor 26.
  • the switch circuit 25 corresponds to the switching means
  • the ion current detecting resistor 26 corresponds to the ion current detecting means.
  • FIG. 35 is a configuration diagram showing an outline of an ion current detection system according to the ninth embodiment.
  • the power source 34 for the heating element and the power source 35 for the ion current detection are separately provided.
  • the ion current detection power supply 35 in the above embodiment is shared with the heating element power supply 34 (in-vehicle battery) (in that sense, the same as in the first embodiment). Is). That is, as shown in FIG. 35, the contacts 23 b and 23 c of the switch circuit 25 are Both are connected to the positive side of the heating element power supply 34.
  • the resistance value of the ion current detection resistor 26 is changed to a large value corresponding to the voltage drop (preferably about 400 k ⁇ or more).
  • an inexpensive ion current detecting device having a simple configuration can be provided, and the object of the present invention can be achieved. Further, in the present embodiment, the following effects can be obtained in addition to the effects described above. In other words, since the power supply 35 for the ion current detection is shared with the power supply 34 for the heating element, a power source other than, for example, an in-vehicle battery is not required, thereby realizing a more inexpensive ion current detection device without complicating the configuration. can do. ⁇ 10th Embodiment >>
  • FIG. 36 is a configuration diagram showing an outline of the ion current detection system in the tenth embodiment.
  • This embodiment is different from the eighth embodiment in that the ion current detection power supply 35 is directly connected between the heating element 7 and the wall of the vortex chamber 17, as in the eighth embodiment.
  • the ion current detection power supply 35 is shared with the heating element power supply 34 (vehicle-mounted battery) as in the above embodiment.
  • an inexpensive ion current detecting device having a simple configuration can be provided, and the object of the present invention can be achieved. Further, in the present embodiment, it is possible to prevent the detection accuracy of the ionic current detection from being degraded by the noise-to-contact resistance of the switch circuit 25, and to simplify the circuit by using a common power supply.
  • Kuku 11th Embodiment >>
  • FIG. 37 is a configuration diagram illustrating an outline of the ion current detection system according to the first embodiment.
  • the configuration of the present embodiment is a partial modification of the configuration of the tenth embodiment (the configuration of FIG. 36).
  • the feature of the configuration is that the heating element power supply 34 (vehicle battery) has a brass side. That is, a constant voltage circuit 80 is provided between the resistor 26 and the ion current detecting resistor 26.
  • the constant voltage circuit 80 is configured using, for example, an output negative feedback circuit including an amplifier circuit, and converts the battery voltage VG (for example, a DC voltage around 12 volts) of the heating element power supply 34 to a constant voltage V i. (For example, 10 volts).
  • V i for example, 10 volts
  • the battery voltage VG is applied to both ends of the heating element 7, and the glove lug promotes ignition and combustion of the fuel.
  • the switch circuit 25 is switched to the ion current detection state (not shown)
  • a constant pressure Vi is applied between the exposed portion of the heating element 7 and the vortex chamber 17 adjacent thereto. Ion current is detected under the condition.
  • a weak ion current can be accurately detected even when the battery voltage VG fluctuates. That is, the ion current can be detected without being affected by the fluctuation of the battery voltage VG, and the detection error can be suppressed. For example, even when a misfire is detected using the peak value or area of the ion current, the misfire can be accurately detected. It is possible to control the combustion state of the engine satisfactorily.
  • FIG. 38 is a configuration diagram showing an outline of the ion current detection system in the 12th embodiment.
  • This embodiment describes an example in which the ion current detection device of the present invention is applied to a multi-cylinder engine, and the engine has four cylinders # 1 to # 4.
  • Each of the glow plugs of each cylinder has a configuration in which a part of the heating element 7 is exposed from the heat-resistant insulator 8 as in the above-described embodiments.
  • the tungsten lead wire 9a connected to one end of the heating element 7 of each glove lug was connected to the terminal 23a of the switching switch 23 and connected to the other end of the heating element 7.
  • Each of the tungsten lead wires 9 b is connected to the terminal 24 a of the switching switch 24. That is, the glove lugs of each cylinder are connected in parallel to the switch circuit 25.
  • the switching operation between the heating element heating state and the ion current detection state is performed simultaneously for all cylinders.
  • the ion current is detected for each cylinder in a time series in accordance with the combustion order for each cylinder (# 1 ⁇ # 3 ⁇ # 4 ⁇ # 2 ⁇ # 1).
  • the switch circuit 25 and the detection resistor 26 for ion current detection can be shared, and a simplified configuration can be realized even when applied to a multi-cylinder engine. it can.
  • the ion current is detected in time series for each cylinder, and the detection result can be applied to the combustion state control (ignition timing control, misfire detection control, etc.) of each cylinder.
  • the combustion state control ignition timing control, misfire detection control, etc.
  • FIG. 40 is a configuration diagram showing an outline of the ion current detection system in the thirteenth embodiment.
  • the configuration of the present embodiment is a partial modification of the configuration of the tenth embodiment (the configuration of FIG. 36).
  • a voltmeter 51 A composed of an amplifier is provided between the two.
  • the output of the voltmeter 51 A is input to the ECU 30.
  • an ion current waveform (voltage waveform) based on the battery voltage (12 volts) of the heating element power supply 34 is obtained as shown in FIG. .
  • a potentiometer 27 having an internal structure constituted by a differential amplifier having a relatively complicated structure is used. I was.
  • the voltmeter 51 (voltage detector) can be configured with an amplifier circuit having a relatively simple structure for measuring the potential difference with respect to the ground. As a result, simplification of the ion current detection device can be realized.
  • FIG. 42 is a configuration diagram showing an outline of the ion current detection system in the fourteenth embodiment.
  • the configuration of the present embodiment is obtained by partially modifying the configuration of the eighth embodiment (the configuration of FIG. 34).
  • the feature of the configuration is that one of the tungsten lead wires 9a and the ground are connected to each other.
  • a voltmeter 51B composed of an amplifier is provided between the voltmeters, and a capacitor 68 is provided on the brass side of the voltmeter 51B.
  • the output of the voltmeter 51B is input to the ECU 30.
  • a power supply 34 for the heating element having a relatively low voltage (12 volts) and a power supply 35 for detecting an ion current having a relatively high voltage (50 volts) are provided as power supplies.
  • the voltage waveform (current waveform) at the time of ion current detection is as shown by the two-dot chain line in FIG. Volts), and a voltage exceeding the withstand voltage is applied to the voltmeter 51B.
  • the DC component of the power supply voltage is boosted by the capacitor 68, and the voltage waveform corresponding to the ion current waveform at that time is 0 volt as shown by the solid line in FIG.
  • FIG. FIG. 44 is a configuration diagram illustrating an outline of an ion current detection system according to the fifteenth embodiment.
  • the configuration of the present embodiment is a partial modification of the configuration of the eighth embodiment (the configuration of FIG. 34).
  • the feature of the configuration is that the power supply 35 for the ion current detection is connected to the ground side.
  • An ion current detection resistor 75 is provided, and a voltmeter 71 is provided between both terminals. The output of the voltmeter 71 is input to ECU30.
  • the voltage waveform corresponding to the ion current waveform is based on 0 volt, as shown in FIG. Therefore, even when a power supply voltage exceeding the withstand voltage of the voltmeter 71 (voltage detector) is used, the voltmeter 71 having an expensive and complicated configuration is not required.
  • a switch circuit 25 composed of two two-position switching switches 25 is used as a means, this may be changed.
  • the switch may be changed to a semiconductor switch capable of controlling a large current (such as a transistor switch or a thyristor switch), or any means capable of switching between the above two states may be used.
  • the polarity of the ion current detection power supply 35 and the polarity of the heat generator power supply 34 are the same, but the polarity may be reversed.
  • an AC power supply may be used as the ion current detection power supply.
  • any means may be used as long as it provides a potential difference between the heating element 7 of the glow plug 1 and the inner wall (the cylinder head 45) of the vortex chamber 17.
  • two terminals may be provided at one end of the glove lug 1 to form a two-wire glow plug.
  • the lead wires 11a and 11b as conductive wires are electrically connected to the two terminals.
  • the switch circuit 25 is operated by the control program executed by the ECU 30, whereby the heating element heating state (the
  • the heating element may be set in the heating state for a predetermined time (about 1 to 2 minutes) from the start of the engine, and after a predetermined time has elapsed, the state may be automatically switched from the heating element heating state to the ion current detection state.
  • the switching operation between the above two states may be mechanically performed.
  • the switching means a pi-metal and a switching switch operated by its deformation may be adopted, and the two states may be switched by the operation of the switch.
  • the mixing ratio of the heating element and the heat-resistant insulator to Mo Si 2 powder as the conductive ceramic powder and Si 3 N 4 powder as the insulating ceramic powder You may make it make by changing. This In this case, the resistance value is reduced by increasing the mixing ratio of MoSi 2 powder in the heating element, and the resistance value is increased by increasing the mixing ratio of Si 3 N 4 powder in the heat-resistant insulator.
  • the constant voltage circuit is incorporated in a system in which the power supply for the heating element and the power supply for detecting the ion current are shared.
  • the present invention is of course limited to this. Not something.
  • a constant voltage circuit as described above may be incorporated. Good.
  • a constant voltage circuit is provided between the positive side of the ion current detection power supply 35 in FIG. 34 and the ion current detection resistor 26, and the voltage is about 50 volts by the ion current detection power supply 35.
  • DC voltage is converted to a constant voltage (for example, 40 volts). According to this configuration, a weak ion current can be accurately detected even when the battery voltage fluctuates.
  • the injection molding method was used for the heating element and the heat-resistant insulator, respectively, as the method for manufacturing the ceramic heating section of the glove lug, but this may be changed.
  • a method of printing a heating element on a heat-resistant insulator may be used.
  • the all-ceramic type glove plug is described, but the configuration of the glow plug may be changed.
  • a coil-shaped metal wire for example, tungsten wire
  • a heat-resistant insulator made of a ceramic material is embedded in a heat-resistant insulator made of a ceramic material, and a part of the metal wire is exposed in a combustion chamber.
  • the portion exposed in the combustion chamber acts as an ion current detecting electrode, and an inexpensive glove lug having an ion current detecting function can be provided.
  • the glove lug of the present invention is applied to the ion current detection device that detects combustion ions in the combustion chamber of a diesel engine.
  • the glove lug can be applied to other devices.
  • a combustion ion accompanying the burning of the unburned fuel by the glow plug of the present invention.
  • the combustion state of the unburned fuel can be determined from the ion current detected by the device.
  • a capacitor may be provided between one tungsten lead wire 9a and the voltmeter 51A.
  • the DC component from the heating element power supply 34 is cut by the capacitor, and an ion current waveform based on 0 volt is obtained.
  • FIG. 46 a screw hole 16 is formed in a cylinder head 45 of the diesel engine, and a glow plug 1 is screwed into the screw hole 16. That is, when screwing the glow plug 1 into the cylinder head 45, the hexagonal part 4 is sandwiched by a predetermined tool, and the male screw part 3 of the plug 1 is screwed into the screw hole 16 .
  • the tip of the ceramic heat generating portion 6 of the glove lug 1 is arranged so as to protrude into a swirl chamber 17 formed in the cylinder head 45.
  • a main combustion chamber 19 provided above the piston 18 communicates with the swirl chamber 17, and the swirl chamber 17 forms a part of the combustion chamber.
  • the tip of a fuel injection nozzle 20 is provided in the vortex chamber 1, and fuel is injected from the fuel injection nozzle 20 into the vortex chamber 17.
  • the ion current detection system includes a battery 34 composed of a DC power supply rated at 12 V (volts), and the positive side of the battery 34 has a collector of the first transistor Tr 1. Is connected.
  • the emitter of the first transistor Tr 1 is connected to one lead wire 11 a of the global plug 1, and the base is connected to an electronic control unit (hereinafter referred to as ECU) 30. .
  • the emitter of the second transistor Tr 2 is connected to the negative side of the notch 34.
  • the collector of the second transistor Tr 2 is connected to the other lead 1 lb of the glove lug 1 and the base is connected to the ECU 30.
  • the same command signal from the ECU 30 is input to the bases of the first and second transistors Trl and Tr2, and these transistors Tr1 and Tr2 are always synchronized.
  • the emitter of the second transistor Tr 2 is also connected to a part of the cylinder head 45.
  • the first and second transistors Trl and ⁇ r2 correspond to the switching means according to claims 27 to 29.
  • both the transistors Trl and ⁇ ⁇ 2 become 0FF, and the first transistor Tr1 A battery voltage is applied to the lead wire 11a via an electric path provided in parallel to the battery.
  • the ceramic heating section A battery voltage is applied between the ion current detection electrode 14 formed at the tip of the cylinder 6 and the cylinder head 45.
  • an ion current flows with the generation of the active ion in the combustion flame zone, and this ion current is detected by the ion current detection resistor 26 (this state is called an ion current detection state).
  • the resistance value of the ion current detection resistor 26 is about 100 k ⁇ , and the ion current flowing through the ion current detection resistor 26 is a potential difference between both ends of the resistor 26 as a potentiometer 2 7 Is detected by
  • the detection principle of the ion current will be briefly described.
  • a negative voltage is applied to the ion current detection electrode 14 by applying a battery voltage between the ion current detection electrode 14 and the facing cylinder head 45 (the inner wall of the vortex chamber 17).
  • the ions are captured, brass ions are captured in cylinder head 45.
  • the ion current flowing in such a state is detected as a potential difference between both ends of the ion current detection resistor 26.
  • the ECU 30 is mainly composed of a well-known microcomputer and an A / D converter (both not shown) including a CPU, a ROM, a RAM, and an input / output circuit. Input the detected detection signal.
  • the ECU 30 has a detection signal of a water temperature sensor 36 for detecting the temperature of the engine cooling water and a detection signal of a rotation speed sensor 32 for detecting the engine rotation speed according to the engine crank angle. A signal is input, and the ECU 30 detects the water temperature Tw and the engine speed Ne based on the detection signals of the sensors 36 and 32.
  • the ECU 30 mainly turns on the first and second transistors Trl and ⁇ ⁇ 2 when the diesel engine is started at a low temperature.
  • the heating element 7 of the glow plug 1 is heated to promote the ignition and combustion of the fuel (a glow operation).
  • the transistor Trl, ⁇ ⁇ 2 is turned off, and the circuit of this system is set to the ion current detection state to detect the combustion ion current.
  • this embodiment is characterized in that the first and second transistors T are temporarily set during a predetermined period after the fuel is ignited so that the ion current can be detected from the start of the engine (during the afterglow period). rl and ⁇ ⁇ 2 are turned off to temporarily shift from the heating element heating state to the ion current detection state.
  • Fig. 47 shows the waveform of the ion current generated during fuel combustion, the fuel injection timing, and the ON / OFF operation state of the transistors Trl and Tr2 when the engine is started at low temperature.
  • the period before t 1 indicates the afterglow period, and this time t 1 corresponds to the end period of the afterglow.
  • the heating element heat generation state is mainly continued, in which a temporary ion current detection period is provided.
  • the transistor Trl, ⁇ 2 is turned on as an initial state, and thereby the heating element 7 is in a heating state.
  • the transistor Trl, ⁇ 2 is temporarily turned off for a predetermined period (90 in this embodiment, CA) from the fuel injection timing. Then, the detection result of the ion current in the temporary ion current detection period (Trl, OFF period of ⁇ 2) is employed for controlling the combustion state.
  • the waveform in which the voltage (the voltage detected by the potentiometer 27) sharply rises is the ion current waveform due to the combustion of the fuel, and the rising time of the ion current corresponds to the combustion start position, that is, the fuel ignition timing.
  • two peaks B1 and B2 are observed in this ion current waveform. That is, in the early stage of combustion, the first peak B1 was observed by the active ion of the diffusion flame zone, and in the second half of combustion, the second peak B2 (beak value) was formed by re-ionization due to the rise in cylinder pressure. Observed.
  • a 90 ° CA ion flow detection period from the fuel injection timing and a heating element heat generation period (approximately 630 ° CA) from the fuel injection timing to the next fuel injection timing are repeated. In the form, only one cylinder is shown). Since the ion current detection period is temporary, fuel ignition by the glow plug 1 does not impair the combustion function.
  • the circuit of this system enters the ion current detection state, and thereafter, the ion current is detected each time the fuel is burned.
  • FIG. 48 shows a routine for switching 0 N / 0 FF of the transistor T rl and ⁇ 2
  • FIG. 49 shows the feedback of the fuel ignition timing as an example of the combustion state control using the detection result of the ion current.
  • 3 shows a control routine.
  • FIG. 48 will be described. Note that the processing in FIG. 48 is executed by interruption processing for a predetermined time. Now, when the processing in FIG. 48 starts, the ECU 30 firstly proceeds to step 110 to set the current time to the afterglow period. It is determined whether it is in the middle. For this determination, for example, a flag that is set during the one-hour period (when the engine is cold) may be used. At the beginning of the low temperature start of the engine, step 110 is determined to be affirmative, and the ECU 30 reads the water temperature Tw and the engine speed Ne in the subsequent step 120.
  • step 110 is determined to be affirmative, and the ECU 30 reads the water temperature Tw and the engine speed Ne in the subsequent step 120.
  • the ECU 30 determines in step 130 whether or not the water temperature Tw is equal to or higher than a predetermined afterglow end temperature, that is, whether or not the warm-up completion temperature (60 ° C. in the present embodiment).
  • a predetermined afterglow end temperature that is, whether or not the warm-up completion temperature (60 ° C. in the present embodiment).
  • step 140 it is determined whether or not the engine speed Ne has reached a predetermined speed (2000 rpm in the present embodiment) or more. In such a case, if both steps 130 and 140 are determined to be negative, the ECU 30 has not completed warming-up of the engine and needs to generate heat using the glow plug 1 (heating element 7). And go to step 150. If any of steps 130 and 140 is affirmatively determined, the ECU 30 considers that the engine warm-up has been completed or that the heat generated by the glove plug 1 (heating element 7) is no longer necessary. Go to step 160.
  • the ECU 30 turns on the first and second transistors Trl and Tr2 as described above, sets the circuit in FIG. Under the heating element heat generation state, the transistors Trl and Tr2 are temporarily turned off by 0FF, and the circuit of FIG. 46 is similarly set to the ion current detection state (see FIG. 47). Specifically, 90 from fuel injection timing. The first and second transistors T rl and ⁇ ⁇ 2 are turned off only during the period of CA. Then, after the processing of step 150, this routine ends. In this state, the ignition and combustion of the fuel are promoted by the heat generation action of the glow plug 1, and the ionic current accompanying the combustion of the fuel can be detected. Note that, in the present embodiment, the processing of step 150 is contracted. This corresponds to the operation means described in claims 27 and 28.
  • step 160 the ECU 30 turns off the first and second transistors T rl, ⁇ ⁇ 2, thereby turning the circuit of FIG. 46 into the ion current detection state. Migrate. In this state, ion current is continuously detected. Then, after the processing of step 160, this routine ends.
  • the case where the determination in step 140 is affirmative and the process proceeds to step 160 may be, for example, a case where the engine speed Ne temporarily increases in the racing state. In this case, the engine is not warmed up. Not completed. Therefore, even if the circuit in FIG. 46 once transitions to the ion current detection state, the ECU 30 determines that the afterglow is still continuing and makes an affirmative determination in step 110 at the next processing. Then, the determination processing of steps 130 and 140 is performed again. Then, when the increase in the engine speed Ne temporarily stops and the engine speed Ne decreases (Ne ⁇ 2> 0000 rpm), the processing of the step 150 is performed again.
  • the ECU 300 thereafter makes a negative determination every step 110. That is, the first and second transistors Tr1 and Tr2 are maintained in the FF state, and the circuit of FIG. 46 is maintained in the ion current detection state.
  • the flow in the figure is executed by the ECU 30 every time fuel is injected into a cylinder.
  • the ignition timing control of the fuel is realized by adjusting the fuel injection timing.
  • the fuel injection timing is adjusted by adjusting the fuel injection timing by the fuel injection nozzle to the optimum timing. Feedback control is performed to optimize the ignition timing.
  • the ECU 30 first sets the Using the fuel ignition timing map stored in the memory, the optimum fuel ignition timing (optimal ignition timing Ka) according to the engine speed Ne and the fuel injection amount Q at that time is determined.
  • the fuel injection amount Q is obtained from the engine load (eg, accelerator depression amount) at that time and the engine speed.
  • the ECU 30 calculates an actual fuel ignition timing (actual ignition timing Kb) based on the ion current waveform (first mountain B1 in FIG. 47) in step 220, and then, in step 230, actual ignition occurs.
  • the average value KAV of the period Kb is calculated using the following equation (1).
  • KAV, ⁇ KAV, ⁇ ⁇ (n ⁇ l) + Kbt ⁇ / n ⁇ (1)
  • the smoothing coefficient n is “8”.
  • the feedback method for example, PI method or PID method
  • the optimum ignition timing Ka calculated in step 210 is corrected according to the deviation ⁇ .
  • the fuel injection timing is actually controlled based on the optimal ignition timing thus corrected and calculated.
  • the transistor T is set so as to temporarily enter the ion current detection state immediately after the fuel injection timing under the heat generation state by the glow plug (afterglow period). rl, Tr2 are operated. According to such a configuration, the ion current can be detected within a range in which the heating function of the global plug 1 is not impaired under the heating element heating state. As a result, the ion current can be accurately detected even during the glow period by the glow plug 1, and the fuel combustion state can be maintained in a good state by using the detection result of the ion current.
  • the ion current detection period is set based on the fuel injection timing, the ion current detection period is set as short as possible to reliably detect the ion current, and Deterioration of the gross function due to one plug 1 can be minimized.
  • the first and second transistors Tr 1 and Tr 2 are employed as switching means. Therefore, a switching operation with good responsiveness can be performed.
  • the switching circuit 25 switches between the heating element heating state and the ion current detection state, and the power supply used in both states is shared. (Battery 34). Therefore, the configuration relating to ion current detection can be simplified, and an inexpensive ion current detection device can be provided.
  • the ion current detection electrode 14 is formed integrally with the heating element 7 of the glove lug 1, and the ion current detection electrode 14 and the engine cylinder head 45 are formed.
  • the ionic current generated during fuel combustion is detected by the two electrodes consisting of. In this case, the ion current can be detected with high accuracy even though the configuration is very simple. Can be effectively used for combustion control.
  • FIG. 50 is a time chart showing a specific operation of the present embodiment. The period before t11 in the figure indicates the afterglow period, and this time t11 corresponds to the end time of the afterglow.
  • the first and second transistors Trl and ⁇ r2 are continuously switched between the 0 0 state and the 0FF state.
  • the ON period of the transistor Trl, ⁇ 2 corresponds to the heating element heating period
  • the OFF period of the transistor Tr1, ⁇ 2 corresponds to the ion current detection period.
  • the detection result of the ion current in the ion current detection period (T r l, the OFF period of ⁇ 2) is employed for controlling the combustion state.
  • the frequency at which the first and second transistors T rl, ⁇ ⁇ 2 are switched is, for example, 10 k ⁇ ⁇ ⁇ ⁇ if the ignition timing is detected using the detection result of the ion current. It is desirable that it be ⁇ or more. In this case, if the frequency is lower than this, the detection accuracy at the ignition time may be deteriorated in a high engine speed range. If misfire or abnormal combustion is detected using the ion current detection results, the switching It is desirable that the frequency be 1 kHz or higher. In this case, if the frequency is lower than this, the accuracy of detecting misfire or abnormal combustion may deteriorate in a high engine speed range. In the present embodiment, the frequency is set to about 10 kHz.
  • the ion current is accurately detected even during the glow period by the glow plug 1, and the detection result of the ion current is finally obtained.
  • the combustion state of the fuel can be maintained in an excellent state.
  • the present invention can be realized in the following modes in addition to the above embodiments.
  • an ion current detection period under a heating element heating state (one afterglow period) is set according to the engine load and the engine speed. In this case, the ion current detection period is lengthened as the engine load increases or the engine speed increases, while the ion current detection period is shortened as the engine load decreases or the engine speed decreases. Is preferred.
  • the temporary ion current detection period is provided in the after-glow period when the engine is started at a low temperature.
  • Transient ions under conditions A current detection period may be provided. For example, when carbon adheres to the outer periphery of the glow plug, when the attached carbon is burned off and removed by the heating action of the heating element, the temporary ion current detection state under the heating state of the heating element is detected. Set. In such a case, the combustion state control can be continued without interruption.
  • an all-ceramic type glove plug is used, but other glow plugs may be used.
  • a coil-shaped metal wire for example, a tungsten wire
  • a heating element is buried in a heat-resistant insulator made of a ceramic material, and a part of the metal wire contains an ion current exposed to a combustion flame.
  • the detection electrode exposed electrode part
  • an inexpensive glove lug having an ion current detection function can be provided.
  • the heat generation performance of the heating element can be maintained for a long time.
  • the first and second transistors Tr 1 and Tr 2 are used as semiconductor switches to switch between the heating element heating state and the ion current detection state. May be changed.
  • the switch may be changed to another semiconductor switch such as a thyristor or a contact switch, and may be any means capable of switching between the above two states.
  • a common DC power supply (vehicle battery 34) is used in the heating element heating state and the ion current detection state.
  • a configuration using two DC power supplies may be used.
  • a heating element power supply for causing the heating element 7 to generate heat and an ion current detection power supply for detecting the ion current.
  • a 12 V (volt) DC power supply (vehicle battery) is used as the power supply for the heating element, and a 50 V (volt) DC power supply is used as the ion current detection power supply. .
  • the present invention is applied to the ion current detection device that detects combustion ions of a diesel engine having a vortex chamber.
  • the present invention is applied to a so-called direct injection type engine that directly injects fuel into the combustion chamber.
  • the invention may be applied.
  • the present invention can be applied to other devices. For example, in a device that burns unburned fuel in an exhaust pipe of a gasoline engine, it is possible to detect a combustion ion accompanying the burning of the unburned fuel by the ion current detection device of the present invention. In this case, the combustion state of the unburned fuel can be determined from the ion current detected by the device.
  • Kuku 18th Embodiment >>
  • FIG. 51 an eighteenth embodiment of the present invention will be described with reference to FIGS. 51 and 52.
  • FIG. in the configuration of the following embodiment, for those equivalent to the above-described seventh embodiment (FIGS. 20 to 33), description thereof will be simplified. The following description focuses on the differences from the seventh embodiment.
  • FIG. 51 shows an outline of an ion current detection system according to the eighteenth embodiment.
  • an HPF (high-pass filter) 81 is connected to a signal output section of a potential difference type 27. I have.
  • HPF 81 is configured to allow a frequency signal exceeding about 200 Hz to pass.
  • the output of the HPF 81 is connected to a non-inverting input terminal of a comparator 82 constituting a comparing means.
  • the comparator 82 compares the threshold voltage Vth input to the inverting input terminal thereof with the output of the HPF 81, and outputs a binary value of a logic high level or a logic low level according to the magnitude comparison between the two.
  • the above-structured ion current detection system operates as follows. Note that the control operation of the ECU 30 basically conforms to FIG. 23 in the seventh embodiment. However, in this embodiment, the switch circuit 25 is heated to remove the adhesive force. To reduce the frequency of body heating, the threshold value Ith for comparison with the ion current value Ip is set to be larger than the set value in the seventh embodiment. That is, in the seventh embodiment, the main purpose is to remove adhering carbon, and therefore, the threshold value I th (FIG. 23) for comparing and determining the leakage current (ion current value I p).
  • the threshold is set near the maximum allowable value where the detected ion current is within the range in which the combustion state can be determined.
  • the value is set (I thl in Fig. 52> I th in Fig. 6 (b)).
  • step 208 of FIG. 23 executed by the ECU 30 the ion current value I p at the fuel injection timing is compared with the threshold value I th1, and only when I p ⁇ I th 1 is satisfied, Then, the switch circuit 25 shifts from the ion current detection state to the heating element heating state.
  • the ion current value Ip at that time falls below the threshold value Ith1 and the ion current detection state is maintained. Become. Then, in this state, the output of the HPF 81 is input to the comparator 82 and compared with a predetermined threshold voltage Vth. In this case, the timing when the output of the HP F81 rises (the timing indicated by P in FIG. 52) corresponds to the fuel ignition timing, and therefore, the output of the comparator 82 (signal rising to a logic high level) Will correspond to the fuel ignition timing. Then, the ECU 30 determines the fuel ignition timing from the output of the comparator 82. By the way, if there is a misfire, the comparator The output of 82 does not rise to a logic high level. Therefore, the ECU 30 determines that a misfire has occurred.
  • 11 potentiometer 81 is provided at the output of potentiometer 27 corresponding to the signal output unit of the ion current detector, and the detection signal is input to ECU 30.
  • the HPF 81 by incorporating the HPF 81 into the circuit, even if carbon adheres to the ion current detection electrode 14 of the glow plug 1, ion current generated during combustion and leakage current due to insulation failure are reduced. It can be separated and the ion current can be detected reliably. Further, by judging the combustion state information such as the ignition timing on the basis of the output waveform of the HPF 81, the judgment processing becomes easy.
  • the threshold value I th1 (see Fig. 52) for determining the leakage current was set near the maximum allowable value. However, in the configuration of the present embodiment, even if a small amount of leakage current flows, the leakage current and the ion current can be separated. Therefore, if the threshold value I th1 for determining the leakage current is not increased within an allowable range, the frequency of burn-off of the deposited carbon is reduced, but the ion current can be detected more frequently. The effect is obtained that the combustion state can be frequently detected.
  • the leakage current (power Although the flow value I p) has been detected (step 207 in FIG. 23), this may be changed.
  • the leakage current may be detected at a predetermined crank angle before TDC.
  • the predetermined crank angle is given as a pulse output timing of a predetermined number obtained from the detection signal of the rotation speed sensor 32.
  • the detection time of the leakage current may be before the fuel is ignited and in a state where the in-cylinder pressure is high, that is, during the compression stroke.
  • the present invention is not limited to this.
  • the switch circuit 25 is held in the heating element heating state for a predetermined time (two seconds) set in advance.
  • the retention time may be variably set.
  • a time (holding time) for holding the heating state of the heating element is set according to the current value IP read in step 207 of FIG.
  • the holding time is set longer as the current value I p (leakage current) increases. In this case, the attached carbon can be more reliably removed.
  • the characteristic shown in Fig. 53 can be given by a non-linear function.
  • the shape of the glow plug may be changed as follows. That is, the heat generating body 7 and the ion current detecting electrode 14 may be provided separately, and may be electrically connected to each other. The point is that any configuration may be used as long as an exposed electrode portion that is exposed on a part of the heat-resistant insulator 8 is provided.
  • the glove lug of the all-ceramic evening is used, but another glow plug may be used.
  • a heating element The coil-shaped metal wire (for example, tungsten wire) is buried in a heat-resistant insulator made of a ceramic material, and a part of the metal wire has an ion current detection electrode (exposed to a combustion flame). (Exposed electrode part) is electrically connected. Also in this case, it is possible to provide an inexpensive glow plug having an ion current detection function. In addition, the heating performance of the heating element can be maintained over a long period of time.
  • a switch circuit 25 including two two-position switching switches 25 is used to switch between the heating element heating state and the ion current detection state. May be.
  • a semiconductor switch transistor, thyristor, etc.
  • any means capable of switching between the above two states may be used.
  • a common DC power supply (vehicle battery 34) is used in the heating element heating state and the ion current detection state, but a configuration using two DC power supplies may be used. Specifically, a heating element power supply for causing the heating element 7 to generate heat and an ion current detection power supply for detecting the ion current are prepared. 5) DC power supply (vehicle-mounted battery), rated 50 V as a power supply for ion current detection
  • the present invention is applied to the ion current detection device that detects combustion ions of a diesel engine having a vortex chamber.
  • the present invention is applied to a so-called direct injection type engine that directly injects fuel into the combustion chamber.
  • the invention may be applied.
  • the present invention can be applied to other devices. For example, in a device that burns unburned fuel in an exhaust pipe of a gasoline engine, it is possible to detect a combustion ion accompanying the burning of the unburned fuel by the ion current detection device of the present invention. In this case, the combustion state of the unburned fuel can be determined from the ion current detected by the device.
  • the output of the HPF 81 is input to the comparator 82, but this may be changed.
  • the output of the HP F 81 may be directly input to the ECU 30 and the ECU 30 may determine the ignition timing and perform arithmetic processing on the presence or absence of a misfire.
  • the ECU 30 corresponds to the comparing means described in the claims.
  • the cutoff frequency of the HP F81 is set to 200 Hz, but this may be changed.
  • the power of the HPF and the so-off frequency should be set within a range where the ion current generated during combustion and the leakage current due to insulation failure can be separated.
  • the HPF may be changed to a differentiating circuit including, for example, a CR circuit.
  • the glow plug 1 of the present embodiment includes a main body 10 and a housing 4 to which the main body 10 is mounted, as shown in FIGS. 54A and 54B.
  • the main body 10 is electrically connected to an insulator 11, an electric heating element 2 provided inside the insulator 11, and both ends of the electric heating element 2, and is led out of the insulator 11. And a pair of lead wires 21 and 22.
  • ion current detection electrode 3 disposed inside the insulator 11 for detecting the state of ionization in the flame.
  • the electrode 3 for ion current detection includes the exposed portion 3B that comes into contact with the flame, and the entirety thereof includes a conductive material formed by wrapping the insulating ceramic particles with the conductive ceramic particles. It is composed of a mixed sintered body and contains at least one rare earth element oxide as a sintering aid.
  • the structure of the mixed sintered body was the first It consists of a crystal phase K (Fig. 59) and a grain boundary phase R between them. Then, as shown in FIG. 60, part or all of the grain boundary phase R is crystallized to become the second crystal phase H containing the sintering aid.
  • FIGS. 56 to 58 are SEM photographs of the cross-sectional structure of the mixed sintered body, with magnifications of 350 times, 10000 times, and 2000 times, respectively.
  • the black part and the white part are the first crystal phase K
  • the black part is the Si 3 N 4 crystal phase
  • the white part is the Mo Si 2 crystal phase.
  • the range of several nm in width between the black part and the white part is the grain boundary phase.
  • FIG. 59 is an explanatory diagram for making the above structure easy to understand, and shows a state where the grain boundary phase R exists between the first crystal phases K composed of three Si 3 N 4. Is shown. Further, FIG. 60 shows a state where the M portion in FIG. 59 is enlarged, and shows that the grain boundary phase is crystallized and exists as the second crystal phase H. As a result of X-ray diffraction, it was found that more than 60% of the grain boundary phase R shown in these figures was crystallized.
  • the crystal since the sintering aid of the present embodiment is a Y 2 03, shown in S i 3 N 4, S i 0 2, Y 2 0 3 ternary phase diagram shown in FIG. 61 ⁇ point aperture (Y i S i C) 6 N 2 ), point B wallet tonight (YS i 0 2 N), point C YAM (Y 4 Si 2 0 7 N 2 ), point D It was found that it contained one or more of the four types of mellite (Y 2 Si 3 03 N 4 ).
  • S i 0 2 is, S i as a raw material of the insulating Ceramic
  • 3N 4 is contained as an impurity.
  • the crystal is preferably higher proportion of apatite at the point A is superior in oxidation resistance (Y 10 (S i 0 4 ) 6 ⁇ 2).
  • the main body 10 is fixed in a metal housing 4 via a metal annular support 41. Then, one lead wire 21 of the heat-generating body 2 rises inside the insulator 11, and passes through a conductive terminal portion 12 3 provided on the side surface of the main body 10. It is electrically connected to 2 3 1.
  • the other lead wire 22 is electrically connected to the housing 4 via the annular support 41.
  • the upper portion of the ion current detection electrode 3 is electrically connected to the internal lead wire 33 via a conductive terminal portion 31 provided at the upper end of the insulator 11.
  • the housing 4 has the above-mentioned annular support body 41, and as shown in FIG. Further, the housing 4 has a male screw portion 43 for mounting on the engine head 45 of the engine.
  • a rubber bush 421 is fitted into the upper opening of the protective cylinder 42.
  • External lead wires 2 3 3 and 3 3 3 are inserted through the rubber bush 4 2 1, and these are connected to the internal lead wires 2 3 1 through the connection terminals 2 3 2 and 3 3 2, respectively. , Connected to 3 3. Therefore, the external lead wire 233 is electrically connected to one end of the current-carrying heating element 2, and the external lead wire 333 is electrically connected to the ion current detecting electrode 3.
  • the other end of the current-carrying heating element 2 is electrically connected to the housing 4 via the annular support 41 as described above (FIG. 54A).
  • the distal end (lower end) of the main body 10 is formed in a hemispherical shape as shown in FIGS. 54A and 54B, and the distal end 3B of the ion current detecting electrode 3 is exposed.
  • a molded product 29 of a U-shaped current-carrying heating element 2 and a rod-shaped ion current detection A molded product 3 9 of the electrode 3 is prepared.
  • These moldings 29, 39 each of which is mainly composed of ceramic powder for the heating element 2 and the electrode 3 for detecting the ion current, is mixed with paraffin wax and other resin, and is injection-molded using the mixture. Alternatively, the powder is directly produced by press molding.
  • Lead wires 21 and 22 are connected at the same time as molding.
  • the lead wire is made of a refractory metal such as tungsten or molybdenum or an alloy thereof.
  • the molded articles 29 and 39 are buried in ceramic powder for the insulator 11, and these are integrally fired under pressure by a hot press.
  • the sintering is performed under an atmosphere of argon gas at 1 atm under a breath pressure of 500 kgf Zcm 2 .
  • the sintering is performed under optimal conditions.
  • the raw materials for the ion current detection electrode 3 in the present embodiment include silicon nitride (Si 3 N 4 ) as an insulating ceramic and molybdenum silicide (Mo as a conductive ceramic). and S i 2), using a mixture of acid Kai Tsu Application Benefits um as sintering aid (Y 2 0 3).
  • Si 3 N 4 silicon nitride
  • Mo molybdenum silicide
  • Y 2 0 3 a mixture of acid Kai Tsu Application Benefits um as sintering aid
  • Insulator 1 1 the Mo S i 2 a conductive Sera Mi click
  • the S i 3 N 4 is an insulating Sera Mi click as basic components were added Y 2 03 as a sintering aid ceramic It is made of Tsuku sintered body.
  • Y 2 03 as a sintering aid ceramic It is made of Tsuku sintered body.
  • conductive Mo S i 2 particles are eliminated. It becomes a divided tissue surrounded by marginal Si 3 N particles, and expresses insulation.
  • Mo Si 2 having an average particle size of 0.6 and Si 3 N having an average particle size of 0.6 ⁇ m can be used.
  • the energization heater 2 is a conductive Sera Mi click in the ion current detection electrode 3 or insulator 1 1, the above-mentioned M o S i 2 non-metal carbides, silicides, nitrides, or boric And at least one of them may be used.
  • the mixing ratio of the conductive ceramic and the insulating ceramic is appropriately selected within a range of, for example, 10 to 40: 90 to 60 (% by weight).
  • the sintering aid oxides of rare earth elements other than Y 2 03, for example I Tterubiumu, lanthanum, may be an oxide of neodymium, using one or more selected from these.
  • the glow plug 1 composed of the main body 10 and the housing 4 as described above connects the male screw portion of the housing 4 to the cylinder head 45 of the engine. Attach by screwing.
  • the glove lug main body 10 is mounted in a state where the tip end thereof protrudes into the swirl chamber 451, which is a part of the combustion chamber of the cylinder head 45.
  • Reference numeral 457 is a main combustion chamber
  • 458 is a piston
  • 449 is a fuel injection nozzle.
  • the glove lug 1 is connected to a glove lug operation circuit as shown in FIG. That is, the lead wire 21 at one end of the heat-generating element 2 is connected to the metal lead via the external lead wire 23, the global relay 53, 531, and a 12-volt battery 54. Connected to cylinder head 45. Furthermore, it is connected to the other end of the current-carrying heating element 2 via the cylinder head 45, the housing 4, the annular support 41, and the lead wire 22 (Fig. 54-4) of the main body 10. Have been. As a result, a heating circuit of the heating element 2 is formed.
  • the external lead wire 3 33 of the ion current detection electrode 3 is connected to the cylinder head 45 via the ion current detection resistor 5 21 and the DC power supply 51.
  • the ion current detecting resistor 52 1 is provided with a potentiometer 52 2 for detecting an ion current, which is connected to an ECU (electronic control device) 52.
  • the ECU 52 is connected to the above-mentioned global relays 53, 531, a water temperature sensor for engine cooling water, and an engine speed sensor for engine.
  • the glow plug 1 shown in FIG. 64 In using the glow plug 1 shown in FIG. 64, first, when starting the engine, the glow relays 53 and 531 are turned on by the ECU 52. Therefore, the path between the battery 54 and the heat generating element 2 of the glow plug is closed, and the current generating element 2 of the glove lug main body 10 is energized and generates heat. As a result, the glow plug 1 is heated, and the vortex chamber 45 1 is heated, and the ignition temperature rises.
  • the ion current detection resistor 521 is approximately 500 kQ, and the ion current flowing therethrough is detected by a potentiometer 5222 as a potential difference between both ends. It is.
  • the ECU 52 is mainly composed of a well-known microcomputer and A / D converter (both not shown) consisting of a CPU, ROM, RAM, input / output circuits, etc. Inputs the detection signal that is detected more.
  • the ECU 52 includes a detection signal of a water temperature sensor 525 for detecting the temperature of the engine cooling water, and a rotation speed sensor 526 for detecting the engine speed according to the engine crank angle.
  • the detection signal is input, and the ECU 52 detects the water temperature Tw and the engine speed Ne based on each detection signal.
  • the ECU 52 causes the energizing heating element 2 of the glow plug 1 to generate heat when the diesel engine is started at a low temperature, thereby promoting ignition and combustion of the fuel.
  • the ion current is detected.
  • the glow relays 53 and 531 are in an on state, and the energized heating element 2 is maintained in a heated state.
  • step 11 is negatively determined, and the ECU 52 reads the water temperature Tw and the engine speed Ne at the following step 12.
  • step 13 it is determined whether or not the water temperature Tw is equal to or higher than a predetermined warm-up completion temperature (in this embodiment, 60 ° C.), and in step 14, the engine speed Ne is increased to a predetermined value. It is determined whether or not the number has reached (in this embodiment, 200 rpm).
  • a predetermined warm-up completion temperature in this embodiment, 60 ° C.
  • Steps 13 and 14 If any of Steps 13 and 14 is affirmatively determined, it is considered that the warm-up of the engine is completed or that heating by the glove lug 1 is unnecessary, and the process proceeds to Step 16.
  • step 15 If you proceed to step 15, the global relays 53, 531 remain on. In this state, the ignition and combustion of the fuel are continued by the heating action of the glow plug 1.
  • step 16 the ECU 52 turns off the global relays 53 and 531.
  • FIG. 66A is a current waveform diagram when observing an ion current generated during fuel combustion using an oscilloscope.
  • the waveform in which the voltage rises sharply immediately after the fuel injection period (compression TDC) is the ion current waveform due to fuel combustion, and point A corresponds to the combustion start position, that is, the ignition timing.
  • the ECU 52 detects the actual ignition timing from the first peak B1 of the ion current waveform, and detects the ignition timing in order to eliminate the difference between the detected actual ignition timing and the target ignition timing.
  • Execute feedback control The ECU 52 detects a combustion state such as abnormal combustion or misfire from the second peak B2 of the ion current waveform, and reflects the detection result in the fuel injection control. By reflecting the ion current in the fuel injection control of the engine in this way, it becomes possible to control the operating state of the engine finely.
  • FIG. 67 is a flowchart showing a procedure for performing this carbon burn-off operation by the ECU 52 in the circuit of FIG.
  • step 22 the abnormal ion current (FIG. 66B) as described above occurs at the fuel injection timing. It is determined whether or not it has been detected. If not, proceed to step 24 and leave Glory 5 3 and 5 3 1 off. On the other hand, if an abnormal ion current is detected, proceed to step 23, turn on the glow relays 53, 531, and turn on the glow plug. The heating element 2 generates heat to burn off carbon. .
  • the heating element 2, the lead wires 21, 22, and the electrode 3 for detecting the ion current are provided inside the insulator 11. It is configured integrally. Therefore, the glow operation (heating operation) by the energizing and heating element 2 and the ion current detection by the ion current detecting electrode 3 can be achieved by one glove lug.
  • the above force is generated by passing heat through the heating element 2 near the ion current detection electrode 3 to generate heat.
  • One ion can be burned off, and the ion current detection electrode 3 can be brought into a normal state. Therefore, the ion current can be accurately detected.
  • the tip of the insulator 11 has a hemispherical shape, it is possible to absorb a thermal shock in the combustion chamber.
  • the grain boundary phase is crystallized to have a second crystal phase. Therefore, the durability of the ion current detection electrode of the present embodiment can be improved.
  • the grain boundary phase is a glass phase
  • the glass phase has a relatively low melting point, so that the globe lag may be used in a high temperature state (up to about 140 ° C) during actual use of the glove rug. May soften or elute.
  • the sprayed fuel directly hits the glass phase, cracks are generated on the surface of the ion current detection electrode due to the thermal impact.
  • the grain boundary phase R is crystallized to become the second crystal phase H as described above.
  • This second crystal phase has a higher melting point than the glass phase, and does not have the risk of softening and eluting as in the prior art. Therefore, the ion current detecting electrode of the present embodiment is resistant to thermal shock and is not damaged.
  • a test sample was prepared as follows.
  • the basic components of the insulator, the heating element, and the electrode for detecting the ionic current are all 70 S i 3 N-30 M 0 S i 2 (% by weight), and the insulator has an average particle diameter of 0.9 ⁇ 111. 1031 2 and the average particle size S i 3 4 of 0., S of Mo S i 2 and an average particle diameter of 1 3 m of the average particle size in the energization heater, and an ion current detection electrode 0. 9 m i 3 N 4 was used.
  • the sintering aid used Y 2 0 a the amount as the same amount in the energization heater and insulator, for I ON current sensing arrangement of the above embodiments of the first 9 ( Figure 5 5)
  • a ceramic glove lug with electrodes was prepared.
  • Table 1 also shows whether or not the glass phase was eluted at this time.
  • an underwater boring test was conducted for the occurrence of cracks. First, the glow plug is energized to generate heat to a predetermined saturation temperature, and then the tip of the glove lug protruding from the annular support is immersed in water at 20 ° C to check for cracks on the surface. Was evaluated by investigating.
  • an underwater spotting test was performed at a saturation temperature of 500 ° C. If no cracks were found, the saturation temperature was raised to 100 ° C and the water temperature was raised to 600 ° C. A spot ring test was performed. In this way, it is possible to maintain the temperature up to 140 ° C. or until a crack occurs. The evaluation was performed by increasing the temperature by C. The same test was performed for each sample for each of the four samples, and the results are shown in Table 1.
  • thermal cycling test for a glass elution, Y 2 0 3 alone was added samples N o. Either from 1 to 6 compared to Sample N 0. 7 conventional composition, has improved life . Considering the reliability in the market, the life cycle is preferably at least 1000 cycles, and the sample N 0.1 to 6 has a good result of 100 000 to 1500 dies. Has been obtained.
  • Y 2 0 3 as a sintering aid to prepare a sample with the addition of oxides of other rare earth elements.
  • the basic components were the same as in the 20th embodiment, and the type and amount of the sintering aid were changed as shown in Table 2.
  • the addition amount of the sintering aid was the same for the heating element, the electrode for detecting the ionic current, and the insulator.
  • a sample was prepared in the same manner as in the 20th embodiment (sample No. 8 16) and evaluated. The results are shown in Table 2. Comparing the results in Table 2 with the sample N0.7 (Table 1) of the conventional composition, the results of the thermal test were improved in all samples, and no glass elution or cracking was observed.
  • a sample was prepared which oxide was added one or more Y 2 0 3 other than the rare earth element as a sintering aid.
  • the oxides of rare earth elements Y b 2 0 3, L & 2 0 a, N d 2 0 a, and using a combination of these, it per thereto, the addition amount of the sintering aid is 3 wt% And 25% by weight.
  • the basic components were the same as in the 20th embodiment, and the amounts of the sintering aids were the same for the heating element, the electrode for ion current detection, and the insulator. Then, samples were prepared in the same manner as in the 20th embodiment (samples Nos. 17 to 26) and evaluated. Table 3 shows the results.
  • the sintering aid may use any of oxides of other rare earth elements other than Y 2 0 3, With the addition amount 3-2 5 wt%, the same effect Is obtained.
  • the A 1 2 03 was added 0-0 1-7 wt%, the grain boundary phase of S i 3 N 4
  • the glass phase A sample was prepared in the form of a mixture of and a crystal phase (Sample No. 27 to 35). The preparation of the sample was performed in the same manner as in the 20th embodiment. The evaluation method was also performed by a cooling / heating test and an underwater sporting test, as in the 20th embodiment. The results are shown in Table 4. The ratio of the crystal phase in the grain boundary phase is expressed by the crystallization ratio. The crystallization ratio was calculated while comparing the crystal phase beak intensity of the X-ray diffractometer with the atomic structure of the transmission electron microscope.
  • the glow plug operation circuit (FIG. 64) of the nineteenth embodiment is modified, and the battery 54 of the nineteenth embodiment is changed. And the DC power supply 51 are replaced with only one battery 55.
  • a constant current and constant voltage circuit 524 can be interposed between the ion current detection resistor 52 1 and the battery 55. In this case, there are effects of simplifying the circuit configuration and reducing costs. Others are the same as the nineteenth embodiment.
  • the same effect as in the ninth embodiment can be obtained. Also, in this embodiment, in particular, by interposing the constant current / constant voltage circuit 524, even a single battery can prevent fluctuations in the voltage applied to the ion current detection electrode that occur during the generation of global plug heat. It is possible to obtain the effect that the detection performance can be prevented and stable detection performance can be maintained. KUKU 26th Embodiment >>
  • an ion current detection electrode 3 is integrally provided at the lower end of a U-shaped current-carrying heating element 2.
  • the ion current detecting electrode 3 in the present embodiment has a second crystal phase in the grain boundary phase, as in the nineteenth embodiment. Also, connect one lead wire 220 of the current-carrying heating element 2 to the terminal section 31 provided at the upper end of the insulator 11 and connect the terminal section of the lead wire 220 to the electrode 3 for ion current detection. Is shared. The operation circuit in this case is shown in FIG.
  • the heating circuit and the ion current detection circuit of the energizing and heating element 2 are provided with a global relay 53, 531, and an ion relay 530, respectively.
  • the switch is configured to be switched by the command signal from 52. So Then, the operating state is such that the circuit configuration is always one of the energized heating element heating state and the ion current detecting state.
  • FIG. 71 is a flowchart showing a procedure for performing the carbon burning-off operation by the ECU 52 in the circuit of FIG. 70.
  • the abnormal ion current as described above occurs in the fuel injection timing in step 22 (FIG. 66B). It is determined whether or not is detected. If not, go to step 24 and leave global relays 53, 531 off.
  • the structure is simple because the terminal 31 is commonly used as the terminals of the energized heat generator 2 and the electrode 3 for detecting the ion current.
  • FIG. 72 is a modified example of FIG. 70.
  • the power supply (battery) 54 for the glow plug 1 and the power supply (battery) 51 for detecting the ion current are separately provided.
  • the circuit configuration of FIG. 72 differs from that of FIG. 70 in that a single power supply (battery) 55 is used.
  • the ion relay 530 and the two global relays 53, 531, respectively, correspond to FIG. 70, and are similarly turned on and off by the ECU 52 according to the procedure shown in the flowchart of FIG. Controlled. That is, when the energizing heating element 2 is to generate heat, the ion relay 530 is turned off and the global relays 53 and 531, as shown in FIG. On the other hand, when the ion current is detected by the ion current detecting electrode 3, the ion relay 530 is turned on, and the global relays 53 and 531 are turned off.
  • Kuku 27th Embodiment >>
  • the grain boundary phase is reduced only in the tip portion 301 including the exposed portion 3B of the ion current detection electrode 3 in the second embodiment. Crystallized. In the other part 302 other than the tip part 301, the grain boundary phase was a glass phase as in the conventional case. Others are the same as the 22nd embodiment.
  • the ion current detecting electrode 3 has an exposed portion 3B exposed from the insulator 11 so as to be exposed to a flame in the cylinder.
  • the exposed portion 3B has a polished portion 3A (FIG. 54A) polished to a surface roughness Rz (10-point average roughness) of 0.1 to 30 / m.
  • Rz 10-point average roughness
  • the entire exposed portion 3B of the ion current detection electrode 3 exposed from the insulator 11 was polished as a polished portion 3A.
  • the polishing was performed using a # 600 grinding wheel. Thereby, in the present embodiment, the surface roughness Rz of the polished portion 3A is adjusted to 4.5 ⁇ m.
  • the surface roughness Rz of the polished portion 3A is polished within the range of 0.1 to 30> m. Therefore, as shown in FIG. 74, the polishing portion 3A has many convex portions 3D when viewed microscopically.
  • the electric flux in the electric field between the cylinder head 45 and the ion current detecting electrode 3 is concentrated on the convex portion 3D.
  • the potential gradient becomes steep. Due to this potential gradient, negative charged particles in the combustion gas 7 is strongly attracted to the vicinity of the projection 3D of the ion current detection electrode 3, and the movement of the charged particles 7 becomes active.
  • the ion current detecting electrode 3 having the polished portion 3A can detect the ion current with higher accuracy.
  • the surface roughness Rz is 4.5 m.
  • FIG. 75 shows a waveform E1 of the ion current detected by the 28th embodiment
  • FIG. 76 shows a waveform C1 of the ion current detected by the comparative example.
  • the horizontal axis represents time and the vertical axis represents current
  • the horizontal axis represents fuel injection timing by a vertical line P.
  • the ion current detecting device As can be seen from a comparison between the two figures, the ion current detecting device according to the 28th embodiment always detects a waveform having a high beak value with high accuracy, while the comparative example has a very small beak value. Waveform A with low detection accuracy or B when not detected. From this result, it can be seen that the provision of the polished portion 3A having a specific range of surface roughness Rz in the exposed portion 3B of the ion current detection electrode 3 can greatly improve the ion current detection accuracy. I understand. ⁇ 30th embodiment >>
  • the 20th embodiment is a modification of the 28th embodiment.
  • the surface roughness R z of the polished portion 3A in the glow plug shown in the embodiment was variously changed, and the effect on the ion current detection accuracy was tested.
  • a plurality of glow plugs used in the test were prepared by changing the surface roughness Rz of the polished portion 3A in the range of 0.01 to 100. Except for the surface roughness Rz of the polished portion 3A, it was the same as the twenty-eighth embodiment.
  • the detection accuracy of the ion current is determined by operating the diesel engine for testing with the glow plug set at a rotation speed of 80 O rpm, detecting the ion current for one minute, and measuring the number of times of fuel injection. It was determined based on whether the ion current could be detected accurately. Judgment as to whether or not the ion current was detected with high accuracy is based on the assumption that a current value of 0.3 or more times the average value of the peak value of the ion current during the engine operation time was detected, If only a current value less than 0.3 times was detected, it was determined that detection was not possible.
  • the detection accuracy is 100% when the ion current is detected with high accuracy of 100 times, and when the ion current is detected with high accuracy only 50 times, the detection accuracy is 100%.
  • the detection accuracy is 50%.
  • the test results are shown in FIG. In FIG. 77, the horizontal axis represents the surface roughness R z of the polished portion 3 A, and the vertical axis represents the ion current detection accuracy.
  • the detection accuracy of the ion current was 100% in all cases when the surface roughness Rz of the polished portion was 0.1 l ⁇ m or more.
  • the surface roughness Rz was less than 0.1 in, the smaller the surface roughness R ⁇ , the lower the detection accuracy.
  • the energizing heating element 2 and the ion current detecting electrode 3 are electrically connected and integrated.
  • the area of the exposed portion 3B of the ion current detection electrode 3 was changed, and the relationship between the area and the ion current detection accuracy was tested.
  • the diameter D of the plug body was 3.5 mm, and the protruding length L from the housing 4 was 1 O mm.
  • the exposed portion 3B of the ion current detecting electrode 3 is provided on the entire hemispherical portion at the tip of the main body 10, and the exposed portion 3B is entirely roughened.
  • a polished portion 3 A having a height R z 4.5 was used.
  • the area of the exposed portion 3B (the area of the polished portion 3A) is 0.5 cm 2 .
  • A The area of the abrasive section 3 A) the area of the exposed portion 3 B of this case is 1 X 1 0 _ 6 cm 2 .
  • the exposed portion 3 of the ion current detecting electrode 3 has an intermediate size as in FIGS. 78 and 79, and the exposed portion 3B as a whole was determined as a polished portion 3A having a surface roughness Rz of 4.5 zm.
  • the area of the exposed portion 3B (the area of the polished portion 3A) is 0.008 cm 2 .
  • the overall diagram using the glow plug shown in FIG. 80 is shown in FIG. 69A, and the circuit used in combination with this can be, for example, the one shown in FIG. 72. . That is, as shown in FIG. 69A, when the heat generating element 2 and the ion current detecting electrode 3 are integrated, the lead wire 220 provided on the current generating element 2 is connected to the insulator. 11 Connect to terminal 31 provided at the upper end of 1. The glove lug constructed in this way is It is attached to the cylinder head 45 in the same manner as in the embodiment.
  • the glove lug operating circuit should have the configuration shown in Fig. 72. Can be.
  • the ion relay 530 When the energizing heating element 2 generates heat, the ion relay 530 is turned off and the global relays 53 and 531, as shown in the figure, are turned on.
  • the ion relay 530 is turned on, and the global relays 53 and 531 are turned off.
  • the detection accuracy of the ion current was examined under the same conditions as in the thirty-first embodiment. As a result, the detection accuracy of all the plugs was 100%, which was very good.
  • the specific area of the exposed portion 3 beta is 1 x 1 0- 6 ⁇ 0. Of 5 cm 2 It can be seen that even if it fluctuates within the range, the ion current can be detected sufficiently well.
  • the area of the exposed portion 3 B since it may be an area very small as 1 X 1 0 _ 6 cm 2 , if exposed to the outside is even slightly exposed portion 3 B It is also found to be effective.
  • the glow plug 1 includes a main body 10 and a housing 4 holding the main body 10 as shown in FIG. 81A.
  • the main body 10 includes an insulator 11, a heat-generating body 2 provided inside the insulator 11, and the other end of the insulator electrically connected to both ends of the energized heat-generating body 2. And a pair of lead wires 21 and 22 derived as follows.
  • the tip 3 C of the ion current detection electrode 3, including the tip of the insulator 11, has an insulating porous material having a communication hole 380 (FIG. 83) communicating with the flame. Layer 38 is coated.
  • the main body 10 is fixed in a metal housing 4 via a metal annular support body 41. Then, one lead wire 21 of the current-carrying heating element 2 rises inside the insulator 11, and passes through the conductive terminal section 12 3 provided on the side surface of the main body 10. 3 Electrically connected to 1.
  • the other lead wire 22 is electrically connected to the housing 4 via the above-described annular support 41.
  • the upper end of the ion current detecting electrode 3 is electrically connected to the internal lead wire 33 via a conductive terminal 31 provided on the upper end of the insulator 11.
  • the housing 4 has the above-described annular support body 41, and as shown in FIG. Further, the housing 4 has a male screw portion 43 for mounting to the cylinder head 45 of the engine.
  • a rubber bush 421 is fitted into the upper opening of the protective cylinder 42. External lead wires 2 3 3 and 3 3 3 are inserted through the rubber bush 4 2 1, and these are connected to the internal lead wires 2 3 1 and 3 1 3 Connected to 3.
  • the external lead wire 233 is electrically connected to one end of the current-carrying heating element 2, and the external lead wire 333 is electrically connected to the ion current detection electrode 3.
  • the other end of the current-carrying heating element 2 is electrically connected to the housing 4 via the annular support 41 as described above (FIG. 81A).
  • the tip (lower end) of the main body 10 is formed in a hemispherical shape as shown in FIG. 81A.
  • the tip 3 C of the ion current detecting electrode 3 is exposed.
  • the main body 10 of the glow plug includes an insulator 11, a current-carrying heating element 2 buried therein, an ion current detection electrode 3, and the insulating porous material.
  • Layer 3 8 Therefore, first, as shown in FIGS. 84A and 84B, the U-shaped heat-generating heating element 2 and the rod-shaped ion current detecting electrode 3 are clarified by conductive ceramic powder. Prepare it first.
  • a substantially semicircular lower part 11 1, a substantially plate-shaped middle part 112 and a substantially semicircular upper part 113 for forming the insulator 11 are formed. It is prepared in advance using an insulating ceramic powder. U-shaped grooves 1 15 and 1 16 for accommodating the energizing heating element 2 are formed on the upper surface of the lower portion 11 and the lower surface of the middle portion 112.
  • bar-shaped grooves 117 and 118 for receiving the ion current detecting electrode 3 are formed on the upper surface of the middle part 112 and the lower surface of the lower part 113. Then, the energizing heating element 2 is inserted into the U-shaped grooves 1 15 and 1 16 and the ion current detecting electrode 3 is inserted into the rod-shaped grooves 1 17 and 1 18. At this time, the lead wires 21 and 22 are connected to the energizing heating element 2.
  • FIG. 86A A
  • a disk-shaped insulating porous layer 382 prepared in advance is bonded to the tip 18 of the laminate using an adhesive.
  • these are heated and sintered to form an integral sintered body.
  • FIG. 86A (B) the lower part of the integrated sintered body is ground (dotted line in the lower part of the figure) to obtain a hemispherical shape.
  • the glove lug main body 10 shown in FIG. 81A is obtained.
  • the main body 10 and the housing 4 Groove plug 1 is attached by screwing the male thread of housing 4 into cylinder head 45 of the engine as shown in FIG.
  • the tip of the glow plug main body 10 is mounted in a state protruding into the swirl chamber 451, which is a part of the combustion chamber of the cylinder head 45.
  • Reference numeral 457 is a main combustion chamber
  • 458 is a piston
  • 449 is a fuel injection nozzle.
  • the above-mentioned glow plug 1 is connected to a glow plug operation circuit as shown in FIG. 64, and its energization is controlled as already described along the flowchart of FIG.
  • the current-carrying heating element 2 and the lead wires 21 and 22 are formed inside the insulator 11 and the ion current is detected inside the insulator 11. Electrodes 3 are provided, which are integrally formed. Therefore, the glow operation (heating operation) by the heat generating element 2 and the ion current detection by the ion current detecting electrode 3 can be achieved by one glow plug.
  • the tip 3C of the ion current detection electrode 3 is covered with the insulating porous layer 38 (FIG. 83), the ion current detection electrode 3 Is not directly exposed to the flame. Therefore, in the ion current detection electrode 3, stress concentration due to thermal impact due to the high-temperature flame does not occur, and no damage such as cracks occurs. Also, insulation Since the porous layer 38 has the communication hole 380, the ion flows between the ion current detection electrode 3 and the cylinder head 45 through the communication hole 380, and is accurately detected as an ion current. .
  • the configuration is simple.
  • the heat-generating body 2 the lead wires 21 and 22 and the ion current detecting electrode 3 are provided inside the insulator 11, there is no corrosion such as oxidation due to combustion gas. Has excellent durability.
  • the tip of the insulator 11 has a hemispherical shape (FIGS. 81A to 83), so that thermal shock in the combustion chamber can be absorbed.
  • the current-carrying heating element is composed of a conductive Mo S i 2 (molybdenum disilicide) powder having a small particle diameter and an insulating S i N 4 having a large particle diameter.
  • the insulator includes a S i 3 N4 having a small particle size, approximately Dotsubu ⁇ using a Mo S i 2 and Y 2 0 3 and organic by-Nda of, as shown in Figure 85, Upper 1 1 1, middle 1 1 2, lower 1 1 3
  • the insulating porous layer 38 was formed into a plate-like body 382 using the same material as that for the insulator 11 except that the amount of the organic binder was increased.
  • the thickness of the insulating porous layer 38 in the plug body 10 was variously changed as shown in Table 6.
  • the thickness of the insulating porous layer 38 showed the maximum thickness because the tip was hemispherical.
  • the above-mentioned glow plug was attached to a cylinder head 45 of a diesel engine. Then, energize the energizing heating element of the glow plug and heat it to 1200 ° C, then start the engine,
  • the sample without the insulating porous layer 38 had cracking due to cracks after 20,000 tests. Further, among the samples provided with the insulating porous layer, the thicknesses of 0.1 and 1.6 mm (sample Nos. 2 and 7) showed damages such as cracks after 30,000 tests. Since the above test was conducted under severe conditions, samples Nos. 2 and 7 had almost no problem in practical use. In particular, samples Nos. 3 to 6 had excellent durability. Table 6
  • an ion current detection electrode 3 is integrally provided at the U-shaped lower end of the current-carrying heating element 2, and the ion current detection electrode 3 is provided.
  • This is an example in which the same insulating porous layer 38 as in the 31st embodiment is provided at the tip 3C of the electrode 3.
  • the structure of the glow plug is simplified because the ion current detecting electrode 3 is provided at the tip of the energized heating element 2.
  • the other points are the same as those of the thirty-second embodiment, and the same effects as those of the thirty-second embodiment can be obtained.
  • the present embodiment is an example in which a U-shaped current-carrying heating element 2 is also used as an ion current detection electrode 3.
  • the distal end (U-shaped lower end) and the lower side surface of the ion current detection electrode 3 are covered with the insulating porous layer 38.
  • the structure is simple because the electrode for ion current detection and the current-carrying heating element are also used.
  • the glove lug operating circuit of the present embodiment the circuit used in the 36th embodiment described later can be used. Others are the same as those of the 31st embodiment, and the same effects as those of the 31st embodiment can be obtained. Kuku 3rd Embodiment >>
  • FIG. 2 shows an overall cross-sectional view of a glow plug main body and a glow plug operating circuit in the case where is integrated. That is, as shown in FIG. 89A, in the case of the above integration, the lead wire 22 provided on the energizing heating element 2 is connected to the terminal portion 31 provided on the upper end of the insulator 11.
  • the glow plug thus configured is mounted on the cylinder head 45 in the same manner as in FIG. 11 of the 31st embodiment.
  • the operation circuit of the glow plug has the configuration shown in FIG.
  • the ion relay 150 is turned off and the global relay 53 is turned on, as shown in FIG.
  • the ion relay 530 is turned on and the global relay 53 is turned off.
  • the 37th embodiment is a modification of the 26th embodiment (FIG. 69A and others).
  • the main body 10 of the glove lug is composed of an insulator 11, a U-shaped cross-section heating element 2 provided inside the insulator 11, and both ends of the energizing heating element 2. And a pair of lead wires 21, 22 electrically connected to the portion and led out of the insulator 11.
  • one ion current detection which is electrically connected to the middle of the current-carrying heating element 2 and disposed inside the insulator 11, for detecting the state of ionization in the flame.
  • an electrode 3. The tip 3C of the ion current detecting electrode 3 is exposed from the insulator 11 so as to be exposed to the flame.
  • the first ion-current detection electrode 3 is connected from the plus end 2 18 on the brass side to the first.
  • the electric resistance of the first heating part 201 of the current-carrying heating element 2 up to the center part 209 of the connecting part 39 of R 1 is R 1
  • the electrical resistance of the second heat generating portion 202 of the current generating body 2 from the center portion 209 of the first connecting portion 39 to the minus end 228 is R 2
  • the above-mentioned ion current detecting electrode Assuming that the electrical resistance from the first connection portion 39 to the tip 3 C in 3 is r, the relationship of R 2> r is satisfied.
  • the ion current detecting electrode 3 is provided integrally with the energizing heating element 2 at the lower end of the U-shaped energizing heating element 2, and the tip 3 C thereof is exposed from the insulator 11.
  • the tip 3C is coded with platinum (Pt).
  • an integrally molded product 29 of the energizing heating element 2 and the ion current detecting electrode 3 is prepared.
  • the integrally molded article 29 is obtained by mixing ceramic powder for the current-carrying heating element 2 and the electrode 3 for detecting the ion current with a mixed binder of a main component paraffin and a resin, and subjecting the mixture to injection molding.
  • the ceramic powder may be molded as it is.
  • the integrally molded article 29 is embedded in the insulator 11, and these are integrally pressed and fired by a hot press.
  • the above pressure firing is performed under an argon gas atmosphere at 1 atm, a pressure of 400 kgf / cm 2 , and a firing temperature of 1800.
  • C, Hold time is 60 minutes.
  • the above-mentioned lead wires 21 and 22 are connected prior to the embedding. Thereby, the glove lug main body 10 is obtained.
  • specific examples of the ceramic powder and the like include, as described above, M 0 Si 2 as a conductive ceramic of an energizing heating element, an ion current detection electrode, and an insulator, and an insulating ceramic.
  • Si 3 N 4 is used as a mix. Also, as a sintering aid
  • Mo Si 2 The average particle size of 1 m and the average particle size of SiN 4 were 15 / m.
  • 03 1 2 average particle size l zm, flat Hitoshitsubu ⁇ of S i 3 N 4 was used L ⁇ m. Further, Shoyuisukezai has the both Y 2 0 5 wt% cases, the A 1 0 5 wt% was externally added.
  • the average particle size of each material was 1 m.
  • the tip 3C of the ion current detection electrode 3 is exposed so as to come into contact with the combustion gas (FIG. 69A), and the exposed portion 3B is coated with a noble metal such as Pt. Therefore, the formation of an insulator on the surface of the electrode for ion current detection due to oxidation or the like is suppressed, the conductivity of the electrode or the initial resistance value is secured, and there is an effect of preventing deterioration of detection accuracy. Further, the ion current detection electrode 3 is disposed at the center of the insulator 11 in the diameter direction. As a result, the ion current in all directions in the combustion chamber can be detected with high accuracy.
  • this embodiment shows a specific example of the glove lug main body 10 shown in the thirty-seventh embodiment in which the ratio between the electric resistances R2 and r is changed.
  • the above-mentioned integrally formed article 29 (FIG. 100) is prepared by injection molding of the energized heat generator 2 and the ion current detecting electrode 3 in advance.
  • the insulator 11 prepare a semi-cylindrical two-piece product.
  • This semi-cylindrical body is provided with a U-shaped groove for embedding the above-mentioned integrally molded article 29 in a portion (diameter portion) which is inside when forming the insulator 11 (FIG. 6). 9A). Therefore, the integrally molded article 29 is put in the U-shaped groove of the semi-cylindrical body of the insulator 11, and further covers one of the semi-cylindrical bodies, and is sintered under pressure As a result, as shown in FIG. 69A, an insulator 11 containing the through-hole heating element 2 and the ion current detecting electrode 3 formed of the above-mentioned integrally molded product is obtained.
  • the energization heater 2 as the electrical resistance R 2 of the second heating portion is 8 ⁇ 0.
  • Mo S i 2 35% powder is conductive Sera Mi click powder (weight ratio, The same shall apply hereinafter) and a mixture of 65% of Si 3 N 4 powder as an insulating ceramic material was used.
  • the electrode 3 for ion current detection was used by changing the ratio of the MoSi 2 powder and the Si 3 N 4 powder so as to obtain the electric resistance r shown in Table 7 below.
  • the insulator 11 used was a mixture of Si 3 N 4 powder and M 0 Si 2 powder. The proportion was 80% of Si 3 N 4 powder and 20% of Mo Si 2 powder. Further, Shoyuisukezai is energization heater, the ion current detection electrodes, both insulators, Y 2 0 5 wt%, the A 1 0 5 vvt%, and external added pressure. The average particle size of each material was the same as in the thirty-seventh embodiment. Then, the pressure sintering, 400 kg / cm 2, 1 800 ° C, c was performed in 60 minutes Next, as described above, as the various Gros first plug constructed of a 37th embodiment of Then, it was attached to the cylinder head 45. Then, as shown in FIG. 90, carbon was adhered to the surface of the insulator 11, and an experiment was conducted to determine whether or not the adhesive force—bon burnout (burnout) was good.
  • Table 8 a sea urchin conductive Sera Mi click by shown in Table 9 WC, M 0 C, T i N, M o 4. 8 S i 3 C 0. , WS i, Mo B, T i B, Z r B 2
  • the resistance values of the samples were the same as those of No. 3 and No. 6 of the 38th embodiment, and carbon burnout experiments were performed on these samples.
  • the average particle size of each material is l ⁇ 3> um. The other points are the same as in the thirty-eighth embodiment.
  • Table 10 similarly shows the case where only the conductive ceramic is used for both the current-carrying heating element and the ion current detection electrode. As is clear from Tables 8 to 10, it can be seen that all carbon is burned off within the scope of the present invention.
  • the high-melting point metal refers to a metal having a melting point of 1,200 ° C or more as described above.
  • refractory metals include Cr, Co, Fe, Mo, Ni, Re, Ti, W, Zr and the like.
  • alloy materials such as Fe—Ni—Cr, Ni—Co, Fe—Co, and W—Re.
  • the composition of the thirty-eighth embodiment was used for the general heating element. Further, the structure of the ion current detecting electrode was the same as the structure of the ion current detecting electrode 3 shown in FIG. 69A of the thirty-seventh embodiment, but the wire of the high melting point metal was used. In each case, resistance values similar to the levels of N 0.3 and No. 6 in the thirty-eighth embodiment were created, and a burn-out experiment was carried out. Others are the same as in the 38th embodiment. Table 11 shows the results. It can be seen from the table that carbon is burned off in the range of the present invention.
  • the present embodiment is an example in which two ion current detecting electrodes 301 and 302 are provided on the left and right sides of a U-shaped current-carrying heating element 2.
  • the ion current detection electrode 301 since the ion current detection electrode 301 is located at a position close to the brush end of the current-carrying heating element 2, this portion is the first connection portion between the current-carrying heating element 2 and the ion current detection electrode 3. 3 9 Therefore, the portion from the first connection portion 39 with the ion current detection electrode 301 to the minus end becomes the second heat generating portion 202.
  • the glove lug according to the present embodiment will be described with reference to FIGS. 92A, 92B, and 93.
  • FIG. This glove lug is a modification of the 26th embodiment (FIG. 69A and others), and only different points will be described.
  • the glow plug 1 of the present embodiment is a ceramic glow plug, and has a main body 10 and a housing 4 for supporting the main body 10 as shown in FIGS. 92A and 92B. I have.
  • the main body 10 is composed of an insulator 11, an energized heating element 2 provided inside the insulator 11, and electrically connected to both ends of the energized heating element 2 and connected to the other end of the insulator.
  • the ion current detection electrode 3 is electrically connected to the middle of the current-carrying heating element 2 and The tip 3C of the insulator is exposed from the insulator 11 so as to be exposed to the above-mentioned flame, thereby forming an exposed portion 3B.
  • the tip 3C of the ion current detection electrode 3 is disposed at a position at least 2 mm away from the tip 41 1 of the housing.
  • the electric resistance value of the entire energizing heating element 2 is R ( ⁇ )
  • the electric resistance from the brass end 2 18 of the energizing heating element 2 to the tip of the ion current detecting electrode 3 is B ( ⁇ )
  • B ( ⁇ ) ⁇ R ( ⁇ ) / 3 The electric resistance value R of the entire heating element 2 is a resistance value between both ends 218 and 228 of the heating element 2.
  • the main body 10 is fixed in a metal housing 4 via a metal annular support body 41.
  • One lead wire 21 of the heat-generating body 2 rises inside the insulator 11 and passes through the conductive terminal portion 12 3 provided on the side surface of the main body 10. It is electrically connected to 1.
  • the other lead wire 22 is electrically connected to the internal lead wire 33 via a conductive terminal portion 31 provided at the upper end of the insulator 11.
  • the external lead wire 2 31 is shared as a lead wire for the current-carrying heating element 2 and the electrode 3 for ion current detection.
  • the housing 4 has the above-described annular support body 41, and has a different configuration of the ion current detecting electrode 3 from the present embodiment, but has a similar overall configuration to the thirty-first embodiment.
  • a protective cylinder 42 is provided on the upper part.
  • the housing 4 has a male screw portion 43 for mounting to the cylinder head 45 of the engine.
  • a rubber bush 421 is fitted into the upper opening of the protective cylinder 42.
  • External lead wires 2 3 3 and 3 3 3 are inserted through the rubber bush 4 2 1, and these are connected to the internal lead wires 2 3 and 3 3 respectively through the connection terminals 2 3 2 and 3 3 2. 1, 3 3 are connected.
  • the external lead wire 233 is electrically connected to one end of the current-carrying heating element 2, and the external lead wire 333 is electrically connected to the other end of the current-carrying heating element 2.
  • the tip (lower end) of the main body 10 is formed in a hemispherical shape as shown in FIG. 92A, and the tip 3C of the ion current detecting electrode 3 is exposed.
  • an integrally molded product 29 of the energizing heating element 2 and the ion current detecting electrode 3 is prepared.
  • This integrally molded article 29 is produced by injection molding or breath molding using a ceramic powder for the electric heating element 2 and the ion current detecting electrode 3.
  • the integrally molded article 29 is embedded in the insulator 11 and is integrally molded by a hot press. Prior to the embedding, the lead wires 21 and 22 are connected. Thereby, the glow plug main body 10 is obtained.
  • the heating element 2, the ion current detecting electrode 3, and the insulator 11 were each made of an insulating ceramic and a conductive ceramic as main components. Then, by adjusting the mixing ratio of the insulating ceramic, the sock particles and the conductive ceramic particles, and the particle size, etc., the respective wires of the heating element 2, the ion current detecting electrode 3, and the insulator 11 are changed. Physical properties such as expansion coefficient and electrical resistance were adjusted.
  • silicon nitride Si 3 N 4
  • molybdenum silicide MoSi 2
  • A103, BN, A1N, etc. can be used as the insulating ceramic.
  • Mo 5 Si 3 , WC, Tin, or the like can be used as the conductive ceramic.
  • the adjustment of the electric resistances R ( ⁇ ) and B ( ⁇ ) according to the present embodiment is performed while maintaining the value of the distance L at 2 mm or more while maintaining the electric current for ion current detection. It was adjusted by changing the connection position of pole 3. In other words, the relationship of B ( ⁇ ) ⁇ R ( ⁇ ) / 3 was realized by adjusting the conduction length.
  • the glow plug 1 composed of the main body 10 and the housing 4 as described above is connected to the engine cylinder 45 with respect to the engine cylinder 45. Attach by screwing the male thread of housing 4. As a result, the tip of the glow plug main body 10 is mounted so as to protrude into the swirl chamber 451, which is a part of the combustion chamber of the cylinder head 45.
  • Reference numeral 457 is a main combustion chamber
  • 458 is a piston
  • 449 is a fuel injection nozzle.
  • the glow plug 1 can be connected to the glove lug operation circuit shown in FIG. 70, and the glove relay is operated by the ECU 52 with the help of the flow chart of FIG. 65 described above. Is controlled, and the energization is controlled.
  • the distance between tip 3C of ion current detection electrode 3 and tip 411 of housing 4 is 2 mm or more. Therefore, even if force (soot) generated by fuel combustion accumulates on the glove lug body, ionic current can be detected reliably.
  • the force generated by fuel combustion adheres to the ion current detection electrode 3 of the glove lug, that is, when smoldering occurs, as shown in FIG. A phenomenon occurs in which the temperature is low before the time and then rises after that (compare Fig. 66A and Fig. 66B).
  • I th in FIG. 66B represents a peak level judgment level (threshold) for judging the state of smoking and judging whether to turn on the green relays 53 and 531. I have.
  • the current-carrying heating element 2, the lead wires 21 and 22 and the ion current detecting electrode 3 are provided inside the insulator 11; These are integrally formed. Therefore, the glow operation (heat generation operation) by the energizing heating element 2 and the ion current detection by the ion current detection electrode 3 can be achieved by one glow plug. In addition, glove lugs become compact.
  • the heating element 2, the lead wires 21 and 22 and the ion current detection electrode 3 are provided inside the insulator 11, there is no corrosion such as oxidation due to combustion gas and excellent durability. ing. Further, since the tip of the insulator 11 has a hemispherical shape, thermal shock in the combustion chamber can be absorbed. The tip 3C of the ion current detection electrode 3 is exposed so as to come into contact with the combustion gas (FIG. 92A). The ion current detection electrode 3 can be arranged at the tip of the insulator 11 as shown in FIG. In this case, ion currents in all directions in the combustion chamber can be detected with high accuracy. Kuku 4th Embodiment >>
  • the tip 3 C of the ion current detecting electrode 3 and the tip 4 of the housing 4 are attached to the glow plug main body 10 shown in the 42nd embodiment.
  • various integrally molded articles 29 in which the ion current detection electrodes 3 are arranged at positions corresponding to the distance L are prepared by injection molding in advance (FIG. 94). ).
  • the integrally molded article 29 is embedded in the ceramic powder and hot-pressed, so that the insulator 11 in which the heat generating element 2 and the ion current detecting electrode 3 are built in the insulator 11 is formed. Is prepared. In this way, various plugs having different distances L are prepared and prepared.
  • the detection rate of ion output was defined as follows. That is, When ion current is continuously sampled during gin operation, the peak value of the ion waveform shown in Fig. 66A is not constant, and varies due to variation in each combustion, output reduction due to carbon deposition, and the like. Therefore, the average value h of the peak value H during operation for a certain period of time and under certain conditions is determined, and if the peak value is 0.3 times or more of the average value h, the detection accuracy is determined to be good. The occurrence rate of 0.3 times or more was defined as the ion output detection rate.
  • the above-mentioned engine is operated for 2 minutes at 800 rpm with no load, and then is operated for 2 minutes at 400 rpm with no load. This was implemented by performing The measurement of the ionic current detection state was performed by performing the above cycle for another 10 cycles and detecting the ionic current during that period.
  • Figure 96 shows the measurement results.
  • the horizontal axis shows the distance L (mm)
  • the vertical axis shows the ion output detection rate (%).
  • the ion output detection rate is 100%.
  • the detection rate decreases as L decreases. Become smaller.
  • the total electrical resistance R ( ⁇ ) of the current-carrying heating element 2 is shown in FIG.
  • the electrical resistance B ( ⁇ ) (Fig. 93) from the plus end 2 18 of the current-carrying heating element 2 to the tip 3 C of the electrode 3 for detecting the ionic current (Fig. 93).
  • the change of the electric resistance B ( ⁇ ) is applied to the integrally molded product of the heating element 2 and the ion current detection electrode 3, as in the fourth embodiment. This was performed by changing the arrangement position of the ion current detection electrode 3 in the present embodiment.
  • the glove lug 1 includes a main body 10 and a housing 4 on which the main body 10 is mounted.
  • the main body 10 is composed of an insulator 11, an energized heating element 2 provided inside the insulator 11, and electrically connected to both ends of the energized heating element 2 and led out to the other end of the insulator. And a pair of lead wires 2 1 2 2.
  • the ion current detecting electrode 3 disposed inside the insulator 11 for detecting the state of ionization in the flame.
  • the ion current detection electrode 3 is provided at the center of the insulator in the diameter direction.
  • the tip of the ion current detection electrode 3 has an exposed portion 3B exposed at the tip of the insulator 11 so as to be exposed to the flame.
  • the linear expansion coefficient of the ion current detecting electrode 3 is K, Where H is the linear expansion coefficient and S is the linear expansion coefficient of the insulator, the relationship is HS, H ⁇ K.
  • the respective coefficients of linear expansion K, H, and S were adjusted by adjusting the mixing ratio of the insulating ceramic and the conductive ceramic used as the material, as described later.
  • an integrally molded product 29 of the energizing heating element 2 and the ion current detecting electrode 3 is prepared.
  • the integrally molded article 29 is manufactured by injection molding or breath molding using a ceramic powder for the current-carrying heating element 2 and the electrode 3 for ion current detection.
  • the integrally molded article 29 is embedded in the insulator 11 and is integrally sintered by a hot press. Then, the shape of the insulator 11 1 is cylindrically and spherically processed by grinding. Note that the lead wires 21 and 22 are connected before the embedding. Thereby, the glow plug main body 10 is obtained.
  • the ceramic materials of the current-carrying heating element 2, the ion current detection electrode 3, and the insulator 11 are all silicon nitride (Si 3 N 4) as an insulating ceramic and a conductive ceramic.
  • Molybdenum silicide (MoSi 2 ) was used, and a sintering aid was added thereto.
  • the linear expansion coefficient is changed by changing the mixture ratio of S i 3 N 4 and Mo S i 2.
  • K and S were adjusted. This realized HK, H ⁇ S.
  • the insulation resistance of the heat generating element 2, the ion current detecting electrode 3, and the insulator 11 was adjusted by adjusting the particle size of each ceramic material.
  • the respective coefficients of linear expansion K, ⁇ , of the ion current detecting electrode 3, the conductive heating element 2, and the insulator 11 have a relationship of H ⁇ S and ⁇ K. That is, the electrode 3 for ion current detection exposed on the surface of the main body 10 and the current-carrying heating element 2 completely buried inside the insulator 11 Large coefficient of linear expansion. Therefore, the glow plug 1 of the present embodiment can always keep the surface of the main body 10 in a compressive stress state during use, and is excellent in durability.
  • Kuku 46th Embodiment >>
  • the conductive heating element 2, the ionic current detecting electrode 3, and the insulator 11 as the main material of the insulating material 11 and Si 3 N in the forty-fifth embodiment and the conductivity
  • the mixing ratio with MoSi 2 as the ceramic was changed, and the relationship between this mixing ratio and the linear expansion coefficient was investigated. Further, in the present embodiment, a glow plug in which the respective linear expansion coefficients H, K, and S were changed was prepared and subjected to a durability test to confirm the effectiveness of the present invention.
  • the linear expansion coefficient increases as the amount of added MoSi 2 increases. It has also been found that the coefficient of linear expansion does not depend much on the particle size of the material and is substantially determined only by the mixing ratio. Therefore, if the mixing ratio of S i 3 N 4 and Mo S i 2 is the same, the linear heating coefficients of the current-carrying heating element, the ion current detecting electrode, and the insulator are the same.
  • Table 14 shows the linear expansion coefficient difference [H-K (S)] of the prepared plugs (sample No. El to E13, C1 to C6).
  • Samples No. E1 to E13 are the products of the present invention, and C1 to (6 are comparative products.
  • S linear expansion coefficient difference
  • Table 14 shows the results. As can be seen from Table 14, cracks occurred in the glow plug body in less than 10,000 cycles for samples No. C 1 to C 6, and the cracks made it impossible to detect ion current. On the other hand, in the samples N 0 .E 1 to E 13, cracks did not occur in the main body even at 10,000 cycles, and normal ion current detection was always performed. It is known that normal operation for 10,000 cycles does not cause any problem in the market.
  • the resistance increasing rate of the energization heater is difference of linear expansion coefficient [H- K (S)] is gradually increased when more than 2. 0 x 1 0- 6.
  • the increase in the resistance of the current-carrying heating element causes a problem in that the heat-generating temperature is reduced, and the quick heat property is reduced. Therefore, as the difference between the linear expansion coefficients [H- K (S)], 2. 0 x 1 0- 6 it can be seen that it is preferred that less.
  • the glow plug 1 of the present embodiment includes a main body 10 and a housing 4 to which the main body 10 is mounted, as shown in FIGS. 98A and 98B.
  • the main body 10 is composed of an insulator 11, an energized heating element 2 provided inside the insulator 11, and electrically connected to both ends of the energized heating element 2 and led out to the other end of the insulator. And a pair of lead wires 21 and 22.
  • the conductive layer 5 in the present embodiment has a shape that covers the front end of the glove lug main body 10 in a cap shape, and has an edge portion 6 only at the upper end portion.
  • the main body 10 is provided inside the metal housing 4 via the metal vertical support 41 in the same manner as in FIGS. 69A and 82 showing the other embodiments described above.
  • One lead wire 21 of the current-carrying heating element 2 rises inside the insulator 11 and is connected to the internal lead wire 2 3 1 through the conductive terminal section 23 provided on the side of the main body 10. It is electrically connected.
  • the other lead wire 22 is electrically connected to the internal lead wire 33 via a conductive terminal portion 31 provided at the upper end of the insulator 11.
  • the external lead wire 2 3 1 is used as a lead wire for the current-carrying heating element 2 and the ion current detecting electrode 3.
  • the housing 4 has the above-described annular support body 41, and as shown in FIG. 69A, has a protective cylinder 42 at an upper portion thereof.
  • the housing 4 has an external thread portion 43 for attaching to the cylinder head 45 of the engine.
  • a rubber bush 421 is fitted into the upper opening of the protective cylinder 42.
  • External lead wires 2 3 3 and 3 3 3 are inserted through the rubber bush 4 2 1, and these are connected to the internal lead wires 2 3 1 and 3 3 through connection terminals 2 3 2 and 3 3 2, respectively. Connected to 3.
  • the external lead wire 233 is electrically connected to one end of the current-carrying heating element 2, and the external lead wire 333 is electrically connected to the other end of the current-carrying heating element 2. Further, the tip (lower end) of the main body 10 is formed in a hemispherical shape as shown in FIG. 98A.
  • an integrally formed product 29 of the energizing heating element 2 and the ion current detecting electrode 3 is prepared.
  • This integrally molded article 29 is produced by injection molding or press molding using a ceramic powder for the electric heating element 2 and the ion current detecting electrode 3.
  • the integrally molded article 29 is embedded in the insulator 11, and these are integrally pressed and fired by a hot press. Note that the lead wires 21 and 22 are connected before the burial.
  • an insulator 11 containing the energizing heating element 2 and the ion current detecting electrode 3 is obtained.
  • the surface of the insulator 11 is roughened, and then a conductive layer material is printed.
  • the surface roughness of the insulator 11 is made rough by etching with phosphoric acid or the like.
  • the surface roughness can be increased by using a coarse grindstone of # 300 or less. Thereby, the adhesion between the insulator 11 and the conductive layer 5 is improved.
  • the conductive layer material is printed on the spherical portion at the tip of the glove lug main body 10 by the printing method and the cylindrical portion by the cylindrical screen printing method. At this time, the conductive layer material may come into contact with the exposed portion of the above-mentioned ion current detecting electrode. To print. Next, the conductive layer is baked at a temperature of 900 ° C. or more in a vacuum atmosphere or a nitrogen atmosphere. As a result, as shown in FIG. 98A, the conductive layer 5 is formed on the surface of the insulator 11.
  • a material mainly composed of metal is used as the conductive layer material. Specifically, a mixed material of Au 93% by weight, Ni 5% by weight, and V 2% by weight was used. The thickness of the conductive layer was 10 m.
  • conductive layer 5 is provided on the surface of insulator 11.
  • the conductive layer 5 has an edge portion 61 at its upper end. Therefore, the exposed area of the ion current detecting electrode is increased, and the ion current detection accuracy and responsiveness can be improved by the edge effect of the edge portion 61 described above.
  • the first rising angle D and the peak value P are important.
  • the rising angle D is large and a steep rising is obtained, and the beak value P is very large. Therefore, the ion current detection accuracy is further improved, and the combustion state of the fuel can be more accurately controlled.
  • the above-described edge portion 61 is formed in a square shape. However, even when the edge portion 61 is rounded, substantially the same effect can be obtained as long as the edge portion is formed. Kuku 4th Embodiment >>
  • the prepared sample includes a glow plug (sample N 0 .E 1) having the large solid conductive layer 5 of the cab-like shape shown in the 47th embodiment, and FIG. 102A and FIG.
  • a group having a small dish-shaped conductive layer 502 Lobe lugs (Sample No. E 2) and glove lugs without conductive layer (Sample No. C 1).
  • Those parts other than the conductive layer are the same as those of the glove lug of the 47th embodiment.
  • each glow plug was attached to the same diesel engine, and the ion current was measured under the same conditions. Then, as shown in FIG. 101 described above, the obtained ion current waveforms were compared, and the ion current detection accuracy and responsiveness were evaluated based on the rising angle D and the beak value P. The larger the rising angle D and the larger the beak value P, the better the detection accuracy and responsiveness.
  • Table 15 shows the evaluation results. As can be seen from Table 15, when the conductive layers 5 and 60 2 are provided (E 1 and E 2), the rising angle D and the beak value P are higher than when the conductive layer is not provided (C 1). Both were excellent. From these results, it can be seen that the provision of the conductive layers 5 and 62 significantly improves the ionic current detection accuracy and responsiveness. Also, while there is no significant difference between £ 1 and £ 2, E1 with a slightly larger conductive layer area and a larger edge 61 is better. Table 15 Sample No. Conductive layer Rising angle D Beak value
  • the pattern of the through hole of the conductive layer 5 (the insulator 11) in the global plug shown in the 47th embodiment Samples with various shapes (exposed portions) were prepared (samples No. E3 to E5), and the effects of the patterns were tested.
  • the overall shape of each conductive layer was the same as that of the 47th embodiment and the caps were all the same size.
  • Each sample (E3 to E5) is the same as in the 47th embodiment except for the conductive layer portion.
  • the test method is the same as in the 48th embodiment.
  • FIGS. 103 to 105 show the changed conductive layer patterns. Note that FIGS. 103 to 105 microscopically show a part of the insulator 11 covered by the conductive layer 5, and the shape shown in these figures is the shape of the conductive layer 5. It does not indicate an outline.
  • FIG. 103 shows a conductive layer 603 having a grid pattern of sample N 0 .E 3. As shown in FIG. 13, the conductive layer 603 has the insulator 11 exposed from between the meshes, and the surface side of the through-holes constituting each mesh (the insulator 11 is different from the insulator 11). On the other side), a edge portion 61 is provided.
  • FIG. 104 shows the pattern of the conductive layer 604 of the sample No. E4.
  • the conductive layer 604 is obtained by changing the shape of the exposed portion of the insulator 11 of E3 into a circular shape, and has an edge portion 61 at a boundary portion thereof.
  • FIG. 105 shows the pattern of the conductive layer 605 of the sample No. E5.
  • the conductive layer 605 has a comb-shaped pattern of a penetrating portion such that the exposed portion of the insulator 11 has a comb shape, and has an edge portion 61 on the surface side.
  • the shape of the main body 10 on which the conductive layers 604 and 605 are mounted as viewed from the front is the same as FIG. 106 except for the pattern.
  • conductive layers 606 having a pattern as shown in FIGS. , 607, the same effects as those of E3 to E5 can be obtained.
  • the heating element 2 and the ion current detection electrode 3 are separated from the 47th embodiment as in the above-described embodiment, and these are electrically insulated. Applied to the case where it is buried in insulator 1 2 A It is. That is, as shown in FIGS. 109A and 109B, a cap-shaped conductive layer 5 similar to that of the 47th embodiment is provided at the tip of the main body 10 as in FIG. 98A. It is arranged in. Others are the same as in the 47th embodiment. In the case of the present embodiment, the same operation and effect as those of the 47th embodiment can be obtained. In the 48th to 49th embodiments, the energizing heating element 2 and the ion current detecting electrode 3 shown in FIG. 109A are separated from each other. It can also be applied to cases buried in 2A. Kuku First Embodiment >>>
  • the glow plug according to the present embodiment is a ceramic glow plug used as a starting assist device for a diesel engine.
  • the glow plug 1 of the present embodiment includes a main body 10 (FIG. 110A, FIG. 110B) and a housing 4 to which the main body 10 is mounted.
  • the main body 10 includes a first insulating substrate 12A, an energizing heating element 2 printed and formed on one end of the front surface of the first insulating substrate 12A, It has a pair of lead wires 21 and 22 electrically connected to both ends of the energized heat generator 2 and led out to the other end of the first insulating substrate.
  • a coated insulating substrate 12 C disposed on the front side of the first insulating substrate 12 A so as to cover the heating element 2 and the lead wires 21 and 22, and a first insulating substrate 12 A And a second insulating substrate laminated on the back side surface. And, it has an ion current detecting electrode 3 for detecting the state of ionization in the flame, which is electrically insulated from the current-carrying heating element 2 and is disposed on the surface of the second insulating substrate 12B.
  • the ion current detection electrode 3 is provided at a substantially central position in the diameter direction of the main body 10. These are integrated by firing, as described below. Is formed.
  • the main body 1 ⁇ is fixed in a metal housing 4 via a metal annular support body 41, as shown in FIGS. Then, one lead wire 21 of the current-carrying heating element 2 rises inside the main body 10, and passes through the internal lead wire 2 3 through a conductive terminal section 12 3 provided on a side surface of the main body 10. 3 Electrically connected to 1.
  • the other lead wire 22 is electrically connected to the housing 4 via the annular support 41.
  • the upper part of the ion current detecting electrode 3 is electrically connected to the internal lead wire 33 via a conductive terminal part 31 provided on the upper side of the main body 10.
  • the housing 4 has the above-mentioned annular support member 41, and as shown in FIG. Further, the housing 4 has a male screw portion 43 for mounting on the cylinder head 45 of the engine.
  • a rubber bush 421 is fitted into the upper opening of the protective cylinder 42.
  • External lead wires 2 3 3 and 3 3 3 are inserted through the rubber bush 4 2 1, and these are connected to the internal lead wires 2 3 1 and 3 1 3 respectively through connection terminals 2 3 2 and 3 3 2.
  • the external lead wire 233 is electrically connected to one end of the current-carrying heating element 2, and the external lead wire 333 is electrically connected to the ion current detecting electrode 3.
  • the other end of the current-carrying heating element 2 is electrically connected to the housing 4 via the annular support 41 as described above (FIG. 110A). Further, the tip (lower end) of the main body 10 is formed in a hemispherical shape as shown in FIG. 11OA, and the tip 3C of the ion current detecting electrode 3 is exposed.
  • a plate-shaped molded body 110 for the first insulating substrate 1, a second molded body 120 for the second insulating substrate, and a third molded body 130 for the coated insulating substrate Prepare The second molded body 120 has curved surface portions 12 1 and 13 1 on the lower surface, while the third molded body 130 has curved surface-shaped portions 12 1 and 13 1 on the upper surface. These three compacts are green compacts made of an electrically insulating ceramic material.
  • the above molded bodies 110, 120, and 130 are formed by mixing raw materials composed of a ceramic material, a resin binder, and the like, and forming the mixture into the above-mentioned shape (FIG. 11 (a) ) (b) (c)).
  • a current-carrying heating element portion 20 is printed and formed on the surface side of the first molded body 110 by screen printing using a conductive paste for a heating element (FIG. 11D).
  • the lead wire portions 210 and 220 are formed by printing (FIG. 112 (e)).
  • an ion current detection electrode portion 30 is printed and formed on the front surface of the second molded body 120 using a conductive paste for an ion current detection electrode (FIG. 11 (f)).
  • the first molded body 110 is laminated on the second molded body 120, and the third molded body 130 is further laminated thereon. After degreasing, the main heating is performed, and these are integrally baked, whereby each of the above-mentioned formed bodies is composed of the first insulating substrate 12A, the second insulating substrate 12B, and the coated insulating substrate 12 becomes C.
  • the raw material of the molded body of the first insulating substrate 12 A, the second insulating substrate 12 B, and the coated insulating substrate 12 C is Si 3 N 4 (silicon nitride) powder 63% (weight ratio).
  • the main component was used as a mixture with 12% of the composite binder.
  • the material of the current-carrying heating element portion 20 As the material of the current-carrying heating element portion 20, a paste made of W (tungsten) and R e (rhenium) was used. As the conductive paste on which the lead line portions 210 and 220 were formed by printing, a W (tungsten) paste was used. The conductive paste used for printing the ion current detecting electrode 3 is made of W (tungsten) and Re (rhenium). Next, the above-mentioned laminate (FIG. 113 (A)) is fired in an atmosphere of argon or nitrogen at 170 to 180.degree. C. Hot pressing was performed for 1 to 2 hours. The diameter of the obtained main body 10 was 3.5 mm. The surface of the exposed portion 3B (FIG. 110A) of the tip 3C of the ion current detection electrode 3
  • the current-carrying heating element 2 and the lead wires 21 and 22 are printed and formed inside the main body 10 and the ion current is formed inside the main body 10.
  • the detection electrodes 3 are provided, and these are integrally formed. Therefore, the glow operation (heating operation) by the energizing heating element 2 and the ion current detection by the ion current detection electrode 3 are one glow.
  • the energizing heating element 2 and the lead wires 21 and 22 are formed by printing, the thickness thereof is thin, and the glow plug body can be made compact.
  • the first, second, and coated insulating substrates 12A, 12B, and 12C are integrally formed with the heating element 2, the lead wires 21, 22, and the ion current detecting electrode 3. It is simple in configuration and easy to manufacture.
  • the heat generating element 2, the lead wires 21 and 22, and the ion current detecting electrode 3 are provided inside the insulator, there is no corrosion such as oxidation due to combustion gas, and the durability is excellent. . Further, since the tip of the main body 10 has a hemispherical shape (FIG. 110A), it can absorb the thermal shock in the combustion chamber.
  • the tip 3C of the ion current detecting electrode 3 is exposed so as to come into contact with the combustion gas (FIG. 110A), and a noble metal such as Pt is coated on the exposed portion. Therefore, the generation of an insulator on the surface of the ion current detection electrode due to oxidation or the like is suppressed, the conductivity of the electrode or the initial resistance value is secured, and the detection accuracy is prevented from deteriorating.
  • the ion current detecting electrode 3 is disposed near the center in the diameter direction of the main body 10. As a result, ion currents in all directions in the combustion chamber can be detected with high accuracy.
  • Each of the above insulating substrate, in addition to S i 3 N 4, A 1 2 0 3, S i- A 1 - 0 - N ( sialon) can also be used.
  • a conductive paste for forming a heating element or the like by printing a paste made of W, Mo, Re, W / Mo, or W / Re, WC, WC / Re and resin is used. is there.
  • one lead wire 220 of the current-carrying heating element 2 in the glove plug main body 10 is connected to a rod-shaped insulator 12 A
  • the terminal 31 is connected to the terminal 31 provided on the upper side of the device, and the terminal 31 of the lead wire 220 and the ion current detecting electrode 3 is shared.
  • the heating circuit of the energizing heating element 2 and the ionic current detection circuit are switched by a command signal from the ECU 52, and the operating state is always the heating element of the energizing heating element.
  • the circuit configuration is connected to either the state or the ion current detection state.
  • Other features are the same as those of the fifty-first embodiment, and the same effects as those of the fifty-first embodiment can be obtained.
  • the structure is simple. Further, in the present embodiment, in the ion current detection state, the current-carrying heating element itself also acts on the ion current detection electrode, so that the area of the substantial ion current detection electrode can be enlarged, and the ion current detection over a wider range can be performed. This makes it possible to obtain the effect of improving the detection accuracy.
  • the current-carrying heating element 2 and the ion current detecting electrode 3 are placed on the same surface on the front side of the second insulating substrate 12B. This is an example of printing on the top. Further, a common terminal 31 is provided at the upper end of the glove lug main body 10, and one of the lead wires 22 of the electric heating element 2 is connected to the ion current detecting electrode 3. The tip 3C of the ion current detection electrode 3 is exposed, and is an exposed portion 3B. Others are the same as those of the fifty-first embodiment.
  • the energizing heating element 2 since the energizing heating element 2, the lead wires 21 and 22 and the ion current detection electrode 3 are all formed on the second insulating substrate 12B by printing, these prints are formed. Easy. Also, the second insulating substrate 1 2 B and the first insulating Since it is sufficient to prepare two molded bodies with the substrate 12A, the production is easy and the cost is low. In addition, the same effects as in the fifty-first embodiment can be obtained. ⁇ 54th Embodiment >>
  • a semicircular recess 120 is formed on the front surface of the second insulating substrate 12B and a semicircular recess is formed on the back surface of the first insulating substrate 12A.
  • a concave portion 110 is provided, and a columnar ion current detecting electrode 3 is sandwiched between the two semicircular concave portions.
  • the glow plug main body 10 has a rectangular cross section unlike the fifteenth embodiment (FIG. 11B).
  • a paste-like conductive material 124 is printed and provided inside the second insulating substrate 12B so as to be able to contact the ion current detecting electrode 3, and one end of the conductive material 124 is provided at one end thereof. 1 25 is exposed on the side surface of the second insulating substrate 12 B, and can be connected to a lead wire (not shown).
  • the rod is ground in the same manner as in the fifteenth embodiment. Also in the present embodiment, the same effects as in the fifty-first embodiment can be obtained. Further, according to the present embodiment, since the ion current detecting electrode 3 is a molded body having a circular cross section, the electrode surface area can be easily and effectively secured for ion current detection. The effect of improvement can be obtained.
  • FIG. 118A and FIG. 119 two U-shaped current-carrying heating elements 28, 29 are provided.
  • Fig. 1 18 A, Fig. 1 The glow plug shown in 18 B is one of the above-mentioned energizing heating elements 28 between the first insulating substrate 11 and the coated insulating substrate 13, and the other energizing heating element 29 being the inner insulating substrate 1 1 5 and the second insulating substrate 12.
  • the ion current detection electrode 3 is disposed between the first insulating substrate 11 and the inner insulating substrate 115. Both ends of the energizing heating elements 28 and 29 are connected to the terminal section 123 and the annular support 41 via the lead wires 21 and 22 in the same manner as in the fifth embodiment. Have been.
  • the glow plug shown in FIG. 119 includes the above-mentioned current-carrying heating elements 28 and 29 respectively, the first insulating substrate 11 and the coated insulating substrate 13, the first insulating substrate 11 and the inner insulating substrate 1. 15 and the ion current detection electrode 3 is provided between the inner insulating substrate 115 and the second insulating substrate 12.
  • the other points are the same as those in Fig. 118A.
  • each of the two heating elements is provided, so that the glove lugs can be heated quickly and uniformly, and the force applied to the ion current detection electrode 3 can be increased. It is possible to significantly reduce the carbon burning time when smolder due to adhesion occurs, to speed up the recovery to the ion current detection state, and to detect the ion current with higher accuracy. Others are the same as those of the fifty-first embodiment. Further, the same effect as in the fifty-first embodiment can be obtained. Kuku Fifth and Sixth Embodiment >>
  • the glow plug 1 of the present embodiment includes a main body 10 and a housing 4 on which the main body 10 is mounted.
  • the main body 10 is electrically connected to a rod-shaped insulator 11, a heat-generating body 2 formed inside one end of the rod-shaped insulator 11, and both ends of the heat-generating body 2. And a pair of lead wires 2 1 and 2 2 led out to the other end of the rod-shaped insulator And
  • an ion current detection electrode 3 that is electrically insulated from the current-carrying heating element 2 and disposed inside the rod-shaped insulator 11 for detecting the state of ionization in the flame.
  • the ion current detection electrode 3 is provided at the center of the rod-shaped insulator in the diameter direction.
  • the main body 10 is fixed in a metal housing 4 via a metal annular support member 41, as shown in FIG. 120A and FIG. 121. Then, one lead wire 21 of the current-carrying heating element 2 rises inside the rod-shaped insulator 11 and passes through a conductive terminal section 12 3 provided on a side surface of the main body 10. It is electrically connected to the internal lead 2 3 1.
  • the other lead wire 22 is electrically connected to the housing 4 via the annular support 41.
  • the upper part of the ion current detecting electrode 3 is electrically connected to the internal lead wire 33 via a conductive terminal part 31 provided at the upper end of the rod-shaped insulator 11.
  • the housing 4 has the above-mentioned annular support member 41, and as shown in FIG. Further, the housing 4 has a male screw portion 43 for mounting on the cylinder head 45 of the engine.
  • a rubber bush 421 is fitted into the upper opening of the protective cylinder 42. External lead wires 2 3 3 and 3 3 3 are inserted through the rubber bush 4 2 1, and these are connected to the internal lead wires 2 3 1 and 3 1 3 Connected to 3.
  • the external lead wires 2 3 3 are electrically connected to one end of the heating element 2, and the external lead wires 3 3 3 are electrically connected to the ion current detecting electrode 3.
  • the other end of the current-carrying heating element 2 is electrically connected to the housing 4 via the annular support member 41 as described above (FIG. 120A). Also body 1 As shown in FIG. 120A, the leading end (lower end) of 0 is formed in a hemispherical shape, and the leading end 3C of the ion current detecting electrode 3 is exposed and the exposed portion 3B is formed. Has become.
  • a method of manufacturing the glow plug body 10 will be described with reference to FIGS. First, a brief description will be given.
  • a ceramic body made of an electrically insulating material a forming body of a central shaft 13 having a hollow portion 131 is prepared, and an ion current detecting body is provided in the hollow portion 131.
  • Insert electrode 3 On the other hand, on the surface of the sheet 15 of the formed form of the insulating substrate made of a ceramic material for electrical insulation, the above-mentioned heat generating element and lead wires are formed by printing, and then on the printed surface of the insulating substrate. The above-mentioned insulating substrate is wound around the outer periphery of the center shaft 13 with the formed form of the center shaft 13 placed thereon. Thereafter, these are heated to bake the center shaft and the insulating substrate.
  • a raw material composed of a ceramic material, a resin binder, etc. is mixed (FIG. 122 (a)) and extruded (FIG. 2 2 (b)) to form a cylindrical body of a formed body having a hollow portion 13 1 penetrating in the axial direction.
  • a conductive rod-shaped ion current detecting electrode 3 is inserted into the hollow portion 13 1 of the center shaft 13 (FIG. 122 (c)
  • a ceramic Raw materials consisting of materials, resin binders, etc. are mixed (Fig. 122 (d)) to form a thin sheet 15 (Fig. 122 (e)).
  • a through hole for forming a terminal part was drilled (Fig. 122 (f)), and then a conductive base for a conductive heating element was used on the front side of the sheet 15 to conduct heat by screen printing.
  • the body part 20 is formed by printing (Fig. 122 (g))
  • the lead line parts 210, 220 are printed so as to be connected to the through holes 151, respectively.
  • Form Fig. 122 (h)
  • the terminal portion 230 is formed by printing with a conductive base so as to communicate with the through hole 15 1 (FIG. 12 (i)).
  • a coating material composed of a ceramic material and a resin binder is coated and printed on the front side of the sheet 15 (FIG. 122 (j)). This eliminates the step between the print forming part such as the energizing heating element part 20 and the sheet surface and flattens it, and improves the adhesion between the sheet 15 and the center shaft 13 during the next winding. It is to make it.
  • the terminal portion 230 is plated with ⁇ 1 and then Ni (FIG. 122 (m)).
  • the internal lead wire 231 is assembled to the terminal portion 230 by brazing (FIG. 122 (n)), and a Ni plating is applied to the surface thereof (FIG. 122 (0)).
  • the tip of the rod-shaped insulator 11 is ground into a spherical shape as shown in FIG. 120A.
  • the glove lug main body 10 shown in FIG. 120A is obtained.
  • the center shaft 13 had an outer diameter of 3.9 mm and an inner diameter forming the hollow portion 131 of 0.7 mm.
  • the sheet 15 has a thickness of 0.3 mm and a width of 11. It was 5 mm long and 54 mm long.
  • the outer diameter at the time of the winding was 4.5 mm, and the diameter of the ion current detecting electrode 3 inserted into the hollow portion 131 was 0.3 mm.
  • material of the intermediate shaft 1 S i 3 N 4 (silicon nitride) powder 6 3 percent (weight ratio), M 0 S i 2 (molybdenum disilicide) powder 1 8%, Y 2 0 3 ( Lee Tsu DOO rear) and powdered 4%, 1 and 2 0 3 (alumina) powder 3% a
  • M 0 S i 2 (molybdenum disilicide) powder 1 8% Y 2 0 3 ( Lee Tsu DOO rear) and powdered 4%, 1 and 2 0 3 (alumina) powder 3% a
  • the raw materials of the sheet 15 are mainly Si 3 N 4 (silicon nitride) powder 70% (weight ratio), Mo Si 2 (molybdenum disilicide) powder 20%, and paraffin WAX.
  • the composite binder used as a component was mixed with 110%.
  • a paste made of W (tungsten) and R e (rhenium) was used as a material for the current-carrying heating element portion 20.
  • a W (tungsten) paste was used as a conductive paste on which the lead line portions 210 and 220 and the terminal portion 230 were formed by printing.
  • the material of the electrode for ion current detection is made of MoSi 2 (molybdenum disilicide).
  • the above-mentioned wound material (FIG. 122) was fired in an argon or nitrogen atmosphere at 170 to 180 ° C. for 2 to 4 hours. Due to this firing, the outer diameter of the above-mentioned center shaft was changed from 3.9 to 3.1 mm, the outer diameter of the wound material (rod-shaped insulator) was changed from 4.5 mm to 3.6 mm, and the ion current was detected.
  • the electrode for use contracted from 0.7 mm to 0.6 mm.
  • Pt was coated on the surface of the exposed portion 3B (FIG. 12OA) of the tip of the ion current detection electrode 3.
  • the glove lug 1 composed of the main body 10 and the housing 4 as described above is connected to the engine cylinder 45 with the male screw of the housing 4 as shown in FIG. Attach by screwing the parts together.
  • the operation circuit of the glove lug is shown in Fig. 64 or Fig. 68. The same operation as described above is performed, but redundant description is omitted.
  • the rod-shaped insulator As described above, in the plug of the present embodiment, the rod-shaped insulator
  • a heating element 2 and lead wires 2 1 and 2 2 are printed and formed inside 1, and an electrode 3 for ion current detection is provided inside a rod-shaped insulator 11. It is configured. Therefore, the glow operation (heating operation) by the energizing heating element 2 and the ion current detection by the ion current detection electrode 3 are
  • the above! Since the heating element 2 and the lead wires 21 and 22 are formed by printing, the thickness is thin and the glow plug body can be made compact. Further, since the rod-shaped insulator 11, the current-carrying heating element 2, the lead wires 21, 22, and the ion current detecting electrode 3 are integrally formed, the configuration is simple. In addition, since the conductive heating element 2, the lead wires 21 and 22 and the ion current detecting electrode 3 are provided inside the rod-shaped insulator 11, there is no corrosion such as oxidation due to combustion gas and durability. Is excellent.
  • the glow plug main body 10 of the present embodiment forms a current-carrying heating element and a lead wire on a sheet 15 for an insulating substrate by printing. It is manufactured by placing a center shaft 13 with an ion current detection electrode 3 inserted above, winding and firing. Therefore, it is easy to manufacture the plug body.
  • the tip of the rod-shaped insulator 11 has a hemispherical shape, thermal shock in the combustion chamber can be absorbed.
  • the tip 3C of the ion current detection electrode 3 is exposed so as to come into contact with the combustion gas (FIG. 120A), and the exposed portion is coated with a noble metal such as Pt. Therefore, the generation of an insulator on the surface of the ion current detection electrode due to oxidation or the like is suppressed, the conductivity of the electrode or the initial resistance value is secured, and the detection accuracy is prevented from deteriorating.
  • the ion current detecting electrode 3 is disposed at the center of the rod-shaped insulator 11 in the diameter direction. Therefore, ion currents in all directions in the combustion chamber can be detected with high accuracy.
  • the rodlike insulator another S i 3 N 4, A 1 2 0 3, S i - A 1 - 0- N can also be used (SiAlON).
  • the conductive base for forming a heat-generating element by printing includes W, Mo, Re, W / Mo, WC, WC / Re or W / Re, and resin. There is a past.
  • a terminal portion 3 provided at the upper end of the rod-shaped insulator 11 is provided with one lead wire 220 of the current-carrying heating element 2 in the plug body 10.
  • the heating circuit of the energized heating element 2 and the ion current detection circuit are switched by a command signal from the ECU 52, and the operation state is always the energized heating element heating state. Circuit configuration that is connected to either one of the Is wearing.
  • the other points are the same as those in the 56th embodiment, and the same effects as those in the 56th embodiment can be obtained.
  • the structure is simple. Further, in the present embodiment, in the ionic current detection state, the current-carrying heating element itself also acts on the ionic current detection electrode, so that the area of the ionic current detection electrode can be substantially expanded, so that the ionic current detection electrode extends over a wider range. The ion current can be detected, and the effect of improving the detection accuracy can be obtained.
  • Kuku Fifth and Eighth Embodiment >>
  • the glove lug according to an embodiment of the present invention is a ceramic glow plug used as a start-up assist device for a diesel engine.
  • the glow plug 1 of the present embodiment includes a main body 10 and a housing 4 on which the main body 10 is mounted, as shown in FIGS. 124A and 124B.
  • the main body 10 includes a rod-shaped insulator 11, a current-carrying heating element 2 printed inside one end of the rod-shaped insulator 11, and a rod-shaped body electrically connected to both ends of the current-carrying heating element 2. It has a pair of lead wires 21 and 22 led out to the other end of the insulator and similarly formed by printing.
  • the current-carrying heating element 2 is electrically insulated from the current-carrying heating element 2, and is disposed inside a groove 150 provided along an axial direction in an outer peripheral portion of the rod-shaped insulator 11. It has an electrode 3 for detecting an ion current for detecting the state.
  • the main body 10 is fixed in a metal housing 4 via a metal annular support 41, as shown in FIGS. 12A and 12A. Then, one lead wire 21 of the current-carrying heating element 2 rises inside the rod-shaped insulator 11 and passes through a conductive terminal section 12 3 provided on the side surface of the main body 10. Electrically connected to internal lead 2 3 1. Also, the other lead wire
  • the upper end of the ion current detecting electrode 3 is electrically connected to the internal lead wire 33 via a conductive terminal 31 provided at the upper end of the rod-shaped insulator 11.
  • the housing 4 has the above-mentioned annular support member 41, and as shown in FIG. Further, the housing 4 has a male screw portion 43 for mounting to the cylinder head 45 of the engine.
  • a rubber bush 421 is fitted into the upper opening of the protective cylinder 42.
  • External lead wires 2 3 3 and 3 3 3 are inserted through the rubber bush 4 2 1, and these are connected to the internal lead wires 2 3 1 through the connection terminals 2 3 2 and 3 3 2 respectively. , Connected to 3 3. Therefore, the external lead wire 233 is electrically connected to one end of the electric heating element 2, and the external lead wire 333 is electrically connected to the ion current detection electrode 3.
  • the other end of the current-carrying heating element 2 is electrically connected to the housing 4 via the annular support 41 as described above (FIG. 124A).
  • the tip (lower end) of the main body 10 is formed in a hemispherical shape as shown in FIG. 124A, and the tip 3 C of the ion current detection electrode 3 is exposed. Department
  • a method of manufacturing the glow plug main body 10 will be described with reference to FIGS.
  • raw materials consisting of a ceramic material, a resin binder, etc. are mixed to form a thin sheet 15 (Fig. 126A).
  • a conductive heating element portion 20 is printed and formed on the front side of the sheet 15 by screen printing using a conductive paste for a conductive heating element.
  • lead line portions 210 and 220 are formed by printing (FIG. 12B).
  • a terminal portion (not shown) is formed by printing with a conductive paste so as to communicate with the lead line portion 210.
  • a coating material composed of a ceramic material and a resin binder is coated and printed on the front side of the sheet 15.
  • an axial groove 150 is formed between the center shaft 13 and both end surfaces 152, 153 of the sheet 15 in the winding direction.
  • a groove 150 can be formed by reducing the width of the sheet 15 in advance so that a gap is formed between both end surfaces 152 and 153.
  • one end surface is cut along the axial direction to a small width, and a groove is formed between the two.
  • a cylindrical ion current detecting electrode 3 is put into the groove 150, and an insulating coating material 19 made of a ceramic material is further placed thereon. Fill.
  • the center shaft 13 had an outer diameter of 2.9 mm.
  • the sheet 15 had a thickness of 0.8 mm, a width of 11.5 mm, and a length of 54 mm. Further, the outer diameter at the time of the winding was 4.5 mm, and the diameter of the ion current detecting electrode 3 inserted into the groove 150 was 0.8 mm. The width of the groove 150 was 0.7 mm.
  • material of the intermediate shaft 1 3, S i 3 N 4 (silicon nitride) 63% powder (weight ratio), M o S i and 2 (molybdenum disilicide) powder 1 8%, Y 2 0 3 (Lee Tsu DOO rear) and powdered 4% was used by mixing 1 and 2 0 3 (alumina) powder 3% a, a composite by Sunda one 1 2% as a main component Barafu fin WAX.
  • the raw material of the sheet 15 is mainly composed of 70% Si 3 N 4 (silicon nitride) powder (weight ratio), 20% Mo Si 2 (molybdenum disilicide) powder, and paraffin WAX. And 10% of the composite binder used.
  • a conductive paste made of W (tungsten) and R e (rhenium) was used as a material of the electric heating element portion 20.
  • a W (tungsten) paste was used as the conductive paste on which the lead wire portions 210, 220 and the terminal portion 123 were formed by printing.
  • the material of the electrode for ion current detection is made of MoSi 2 (molybdenum disilicide).
  • the insulating coating material 19 filled in the groove 150 is composed of 63% of Si 3 N 4 (silicon nitride) powder, 18% of M 0 Si 2 (molybdenum disilicide) powder, and 20 % of Y 20 3 (b Tsu preparative rear) and powdered 4%, 1 and 2 0 3 (alumina) powder 3% a, ceramic comprising a mixture of a composite by Sunda one 1 0% composed mainly of paraffin fin WA X Material used.
  • the above-mentioned wound material (FIG. 12D) was fired in an atmosphere of argon or nitrogen for 1700 to 1800 ° for 2 to 4 hours.
  • the outer diameter of the wound material shrunk from 4.5 mm to 3.6 mm, and the ion current detection electrode shrunk from 0.7 mm to 0.6 mm. Also, Pt was coated on the surface of the exposed portion 3B (FIG. 12A) at the tip of the ion current detecting electrode 3.
  • the glow plug 1 constituted by the main body 10 and the housing 4 as described above is connected to the cylinder 45 of the engine by the housing 4. Install by screwing the male thread.
  • the glove lug operating circuit the one shown in FIG. 64 or FIG. 68 can be used, and the same operation as described above is performed, but redundant description is omitted.
  • the electrode 3 for ion current detection is formed inside the groove 150 of the rod-shaped insulator 11, and the inside of the rod-shaped insulator 11 is energized.
  • the heating element 2 and the lead wires 21 and 22 are provided, and these are integrally formed. Therefore, the glow operation (heating operation) by the heat generating element 2 and the ion current detection by the ion current detecting electrode 3 can be achieved by one glow plug.
  • the carbon is burned off by energizing the heat generating element 2 near the ion current detection electrode 3 to generate heat.
  • the current detection electrode 3 can be returned to a normal state. Therefore, the ion current can be detected with high accuracy.
  • the energizing heating element 2 and the lead wires 21 and 22 are formed by printing, the thickness is thin, and the glove lug main body can be made compact.
  • the rod-shaped insulator 11, the current-carrying heating element 2, the lead wires 21, 22 and the ion current detecting electrode 3 are integrally formed, the configuration is simple. Also, Heating body 2, lead wires 21, 22 and ion current detection electrode 3 are provided inside rod-shaped insulator 11, so there is no corrosion such as oxidation due to combustion gas, and the durability is excellent. .
  • the glove lug main body 10 of the present embodiment is formed by printing a heating element and a lead wire on an insulating sheet 15 as shown in FIG. 126A to FIG. 125D. It is manufactured by placing a central shaft 13 thereon and winding it, placing an ion current detecting electrode 3 in a groove 150 formed at that time, and then firing. Therefore, the manufacture of the glove lug body is easy. Further, since the tip of the rod-shaped insulator 11 has a hemispherical shape, it is possible to absorb a thermal impact in the combustion chamber.
  • the tip 3C of the ion current detection electrode 3 is exposed to come into contact with the combustion gas (FIG. 124A), and the exposed portion 3B is coated with a noble metal such as Pt. Therefore, the formation of an insulator on the surface of the electrode for ion current detection due to oxidation or the like is suppressed, the conductivity of the electrode or the initial resistance value is secured, and there is an effect of preventing deterioration of detection accuracy.
  • the rod-shaped insulator may be made of Al 2 O 3 or Si—A 1-0-N (Sialon) in addition to Si 3 N 4 .
  • a paste consisting of W, Mo, Re, W / Mo, Wc, Wc / Re, or WZR e and a resin is used. is there.
  • the glow plug main body 10 is made of a laminated body.
  • the center shaft 13 and the center shaft 13 are formed on a sheet 15 (FIGS. 126A to 126D) on which the energized heating elements 20 and the like shown in the fifty-eighth embodiment are formed by printing.
  • Upper shell made of similar material Stack the sheets 16 (Fig. 127).
  • the upper sheet 16 has a groove 160 in which the ion current detection electrode 3 is provided.
  • the plate-like electrode 3 for ion current detection is inserted into the groove 160, and the insulating coating material 19 is filled in the same manner as in the 58th embodiment. Thereafter, as in the fifty-eighth embodiment, heating or firing or hot blessing is performed.
  • the current-carrying heating element 2 and the lead wires are arranged between the rod-shaped insulators composed of the electrically insulating sheets 15 and 16, and the grooves 16 are formed.
  • a global plug main body 10 in which the ion current detecting electrode is disposed within 0 is obtained.
  • manufacturing is easier.
  • it is cut (ground) to obtain the desired shape.
  • the other points are the same as those in the 58th embodiment, and the same effects as those in the 58th embodiment can be obtained.
  • the glove lug according to the present invention is useful as a glove lug for igniting fuel and promoting combustion in an internal combustion engine, particularly a diesel engine, and detects the ion current in the combustion chamber to determine the combustion state. It is useful for controlling the engine because it can be known. Further, accurate ion current detection can be realized by the ion current detection device of the present invention. Furthermore, a glove lug with a simple structure and high accuracy can be manufactured by the method for manufacturing a glow plug of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Description

明 細 書 グローブラグ及びその製造方法並びにィオン電流検出装置 技術分野
本発明は、 燃料の着火 · 燃焼を促進するためのグロ一プラグ、 そのグ ローブラグを用いたイオン電流検出装置、 及びグローブラグの製造方法 に関する。 背景技術
近年、 ガソリ ンェンジンのみならずディ一ゼルェンジンにおいても環 境保護の面から、 機関から排出される排気ガスや排気煙をより一層低減 させることが要望されている。 そして、 こう した要望に応えるべく、 各 種のエンジン改良や後処理 (触媒等) による排出ガス低減、 燃料 · 潤滑 油性状の改善、 各種のエンジン燃焼制御システムの改善などが検討され ている。
また、 上記検討事項に関連して、 最近のエンジン燃焼制御システムに おいてはエンジン運転中の燃焼状態を検出することが要請されており、 筒内圧、 燃焼光、 イオン電流等を検出することによってエンジン燃焼状 態を検出することが検討されている。 特に、 イオン電流によりエンジン 燃焼状態を検出することは、 燃焼に伴う化学反応を直接的に観察できる ことから極めて有用と考えられており、 種々のイオン電流検出方法が提 案されている。
特開平 7 — 2 5 9 5 9 7号公報には、 燃料噴射ノズルの取り付け座部 において、 当該噴射ノズル及びエンジンのシリンダヘッ ドから絶縁され たスリーブ状の電極を装着し、 その電極を外部の検出回路に接続するこ とによ り燃料の燃焼に伴うイオン電流 (燃料ガスのイオン化度) を検出 する方法が開示されている。
また、 米国特許第 4 , 7 3 9 , 7 3 1号では、 セラ ミ ックグローブラ グを用いたイオン電流 (イオン化した燃料ガスの導電率) 検出用センサ が開示されている。 つまり、 かかる技術では、 セラミ ックグローブラグ のヒータ (発熱体) 表面に白金製の導電層を取着するとともに、 この導 電層を燃焼室及びグロ一プラグ取付金具から絶縁している。 そして、 導 電層に外部からのィオン電流測定用電源 (直流 2 5 0 V ) を印加して燃 料燃焼に伴うィオン電流を検出するようにしている。
また、 こう したイオン電流検出機能を有するグロ一プラグを用いたィ オン電流検出装置では一般に、 エンジンの低温始動当初には発熱体の発 熱作用によ り燃料の着火 · 燃焼を促進させる。 この場合、 通常はェンジ ンの暖機が完了し、 燃焼状態が安定するまで発熱体の発熱状態が継続さ れる (一般には、 アフターグロ一と呼ばれる) 。 そして、 アフターグロ 一の終了後に、 グローブラグの発熱作用を停止するとともに、 イオン電 流の検出処理が開始されるようになつていた。
ところが、 上記従来技術においては、 いずれも以下に示す問題を招来 する。 つま り、 前者の技術 (特開平 7— 2 5 9 5 9 7号公報) では、 ィ オン電流検出のために他の部位より絶縁されたスリーブ状の電極を設置 しなくてはならず、 同電極の材料の用意及びその加工において煩雑な作 業が強いられる。 そのため、 イオン電流検出用の電極が非常に高価な構 成となるという問題があった。 さらに、 燃料噴射ノズルと電極との間、 及び電極とシリ ンダへッ ドとの間が燃焼室内にて発生するカーボンによ り短絡し、 早期に使用不能となるという欠点があった。
また、 後者の技術 (米国特許第 4 , 7 3 9, 7 3 1号) では、 イオン 電流を検出する電極を発熱体とは別に発熱体上に設けるとともに、 当該 電極及び発熱体を個々の電気経路を用いて別々の電源に接続していたた め、 構造が複雑になるという欠点があった。 それに加えて、 電極の耐熱 性及び耐消耗性を確保するために白金など高価な貴金属を多量に必要と することから、 グローブラグ自体が非常に高価なものとなる欠点があつ た。 さらに、 上記センサの場合には、 電極の略全体が燃焼室内にさらさ れ、 かつ、 ハウジングと電極との間隔が狭い。 そのため、 電極へのカー ボンの付着によ り当該電極とハウジングとの間が導通 (短絡) され、 結 果としてイオン電流の誤検出を招く という問題を生じる。
既存のイオン電流検出装置では、 上述したようにアフターグロ一期間 中は発熱作用を呈するのみであって、 イオン電流を検出することはでき ない。 そのため、 かかる期間においてはイオン電流の検出結果を用いた 燃焼状態制御を実施することができず、 燃焼状態を最適に制御すること ができないという問題があった。 具体的にはアフターグロ一期間中にお いて、 例えばイオン電流の検出結果を用いた着火時期のフィ一ドバック 制御や失火検出処理を実施することができず、 燃料の燃焼状態を最適状 態に制御することが困難であった。
上記従来のグロ一ブラグでは、 その使用途中においてセラミ ツク発熱 部の外周に力一ボンが付着し、 イオン電流検出用の露出電極とそれに絶 縁されたアース部 (ブラグハウジングゃシリ ンダへッ ド) との間の絶縁 抵抗が低下する。 この場合、 電極部分とアース部とが導通されてしまい、 本来、 燃焼イオンが発生していないにもかかわらず、 付着カーボンを通 つて漏洩電流が流れるという事態を招く。 そして、 かかる事態には、 上 記漏洩電流によってイオン電流波形が所望の波形とは相違し、 その検出 結果を用いた着火時期検出処理や失火検出処理の精度が悪化するという 問題を生ずる。 上記露出電極とアース部との間の絶縁状態は、 燃焼室内 の圧力に依存しており、 特にエンジン圧縮行程時においては絶縁抵抗が 下がり漏洩電流が流れ易くなる。
また、 グロ一プラグ使用時における急激な温度変化によって、 イオン 電流検出用電極が熱衝撃により破損するおそれがあった。 また、 イオン 電流検出用電極の耐熱性及び耐消耗性を確保するために、 白金など高価 な貴金属を多量に必要とすることから、 グロ一プラグ自体が非常に高価 なものとなる欠点があった。
また、 グロ一ブラグの先端部に支持されるィオン電流検出用電極は高 温度の火炎にさらされるため、 ィオン電流検出用電極の近傍では応力集 中が生じ易く、 セラ ミ ックグロープラグにクラック等の損傷を生ずるお それもある。
したがって本発明の目的は、 簡単な構成でかつ精度良く ィオン電流が 検出できるグローブラグ、 グローブラグを用いたイオン電流検出装置、 及びグロ一ブラグの製造方法を提供することにある。
また本発明は、 グローブラグによるグロ一期間内においてもイオン電 流を精度良く検出し、 ひいては当該イオン電流の検出結果を用いて燃料 の燃焼状態を良好な状態で維持することができるイオン電流検出装置を 提供することを目的とする
本発明のさらなる目的は、 ィオン電流を精度良く検出することにより、 その検出結果を用いて着火時期検出や失火検出等の処理を精度良く行う ことができるィォン電流検出装置を提供することである。
本発明のさらなる目的は、 カーボン付着の問題がなく、 精度良くィォ ン電流を検出することができ、 かつィォン電流検出用電極の損傷がなく、 比較的安価で、 耐久性に優れたグロ一プラグを提供することである。 本発明のさらなる目的は、 クラック等の損傷がなく、 耐久性に優れた、 かつ製造容易なグローブラグ及びその製造方法を提供しょうとするもの である。 なお、 イオン電流とは、 燃焼室内におけるイオン化した燃料ガスを通 して流れる電流であり、 ィオン電流検出用電極はィオン検出電極と呼ば れることもある。 発明の開示
本発明は上記目的を達成するために、 請求項 1に記載のように本発明 のグローブラグは、 耐熱性絶縁体と、 耐熱性絶縁体に埋設され、 一対の リード線によって通電されて発熱する発熱体と、 同じく耐熱性絶縁体に 埋設されるとともに、 一部が燃焼室内で発生する火炎にさらされ、 その 火炎中のィオン化の状態を検出するためのイオン電流検出用電極とを備 えている。
この場合、 グローブラグの発熱体は、 当該発熱体の発熱時において、 その発熱作用により燃焼室での燃料の着火及び燃焼を促進させる役割を なす。 また、 耐熱性絶縁体に埋設されたイオン電流検出用電極は、 燃焼 火炎中のイオン化の状態を検出する。 すなわち、 イオン電流の検出時に おいて、 イオン電流検出用電極とそれに近接する燃焼室の内壁とは、 両 者間に存在する燃料燃焼時のプラス及びマイナスイオンを捕獲するため の 2電極を形成する。 上記構成によれば、 非常に簡単な構成であるにも かかわらず、 精度良くイオン電流を検出することができ、 その情報を燃 焼制御に有効に活用することが可能となる。 また、 グローブラグにィォ ン電流検出機能を付与することによ り、 安価なイオン電流検出用センサ を提供することができる。
また、 本発明グローブラグでは、 イオン電流検出用電極の大部分が耐 熱性絶縁体に埋設され、 その一部のみが外部に露出しているため、 グロ 一プラグ外周に若千量のカーボンが付着したとしても従来技術 (米国特 許第 4, 7 3 9 , 7 3 1号) のように電極とハウジング (燃焼室の内壁 側) との間が導通されてイオン電流が誤検出されるといった不具合が生 じにく くなる。 なおより望ましくは、 ィオン電流検出用電極の露出部を グロ一プラグ先端に設けて、 当該露出部とハウジング (燃焼室の内壁側) とをできるだけ離間させるとよい。
なお、 グローブラグの外周にはその使用に伴って多少のカーボンが付 着すると考えられるが、 その付着カーボンは発熱体の発熱動作 (例えば、 エンジンの低温始動時におけるグロ一動作) によって焼き切られる。 そ の結果、 イオン電流の検出に際しても長期にわたってその検出性能を維 持することができる。
さらに、 発熱体自体は、 耐熱性絶縁体の内部に埋設されているため、 抵抗値の低下等による発熱特性の変化を招く ことはなく、 長期にわたつ て高い発熱性能を維持することができる。 つまり、 発熱体が酸化により 消耗することがないため、 その断面積が一定に保持されるとともに、 そ の抵抗値の変化を生ずることもない。 さらに、 燃焼室内での熱的衝撃等 に起因して発熱体が破損する等の不具合も回避できる。
本発明のグローブラグにおいて、 発熱体とィオン電流検出用電極とは 次のように構成される。 請求項 2に記載の発明では、 発熱体とイオン電 流検出用電極とを電気的に接続させて構成している。 さらにより具体的 には、 請求項 3に記載の発明では、 発熱体とイオン電流検出用電極とを —体成形するのに対し、 請求項 4に記載の発明では、 発熱体とイオン電 流検出用電極との間に、 リード線を介在させている。 請求項 2〜 4のい ずれの場合においても、 既述のとおり り発熱体の発熱性能を長期にわた つて維持するとともに、 ィオン電流検出性能を維持することができる。 なお、 製造工程上の観点から見れば、 請求項 3に記載の構成が最も簡便 にグローブラグを製造することができると言える。
また、 請求項 5に記載のグロ一プラグでは、 発熱体とイオン電流検出 用電極とを絶縁させて構成している。 この場合、 発熱体とイオン電流検 出用電極とは別々の電源経路にて通電されることになるため、 発熱体を 発熱させながらそれと同時にィオン電流検出用電極によりイオン電流を 検出することができる (すなわち、 常に燃焼状態を把握することができ る) 。
請求項 6に記載の発明では、 イオン電流検出用電極の少なく とも火炎 にさらされる簡所を導電性セラ ミ ック材料により構成している。 この場 合、 イオン電流検出用電極が高温な燃焼ガスにさらされても、 当該電極 の酸化消耗が最小限に抑えられる。 そのため、 グローブラグによるィォ ン電流検出性能の耐久性がより一層向上する。
請求項 7に記載の発明では、 発熱体とイオン電流検出用電極とを、 異 なる組成の混合物、 あるいは異なる粒径の粉体からなる混合物を用いて 作り分けている。 かかる場合、 上記のように作り分けを行うことによつ て、 発熱体とィオン電流検出用電極との抵抗値が相違することとなり、 用途に応じたグローブラグ (イオン電流検出用センサ) を提供すること ができる。 つま り、 イオン電流の検出結果を、 例えば失火検出に用いる のであれば、 イオン電流の有無だけを判定すればよいため、 イオン電流 検出用電極の抵抗値は比較的大きくすることができ、 例えば約 5 Μ Ω以 下であればよい (ただし、 発熱体は 1 Ω程度) 。 また、 ィオン電流の検 出結果を、 例えば着火時期検出に用いるのであれば、 イオン電流の立ち 上がりを瞬時に検出する必要があるのでイオン電流検出用電極の抵抗は なるべく小さい方が望ましい ( 5 0 0 k Ω以下が望ましい) 。
他方、 上記のグローブラグはそれ自体、 若干量のカーボンが付着して もイオン電流検出用電極とハウジング (燃焼室の内壁側) とが導通しに くい構成である旨を記載したが、 長期の使用に際してはカーボンの付着 及び堆積が生じ、 それが問題となり うる。 そこで、 請求項 8のイオン電 流検出装置では、 発熱体による発熱動作とィオン電流検出用電極による ィオン電流検出動作とが同時に実現できる請求項 5のグロ一プラグを用 い、 イオン電流検出状態を継続したまま、 付着カーボンを除去する構成 を提案している。 詳細には、 発熱体への通電状態をオン · オフするスィ ツチング手段と、 燃料燃焼前の所定時期にイオン電流検出用電極よ り流 れる漏洩電流を検出する漏洩電流検出手段と、 検出された漏洩電流が所 定のしきい値よりも大きければ、 一時的に発熱体を通電させるようスィ ツチング手段を操作する操作手段とを備える。
燃焼室内においてグローブラグ外周部にカーボンが付着すると、 ィォ ン電流検出用鼋極の露出部とハウジング側との導通によ り絶縁抵抗が低 下して漏洩電流が流れ、 所望のイオン電流波形が得られない。 すなわち、 図 2 4 Bに示すように、 本来のイオン電流波形に先立って漏洩電流が流 れる (図 2 4 A、 図 2 4 Bの A点以前) 。 これに対し、 本発明では、 所 定時期において (図 2 4 A、 図 2 4 Bでは、 燃料噴射のタイ ミングで) 漏洩電流を検出し、 この漏洩電流に基づいてグロ一プラグ外周のカーボ ン付着状態を推定する。 そして、 こう した力一ボン付着状態であれば、 発熱体を発熱させて付着カーボンを焼き切るようにしている。 以上の構 成によ り、 常に所望のイオン亀流波形 (例えば、 図 2 4 Aに示す波形) が検出できることとなり、 その検出結果を用いた着火時期検出や失火検 出等の処理を精度良く実施することができる。
因みに、 グロ一プラグ外周にカーボンが付着した場合、 イオン電流検 出用電極とハウジング側との間の絶縁抵抗は燃焼室内での圧力に依存し、 圧力上昇時に絶縁抵抗が低下して漏洩電流が流れ易くなる。 そこで、 請 求項 9に記載した発明では、 燃焼室内の圧力上昇時に漏洩電流を検出す るようにしている。 この場合、 漏洩電流の有無を確実に検出することが できる。 この圧力上昇時とは、 例えばディーゼルエンジンにおける圧縮 行程時に相当する。 なお、 かかるタイ ミ ングとして、 燃焼室内への燃料 噴射のタイ ミ ングに対応して漏洩電流を検出するようにしてもよい。 つ ま り、 燃料噴射のタイ ミ ングとは、 例えばディーゼルエンジンにおいて は燃焼室圧力が上昇し、 かつ燃料の燃焼直前の時期に相当する。 したが つて、 上記のように力一ボンが付着した状況下では、 より一層確実に漏 洩電流を検出することができる。
請求項 1 0に記載の発明はグローブラグの製造方法に関するものであ つて、 その製造時には、 先ず発熱体及びイオン電流検出用電極を生成し、 次に、 発熱体及びィオン電流検出用電極を耐熱性絶縁体にて包囲すると ともに、 それを所定温度にてホッ トブレスする。 さらに、 耐熱性絶縁体 の一部を切削加工し、 イオン電流検出用電極を外部に露出させる。 上記 製造方法によれば、 特に煩雑な製造工程を要することもなく、 上記特有 な構成を有するグローブラグが作成でき、 既述の優れたイオン電流検出 機能を備えたグロ一プラグが簡便な製造方法にて提供できるようになる。
また、 グロ一プラグの製造方法にかかる発明は、 請求項 1 1及び請求 項 1 2に記載されるようにしてもよい。 これら請求項の製造方法によつ ても、 既述した特有な構成を有しかつ優れたイオン電流検出機能を備え たグローブラグを製造することができ、 その製造過程において煩雑なェ 程が強いられることもない。
つま り、 請求項 1 1 に記載の発明では、 発熱体及びイオン電流検出用 電極を薄板状の耐熱性絶縁シ一 ト材に設け、 そのシ一 ト材を棒状の耐熱 性絶縁中軸部に巻き付ける。 そして、 耐熱性絶縁シート材及び耐熱性中 軸部を加熱処理した後、 耐熱性絶縁シー ト材及び耐熱性中軸部の一部を 切削加工してイオン電流検出用電極を外部に露出させるようにしている c 一方、 請求項 1 2に記載の発明では、 耐熱性絶縁材料からなる複数の 積層材を用意し、 そのうち特定の積層体に発熱体及びィオン電流検出用 電極を設ける。 そして、 発熱体及びイオン電流検出用電極を設けた積層 材がほぼ中央になるように、 複数の積層材を重ね合わせ、 その重ね合わ せた複数の積層材を加熱処理する。 さらに、 重ね合わせた複数の積層材 の一部を切削加工し、 ィオン電流検出用電極を外部に露出させるように している。
上記課題を解決するために、 本発明では、 一対の導電線により通電さ れて発熱する発熱体を有するグローブラグを用い、 当該グローブラグの ィオン電流検出機能を利用しつつィオン電流検出装置を次のように構成 している。 なお、 かかるグロ一プラグでは、 一対の導電線 (リード線) 及び発熱体が例えばシリンダへッ ド等のアース側に対して絶縁されてい る
すなわち、 請求項 1 3に記載のイオン電流検出装置では、 一対の導電 線に電源からの供給電圧を印加する第 1の状態と、 一対の導電線と電源 との間の経路を遮断し、 かつ発熱体と燃焼室の壁部との間に電源からの 供給電圧を印加する第 2の状態とを切り換えるためのスィ ツチング手段 を備える。 さらに、 第 2の状態において電源からの供給電圧により燃料 燃焼に伴うィオン電流を検出するィオン電流検出手段を備える。
第 1の状態では、 一対の導電線に電源からの供給電圧が印加され、 発 熱体が発熱する。 この状態は、 例えばエンジンの低温始動時に燃料の着 火及び燃焼を促進させる時の状態に相当する。 また、 第 2の状態では、 —対の導電線と電源との間の経路が遮断され、 かつ発熱体と燃焼室の壁 部との間に電源からの供給電圧が印加される。 この状態は、 イオン電流 を検出する時の状態に相当し、 その時のィォン電流はィオン電流検出手 段によ り検出される。
かかる場合において、 上記 2つの状態における発熱体への電圧印加は 共通の導電線を用いて行われ、 両状態の切換え動作はスィ ツチング手段 により選択的に実施される。 したがって、 イオン電流検出機能を有する グローブラグを用いたイオン電流検出装置において、 その発熱体に接続 される導電線の構成や、 ィオン電流の検出に関する構成が簡素化でき、 安価なイオン電流検出装置を提供することができる。 この場合、 上記の ように簡単な構成にもかかわらず、 イオン電流の検出精度を低下させる こともない。
イオン電流の検出装置に関わる、 より具体的な構成として、 請求項 1 4に記載の発明では、 発熱体と燃焼室の壁部とを結ぶ電気経路にスィ ッ チング手段を介して電源を接続し、 請求項 1 5に記載の発明では、 発熱 体と燃焼室の壁部とを結ぶ電気経路に直接、 電源を接続している。 これ ら両発明は共に、 構成の簡素化を実現するための条件を十分に満たすも のであるが、 特に請求項 1 5に記載の発明では、 スイ ッチング手段を介 さずに電源が発熱体と燃焼室の壁部との間に電圧を印加するものである ため、 以下に記す特有の効果を奏する。
すなわち、 燃料燃焼に伴うイオン電流は元々微弱な電流であるが、 抵 抗体となるスィ ツチング手段を介すことなく電源回路を構成することで、 イオン電流をよ り一層精度良く検出することができる。 なお、 複数の切 換え接点を有するスイ ッチ回路や、 半導体スイ ッチング素子 ( 卜ランジ ス夕ゃサイ リス夕等) がスィ ツチング手段として具体化でき、 それ自体 が幾分かの抵抗値を有する。
また、 第 1の状態において一対の導電線に電圧を印加するための電源 と、 第 2の状態において発熱体と燃焼室の壁部との間に電圧を印加する 電源とは、 請求項 1 6に記載したように、 別体の電源にて構成してもよ いし、 請求項 1 7に記載したように、 共通の電源にて構成してもよい。 かかる場合、 いずれの構成においても精度良く イオン電流を検出するこ とが可能となる。 特に請求項 1 7に記載の発明では、 イオン電流検出専 用の電源として、 例えば車載バッテリ以外の電源が不要となり、 構成の 簡素化を図ることができる。
さらに、 請求項 1 8に記載の発明では、 電源の一端に、 発熱体に接続 された片方の導電線を接続し、 他端にグローブラグを保持するためのデ ィ一ゼルェンジンのシリ ンダへッ ドを接続している。 この場合、 ディ一 ゼルエンジンに適用される場合において、 発熱体と燃焼室の壁部との間 に電圧を印加するための構成が簡素化できる。
請求項 1 9に記載の発明では、 電源と一対の導電線の一方との間に、 当該電源による供給電圧を一定にする定鼋圧回路を設けている。 イオン 電流は元々微弱な電流であるため、 印加電圧の変動が大きいと、 検出さ れるイオン電流値が影響を受け検出誤差を生じる。 そして、 この検出誤 差に起因して、 例えばイオン電流の出力の大きさ (波高値、 面積等) を 用いる失火検出時においては、 当該失火の検出精度が低下するという事 態を生ずる。 これに対し、 上記構成によれば、 イオン電流の検出精度を 向上させることができるため、 ひいてはそのイオン電流の検出結果を用 いた失火検出等の精度をも向上させることができる。
請求項 2 0に記載の発明では、 複数のグローブラグを並列に接続し、 スィ ッチング手段は各グローブラグについて同時に電源経路の切換え動 作を行うようにしている。 かかる構成では、 スイ ッチング手段としての スィ ッチ回路や、 イオン電流検出手段としての検出抵抗が共通化でき、 よ り一層構成の簡素化を図ることができる。 この場合、 例えば多気筒ェ ンジンの燃焼室に設けられるグローブラグにおいては、 時系列的に各気 筒のィオン電流が検出できる。
またさらに、 上記以外の構成にてィオン電流検出装置の簡素化を図る には、 請求項 2 1〜請求項 2 3に記載するように具体化するのが望まし い。 つま り、 請求項 2 1に記載の発明では、 グロ一プラグの一方の導電 線とアース接点との間にィオン電流検出用の電圧検出器を配設している。 この場合、 電圧検出器として、 その内部構造が比較的複雑な差動増幅器 が必要になるようなことはなく、 アースからの電位差をとる比較的簡易 な構造の増幅回路にて電圧検出器が構成できる。
加えて、 上記請求項 2 1 に記載の発明では、 請求項 2 2 に記載したよ うに、 グロ一プラグの一方の導電線と電圧検出器との間にコンデンサを 配設して構成するのが望ま しい。 この場合、 上記コンデンサにより電源 電圧の直流成分がカッ トされる。 したがって、 例えばイオン電流検出の 専用電源と して比較的高電圧 (例えば 5 0 V ) の電源を用いたとしても、 その高電圧が電圧検出器に直接印加されることはなく、 電圧検出器 (増 幅器) には常にその耐電圧未満の電圧が印加されることになる。 その結 果、 電圧検出器が損傷を受ける等の不具合が未然に防止できる。 因みに、 この構成は、 イオン電流検出用の電源電圧が 3 0ボルト以上である場合 において特に有効である。
請求項 2 3に記載の発明では、 電源のアース側にイオン電流検出抵抗 を設けるとともに、 その両端子にかかる電位差からイオン電流を検出す るようにしている。 この場合、 イオン電流波形に対応する電圧波形は、 0ボル トを基準にしたものとなる。 したがって、 電圧検出器の耐電圧を 超える電源電圧を用いる場合であっても、 高価でかつ複雑な構成の電圧 検出器を必要とすることはない。 なお、 こう した構成の具体化に際して は、 請求項 1 6に記載したように、 発熱体用の電源とイオン電流検出用 の電源とを別体として、 後者の電源のアース側にイオン電流検出抵抗を 設けることが望ましい。 これは、 発熱体とイオン電流検出抵抗とを直列 に接続すると、 発熱時に、 その発熱性能が低下するおそれがあるためで ある。
一方、 上記イオン電流検出装置に用いられるグロ一プラグとして、 請 求項 2 4に記載のグロ一プラグは、 発熱体を有する発熱素子部を備え、 発熱素子部は燃料を燃焼させるための燃焼室内に突設されるようになつ ている。 また、 発熱体には燃焼室の内壁に対するイオン電流検出用電極 が形成されている。 この場合、 グロ一プラグの発熱体は、 当該発熱体の 発熱時において、 その発熱作用により燃焼室での着火及び燃焼を促進さ せる。 併せて、 発熱体の発熱時と異なるイオン電流の検出時には、 発熱 体が燃料燃焼に伴うイオン電流を検出するためのイオン電流検出用電極 としての役割を果たす。 すなわち、 イオン電流の検出時において、 発熱 体とそれに近接する燃焼室の内壁とは、 両者間に存在する燃料燃焼時の プラス及びマイナスイオンを捕獲するための 2電極を形成する。 上記構 成によれば、 非常に簡単な構成であるにもかかわらず、 精度良くイ オン 電流を検出することができ、 その情報を燃焼制御に有効に活用すること が可能となる。 また、 グロ一プラグにイオン電流検出機能を付与するこ とによ り、 安価なイオン電流検出用センサを提供することができる。 請求項 2 5に記載のグローブラグは、 耐熱性絶縁体と当該耐熱性絶縁 体に埋設された発熱体とを有する発熱素子部を備え、 発熱体の一部を耐 熱性絶縁体より露出させるとともに、 露出部分を燃焼室の内壁に対する イオン電流検出用電極としている。 かかる場合、 発熱体の露出部分がィ オン電流検出用電極として有効に働き、 上記請求項 2 5 と同様の作用及 び効果が得られることとなる。 また、 本請求項の構成では、 次の作用及 び効果が新たに得られる。 つま り、 発熱体の露出部にはグローブラグの 使用に伴ってカーボンが付着すると考えられるが、 その付着カーボンは 発熱体の発熱動作 (例えば、 エンジンの低温始動時におけるグロ一動作) によって焼き切られる。 その結果、 発熱体の一部に露出部を設けその露 出部をイオン電流検出用電極と して用いる本構成においても、 グローブ ラグの使用寿命が短くなることはなく、 長期間の使用に耐えうる優れた 耐久性をグローブラグに付与することができる。
また、 上記発熱体は、 請求項 2 6 に記載したように、 セラ ミ ック材料 によ り成形されることが望ま しい。 この場合、 セラミ ック材料からなる 発熱体の一部を燃焼室に露出させる構造とすれば、 高温な燃焼ガスにさ らされても発熱体の酸化消耗が最小限に抑えられる。 そのため、 グロ一 プラグの耐久性をよ り一層向上させることができる。
請求項 2 7に記載の発明では、 グロ一プラグによる発熱体の発熱状態 と、 同グローブラグによるイオン電流検出状態とが切り換えられる (ス イ ッチング手段) 。 このとき、 グローブラグによるイオン電流検出状態 では、 グローブラグの電極部と燃焼室内壁との間で燃焼イオンが捕獲さ れ、 イオン電流検出用抵抗等の電流検出手段によりィオン電流が検出さ れる。
また、 本発明ではその特徴として、 グロ一プラグによる発熱体発熱状 態下において、 少なく とも燃料の着火時期直後に一時的にイオン電流検 出状態になるようスイ ッチング手段が操作される (操作手段) 。 つまり、 例えばエンジンの低温始動時におけるアフターグロ一期間では、 燃料の 着火 · 燃焼を促進させる役割がグローブラグの機能として最優先される ため、 従来装置では、 かかるアフターグロ一期間においてイオン電流検 出処理が行われていなかった。 これに対し、 本発明では、 アフターグロ —期間のような発熱体発熱状態下においても、 グローブラグの発熱機能 を損なわない範囲内で一時的にイオン電流検出期間を設けるようにした。 したがって、 グロ一プラグによるグロ一期間内においてもイオン電流を 精度良く検出し、 ひいては当該イオン電流の検出結果を用いて燃料の燃 焼状態を良好な状態で維持することができる。
請求項 2 8に記載の発明では、 操作手段は、 燃焼室内への燃料噴射時 期から所定期間だけイオン電流検出状態になるようスィ ツチング手段を 操作するようにしている。 この場合、 燃料噴射時期を基準にイオン電流 検出期間を設定することにより、 ィオン電流検出期間をできるだけ短い 期間に設定して当該イオン電流を確実に検出するとともに、 グロ一ブラ グによるグロ一機能の低下を最小限に抑えることができる。
請求項 2 9に記載の発明では、 操作手段は、 所定周波数で発熱体発熱 状態とィオン電流検出状態とを切換え動作させるようにしている。 かか る場合にも、 アフターグロ一期間においてィオン電流検出機能と発熱体 発熱機能とを両立させることができる。
請求項 3 0に記載の発明では、 グロ一プラグは、 一対のリード線によ つて通電されて発熱する発熱体と、 発熱体を埋設する耐熱性絶縁体と、 発熱体と一体に形成されたイオン電流検出用電極とを有し、 当該グロ一 プラグを用いて燃料燃焼時に発生するィオン電流を検出する。 この場合、 非常に簡単な構成であるにもかかわらず、 精度良くイオン電流を検出す ることができ、 その情報を燃焼制御に有効に活用することが可能となる。 請求項 3 1に記載の発明では、 グロ一プラグによる発熱体の発熱状態 と、 同グロ一プラグによるイオン電流検出状態とが切り換えられる (ス イ ッチング手段) 。 この切換えの通常動作について略述すれば、 例えば エンジンの低温始動時においてグローブラグが発熱体発熱状態に保持さ れ、 その後発熱体の発熱作用によりエンジン暖機が完了すると、 同グロ —ブラグが発熱体発熱状態からィオン電流検出状態へと切り換えられる。 つま り、 グローブラグの露出電極部と燃焼室内壁との間で燃焼イオンが 捕獲され、 イオン電流検出用抵抗等の電流検出手段によりイオン電流が 検出される。
また、 本発明ではその特徴として、 グローブラグによるイオン電流検 出状態下において、 燃料着火前の所定時期に露出電極部よ り流れる漏洩 電流が検出される (漏洩電流検出手段) 。 そして、 漏洩電流検出手段に より検出された漏洩電流が所定のしきい値よ りも大きければ一時的にィ オン電流検出状態から発熱体発熱状態へ移行するようスィ ツチング手段 が操作される (操作手段) 。
燃焼室内においてグローブラグ外周部にカーボンが付着すると、 露出 電極とアース部との絶縁抵抗が低下し、 漏洩電流が流れる。 この場合、 所望のイオン電流波形が得られないという問題を生ずる。 すなわち、 図 6の ( b ) に示すように、 本来のイオン電流波形に先立って漏洩電流が 流れる (図 6の A点以前) 。 これに対し、 本発明では、 所定時期におい て漏洩電流を検出し (図 6では、 燃料噴射のタイ ミ ング) 、 この漏洩電 流に基づいてグロ一ブラグ外周のカーボン付着状態を推定可能とする。 そして、 こう したカーボン付着状態であれば、 グローブラグを発熱体発 熱状態として付着力一ボンを焼き切るようにしている。 以上の構成によ り、 常に所望のイオン電流波形 (例えば、 図 2 4 Aに示す波形) が検出 できることとなり、 その検出結果を用いた着火時期検出や失火検出等の 処理を精度良く実施することができる。
また、 グロ一プラグ外周にカーボンが付着した場合、 露出電極とァ一 ス側との絶縁抵抗は燃焼室内での圧力に依存し、 圧力上昇時に絶縁抵抗 が低下して漏洩電流が流れ易くなる。 そこで、 請求項 3 2に記載した発 明では、 燃焼室内の圧力上昇時に漏洩電流を検出するようにしている。 この場合、 漏洩電流の有無が確実に検出できる。 この圧力上昇時とは、 例えばディ一ゼルエンジンにおける圧縮行程時に相当する。
また、 請求項 3 3に記載した発明では、 燃焼室内への燃料噴射のタイ ミ ングに対応して漏洩電流を検出するようにしている。 つま り、 燃料噴 射のタイ ミ ングとは、 例えばディ一ゼルエンジンにおいては燃焼室圧力 が上昇し、 かつ燃料の燃焼直前の時期に相当する。 したがって、 上記の ようにカーボンが付着した状況下では、 より一層確実に漏洩電流を検出 することができる。
一方、 請求項 3 4に記載した発明では、 操作手段は、 漏洩電流検出手 段により検出された漏洩電流値に応じた時間だけスイ ッチング手段を発 熱体発熱状態に保持する。 つま り、 グロ一プラグ外周に付着したカーボ ン量が多いほど、 漏洩電流の値は大きくなる。 そこで、 漏洩電流値に応 じて発熱体発熱状態の保持時間を决定するようにすれば、 確実に付着力 —ボンを焼き切ることができる。
またさらに上記請求項 3 1〜請求項 3 4にかかる発明として、 請求項 3 5に記載の発明では、 イオン電流を検出するためのィオン電流検出器 の信号出力部にハイパスフ ィ ル夕を設け、 その検出信号を信号処理装置 に入力するようにしている。 本請求項によれば、 ハイパスフィ ル夕を構 成要素とすることで、 グロ一プラグのィオン電流検出用電極にカーボン が付着しても燃焼時に発生するイオン電流と絶縁不良による漏洩電流と を分離することができ、 イオン電流が確実に検出できるようになる。 ま た、 ハイパスフ ィル夕の出力波形により着火時期などの燃焼状態情報を 判定するようにすれば、 その判定処理が容易となる。 なお、 上記ハイパ スフ ィル夕のカツ トオフ周波数は 5 0 H z〜 5 k H z程度に設定すれば よく、 より望ましくは 1 0 0〜 5 0 0 H zの範囲内で設定するとよいこ とが本発明者により確認されている。
上記請求項 3 5に記載の発明は、 請求項 6及び請求項 7のようにも具 体化できる。 つま り、 請求項 3 6に記載の発明では、 操作手段による漏 洩電流判定用のしきい値を許容最大値付近に設定している。 付着カーボ ンの除去を主たる目的としてスィ ッチング手段の切り換えを行う場合に は、 漏洩電流を判定するためのしきい値を低めに設定するとよいが、 既 述した請求項 3 5の構成を用いれば多少の漏洩電流が流れたとしても、 その漏洩電流とイオン電流とが分離できる。 したがって、 請求項 3 6に 記載したように、 漏洩電流判定用のしきい値を許容範囲内で大きくすれ ば、 付着力一ボンの焼き切り処理頻度が低く なる代りに、 イオン電流が 頻繁に検出できるようになり、 それにつれて燃焼状態も頻繁に検出でき るという効果が得られる。
請求項 3 7 に記載の発明では、 ハイパスフィル夕の出力信号を入力し、 入力した信号と燃焼状態検出用しきい値とを比較する比較手段を備えて いる。 この場合、 ハイパスフィル夕の出力と燃焼状態検出用しきい値と を比較することで、 燃焼状態の検出処理が簡易に実現できるようになる。 請求項 3 8に記載の発明では、 絶縁体の内部に通電発熱体とイオン電 流検出用電極とが配設されており、 また、 上記イオン電流検出用電極は、 少なく とも上記火炎と接触する露出部分が、 上記の導電性の混合焼結体 よりなるとともに、 その焼結助剤として希土類元素の酸化物を 1種以上 含有しており、 上記混合焼結体の組織は第 1結晶相とその間の粒界相と よりなり、 粒界相の一部又は全部は結晶化して上記焼結助剤を含む第 2 結晶相となっている。
すなわち、 本発明におけるイオン電流検出用電極は、 導電性セラミ ツ ク又は絶縁性セラミ ックあるいは両者の結晶相である第 1結晶相と、 そ の間に存する粒界相とよりなる (図 5 6〜図 5 9 ) 。 この粒界相は、 混 合焼結体においては全体的に非晶質のガラス状であることが一般的であ る。 これに対し、 本発明における粒界相は、 その一部又は全部が結晶化 して第 2結晶相となっていることに最大の特徴がある (図 6 0 ) 。
上記通電発熱体及びィオン電流検出用電極を絶縁体中に配設するに当 たっては、 例えば図 6 2、 図 6 3に示すように、 あらかじめ両者の成形 品を作製しておき、 これを絶縁体粉末の中に埋め込んで一体成形する。 あるいは、 あらかじめ別途作製しておいた 2つ割の絶縁体成形体の間に 上記通電発熱体の成形品とイオン電流検出用電極の成形品を挟持配設す る o
これらの絶縁体、 通電発熱体、 イオン電流検出用電極のそれそれの成 形品は、 例えば、 これらの材料であるセラ ミ ック粉末を主成分とし、 こ れにパラフ ィ ンヮックスとその他の樹脂を混合した混合物を作製し、 こ れを射出成形することによ り作製する。
そして、 上記イオン電流検出用電極の成形品を作製するに当たっては、 上記導電性セラ ミ ック粒子と絶縁性セラ ミ ック粒子の他に上記希土類元 素の酸化物よりなる焼結助剤を添加した原料を用いる。 これにより、 こ の原料の混合焼結体は、 上記のように、 第 1結晶相とその間の粒界相と よりなり、 粒界相の一部又は全部は結晶化して上記焼結助剤を含む第 2 結晶相となる。
なお、 上記通電発熱体、 あるいは絶縁体についても、 上記イオン鼋流 検出用電極と同様に、 導電性セラミ ック粒子と絶縁性セラ ミ ック粒子の 他に上記希土類元素の酸化物よ りなる焼結助剤を添加した原料を用いる ことが好ましい。 これによ り、 上記通電発熱体、 あるいは絶縁体も、 第 1結晶相の間の粒界相の一部又は全部が結晶化して第 2結晶相を有する 優れた組織にすることができる。
上記構成の本発明のグロ一ブラグも前述の発明同様、 通電発熱体に電 流を通すことにより発熱し、 その発熱により燃焼室における着火及び燃 焼を促進させ、 イオン電流検出用電極は、 近接する燃焼室の内壁との間 で 2電極を形成し、 燃焼火炎中のイオン化の状態を検出する。 本発明は 上記構成により、 精度良く イオン電流を検出することができ、 その情報 を燃焼制御に有効に活用することが可能となる。 また、 グローブラグに、 本来の燃焼室の加熱機能 (グロ一機能) とイオン電流検出機能とを付与 しているので、 構造がコンパク トで、 かつ安価に製造できる。
また、 イオン電流検出用電極は、 燃料燃焼に伴ってその表面中にカー ボンが付着する場合があるが、 その付着カーボンは通電発熱体の発熱動 作 (例えば、 エンジンの低温始動時におけるグロ一動作) によって焼き 切ることができる。 そのため、 長期間に渡って正確にイオン電流を検出 することができる。
また、 本発明においては、 上記イオン電流検出用電極は、 少なく とも 上記火炎と接触する露出部分が、 上記組織構成の混合焼結体よ りなる。 すなわち、 混合焼結体の組織は、 第 1結晶相とその間の粒界相とよりな り (図 5 9 ) 、 粒界相の一部又は全部は結晶化して上記焼結助剤を含む 第 2結晶相となっている (図 6 0 ) 。
そのため、 上記粒界相が第 2結晶相を持たずに非晶質のガラス相であ る従来の場合に比べて、 粒界相の融点の向上及び耐食性の向上等を図る ことができる。 それ故、 イオン電流検出用電極の耐熱衝撃性、 耐酸化性、 耐食性が向上してその損傷を防止することができ、 ひいてはイオン電流 検出精度の信頼性 · グロ一ブラグの信頼性の向上を図ることができる。
また、 本発明のグローブラグは、 上記通電発熱体、 リー ド線及びィォ ン電流検出用電極を上記絶縁体の内部に、 一体的に設けているので、 構 造簡単である。 したがって、 本発明によれば、 カーボン付着の問題がな く、 精度良くイオン電流を検出することができ、 かつイオン電流検出用 電極の損傷がなく、 耐久性に優れたグローブラグを提供することができ る。
次に、 請求項 3 9の発明のように、 上記イオン電流検出用電極におけ る上記焼結助剤の含有総量は、 上記導電性セラ ミ ックと上記絶縁性セラ ミ ックの総量に対して 3〜 2 5重量%であることが好ましい。 3重量% 未満の場合には、 上記混合焼結体の緻密化を促進できず、 また上記粒界 相において第 2結晶相を形成することが困難であるという問題がある。 一方、 2 5重量%を超える場合には、 粒界相が結晶化せずにガラス相を 形成し、 粒界相が低融点となり、 熱衝撃、 耐食性が劣化するという問題 がある。
また、 請求項 4 0記載の発明のように、 上記イオン電流検出用電極に おける上記第 2結晶相は、 上記粒界相中に 5 %以上存在することが好ま しい。 5 %未満の場合には、 第 2結晶相の存在による高融点化、 耐酸化 性及び耐食性向上等の上記効果があま り発揮されないという問題がある。
また、 請求項 4 1記載の発明のように、 上記絶縁性セラ ミ ックは窒化 珪素であり、 上記導電性セラミ ックは金属の炭化物、 珪化物、 窒化物、 又はホウ化物の 1種以上であることが好ましい。 この場合には、 容易に 上記第 2結晶相を形成することができる。
請求項 4 2に記載のグローブラグに設けられたイオン電流検出用電極 は、 火炎にさらされるように上記絶縁体から露出した露出部を有してい るが、 この露出部は、 0 . 1〜 3 0 mの表面粗さ R z ( 1 0点平均粗 さ) に研磨された研磨部分を有している。 研磨部分の表面粗さ R zは、 J I S B 0 6 0 1に規定されている 1 0点平均粗さ (R z ) によつ て示しており、 その値は、 0 . l 〜 3 0 / mの範囲内にある。 0 . 1 未満の場合には、 十分にィオン電流を検出することができないという問 題があり、 一方、 3 0 mを超える場合には、 熱衝撃等によってクラッ クが入りやすいという問題がある。 また、 研磨部分は、 砥石等を用い て研磨することにより、 表面粗さ R zを上記特定範囲に制御する。 この 場合、 砥石等における砥粒の粒度、 研磨条件等を調整することにより、 所望の表面粗さ R z を得る。
また、 上記通電発熱体及びィオン電流検出用電極を絶縁体中に配設す るに当たっては、 例えば図 6 2、 図 6 3に示すように、 あらかじめ両者 の成形品を作製しておき、 これを絶縁体の原料であるセラミ ック粉末中 に埋め认んで一体成形する。 あるいは、 あらかじめ別途作製しておいた 2つ割の絶縁体の間に上記通電発熱体とィオン電流検出用電極を挟持配 設する。 これらの絶縁体成形品、 あるいは通電発熱体とイオン電流検出 用電極との一体成形品は、 例えば、 これらの材料を射出成形することに よ り作製する。
また、 上記通電発熱体、 イオン電流検出用電極は、 上記絶縁体の内部 に印刷形成によ り設けることもできる。 かかる印刷形成につき一例を示 せば、 例えば絶縁体を形成するためのセラミ ック材料の生成形体 (グリ —ンシート) を 2個準備し、 その 1つの生成形体の表面に、 スク リーン 印刷、 パッ ド印刷、 ホッ トスタンプ等により、 所望形状に導電性材料よ りなる通電発熱体、 そのリード線、 及びイオン電流検出用電極を印刷す ることによ り行う。
次いで、 印刷部を覆うように他の生成形体を積層し、 その後焼成する。 ここで、 通電発熱体、 リード線、 イオン電流検出用電極は 2個以上の生 成形体に印刷してもよい。 また、 通電発熱体とイオン電流検出用電極を 別々の生成形体に印刷して積層してもよい。 これにより、 印刷形成され た通電発熱体、 リー ド線、 イオン電流検出用電極を内蔵した絶縁体が得 られる。
そして、 このようにして得られた絶縁体を必要に応じて研削した後、 イオン電流検出用電極の露出部分における研磨部分を上記のように研磨 する。 これにより、 イオン電流検出用電極の露出部分に上記特定の表面 粗さ R zの研磨部分を有するグローブラグを得ることができる。
上記構成の本発明のグロ一ブラグも前述の発明同様、 通電発熱体に電 流を通すことにより発熱し、 その発熱により燃焼室における着火及び燃 焼を促進させ、 イオン電流検出用電極は、 近接する燃焼室の内壁との間 で 2電極を形成し、 燃焼火炎中のイオン化の状態を検出する。 本発明は 上記構成により、 精度良く イオン電流を検出することができ、 その情報 を燃焼制御に有効に活用することが可能となる。 また、 グロ一プラグに、 本来の燃焼室の加熱機能 (グロ一機能) とイオン電流検出機能とを付与 しているので、 構造がコンパク トで、 かつ安価に製造できる。
また、 本発明においては、 イオン電流検出用電極の露出部分に、 上記 研磨部分を有する。 そして、 この研磨部分は、 表面粗さ R zが 0 . 1〜 3 0 の範囲内にある。 そのため、 研磨部分は、 ミ クロ的に見ると多 数の凹凸を有している (図 7 5 ) 。 この凹凸のうち凸部には、 イオン電 流検出用電極とこれに近接するシリ ンダへッ ドとの間における電界中の 電束が集中する。 電束が集中した凸部近傍は、 電位勾配が急峻となる。 この電位勾配により、 燃焼ガス中の荷電粒子は上記凸部近傍に引きつけ られる。 それ故、 上記特定の表面粗さ R zの研磨部分を有するイオン電 流検出用電極は、 燃焼室内の荷電粒子を強く引きつけ、 さらにイオン電 流検出精度を向上させることができる。
また、 本発明のグローブラグは、 上記通電発熱体、 リー ド線及びィォ ン電流検出用電極を上記絶縁体の内部に、 一体的に設けているので、 構 造簡単である。 したがって、 本発明によれば、 力一ボン付着の問題がな く、 精度良く イオン電流を検出することができ、 耐久性に優れたグロ一 プラグを提供することができる
次に、 請求項 4 2に記載の発明のように、 上記イオン電流検出用電極 の先端における露出部の面積は、 l x l O—6〜0 . 5 c m 2 であること が好ましい。 イオン電流検出用電極の露出部の面積 ( S ) は、 0 < Sで あればイオン出力の検出は可能である。 しかし、 印刷によ り形成する場 合に露出部の面積が 1 X 1 0— 6 c m 2 未満の場合には、 露出部の寸法が 例えば 1 0 X 1 0 z m以下の非常に小さな大きさとなり、 生産性が 悪くなるという問題がある。 一方、 0 . 5 c m 2 を超える場合にはィォ ン電流検出用電極の占める部分が大きくなりすぎ、 その結果、 通電発熱 体が小さ くなり、 生産性が悪くなるという問題がある。
また、 請求項 4 3に記載の発明のように、 上記イオン電流検出用電極 は、 上記通電発熱体と電気的に接続されている構造をとることができる。 この場合には、 例えば、 イオン電流検出用電極と通電発熱体とを一体成 形することができ、 製造を容易にすることができる。
請求項 4 5記載の発明は、 絶縁体の内部に通電発熱体と リー ド線とィ オン電流検出用電極とが配設されているグロ一ブラグで、 イオン電流検 出用電極の少なく とも先端部は絶縁性多孔質層により被覆されている。 この絶縁性多孔質層は、 ィオン電流検出用電極の表面から火炎中まで 連通する連通孔を有し、 電気絶縁性である。 かかる絶縁性多孔質層は、 例ぇば、 3 1 3 ^^ 4 、 八 1 2 0 3 、 3 1 0 2 などを主成分とした電気絶 縁性のセラミ ック粉末を焼結することにより作製する。
次に、 上記通電発熱体及びィオン電流検出用電極を上記絶縁体中に配 設するに当たっては、 例えば実施形態例に示すように、 あらかじめ通電 発熱体、 イオン電流検出用電極を作製しておき、 一方これらを埋設する 溝を設けた絶縁体を準備し、 上記溝内に上記通電発熱体、 イオン鼋流検 出用電極を埋設して一体的に焼成する。 これら、 通電発熱体、 イオン電 流検出用電極、 絶縁体は、 例えばセラミ ック粉末を用いて作製する。 上記構成の本発明のグローブラグも前述の発明同様、 通電発熱体に電 流を通すことにより発熱し、 その発熱により燃焼室における着火及び燃 焼を促進させ、 イオン電流検出用電極は、 近接する燃焼室の内壁との間 で 2電極を形成し、 燃焼火炎中のイオン化の状態を検出する。
上記イオン電流検出用電極の先端部は上記絶縁性多孔質層により被覆 されているので、 イオン電流検出用電極は直接に火炎にさらされること がない。 そのため、 イオン電流検出用電極は、 高温の火炎による熱的衝 撃に基づく応力集中が生ぜず、 クラック等の損傷を生ずることがない。 また、 絶縁性多孔質層は上記連通孔を有するので、 上記イオン電流はこ の連通孔を通じてィオン電流検出用電極とシリ ンダへッ ドとの間に流れ、 正確に検出される。
本発明は上記構成により、 精度良くイオン電流を検出することができ、 その情報を燃焼制御に有効に活用することが可能となる。 また、 グロ一 プラグに、 本来の発熱機能 (グロ一機能) とイオン電流検出機能とを付 与しているので、 構造がコンパク トで、 かつ安価に製造できる。
また、 通鼋発熱体は、 絶縁体の内部に、 埋設されているため、 燃焼火 炎による腐触がなく、 抵抗値の低下、 発熱特性の変化を招く ことがなく、 長期にわたって高い発熱性能を発揮することができ耐久性に優れている。 すなわち、 通電発熱体が酸化により消耗することがないため、 その断面 積が一定に保持されるとともに、 その抵抗値の変化を生ずることもない。 さらに、 燃焼室内での熱的衝撃等に起因して通鼋発熱体が破損する等の 不具合も回避できる。
また、 上記絶縁体は、 燃料燃焼に伴ってその表面に力一ポンが付着す る場合があるが、 その付着カーボンは通鼋発熱体の発熱動作 (例えば、 エンジンの低温始動時におけるグロ一動作) によって焼き切ることがで きる。 そのため、 長期間に渡って正確にイオン電流を検出することがで さる。
また、 本発明のグロ一プラグは、 上記通電発熱体、 リー ド線及びィォ ン電流検出用電極を上記絶縁体の内部に、 一体的に設けているので、 構 造簡単である。 したがって、 本発明によれば、 カーボン付着の問題がな く、 精度良くイオン電流を検出することができ、 クラ ック等の損傷がな く、 耐久性に優れた、 かつ製造容易な、 グロ一プラグを提供することが できる。 次に、 請求項 4 6記載の発明のように、 上記絶縁性多孔質層の厚みは 0. 2〜 1 . 5 mmであることが好ましい。 0. 2 mm未満では火炎の 熱的衝撃を受けてクラック等の損傷のおそれがある。 一方、 1. 5 mm を越えると厚みが大きくなるため、 火炎熱による応力集中が生じ易く、 クラックを生じるおそれがある。
次に、 請求項 47記載の発明のように、 上記絶縁性多孔質層と上記絶 縁体とは同じ材料により作製されていることが好ましい。 これにより、 両者間の接合性が向上するとともに両者の線膨張係数が同じとなり耐熱 衝擎性が向上する。
次に、 請求項 48記載の発明のように、 上記イオン電流検出用電極は 通電発熱体と兼用することができる (図 88) 。 この場合には、 上記絶 縁性多孔質層はグロ一プラグの本体の先端部において、 通電発熱体 (す なわちイオン電流検出用電極) を被覆する。
なお、 上記イオン電流検出用電極は、 Mo S i 2 、 WC、 T i N等を 含有する導電性セラミ ック材料、 あるいは W、 Mo、 T i等の高融点金 属により作製することができる。
また、 上記絶縁体の先端部は半球面形状を有していることが好ましい。 この場合には、 絶縁体の先端鋭角部を除去することで、 イオン電流検出 部近傍での燃焼火炎流の乱れが抑制され、 検出性能が安定し、 また熱応 力の集中が抑制され耐熱衝撃性が向上するという効果が得られる。
なお、 本発明の絶縁性多孔質層に形成される連通孔は、 多孔質層の表 面から、 電極表面まで連通されたものであれば、 どのような孔径であつ てもよい。 例えば、 本発明のグローブラグの先端を、 水とアルコールが 5 0 : 5 0のアルコール水溶液中に浸して、 先端と上記水溶液との間に、 例えば 1 2ボル トの電圧を印加したとき、 電流が流れる連通孔であれば よい。 請求項 4 9に記載の発明では、 発熱体の途中でイオン電流検出用電極 に電気的に接続されていて、 発熱体に直流電流を通電する際にプラス側 となる発熱体の第 1端からィォン電流検出用電極が最初に接続されてい る最初の接続部分の中心部までの、 発熱体における第 1発熱部の電気抵 抗を R 1 と し、 発熱体とイオン電流検出用電極との最初の接続部分の中 心部から発熱体のマイナス側となる第 2端までの発熱体における第 2発 熱部の電気抵抗を R 2 とし、 最初の接続部分からィオン電流検出用電極 の解放端までの電気抵抗を rとしたとき、 R 2 > rの関係が満足される ようグロ一プラグが構成されている。
また、 上記最初の接続部分とは、 通電発熱体においてプラス端からマ ィナス端までの経路において、 最初にィオン電流検出用電極が接続され ている部分をいう。 このように定義するのは、 イオン電流検出用電極は 通鼋発熱体に対して、 1個 (図 9 0 ) 又は複数個 (図 9 1 ) を設ける場 合があるからである。 それ故、 複数個のイオン電流検出用電極を設けた 場合には、 ブラス端とそれに最も近い位置にある近隣イオン電流検出用 電極との間が第 1発熱部となり、 近瞵イオン電流検出用電極とマイナス 端との間が第 2発熱部となる (図 9 1 ) 。 そのため、 第 2発熱部には 1 又は複数個のィオン電流検出用電極が接続されることがある。
次に、 上記通電発熱体の第 2発熱部の電気抵抗 R 2 とイ オン電流検出 用電極の電気抵抗とを、 上記のように、 R 2 > rに構成するに当たって は、 両者の材料、 あるいは通電経路の太さ、 厚み、 長さ等を変えること により達成する。 例えば、 材料変化による手段としては、 導電性セラ ミ ック粉末と絶縁性セラミ ック材料との混合割合が、 第 2発熱部とイオン 電流検出用電極とで異なるように作製する。
上記通電発熱体とイオン電流検出用電極の原料としては、 例えば M o S i 2 、 M o 5 S i 3 、 M o x S i 3 C y ( x = 4 ~ 5、 y = 0〜 1 ) MoB、 WC、 T i Nなどの金属の珪化物、 炭化物、 窒化物、 硼化物な どの導電性セラ ミ ックを少なく とも一種用いる。 また絶縁性セラミ ック としては、 S i 3 N 、 A 12 0 、 BNなどを用いる。 また、 焼結助 材として希土類元素の酸化物を少なく とも一種以上添加する。
以下に、 導電性セラミ ックとして Mo S i 2 を、 絶縁性セラ ミ ックと して S i 3 N4 を、 また焼結助材として、 Y 2 0 と A l 2 0 を用い た場合について例示説明する。
すなわち、 ここで、 S i 3 N の粒径を Mo S i 2 の粒径よりも大き くすることによ り、 絶縁性の S i N4 粒子が、 互いに連続する導電性 の M 0 S i 2 粒子で包まれた組織となり、 導電性を発現する。
具体的には、 平均粒径 1 mの M 0 S i 2 と平均粒径 1 5 mの S i N4 を用いた。 焼結助材も同様に平均粒径 l mとした。 Mo S i 2 と S i 3 N の配合割合は 10〜60 : 90〜40 (重量%) の範囲で 適宜選択される。 通電発熱体の第 2発熱部は、 M o S i 2 、 S i N 4 = 20 : 80とし、 イオン電流検出用電極は、 Mo S i 2 : S i 3 N4 =40 : 6 0とすれば、 R 2 > rとなる。 また、 焼結助材は、 Y2 03 と A 12 0 の合計 1 0 w t %を外部添加した。 焼結助材としては、 Y 0 以外の希土類元素の酸化物、 Yb 2 0 、 L a 0 、 N d 2 0 などでも良く、 これらから選ばれる 1種以上を使用する。
なお、 ここでは、 導電体としては、 導電性セラミ ックと絶縁性セラミ ックとの混合体としたが、 導電性セラミ ックのみでもよい。 また、 混合 体中の導電性セラミ ックの変わりに金属の粉末を用いて金属粉末と絶縁 性セラ ミ ックの混合体でもよい。 あるいは、 金属の粉末のみ、 又は、 金 属線でもよい。
次に、 絶縁体は、 例えば導電性セラミ ックである Mo S i と、 絶縁 性セラ ミ ックである S i 3 N4 を基本成分とし、 焼結助材として Y2 0 、 A 1 0 を添加したセラ ミ ツク焼結体よ りなる。 そして、 S i 3 N4 の粒径を、 Mo S i 2 と同じかやや小さ くすることにより、 導電性 の M 0 S i 2 粒子が絶縁性の S i 3 N , 粒子で囲まれて分断された組織 となり、 絶縁性を発現する。 具体的には、 例えば、 平均粒径 0.
の Mo S i 2 と、 平均粒径 0. 6 mの S i 3 N 4 を用いることができ る
通電発熱体、 イオン電流検出用電極及び絶縁体は、 同一又はそれに近 い配合割合とすれば熱膨張係数等の差が小さ くなるのでより好ましい。 焼結助材と しては、 Y 2 0 以外の希土類元素の酸化物、 例えばイ ツテ ルビゥム、 ランタン、 ネオジム等の酸化物を用いてもよく、 これから選 ばれる 1種以上を使用する。
なお、 上記第 2発熱部の電気抵抗 R 2は 0. 1〜5 Ω、 イオン電流検 出用電極の電気抵抗 rは 0. 0 5〜2. 5 Ωとすることが、 グローブラ グのヒー夕特性の点より好ましい。
また、 上記通電発熱体及びイオン電流検出用電極を絶縁体中に配設す るに当たっては、 例えば図 1 00に示すように、 あらかじめ両者の一体 成形品を作製しておき、 これを絶縁体の中に埋め込んで一体成形する。 なお、 成形と同時にリード線を接続する。 リード線は、 タ ングステン、 モリブデン等の高融点金属又はその合金などを用いる。
あるいは、 あらかじめ別途作製しておいた 2つ割の絶縁体成形体の間 に上記通電発熱体とィオン電流検出用電極からなる一体成形品を挟持配 設する。 これらの絶縁体成形品、 あるいは通電発熱体とイオン電流検出 用電極との一体成形品は、 例えば、 これらの材料であるセラミ ック粉末 とバイ ンダーとしての樹脂材料を予混合し、 その混合材料を射出成形す ることによ り作製する。 また、 その後焼成する。
また、 上記通鼋発熱体、 イ オン電流検出用電極は、 上記絶縁体の内部 に印刷形成によ り設けることもできる。 かかる印刷形成につき一例を示 せば、 例えば絶縁体を形成するためのセラ ミ ック材料の生成形体 (グリ ーンシート) の表面に、 スク リーン印刷、 パッ ド印刷、 ホッ トスタンプ 等によ り、 導電性材料よりなる通電発熱体、 そのリ -- ド線、 及びイオン 電流検出用電極を印刷する。 次いで、 生成形体を巻回し、 その後焼成す る。 これによ り、 印刷形成された通電発熱体、 リード線、 イオン電流検 出用電極を内蔵した絶縁体が得られる。
射出成形品又は印刷品の焼成は、 ホッ トブレス法により焼結する。 そ の条件は、 例えば、 アルゴンガス雰囲気下 1気圧、 加圧 4 0 0 k g / c m 2 、 焼成温度 1 8 0 0 °C、 保持時間 6 0分で行う。
次に、 請求項 4 9の発明の作用効果につき説明する。 まず、 本発明の グローブラグは、 上記通電発熱体に電流を通すことにより発熱し、 その 発熱により燃焼室における着火及び燃焼を促進させる。 また、 イオン電 流検出用電極は、 近接する燃焼室の内壁との間で 2電極を形成し、 燃焼 火炎中のイオン化の状態を検出する。
これにより、 精度良くイオン電流を検出することができ、 その情報を 燃焼制御に有効に活用することが可能となる。 また、 グローブラグに、 本来の燃焼室の加熱機能 (グロ一機能) とイオン電流検出機能とを付与 しているので、 構造がコンパク トで、 かつ安価に製造できる。
また、 本発明においては、 上記第 2発熱部の電気抵抗 R 2がイオン電 流検出用電極の電気抵抗の rよりも大き く形成してある。 そのため、 グ ロープラグにおける上記絶縁体の表面にカーボンが付着し、 上記のよう にカーボンがィオン電流検出用電極とシリ ンダへッ ドとの間を電気的に 短絡した際 (図 9 0参照) に、 上記通電発熱体に直流電流を、 印加する ことにより、 上記ィオン電流検出用電極とシリ ンダへッ ドとの間の力一 ボンを確実に焼き切ることができる。 すなわち、 本発明においては、 上記カーボンの焼き切り時に、 上記直 流電流を印加すると、 通電発熱体の上記第 2発熱部の電気抵抗 R 2 とィ オン電流検出用電極の電気抵抗 rとは R 2 > rの関係があるため、 直流 電流はプラス端から第 1発熱部、 イ オン電流検出用電極、 上記付着力一 ボンを経てシリ ンダヘッ ドへ流れる。 そのため、 絶縁体表面のカーボン が発熱し、 その熱と燃焼室内の空気とによって、 カーボンが燃焼し、 焼 き切られる。 そのため、 カーボンの付着による短絡を容易に解消するこ とができる。 したがって、 長時間にわたって正確にイオン電流を検出す ることができる。
また、 通電発熱体は、 絶縁体の内部に埋設されているため、 燃焼火炎 による腐触がなく、 抵抗値の低下、 発熱特性の変化を招く ことがなく、 長期にわたって高い発熱性能を発揮することができる。 すなわち、 通電 発熱体が酸化により消耗することがないため、 その断面積が一定に保持 されるとともに、 その抵抗値の変化を生ずることもない。 さらに、 燃焼 室内での熱的衝撃等に起因して通電発熱体が破損する等の不具合も回避 できる。
また、 本発明のグローブラグは、 上記通電発熱体、 リー ド線及びィォ ン電流検出用電極を上記絶縁体の内部に設けているので、 構造簡単であ る。 したがって、 本発明によれば、 カーボン付着の問題を解消でき、 精 度良く イオン電流を検出することができ、 耐久性に優れたグローブラグ を提供することができる。
次に、 請求項 5 0に記載の発明のように、 第 2発熱部の電気抵抗 R 2 は、 ィオン電流検出用電極の電気抵抗 rの 2倍以上の大きさを有するこ とが好ましい。 この場合には、 より確実に、 上記カーボンを焼き切るこ とができる。
次に、 請求項 5 1 に記載の発明のように、 上記イオン電流検出用電極 は、 主成分が金属の珪化物、 炭化物、 窒化物、 硼化物の 1種以上の導電 性セラ ミ ツク材料、 又は導電性セラ ミ ック材料と絶縁性セラ ミ ック材料 との混合材料により作製することができる。 この場合には、 耐熱性が向 上し、 かつ絶縁体との膨張係数を容易に調整、 合わせ込みができるため 耐熱衝擎性向上の効果が得られる。
次に、 請求項 5 2 に記載の発明のように、 上記イオン電流検出用電極 は、 主成分が融点 1 2 0 0 °C以上の金属の 1種以上の高融点金属材料、 又は高融点金属材料と絶緣性セラミ ック材料との混合材料によ り作製す ることができる。 上記前者の金属の場合には、 素材が線状で使用できる ため、 材料、 加工、 組付に関するコス トの低減の効果が得られる。
また、 後者の場合には、 高温強度、 耐酸化性が向上し、 しかも発熱体 と絶縁体との線膨張係数を容易に調整、 合わせ込みができるため、 耐久 性に優れた効果が得られる。 また、 上記融点を 1 2 0 0 °Cとした理由は、 グローブラグの通電発熱体を 1 0 0 0〜 1 1 0 o。cに発熱させるため、 イオン電流検出用電極の耐熱性を考慮したためである。
次に、 請求項 5 3に記載の発明のように、 上記絶縁体よ り露出してい るイオン電流検出用電極の露出部には、 P t 、 I r、 R h、 R u、 P d の 1種以上の貴金属が設けてあることが好ましい。 この場合には、 検出 用電極の耐消耗性、 耐酸化性向上の効果が得られる。
請求項 5 4に記載の発明では、 グローブラグのイオン電流検出用電極 が通電発熱体の途中に電気的に接続されているとともに、 その先端は上 記火炎にさらされるように上記絶縁体から露出しており、 かつ上記ィォ ン電流検出用電極の先端は、 絶縁体とイオン電流検出用電極を含む本体 を支持しているハウジングの先端部から 2 m m以上離れた位置に配置さ れている。
また、 上記通電発熱体及びィオン電流検出用電極を絶縁体中に配設す るに当たっては、 例えば図 9 4に示すように、 あらかじめ両者の一体成 形品を作製しておき、 これを絶縁体の原料であるセラ ミ ック粉末中に埋 め込んで一体成形する。 あるいは、 あらかじめ別途作製しておいた 2つ 割の絶縁体の間に上記通電発熱体とィオン電流検出用電極を挟持配設す る。 これらの絶縁体成形品、 あるいは通電発熱体とイオン電流検出用電 極との一体成形品は、 例えば、 これらの材料を射出成形することにより 作製する。
また、 上記通電発熱体、 イオン電流検出用電極は、 上記絶縁体の内部 に印刷形成により設けることもできる。 かかる印刷形成につき一例を示 せば、 例えば絶縁体を形成するためのセラ ミ ック材料の生成形体 (グリ ーンシート) を 2個準備し、 その 1つの生成形体の表面に、 スクリーン 印刷、 パッ ド印刷、 ホッ トスタンプ等により、 所望形状に導電性材料よ りなる通電発熱体、 そのリード線、 及びイオン電流検出用電極を印刷す ることによ り行う。
次いで、 印刷部を覆うように他の生成形体を積層し、 その後焼成する。 ここで、 通電発熱体、 リー ド線及びイオン電流検出用電極は、 2個以上 の生成形体に印刷して積層してもよい。 また、 通電発熱体とイオン電流 検出用電極を別々の生成形体に印刷して、 積層時又は焼成後に導通させ てもよい。 これにより、 印刷形成された通電発熱体、 リード線、 イオン 電流検出用電極を内蔵した絶縁体が得られる。
上記構成の本発明のグローブラグも前述の発明同様、 通電発熱体に電 流を通すことにより発熱し、 その発熱により燃焼室における着火及び燃 焼を促進させ、 イオン電流検出用電極は、 近接する燃焼室の内壁との間 で 2電極を形成し、 燃焼火炎中のイオン化の状態を検出する。 本発明は 上記構成によ り、 精度良くイオン電流を検出することができ、 その情報 を燃焼制御に有効に活用することが可能となる。 また、 グローブラグに、 本来の燃焼室の加熱機能 (グロ一機能) とイオン電流検出機能とを付与 しているので、 構造がコンパク 卜で、 かつ安価に製造できる。
また、 本発明においては、 イオン電流検出用電極の先端位置を、 ハウ ジングの先端部から 2 m m以上離している。 そのため、 グロ一プラグ本 体の表面に力一ボンが堆積しても確実にイオン電流の検出を行うことが できる。 すなわち、 後述する図 9 6に示すように、 ィオン電流検出用電 極の先端位置とハウジングの先端部との距離 ( L、 図 9 3 ) が 2 m m未 満の場合には、 その距離が近い程イオン出力の検出率が低くなる。 これ に対して、 上記距離が 2 m m以上である本発明は、 確実にイオン出力を 検出することができる。
この理由は次のように考えられる。 上記ィオン電流検出用電極の先端 からハウジングの先端部までの距離 ( L ) が 2 m m未満の場合には、 グ ロープラグ本体にカーボンが堆積した場合にはイオン電流検出用電極と ハウジングとの絶縁抵抗の低下が大き く、 短絡に近い状態となるため、 イオン電流の検出が困難となる。 これに対し、 本発明においては上記距 離 ( L ) が 2 m m以上であるため、 グローブラグ本体にカーボンが堆積 していても、 絶縁抵抗の低下が小さく、 短絡状態になることはない。 ま た、 長時間の使用により、 仮に絶縁抵抗の低下が進行しても、 後述する 通電発熱体への通電による発熱によりカーボンを焼失することができる。 そのため、 本発明のグローブラグは、 イオン電流を確実に検出すること ができる。
また、 本発明のグローブラグは、 上記通電発熱体、 リー ド線及びィォ ン電流検出用 9極を上記絶縁体の内部に、 一体的に設けているので、 構 造簡単である。 したがって、 本発明によれば、 カーボン付着の問題がな く、 精度良く イオン電流を検出することができ、 耐久性に優れたグロ一 プラグを提供することができる 次に、 請求項 5 5に記載の発明のように、 上記通電発熱体全体の電気 抵抗を R ( Ω ) 、 上記通電発熱体のプラス端から上記イオン電流検出用 電極の上記先端までの電気抵抗を B ( Ω ) としたとき、 B ( Ω ) ≥ R ( Ω ) / 3の関係にあることが好ましい。 この場合には、 グローブラ グ本体に力一ボンが堆積して上記の短絡に近い状態になっても、 通電発 熱体、 イオン電流検出用電極、 付着力一ボンの回路に適正な鼋流を流す ことができる。 そのため、 この回路の通電発熱により、 カーボンを焼失 させることができる。 また、 上記の短絡状態解消後には、 通電発熱体に 電流が流れ、 カーボン焼失が促進される。
なお、 上記電気抵抗 B ( Ω ) が非常に大きい場合には、 上記の通電発 熱体、 イオン電流検出用電極、 付着カーボンの回路の抵抗値が大きくな る。 この場合には、 付着力一ボンが存在していても、 通電発熱体全体に ほぼ正常な電流が流れ、 通鼋発熱体の発熱により付着力一ボンを焼失さ せることができる。 それ故、 グローブラグ本来の発熱機能を常時発揮さ せることができるとともにグロ一ブラグ本体に堆積した力一ポンを容易 に焼失させることができる。
また、 上記電気抵抗 R ( Ω ) 、 B ( Ω ) を、 B ( Ω ) ≥ R ( Ω ) / 3 に構成するに当たっては、 通電発熱体とイオン電流検出用電極の材料、 あるいは通電経路の太さ、 厚み、 長さ等を変えることにより行うことが できる。 例えば、 材料変化による手段としては、 原料となる導電性セラ ミ ック粉末と絶縁性セラミ ック粉末との混合割合を調整することにより 行うことができる。 また、 通鼋経路の長さを変える手段としては、 通電 発熱体へのイオン電流検出用電極の接続位置を変えることによ り行うこ とができる。
請求項 1記載の発明は、 ハウジングとハウジング内に支持された本体 とよりなるグロ一プラグにおいて、 上記本体は、 絶縁体と、 絶縁体の内 部に設けられた通電発熱体及び通電発熱体の両端部に電気的に接続され て絶縁体の外部に導出された一対のリー ド線と、 上記絶縁体の内部に配 設された、 火炎中のイオン化の状態を検出するための、 イオン電流検出 用電極とよ りなるとともに、 上記イオン電流検出用電極の先端は、 上記 火炎にさらされるよう、 上記絶縁体より露出しており、 かつ、 上記ィォ ン電流検出用電極の線膨張係数を K、 上記通電発熱体の線膨張係数を Η、 絶縁体の線膨張係数を Sとしたとき、 Η S、 H Kの関係にあるグロ —プラグである。
上記線膨張係数 Hが上記 S又は Kより小さい場合には、 後述するよう なグローブラグ本体表面における圧縮応力状態が得られず、 引張応力状 態となつてしまう。 そのため、 グローブラグ本体へのクラックの発生の 可能性が高くなり、 グロ一プラグの耐久性の向上を図ることが困難とな る
また、 上記通電発熱体及びイオン電流検出用電極を絶縁体中に配設す るに当たっては、 あらかじめ両者の一体成形品を作製しておき、 これを 絶縁体粉末の中に埋め込んで一体成形する。 あるいは、 あらかじめ別途 作製しておいた 2つ割の絶縁体成形体の間に上記通電発熱体とィオン電 流検出用電極からなる一体成形品を挟持配設する。
これらの絶縁体成形品、 あるいは通電発熱体とイオン電流検出用電極 との一体成形品は、 例えば、 これらの材料であるセラ ミ ック粉末とパラ フィ ンヮックスを主成分とする樹脂を混合し、 それを射出成形すること により作製する。 その後、 脱脂を含めた加圧焼成を行ない、 研削によつ てイオン電流検出機能付きセラミ ックヒー夕一を作製する。
上記構成の本発明のグローブラグも前述の発明同様、 通電発熱体に電 流を通すことにより発熱し、 その発熱により燃焼室における着火及び燃 焼を促進させ、 イオン電流検出用電極は、 近接する燃焼室の内壁との間 で 2電極を形成し、 燃焼火炎中のイオン化の状態を検出する。 本発明は 上記構成によ り、 精度良く イオン電流を検出することができ、 その倩報 を燃焼制御に有効に活用することが可能となる。 また、 グロ一プラグに、 本来の燃焼室の加熱機能 (グロ一機能) とイオン電流検出機能とを付与 しているので、 構造がコンパク トで、 かつ安価に製造できる。
また、 本発明においては、 上記通電発熱体、 イオン電流検出用電極、 絶縁体の各線膨張係数 H、 K、 Sが、 上記のように、 H≥ S、 H≥ Kの 関係にある。 すなわち、 通電発熱体は、 イオン電流検出用電極、 絶縁体 のいずれよりも線膨張係数が大きい。 そのため、 グローブラグ使用時に おいては、 グロ一プラグ本体の表面を常に圧縮応力状態に維持すること ができる。 すなわち、 グローブラグ本体を作製する際には、 上述したよ うに、 粉末材料を成形して約 1 8 0 0。Cという高温において焼結させる。 この焼結体は、 焼結直後の高温状態においては、 殆ど内部応力がない状 態であると考えられる。
一方、 グロ一プラグを実際に使用する温度は、 室温〜約 1 0 0 0 °C程 度であり上記焼結温度よりも低いため、 グローブラグ本体は、 上記の焼 結直後より も縮小する。 このとき、 本体を構成する通電発熱体、 イオン 電流検出用電極、 絶縁体の各線膨張係数 H、 K、 Sは上記の関係にあり、 表面に露出する絶縁体とィオン電流検出用電極の線膨張係数 K、 Sより も、 内部に埋設された通電発熱体の線膨張係数 Ηが大きい。 そのため、 本体の表面部分には、 常に圧縮応力が作用する。
このように、 本発明においては、 グロ一プラグ使用時において常に本 体表面に圧縮応力が作用している。 この圧縮応力状態は、 周知のように、 引張応力状態の場合よりもクラック等の損傷に対して有利である。 それ 故、 本発明のグロ一プラグは、 本体表面の損傷を防止することができる。
また、 通電発熱体は、 棒状絶縁体の内部に埋設されているため、 燃焼 火炎による腐触がなく、 抵抗値の低下、 発熱特性の変化を招く ことがな く、 長期にわたって高い発熱性能を発揮することができる。 すなわち、 通電発熱体が酸化により消耗することがないため、 その断面積が一定に 保持されるとともに、 その抵抗値の変化を生ずることもない。 さらに、 燃焼室内での熱的衝撃等に起因して通電発熱体が破損する等の不具合も 回避できる。
また、 本発明のグローブラグは、 上記通電発 体、 リー ド線及びィォ ン電流検出用電極を上記絶縁体の内部に、 一体的に設けているので、 構 造簡単である。
したがって、 本発明によれば、 カーボン付着の問題がなく、 精度良く イオン電流を検出することができ、 耐久性に優れたグローブラグを提供 することができる。
次に、 請求項 5 7記載の発明のように、 上記各線膨張係数 K、 H、 S は、 さらに、 0≤ H— S≤ 2 . O x l O—6 (/ °C ) かつ、 0≤ H— K≤ 2 . 0 X 1 0— 6 (/ °C ) の関係にあることが好ましい。
上記 H— Sが 0未満の場合は上述したとおりである。 一方、 上記 H— Sが 2 . 0 X 1 0— 6を超える場合には、 通電発熱体の引張応力が大きく なり、 長期間の使用において通電発熱体の抵抗値が速く上昇するという 問題がある。 また、 上記 H— Kが 0未満の場合は上述したとおりである。 一方、 上記 H— Kが 2 . 0 X 1 0— 6を超える場合にも同様に、 長期間の 使用において通鼋発熱体の抵抗値が速く上昇するという問題がある。 次に、 請求項 5 8に記載の発明のように、 上記イオン電流検出用電極 は、 主成分が金属の珪化物、 炭化物、 窒化物、 硼化物の 1種以上の導電 性セラ ミ ツク材料、 又は導電性セラミ ック材料と絶縁性セラ ミ ック材料 との混合材料により作製することができる。 この場合には、 耐熱性が向 上し、 かつ絶縁体との膨張係数を容易に調整、 合わせ込みができるため 耐熱衝擎性向上の効果が得られる。
次に、 請求項 5 9 に記載の発明のように、 上記イオン電流検出用電極 は、 主成分が融点 1 2 0 0 °C以上の金属の 1種以上の高融点金属材料、 又は高融点金属材料と絶縁性セラミ ック材料との混合材料により作製す ることができる。 上記前者の金属の場合には、 素材が線状で使用できる ため、 材料、 加工、 組付に関するコス トの低減の効果が得られる。
また、 後者の場合には、 高温強度、 耐酸化性が向上し、 しかも発熱体 と絶縁体との線膨張係数を容易に調整、 合わせ込みができるため、 耐久 性に優れた効果が得られる。 また、 上記融点を 1 2 0 0 °Cとした理由は、 グロ一ブラグの通電発熱体を 1 0 0 0〜 1 1 0 0 Cに発熱させるため、 イオン電流検出用電極の耐熱性を考慮したためである。
請求項 6 0記載の発明では、 絶縁体と、 絶縁体の内部に設けられた通 鼋発熱体と、 絶縁体の内部に配設され、 火炎中のイオン化の状態を検出 するためのィオン電流検出用電極とを有するグローブラグにあって、 ィ オン電流検出用鼋極の上記絶縁体からの露出部分を覆うように上記絶縁 体の表面に設けられ、 かつ上記ィォン電流検出用電極に電気的に接続さ れている導電層をが設けられている。
上記導電層は、 ィオン電流検出用電極の絶縁体からの露出部分を覆う ように、 その露出部分の面積よりも広い面積をもって配設されている。 また、 導電層は、 イオン電流検出用電極と電気的接続されているととも にそれ自体導電性を有している。 したがって、 導電層は、 イオン電流検 出用電極の露出部分の面積を実質的に拡大するという役割を果たしてい る。
また、 上記通電発熱体及びイオン電流検出用電極を絶縁体中に配設す るに当たっては、 例えば図 1 0 0に示すように、 あらかじめ両者の一体 成形品を作製して同時にリ一ド線を接合し、 これを絶縁体の原料である セラミ ック粉末中に埋め込んで一体成形する。 あるいは、 あらかじめ別 途作製しておいた 2つ割の絶縁体の間に上記通電発熱体とイオン電流検 出用電極を挟持配設する。
これらの絶縁体成形品、 あるいは通電発熱体とイオン電流検出用電極 との一体成形品は、 例えば、 これらの材料粉末とパラフ ィ ンワックスを 主成分とする樹脂とを混合し、 それを射出成形することにより作製する。 次に、 脱脂を含めた加圧焼結を行い焼成する。 その後、 円筒研削及び球 面加工研削によって、 イオン電流検出機能付きセラ ミ ックヒータを作製 する。
また、 上記通電発熱体、 イオン電流検出用電極は、 上記絶縁体の内部 に印刷形成により設けることもできる。 かかる印刷形成につき一例を示 せば、 例えば絶縁体を形成するためのセラミ ック材料の生成形体 (グリ —ンシート) の表面に、 スク リーン印刷、 ノ ヅ ド印刷、 ホッ トスタンプ 等により、 所望形状に導電性材料よ りなる通電発熱体、 そのリード線、 及びイオン電流検出用電極を印刷することにより行う。 次いで、 生成形 体を卷回し、 その後焼成する。
これにより、 印刷形成された通電発熱体、 リード線、 イオン電流検出 用電極を内蔵した絶縁体が得られる。 また、 上記いずれの製造方法にお いても絶縁体の表面にィォン電流検出用電極が露出するようにしておく。 次に、 上記絶縁体の表面に上記導電層を形成するに当たっては、 例え ば、 まず絶縁体の形状、 粗さ等を必要に応じて調整する。 次いで、 絶縁 体表面に、 パッ ト印刷、 円筒スク リーン印刷等によって、 導電層を所望 形状に印刷し、 焼き付けすることにより行う。 また、 ブラズマコーティ ング、 蒸着、 その他の方法により導電層を形成することもできる。
上記構成の本発明のグローブラグも前述の発明同様、 通電発熱体に電 流を通すことによ り発熱し、 その発熱により燃焼室における着火及び燃 焼を促進させ、 イオン電流検出用電極は、 近接する燃焼室の内壁との間 で 2電極を形成し、 燃焼火炎中のイオン化の状態を検出する。 本発明は 上記構成によ り、 精度良くイオン電流を検出することができ、 その情報 を燃焼制御に有効に活用することが可能となる。 また、 グロ一プラグに、 本来の燃焼室の加熱機能 (グロ一機能) とイオン電流検出機能とを付与 しているので、 構造がコンパク 卜で、 かつ安価に製造できる。
また、 本発明においては、 絶縁体の表面に上記'イオン電流検出用電極 に電気的に接続された導電層を配設してある。 そのため、 導電層がィォ ン電流検出用電極の露出部分としての役割を果たし、 その面積を増大さ せる。 それ故、 イオン電流の検出をより確実に行うことができる。 それ 故、 導電層を有さない場合に比べて、 さらに精度良くイオン電流を検出 することができ、 より一層燃料制御の向上を図ることができる。
また、 本発明のグロ一プラグは、 上記通電発熱体、 リード線及びィォ ン電流検出用電極を上記絶縁体の内部に、 一体的に設けているので、 構 造簡単である。 したがって、 本発明によれば、 カーボン付着の問題がな く、 かつ、 実質的にイオン電流検出用電極が火炎にさらされる面積を大 きくすることができ、 精度良く イオン電流を検出することができる。 次に、 請求項 6 1 に記載の発明のように、 上記導電層は、 部分的に上 記絶縁体を露出させることによ り形成したエッジ部分を有することが好 ましい。 この場合には、 上記エッジ部分が他の平滑な部分よりもイオン を吸着し易い性質 (エッジ効果) を発揮する。 そのため、 イオン電流の 検出の応答性が良好となり、 例えば後述するィオン電流検出時の立ち上 がり角度を急峻にし、 またビーク値を増大させることができる。
なお、 上記導電層から部分的に絶縁体を露出させて形成したエツジ部 分とは、 例えば後述するように、 導電層を網目構造等にしてその網目間 に絶縁体を露出させて形成する場合だけでなく、 ベ夕層の導電層と絶縁 体の露出部分との境界部分に形成するエツジ部分をも含む。
また、 請求項 6 2 に記載の発明のように、 上記エッジ部分は断面形状 が角状であることが好ましい。 角状のエッジ部分は、 例えば後述する第 4 7の実施の形態に示すように、 絶縁体との境界部分を滑らかにするこ となく、 段状に形成することにより得ることができる。 この場合には、 上記ェッジ効果をさらに増大させることができる。
また、 請求項 6 3記載の発明のように、 上記導電層は、 網目構造を有 し、 網目の間には上記絶縁体の表面が露出している構成をとることもで きる (図 1 0 3〜図 1 0 6 ) 。 この場合には、 各網目部分にそれそれ角 状のエッジ部分を多数形成することができ、 さらに確実に上記のエッジ 効果を発揮させることができる。
また、 請求項 6 4に記載の発明のように、 上記導電層は、 金属又は導 電性セラミ ックにより構成することができる。 上記金属としては、 特に 高融点金属と活性金属とを混合したもの用いることが好ましい。 この場 合には、 活性金属により上記絶縁体と導電層との密着性を高めることが でき、 一方、 高融点金属により耐久性を高めることができる。
上記高融点金属としては、 例えば、 白金、 金等の貴金属、 ニッケル、 鉄、 クロム等があり、 これらを単独又は混合して用いることができる。 また、 上記活性金属としては、 チタン、 ジルコニウム、 ハフニウム、 バ ナジゥム等があり、 これらも単独又は混合して用いることができる。 好 ましくは、 金とニッケルの合計を 9 0重量%以上とし、 残りを活性なバ ナジゥムとする組み合わせにするのがよい。 この場合には、 金とニッケ ルとが耐久性を保持しつつ導電性を発揮し、 バナジウムが絶縁体との密 着性を高める。
また、 上記導電性セラミ ックとしては、 種々の金属の珪化物、 炭化物、 窒化物、 ホウ化物を用いることができる。 好ましくは、 耐酸化性の理由 により珪化物がよい。 また、 上記導電性セラ ミ ックには、 絶縁体との密 着性を向上させるために、 例えば酸化アルミニウム、 二酸化珪素等の酸 化物系セラ ミ ックを混合することが好ま しい。
また、 請求項 6 5 に記載の発明のように、 上記導電層の厚みは、 1〜 2 0 mであることが好ましい。 1 〃m未満の場合には、 燃焼波又は燃 焼残差物が激しく衝突するため、 摩耗により導電層が薄くなり、 耐久性 がなくなるという問題があり、 好ましくは 5 m以上がよい。 一方、 2 0 mを超える場合には、 絶縁体との熱膨張係数が大きく異なるため、 冷熱によ り クラックが発生し、 絶縁体から剥がれ落ちるという問題があ り、 好まし くは 1 5 m以下がよい。
請求項 6 6に記載の発明は、 請求項 1記載のグローブラグの 1態様で、 、 絶縁体と して、 第 1絶縁基板と、 第 1絶縁基板の表側面に配設した被 覆絶縁基板と、 第 1絶縁基板の裏地側面積層させた第 2絶縁板とを有し、 発熱体は第 1絶縁基板の表側面と被覆絶縁基板との間に印刷形成され、 一対のリー ド線は発熱体の両端部に接続されるよう第 1絶縁基板の表側 面と被覆絶縁基板との間に印刷形成され、 イオン鼋流検出用電極は第 1 絶縁基板と第 2絶縁基板との間に設けられるよう構成されている。
すなわち、 上記第 1絶縁基板の表側面と被覆絶縁基板との間に通電発 熱体と リー ド線とが印刷形成されており、 また上記第 1絶縁基板と第 2 絶縁基板の間にイオン電流検出用電極が配設されている。 よって上記通 電発熱体に電流を通すことにより発熱し、 その発熱により燃焼室におけ る着火及び燃焼を促進させる。 また、 イオン電流検出用電極は、 近接す る燃焼室の内壁との間で 2電極を形成し、 燃焼火炎中のイオン化の状態 を検出する。
これによ り、 精度良くイオン電流を検出することができ、 その情報を 燃焼制御に有効に活用することが可能となる。 また、 グロ一プラグに、 本来の燃焼室の加熱機能 (グロ一機能) とイオン電流検出機能とを付与 しているので、 構造がコンパク トで、 かつ安価に製造できる。
また、 通電発熱体は、 第 1絶縁基板と被覆絶縁基板との間に、 印刷形 成された状態で埋設されている。 そのため、 燃焼火炎による腐触がな 抵抗値の低下、 発熱特性の変化を招く ことがなく、 長期にわたって高い 発熱性能を発揮することができ、 耐久性に優れている。
すなわち、 通電発熱体が酸化により消耗することがないため、 その断 面積が一定に保持されるとともに、 その抵抗値の変化を生ずることもな い。 さらに、 燃焼室内での熱的衝撃等に起因して通電発熱体が破損する 等の不具合も回避できる。
また、 イオン電流検出用電極は、 燃料燃焼に伴ってその表面中にカー ボンが付着する場合があるが、 その付着力一ボンは通電発熱体の発熱動 作 (例えば、 エンジンの低温始動時におけるグロ一動作) によって焼き 切ることができる。 そのため、 長期間に渡って正確にイオン電流を検出 することができる。
また、 本発明においては、 上記通電発熱体は、 例えば、 上記第 1絶縁 基板の表側面に印刷形成によ り設けてある。 かかる印刷形成につき一例 を示せば、 後述するように、 例えば第 1絶縁基板を形成するためのセラ ミ ック材料の生成形体 (グリーンシート) の表面に、 スク リーン印刷、 パッ ド印刷、 ホッ トスタンプ等により、 所望形状に導電性材料よりなる 通電発熱体及びリー ド線を印刷することにより行う。 なお、 上記通電発 熱体及びリード線は、 上記被覆絶縁基板に、 印刷形成することもできる。
また、 上記第 2絶縁基板、 第 1絶縁基板、 被覆絶縁基板はこの順に積 層されている。 これらの間の接合は、 例えば第 5 1の実施の形態にも示 すように、 これら各基板をセラ ミ ック材料の生成形体とし、 これらを積 層し、 焼成することにより焼成結合させる。 あるいは、 各基板の間を接 着剤を用いて接合する。
このように、 本発明においては、 通電発熱体及びリード線は、 第 1絶 縁基板と被覆絶縁基板との間に印刷形成してある。 そのため、 通電発熱 体及びリー ド線は、 0 . 0 0 5〜0 . 0 2 m mの薄層状態でグローブラ グ内に配設することができ、 グローブラグがコンパク トになる。 また、 通電発熱体、 リード線は、 上記のように燃料火炎中に露出しないので耐 久性にも優れている。
また、 本発明のグロ一プラグは、 上記通電発熱体、 リー ド線及びィォ ン電流検出用電極を、 上記被覆絶縁基板、 第 1絶縁基板、 第 2絶縁基板 と共に、 一体的に設けているので、 構造簡単である。 したがって、 本発 明によれば、 力一ボン付着の問題がなく、 精度良くイオン電流を検出す ることができ、 耐久性に優れたグローブラグを提供することができる。 次に、 請求項 6 7に記載の発明のように、 上記第 1絶縁基板及び被覆 絶縁基板の外表面は、 曲面形状部を有していることを特徴とするグロ一 プラグがある。 この場合には、 上記外表面の曲面形状部を利用して、 第 1絶縁基板、 第 2絶縁基板、 被覆絶縁基板の積層体を、 断面円形状に、 容易に加工することができる (図 4参照) 。
次に、 請求項 6 8に記載の発明のように、 第 1絶縁基板と、 第 2絶縁 基板とを積層してなるとともに、 両者間には通鼋発熱体と通鼋発熱体の 両端部に接続された一対のリード線と、 火炎中のイオン化の状態を検出 するためのイオン電流検出用電極が設けてあることを特徴とするグロ一 プラグがある。 この場合は、 第 1絶縁基板と第 2絶縁基板との間に、 通 電発熱体とリ一ド線とイオン電流検出用電極とを、 併列的に設けること ができる (第 5 5の実施の形態参照) 。 そのため、 グローブラグの製造 が容易である。
次に、 請求項 6 9に記載の発明のように、 上記イオン電流検出用電極 は第 2絶縁基板の表側面に印刷形成されていることが好ましい。 第 2絶 緣基板の上に上記ィオン電流検出用電極をあらかじめ印刷形成しておき、 この上に第 1絶縁基板を積層すればよいので製造容易である。
次に、 請求項 7 0に記載の発明のように、 上記イオン電流検出用電極 は、 導電性線材であり上記第 2絶縁基板の表側面と上記第 1絶縁基板の 裏側面との間に挟持配設されていることが好ましい。 この場合には、 ィ オン電流検出用電極はあらかじめ線材の状態に作成しておき、 これを第 1絶縁基板と第 2絶縁基板の間に配設すればよい。 それ故、 グロ一ブラ グの製造が容易である。 なお、 上記導電性線材としては、 金属線、 セラ ミ ック材料の焼結体などがある。
次に、 請求項 7 1 に記載の発明のように、 上記イオン電流検出用電極 の先端は、 上記火炎にさらされるよう、 上記第 2絶縁基板の先端部に露 出していることが好ましい。 この場合には、 イオン電流検出の応答性と 検出精度 ( S / N比) の向上の効果が得られる。
次に、 請求項 7 2に記載の発明のように、 上記イオン電流検出用電極 は M o S i 2 、 W C、 T i Nの 1種以上の導電性セラミ ック材料により 作製することができる。 この場合には耐熱性が向上し、 かつ絶縁体との 膨張係数を容易に調整、 合わせ込みができるため耐熱衝撃性向上の効果 が得られる。
次に、 請求項 7 3に記載の発明のように、 上記イオン電流検出用電極 は、 W、 M o、 T iの 1種以上の高融点金属により作製することができ る。 この場合には、 素材が線状で使用できるため材料、 加工、 組付に関 するコス 卜の低減の効果が得られる。
次に、 請求項 7 4に記載の発明のように、 上記第 2絶縁基板より露出 しているイオン電流検出用電極の露出部には、 P t、 I r , R h、 R u、 P dの 1種以上の貴金属が設けてあることが好ましい。 この場合には、 検出用電極の耐消耗性 · 耐酸化性の向上の効果が得られる。
次に、 請求項 7 5 に記載の発明のように、 上記棒状絶縁体の先端部は 半球面形状を有していることが好ま しい。 この場合には、 棒状絶縁体の 先端鋭角部を除去することで、 イオン電流検出部近傍での燃焼火炎流の 乱れが抑制され検出性能が安定、 また熱応力の集中が抑制され、 耐熱衝 擎性が向上するという効果が得られる。
請求項 7 6に記載の発明は、 請求項 1記載のグローブラグの変形であ つて、 絶縁体が棒状絶縁体であり、 発熱体は棒状絶縁体の内部に印刷形 成され、 一対のリード線は発熱体の両端部に電気的に接続されて棒状絶 縁体の外部に導出され、 イオン電流検出用電極とが電発熱体と電気絶縁 されて棒状絶縁体の内部に配設された構成となっている。
また、 イオン電流検出用電極は、 近接する燃焼室の内壁との間で 2電 極を形成し、 燃焼火炎中のイオン化の状態を検出する。
これにより、 精度良くイオン電流を検出することができ、 その情報を 燃焼制御に有効に活用することが可能となる。 また、 グローブラグに、 本来の燃焼室の加熱機能 (グロ一機能) とイオン電流検出機能とを付与 しているので、 構造がコンパク 卜で、 かつ安価に製造できる。
また、 通電発熱体は、 棒状絶縁体の内部に、 印刷形成された状態で埋 設されているため、 燃焼火炎による腐触がなく、 抵抗値の低下、 発熱特 性の変化を招く ことがなく、 長期にわたって高い発熱性能を発揮するこ とができる。 すなわち、 通電発熱体が酸化により消耗することがないた め、 その断面積が一定に保持されるとともに、 その抵抗値の変化を生ず ることもない。 さらに、 燃焼室内での熱的衝撃等に起因して通電発熱体 が破損する等の不具合も回避できる。
また、 イオン電流検出用電極は、 燃料燃焼に伴ってその表面中にカー ボンが付着する場合があるが、 その付着カーボンは通電発熱体の発熱動 作 (例えば、 エンジンの低温始動時におけるグロ一動作) によって焼き 切ることができる。 そのため、 長期間に渡って正確にイオン電流を検出 することができる。
また、 本発明においては、 上記通電発熱体は、 上記棒状絶縁体の内部 に印刷形成によ り設けてある。 かかる印刷形成につき一例を示せば、 後 述するように、 例えば棒状絶縁体を形成するためのセラ ミ ック材料の生 成形体 (グリーンシート) の表面に、 スク リーン印刷、 ノ ッ ド印刷、 ホ ッ トスタンプ等により、 所望形状に導電性材料よりなる通電発熱体及び リード線を印刷することにより行う。 次いで、 生成形体を巻回し、 その 後焼成する。
これによ り、 印刷形成された通電発熱体及びリー ド線を内蔵した棒状 絶縁体が得られる。
一方、 イオン電流検出用電極の配設に関しては、 例えば上記生成形体 の卷回時に、 軸方向に沿ってその中心部に中空部を設けておき、 上記焼 成前又は焼成後に、 電気絶縁性材料を介して、 上記中空部に棒状のィォ ン電流検出用電極を挿入固定することにより配設する。
このように、 本発明においては、 通電発熱体及びリード線は棒状絶縁 体の内部に印刷形成してある。 そのため、 通電発熱体及びリー ド線は、 0 . 0 0 5〜 0 . 0 2 m mの薄層状態でグローブラグ内に配設すること ができ、 グローブラグがコンパク トになる。 また、 通電発熱体、 リード 線は、 燃料火炎中に露出しないので耐久性にも優れている。
また、 本発明のグローブラグは、 上記通鼋発熱体、 リー ド線及びィォ ン電流検出用電極を上記棒状絶縁体の内部に、 一体的に設けているので、 構造簡単である。 したがって、 本発明によれば、 カーボン付着の問題が なく、 精度良く イオン電流を検出することができ、 耐久性に優れたグロ —プラグを提供することができる。 次に、 請求項 7 7に記載の発明のように、 請求項 1記載のグローブラ グにおいて、 絶縁体は中空部を有する電気絶縁性の中軸と中軸の外周に 被覆された絶縁基板とよりなる棒状絶縁体であり、 発熱体は棒状絶縁体 の内部において中軸と絶縁基板との間に印刷形成され、 一対のリード線 は発熱体の両端部に電気的に接続されて棒状絶縁体の外部に導出され、 イオン電流検出用電極が発熱体と電気絶縁されて中軸の中空部内に挿入 固定されている構成と成っている。 この場合には棒状絶縁体のと中軸と 絶縁基板とにより構成しているので、 その製造が容易である。 また、 上 記請求項 7 6 と同様の効果が得られる。
次に、 請求項 7 8に記載の発明のように、 上記通鼋発熱体は絶縁基板 の内側面に印刷形成されていることが好ましい。 この場合には、 シート 状の絶縁基板の上に上記通電発熱体とリ一ド線とをあらかじめ印刷形成 しておき、 これを中軸に巻回すればよいので製造容易である。
次に、 請求項 7 9に記載の発明のように、 上記請求項 7 7のグローブ ラグを製造するに当たり、 電気絶縁性のセラ ミ ック材料からなるととも に中空部を有する中軸の生成形体を準備し、 上記中空部内にィオン電流 検出用電極を挿入し、
一方電気絶縁性のセラミ ック材料からなる絶縁基板の生成形体の表面 に上記通電発熱体及びリー ド線を印刷形成し、 次いで上記絶縁基板の印 刷形成面の上に上記中軸の生成形体を置いて上記絶縁基板を中軸の外周 に巻き付け、
次いでこれらを加熱して上記中軸及び絶縁基板を焼成することを特徴 とするグローブラグ製造方法がある。 この場合には、 上記請求項 7 6及 び請求項 7 7に示した効果を有するグローブラグを容易に製造すること ができる。
請求項 8 0に記載の発明は、 請求項 1記載のグロ一ブラグにおいて、 絶縁体は棒状絶縁体であり、 発熱体は棒状絶縁体の内部に設けられ、 一 対のリ一ド線は発熱体の両端部に電気的に接続されて棒状絶縁体の外部 に導出され、 イオン電流検出用電極が棒状絶縁体の外周部において、 そ の軸方向に沿って設けられた溝の内部に、 発熱体と電気絶縁されて配設 されている構成となっている。
上記通電発熱体及びリ一ド線を棒状絶縁体の内部に設けるに当たって は、 後述するように、 例えば、 棒状絶縁体を形成するためのセラミ ック 材料の生成形体 (グリーンシー ト) の表面に、 スク リーン印刷、 パッ ド 印刷、 ホッ トス夕ンブ等により、 所望形状に導電性材料よ りなる通電発 熱体及びリード線を印刷し、 次いで、 生成形体を別途作製した中軸の周 りに巻回し、 その後焼成する (第 5 8の実施の形態、 図 1 2 6 A〜図 1 2 6 D参照) 。 あるいは、 上記通電発熱体等を形成した生成形体の上に、 溝を設けた上部シー トを積層する積層法がある。 (第 5 9の実施の形態、 図 1 2 7参照) 。 これにより、 印刷形成された通電発熱体及びリード線 を内蔵した棒状絶縁体が得られる。
一方、 イオン電流検出用電極の配設に関しては、 あらかじめ棒状絶縁 体の外周部に軸方向に沿った溝を形成しておき、 上記焼成前又は焼成後 に、 上記溝内に棒状のイオン電流検出用電極を配置、 固定する。
本発明のグローブラグは、 上記通電発熱体に電流を通すことにより発 熱し、 その発熱により燃焼室における着火及び燃焼を促進させる。 また、 イオン電流検出用電極は、 近接する燃焼室の内壁との間で 2電極を形成 し、 燃焼火炎中のイオン化の状態を検出する。
これによ り、 精度良くイオン電流を検出することができ、 その情報を 燃焼制御に有効に活用することが可能となる。 また、 グロ一プラグに、 本来の燃焼室の加熱機能 (グロ一機能) とイオン電流検出機能とを付与 しているので、 構造がコンパク トで、 かつ安価に製造できる。 また、 通電発熱体は、 棒状絶縁体の内部に、 埋設されているため、 燃 焼火炎による腐触がなく、 抵抗値の低下、 発熱特性の変化を招く ことが なく、 長期にわたって高い発熱性能を発揮することができ、 耐久性に優 れている。 すなわち、 通電発熱体が酸化により消耗することがないため、 その断面積が一定に保持されるとともに、 その抵抗値の変化を生ずるこ ともない。 さらに、 燃焼室内での熱的衝撃等に起因して通電発熱体が破 損する等の不具合も回避できる。 また、 イオン電流検出用電極は、 棒状 絶縁体の上記溝内に配置すればよいのでグローブラグの製造が容易であ る。
また、 イオン電流検出用電極は、 燃料燃焼に伴ってその表面中に力一 ボンが付着する場合があるが、 その付着カーボンは通電発熱体の発熱動 作 (例えば、 エンジンの低温始動時におけるグロ一動作) によって焼き 切ることができる。 そのため、 長期間に渡って正確にイオン電流を検出 することができる。
また、 本発明のグロ一プラグは、 上記通電発熱体、 リー ド線及びィォ ン電流検出用電極を上記棒状絶縁体の内部に、 一体的に設けているので、 構造簡単である。 したがって、 本発明によれば、 力一ボン付着の問題が なく、 精度良く イオン電流を検出することができ、 耐久性に優れた、 か つ製造容易な、 グロ一プラグを提供することができる。
次に、 請求項 8 1 に記載の発明のように、 上記溝内に配設されたィォ ン電流検出用電極の上には、 ィオン電流検出用電極を覆う ように絶縁被 覆材が充填されていることが好ましい。 この場合には、 イオン電流検出 用電極を棒状絶縁体に対して、 容易に固定することができる。 上記絶縁 被覆材としては、 例えば電気絶縁性のセラミ ツク材料を用いる。
次に、 請求項 8 2 に記載の発明のように、 上記通電発熱体及びリード 線は、 絶縁基板の内側面に印刷形成されていることが好ましい。 この場 合には、 シート状の絶縁基板の上に上記通電発熱体と リ一 ド線とをあら かじめ印刷形成しておき、 これを中軸に卷回すればよいので製造容易で ある。 また、 通電発熱体及びリ一ド線は、 0. 005〜0. 0 2 mmの 薄層状態でグロ一プラグ内に配設することができ、 グロ一プラグがコン パク 卜になる。
次に、 請求項 83に記載の発明のように、 上記イオン電流検出用電極 の先端は、 上記火炎にさらされるよう、 上記棒状絶縁体の先端部に露出 していることが好ま しい。 この場合には、 イオン電流検出の応答性と検 出精度 (S/N比) の向上の効果が得られる。
次に、 請求項 84に記載の発明のように、 上記イオン電流検出用電極 は Mo S i 2 、 WC、 T i Nの 1種以上の導鼋性セラ ミ ヅク材料により 作製することができる。 この場合には耐熱性が向上し、 かつ絶縁体との 膨張係数を容易に調整、 合わせ込みができるため耐熱衝撃性が向上する という効果が得られる。
次に、 請求項 85に記載の発明のように、 上記イオン電流検出用電極 は、 W、 Mo、 T iの 1種以上の高融点金属により作製することができ る。 この場合には、 素材が線状、 板状で使用できるため、 材料、 加工、 組付に関するコス ト低減の効果が得られる。
次に、 請求項 86に記載の発明のように、 上記棒状絶縁体より露出し ているイオン電流検出用電極の露出部には、 P t、 I r、 Rh、 Ru、 P dの 1種以上の貴金属が設けてあることが好ましい。 この場合には、 検出用電極の耐消耗性、 耐酸化性の向上の効果が得られる。
次に、 請求項 87に記載の発明のように、 上記棒状絶縁体の先端部は 半球面形状を有していることが好ましい。 この場合には、 棒状絶縁体の 先端鋭角部を除去することで、 イオン電流検出部近傍での燃焼火炎流の 乱れが抑制され、 検出性能が安定し、 また熱応力の集中が抑制され耐熱 衝撃性が向上するという効果が得られる。
次に、 請求項 8 8に記載の発明のように、 請求項 8 0のグローブラグ を製造するに当たり、 電気絶縁性のセラ ミ ック材料からなる絶縁基板の 生成形体の表面に上記通電発熱体及びリ一ド線を印刷形成し、
次いで上記絶縁基板の印刷形成面の上に電気絶縁性のセラ ミ ック材料 よりなる中軸の生成形体を置いて上記絶縁基板を中軸の外周に巻き付け るとともに上記絶縁基板の巻回方向の両端部と上記中軸との間に軸方向 に沿った溝を形成し、
次いで、 外溝の内部に上記ィオン電流検出用電極を配置し、
次いでこれらを加熱して上記中軸及び絶縁基板を焼成することを特徴 とするグローブラグの製造方法がある。
この場合には、 絶縁基板が焼成される際、 基板の幅が狭くなり、 ィォ ン鼋流検出用電極を基板に一屑強固に接合することができる。 また、 上 記請求項 8 0に示した効果を有するグローブラグを容易に製造すること ができる。 図面の簡単な説明
本発明は添付の図面に沿って以下に詳細に説明されるので、 さらに明 らかとなるであろう。
図 1 は発明の実施の形態におけるグロ一プラグの概要を示す全体構成 図。
図 2は第 1の実施の形態におけるグローブラグの要部を拡大して示す 断面図。
図 3はグロ一プラグの製造手順を示す説明図。
図 4はグロ一ブラグの製造手順を示す説明図。
図 5はグローブラグの製造手順を示す説明図。 図 6はグロープラグの製造手順を示す説明図。
図 7はィオン電流検出システムの概要を示すものであつて、 発熱体発 熱状態を示す構成図。
図 8はィオン電流検出システムの概要を示すものであって、 イオン電 流検出状態を示す構成図。
図 9はスィ ツチ回路の切換え処理を示すフローチヤ一卜。
図 1 0はィオン電流波形の一例を示す図。
図 1 1はグローブラグの発熱特性を示すグラフ。
図 1 2は第 2の実施の形態におけるグロ一ブラグの要部を拡大して示 す断面図。
図 1 3は第 3の実施の形態におけるグローブラグの要部を拡大して示 す断面図。
図 1 4は第 4の実施の形態におけるグローブラグの要部を拡大して示 す断面図。
図 1 5は第 4の実施の形態におけるグロ一プラグの製造手顺を示す説 明図。
図 1 6は第 4の実施の形態におけるグロ一ブラグの製造手順を示す説 明図。
図 1 7は第 5の実施の形態におけるグロ一ブラグの要部を拡大して示 す断面図。
図 1 8 A、 図 1 8 B、 図 1 9 A、 図 1 9 Bは第 6の実施の形態におけ るグローブラグの要部を拡大して示す断面図。
図 2 0は第 7の実施の形態におけるグロ一ブラグの要部を拡大して示 す断面図。
図 2 1は第 7の実施の形態におけるグロ一プラグの製造手順を示す説 明図。 図 2 2は第 7の実施の形態におけるィオン電流検出システムの概要を 示す構成図。
図 2 3はグローリ レーの切換え処理を示すフローチャート。
図 2 4 A、 図 2 4 Bはイオン電流波形の一例を示す図。
図 2 5は第 7の実施の形態において、 他のイオン電流検出システムの 概要を示す構成図。
図 2 6はイオン電流検出用電極の抵抗値とイオン電流波形との関係を 説明するための図。
図 2 7は温度 = 1 2 0 0 °Cの高温条件下で、 C a、 K、 N aの不純物 量と曲げ強度との関係を示すグラフ。
図 2 8は温度- 1 2 0 0 °Cの高温条件下で、 N a + C a + Kの不純物 混合量と曲げ強度との関係を示すグラフ。
図 2 9は不純物量が各 0. 1 %以下、 C a量が 1 %、 K量が 1 %、 N a量が 1 %のそれそれについて、 温度と曲げ強度との関係を示すグラフ。 図 3 0 A、 図 3 0 B、 図 3 0 C、 図 3 0 Dは他の実施の形態において、 グローブラグの製造手順を説明するための斜視図。
図 3 1は他の実施の形態において、 グローブラグの製造手順を説明す るための斜視図。
図 3 2 A、 図 3 2 B、 図 3 2 Cは他の実施の形態において、 グローブ ラグの製造手順を説明するための斜視図。
図 3 3は他の実施の形態において、 グロ一プラグの製造手順を説明す るための斜視図。
図 3 4は第 8の実施の形態におけるィオン電流検出システムの概要を 示す構成図。
図 3 5は第 9の実施の形態におけるイオン電流検出システムの概要を 示す構成図。 図 3 6は第 1 0の実施の形態におけるィオン電流検出システムの概要 を示す構成図。
図 3 7は第 1 1の実施の形態におけるィオン電流検出システムの概要 を示す構成図。
図 3 8は第 1 2の実施の形態におけるイオン電流検出システムの概要 を示す構成図。
図 3 9は第 1 2の実施の形態における気筒毎のイオン電流波形を示す タイムチャート。
図 4 0は第 1 3の実施の形態におけるイオン電流検出システムの概要 を示す構成図。
図 4 1は第 1 3の実施の形態において、 イオン電流に対応する電圧波 形を示すタイムチャート。
図 4 2は第 1 4の実施の形態におけるイオン電流検出システムの概要 を示す構成図。
図 4 3は第 1 4の実施の形態において、 イオン電流に対応する電圧波 形を示すタイムチャー ト。
図 4 4は第 1 5の実施の形態におけるイオン電流検出システムの概要 を示す構成図。
図 4 5は第 1 5の実施の形態において、 ィオン電流に対応する電圧波 形を示すタイムチャー ト。
図 4 6は本発明の第 1 6及び第 1 7の実施の形態にかかるィオン電流 検出システムの概要を示す構成図。
図 4 7は第 1 6の実施の形態における作用をより具体的に説明するた めのタイ ムチャー ト。
図 4 8は第 1 6の実施の形態における トラ ンジスタの O N / O F F切 換え手順を示すフローチャー ト。 図 4 9は第 1 6の実施の形態における燃料の着火時期フィ一ドバヅク 手順を示すフローチヤ一卜。
図 5 0は第 1 7の実施の形態における作用をより具体的に説明するた めのタイムチャート。
図 5 1はイオン電流検出状態下でスィ ヅチ回路を発熱体発熱状態に一 時的に保持させる時間を設定するための線図。
図 5 2は第 1 8の実施の形態において、 ィオン電流の処理動作を表す タイムチャート。
図 5 3は他の実施の形態において、 イオン電流検出状態下でスィ ツチ 回路を発熱体発熱状態に一時的に保持させる時間を設定するためのグラ フ
図 5 4 Aは第 1 9の実施の形態におけるグローブラグ本体の断面図、 図 5 4 Bは図 5 4 Aの A— A線矢視断面図。
図 5 5は第 1 9の実施の形態における、 グローブラグの全体説明図。 図 5 6は第 1 9の実施の形態における、 イオン電流検出用電極の混合 焼結体組織を示す図面代用写真 (倍率 3 5 0倍) 。
図 5 7は第 1 9の実施の形態における、 ィオン電流検出用電極の混合 焼結体組織を示す図面代用写真 (倍率 1 0 0 0倍) 。
図 5 8は第 1 9の実施の形態における、 ィオン電流検出用電極の混合 焼結体組織を示す図面代用写真 (倍率 2 0 0 0倍) 。
図 5 9は第 1 9の実施の形態における、 ィオン電流検出用電極の混合 焼結体組織を示す説明図。
図 6 0は図 5 9の M部分の拡大説明図。
図 6 1は S i 3 N 4 — S i 0 2 — Y 2 0 3 の三元系状態図における、 第 2結晶相の組成を示す説明図。
図 6 2は第 1 9の実施の形態における、 通電発熱体の成形体の斜視図 図 6 3は第 1 9の実施の形態における、 ィオン電流検出用電極の成形 体の斜視図。
図 6 4は第 1 9の実施の形態における、 グロ一プラグ作動回路図。 図 6 5は第 1 9の実施の形態における、 グロ一プラグ作動システムの、 グロ一プラグ始動時のフローチャート。
図 6 6 Aは第 1 9の実施の形態における正常時のィオン電流を示す波 形図。
図 6 6 Bは第 1 9の実施の形態における燻り時のイオン電流を示す図。 図 6 7は第 1 9の実施の形態における、 燻り判定フローチャート。 図 6 8は第 2 5の実施の形態における、 グロ一プラグ作動回路図。 図 6 9 Aは第 2 6の実施の形態におけるグローブラグ本体の断面図。 図 6 9 Bは図 6 9 A中の B— B線矢視断面図。
図 7 0は第 2 6の実施の形態における、 グローブラグ作動回路図。 図 7 1は第 2 6の実施の形態における、 煽り判定フローチャート。 図 7 2は図 7 0の変形例としてのグローブラグ作動回路図。
図 7 3は第 2 7の実施の形態における、 グロ一ブラグ本体の断面図。 図 7 4は第 2 8の実施の形態における、 研磨部分のイオン電流検出効 果を示す模式図。
図 7 5は第 2 8の実施の形態によるィオン電流波形を示す波形図。 図 7 6は第 2 8の実施の形態と比較される比較例によるイオン電流波 形を示す波形図。
図 7 7は第 2 9の実施の形態における、 研磨部分の表面粗さ R z とィ オン電流検出精度との関係を示すグラフ。
図 7 8は第 3 0の実施の形態における、 ィオン電流検出用電極の形状 を示す模式的断面図。
図 7 9は第 3 0の実施の形態における、 ィオン電流検出用電極の形状 を示す模式的断面図。
図 8 0は第 3 0の実施の形態における、 イオン電流検出用電極の形状 を示す模式的断面図。
図 8 1 Aは第 3 2実施の形態におけるグローブラグ本体の断面図。 図 8 1 Bは図 8 1 A中の A— A線矢視断面図。
図 8 2は第 3 2実施の形態における、 グロ一ブラグの全体説明図。 図 8 3は第 3 2実施の形態における、 絶縁性多孔質層の説明図。
図 8 4 Aは第 3 2実施の形態の通電発熱体の斜視図。
図 8 4 Bは第 3 2実施の形態のイオン電流検出用電極の斜視図。
図 8 5は第 3 2実施の形態における、 グローブラグ本体の製造方法の 説明図。
図 8 6 A、 図 8 6 Bは図 8 5に続く、 グロ一プラグ本体の製造方法の 説明図。
図 8 7は第 3 4の実施の形態における、 グローブラグ本体の断面図。 図 8 8は第 3 5の実施の形態における、 グローブラグ本体の断面図。 図 8 9 Aは第 3 6の実施の形態におけるグロ一ブラグ本体の断面図。 図 8 9 Bは図 8 9 A中の B— B矢視断面図。
図 9 0は第 3 7の実施の形態における、 作用効果の説明図。
図 9 1は第 4 1の実施の形態における、 グローブラグの全体説明図。 図 9 2 Aは第 4 2の実施の形態におけるグローブラグ本体の断面図。 図 9 2 Bは図 9 2 A中の A— A線矢視断面図。
図 9 3は第 4 2の実施の形態における、 電気抵抗 R ( Ω ) 、 B ( Ω ) を示す説明図。
図 9 4は第 4 2の実施の形態におけるグローブラグ本体の製造方法の 説明図。
図 9 5は第 4 2の実施の形態におけるィオン電流検出用電極の位置を 変更した例を示す説明図。
図 9 6は第 4 3の実施の形態における距離 Lとイオン出力の検出率と の関係を示す説明図。
図 9 7は第 4 6の実施の形態における、 絶縁性セラ ミ ックへの導電体 添加量と線膨張係数との関係を示す説明図。
図 9 8 Aは第 4 7の実施の形態におけるグローブラグ本体の断面図。 図 9 8 Bは図 9 8 A中の A— A線矢視断面図。
図 9 9は第 4 7の実施の形態における、 グローブラグの全体説明図。 図 1 0 0は第 4 7の実施の形態における、 グローブラグ本体の製造方 法の説明図。
図 1 0 1は第 4 7の実施の形態における、 イオン電流検出時の重要な 点を示す説明図。
図 1 0 2 Aは第 4 8の実施の形態における導電層の配設状態を示す断 面図。
図 1 0 2 Bは第 4 8の実施の形態における導電層の配設状態を示す底 面図。
図 1 0 3は第 4 9の実施の形態における、 導電層のパターンを示す説 明図。
図 1 0 4は第 4 9の実施の形態における、 導電層のパターンを示す説 明図。
図 1 0 5は第 4 9の実施の形態における、 導電層のパターンを示す説 明図。
図 1 0 6は第 4 9の実施の形態における、 導電層のパターンを示す説 明図。
図 1 0 7は他の実施の形態における、 導電層のパターンを示す説明図 c 図 1 0 8は更に他の実施の形態における、 導電層のパターンを示す説 明図。
図 1 0 9 Aは第 5 0の実施形態におけるグローブラグ本体の断面図。 図 1 09 Bは図 1 0 9 A中の B— B線矢視断面図。
図 1 1 0 Aは第 5 1の実施の形態におけるグロ一プラグ本体の断面図。 図 1 1 0 B図 1 1 0 A中の A— A線矢視断面図。
図 1 1 1は第 5 1の実施の形態における、 グローブラグの全体説明図。 図 1 1 2は第 5 1の実施の形態における、 グロ一プラグ本体の製造方 法の説明図。
図 1 1 3は図 1 1 2に続く、 グローブラグ本体の製造方法の説明図。 図 1 14は図 1 1 3に続く、 グロ一プラグ本体の製造方法の説明図。 図 1 1 5 Aは第 5 2の実施の形態におけるグローブラグ本体の断面図。 図 1 1 5 Bは図 1 1 5A中のの B _ B線矢視断面図。
図 1 1 6 Aは第 5 3の実施の形態におけるグロ一プラグ本体の断面図。 図 1 1 6 Bは図 1 1 6A中の C一 C線矢視断面図。
図 1 1 7 A、 図 1 1 7Bは第 54の実施の形態におけるグローブラグ の製造方法の説明図。
図 1 1 8 Aは第 5 5の実施の形態におけるグロ一プラグ本体の断面図。 図 1 1 8 Bは図 1 1 8 A中の D— D線矢視断面図。
図 1 1 9は第 5 5の実施の形態における他のグロ一ブラグ本体の図 1 1 8 Aの D— D線相当断面図。
図 1 20八は第5 6の実施の形態におけるグロ一プラグ本体の断面図。 図 1 2 0 Bは図 1 2 OA中の A— A線矢視断面図。
図 1 2 1は第 5 6実施の形態のグローブラグの全体説明図。
図 1 2 2は第 5 6の実施の形態にかかるグローブラグ本体の製造方法 の説明図。
図 1 2 3八は第5 7の実施の形態のグローブラグ本体の断面図。 図 1 2 3 Bは図 1 2 3 A中の B— B線矢視断面図。
図 1 2 4 Aは第 5 8の実施の形態のグローブラグ本体の断面図。
図 1 2 4 Bは図 1 2 4 A中の A— A線矢視断面図。
図 1 2 5は第 5 8の実施の形態のグロ一ブラグの全体説明図。
図 1 2 6 A〜図 1 2 6 Dは第 5 8の実施の形態における、 グロ一ブラ グ本体の製造方法の説明図。
図 1 2 7は第 5 9の実施の形態における、 グローブラグ本体の断面図 c 発明を実施するための最良の形態
以下本発明を実施するための最良の形態について好ましい例によって 説明する。 各実施の形態の説明に入る前に、 以下の実施の形態と図面の 関係、 並びに該当するクレームの関係を次の表に示す。 この表は参考的 なものであり、 限定的に解釈されるべきではない。
実施の形態/図面/ク レーム対応表
Figure imgf000066_0001
« 第 1の実施の形態 >〉
以下、 ディーゼルエンジンの始動補助装置として用いられるセラ ミ ツ クグロ一プラグ (以下、 単にグローブラグという) に本発明を具体化し た第 1の実施の形態を図面に従って説明する。 つま り、 本実施の形態の グローブラグは、 ディーゼルェンジンのシリ ンダへッ ドに形成された燃 焼室 (渦流室) に設けられるものであって、 そめ一部が燃焼室内にさら されるようになつている。 そして、 同グロ一プラグは、 エンジンの低温 始動時において、 燃料噴射ノズルより噴射される燃料の着火及び燃焼を 促進させる役割をなす。 また、 本実施の形態におけるグローブラグは、 上記の始動補助機能に加えて、 燃料燃焼時の燃焼火炎帯に存在する活性 イオンを検出する役割をもなす。
ここで、 図 1 には、 本実施の形態におけるグローブラグ 1の全体構成 を示す。 同図において、 グローブラグ 1は略円筒状をなす金属製のハウ ジング 4を有しており、 このハウジング 4の外周面には当該グロ一ブラ グ 1を後述するシリ ンダへッ ドに取り付けるための雄ねじ部 4 3及び六 角部 4 4が形成されている。 ハウジング 4の上部には、 管状のプロテク シヨンチューブ 4 6が溶着されている。
また、 ハウジング 4にはセラミ ック発熱部 6が保持されており、 この セラミ ック発熱部 6は、 導電性を有する U字状の発熱体 7 と、 絶縁性を 有する耐熱性絶縁体 8 と、 発熱体 7に一体成形されたイオン電流検出用 電極 1 4 と、 発熱体 7の両端に接続されるとともに絶縁体 8に埋設され た 2本のタングステンリード線 9 a、 9 bとから構成されている。 詳しくは、 発熱体 7はその大部分が耐熱性絶縁体 8内に埋設され、 強 固に保持されるものであるが、 図 2の要部拡大図に示すように、 発熱体 7先端に形成されたイオン電流検出用電極 1 4の端面は、 耐熱性絶縁体 8の外周面と同一面上に設けられている。 この場合、 発熱体 7とイオン 電流検出用電極 14とは一体的に成形されているため、 両部材 7、 14 は常に電気的に接続された状態となっている。 かかる構成において、 発 熱体 7の露出部と後述するディーゼルエンジンの渦流室 1 7 (破線部) の内壁とは、 イオン電流を検出するための対向電極を形成する。
また、 図 1において、 各タングステン リー ド線 9 a、 9 bの上端には、 耐熱性絶縁体 8内に埋め込まれた導電性チッブ 1 0 a、 1 0 bが接続さ れており、 導電性チヅブ 1 0 a、 1 0 bには各々にリード線 1 1 a、 1 1 bが接続されている。 これら 2本のリード線 1 1 a、 l i bがグロ一 プラグ 1の外部信号入力線となっている。 なお、 ハウジング 4及びプロ テクシヨ ンチューブ 46と、 リード線 1 1 a、 l i bとの間は、 絶縁チ ユーブ 1 2 D及びゴムブッシュ 1 2 Eにより電気的に絶縁されている。 リード線 1 1 a、 1 1 bは、 ゴムブッシュ 1 2 Eと共にプロテクション チューブ 46のカシメ締め付け力により固定されている。
以下に、 セラ ミ ック発熱部 6の詳細な構成について説明する。 つまり、 セラミ ツク発熱部 6の発熱体 7、 ィオン電流検出用電極 14及び耐熱性 絶縁体 8は、 いずれも導電性セラミ ック粉末 (本実施の形態では、 珪化 モリブデン M 0 S i 2 粉末) と絶縁性セラミ ック粉末 (本実施の形態で は、 窒化珪素 S i a N4 粉末) との混合物よ りなる焼結体にて構成され ている。 ただし、 発熱体 7及びイオン電流検出用電極 14では Mo S i 2 粉末の平均粒径が S i3 N 粉末のそれよりも小さ く、 耐熱性絶縁体 8では Mo S i 2 粉末の平均粒径が S i a N 粉末のそれと同じ若しく はそれより も大きく してある。 すなわち、 各粉体の粒径を変更すること により発熱体 7及びィオン電流検出用電極 1 4と、 耐熱性絶縁体 8とを 作り分けるようにしている。 また、 発熱体 7及びイオン電流検出用電極 14と、 耐熱性絶縁体 8とについて、 Mo S i 2 粉末と S i 3 N 4 粉末 との配合割合が変えられている。
より具体的な数値を示せば、 発熱体 7及びィオン電流検出用電極 14 では M 0 S i 粉末の平均粒径が 1〜; m、 S i 3 N4 粉末の平均粒 径が 1 0〜 20〃mであり、 耐熱性絶縁体 8では M o S i 2 粉末の平均 粒径が約 1. 1〃m、 S i 3 N 4 粉末の平均粒径が約 0. 7 mとなつ ている。 また、 発熱体 7及びイオン電流検出用電極 1 4と耐熱性絶縁体 8とについて、 Mo S i2 粉末と S i 3 N4 粉末との配合割合を示せば、 前者 (発熱体 7及びイオン電流検出用電極 14) は Mo S i 2 粉末を 6 0〜70wt %、 S i N 粉末を 40〜30wt %とし、 後者 (耐熱 性絶縁体 8 ) は M o S i 2 粉末を 20〜30wt %、 S i 3 N 4 粉末を 80〜 70 w t %としている。 また、 両者とも、 助材として Y 2 03 と A 1 0 とを合計 1 Ow t %程度添加している。
上記構成を有するセラミ ック発熱部 6において、 発熱体 7及びイオン 電流検出用電極 14では、 小径の M o S i 2 粉末 (導電性セラ ミ ック粉 末) が大径の S i N4 粉末 (絶縁性セラミ ツク粉末) を取り囲んで互 いに連なっており、 それにより発熱体 7及びイオン電流検出用電極 1 4 に電流が流れ、 発熱体 7が発熱される。 一方、 耐熱性絶縁体 8では、 大 径の M 0 S i 2 粉末 (導電性セラミ ック粉末) 間に小径の S i 3 N4 粉 末 (絶縁性セラミ ック粉末) が介在するため、 両者は直列に並んだ状態 となり発熱体 7に比べて抵抗が大き く絶縁層を形成する。
ここで、 セラミ ツク発熱部 6の製造方法を図 3〜図 6を用いて説明す る。 先ず M o S i2 粉末と S i 3 N4 粉末との混合物にバインダーを混 練してペース ト化し、 発熱体 7、 イオン電流検出用電極 1 4、 耐熱性絶 縁体 8を各々に所望の形状に射出成形する。 このとき、 図 3に示すよう に、 複数個の発熱体 7及びイオン電流検出用電極 14は連結バー 2 8を 介して連結状態で、 かつタングステンリード線 9 a、 9 bが接続された 状態で成形される。 そして、 各々の発熱体 7及びイオン電流検出用電極 1 4を、 イオン電流検出用電極 1 4の途中部 (図 3の一点鎖線部) にて 切断する。
一方、 図 4に示すように、 耐熱性絶縁体 8を形成するための絶縁部 8 a、 8 bは、 2つ一組の半円柱状に形成され、 それら絶縁部 8 a、 8 b の対向面にはそれそれに、 発熱体 7、 リード線 9 a、 9 b、 イオン電流 検出用鼋極 1 4を所定部位に収容するための溝 2 9が形成されている。
そして、 図 5に示すように、 絶縁部 8 a及び 8 bで包囲するように、 溝部 2 9に発熱体 7及びィオン電流検出用電極 1 4の一体物を配置し、 1 7 0 0〜 1 8 0 0 °Cにてホッ トブレスする。 その後、 図 6の破線に沿 うようにして、 セラミ ック発熱部 6の外周部を切削加工すると、 先端が 球状でかつ円柱状のセラミ ック発熱部 6が得られる。 このとき、 発熱体 7はその全体が耐熱性絶縁体 8の埋設されるのに対し、 イオン電流検出 用電極 1 4の端面はセラミ ック発熱部 6の先端部において露出すること となる。
次に、 上記のように構成されるグロ一プラグ 1 を用いたイオン電流検 出システムを図 7、 図 8を用いて説明する。 なお、 図 7、 図 8は共に、 本実施の形態におけるィオン電流検出システムの概要を示す構成図であ る。 このうち図 7は、 グロ一プラグ 1 (発熱体 7 ) の発熱状態、 すなわ ちェンジン始動時における燃料の着火及び燃焼を促進するための状態を 示し、 図 8は、 燃料燃焼に伴うイオン電流をグローブラグ 1 により検出 する状態を示す。
各図において、 ディーゼルエンジンのシリ ンダへッ ド 4 5にはねじ孔 1 6が形成されており、 このねじ孔 1 6にグロ一プラグ 1が螺着されて いる。 すなわち、 グロ一プラグ 1 をシリ ンダへヅ ド 4 5に螺着する際に は、 六角部 4 4を所定の工具で挟み、 同プラグ 1の雄ねじ部 4 3をねじ 孑し 1 6にねじ入れるようにする。
グローブラグ 1のセラ ミ ック発熱部 6の先端部は、 シリ ンダへヅ ド 4 5に形成された渦流室 1 7に突出配置されている。 この渦流室 1 7には ビス トン 1 8上部に設けられた主燃焼室 1 9が連通されており、 渦流室 1 7は燃焼室の一部をなす。 渦流室 1 7には燃料噴射ノズル 20の先端 部が配設されており、 この燃料噴射ノズル 2 0から渦流室 1 7内に燃料 が噴射されるようになつている。
また、 1 2 V (ボルト) の直流電源からなるバッテリ 34とグローブ ラグ 1との間にはスィ ツチ回路 25が配設されており、 このスィ ッチ回 路 2 5は、 2つの 2位置切換えスイ ッチ 2 5の操作状態に応じてバッテ リ 34とグローブラグ 1との間の電気経路を切り換える。 スィ ッチ回路
25は、 電子制御装置 (以下、 E CUという) 30からの指令信号が入 力されない通常時には発熱体発熱状態 (図 7の状態) を保持し、 E CU
30からの指令信号が入力されると、 発熱体発熱状態からイオン電流検 出状態 (図 8の状態) に移行する。 このとき、 切換えスィ ッチ 25 2つ の可動片は連動する。
つま り、 切換えスィ ツチ 25の端子 2 3 a、 24 aにはグロ一プラグ 1のリード線 1 1 a、 l i bがそれそれに接続されている。 また、 切換 えスィ ッチ 2 5は、 端子 2 3 a及び 24 aに対して選択的に接続される 各々 2つずつの接点 2 3 b、 2 3 c及び 24 b、 24 cを有する。
かかる場合において、 発熱体発熱状態では、 図 7に示すように、 端子 23 aと接点 2 3 bとの間が閉路されるとともに、 端子 24 aと接点 2 4 bとの間が閉路されている。 このとき、 グローブラグ 1の一方のリー ド線 1 1 aには端子 2 3 a及び接点 23 bを介してバッテ リ 34のブラ ス側が接続されるとともに、 他方のリー ド線 1 1 bには端子 24 a及び 接点 24 bを介してバッテリ 34のマイナス側が接続されている。 すな わち、 発熱体 7は発熱状態に保持される (このとき、 図 7中の 2点鎖線 で示す経路を電流が流れる) 。 なお、 接点 2 4 bは、 シリ ンダへヅ ド 4 5の一部にも接続されている。
また、 イオン電流検出状態では、 図 8に示すように、 端子 2 3 aと接 点 2 3 cとの間が閉路されるとともに、 端子 2 4 aと接点 2 4 cとの間 が閉路される。 すなわち、 切換えスィ ツチ 2 5は共にオープン状態とな る。 この場合、 切換えスィ ッチ 2 3に並列に設けられた電気経路 (図 8 の 2点鎖線で示す経路) のイオン電流検出用抵抗 2 6を介して、 バッテ リ電圧がリード線 1 1 aに印加される。 つま り、 セラ ミ ツク発熱部 6の 先端に形成されたイオン電流検出用電極 1 4 とシリ ンダへッ ド 4 5 との 間にバッテリ電圧が印加されることとなり、 燃焼火炎帯の活性イオンの 発生に伴い図 8中に 2点鎖線で示す経路でィオン電流が流れる。
なお、 イオン電流検出用抵抗 2 6の抵抗値は 5 0 0 k Ω程度であって、 このィオン電流検出用抵抗 2 6を流れるィオン電流は、 当該抵抗 2 6の 両端の電位差として電位差計 2 7により検出される。
ここで、 イオン電流の検出原理を略述する。 燃料噴射ノズル 2 0によ る噴射燃料が渦流室 1 7で燃焼に供されると、 その燃焼火炎帯ではィォ ン化されたプラスイオンとマイナスイオンが大量に発生する。 このとき、 イオン電流検出用電極 1 4とそれに対面するシリ ンダへヅ ド 4 5との間 にバッテリ電圧が印加されることにより、 イオン電流検出用電極 1 4に はマイナスィオンが捕獲されるとともに、 シリ ンダへッ ド 4 5にはブラ スイオンが捕獲される。 その結果、 図 8に示す電流経路が形成され、 こ の電流経路を流れるィオン電流がィオン電流検出用抵抗 2 6両端の電位 差として検出される。
一方、 E CU 3 0は、 C P U、 R OM, R AM, 入出力回路等からな る周知のマイ クロコ ンビュ一夕や A/D変換器 (共に図示略) を中心に 構成され、 電位差計 2 7により検出された検出信号を入力する。 また、 E C U 3 0には、 ェンジン冷却水の温度を検出するための水温センサ 3 6の検出信号や、 エンジンクランク角に応じてエンジン回転数を検出す るための回転数センサ 3 2の検出信号が入力され、 E C U 3 0は各セン サ 3 6、 3 2の検出信号に基づいて水温 T w、 エンジン回転数 N eを検 知する。
上記 E C U 3 0は、 ディーゼルエンジンの低温始動時において、 グロ —プラグ 1の発熱体 7を発熱させて燃料の着火及び燃焼を促進させる。 また、 ディーゼルエンジンの暖機完了時において、 スィ ッチ回路 2 5に 切換え指令信号を出力し、 本システムの回路をイオン電流検出状態とし て燃焼イオン電流を検出する。 なお、 エンジン始動当初においては、 ス イ ッチ回路 2 5は発熱体発熱状態に保持されるようになっている。 以下、 図 9のフローチャー トを用いて、 スィ ッチ回路 2 5の切換え処理を説明 する。 図 9は、 所定の時間の割り込み処理により実行される。
さて、 図 9の処理がスター トすると、 E C U 3 0は、 先ずステヅプ 1 1 0でエンジン暖機完了後であり、 かつスィ ヅチ回路 2 5がイオン電流 検出状態にあるか否かを判別する。 エンジン始動当初においては、 ステ ップ 1 1 0が否定判別され、 E CU 3 0は続くステップ 1 2 0で水温 T w及びエンジン回転数 N eを読み込む。
その後、 E C U 3 0は、 ステップ 1 3 0で水温 Twが所定の暖機完了 温度 (本実施の形態では、 6 0 °C) 以上であるか否かを判別するととも に、 ステッ プ 1 4 0でエンジン回転数 N eが所定回転数 (本実施の形態 では、 2 0 0 0 r p m ) 以上に達しているか否かを判別する。 かかる場 合、 ステップ 1 3 0、 1 4 0が共に否定判別されれば、 E C U 3 0は、 エンジンの暖機が完了しておらず、 グローブラグ 1 (発熱体 7 ) による 発熱が必要であるとみなし、 ステップ 1 5 0に進む。 また、 ステップ 1 3 0、 1 4 0のいずれかが肯定判別されれば、 E CU 3 0は、 エンジン の暧機が完了した、 あるいはグローブラグ 1 (発熱体 7 ) による発熱が 不要であるとみなし、 ステップ 1 6 0に進む。
ステップ 1 5 0に進んだ場合、 E C U 3 0は、 スィ ツチ回路 2 5を発 熱体発熱状態 (図 7の状態) に保持し、 その後本処理を終了する。 この 状態では、 グロ一プラグ 1の発熱作用によって燃料の着火及び燃焼が促 進される。
また、 ステヅブ 1 6 0に進んだ場合、 E C U 3 0は、 スィ ッチ回路 2 5を発熱体発熱状態からイオン電流検出状態 (図 8の状態) に移行させ、 その後本ルーチンを終了する。 この状態では、 イオン電流検出用抵抗 2 6により燃料燃焼時に生じるイオン電流が検出される。
なお、 ステップ 1 4 0が肯定判別されてステヅブ 1 6 0に進む場合と は、 例えばレーシング状態で一時的にエンジン回転数 N eが上昇する場 合が考えられ、 この場合にはエンジン暖機が未だ完了していない。 した がって、 スィ ッチ回路 2 5が一旦イオン電流検出状態に移行したとして も、 E CU 3 0は、 次回処理時のステップ 1 1 0を否定判別し、 ステツ プ 1 3 0、 1 4 0の判別処理を再び実施する。 そして、 一時的なェンジ ン回転数 N eの上昇が収まり、 同回転数 N eが低下すると (N eく 2 0 00 r pm) 、 スィ ッチ回路 2 5を再度、 発熱体発熱状態に復帰させる (ステップ 1 5 0 ) 。
その後、 水温 Tw 6 0。Cとなりエンジン暖機が完了すると、 E CU 3 0はステップ 1 1 0を肯定判別する。 そして、 エンジン暖機が完了し、 かつスィ ツチ回路 2 5がイオン電流検出状態に移行した後には、 E CU 3 0はステ ッ プ 1 1 0を毎回肯定判別する。 これにより、 当該スィ ッチ 回路 2 5がイオン電流検出状態 (図 8の状態) のままで保持されること となる。 図 1 0は、 オシロスコープを用いて燃料燃焼時に発生するイオン電流 を親察した際の電流波形図である。 同図において、 圧縮 T D C直後 (燃 料噴射時期の直後) に電圧が急上昇している波形が燃料の燃焼によるィ オン電流波形であり、 A点が燃焼の開始位置、 すなわち着火時期に相当 する。 また、 このイオン電流波形には、 2つの山が観測される。 つまり、 燃焼初期には、 拡散火炎帯の活性イオンにより第 1の山 B 1が観測され、 燃焼中後期には筒内圧上昇による再イオン化により第 2の山 B 2が観測 される。
この場合、 E C U 3 0は、 イオン電流波形の第 1の山 B 1から実際の 着火時期を検出するとともに、 検出された実際の着火時期と目標着火時 期との差をなくすべく着火時期のフィー ドバック制御を実施する。 また、 E C U 3 0は、 イオン電流波形の第 2の山 B 2から異常燃焼、 失火等の 燃焼状態を検出し、 その検出結果を燃料噴射制御に反映させる。 こう し てイオン電流をエンジンの燃料噴射制御に反映させることにより、 きめ 細かくエンジンの運転状態を制御することが可能となる。
次に、 本実施の形態における効果を説明する。
( a ) 本実施の形態のグロ一プラグ 1は、 耐熱性絶縁体 8 と、 耐熱性 絶縁体 8に埋設され、 一対のリード線 9 a、 9 b ( 1 1 a , 1 1 b ) に よって通電されて発熱する発熱体 7 と、 発熱体 7に一体的に形成され、 燃焼火炎中のイオン化の状態を検出するためのイオン電流検出用電極 1 4とを備える。 つま り、 イオン電流検出用電極 1 4は、 その一部 (端面) が渦流室 1 7内で発生する火炎にさらされるように構成した。 かかる構 成によれば、 イオン電流の検出時において、 イオン電流検出用電極 1 4 とそれに近接する渦流室 1 7の内壁とは、 燃料燃焼時に発生する燃焼ィ オン (ブラス及びマイナスイオン) を捕獲するための 2電極を形成する。 その結果、 非常に簡単な構成であるにもかかわらず、 精度良くイオン電 流を検出することができ、 安価なィオン電流検出用センサとしてのグロ
—プラグ 1 を提供することができる。
( b ) また、 本グロ一プラグ 1では、 イオン電流検出用電極 1 4の大 部分が耐熱性絶縁体 8に埋設され、 その一部のみが外部に露出している ため、 グローブラグ 1外周に若干量の力一ボンが付着したとしても従来 技術 (米国特許第 4、 7 3 9、 7 3 1号) のように電極とハウジング (アース側) との間が導通されてイオン電流が誤検出されるといった不 具合が生じにく くなる。 特に本実施の形態の構成では、 ィオン電流検出 用電極 1 4の露出部がグローブラグ 1の先端部に設けられているため、 当該露出部と渦流室 1 7 とが十分に離間しており、 上記のような不具合 をより好適に解消することができる。
なお、 グロ一プラグ 1の使用に伴ってその外周に付着する若干量の力 一ボンは発熱体 7の発熱動作 (例えば、 エンジンの低温始動時における グロ一動作) によって焼き切られる。 その結果、 イオン電流の検出に際 しても長期にわたってその検出性能を保持することができる。
( c ) さらに、 かかる構成において、 発熱体 7自体は、 耐熱性絶縁体 8の内部に埋設されているため、 酸化消耗による発熱特性の変化を招く ことはなく、 長期にわたって高い発熱性能を維持することができる。 ま た、 淌流室 1 7内での熱的衝擎等に起因して発熱体 7が破損する等の不 具合も回避できる。 図面にて説明すれば、 発熱体 7が酸化消耗すると、 その抵抗値が変化し、 図 1 1 に示すように発熱性能が低下する (図に破 線で示す) 。 しかし、 本実施の形態では、 かかる不具合が回避できる (図の実線の特性が維持される) 。
( d ) さらに、 本実施の形態のグロ一プラグ 1においては、 イオン電 流検出用電極 1 4 (及び発熱部 7 ) を導電性セラミ ック材料により成形 した。 それによ り、 高温な燃焼ガスにさらされてもイオン電流検出用電 極 1 4の酸化消耗が最小限に抑えられ、 グロ一プラグ 1 によるイオン電 流検出性能の耐久性をより一層向上させることができる。
( e ) また、 グロ一プラグ 1のセラ ミ ック発熱部 6 (発熱体 7、 ィォ ン鼋流検出用電極 1 4、 耐熱性絶縁体 8 ) を、 導電性セラ ミ ック粉未 ( M 0 S i 2 粉末) と絶縁性セラ ミ ック粉末 ( S i 3 N 4 粉末) との混 合物により形成した。 そのため、 耐熱性及び耐消耗性に優れたセラ ミ ツ ク発熱部 6 を提供することができる。 また、 本セラミ ック発熱部 6は、 エンジンの低温始動時において良好なる始動補助機能を維持することが できる。
( f ) 上記グローブラグ 1の製作に際しては、 導電性セラ ミ ック粉末 と絶縁性セラミ ック粉末との混合物からセラ ミ ック発熱部 6 (発熱体 7、 イオン電流検出用電極 1 4、 耐熱性絶縁体 8 ) を成形するとともに、 耐 熱性絶縁体 8の外周面を切削加工してイオン電流検出用電極 1 4を外部 に露出させるようにした。 かかる工程によれば、 特に煩雑な製造工程を 要することもなく、 簡便な方法にて上記のイオン電流検出機能を兼ね備 えたグロ一プラグ 1 を製作することができる。
( ) 一方、 本実施の形態のイオン電流検出装置ではスィ ッチ回路 2 5を設け、 同スィ ッチ回路 2 5により、 発熱体発熱状態とイオン電流検 出状態とを切り換えるようにした。 すなわち、 上記 2つの状態の電圧印 加は共通のリード線 1 1 a、 1 1 bを用いて行われ、 両状態の切換えは スィ ッチ回路 2 5により選択的に実施される。 したがって、 本イオン電 流検出装置において、 その発熱体 7に接続されるリー ド線 1 1 a、 1 1 bの配線構成や、 その他ィオン電流の検出に関する構成が簡素化でき、 安価なイオン電流検出装置を提供することができる。
( h ) 併せて、 本実施の形態では、 ディーゼルエンジンに本イオン電 流検出装置を適用することとし、 バッテリ 3 4の一端に発熱体 7に接続 された片方のリー ド線 1 1 aを接続するとともに、 他端にシリ ンダへッ ド 4 5 を接続するようにした。 この場合、 イオン電流を検出するために 必要な対向電極 (イオン電流検出用電極 1 4及び渦流室 1 7の壁部) の 構成が簡素化できる。
( i ) 特に、 本実施の形態のイオン電流検出装置は、 ディーゼルェン ジンの燃焼室内での燃焼火炎帯の活性ィオンを検出するものであるため、 燃焼ィオン密度が高い状態でイオン電流を検出することができ、 その検 出精度を高めることができる。 したがって、 ディーゼルエンジンの燃焼 状態を精度良く検出し、 その検出結果を燃料噴射制御に反映させること も可能となる。
( j ) 本実施の形態では、 スィ ツチ回路 2 5 (接点 2 3 c ) を介する ことなく、 直接、 イオン電流検出用電極 1 4 とシリンダへヅ ド 4 5 との 間にバッテリ 3 4による供給電源を印加するように構成したため、 スィ ツチ回路 2 5の切換え動作によるノィズ等の悪影響を排除することがで きる。 すなわち、 スイ ッチ回路 2 5の各接点は酸化によって抵抗値が上 昇し、 このような接点抵抗の上昇時には元々微弱なイオン電流の検出が 困難になるおそれがある。 しかし、 本実施の形態では、 上記のような不 具合を解消することができる。
( k ) また、 本実施の形態では、 通常の車載バヅテリ 3 4によりィォ ン鼋流を検出するようにしたため、 イオン電流検出用の電源として車載 バッテリ以外の電源が不要となり、 構成の複雑化を招く ことなくイオン 電流検出装置を実現することができる。
次に、 本発明の第 2〜第 7の実施の形態におけるグロ一ブラグの構成 を図 1 2〜図 2 5を用いて説明する。 ただし、 各実施の形態の構成にお いて、 上述した第 1の実施の形態と同等であるものについては図面に同 一の記号を付すと共にその説明を簡略化する。 そして、 以下には第 1の 実施の形態との相違点を中心に説明する。
<< 第 2の実施の形態 > >
図 1 2は、 第 2の実施の形態におけるグロ一ブラグの要部を示す断面 図である。 上記第 1の実施の形態では、 耐熱性絶縁体 8の先端部 (球状 部) にイオン電流検出用電極 1 4を設けていたが、 本実施の形態では、 耐熱性絶縁体 8の側面部にイオン電流検出用電極' 1 4 Aを設けている。 つまり、 イ オン電流検出用電極 1 4 Aの端面は、 耐熱性絶縁体 8の側面 において同一面で露出している。 この場合にも、 上記第 1の実施の形態 と同様に、 本発明の目的を達成することができる。 なお、 イオン電流検 出用電極 1 4 Aは発熱体 7に一体成形され、 両部材 1 4 A、 7は電気的 に接続された状態となっている。 また、 発熱体 7自体は耐熱性絶縁体 8 によって保護されているため、 その発熱特性が損なわれることもない。 << 第 3の実施の形態 >>
図 1 3は、 第 3の実施の形態におけるグロ一ブラグの要部を示す断面 図である。 図 1 3のグローブラグでは、 耐熱性絶縁体 8の先端部におい てリード線 9 cを介してィオン鼋流検出用電極 1 4 Bが発熱体 7に電気 的に接続されている。 このとき、 発熱体 7 とイオン電流検出用電極 1 4 Bとの組成は同じになっている。 かかる構成においても、 本発明の目的 を達成することができる。
« 第 4の実施の形態 >>
図 1 4は、 第 4の実施の形態におけるグロ一ブラグの要部を示す断面 図である。 本実施の形態のグローブラグでは、 図 1 4に示すように、 耐 熱性絶縁体 8の先端部においてイオン電流検出用電極 1 4 Cの端面が比 較的広い面積を有することを特徴としている。 なお、 このイオン電流検 出用電極 1 4 Cは、 グロ一プラグを下方から見て横一字状をなす (図示 は省略する) 。 かかる構成においても、 本発明の目的を達成することが できる。 特に本構成では、 イ オン電流検出用電極 1 4 Cが燃焼火炎にさ らされる面積が広いため、 イオン電流をより一層精度良く検出すること が可能となる。
ここで、 図 1 4のグローブラグの製造方法の特徴部分について図 1 5、 図 1 6を用いて説明する。 つまり、 製造当初において、 発熱体 7及びィ オン電流検出用電極 1 4 Cは、 M o S i 2 粉末と S i 3 N 4 粉末との混 合物を射出成形することにより図 1 5の形状に成形される。 このとき、 図 1 5に示すように、 複数個の発熱体 7及びィオン電流検出用電極 1 4 Cが連結バー 2 8を介して連結状態で成形される。 そして、 各々の発熱 体 7及びィオン亀流検出用電極 1 4 Cを、 連結バー 2 8の途中部 (図 1 5の一点鎖線部) にて切断する。
その後、 発熱体 7及びイオン電流検出用電極 1 4 C等を耐熱性絶縁体 8にて包囲して 1 7 0 0〜 1 8 0 0 °Cにてホッ トプレスする。 そして図 1 6の破線に沿うようにして、 セラ ミ ツク発熱部 6の外周部を切削加工 すると、 先端が球状でかつ円柱状のセラ ミ ック発熱部 6が得られる。 こ のとき、 発熱体 7はその全体が耐熱性絶縁体 8の埋設されるが、 イオン 電流検出用電極 1 4 Cの端面はセラ ミ ツク発熱部 6の先端部において横 一字状に露出することとなる。
<< 第 5の実施の形態 >>
図 1 7は、 第 5の実施の形態におけるグローブラグの要部を示す断面 図である。 つまり、 上記各実施の形態では、 耐熱性絶縁体 8の外周面と ィオン電流検出用電極の露出端面とを同一面としていたが、 本実施の形 態では、 図 1 7に示すように、 ィオン電流検出用電極 14 Dを耐熱性絶 縁体 8の外周面よ り も突出させている。 この場合にも、 上記各実施の形 態と同様に、 本発明の目的を達成することができる。 また、 かかる構成 によれば、 ィオン電流検出用電極 1 4 Dの露出面積が大きくなるため、 イオン電流の検出精度が向上する。 なお、 イオン電流検出用電極 1 4 D の突出部の形状は、 円錐状、 角錐状、 円柱状、 J字状、 逆 T字状にする 等、 任意でよく、 さらにはその突出電極を複数個設けてもよい。
<< 第 6の実施の形態 >>
図 1 8 A、 図 1 8 B、 図 1 9 A、 図 1 9 Bは、 第 6の実施の形態にお けるグローブラグの要部を示す断面図である。 つまり、 上記各実施の形 態では、 発熱体とイオン電流検出用電極とを一体成形して電気的に接続 するか (第 3の実施の形態以外) 、 又は共通のリード線を介して電気的 に接続していた (第 3の実施の形態) 。 これに対して、 本実施の形態で は、 発熱体とイオン電流検出用電極とを別体に形成するとともに、 これ ら両部材 (発熱体及びイオン電流検出用電極) からそれそれ別のリード 線を取り出して当該両部材を電気的に接続している。
図 1 8A、 図 18 Bのグローブラグは、 耐熱性絶縁体 8の先端部 (球 状部) にイオン電流検出用電極 14 Eを設けた例を示す。 詳細には、 図 1 8 Aでは、 U字状の発熱体 7の両端からリード線 9 a、 9 bを取り出 すと共に、 そのうちの一方のリード線 9 bとィオン電流検出用電極 14 Eから取り出されたリード線 9 dとを、 耐熱性絶縁体 8内部にて接続さ せている。
また、 図 1 8 Bでは、 発熱体 7及びィオン電流検出用電極 1 4 Eと、 リード線 9 b、 9 d、 9 eの構造は図 1 8 Aと略同様であるが、 外部か らの信号入力部が異なる構成となっている。 つま り、 リー ド線 9 eは耐 熱性絶縁体 8の側面に露出しており、 この露出部は環状の導電体 5 5を 介して外部リー ド線 9 f に接続されている。 また、 リード線 9 b、 9 d は耐熱性絶縁体 8端面に設けられた導電層 5 7 により電気的に接続され ている。
一方、 図 1 9 A、 図 1 9 Bのグロ一プラグは、 耐熱性絶縁体 8の側面 に環状のイオン電流検出用電極 1 4 Fを設けた例を示す。 詳細には、 図 1 9 Aでは、 U字状の発熱体 7の両端から リード線 6 2、 6 3を取り出 すと共に、 そのうちの一方のリード線 6 3とィオン電流検出用電極 1 4 Fから取り出されたリード線 6 4とを、 耐熱性絶縁体 8内部にて接続さ せている。
また、 図 1 9 Bでは、 発熱体 7及びィオン電流検出用電極 1 4 Fと、 リード線 6 2〜 6 4 との構造は図 1 9 Aと略同様であるが、 外部からの 信号入力部が異なる構成となっている。 つま り、 リード線 6 2は耐熱性 絶縁体 8の側面に露出しており、 この露出部は環状の導電体 6 5を介し て外部リード線 6 6に接続されている。 また、 リード線 6 3、 6 4は耐 熱性絶縁体 8端面に設けられた導電体 6 7により電気的に接続されてい る
上記図 1 8 A、 図 1 8 B、 図 1 9 A図 1 9 Bのいずれの場合にも、 上 記各実施の形態と同様に、 簡単な構成でかつ精度良く イオン電流を検出 することができるとともに、 発熱体 7の発熱性能を長期にわたって維持 することができ、 本発明における所望の効果を得ることができる。 くく 第 7の実施の形態 >>
次に、 請求項 5、 8及び 9に記載の発明にかかる第 7の実施の形態を 説明する。 つま り、 上記第 1〜第 6の各実施の形態ではいずれも、 発熱 体とイオン電流検出用電極とを電気的に接続して構成していたが、 本実 施の形態では発熱体とィォン電流検出用電極とを電気的に絶縁して構成 することを特徴とし、 こう して構成されるグロ一プラグを用いたイオン 電流検出装置を具体化するものである。
図 2 0は、 本実施の形態におけるグローブラグ 1の要部を示す断面図 である。 同図において、 セラ ミ ック発熱部 6の耐熱性絶縁体 8には、 発 熱体 7 とイオン電流検出用電極 1 4 Gとが別体として埋設され、 当該発 熱部 6の先端にはイ オン電流検出用電極 1 4 Gの一部 (先端面) が露出 している。 発熱体 7の両端に接続された一対のリード線 7 2、 7 3のう ち、 一方のリード線 7 2は耐熱性絶縁体 8の側面から取り出されてハウ ジング 4に電気的に接続され、 他方のリード線 7 3はハウジング 4 とは 絶縁されつつ耐熱性絶縁体 8の外部に導かれている。 また、 イオン電流 検出用電極 1 4 Gに接続されたリー ド線 7 4は、 発熱体 7側のリ一ド線 7 3並びにハウジング 4に対して絶縁されつつ耐熱性絶縁体 8の外部に 導かれている。
ここで、 上記構成のセラ ミ ック発熱部 6の製造過程を図 2 1を用いて 簡単に説明する。 先ずは各実施の形態と同様に M o S i 2 粉末と S i 3
4 粉末との混合物にバイ ンダーを混練してペース トイ匕し、 発熱体 7、 イオン電流検出用電極 1 4 G、 耐熱性絶縁体 8を各々に所望の形状に射 出成形する。 このとき、 耐熱性絶縁体 8は半円柱状に分割形成されてお り、 その間に、 発熱体 7、 発熱体 7に接続されたリー ド線 7 2、 7 3、 イオン電流検出用電極 1 4 G及びそれに接続されたリード線 7 4が所定 位置、 すなわち、 耐熱性絶縁体 8に形成された溝部 7 5に収容配置され る。 そして、 発熱体 7及びイオン電流検出用電極 1 4 G等を耐熱性絶縁 体 8にて包囲しながら各部材を組み付けた後に、 その一体物を 1 7 0 0 〜 1 8 0 0 °Cにてホヅ 卜ブレスする。 さらにその後、 セラ ミ ツク発熱部 6の外周部を切削加工すると、 先端が球状でかつ円柱状のセラ ミ ック発 熱部 6が得られる。 このとき、 図 2 0に示すように、 発熱体 7はその全 体が耐熱性絶縁体 8の埋設されるのに対し、 イオン電流検出用電極 1 4 Gの端面はセラ ミ ック発熱部 6の先端部において露出することとなる。 次に、 上記のように構成されるグロ一プラグ 1 を用いたイオン電流検 出システムを図 2 2を用いて説明する。 同図において、 グロ一プラグ 1 のハウジング 4はエンジンのシリンダへヅ ド 4 5に螺着され、 同プラグ 1のセラミ ック発熱部 6の先端部は、 シリ ンダへヅ ド 4 5 に形成された 渦流室 1 7に突出配置されている。 渦流室 1 7には、 同室内 1 7に燃料 を噴射する燃料噴射ノズル 2 0の先端部が配設されている。
発熱体 7の一方のリード線 7 2は、 ハウジング 4を介してアースされ、 他方のリー ド線 7 3は、 グロ一リレー 7 6を介して定格 1 2 V (ボルト) のバヅテリ 3 4のプラス側に接続されている。 グロ一リ レー 7 6は E C U 3 0からの指令信号に応じて 0 N / 0 F Fされ、 通常時は 0 F F状態 に保持されている。 つまり、 E C U 3 0からの指令に従いグロ一リ レー 7 6が O Nされると、 発熱体 7はバッテリ 3 4からの電力供給によ り発 熱され、 同リ レー 7 6が 0 F Fされると、 当該発熱状態が停止されるこ ととなる。
また、 イオン電流検出用電極 1 4 Gに接続されたリード線 7 4は、 ィ オン電流検出用抵抗 2 6を介してパヅテリ 3 4のブラス側に常時接続さ れている。 したがって、 上記構成によれば、 燃料噴射ノズル 2 0による 燃料噴射に伴なう燃料の燃焼毎に、 その都度、 イオン電流が検出される こととなる。 なお、 イオン電流検出用抵抗 2 6の抵抗値は 5 0 O k Q程 度であって、 このイオン電流検出用抵抗 2 6を流れるイオン電流は、 当 該抵抗 2 6の両端の電位差として電位差計 2 7により検出され E C U 3 0に入力される。
以下、 図 2 3のフローチャートを用いて、 グロ一リ レー 7 6の切換え 処理を説明する。 図 2 3は、 ィ グニショ ンキーの◦ N操作に伴う電源投 入に従い E C U 3 0により実行される。
さて、 図 2 3の処理がスター トすると、 E CU 3 0は、 先ずステップ 2 0 1でエンジン暖機完了後であるか否かを判別する。 エンジン始動当 初においては、 ステップ 2 0 1が否定判別され、 E C U 3 0は続くステ ッブ 2 0 2で水温 T w及びェンジン回転数 N eを読み込む。
その後、 E CU 3 0は、 ステップ 2 0 3で水温 Twが所定の暖機完了 温度 (本実施の形態では、 6 0°C) 以上であるか否かを判別するととも に、 ステップ 2 04でエンジン回転数 N eが所定回転数 (本実施の形態 では、 2 0 0 0 r pm) 以上に達しているか否かを判別する。 かかる場 合、 ステップ 2 0 3、 2 04が共に否定判別されれば、 E CU 3 0は、 エンジンの暖機が完了しておらず、 グローブラグ 1 (発熱体 7 ) による 発熱が必要であるとみなし、 ステップ 2 0 5に進む。 また、 ステップ 2 0 3、 20 4のいずれかが肯定判別されれば、 E CU 3 0は、 エンジン の暧機が完了した、 あるいはグローブラグ 1 (発熱体 7 ) による発熱が 不要であるとみなし、 ステップ 2 0 6に進む。
ステップ 2 0 5に進んだ場合、 E CU 3 0は、 グロ一リ レー 7 6を 0 N状態とし、 その後ステップ 2 0 1に戻る。 この状態では、 グロ一ブラ グ 1の発熱作用によって燃料の着火及び燃焼が促進される。
また、 ステップ 2 0 6に進んだ場合、 E CU 3 0は、 グロ一リ レー 7 6 を ON状 態から O F F状態に移行させ、 その後ステップ 2 0 1に戻る c なお、 ステップ 2 0 4が肯定判別されてステップ 2 0 6に進む場合とは、 例えばレーシング状態で一時的にエンジン回転数 N eが上昇する場合が 考えられ、 この場合には、 一時的なエンジン回転数 N eの上昇が収ま り 次第、 グロ一リ レー 7 6が再度、 O N状態 (発熱体発熱状態) に復帰さ せられる (ステップ 2 0 5 ) 。 その後、 水温 T w≥ 60 °Cとなりェンジン暖機が完了するとグロ一リ レー 7 6が〇 F Fされ (ステップ 20 6 ) 、 それと共に E CU 30は、 ステヅプ 2 0 1を肯定判別してステッブ 20 7に進む。 そして、 E CU 30は、 ステップ 2 07で、 燃料噴射ノズル 20による燃料噴射時期の 夕イ ミ ングにおいてイオン電流検出用抵抗 2 6により検出された電流値 I pを読み込み、 続くステ ップ 208で当該電流値 I pが所定のしきい 値 I t h以上であるか否かを判別する。 この電流値 I pは、 セラ ミ ック 発熱部 6外周に付着した力一ボンにより流れる漏洩電流の値に相当する。
ステップ 208が否定判別された場合 ( I pく I t hの場合) 、 E C U 30はステップ 2 0 1に戻る。 かかる場合、 セラミ ツク発熱部 6外周 にカーボンが付着していない、 又は付着カーボンが許容量以下であると して、 グロ一リ レー 76が 0 F F状態のままで保持される。
一方、 ステップ 2 08が肯定判別されると ( I p^ I t hの場合) 、 E CU 30はステヅブ 20 9に進み、 グロ一リ レー 7 6をそれまでの 0 F F状態から ON状態 (発熱体発熱状態) に移行させる。 つまり、 ステ ヅブ 208が肯定判別された場合には、 セラ ミ ツク発熱部 6外周に許容 量を超える力一ボンが付着していると考えられる。 この場合、 付着力一 ボンに起因してイオン電流検出用電極 1 4 Gとアース側 (ハウジング 4 及びシリ ンダヘッ ド 45側) との間の絶縁抵抗が低下し、 漏洩電流が流 れる ( I p I t hとなる) 。 よって、 付着カーボンを焼き切るべく、 グロ一リ レー 7 6を ONさせて発熱体 7を発熱させる。
その後、 E CU 30は、 ステップ 2 1 0でグロ一リ レー 76の ON状 態を所定時間 (本実施の形態では、 2秒間) だけ保持し、 続くステップ 2 1 1でグロ一リ レー 76を O F F状態に復帰させる。 そして、 再びス テツブ 20 1に戻る。 それ以降、 E CU 30は、 ステップ 20 7で漏洩 電流を監視しつつ、 グロ一リ レー 7 6を最適状態で ON/ OF F制御す る。
なお、 本実施の形態では、 グロ一リ レー 7 6により請求項記載のスィ ツチング手段が構成されている。 また、 図 2 3のステップ 2 0 7が請求 項記載の漏洩電流検出手段に相当し、 ステップ 2 0 8〜 2 1 1 が請求項 記載の操作手段に相当する。
図 2 4 A、 図 2 4 Bは、 オシロスコープを用いて燃料燃焼時に発生す るイオン電流を観察した際の電流波形図である。 ただし、 図 2 4 Aは、 セラミ ヅク発熱部 6外周に力一ボンが付着していない状態について示し、 図 2 4 Bは、 セラミ ック発熱部 6外周にカーボンが付着した状態につい て示す。
図 2 4 Aにおいて、 燃料噴射のタイ ミ ング直後に電圧が急上昇してい る波形が燃料の燃焼によるィオン電流波形であり、 A点が燃焼の開始位 置、 すなわち着火時期に相当する。 このとき、 燃料噴射のタイ ミングで は、 電流値は略 「 0」 に保持されている。 また、 このイオン電流波形に は、 2つの山が観測される。 つまり、 燃焼初期には、 拡散火炎帯の活性 イオンによ り第 1の山 B 1 1が観測され、 燃焼中後期には筒内圧上昇に よる再イオン化により第 2の山 B 1 2が観測される。
この場合、 E C U 3 0は、 ィオン電流波形の第 1の山 B 1 1から実際 の着火時期を検出するとともに、 検出された実際の着火時期と目標着火 時期との差をなくすべく着火時期のフィ一ドバック制御を実施する。 ま た、 E C U 3 0は、 イオン電流波形の第 2の山 B 1 2から異常燃焼、 失 火等の燃焼状態を検出し、 その検出結果を燃料噴射制御に反映させる。 こう してィオン電流をエンジンの燃料噴射制御に反映させることにより、 きめ細かくエンジンの運転状態を制御することが可能となる。
一方、 図 2 4 Bにおいては、 燃料噴射のタイ ミ ングで許容レベル (し きい値 I t h ) を超える漏洩電流が観測される。 したがって、 当該状態 では、 発熱体 7の発熱作用によ り付着力一ボンの除去が実施される (図 2 3のステップ 2 0 9〜2 1 1が実施される) 。 かかる力一ボンの付着 状態において、 その状態を放置しておく と、 漏洩電流値が次第に大きく なり、 やがて第 1の山 B 1 1 との区別が困難になるおそれがあるが、 そ のような不都合も回避される。
ここで、 本実施の形態のイオン電流検出システムは、 図 2 5に示すよ うに構成してもよい。 図 2 5の構成では 2つの直流電源が設けられてお り、 その一方は発熱体 7を発熱させるための発熱体用電源 7 7であり、 他方はィォン電流を検出するためのィォン電流検出用電源 7 8である。 この場合、 発熱体 7の一方のリード線 7 3 と発熱体用電源 7 7 との間に は、 グローブラグ 1の発熱動作を 0 N / 0 F Fするためのグロ一リ レー 7 6が配設され、 ィオン電流検出用電極 1 4 Gのリード線 7 4 とイオン 電流検出用電源 7 8 との間には、 イオン電流検出用抵抗 2 6が配設され ている。 かかる場合にも、 常時、 イオン電流が検出されつつ発熱体 7の 発熱動作が操作できる。 なお、 発熱体用電源 7 7 としては例えば 1 2 V (ボル ト) の直流電源 (一般的な車載バッテリ) を用い、 イオン電流検 出用電源 7 8 としては例えば 5 0 V (ボルト) の直流電源を用いている。 以上、 第 7の実施の形態によれば、 上記各実施の形態と同様に、 非常 に簡単な構成であるにもかかわらず、 精度良くイオン電流を検出するこ とができるなどの効果が得られるのは勿論のこと、 その他にも以下に示 す効果が得られる。
(ィ) 本実施の形態のグロ一プラグ 1では、 発熱体 7 とイオン電流検 出用電極 1 4 Gとを絶縁させて構成した。 この場合、 発熱体 7 とイオン 電流検出用電極 1 4 Gとは別々の電源絰路にて通電されることになるた め、 発熱体 7を発熱させながらそれと同時にイオン電流検出用電極 1 4 Gによ りイオン電流を検出することができる (すなわち、 燃焼状態を把 握することができる) 。
(口) また、 本実施の形態では、 燃料噴射のタイ ミ ングにて漏洩電流 としての電流値 I pを検出し、 その電流値 I pが所定のしきい値 I t h 以上であれば一時的に発熱体 7 を発熱させるようグロ一リ レー 7 6を操 作するようにした (図 2 3のステップ 2 0 9〜 2 1 1 ) 。 つま り、 漏洩 電流としての電流値 I pに基づいてセラ ミ ック発熱部 6外周のカーボン 付着状態を推定し、 カーボン付着量が許容値を超えるとみなされる状態 であれば、 グローブラグ 1の発熱作用により付着カーボンを焼き切るよ うにした。 その結果、 常に所望のイオン電流波形が検出できることとな り、 その検出結果を用いた着火時期検出や失火検出等の処理を精度良く 実施することができる。 因みにかかる場合にも、 イオン電流の検出動作 を中断することなく、 カーボンの除去処理を実施することができるとい う有利な効果が得られる。
(ハ) また、 本実施の形態では、 燃料噴射のタイ ミ ングにて漏洩電流 (電流値 I p ) を検出するようにした。 つまり、 燃料噴射のタイ ミ ング とは、 ディーゼルエンジンの燃焼室圧力が上昇し、 かつ燃料の燃焼直前 の時期に相当する。 したがって、 上記のように力一ボンが付着した状況 下では、 確実に漏洩電流を検出することができる。
なお、 本発明は、 上記各実施の形態の他に次の形態にて実現できる。 ( 1 ) 上記各実施の形態では、 発熱体とイオン電流検出用電極とを同 一組成 (同一粒径) の混合物 (小径の M o S i 2 粉末と、 大径の S i 3 N 4 粉末との混合物) にて構成したが、 これを変更し、 発熱体とイオン 電流検出用電極とを異なる組成の混合物により構成してもよい。 かかる 場合、 両部材の組成を変えることにより、 発熱体の抵抗値とイオン電流 検出用電極の抵抗値とが異なる値となる。 例えばイオン電流検出用電極 に対しては、 導電性セラミ ック粉末としての M o S i 2 粉末の径を発熱 体よりも大きく し (又は、 絶縁性セラミ ック粉末としての S i 3 N 4 粉 末の径を小さく し) 、 その抵抗値を大きくする。 このような作り分けは グロ一プラグの用途に応じて行われる。
つまり、 イオン電流の検出結果を例えば失火検出に用いるのであれば、 イオン電流の有無だけを判定すればよいため、 イオン電流検出用電極の 抵抗値は比較的大きくすることができ例えば約 5 M Ω以下であればよい (ただし、 発熱体は 1 Ω程度) 。 また、 イオン電流の検出結果を例えば 着火時期検出に用いるのであれば、 イオン電流の立ち上がりを瞬時に検 出する必要があるのでイオン亀流検出用電極の抵抗はなるべく小さい方 が望ましい ( 5 0 0 k Ω以下が望ましい) 。 図面で説明すれば、 図 2 6 に示すように、 イオン電流検出用電極の抵抗値が大きくなるほど、 ィォ ン電流の立ち上がりが鈍くなる。
( 2 ) また、 上記各実施の形態では、 導電性セラミック粉末としての M o S i 2 粉末と、 絶縁性セラミック粉末としての S i 3 N 4 粉末との 粒径及び配合割合を変えることにより、 発熱体、 イオン電流検出用電極 及び耐熱性絶縁体を作り分けていたが、 これを変更してもよい。 例えば、 M 0 S i 2 粉末と S i 3 N 4 粉末との粒径だけを変えて前記各部材を作 り分けたり、 あるいは M o S i 2 粉末と S i 3 N 4 粉末との配合割合だ けを変えて前記各部材を作り分けたりしてもよい。 この場合、 「M o S i 2 粉末の粒径く S i 3 N 4 粉末の粒径」 とすれば抵抗値が小さくなつ て導通部材としての発熱体及びイオン電流検出用電極が成形でき、 「M o S i 2 粉末の粒径 > S i 3 N 4 粉末の粒径」 とすれば抵抗値が大きく なって絶縁部材としての耐熱性絶縁体が成形できる。 また、 各粉末の配 合割合を変更することについて述べれば、 M o S i 2 粉末の配合割合が 多くなるほど抵抗値が小さくなり、 S i 3 N 4 粉末の配合割合が多くな るほど抵抗値が大きくなる。 ( 3 ) 上記各実施の形態において、 グロ一プラグ 1の一端に 2つの端 子を設け、 これによ り 2線式のグロ一プラグを構成してもよい。 この場 合、 導電線としてのリード線 1 1 a、 1 1 bは、 前記 2つの端子に電気 的に接続されることとなる。
( 4 ) 上記第 1の実施の形態では、 イオン電流検出システム (図 7、
8 ) において発熱体発熱状態とイオン電流検出状態とを切り換えるため に 2つの 2位置切換えスィ ッチ 2 5からなるスィッチ回路 2 5を用いた が、 これを変更してもよい。 例えば、 大電流を制御可能な半導体スイ ツ チ ( トランジスタ、 サイ リス夕等) に変更してもよく、 上記 2つの状態 を切換え可能な手段であればよい。 また、 第 7の実施の形態におけるィ オン電流検出システム (図 2 2、 2 5 ) についても同様に、 スィ ッチン グ手段としてのグロ一リ レー 7 6を半導体スィ ツチ等にに変更してもよ い。
( 5 ) 上記第 1の実施の形態では、 発熱体発熱状態とイオン電流検出 状態とにおいて共通の直流電源 (車載バッテリ 3 4 ) を用いたが、 2つ の直流電源を用いる構成としてもよい。 具体的には、 発熱体 7を発熱さ せるための発熱体用電源と、 イオン電流を検出するためのイオン電流検 出用電源とを用意し、 例えば発熱体用電源として 1 2 V (ボルト) の直 流電源 (車載バッテリ) を用い、 ィオン電流検出用電源として 5 0 V (ボルト) の直流電源を用いる。
( 6 ) 上記第 1の実施の形態では、 E C U 3 0が実行する制御プログ ラム (図 9のルーチン) によってスイ ッチ回路 2 5を動作させ、 それに より発熱体発熱状態とイオン電流検出状態とを切り換えるように構成し ていたが、 これを変更してもよい。 例えば、 エンジン始動から所定時間 ( 1〜 2分程度) だけ発熱体発熱状態とし、 所定時間経過後は、 自動的 に発熱体発熱状態からイオン電流検出状態に切り換えるようにしてもよ い。 また、 上記 2つの状態の切換え動作を機械的に行わせるようにして もよい。 具体的には、 バイメタルとその変形によ り動作する切換えスィ ツチとを採用し、 同スィ ッチの動作によ り前記 2つの状態を切り換える ように構成してもよい。
( 7 ) 上記第 6及び第 7の実施の形態で記載したように、 発熱体とィ オン電流検出用電極とが別体にて構成される場合において、 イオン電流 検出用電極を下記の ( 7 — 1 ) 〜 ( 7— 5 ) に示す材料にて構成しても よい。
( 7— 1 ) 高融点金属にてイオン電流検出用電極を構成する。 因みに、 発熱体の発熱温度が 1 0 0 0〜 1 2 0 0。Cであることから、 1 3 0 0。C 以上の高融点材料が望ましい。 その具体例としては、 · I r、 R h、 R u、 O s等の貴金属、 及びその合金材料を用いる。 この場合、 前記貴金 属が絶縁性セラミ ック材としての窒化珪素に対し、 窒化物ゃ珪化物を生 成しないので、 焼結性が良好で、 かつ耐久性に優れたイオン電流検出用 電極が得られる。
' 貴金属と卑金属との合金を用いる。 この場合、 イオン電流検出用電極 の熱膨張係数を容易に調整することができる。
* 融点 1 3 0 0 °C以上の金属、 又はその合金 (N i、 C o、 W、 M o、 T i等) を用いる。 この場合、 イオン電流検出用電極を安価に製作でき る。 また、 上記と同様に、 焼結性及び耐久性に優れ、 さらに熱膨張係数 が容易に調整可能なイオン電流検出用電極が得られる。
• 融点 1 3 0 0 °C以上の金属、 又はその合金 (N i、 C o、 W、 M o、 T i等) の粉末と絶縁性セラ ミ ック材との混合物を用いる。 この場合、 絶縁体との接合性が良好なィオン電流検出用電極が得られる。
( 7 - 2 ) 導電性セラミ ック材料にてィオン電流検出用電極を構成す る。 その具体例としては、 金属の珪化物、 ホウ化物、 炭化物、 窒化物又 はその混合物を使用する。 かかる場合、 絶縁性セラ ミ ック材とイオン電 流検出用電極とを同時に焼成できるため、 その作業性が向上する。 併せ て、 上記導電性セラ ミ ック材料と、 A l 2 0 、 サイアロン (S i 3 N
4 、 A 12 03 等の化合物) 、 B N等の絶縁性セラ ミ ック材料との混合 物を使用することも可能である。
( 7— 3 ) 導電性ガラスにてイオン電流検出用電極を構成する。
( 7— 4 ) 半導体材料 (例えば、 S i C + S i 3 N4 ) にてイオン電 流検出用電極を構成する。 この場合、 常温では絶縁体として機能し、 高 温ではイオン電流検出用電極として機能する。
( 7 - 5 ) Na、 C a、 K、 M gといった不純物が所定値以下 (例え ば、 0. 5 %以下) の合金材料にてイオン電流検出用電極を構成する。 この場合、 イオン電流検出用電極の高温強度が増し、 熱衝撃等の性能が 向上する。 ここで、 不純物の含有量と曲げ強度との関連を示す実験結果 を図 27〜図 2 9に示す。 つま り、 図 2 7は、 温度 = 1 2 00 °Cの高温 条件下で、 C a、 K、 Naの不純物量 (%) と曲げ強度 (MP a) との 関係を示すグラフであって、 同グラフによれば、 各々の不純物量が 0.
5 %以下の場合に十分な曲げ強度 (約 7 00 MP a) が得られることが 分かる。 また、 図 2 8は、 温度 = 1 200 °Cの高温条件下で、 Na + C a + Kの不純物混合量 (%) と曲げ強度 (MP a) との関係を示すグラ フであって、 同グラフによれば、 不純物混合量が 0. 5 %以下の場合に 十分な曲げ強度 (約 700 MP a) が得られることが分かる。 さらに、 図 2 9は、 不純物量が各 0. 1 %以下、 C a量が 1 %、 K量が 1 %、 N a量が 1 %のそれそれについて、 温度 (°C) と曲げ強度 (MP a) との 関係を示すグラフであって、 同グラフによれば、 不純物量を各 0. 1 % 以下にした場合が最も曲げ強度 (高温強度) が高く、 不純物量を少なく した方が高温強度が高いことが分かる。 ( 8 ) 前記各実施の形態では、 イオン電流検出用電極を射出成形法にて 成形する旨を記載したが、 印刷法にてィオン電流検出用電極を成形して もよい (発熱部 7 も同様に印刷法にて成形してもよい) 。 また、 焼結体 として成形された当該電極を耐熱性絶縁体に組み込むようにしてもよレ、。 さらに、 グロ一プラグ 1の製造方法として、 下記の ( 8— 1 ) 、 ( 8— 2 ) 、 ( 8— 3 ) に示すような方法を適用してもよい。
( 8— 1 ) 図 3 0 A〜図 3 0 Dは、 耐熱性絶縁シ一 トを円柱状に卷回 してセラ ミ ック発熱部 6を作製するようにした製造方法を示す。 まずセ ラミ ック材料、 樹脂バインダーなどからなる原料を混合し、 薄板状のシ —ト 9 1 を作製する (図 3 0 A ) 。 次いで、 図 3 0 Bに示すように、 シ —ト 9 1の表面側に、 通電性ベース トを用いたスク リーン印刷により発 熱体部 9 2 とイオン電流検出用電極部 9 3 とを成形する。 このとき、 ィ オン電流検出用電極部 9 3は、 U字状をなす発熱体部 9 2の先端より幾 分突出した形状に設けられる。 また同様にして、 リード線部 9 4 a、 9 4 bを印刷成形する。 さらに、 図 3 0 Bの状態において、 シート 9 1の 表面側に、 セラ ミ ヅ ク材料と樹脂バイ ンダ一とからなるコ一ティ ング材 料をコート印刷する。 これは、 上記発熱体部 9 2やイ オン電流検出用電 極部 9 3等の印刷形成部分とシ一ト表面との間の段差をなく して平坦化 し、 後述のシート卷回時にシート 9 1 と中軸部との密着性を向上させる ために実施される。 なお、 シート 9 1の裏面には、 前記リード線部 9 4 a、 9 4 bと導通するように端子部 9 5 a、 9 5 bを導電性ペース 卜に より印刷形成しておく。
その後、 シー ト 9 1 と同様の材料 (セラ ミ ック材料、 樹脂パインダー 等からなる混合材) にて作製した円柱状の中軸部 9 6を用意し、 図 3 0 Cに示すように、 中軸部 9 6をシー ト 9 1 にて卷回する。 このとき、 発 熱体部 9 2及びイ オン電流検出用電極部 9 3が印刷されたシート表面が 内側になるようにシート 9 1が中軸部 9 6に巻き付けられる。 この図 3 0 Cの状態では、 シート 9 1の卷回方向の両端面 9 7、 9 8の間に、 軸 方向に延びる溝部 9 9が形成される。 この溝部 9 9は、 シート 9 1の卷 回方向の幅寸法を中軸部 9 6の外径寸法より も小さ くすることで形成さ れる。 なお、 シート 9 1の両端面 9 7、 9 8を接触させた後に、 重なり 合った一方の端面を軸方向に沿って切除し、 両者間に溝部 9 9を形成す るようにしてもよい。
その後、 図 3 0 Dに示すように、 溝部 9 9内にセラ ミ ック材料からな る絶縁被覆材 1 0 0を充填する。 さらに、 予備加熱によ り脱脂処置を施 した後、 本加熱を実施してシート 9 1 と中軸部 9 6 とを一体的に焼成す る。 このとき、 シート 9 1 と中軸部 9 6 とは、 焼成収縮のために密着接 合されるとともに、 溝部 9 9の間隙が狭められることになる。 そして、 リード線部 9 4 a、 9 4 bに接続された端子部 9 5 a、 9 5 13に〇 11メ ツキ及び N iメ ツキを施す。 最後に、 図 3 0 Dに示す円柱体の先端部を 球面状態に研削加工すると、 例えば図 2等に示すようなセラミ ック発熱 部 6が得られる。 このとき、 発熱体 7 (発熱体部 9 2 ) はその全体が耐 熱性絶縁体 8 (シー ト 9 1及び中軸部 9 6 ) に埋設されるのに対し、 ィ ォン電流検出用電極 1 4 (イオン電流検出用電極部 9 3 ) の端面はセラ ミ ック発熱部 6の先端部において露出することとなる。
( 8— 2 ) 図 3 1及び図 3 2 A〜図 3 2 Cは、 複数の耐熱性絶縁材料 を積層してセラミ ック発熱部 6を作製するようにした製造方法を示す。 図 3 1に示すように、 本実施の形態では先ず、 薄板状をなす第 1の積層 材 1 0 1 と、 ほぼ半円柱状をなす第 2及び第 3の積層材 1 0 2、 1 0 3 とが用意される。 これら第 1〜第 3の積層材 1 0 1 ~ 1 0 3は、 いずれ も電気絶縁性のセラ ミ ック材料の生成形体 (グリーンシート) であり、 セラミ ツク材料、 樹脂パイ ンダ一等からなる原料を混合してプレス成形 されている。 第 1の積層材 1 0 1 にはその表面側に、 通電性ペース トを 用いたスク リーン印刷によ り発熱体部 1 0 4 とイオン電流検出用電極 1 0 5 とが成形されている。 このとき、 イオン電流検出用電極 1 0 5は、 U字状をなす発熱体部 1 0 4の先端より幾分突出した形状に設けられて いる。 また同様にして、 リード線部 1 0 6 a、 1 0 6 bが導電性ペース トによ り印刷成形されている。
そして、 図 3 2 Aに示すように、 上記第 1の積層材 1 0 1を中央にし てその両面に第 2、 第 3の積層材 1 0 2、 1 0 3を重ね合わせ、 これら を予備加熱によ り脱脂処置を施した後、 本加熱を実施して第 1〜第 3の 積層材 1 0 1〜 1 0 3を一体的に焼成する。 その後、 図 3 2 Bに示すよ うに、 前記 ( a ) の一体物を円柱状に研削加工するとともに、 図 3 2 C に示すように、 リード線部 1 0 6 a、 1 0 6 bの端部に C uメ ヅキ及び N iメ ツキを施して端子部 1 0 7 とする。 最後に、 円柱体の先端部を球 面状態に研削加工すると、 例えば図 2等に示すようなセラ ミ ック発熱部 6が得られる。 このとき、 発熱体 7 (発熱体部 1 0 4 ) はその全体が耐 熱性絶縁体 8 (第 1〜第 3の積層材 1 0 1 ~ 1 0 3 ) に埋設されるのに 対し、 イオン電流検出用電極 1 4 (イオン電流検出用電極部 1 0 5 ) の 端面はセラ ミ ック発熱部 6の先端部において露出することとなる。
( 8 - 3 ) 図 3 3では、 いずれも簿板状をなす同様の耐熱性絶縁材料 (セラ ミ ック材料、 樹脂バイ ンダー等の混合材) からなる第 1〜第 5の 積層材 1 1 1〜 1 1 5が用意され、 そのうち、 中央に配置される第 3の 積層材 1 1 3の表面には、 、 通電性ペース トを用いたスク リーン印刷に より発熱体部 1 1 6 とイオン電流検出用電極部 1 1 7 とが成形されてい る。 このとき、 イオン電流検出用電極部 1 1 7は、 U字状をなす発熱体 部 1 1 6の先端より幾分突出した形状に設けられている。 また同様にし て、 リード線部 1 1 8 a、 1 1 8 bが導電性ペース トによ り印刷成形さ れている。
そして、 第 1〜第 5の積層材 1 1 1〜 1 1 5を重ね合わせ、 これらを 予備加熱により脱脂処置を施した後、 本加熱を実施して第 1〜第 5の積 層材 1 1 1〜 1 1 5を一体的に焼成する。 その後、 上記積層材の一体物 を円柱状に研削加工するとともに、 その先端部を球面状態に研削加工す ると、 例えば図 2等に示すようなセラミ ック発熱部 6が得られる。 この とき、 発熱体 7 (発熱体部 1 1 6 ) はその全体が耐熱成絶縁体 8 (第 1 〜第 5の積層材 1 1 1〜 1 1 5 ) に埋設されるのに対し、 イオン電流検 出用電極 1 4 (イオン電流検出用電極部 1 1 7 ) の H端面はセラミ ック 発熱部 6の先端部において露出することとなる。 かかる ( 8 - 3 ) の実 施の形態によれば、 最初に用意する複数の耐熱絶縁材がいずれも同様の シ一ト材でよいため、 例えば前記 ( 8— 2 ) の実施の形態に比べてあら かじめ用意しておく耐熱性絶縁材料の汎用性が向上することになる。 これら ( 8— 1 ) 、 ( 8— 2 ) 、 ( 8— 3 ) の製造方法によっても、 既述した特有な構成を有しかつ優れたイオン電流検出機能を備えたグロ 一プラグ 1を製造することができ、 その製造過程において煩雑な工程が 強いられるといった不都合が回避できる。
なお因みに、 既述したセラミ ック発熱体 6の製造過程において、 最初 に略円柱状の部材を作製し、 その部材の先端を球面状態に研削加工する ようにしていたものに対しても、 最初に直方体やその他の立方体を作製 した後に、 先端が球面でかつ円柱状のセラミ ック発熱体 6を研削加工す るようにその製造方法を変更してもよい。 また、 上記 ( 8— 2 ) 、 ( 8 一 3 ) の製造方法において、 耐熱性絶縁材料からなる積層材の枚数は任 意でよく、 これら複数の積層材のうちほぼ中央に配置される積層材に発 熱体及びイオン電流検出用電極を設ける構成であればよい。 さらに、 上 記製造方法において、 発熱体部とイオン電流検出用電極とを別体で設け てもよく、 要は、 最後の研削加工後にイオン電流検出用電極が露出する ように作製できるものであればよい (発熱体部とイオン電流検出用電極 とを別体に設ける場合には、 それらを設ける積層材を別々にしてもよい) ( 9 ) 上記各実施の形態では、 ォ一ルセラ ミ ック夕イブのグロ一ブラ グについて記述したが、 グローブラグの構成を変更してもよい。 例えば、 発熱体としてのコイル状の金属線 (例えば、 タングステン線) をセラミ ック材料からなる耐熱性絶縁体に埋設し、 その金属線の一部に、 燃焼火 炎にさらされるィォン電流検出用電極を電気的に接続する。 この場合に も、 イオン電流検出機能を兼ね備えた安価なグローブラグを提供するこ とができる。 また、 発熱体の発熱性能も長期にわたって維持できる。
( 1 0 ) 上記第 7の実施の形態では、 燃料噴射のタイ ミ ングで漏洩電 流 (電流値 I P ) を検出したが (図 2 3のステップ 2 0 7 ) 、 これを変 更してもよい。 例えば T D C前の所定クランク角にて漏洩電流を検出す るようにしてもよい。 この所定クランク角は、 回転数センサ 3 2の検出 信号から求められる所定番号のパルス出力タイ ミングとして与えられる。 グローブラグ外周に力一ボンが付着した場合、 露出電極とアース側との 絶縁抵抗は燃焼室内での圧力に依存する。 そのため、 漏洩電流の検出時 期は、 燃料の着火前であって筒内圧の高い状態、 すなわち圧縮行程時で あればよい。 ただし、 グローブラグ外周に多量のカーボンが付着した場 合には、 いずれのタイ ミングにおいても漏洩電流が観測されるため、 望 ましくは上記のように圧縮行程で漏洩電流を検出することとするが、 こ れに限定されるものではない。
( 1 1 ) また、 上記第 7の実施の形態では、 図 2 3のステップ 2 1 0 において、 あらかじめ設定されている所定時間 ( 2秒間) だけグロ一リ レ一7 6を O N状態 (発熱体発熱状態) で保持させたが、 この保持時間 を可変設定するようにしてもよい。 例えば図 2 3のステップ 2 0 7で読 み込まれた電流値 I pに応じて 0 N状態の保持時間を設定するようにし てもよい。 一例としては、 電流値 I p (漏洩電流) が大きくなるほど保 持時間が長くなるように設定する。 この場合、 付着力一ボンをより一層 確実に除去することができる。
( 1 2 ) 上記第 7の実施の形態におけるイオン電流検出システム (図 2 2 ) において、 破線枠で示す位置に定電流 · 定電圧回路 8 0を設けて もよい。 この場合、 発熱体発熱状態下 (グロ一リ レー 7 6が 0 Nの状態 下) においてイオン電流検出用電極 1 4 Gに印加される電圧が降下する といった不具合が回避できる。 その結果、 安定した検出精度が確保でき る。 また、 上記のように定電流 · 定電圧回路 8 0を追加しただけである ので、 煩雑な回路構成が強いられることはなく、 コス ト高騰を招く こと もない。
( 1 3 ) 上記各実施の形態では、 渦流室を有するディ一ゼルエンジン の燃焼室内における燃焼イオンを検出するイオン電流検出装置に本発明 のグロ一プラグを適用したが、 燃料を燃焼室内に直接噴射する、 いわゆ る直噴型エンジンに本発明のグローブラグを適用してもよい。 また、 他 の装置に本グローブラグを適用することもできる。 例えば、 ガソリ ンェ ンジンの排気管中で未燃燃料を燃焼させる装置において、 その未燃燃料 の燃焼に伴う燃焼イオンを本発明のグローブラグにより検出することも 可能である。 この場合、 当該装置により検出されたイオン電流から未燃 燃料の燃焼状態が判定できる。
<< 第 8の実施の形態 >>
第 8の実施の形態は先に図 1〜図 1 1 と共に説明した第 1の実施の形 態の変形例であるので、 以下に異なる点を説明する。 図 3 4は第 8の実 施の形態を示す図である。 なお、 以下の図 3 4〜図 3 6において、 燃料 噴射ノズル 2 0、 E C U 3 0、 センサ類等の第 1の実施の形態と同様の 構成については図示を省略する。
ハウジング 4には、 発熱素子部としてのセラミック発熱部 6が保持さ れており、 このセラミック発熱部 6は、 導電性を有する U字状の発熱体 7と、 絶縁性を有する耐熱性絶縁体 8と、 発熱体 7の両端に接続される とともに絶縁体 8に埋設された 2本のタングステンリ一ド線 9 a、 9 b とから構成されている。 発熱体 7はその大部分が耐熱性絶縁体 8内に埋 設され、 強固に保持されるものであるが、 図 3 7の要部拡大図に示すよ うに、 セラミ ック発熱部 6先端において当該発熱体 7の一部だけが耐熱 性絶縁体 8より露出した構成となっている。 かかる構成において、 発熱 体 7の露出部と後述するディーゼルエンジンの渦流室 1 7 (破線部) の 内壁とは、 イオン電流を検出するための対向電極を形成する。 すなわち、 第 1実施の形態ではイオン電流検出用電極 1 4が発熱体 7 と一体的に成 形されているが、 第 8の実施の形態では、 発熱体 7自体の一部が耐熱性 絶縁体 8から外部に露出しているのである。 また、 第 1の実施の形態で は単一の電源 (バッテリ 3 4 ) から発熱体 7へ供給する電流とイオン電 流検出用電極に供給する電流を得ているが、 後述するように第 8の実施 の形態ではこれらの電源を分けている。
以下に、 セラミック発熱部 6の詳細な構成について説明する。 セラミ ック発熱部 6の発熱体 7及び耐熱性絶縁体 8は、 いずれも導電性セラミ ック粉末 (本実施の形態では、 珪化モリブデン M o S i 2 粉末) と絶縁 性セラミ ツク粉末 (本実施の形態では、 窒化珪素 S i 3 N 4 粉末) の混 合物よりなり、 かつ配合割合を略同一にした焼結体により構成されてい る。 ただし、 発熱体 7では M o S i 2 粉末の平均粒径が S i 3 N 4 粉末 のそれよりも小さく、 耐熱性絶縁体 8では M 0 S i 2 粉末の平均粒径が S i N 粉末のそれと同じ若しくはそれよ りも大き く してある。 すな わち、 各粉体の粒径を変更することによ り発熱体 7 と耐熱性絶縁体 8 と を作り分けるようにしている。
上記構成を有するセラミ ック発熱部 6において、 発熱体 7では、 小径 の M o S i 2 粉末 (導電性セラ ミ ック粉末) が大径の S i 3 N 4 粉末 (絶縁性セラミ ック粉末) を取り囲んで互いに連なっており、 それによ り発熱体 7に電流が流れ、 同発熱体 7が発熱する。 一方、 耐熱性絶縁体 8では、 大径の M o S i 粉末 (導電性セラ ミ ック粉末) 間に小径の S i N 粉末 (絶縁性セラ ミ ヅク粉末) が介在するため、 両者は直列に 並んだ状態となり発熱体 7に比べて抵抗が大きく絶縁層を形成する。
また、 セラミ ヅク発熱部 6の製造方法としては、 先ず M o S i 2 粉末 と S i 3 N 4 粉末との混合物にパイ ンダ一を混練してベ一ス ト化し、 発 熱体 7 と耐熱性絶縁体 8とを各々に所望の形状に射出成形する。 そして、 発熱体 7を耐熱絶縁体 8で包み込むように配置して 1 7 0 0〜 1 8 0 0 。Cにてホッ トブレスした後、 セラミ ヅク発熱部 6 として円柱状に削り出 す。 さらに、 セラミ ック発熱部 6の先端部において、 耐熱性絶縁体 8を 切削加工し、 発熱体 7の一部を耐熱性絶縁体 8から露出させる。
次に、 上記のように構成されるグロ一プラグ 1を用いたイオン電流検 出システムについて説明する。 なお、 第 1の実施の形態を示す図 7は、 グローブラグ 1 (発熱体 7 ) の発熱状態、 すなわちエンジン始動時にお ける燃料の着火及び燃焼を促進するための状態を示し、 図 8は、 燃料燃 焼に伴うイオン電流をグローブラグ 1により検出する状態を示している が、 第 8の実施の形態では、 前者の発熱体発熱状態 (図 7の状態) が 「第 1の状態」 に相当し、 後者のイオン電流検出状態 (図 8の状態) が 「第 2の状態」 に相当する。
また、 本システムにおいては、 2つの直流電源が設けられており、 そ の一方は、 発熱体 7を発熱させるための発熱体用電源 3 4を構成し、 他 方はィオン電流を検出するためのィオン電流検出用電源 3 5を構成して いる。 なお、 本実施の形態では、 発熱体用電源 34として 1 2 V (ボル ト) の直流電源 (一般的な車載バッテリ) を用い、 イオン電流検出用電 源 3 5として 5 0 V (ボル ト) の直流電源を用いている。
上記各電源 3 4、 3 5とグロ一プラグ 1 とは、 2つの可動片 2 3、 2 4を有する 2位置切換えスィ ツチ回路 2 5を介して接続されており、 こ のスィ ッチ回路 2 5の切換え動作に伴い前記第 1、 第 2の状態が切り換 えられるようになつている。 スィ ヅチ回路 2 5は、 電子制御装置 (以下、 E CUという) 3 0からの指令信号が入力されない通常時にはイオン鼋 流検出状態を保持し、 E C U 3 0からの指令信号が入力されると、 前記 イオン電流検出状態を保ちつつ発熱体発熱状態となる。 このとき、 切換 えスィ ッチ 2 5の 2つの可動片 2 3、 2 4は連動する。
つまり、 切換えスィ ツチ 2 5の可動片 2 3、 2 4にそれそれ接続され る端子 2 3 a、 24 aにはグローブラグ 1のリード線 1 1 a、 l i b
(及びタングステンリード線 9 a、 9 b ) がそれそれに接続されている。 また、 切換えスィ ッチ 2 5は、 端子 2 3 a及び 2 4 aに対して選択的に 接続される各々 2つずつの接点 2 3 b、 2 3 c及び 2 4 b、 2 4 cを有 する。
かかる場合において、 発熱体発熱状態では、 図 34に示すように、 端 子 2 3 aと接点 2 3 bとの間が閉路されるとともに、 端子 24 aと接点
2 4 bとの間が閉路されている。 このとき、 グロ一プラグ 1の一方のリ — ド線 1 1 aには端子 2 3 a及び接点 2 3 bを介して発熱体用電源 34 のブラス側が接続されるとともに、 他方のリード線 1 1 bには端子 2 4 a及び接点 2 4 bを介して発熱体用電源 34及びイオン電流検出用電源
3 5のマイナス側が接続されている。 すなわち、 発熱体 7は発熱状態に 保持されている。 なお、 接点 2 4 bは、 シリ ンダへッ ド 4 5の一部にも 接続されている。
図 3 4の構成では、 常時イオン電流検出状態である。 すなわち、 グロ —プラグ 1の一方のリード線 1 l aには抵抗 2 6を介してィオン電流検 出用電源 3 5のプラス側が接続されるとともに、 他方のリード線 1 l b は端子 2 4 a、 2 4 bを介してィオン電流検出用電源 3 5のマイナス側 に接続されるか、 あるいはオープン状態となる。'その結果、 いずれの場 合もセラ ミ ック発熱部 6の先端に形成された発熱体 7の露出部とシリ ン ダへッ ド 4 5 との間にイオン電流検出用電源 3 5の電圧が印加され、 燃 焼火炎帯の活性イオンの発生に伴いイオン電流が流れる。
イオン電流検出用電源 3 5のブラス側と接点 2 3 c との間には、 所定 の抵抗値 (本実施の形態では、 1 0 0 k Ω ) を有するイオン電流検出用 抵抗 2 6が接続されており、 このイオン電流検出用抵抗 2 6を流れるィ オン電流は、 当該抵抗 2 6の両端の電位差として電位差計 2 7により検 出される。 なお、 本実施の形態では、 スィ ッチ回路 2 5がスイ ッチング 手段に相当し、 イオン電流検出用抵抗 2 6がイオン電流検出手段に相当 する。
<< 第 9の実施の形態 >>
図 3 5は、 第 9の実施の形態におけるイオン電流検出システムの概要 を示す構成図である。 先ず、 上記第 8の実施の形態との相違点を略述す れば、 上記第 8の実施の形態では、 発熱体用電源 3 4 とイオン ¾流検出 用電源 3 5 とを別個に設けていたが、 本実施の形態では、 上記実施の形 態におけるイオン電流検出用電源 3 5を発熱体用電源 3 4 (車載バッテ リ) と共用化している (その意味で第 1実施の形態と同様である) 。 つ ま り、 図 3 5に示すように、 スイ ッチ回路 2 5の接点 2 3 b、 2 3 cは 共に、 発熱体用電源 3 4のプラス側に接続されている。
この場合、 一般には発熱体用電源 3 4 として 1 2 V程度のバッテリが 使用されるため、 イオン電流検出用抵抗 2 6の抵抗値を電源電圧に応じ た最適値に設定する必要がある。 そこで、 本実施の形態では、 イオン電 流検出用抵抗 2 6の抵抗値を電圧の低下分に応じた大きな値に変更して いる ( 4 0 0 k Ω程度若しくはそれ以上が望ましい) 。
かかる場合において、 本発明者の実験結果によれば、 上記第 8の実施 の形態と略同じ精度のイオン電流検出結果が得られた。 通常のバッテリ 電源にてイオン電流が検出できる理由としては、 ディーゼルエンジンで は燃焼圧が高く、 かつ液滴な燃料が燃焼に供されるために燃焼イオン密 度が高くなるからであると考えられる。
本実施の形態によれば、 上記第 8の実施の形態と同様に、 構成が簡単 でかつ安価なィオン電流検出装置が提供でき、 本発明の目的を達成する ことができる。 また、 本実施の形態では、 既述の効果に加えて以下の効 果を得ることができる。 つま り、 ィオン電流検出用電源 3 5を発熱体用 電源 3 4に共用したため、 例えば車載バッテリ以外の電源が不要となり、 構成の複雑化を招く ことなく よ り一層安価なィオン電流検出装置を実現 することができる。 << 第 1 0の実施の形態 >>
図 3 6は、 第 1 0の実施の形態におけるイオン電流検出システムの概 要を示す構成図である。 本実施の形態は、 上記第 8の実施の形態のよう に発熱体 7 と渦流室 1 7の壁部との間に直接、 ィオン電流検出用電源 3 5を接続し、 かつ上記第 9の実施の形態のようにイオン電流検出用電源 3 5 を発熱体用電源 3 4 (車載バッテリ) と共用化した構成を有するも のである。 本実施の形態によれば、 上記第 8、 第 9の実施の形態と同様に、 構成 が簡単でかつ安価なイオン電流検出装置が提供でき、 本発明の目的を達 成することができる。 また、 本実施の形態では、 スィ ッチ回路 2 5のノ ィズゃ接点抵抗によるイオン電流検出の検出精度の低下を防ぐと共に、 電源の共用化により回路の簡素化を図ることができる。 くく 第 1 1の実施の形態 >>
図 3 7は、 第 1 1の実施の形態におけるイオン電流検出システムの概 要を示す構成図である。 本実施の形態の構成は、 第 1 0の実施の形態の 構成 (図 3 6の構成) を一部変形したものであり、 その特徴は、 発熱体 用電源 3 4 (車載バッテリ) のブラス側とイオン電流検出用抵抗 2 6 と の間に定電圧回路 8 0を設けていることである。
この定電圧回路 8 0は、 例えば増幅回路を含む出力負帰還回路を用い て構成され、 発熱体用電源 3 4のバッテリ電圧 V G (例えば 1 2ボルト 付近の直流電圧) を一定の定電圧 V i (例えば 1 0ボルト) に変換する。 かかる構成において、 図 3 7に示す発熱体発熱状態では、 発熱体 7の両 端にパッテリ電圧 V Gが印加され、 グローブラグは燃料の着火 ·燃焼を 促進させる。 また、 スィ ヅチ回路 2 5が切り換えられ、 イオン電流検出 状態になると (図示略) 、 発熱体 7の露出部とそれに隣接する渦流室 1 7 との間に定鼋圧 V iが印加され、 かかる状態下でイオン電流が検出さ れる。
本実施の形態の構成によれば、 パッテリ電圧 V Gの変動時においても、 微弱なイオン電流を精度良く検出することができる。 つま り、 ノ、'ッテリ 電圧 V Gの変動の影響を受けることなく イオン電流を検出することがで き、 その検出誤差を抑制することができる。 例えばイオン電流の波高値 や面積等を用いる失火検出時にも、 当該失火を精度良く検出することが でき、 エンジン燃焼状態を良好に制御することが可能となる。 くく 第 1 2の実施の形態 »
図 3 8は、 第 1 2の実施の形態におけるィオン電流検出システムの概 要を示す構成図である。 本実施の形態は、 多気筒エンジンに本発明のィ オン電流検出装置を適用した例を説明するものであり、 当該エンジンは # 1気筒〜 # 4気筒までの 4つの気筒を有する。' 各気筒のグロ一プラグ はいずれも上記各実施の形態と同様に、 発熱体 7の一部が耐熱性絶縁体 8から露出した構成を有する。 また、 各グローブラグの発熱体 7の一端 に接続されたタ ングステン リード線 9 aは、 いずれも切換えスィ ッチ 2 3の端子 2 3 aに接続され、 発熱体 7の他端に接続されたタングステン リード線 9 bは、 いずれも切換えスイ ッチ 2 4の端子 2 4 aに接続され ている。 つまり、 スィ ッチ回路 2 5に対して各気筒のグローブラグは並 列に接続されている。
上記構成のイオン電流検出装置では、 全気筒に対して発熱体発熱状態 とイオン電流検出状態との切換え動作が同時に行われる。 かかる場合、 図 3 9に示すように、 気筒毎の燃焼順序 (# 1→# 3→# 4→# 2→# 1 ) に合わせて、 時系列的に気筒毎にイオン電流が検出される。
本実施の形態の構成によれば、 スィ ッチ回路 2 5やイオン電流検出用 検出抵抗 2 6が共通化でき、 多気筒エンジンへの適用時においても、 簡 素化した構成を実現することができる。 この場合 イオン電流を気筒毎 に時系列的に検出し、 その検出結果を各気筒の燃焼状態制御 (着火時期 制御や、 失火検出制御等) に適用できる。 くく 第 1 3の実施の形態 >>
次に、 本発明にかかる第 1 3の実施の形態を図 4 0び図 4 1 を用いて 説明する。 図 4 0は、 第 1 3の実施の形態におけるィオン電流検出シス テムの概要を示す構成図である。 本実施の形態の構成は、 第 1 0の実施 の形態の構成 (図 3 6の構成) を一部変形したものであり、 その特徴と しては、 一方のタングステンリード線 9 aとアースとの間に増幅器から なる電圧計 5 1 Aを設けていることである。 この電圧計 5 1 Aの出力は E C U 3 0に入力される。 本構成によれば、 燃焼に伴うイオン電流発生 時には、 図 4 1 に示すとおり発熱体用電源 3 4のバッテリ電圧 ( 1 2ボ ル ト) を基準にしたイオン電流波形 (電圧波形) が得られる。
かかる場合、 以下に示す効果が得られる。 前記各実施の形態では、 ィ オン電流検出用抵抗 2 6の両端子間の電位差を検出するために、 その内 部構造が比較的複雑な差動増幅器にて構成される電位差計 2 7を用いて いた。 しかし、 本実施の形態では、 アースに対する電位差を測定する比 較的簡易な構造の増幅回路にて電圧計 5 1 (電圧検出器) が構成できる。 その結果、 イオン電流検出装置の簡素化が実現できる。
« 第 1 4の実施の形態 >>
次に、 本発明にかかる第 1 4の実施の形態を図 4 2及び図 4 3を用い て説明する。 図 4 2は、 第 1 4の実施の形態におけるィオン電流検出シ ステムの概要を示す構成図である。 本実施の形態の構成は、 第 8の実施 の形態の構成 (図 3 4の構成) を一部変形したものであり、 その特徴と しては、 一方のタングステンリード線 9 aとアースとの間に増幅器から なる電圧計 5 1 Bを設けるとともに、 その電圧計 5 1 Bのブラス側にコ ンデンサ 6 8を設けている。 この電圧計 5 1 Bの出力は E C U 3 0に入 力される。 また、 本構成では、 電源として比較的低電圧 ( 1 2ボル ト) の発熱体用電源 3 4 と、 比較的高電圧 ( 5 0ボルト) のイオン電流検出 用電源 3 5 とを有する。 このとき、 コンデンサ 6 8がない場合を想定すると、 イオン電流検出 時の電圧波形 (電流波形) は、 図 4 3に二点鎖線で示すようにイオン電 流検出用電源 3 5の電圧 ( 5 0ボル ト) を基準にしたものとなり、 電圧 計 5 1 Bにはその耐電圧を超える電圧が印加されてしまう。 これに対し て、 本実施の形態では、 コンデンサ 6 8により電源電圧の直流成分が力 ッ トされ、 その際のィオン電流波形に対応する電圧波形は図 4 3に実線 で示すとおり、 0ボルトを基準にしたものとなる。 したがって、 イオン 電流検出用電源 3 5の高電圧 ( 5 0 V ) が電圧計 5 1 Bに直接印加され ることはなく、 電圧計 5 1 Bに耐電圧を超える電圧が印加されるといつ た不具合が未然に防止できる。 くく 第 1 5の実施の形態 >>
次に、 本発明にかかる第 1 5の実施の形態を図 4 4及び図 4 5を用い て説明する。 図 4 4は、 第 1 5の実施の形態におけるイオン電流検出シ ステムの概要を示す構成図である。 本実施の形態の構成は、 第 8の実施 の形態の構成 (図 3 4の構成) を一部変形したものであり、 その特徴と しては、 ィオン電流検出用電源 3 5のアース側にィオン電流検出抵抗 7 5を設けるとともに、 その両端子間に電圧計 7 1を設けている。 この電 圧計 7 1の出力は E C U 3 0に入力される。
本構成によれば、 イオン電流波形に対応する電圧波形は、 図 4 5 に示 すように、 0ボルトを基準にしたものとなる。 したがって、 電圧計 7 1 (電圧検出器) の耐電圧を超える電源電圧を用いる場合であっても、 高 価でかつ複雑な構成の電圧計 7 1を必要とすることはない。
なお、 本発明は、 上記各実施の形態の他に次の形態にて実現できる。 ( 1 ) 上記各実施の形態では、 発熱体発熱状態 (第 1の状態) とィォ ン電流検出状態 (第 2の状態) とを切り換えるためのスィ ツチング手段 手段として 2つの 2位置切換えスィ ツチ 2 5からなるスィ ツチ回路 2 5 を用いたが、 これを変更してもよい。 例えば、 大電流を制御可能な半導 体スィ ッチ ( 卜ランジス夕、 サイ リス夕等) に変更してもよく、 上記 2 つの状態を切換え可能な手段であればよい。
( 2 ) 第 8の実施の形態では、 イオン電流検出用電源 3 5の極性と発 熱体用電源 3 4の極性とを同じにして構成したが、 これを逆極性にして もよい。 また、 イオン電流検出用電源と して交流電源を用いてもよい。 要は、 グロ一プラグ 1の発熱体 7 と渦流室 1 7の内壁 (シリ ンダへッ ド 4 5 ) との間に電位差を与える手段であればよい。
( 3 ) 上記各実施の形態において、 グローブラグ 1の一端に 2つの端 子を設け、 これにより 2線式のグロ一プラグを構成してもよい。 この場 合、 導電線としてのリード線 1 1 a、 1 1 bは、 前記 2つの端子に電気 的に接続されることとなる。
( 4 ) 上記各実施の形態では、 E C U 3 0が実行する制御プログラム によってスィ ッチ回路 2 5を動作させ、 それにより発熱体発熱状態 (第
1の状態) とイオン電流検出状態 (第 2の状態) とを切り換えるように 構成していたが、 これを変更してもよい。 例えば、 エンジン始動から所 定時間 ( 1〜 2分程度) だけ発熱体発熱状態とし、 所定時間経過後は、 自動的に発熱体発熱状態からィオン電流検出状態に切り換えるようにし てもよい。 また、 上記 2つの状態の切換え動作を機械的に行わせるよう にしてもよい。 具体的には、 スイ ッチング手段として、 パイメタル及び その変形により動作する切換えスィ ツチを採用し、 同スィ ッチの動作に より前記 2つの状態を切り換えるように構成してもよい。
( 5 ) また、 発熱体及び耐熱性絶縁体を、 導電性セラミ ック粉末とし ての M o S i 2 粉末と、 絶縁性セラ ミ ック粉末としての S i 3 N 4 粉末 との配合割合を変えることによって作り分けるようにしてもよい。 この 場合、 発熱体では M o S i 2 粉末の配合割合を多く して抵抗値を小さ く し、 耐熱性絶縁体では S i 3 N 4 粉末の配合割合を多く して抵抗値を大 きくする。
( 6 ) 上記第 1 1の実施の形態では、 発熱体用電源電源とイ オン電流 検出用電源とを共用化したシステムに定電圧回路を組み込んだ例を説明 したが、 勿論これに限定されるものではない。 発熱体用電源電源とィォ ン電流検出用電源とを別個に有するシステム (例えば、 第 8の実施の形 態で記載したシステム) において、 既述のような定電圧回路を組み込む ようにしてもよい。 この場合、 図 3 4のイオン電流検出用電源 3 5のプ ラス側とイオン電流検出用抵抗 2 6 との間に定電圧回路が設けられ、 ィ オン電流検出用電源 3 5による 5 0ボルト付近の直流電圧が一定電圧 (例えば 4 0ボルト) に変換される。 本構成によれば、 バッテリ電圧の 変動時においても、 微弱なイオン電流を精度良く検出することができる。
( 7 ) 上記実施の形態では、 グローブラグのセラミ ック発熱部の製造 方法として、 発熱体及び耐熱性絶縁体をそれぞれ射出成形法を用いたが、 これを変更してもよい。 例えば耐熱性絶縁体上に発熱体を印刷する等の 手法を用いてもよい。
( 8 ) 上記各実施の形態では、 オールセラ ミ ックタイプのグローブラ グについて記述したが、 グロ一プラグの構成を変更してもよい。 例えば、 発熱体としてのコイル状の金属線 (例えば、 タングステン線) をセラミ ック材料からなる耐熱性絶縁体に埋設し、 その金属線の一部を燃焼室内 に露出させておく。 この場合にも、 燃焼室内に露出した部分が、 イオン 電流検出用電極として作用し、 ィオン電流検出機能を兼ね備えた安価な グローブラグを提供することができる。
( 9 ) 上記各実施の形態では、 ディーゼルエンジンの燃焼室内におけ る燃焼イオンを検出するイオン電流検出装置に本発明のグローブラグを 適用したが、 他の装置に本グローブラグを適用することもできる。 例え ば、 ガソ リ ンエンジンの排気管中で未燃燃料を燃焼させる装置において、 その未燃燃料の燃焼に伴う燃焼ィオンを本発明のグロ一プラグにより検 出することも可能である。 この場合、 当該装置により検出されたイオン 電流から未燃燃料の燃焼状態が判定できる。
( 1 0 ) 上記第 1 3の実施の形態において、 一方のタングステン リー ド線 9 aと電圧計 5 1 Aとの間にコンデンサを配設してもよい。 この場 合、 発熱体用電源 3 4による直流分がコンデンサにてカツ 卜され、 0ボ ル トを基準とするイオン電流波形が得られる。 くく 第 1 6の実施の形態 >>
以下、 第 1 6及び第 1 7の実施の形態について説明するが、 これら 2 つの実施の形態に共通なイオン電流検出システムについて、 図 4 6、 図 4 7と共に説明する。 図 4 6において、 ディーゼルエンジンのシリ ンダ へッ ド 4 5にはねじ孔 1 6が形成されており、 このねじ孔 1 6にグロ一 プラグ 1が螺着されている。 すなわち、 グロ一プラグ 1をシリ ンダへッ ド 4 5に螺着する際には、 六角部 4を所定の工具で挟み、 同プラグ 1の 雄ねじ部 3をねじ孔 1 6にねじ入れるようにする。
このグロ一プラグ 1 自体は第 1の実施の形態で説明したものを用いる ことができるが、 その詳細な説明は重複しない。
グローブラグ 1のセラミ ック発熱部 6の先端部は、 シリ ンダへッ ド 4 5に形成された渦流室 1 7に突出配置されている。 この渦流室 1 7には ピス トン 1 8上部に設けられた主燃焼室 1 9が連通されており、 渦流室 1 7は燃焼室の一部をなす。 渦流室 1 Ίには燃料噴射ノズル 2 0の先端 部が配設されており、 この燃料噴射ノズル 2 0から渦流室 1 7内に燃料 が噴射されるようになつている。 また、 本ィオン電流検出システムにおいては、 定格 1 2 V (ボル ト) の直流電源からなるバッテリ 3 4を備えており、 このバッテリ 34のプ ラス側には、 第 1の トランジスタ T r 1のコレクタが接続されている。 この第 1の トランジスタ T r 1のエミ ヅ夕は、 グロ一プラグ 1の一方の リー ド線 1 1 aに接続され、 ベースは電子制御装置 (以下、 E C Uとい う) 3 0に接続されている。 また、 ノ ッテリ 34のマイナス側には、 第 2のトランジスタ T r 2のェミ ッタが接続されている。 さらに、 第 2の トランジスタ T r 2のコレクタは、 グローブラグ 1の他方のリード線 1 l bに接続され、 ベースは E C U 3 0に接続されている。 上記構成にお いて、 第 1、 第 2の トランジスタ T r l、 T r 2のベースには E C U 3 0からの同一の指令信号が入力され、 これら トランジスタ T r 1、 T r 2は、 常に同期して動作する。 なお、 第 2の トランジスタ T r 2のエミ ッ夕は、 シリ ンダへヅ ド 4 5の一部にも接続されている。 本実施の形態 では、 上記第 1、 第 2のトランジスタ T r l、 Τ r 2が請求項 2 7〜 2 9記載のスィ ツチング手段に相当する。
かかる場合において、 E C U 3 0から第 1、 第 2の トランジスタ T r 1、 T r 2のベースに Hレベルの指令信号が入力されると、 トランジス 夕 T r l、 Τ Γ 2は共に O N状態となり、 発熱体 7の両端には、 リ一ド 線 l l a、 l i b及びタングステンリード線 9 a、 9 bを介してバッテ リ電圧が印加されることになる。 つま り、 トランジスタ T r l、 Τ r 2 が O N駆動された場合には、 発熱体 7は発熱状態に保持される (この状 態を発熱体発熱状態という) 。
また、 第 1、 第 2のトランジスタ T r l、 T r 2への指令信号が Lレ ベルになると、 当該トランジスタ T r l、 Τ Γ 2が共に 0 F F状態とな り、 第 1の トランジスタ T r 1に並列に設けられた電気経路を介してバ ヅテリ電圧がリード線 1 1 aに印加される。 つま り、 セラ ミ ツク発熱部 6の先端に形成されたイオン電流検出用電極 1 4とシリンダへヅ ド 4 5 との間にバッテリ電圧が印加される。 この場合、 燃焼火炎帯の活性ィォ ンの発生に伴いイオン電流が流れ、 このイオン電流はイオン電流検出用 抵抗 2 6によ り検出される (この状態をイオン電流検出状態という) 。 なお、 イオン電流検出用抵抗 2 6の抵抗値は 1 0 0 k Ω程度であって、 このイオン電流検出用抵抗 2 6を流れるィオン電流は、 当該抵抗 2 6の 両端の電位差として電位差計 2 7により検出される。
ここで、 イオン電流の検出原理を略述する。 燃料噴射ノズル 2 0によ る噴射燃料が渦流室 1 7で燃焼に供されると、 その燃焼火炎帯ではィォ ン化されたブラスイオンとマイナスイオンが大量に発生する。 このとき、 イオン電流検出用電極 1 4 とそれに対面するシリ ンダヘッ ド 4 5 (渦流 室 1 7の内壁) との間にパッテリ電圧が印加されることにより、 イオン 電流検出用電極 1 4にはマイナスィオンが捕獲されるとともに、 シリン ダへッ ド 4 5にはブラスイオンが捕獾される。 そして、 かかる状態で流 れるイオン電流がイオン電流がイオン電流検出用抵抗 2 6両端の電位差 として検出される。
一方、 E CU 3 0は、 C P U、 R OM, R AM, 入出力回路等からな る周知のマイクロコンビュ一夕や A/D変換器 (共に図示略) を中心に 構成され、 電位差計 27により検出された検出信号を入力する。 また、 E CU 3 0には、 エンジン冷却水の温度を検出するための水温センサ 3 6の検出信号や、 エンジンクランク角に応じてエンジン回転数を検出す るための回転数センサ 3 2の検出信号が入力され、 E C U 3 0は各セン サ 3 6、 3 2の検出信号に基づいて水温 T w、 エンジン回転数 N eを検 知する。
上記 E C U 3 0は、 主と してディーゼルエンジンの低温始動時におい て、 第 1、 第 2の トランジスタ T r l、 Τ Γ 2を ONさせることにより、 グロ一プラグ 1の発熱体 7を発熱させて燃料の着火及び燃焼を促進させ る (ァフ夕一グロ一動作) 。 また、 ディーゼルエンジンの暖機完了時に おいて、 トランジスタ T r l、 Τ Γ 2を O F Fさせ、 本システムの回路 をイオン電流検出状態として燃焼ィオン電流を検出する。
特に、 本実施の形態ではその特徴として、 エンジン始動当初 (ァフタ 一グロ一期間中) からイオン電流を検出できるよう、 燃料着火後の所定 期間において一時的に第 1、 第 2の ト ラ ンジスタ T r l、 Τ Γ 2を O F Fさせ、 一時的に発熱体発熱状態からイオン電流検出状態へ移行させる ようにしている。
以下、 本実施の形態の作用を図 47〜図 49を用いて説明する。
先ず図 4 7のタイムチャー トを用いて、 本実施の形態における作用の 概要を説明する。 なお図 47には、 エンジンの低温始動時について、 燃 料燃焼時に発生するイ オン電流波形、 燃料噴射時期及びトランジスタ T r l、 T r 2の O N/OF F動作状態を示しており、 図の時間 t 1以前 はアフターグロ一期間を示し、 この時間 t 1がアフターグロ一の終了時 期に相当する。
さて、 アフターグロ一期間 (時間 t 1以前) においては、 主として発 熱体発熱状態が継続され、 その中で一時的にイオン電流検出期間が設け られている。 つまり、 アフターグロ一期間においては、 初期状態として トランジスタ T r l、 Τ Γ 2を ONさせ、 これにより発熱体 7を発熱状 態としている。 また、 図示したようなイオン電流波形を得るべく、 燃料 噴射時期から所定期間 (本実施の形態では、 90。 CA) だけ一時的に トランジスタ T r l、 Τ Γ 2を 0 F Fさせている。 そして、 この一時的 なィオン電流検出期間 (T r l、 Τ Γ 2の O F F期間) におけるイオン 電流の検出結果が燃焼状態の制御に採用される。
同図のイオン電流波形において、 燃料噴射時期の直後 (圧縮 TD C直 後) に電圧 (電位差計 27による検出電圧) が急上昇している波形が燃 料の燃焼によるィオン電流波形であり、 ィオン電流の立ち上がり時期が 燃焼の開始位置、 すなわち燃料の着火時期に相当する。 また、 このィォ ン電流波形には、 2つの山 B 1、 B 2が観測される。 つま り、 燃焼初期 には、 拡散火炎帯の活性ィオンによ り第 1の山 B 1が観測され、 燃焼中 後期には筒内圧上昇による再イオン化により第 2の山 B 2 (ビーク値) が観測される。
図 47においては、 燃料噴射時期から 90 ° C Aのイオン鼋流検出期 間と、 その次の燃料噴射時期までの発熱体発熱期間 (略 6 30 ° C A) とが繰り返される (ただし、 本実施の形態では、 1気筒についてのみ示 している) 。 なお、 イオン電流の検出期間は一時的であるので、 グロ一 プラグ 1による燃料の着火 ■ 燃焼機能を損なうことはない。
また、 時間 t 1においては、 第 1、 第 2の トランジスタ T r l、 Τ r 2が共に O F Fされ、 この トランジスタ T r l、 Τ Γ 2の操作に伴ない 発熱体 7の発熱動作が停止される (アフターグロ一が終了される) 。 こ のとき、 本システムの回路はイオン電流検出状態となり、 それ以降、 燃 料燃焼毎にィオン電流が検出される。
次に、 上記したアフターグロ一動作及びィオン電流検出動作を実現す るために E CU 30により実施される演算処理について、 図 48及び図 49のフローチャートを用いて説明する。 なお、 図 48は、 トランジス 夕 T r l、 Τ Γ 2の 0 N/0 F F切換えルーチンを示し、 図 49は、 ィ オン電流の検出結果を用いた燃焼状態制御の一例としての燃料着火時期 のフィードバック制御ルーチンを示す。
先ず図 48について説明する。 なお、 本図 48の処理は、 所定の時間 の割り込み処理によ り実行される。 さて、 図 48の処理がスタートする と、 E CU 30は、 先ずステップ 1 1 0で今現在がアフターグロ一期間 中であるか否かを判別する。 この判別には、 例えばァフ夕一グロ一期間 (エンジン冷間時) においてセッ トされるフラグを用いればよい。 ェン ジンの低温始動当初においては、 ステップ 1 1 0が肯定判別され、 E C U 3 0は続くステップ 1 2 0で水温 Tw及びエンジン回転数 N eを読み 込む。
その後、 E C U 3 0は、 ステップ 1 3 0で水温 Twが所定のアフター グロ一終了温度、 すなわち暖機完了温度 (本実施の形態では、 6 0 °C) 以上であるか否かを判別するとともに、 ステップ 1 4 0でエンジン回転 数 N eが所定回転数 (本実施の形態では、 2 0 00 r pm) 以上に達し たか否かを判別する。 かかる場合、 ステップ 1 3 0、 1 4 0が共に否定 判別されれば、 E C U 3 0は、 エンジンの暖機が完了しておらず、 グロ —プラグ 1 (発熱体 7 ) による発熱が必要であるとみなし、 ステップ 1 5 0に進む。 また、 ステップ 1 3 0、 1 4 0のいずれかが肯定判別され れば、 E C U 3 0は、 エンジンの暖機が完了した、 あるいはグローブラ グ 1 (発熱体 7 ) による発熱が不要になったとみなし、 ステップ 1 6 0 に進む。
ステップ 1 5 0に進んだ場合、 E C U 3 0は、 既述したとおり第 1、 第 2の トランジスタ T r l、 T r 2を O Nさせ、 図 4 6の回路を発熱体 発熱状態とするとともに、 その発熱体発熱状態下において一時的に トラ ンジス夕 T r l、 T r 2を 0 F Fさせて同じく図 4 6の回路をイオン電 流検出状態とする (図 4 7参照) 。 具体的には、 燃料噴射のタイ ミング から 9 0。 C Aの期間だけ第 1、 第 2の トランジスタ T r l、 Τ Γ 2を O F Fさせる。 そして、 ステップ 1 5 0の処理後、 本ルーチンを終了す る。 この状態では、 グロ一プラグ 1の発熱作用によって燃料の着火及び 燃焼が促進されるとともに、 燃料の燃焼に伴うイオン電流も検出するこ とができる。 なお、 本実施の形態では、 上記ステップ 1 5 0の処理が請 求項 2 7、 2 8記載の操作手段に相当する。
また、 ステップ 1 6 0に進んだ場合、 E C U 3 0は、 第 1、 第 2のト ラ ンジス夕 T r l、 Τ Γ 2を O F Fさせ、 それにより図 4 6の回路をィ オン電流検出状態に移行させる。 この状態では、 継続的にイオン電流が 検出される。 そして、 ステップ 1 6 0の処理後、 本ルーチンを終了する。 なお、 ステップ 1 40が肯定判別されてステツプ 1 6 0に進む場合と は、 例えばレーシング状態で一時的にエンジン回転数 N eが上昇する場 合が考えられ、 この場合にはエンジン暖機が未だ完了していない。 した がって、 図 4 6の回路が一旦イオン電流検出状態に移行したとしても、 E C U 3 0は、 未だアフターグロ一が継続しているものとして次回処理 時のステップ 1 1 0を肯定判別し、 ステップ 1 3 0、 1 4 0の判別処理 を再び実施する。 そして、 一時的なエンジン回転数 N eの上昇が収まり、 同回転数 N eが低下すると (N eく 2 0 0 0 r pm) 、 再度ステツブ 1 5 0の処理を実施する。
その後、 Tw 6 0°Cとなりエンジン暖機が完了すると、 すなわちァ フタ一グロ一期間が終了すると、 それ以降、 E C U 3 0はステップ 1 1 0を毎回否定判別する。 つまり、 第 1、 第 2の トランジスタ T r l、 T r 2が◦ F F状態で維持され、 図 4 6の回路がイオン電流検出状態のま まで保持される。
次に、 燃料の着火時期フィードバック制御について図 4 9を用いて説 明する。 同図のフローは、 気筒への燃料噴射毎に E C U 3 0により実施 される。 なお、 燃料の着火時期制御は、 燃料噴射時期を調整することに より実現されるものであり、 本実施の形態では、 燃料噴射ノズルによる 燃料噴射時期を最適時期に調整することによ り燃料の着火時期を最適に フィードバヅク制御することとしている。
図 4 9において、 E CU 3 0は、 先ずステップ 2 1 0であらかじめメ モリに記憶されている燃料着火時期マップを用い、 その時のエンジン回 転数 N e及び燃料噴射量 Qに応じた最適なる燃料着火時期 (最適着火時 期 K a) を求める。 ここで、 燃料噴射量 Qは、 その時のエンジン負荷 (例えばアクセル踏み込み量) とエンジン回転数とから求められる。 また、 E CU 30は、 ステップ 2 2 0でイオン電流波形 (図 47の第 1の山 B 1 ) に基づいて実際の燃料着火時期 (実着火時期 Kb) を求め、 続くステップ 2 30で実着火時期 Kbのなまし値 K A Vを次の式 ( 1 ) を用いて算出する。 KAV, = {KAV,^ · (n- l ) +Kbt } /n · · · ( 1) ただし、 本実施の形態では、 なまし係数 nを 「8」 とする。
その後、 E CU 30は、 ステップ 24 0で最適着火時期 K aと実着火 時期 Kbのなまし値 KAVとの偏差 (=Ka— KAV) を箅出する とともに、 続くステップ 2 50で周知のフィ一ドバック手法 (例えば P I手法や P I D手法) を用い、 偏差 ΔΚに応じてステップ 2 1 0で算出 した最適着火時期 K aを補正する。 そして、 こう して補正し算出された 最適着火時期に基づいて、 実際に燃料噴射時期が制御される。
以上のようにしてィオン電流をエンジンの燃料噴射制御に反映させる ことにより、 きめ細かくエンジンの運転状態を制御することが可能とな る。 また、 上記にはイオン電流の検出結果を用いた着火時期のフィード バック制御の例を説明したが、 ィオン電流の検出結果を用いて失火検出 を行う等、 他の燃焼状態制御を実施してもよい (図示略) 。 例えば図 4 7におけるイオン電流波形の第 2の山 B 2から異常燃焼、 失火等の燃焼 状態を検出し、 その検出結果を燃料噴射制御に反映させるようにしても よい。 次に、 本実施の形態における効果を説明する。
( a ) 以上詳述したように本実施の形態では、 グロ一プラグによる発 熱体発熱状態下 (アフターグロ一期間) において、 燃料噴射時期直後に 一時的にィオン電流検出状態になるよう トランジスタ T r l、 T r 2を 操作するようにした。 かかる構成によれば、 発熱体発熱状態下において、 グロ一プラグ 1の発熱機能を損なわない範囲内でイオン電流を検出する ことができる。 その結果、 グロ一プラグ 1 によるグロ一期間内において もィオン電流を精度良く検出し、 ひいては当該イオン電流の検出結果を 用いて燃料の燃焼状態を良好な状態で維持することができる。
( b ) 特に、 本実施の形態では、 燃料噴射時期を基準にイオン電流検 出期間を設定したため、 イオン電流検出期間をできるだけ短い期間に設 定して当該イオン電流を確実に検出するとともに、 グロ一プラグ 1 によ るグロ一機能の低下を最小限に抑えることができる。
( c ) また、 本実施の形態では、 スイ ッチング手段として第 1、 第 2 の トランジスタ T r 1、 T r 2を採用した。 そのため、 応答性の良い切 換え動作を行わせることができる。
( d ) さらに、 本実施の形態のイオン電流検出装置の構成においては、 スィ ッチ回路 2 5により発熱体発熱状態とイオン電流検出状態とを切り 換えるとともに、 両状態にて使用する電源を共用化した (バッテリ 3 4 ) 。 したがって、 イオン電流検出に関する構成が簡素化でき、 安価なィォ ン電流検出装置を提供することができる。
( e ) 併せて、 本実施の形態では、 グローブラグ 1の発熱体 7 と一体 にイオン電流検出用電極 1 4を形成し、 同イオン電流検出用電極 1 4と エンジンのシリンダへッ ド 4 5 とからなる 2電極によ り燃料燃焼時に発 生するイオン電流を検出するようにした。 この場合、 非常に簡単な構成 であるにもかかわらず、 精度良くイオン電流を検出することができ、 そ の情報を燃焼制御に有効に活用することが可能となる。
« 第 1 7の実施の形態 >>
次に、 本発明の第 1 7の実施の形態を図 5 0を用いて説明する。 ただ し、 本実施の形態の構成において、 上述した第 1の実施の形態と同等で あるものについては図面に同一の記号を付すと共にその説明を簡略化す る。 そして、 以下には第 1の実施の形態との相違点を中心に説明する。 本実施の形態ではその特徴と して、 アフターグロ一期間において所定 周波数の O N/O F F信号にて トランジスタ T r l、 T r 2を 0N/0 F F動作させるようにしている。 図 5 0は、 本実施の形態の具体的動作 を示すタイムチャー トである。 なお、 同図の時間 t 1 1以前はアフター グロ一期間を示し、 この時間 t 1 1がアフターグロ一の終了時期に相当 する。
さて、 アフターグロ一期間 (時間 t 1 1以前) においては、 第 1、 第 2の トランジスタ T r l、 Τ r 2が連続的に 0 Ν状態と 0 F F状態とで 切り換えられる。 かかる場合、 当該 トランジスタ T r l、 Τ Γ 2の ON 期間が発熱体発熱期間に相当し、 ト ラ ンジスタ T r l、 Τ Γ 2の O F F 期間がイオン電流検出期間に相当する。 このとき、 イオン電流検出期間 (T r l、 Τ Γ 2の O F F期間) におけるィオン電流の検出結果が燃焼 状態の制御に採用される。
ここで、 第 1、 第 2の ト ラ ンジスタ T r l、 Τ Γ 2をスイ ッチングさ せる周波数としては、 例えばイオン電流の検出結果を用いて着火時期を 検出する場合であれば、 1 0 k Η ζ以上とするのが望ましい。 この場合、 当該周波数がこれよ りも小さいと、 エンジンの高回転域において着火時 期の検出精度が悪化するおそれが生ずる。 また、 イオン電流の検出結果 を用いて失火や異常燃焼を検出する場合であれば、 前記スィ ツチングの 周波数を 1 k H z以上とするのが望ましい。 この場合、 当該周波数がこ れより も小さいと、 エンジンの高回転域において失火や異常燃焼の検出 精度が悪化するおそれが生ずる。 なお、 本実施の形態では、 当該周波数 を 1 0 k H z程度としている。
また、 同図において、 燃料噴射時期の直後 (圧縮 T D C直後) に所定 周期で燃料の燃焼によるイオン電流波形が観測される。 この場合、 個々 の検出レベルを解析することにより、 燃料の着火時期や失火、 異常燃焼 等が検出できる。
以上本第 2の実施の形態によれば、 上記第 1の実施の形態と同様に、 グロ—プラグ 1 によるグロ一期間内においてもイオン電流を精度良く検 出し、 ひいては当該ィオン電流の検出結果を用いて燃料の燃焼状態を良 好な状態で維持することができる。
なお、 本発明は、 上記各実施の形態の他に次の形態にて実現できる。
( 1 ) 上記第 1の実施の形態では、 図 4 8のステップ 1 5 0において、 あらかじめ設定されている所定期間 ( 9 0。 C A期間) だけ第 1、 第 2 の トランジスタ T r l、 Τ Γ 2を O F Fしてイオン電流検出状態に切り 換えるようにしていたが、 このイオン電流の検出期間を可変設定するよ うにしてもよい。 例えばエンジン負荷やエンジン回転数に応じて、 発熱 体発熱状態下 (アフターグロ一期間) におけるイオン電流検出期間を設 定する。 この場合、 エンジン負荷が大きいほど、 又はエンジン回転数が 高くなるほど、 イオン電流検出期間を長く し、 一方、 エンジン負荷が小 さいほど、 又はエンジン回転数が低くなるほど、 イオン電流検出期間を 短くするのが好ましい。
( 2 ) 上記各実施の形態では、 エンジンの低温始動時におけるァフ夕 —グロ一期間において一時的なイオン電流検出期間を設けたが、 このァ フタ—グロ—期間以外にも、 発熱体発熱状態下において一時的なイオン 電流検出期間を設けるようにしてもよい。 例えば、 グロ一プラグの外周 にカーボンが付着した場合において、 その付着カーボンを発熱体の発熱 作用により焼き切って除去する際にも、 その発熱体発熱状態下で一時的 なイオン電流の検出状態を設定する。 かかる場合、 燃焼状態制御が中断 されることなく継続できる。
( 3 ) 上記各実施の形態においては、 単気筒エンジン (又は多気筒ェ ンジンの 1つの気筒) についてイオン電流の検出手順を説明したが、 多 気筒ェンジンの各気筒について本実施の形態のイオン電流検出手順を適 用してもよい。
( 4 ) 上記各実施の形態では、 オールセラ ミ ヅクタイプのグローブラ グを使用したが、 他のグロ一プラグを使用してもよい。 例えば、 発熱体 としてのコィル状の金属線 (例えば、 タングステン線) をセラミ ック材 料からなる耐熱性絶縁体に埋設し、 その金属線の一部に、 燃焼火炎にさ らされるイオン電流検出用電極 (露出電極部) を電気的に接続する。 こ の場合にも、 イオン電流検出機能を兼ね備えた安価なグローブラグを提 供することができる。 また、 発熱体の発熱性能も長期にわたって維持で きる。
( 5 ) 上記各実施の形態では、 発熱体発熱状態とイ オン電流検出状態 とを切り換えるために半導体スィ ツチとして第 1、 第 2の トランジスタ T r 1、 T r 2を用いたが、 これを変更してもよい。 例えば、 サイ リス 夕等の他の半導体スィ ツチに変更したり、 接点式スィ ツチにに変更した り してもよ く、 上記 2つの状態を切換え可能な手段であればよい。
( 6 ) 上記実施の形態では、 発熱体発熱状態とイ オン電流検出状態と において共通の直流電源 (車載バッテリ 3 4 ) を用いたが、 2つの直流 電源を用いる構成としてもよい。 具体的には、 発熱体 7を発熱させるた めの発熱体用電源と、 ィォン鼋流を検出するためのィオン電流検出用電 源とを用意し、 例えば発熱体用電源として定格 1 2 V (ボルト) の直流 電源 (車載バッテリ) を用い、 ィオン電流検出用電源と して定格 5 0 V (ボル ト) の直流電源を用いる。
( 7 ) 上記各実施の形態では、 渦流室を有するディ ーゼルエンジンの 燃焼イオンを検出するイオン電流検出装置に本発明を適用したが、 燃料 を燃焼室内に直接噴射する、 いわゆる直噴型エンジンに本発明を適用し てもよい。 また、 他の装置に本発明を適用することもできる。 例えば、 ガソリ ンエンジンの排気管中で未燃燃料を燃焼させる装置において、 そ の未燃燃料の燃焼に伴う燃焼ィオンを本発明のイオン電流検出装置によ り検出することも可能である。 この場合、 当該装置により検出されたィ オン電流から未燃燃料の燃焼状態が判定できる。 くく 第 1 8の実施の形態 >>
次に、 本発明の第 1 8の実施の形態について図 5 1及び図 5 2を用い て説明する。 ただし、 以下の実施の形態の構成において、 上述した第 7 の実施の形態 (図 2 0〜図 3 3 ) と同等であるものについてはその説明 を簡略化する。 そして、 以下には第 7の実施の形態との相違点を中心に 説明する。
図 5 1は、 第 1 8の実施の形態におけるイオン電流検出システムの概 要を示しており、 同図では、 電位差形 2 7の信号出力部に H P F (ハイ パスフィル夕) 8 1が接続されている。 本実施の形態では、 約 2 0 0 H zを超える周波数信号が通過できるよう H P F 8 1が構成されている。 また、 H P F 8 1の出力は、 比較手段を構成する比較器 8 2の非反転入 力端子に接続されている。 比較器 8 2は、 その反転入力端子に入力され るしきい値電圧 V t hと H P F 8 1の出力とを比較しし、 両者の大小比 較に応じた論理ハイ レベル若しくは論理ローレベルの 2値信号を信号処 理装置としての E CU 30に出力する。
上記構成のィオン電流検出システムは以下のように動作する。 なお、 E CU 30の制御動作は、 基本的に第 7の実施の形態における図 23に 準ずるが、 本実施の形態では、 付着力一ボンの除去のためにスィ ッチ回 路 2 5を発熱体発熱状態にする頻度を低くするため、 イオン電流値 I p と比較判定するしきい値 I t hを第 7の実施の形態での設定値よりも大 きく している。 つま り、 上記第 7の実施の形態では、 付着カーボンを除 去することを主たる目的としていたため、 漏洩電流 (イオン電流値 I p) を比較判定するためのしきい値 I t h (図 2 3のステップ 208参照) が比較的低めの値に設定されていたのに対し、 本実施の形態では、 検出 されるィオン電流が燃焼状態の判定可能な範囲内となる許容最大値付近 にてしきい値が設定されている (図 5 2の I t h l >図 6 (b) の I t h) 。
そして、 ECU 30が実行する図 23のステップ 208では、 燃料噴 射時期でのイオン電流値 I pとしきい値 I t h 1とが比較され、 I p≥ I t h 1が成立する場合のみ、 一時的にスィ ツチ回路 25がィオン電流 検出状態から発熱体発熱状態に移行される。
したがって、 図 5 2に示すように、 若干量の漏洩電流が流れたとして も、 その際のイオン電流値 I pはしきい値 I t h 1を下回り、 イオン電 流検出状態が維持されることになる。 そして、 この状態下において、 H P F 8 1の出力が比較器 8 2に入力され、 所定のしきい値電圧 V t hと 比較される。 この場合、 HP F 8 1の出力が立ち上がるタイ ミ ング (図 52の Pで示す夕ィ ミ ング) は、 燃料の着火時期に相当するため、 比較 器 82の出力 (論理ハイ レベルに立ち上がる信号) は燃料着火時期に相 応したものとなる。 そして、 E C U 30は比較器 82の出力から燃料着 火時期を判定することになる。 なお因みに、 失火状態にあれば、 比較器 8 2の出力が論理ハイ レベルに立ち上がる.ことはなく、 そのことから E C U 3 0は失火発生を判定する。
以上本実施の形態によれば、 上記第 7の実施の形態にて説明した効果 が得られるのは勿論のこと、 次にに示す効果も付随して得られることに なる。
( a ) 本実施の形態では、 イオン電流検出器の信号出力部に相当する 電位差計 2 7の出カに11卩 8 1を設け、 その検出信号を E C U 3 0に 入力するようにした。 本構成によれば、 H P F 8 1を回路に組み込むこ とで、 グロ一プラグ 1のィオン電流検出用電極 1 4にカーボンが付着し ても燃焼時に発生するイオン電流と絶縁不良による漏洩電流とを分離す ることができ、 イオン電流が確実に検出できるようになる。 また、 H P F 8 1の出力波形により着火時期等の燃焼状態情報を判定することで、 そに判定処理が容易となる。
( b ) また、 漏洩電流判定用のしきい値 I t h 1 (図 5 2参照) を許 容最大値付近に設定した。 、 本実施の形態の構成では、 若干量の漏洩電 流が流れたとしてもそに漏洩電流とイオン電流とが分離できる。 したが つて、 漏洩電流判定用のしきい値 I t h 1を許容範囲内で大きくずれば、 付着カーボンの焼き切り処理頻度が低くなる代わりに、 イオン電流が頻 繁に検出できるようになり、 それにつれて燃焼状態も頻繁に検出できる という効果が得られる。
( c ) H P F 8 1の出力を比較器 8 2に入力し、 比較器 8 2では H P F 8 1 より入力された信号と燃焼状態検出用のしきい値電圧 V t hとを 比較してその比較結果を E C U 3 0に出力するようにした。 この場合、 燃焼状態の検出処理が簡易に実現できるようになる。 なお、 本発明は、 上記第 Ίの実施の形態の他に次の形態にても実現できる。
( 1 ) 第 7の実施の形態では、 燃料噴射のタイ ミングで漏洩電流 (電 流値 I p ) を検出したが (図 2 3のステ ップ 2 0 7 ) 、 これを変更して もよい。 例えば T D C前の所定クランク角にて漏洩電流を検出するよう にしてもよい。 この所定クランク角は、 回転数センサ 3 2の検出信号か ら求められる所定番号のパルス出力タイ ミ ングとして与えられる。 、 グ ロープラグ外周にカーボンが付着した場合、 露出電極とアース側との絶 縁抵抗は燃焼室内での圧力に依存する。 そのため、 漏洩電流の検出時期 は、 燃料の着火前であって筒内圧の高い状態、 すなわち圧縮行程時であ れぱよい。 ただし、 グロ一プラグ外周に多量のカーボンが付着した場合 には、 いずれのタイ ミ ングにおいても漏洩電流が観測されるため、 望ま しくは上記のように圧縮行程で漏洩電流を検出することとするが、 これ に限定されるものではない。
( 2 ) また、 上記実施の形態では、 図 2 3のステップ 2 1 0において、 あらかじめ設定されている所定時間 ( 2秒間) だけスィ ヅチ回路 2 5を 発熱体発熱状態で保持させたが、 この保持時間を可変設定するようにし てもよい。 例えば図 5 3に示すように、 図 2 3のステップ 2 0 7で読み 込まれた電流値 I Pに応じて発熱体発熱状態を保持する時間 (保持時間) を設定する。 図 5 3によれば、 電流値 I p (漏洩電流) が大きくなるほ ど、 保持時間が長くなるように設定される。 この場合、 付着カーボンを より一層確実に除去することができる。 なお、 図 5 3に示す特性を非線 型関数にて与えておく こともできる。
( 3 ) グロ一プラグの形状を次のように変更してもよい。 つまり、 発 熱体 7 とィオン電流検出用電極 1 4 とを別体とし、 これらを電気的に接 続する構成としてもよい。 要は、 耐熱性絶縁体 8の一部に露出する露出 電極部が設けられた構成であればよい。
また、 上記実施の形態では、 オールセラ ミ ック夕イブのグローブラグ 使用したが、 他のグロ一プラグを使用してもよい。 例えば、 発熱体と してのコィル状の金属線 (例えば、 タングステン線) をセラ ミ ツク材料 からなる耐熱性絶縁体に埋設し、 その金属線の一部に、 燃焼火炎にさら されるイ オン電流検出用電極 (露出電極部) を電気的に接続する。 この 場合にも、 ィオン電流検出機能を兼ね備えた安価なグロ一プラグを提供 することができる。 また、 発熱体の発熱性能も長期にわたって維持でき る。
( 4 ) 上記各実施の形態では、 発熱体発熱状態とイオン電流検出状態 とを切り換えるために 2つの 2位置切換えスィ ッチ 2 5からなるスイ ツ チ回路 2 5を用いたが、 これを変更してもよい。 例えば、 大電流を制御 可能な半導体スィ ツチ ( トランジスタ、 サイ リス夕等) に変更してもよ く、 上記 2つの状態を切換え可能な手段であればよい。
( 5 ) 上記実施の形態では、 発熱体発熱状態とイオン電流検出状態と において共通の直流電源 (車載バッテリ 3 4 ) を用いたが、 2つの直流 電源を用いる構成としてもよい。 具体的には、 発熱体 7を発熱させるた めの発熱体用電源と、 ィオン電流を検出するためのィオン電流検出用電 源とを用意し、 例えば発熱体用電源として定格 1 2 V (ボル ト) の直流 電源 (車載バッテリ) を用い、 イオン電流検出用電源として定格 5 0 V
(ボル ト) の直流電源を用いる。
( 6 ) 上記各実施の形態では、 渦流室を有するディーゼルエンジンの 燃焼イオンを検出するイオン電流検出装置に本発明を適用したが、 燃料 を燃焼室内に直接噴射する、 いわゆる直噴型エンジンに本発明を適用し てもよい。 また、 他の装置に本発明を適用することもできる。 例えば、 ガソ リ ンエンジンの排気管中で未燃燃料を燃焼させる装置において、 そ の未燃燃料の燃焼に伴う燃焼ィオンを本発明のイオン電流検出装置によ り検出することも可能である。 この場合、 当該装置によ り検出されたィ オン電流から未燃燃料の燃焼状態が判定できる。 ( 7 ) 上記第 1 8の実施の形態では、 H P F 8 1の出力を比較器 82 に入力する構成としたが、 これを変更してもよい。 例えば HP F 8 1の 出力を直接 E CU 3 0に入力し、 E CU 30内で着火時期の判定や失火 の有無を演算処理するようにしてもよい。 この場合には、 E CU 30が 請求項記載の比較手段に相当する。
( 8 ) 上記第 1 8の実施の形態では、 HP F 8 1のカッ トオフ周波数 を 200 H zとしたが、 これを変更してもよい。 要は、 燃焼時に発生す るイオン電流と絶縁不良による漏洩電流とが分離できる範囲内で H P F の力、ソ トオフ周波数を設定すればよい。 本発明者の実験によれば、 50 H z~ 5 kH zの範囲内であれば既述の効果が得られ、 より望ましくは 1 00〜 5 00 H zの範囲内で設定するとよいことが確認されている。 また、 HP Fを例えば CR回路からなる微分回路に変更してもよい。 くく 第 1 9の実施の形態 >>
本実施の形態のグロ一プラグ 1は、 図 54 A、 図 54 Bに示すように、 本体 1 0と本体 1 0を装着するハウジング 4とからなる。 上記本体 10 は、 絶縁体 1 1と、 絶縁体 1 1の内部に設けられた通電発熱体 2及び通 電発熱体 2の両端部に電気的に接続されて絶縁体 1 1の外部に導出され た一対のリード線 2 1、 2 2とを有する。
また、 上記絶縁体 1 1の内部に配設された、 火炎中のイオン化の状態 を検出するための、 イオン電流検出用電極 3を有する。
本実施の形態のィオン電流検出用電極 3は、 上記火炎と接触する露出 部分 3 Bを含みその全体が、 導電性セラ ミ ック粒子により絶縁性セラ ミ ック粒子を包んでなる導電性の混合焼結体よりなるとともに、 その焼結 助剤として希土類元素の酸化物を 1種以上含有している。
そして、 図 5 6〜図 59に示すように、 上記混合焼結体の組織は第 1 結晶相 K (図 5 9 ) とその間の粒界相 Rよりなる。 そして、 図 60に示 すように、 粒界相 Rの一部又は全部は結晶化して上記焼結助剤を含む第 2結晶相 Hとなっている。
すなわち、 図 5 6〜図 5 8は、 混合焼結体の断面組織の S E M写真で あってそれそれ倍率が 35 0倍、 1 000倍、 2000倍である。 この 図 56〜図 58における黒い部分と白い部分が上記第 1結晶相 Kであり、 黒い部分が S i 3 N 4 結晶相であり、 白い部分が M o S i 2 結晶相であ る。 そして、 黒い部分と白い部分の境界部分の幅数 nmの範囲が粒界相 乙め 。
また、 図 5 9は、 上記の組織を分かりやすくするための説明図であり、 3つの S i 3 N 4 よ りなる第 1結晶相 Kの間に粒界相 Rが存在している 状態を示してある。 また、 図 60は、 図 59中における M部分を拡大し た状態を示しており、 粒界相が結晶化して第 2結晶相 Hとして存在する ことを示している。 これらの図に示された粒界相 Rは、 X線回折の結果、 60 %以上が結晶化していることが分かった。
また、 その結晶は、 本実施の形態の焼結助剤が Y 2 03 であるため、 図 6 1に示す S i 3 N4 、 S i 02 、 Y 2 03 三元状態図中に示される Α点のアパタイ ト (Y i S i C ) 6 N2 ) 、 B点のワレス トナイ ト ( Y S i 02 N ) 、 C点の YAM ( Y 4 S i 2 07 N 2 ) 、 D点のメ リ ライ ト (Y2 S i 3 03 N4 ) の 4種類の内 1種以上含んでいることが 分かった。 ここで、 S i 02 は、 原料の絶縁性セラミ ックとしての S i
3 N 4 中に不純物として含まれているものである。
また、 上記結晶は、 耐酸化性に優れている A点のアパタイ ト (Y10 ( S i 04 ) 6 Ν2 ) の割合を高くするのが好ましい。
なお、 結晶化の有無については、 X線回折と ΤΕΜにより確認するこ とができる。 また、 従来においては、 上記粒界相 Rがガラス相になって いる。
また、 上記本体 1 0は、 図 5 4 A、 図 5 5に示すように、 金属製 のハウジング 4内に、 金属製の環状支持体 4 1 を介して、 固定されてい る。 そして、 上記通鼋発熱体 2の一方のリード線 2 1は、 絶縁体 1 1の 内部を上昇して、 本体 1 0の側面に設けた導電性の端子部 1 2 3を介し て内部リード線 2 3 1 に電気的に接続されている。 また、 他方のリー ド 線 2 2は、 上記環状支持体 4 1 を介してハウジング 4に電気的に接続さ れている。 また、 上記イオン電流検出用電極 3の上部は、 絶縁体 1 1の 上端部に設けた導電性の端子部 3 1 を介して内部リー ド線 3 3に電気的 に接続されている。
一方、 ハウジング 4は、 上記環状支持体 4 1を有し、 図 5 5に示すよ うに、 その上部に保護筒 4 2を有している。 また、 ハウジング 4は、 ェ ンジンのシリンダへヅ ド 4 5へ装着するための、 雄ねじ部 4 3を有する。 上記保護筒 4 2の上方開口部には、 ゴムブッシュ 4 2 1が嵌合されてい る。 また、 ゴムブッシュ 4 2 1には、 外部リー ド線 2 3 3、 3 3 3が貫 挿され、 これらはそれそれ接続端子 2 3 2、 3 3 2を介して、 上記内部 リード線 2 3 1、 3 3に接続されている。 したがって、 外部リード線 2 3 3は通電発熱体 2の一端に、 外部リー ド線 3 3 3はィオン電流検出用 電極 3にそれそれ電気的に導通されている。
なお、 通電発熱体 2の他端は、 上記のように、 環状支持体 4 1を介し てハウジング 4に電気的に導通している (図 5 4 A ) 。 また、 本体 1 0 の先端部 (下端部) は、 図 5 4 A、 図 5 4 Bに示すように、 半球面形状 に形成されており、 ィオン電流検出用電極 3の先端 3 Bが露出している c 次に、 上記グローブラグ本体 1 0を製造するに当たっては、 まず図 6 2、 図 6 3に示すように、 U字状の通電発熱体 2の成形品 2 9 と棒状の ィオン電流検出用電極 3の成形品 3 9 を準備する。 これらの成形品 2 9、 39は、 それそれ通電発熱体 2及びィオン電流検出用電極 3用のセラ ミ ック粉末を主成分とし、 これにパラフィ ンワックスとその他の樹脂とを 混合し、 その混合物を用いて射出成形する。 あるいは粉末をそのままプ レス成形により作製する。 なお、 成形と同時にリー ド線 2 1、 2 2を接 続する。 リー ド線はタングステン、 モリブデン等の高融点金属又はその 合金からなる。
そして、 成形品 2 9、 39は、 絶縁体 1 1用のセラ ミ ック粉末の中に 埋設し、 これらをホッ トプレスにて一体的に加圧焼成する。 焼成は、 1 気圧のアルゴンガス雰囲気下、 500 k g f Zcm2 のブレス圧力によ り行い、 焼結助剤量の変更による焼成温度条件の変化に対しては、 各々 最適な条件で行い、 焼成温度は、 1 500〜 1 900 °Cの範囲で行った。 これによ り、 通電発熱体 2及びイオン電流検出用電極 3を内蔵したグ 口一プラグ本体 1 0が得られる。
なお、 本実施の形態におけるイオン電流検出用電極 3用の原料として は、 絶縁性セラ ミ ックとしての窒化珪素 ( S i 3 N4 ) と、 導電性セラ ミ ックとしての珪化モリブデン (Mo S i 2 ) と、 焼結助剤としての酸 化イ ッ ト リ ウム (Y 2 03 ) との混合物を用いた。 そして、 S i 3 N4 の粒径を M 0 S i 2 より大きくすることにより、 絶縁性の S i 3 N 4 粒 子が、 互いに連続する導電性の M 0 S i 2 粒子で包まれた組織となり、 導電性を発揮する。 具体的には、 例えば、 平均粒径 1 zmの M 0 S i 2 と平均粒径 1 の S i 3 N 4 を用いる。 また、 通電発熱体 2は、 上 記イオン電流検出用電極 3と同様のものを使用した。
絶縁体 1 1は、 導電性セラ ミ ックである Mo S i 2 と、 絶縁性セラ ミ ックである S i 3 N4 を基本成分とし、 焼結助剤として Y 2 03 を添加 したセラミ ツク焼結体よりなる。 そして、 S i 3 N4 の粒径を、 M 0 S i 2 と同じかやや小さくすることにより、 導電性の Mo S i 2 粒子が絶 縁性の S i 3 N 粒子で囲まれて分断された組織となり、 絶縁性を発現 する。 具体的には、 例えば、 平均粒径 0. の M o S i 2 と、 平均 粒径 0. 6〃mの S i 3 N を用いることができる。
上記通電発熱体 2、 イオン電流検出用電極 3又は絶縁体 1 1における 導電性セラ ミ ックと しては、 上記した M o S i 2 以外の金属の炭化物、 珪化物、 窒化物、 又はホウ化物を用いてもよく、 これらの少なく とも一 種を使用する。 導電性セラ ミ ックと絶縁性セラ ミ ックの配合割合は、 例 えば 1 0〜 4 0 : 9 0〜 6 0 (重量%) の範囲で適宜選択される。
通電発熱体 2、 イオン電流検出用電極 3、 絶縁体 1 1で同一又はそれ に近い配合割合とすれば熱膨張計数等の差が小さ くなるのでより好まし い。 焼結助剤としては、 Y 2 03 以外の希土類元素の酸化物、 例えばィ ッテルビウム、 ランタン、 ネオジム等の酸化物を用いてもよく、 これら から選ばれる一種以上を使用する。
次に、 上記のように本体 1 0 とハウジング 4などとによつて構成した グロ一プラグ 1は、 図 64に示すように、 エンジンのシリ ンダヘッ ド 4 5に対して、 ハウジンク 4の雄ねじ部を螺合することによ り装着する。 これにより、 グローブラグ本体 1 0の先端部が、 シリ ンダヘッ ド 4 5の 燃焼室の一部である渦流室 4 5 1に突出した状態で装着される。 なお、 符号 4 5 7は主燃焼室、 4 5 8はピス トン、 4 5 9は燃料噴射ノズルで ある。
また、 上記グローブラグ 1は、 図 6 4に示すように、 グローブラグ作 動回路に接続される。 すなわち、 通鼋発熱体 2の一端のリード線 2 1は、 外部リード線 2 3 3、 グロ一リ レー 5 3、 5 3 1、 及び 1 2ボルトのバ ッテリ 5 4を介して、 金属製のシリ ンダヘッ ド 4 5に接続されている。 さらに、 シリ ンダへッ ド 4 5、 ハウジング 4、 環状支持体 4 1、 本体 1 0のリー ド線 2 2 (図 5 4 Α) を介して、 通電発熱体 2の他端に接続さ れている。 これによ り、 通鼋発熱体 2の発熱用回路が形成される。
また、 イオン電流検出用電極 3の外部リード線 3 3 3は、 イオン電流 検出用抵抗 5 2 1、 直流電源 5 1を介してシリ ンダヘッ ド 4 5に接続さ れている。 また、 上記イオン電流検出用抵抗 5 2 1には、 イオン電流を 検出するための電位差計 5 2 2が設けられ、 これは E CU (電子制御装 置) 5 2に接続されている。 また、 E C U 5 2には、 上記グロ一リ レー 5 3、 5 3 1、 ェンジン冷却水の水温センサ 5 2 5、 ェンジンの回転数 センサ 5 2 6が接続されている。
上記図 6 4に示した、 グロ一プラグ 1の使用に当たっては、 まずェン ジンの始動時においては、 E C U 5 2により、 グロ一リ レー 5 3、 5 3 1がオンとされる。 そのため、 パッテリ 5 4とグロ一プラグの通鼋発熱 体 2との間が閉路となり、 グローブラグ本体 1 0の通電発熱体 2が通電 され発熱する。 そのためグロ一プラグ 1は発熱状態となり、 渦流室 4 5 1が加熱され、 着火温度に上昇する。
そこで、 燃料噴射ノズル 4 5 9から、 燃料が噴射されると、 その都度 燃料が着火され、 ビス トン 4 5 8が作動し、 エンジンが駆動される。
—方、 燃料が燃焼している際には、 前記のように、 イオンが発生する ので、 そのイオン電流をイオン電流検出用電極 3、 イオン電流検出用抵 抗 5 2 1及び電位差計 5 2 2により検出する。
すなわち、 グローブラグ本体 1 0の上記イオン電流検出用 S極 3とシ リンダへヅ ド 4 5との間には 1 2ボルトの直流電源 5 1によって電圧が 印加されている。 そこで、 渦流室 4 5 1内における、 燃焼火炎帯の活性 イオンの発生に伴い、 イオン電流検出用抵抗 5 2 1を含む電流経路にィ オン電流が流れる。
なお、 ィォン電流検出用抵抗 5 2 1は、 約 5 0 0 k Qで、 これを流れ るィオン電流は、 その両端の電位差として電位差計 5 2 2により検出さ れる。
ここで、 イオン電流の検出原理を略述する。
燃料噴射ノズル 4 5 9からの噴射燃料が渦流室 4 5 1で燃焼されると、 その燃焼火炎帯ではィオン化されたブラスイオンとマイナスイオンが大 量に発生する。 このとき、 上記イオン電流検出用電極 3とそれに対面す るシリ ンダへッ ド 4 5との間にバッテリ電圧が印加されているので、 ィ オン電流検出用電極 3にはマイナスイオンが捕獲されるとともに、 シリ ンダへヅ ド 4 5にはブラスイオンが捕獲される。
その結果、 上記の電流絰路が形成され、 この電流経路を流れるイオン 電流がイオン電流検出用抵抗 5 2 1の両端の電位差と して検出される。 —方、 E C U 5 2は、 C P U、 R OM, RAM、 入出力回路等からな る周知のマイクロコ ンピュータや A/D変換器 (共に図示略) を中心に 構成され、 電位差計 5 2 2によ り検出された検出信号を入力する。
また、 E CU 5 2には、 エンジン冷却水の温度を検出するための水温 センサ 5 2 5の検出信号や、 エンジンクランク角に応じてエンジン回転 数を検出するための回転数センサ 5 2 6の検出信号が入力され、 E CU 5 2は各検出信号に基づいて水温 T w、 エンジン回転数 N eを検知する。 上記 E C U 5 2は、 ディーゼルエンジンの低温始動時において、 グロ 一プラグ 1の通電発熱体 2を発熱させて燃料の着火及び燃焼を促進させ る。 また、 ディーゼルエンジンの始動直後において、 イオン電流を検出 する。 なお、 エンジン始動当初においては、 グロ一リ レー 5 3、 5 3 1 がオンの状態にあり、 通電発熱体 2は発熱状態に保持されるようになつ ている。
以下、 図 6 5のフローチャートを用いて、 上記グロ一リ レー 5 3、 5 3 1のオン、 オフ切換え処理を説明する。 図 6 5は、 所定の時間の割り 认み処理により実行される。 まず、 図 6 5の処理がスタートすると、 E CU 5 2は、 先ずステップ 1 1でエンジン暖機完了後であり、 かつグロ 一リ レー 5 3、 5 3 1がオフであるか否かを判別する。 エンジン始動当 初においては、 ステップ 1 1が否定判別され、 E CU 5 2は続くステツ ブ 1 2で水温 T w及びエンジン回転数 N eを読み込む。
その後、 ステップ 1 3で水温 Twが所定の暖機完了温度 (本実施形態 例では、 6 0 °C ) 以上であるか否かを判別するとともに、 ステップ 1 4 でエンジン回転数 N eが所定回転数 (本実施形態例では、 2 0 0 0 r p m) 以上に達しているか否かを判別する。
このときステップ 1 3、 1 4が共に否定判別されれば、 エンジンの暖 機が完了しておらず、 グロ一プラグの通電発熱体 2による加熱が必要で あるとみなし、 ステップ 1 5に進む。
また、 ステップ 1 3、 1 4のいずれかが肯定判別されれば、 エンジン の暖機が完了、 あるいはグローブラグ 1による加熱が不要であるとみな し、 ステップ 1 6に進む。
ステップ 1 5に進んだ場合は、 グロ一リ レー 5 3、 5 3 1はオンのま ま維持される。 この状態では、 グロ一プラグ 1の発熱作用によって燃料 の着火及び燃焼が継続される。 また、 ステップ 1 6に進んだ場合、 E C U 5 2は、 グロ一リ レ一 5 3、 5 3 1をオフとする。
次に、 図 6 6 Aは、 オシロスコープを用いて燃料燃焼時に発生するィ オン電流を観察した際の電流波形図である。 同図において、 燃料噴射時 期 (圧縮 T D C) 直後に電圧が急上昇している波形が燃料の燃焼による イオン電流波形であり、 A点が燃焼の開始位置、 すなわち着火時期に相 当する。
また、 このイオン電流波形には、 2つの山が観測される。 つまり、 燃 焼初期には、 拡散火炎帯の活性ィォンにより第 1の山 B 1が観測され、 燃焼中後期には筒内圧上昇による再イオン化により第 2の山 B 2が観測 される。
この場合、 E C U 5 2は、 イオン電流波形の第 1の山 B 1から実際の 着火時期を検出するとともに、 検出された実際の着火時期と目標着火時 期との差をなくすべく着火時期のフィー ドバック制御を実施する。 また、 E CU 5 2は、 イオン電流波形の第 2の山 B 2から異常燃焼、 失火等の 燃焼状態を検出し、 その検出結果を燃料噴射制御に反映させる。 こう し てイオン電流をェンジンの燃料噴射制御に反映させることによ り、 きめ 細かくエンジンの運転状態を制御することが可能となる。
次に、 グローブラグのイオン電流検出用電極 3に、 燃料燃焼により発 生したカーボン (スス) が付着した状態、 すなわち燻りが発生したとき には、 図 6 6 Bに示すように、 イオン電流が燃料噴射時期の前には低く、 その後には上昇していく という現象が発生する (図 6 6 A、 と図 6 6 B を比較) 。 なお、 図 6 6 Bの I t hは燻り状態を判別しグロ一リ レー 5 3, 5 3 1をオンにするか否かを判断するための波高値の判定レベル (しきい値) を表している。
そこで、 このような燻り現象が発生したときには、 上記グロ一リ レー 5 3、 5 3 1をオンとし、 通電発熱体 2を発熱させ、 上記の付着力ーポ ンを焼き切る操作を行う。
図 6 7は、 このカーボン焼き切り操作を、 上記図 6 4の回路における E CU 5 2により行う手順を示すフローチャートである。
すなわち、 同図のステップ 2 1において、 グロ一リ レー 5 3、 5 3 1 がオフの状態にあるとき、 ステップ 2 2において、 燃料噴射時期に上記 のごとき異常イオン電流 (図 6 6 B) が検出されたか否か判定する。 否 であれば、 ステップ 2 4に進み、 グローリ レ一 5 3、 5 3 1はオフのま まとする。 一方、 異常イオン電流が検出されたときには、 ステップ 2 3 に進み、 グロ一リ レー 5 3、 5 3 1をオンとし、 グロ一プラグの通鼋発 熱体 2を発熱させてカーボンを焼失させる。.
上記のように、 本実施の形態のグロ一プラグにおいては、 絶縁体 1 1 の内部に通電発熱体 2 とリード線 2 1、 2 2 とィオン電流検出用電極 3 とを設けてあり、 これらは一体的に構成されている。 そのため、 通電発 熱体 2によるグロ一動作 (発熱動作) と、 イオン電流検出用電極 3によ るイオン電流検出とを 1つのグローブラグにより達成できる。
また、 イオン電流検出用電極 3に力一ボンが付着した場合にも、 ィォ ン電流検出用電極 3の近くにある通電発熱体 2に通亀して発熱させるこ とによ り、 上記力一ボンを焼き切り、 イオン電流検出用電極 3を正常状 態にすることができる。 そのため、 イオン電流を精度良く検出すること ができる。 また、 絶縁体 1 1の先端部は、 半球形状としてあるので、 燃 焼室内における熱衝擎を吸収することができる。
さらに本実施の形態においては、 粒界相が結晶化して第 2結晶相を有 する。 そのため、 本実施の形態のイオン電流検出用電極の耐久性を向上 させることができる。
すなわち、 粒界相がガラス相である場合には、 ガラス相が比較的低融 点であるため、 グローブラグの実使用時の高温状態 (最高 1 4 0 0 °C程 度) において粒界相が軟化、 溶出する場合がある。 そして、 このガラス 相に噴霧燃料が直撃すると、 その熱衝擎によりイオン電流検出用電極表 面にクラックが発生する。
これに対し、 本実施の形態においては、 上記のように粒界相 Rの大部 分が結晶化して第 2結晶相 Hなっている。 この第 2結晶相は、 ガラス相 よりも高融点であり、 従来のように軟化、 溶出をするおそれがない。 そ れ故、 本実施の形態のイオン電流検出用電極は、 熱衝撃に強く、 損傷を 受けることがない。 くく 第 20の実施の形態 >>
本実施の形態においては、 本発明の効果を確認するために次の試験を 行った。
まず、 以下のようにして試験用の試料を作製した。 絶縁体、 通電発熱 体、 イオン電流検出用電極の基本成分をいずれも 70 S i 3 N 一 30 M 0 S i 2 (重量%) とし、 絶縁体は平均粒径が 0. 9〃111の^1031 2 と平均粒径が 0. の S i 3 4 を、 通電発熱体及びイオン電流 検出用電極には平均粒径が 0. 9 mの Mo S i 2 と平均粒径が 1 3 mの S i 3 N 4 を使用した。
焼結助剤としては Y2 0 a を用い、 その添加量を絶縁体と通電発熱体 とにおいて同量として、 上記第 1 9の実施の形態 (図 5 5 ) の構成のィ オン電流検出用電極付きセラミ ックグローブラグを作製した。 S i 3 N 4 と Mo S i 2 の総量に対する Y2 03 の添加量を、 1〜30重量%の 範囲内において表 1に示すように変更し、 試料 N o . 1〜6とした。 次 いで通電発熱体、 イオン電流検出用電極、 絶縁体ともに Y 2 03 7重量 %、 A 12 0 a 3重量%とした従来の組成によるヒータを作製し、 比較 用の試料 (N o. 7 ) とした。
上記試料 N o . 1〜7を用い、 まず、 通電の繰り返しによる抵抗値変 化をしらべるため、 通電 1分、 非通電 1分の繰り返しを 1サイクルとし た冷熱試験を行った。 このときのヒー夕温度は初期に通電時の発熱によ る飽和温度を 1400。Cにし、 非通電時はフアンによりヒータ温度を 1 00°C以下に冷却した。 評価は各試料につき 4本ずつ同様の試験を実施 して、 そのうちの 1本が抵抗値上昇によ り通鼋時のヒータ飽和温度が 1 00 °C低下して 1 300 °Cになったサイ クル数を寿命サイ クルとした。 表 1に結果を示す。 また、 この時のガラス相の溶出の有無を表 1に併せ て記した。 次に、 クラックの発生に関し、 水中スボーリ ング試験を行った。 まず、 グロ一プラグに通電し、 所定の飽和温度に発熱させた後、 2 0 °Cの水中 に環状支持体から突出しているグローブラグ本体先端部を浸漬させ、 表 面に発生するクラックの有無を調査することにより評価した。
具体的には、 飽和温度を 5 0 0 °Cとして水中スポ一リ ング試験を行い、 クラックが発生していなければ、 飽和温度を 1 0 0 °C上げ、 6 0 0 °Cと して水中スポ一リ ング試験を行った。 このようにして 1 4 0 0 °Cまで、 若しくはクラックが発生するまで、 1 0 0。Cずつ温度を上げて評価した。 評価は各試料について 4本ずつ同様の試験を実施し、 結果を表 1に併記 した。
表 1 より、 冷熱試験、 ガラス溶出については、 Y 2 03 を単独で添加 した試料 N o . 1〜 6のいずれも、 従来組成の試料 N 0. 7に比べ、 寿 命が向上している。 なお、 寿命サイクルは市場での信頼性を考慮すると 1 0 0 0 0サイクル以上であることが好ましく、 試料 N 0. 1〜 6では 1 0 0 0 0〜 1 5 0 0 0ダイクルと良好な結果が得られている。
また、 クラックの発生についても、 試料 N o . 1〜 6ともに試料 N o. 7より改善されており、 特に、 Y2 0 の添加量を 3〜 2 5重量%とし た試料 Ν ο . 2〜 5では 1 40 0 °Cにおいてもクラックの発生が全く見 られなかった。
以上より、 Y2 0 を 3〜 2 5重量%添加することで、 1 4 00 と いう高温使用において抵抗値変化が小さ く、 ガラス溶出がなく、 耐熱衝 擎性のよいイオン電流検出用電極付きセラミ ックグローブラグが得られ ることがわかる。 表 1
Figure imgf000140_0001
くく 第 2 1の実施の形態 »
本実施の形態においては、 焼結助剤として Y 2 0 3 の他に、 他の希土 類元素の酸化物を添加した試料を作製した。 基本成分は、 第 2 0の実施 の形態と同一とし、 焼結助剤の種類と添加量を表 2のように変更した。 焼結助剤の添加量は通電発熱体、 イオン電流検出用電極、 と絶縁体にお いて全て同虽とした。 そして、 第 2 0の実施の形態と同様にして試料を 作製し (試料 N o . 8 1 6 ) 、 評価を行った。 結果を表 2に併記する。 表 2の結果を従来組成の試料 N 0 . 7 (表 1 ) と比較すると、 全試料 において冷熱試験結果が向上しており、 ガラス溶出、 クラックの発生も 見られない。 このように、 Y 2 0 3 と他の希土類元素の酸化物を組み合 わせた場合でも、 添加総量を 3 2 5重量%とすることにより、 通電発 熱体の抵抗値変化が小さく、 ガラス溶出がなく、 耐熱衝擎性のよいィォ ン電流検出用電極付きセラ ミ ックグロ一プラグが得られる。 表 2
Figure imgf000141_0001
<< 第 2 2の実施の形態 >>
本実施の形態においては、 焼結助剤として Y 2 0 3 以外の希土類元素 の酸化物を 1種以上添加した試料を作製した。 希土類元素の酸化物とし て、 Y b 2 0 3 、 L & 2 0 a 、 N d 2 0 a 、 及びこれらを組み合わせた ものを用い、 それそれにつき、 焼結助剤の添加総量が 3重量%、 2 5重 量%の 2種類の試料を作製した。 基本成分は第 2 0の実施の形態と同一 とし、 焼結助剤の添加量は通電発熱体、 イオン電流検出用電極、 絶縁体 において全て同量とした。 そして、 第 2 0の実施の形態と同様にして試 料を作製し (試料 N o . 1 7 〜 2 6 ) 、 評価を行った。 結果を表 3に示 す。 表 3の結果を従来組成の試料 N o . 7 (表 1 ) と比較すると、 全試料 において冷熱試験結果が向上しており、 ガラス溶出、 クラ ックの発生も 見られない。 このように、 焼結助剤としては Y 2 0 3 以外の他の希土類 元素の酸化物のいずれを使用してもよく、 その添加総量を 3〜 2 5重量 %とすることで、 同様の効果が得られることがわかる。
97/38223 表 3
Figure imgf000143_0001
以上第 2 0ないし第 2 2の実施の形態の結果より、 焼結助剤として希 土類元素の酸化物を 1種以上使用し、 その添加総量を 3〜 2 5重量%と することにより、 抵抗値変化が小さ く、 ガラス溶出がなく、 耐熱衝撃性 のよいイオン亀流検出用電極付きグローブラグが実現できることがわか る。 くく 第 2 3の実施の形態 >>
本実施の形態は、 焼結助剤として 1 0重量%の丫 2 03 の他に、 A 1 2 03 を 0 · 0 1〜 7重量%添加して、 S i 3 N4 の粒界相をガラス相 と結晶相の混合体とした試料を作製した (試料 N o . 2 7〜 3 5 ) 。 試 料の作製は、 第 2 0の実施の形態と同様に行った。 また、 評価方法も第 2 0の実施の形態と同様に、 冷熱試験と水中スポーリ ング試験により行 つた。 その結果を表 4に示す。 なお、 粒界相中の結晶相の割合は結晶化 率によ り表している。 結晶化率は、 X線回折装置の結晶相ビーク強度と 透過電子顕微鏡の原子構造との比較を行いながら、 算出した。
表 4の結果より、 従来組成 (試料 N o . 2 7 ) め結晶化率 0 %のもの より、 少しでも結晶化している試料 N 0. 2 8〜 3 5は、 いずれも寿命 が向上していることがわかる。 その中でも、 試料 N o . 3 0〜 3 5の結 晶化率が 5 %以上のものは、 極めて良好な結果が得られた。 また、 水中 スポーリング試験におけるクラック発生温度についても、 試料 N o . 3 0 - 3 5までの結晶化率 5 %以上のものは良好な結果が得られている。 以上より、 特に結晶化率 5 %以上のものは、 寿命サイクルが長く、 ガ ラス溶出が無く、 耐熱衝撃性の良い、 イオン電流検出用電極付きセラミ ックグ□—プラグが実現できる。 なお、 本実施の形態は焼結助剤として Y 2 03 と A l 2 03 添加の場 合を示したが、 その他の希土類酸化物の焼結助剤を利用しても同様の結 果が得られる。
表 4
Figure imgf000145_0001
くく 第 2 4の実施の形態 >>
上記の第 2 0の実施の形態〜 5においては導電性セラミ ックとして M 0 S i 2 を用いた場合について示したが、 導電性セラ ミ ックとして他の 金属の炭化物、 窒化物、 ホウ化物を用いた場合においても同様の効果が 得られる。 本実施の形態においては、 これを確認するため、 表 5に示す ように、 導電性セラ ミ ックを W C:、 T a C、 T i N、 Z r B 2 に変更し、 それそれについて、 焼結助剤の添加量を上記試料 N 0. 3 ( Y 2 03 : 1 0重量%) 、 試料 N o . 7 ( Y 2 03 : 7重量%、 A 12 03 : 3重 量%) と同じにした 2種類の試料を作製し (試料 N o . 3 6 4 3 ) 、 第 2 0の実施の形態と同様の試験を行った。
結果を表 5に併記する。 表 5より明らかなように、 導電性セラ ミ ック 卜
の種類を変更 o 1
GO 1 COしO 1
COOた場合においても、 Y 2 03 添加量を 1 0重量%添加し て粒界相に結晶相 z}O Cを設けることにより、 抵抗値変化が小さく、 ガラス溶 出がなく、 耐熱衝擎性のよいイオン電流検出用電極付きセラミ ックグロ —プラグが得られる。 なお、 その他の希土類酸化物 1種以上を焼結助剤 に利用しても同様の効果が得られる。
表 5 試 ぉ
基本成分 焼結助剤 冷熱試験 水中ス -リング
Figure imgf000146_0001
重量% 重量% 寿命 ガラス クラ 7ク発生
サイクル 溶出
3 6 10Υί03 10800 無 1400'C- 無
3 7 7Y203-3A 03 2800 有 1200*C-2本
3 8 10Y203 14500 無 1400'C- 無
3 9 7Y203-3Ali03 1900 有 1200'C-2本
4 0 10Y203 13000 無 1400'C- 無
4 1 7Υ208-3Αΐ2θ3 2700 有 1200'C-2本
4 2 10Y203 10800 無 1400'C- 無
4 3 7Υ2θ3-3Αΐ2θ3 1800 有 1200'C-2本 くく 第 2 5の実施の形態 >>
本実施の形態は、 図 6 8に示すように、 第 1 9の実施の形態のグロ一 プラグ作動回路 (図 6 4 ) を変更したもので、 第 1 9の実施の形態のバ ッテリ 5 4 と直流電源 5 1 とを、 1個のバッテリ 5 5のみに代えたもの である。
なお、 イオン電流検出用抵抗 5 2 1 とバッテリ 5 5 との間には、 定電 流、 定電圧回路 5 2 4を介在することもできる。 この場合には、 回路構 成の簡素化とコス ト低減の効果がある。 その他は、 第 1 9の実施の形態 と同様である。
本実施の形態においても、 第 1 9の実施の形態と同様の効果を得るこ とができる。 また、 特に、 本実施の形態においては、 定電流 · 定電圧回 路 5 2 4を介在することで 1つのバッテリーでも、 グロ一ブラグ発熱時 に生じるイオン電流検出用電極への印加電圧の変動を防止し、 安定した 検出性能が維持できるという効果を得ることができる。 くく 第 2 6の実施の形態 >>
本実施の形態は、 図 6 9 A、 図 6 9 Bに示すように、 イオン電流検出 用電極 3を、 U字状の通電発熱体 2の下端に一体的に設けた例である。 本実施の形態におけるイオン電流検出用電極 3は、 第 1 9の実施の形態 と同様に、 その粒界相に第 2結晶相を有する。 また、 通電発熱体 2の一 方のリード線 2 2 0を、 絶縁体 1 1の上端に設けた端子部 3 1 に接続し、 リード線 2 2 0 とイオン電流検出用電極 3 との端子部を共用している。 この場合の作動回路を図 7 0に示す。 同図よりわかるように、 通電発 熱体 2の発熱用回路とイオン電流検出回路には、 それそれグロ一リ レー 5 3、 5 3 1、 イオンリ レー 5 3 0を設けてあり、 これらは E C U 5 2 からの指令信号によ り、 スィ ッチ切換えされるよう構成されている。 そ して、 作動状態としては常に通電発熱体発熱状態か、 イオン電流検出状 態のどちらか一方の回路構成となるようになつている。
図 7 1は、 このカーボン焼き切り操作を、 上記図 7 0の回路における E C U 5 2によ り行う手順を示すフローチャー トである。 すなわち、 同 図のステップ 2 1において、 グロ一リ レー 5 3、 5 3 1がオフの状態に あるとき、 ステップ 2 2において、 燃料噴射時期に上記のごとき異常ィ オン電流 (図 6 6 B ) が検出されたか否か判定する。 否であれば、 ステ ップ 2 4に進み、 グロ一リ レー 5 3、 5 3 1はオフのままとする。
一方、 異常イオン電流が検出されたときには、 ステップ 2 5に進み、 イオンレリ レー 5 3 0をオフとし、 次いでステップ 2 3にてグローリ レ 一 5 3、 5 3 1をオンとし、 グロ一プラグの通鼋発熱体 2を発熱させて カーボンを焼失させる。 その他は、 第 1 9の実施の形態と同様の効果を 得ることができる。 なお、 本実施の形態では、 上記端子部 3 1を通電発 熱体 2 とィオン電流検出用電極 3の端子部として共用しているので、 構 造が簡単である。
図 7 2は図 7 0の変形例であり、 図 7 0の回路構成ではグロ一プラグ 1発熱用電源 (バッテリ) 5 4とィオン電流検出用電源 (バッテリ) 5 1が別個に用意されているが、 図 7 2の回路構成では単一の電源 (バッ テリ) 5 5を用いている点で図 7 0 と異なる。 イオンリ レー 5 3 0と 2 つのグロ一リ レー 5 3、 5 3 1はそれそれ図 7 0に対応していて、 図 7 1のフローチャートに示した手順で E C U 5 2により同様にオン · オフ が制御される。 すなわち、 通電発熱体 2を発熱させる場合には、 同図に 示すように、 イオン リ レー 5 3 0はオフとし、 グロ一リ レー 5 3、 5 3 1はオンとする。 一方、 イオン電流検出用電極 3によりイオン電流を検 出する場合には、 イオンリ レー 5 3 0をオンとし、 グロ一リ レー 5 3及 び 5 3 1はオフとする。 くく 第 2 7の実施の形態 >>
本実施の形態は、 図 7 3に示すように、 第 2 2の実施の形態における イオン電流検出用電極 3の露出部分 3 Bを含む先端部分 3 0 1のみにお いて、 その粒界相を結晶化させている。 そして、 先端部分 3 0 1以外の 他部分 3 0 2は、 従来と同様に粒界相をガラス相とした。 その他は第 2 2の実施の形態と同様である。
この場合においても、 イオン電流検出用電極 3の露出部分 3 Bの破損 がなく、 第 2 2の実施の形態と同様の効果を得ることができる。 くく 第 2 8の実施の形態 >>
第 2 8ないし第 3 1の実施の形態は第 1 9の実施の形態 (図 5 4 A、 図 5 4 B図 5 5他) の変形である。 よって、 第 2 9の実施の形態と異な る点のみを説明する。 イオン電流検出用電極 3は図 5 4 Aに示されるよ うに、 シリ ンダ内の火炎にさらされるように絶縁体 1 1から露出した露 出部 3 Bを有している。 この露出部 3 Bは、 0 . l〜 3 0 / mの表面粗 さ R z ( 1 0点平均粗さ) に研磨された研磨部分 3 A (図 5 4 A ) を有 している。 本実施の形態においては、 絶縁体 1 1から露出したイオン電 流検出用電極 3の露出部 3 B全体を研磨部分 3 Aとして、 研磨した。 研 磨は、 # 6 0 0の砥石を用いて行った。 これにより、 本実施の形態では 研磨部分 3 Aの表面粗さ R zを 4 . 5〃mに整えた。
研磨部分 3 Aの表面粗さ R zは、 0 . 1〜 3 0 > mの範囲内に研磨し てあることは上述のとおりである。 そのため、 図 7 4に示すように、 研 磨部分 3 Aには、 ミクロ的に見ると凸部 3 Dが多数存在する。 この凸部 3 Dには、 シリ ンダヘッ ド 4 5 とィオン電流検出用電極 3 との間の電界 中の電束が集中する。 また、 電束が集中した凸部 3 D近傍は、 電位勾配 が急峻となる。 この電位勾配により、 燃焼ガス中のマイナスの荷電粒子 7はィオン電流検出用電極 3の凸部 3 D近傍に強く引きつけられ、 荷電 粒子 7の移動が活発となる。
それ故、 研磨部分 3 Aを有するイオン電流検出用電極 3は、 さらに精 度よくイオン電流を検出することができるのである。
<< 第 2 9の実施の形態 : 第 28の実施の形態と比較例による実験例 >> 第 2 8の実施の形態に示したグロ一プラグにおける研磨部分 3 Aの効 果をさらに明確にすべく、 比較例を用いてィオン電流の検出試験を行つ た。 比較例は、 第 2 8の実施の形態に示した研磨部分 3 Aを更に研磨し て、 0 . 0 l mの表面粗さ R zにとしたものを用いた。 なお、 第 2 9 の実施の形態にかかるイオン電流検出用電極の研磨部分は上記のように
4 . 5 mの表面粗さ R zである。
第 2 8の実施の形態によ り検出したィオン電流の波形 E 1を図 7 5に、 比較例によ り検出したイオン電流の波形 C 1 を図 7 6にそれそれ示す。 図 7 5、 図 7 6は、 共に横軸に時間、 縦軸に電流値をとつたものであり、 横軸には燃料噴射時期を縦線 Pにより示してある。
両図の比較からわかるように、 第 2 8の実施の形態にかかるィオン電 流検出装置では常に高いビーク値の波形が精度よく検出され、 一方、 比 較例は、 ビーク値が非常に小さ く検出精度が低い状態の波形 Aや、 検出 されない場合 Bが発生した。 この結果から、 イオン電流検出用電極 3の 露出部 3 Bに特定範囲の表面粗さ R zを有する研磨部分 3 Aを設けるこ とによって、 イオン電流の検出精度を大幅に向上させることができるこ とがわかる。 << 第 3 0の実施の形態 > >
第 2 0の実施の形態は第 2 8の実施の形態の変形例であり、 第 2 8の 実施の形態に示したグロ一プラグにおける研磨部分 3 Aの表面粗さ R z を種々変更し、 そのイオン電流検出精度への影響を試験した。 試験に用 いるグロ一プラグとしては、 研磨部分 3 Aの表面粗さ R zを 0. 0 1〜 1 00 の範囲で変更したものを複数準備した。 研磨部分 3 Aの表面粗 さ R z以外は、 第 2 8の実施の形態と同様と した。
イオン電流の検出精度は、 グロ一プラグをセヅ ト した試験用のディー ゼルエンジンを 80 O rpmの回転数によ り運転し、 1分間ィオン電流 を検出させ、 燃料噴射回数に対して何回精度よくイオン電流を検出する ことができたかにより求めた。 精度よくイオン電流を検出したか否かの 判断は、 エンジン運転時間中のイオン電流のピーク値の平均値の 0. 3 倍以上の電流値を検出した場合は検出できたとし、 上記平均値の 0. 3 倍未満の電流値しか検出できなかった場合には検出できなかったとした。
したがって、 例えば 100回燃料噴射された場合に、 1 00回精度よ くイオン電流を検出した場合には検出精度は 1 00%であり、 50回だ け精度よ く イオン電流を検出した場合には検出精度は 50 %である。 試験結果を図 77に示す。 図 77は、 横軸に研磨部分 3 Aの表面粗さ R zを、 縦軸にイオン電流の検出精度をとつた。 図 77よ りわかるよう に、 イオン電流の検出精度は研磨部分の表面粗さ R zが 0. l ^m以上 の場合には、 いずれも 100%であった。 一方、 表面粗さ R zが 0. 1 in未満の場合には、 表面粗さ R ζが小さいほど検出精度が低下した。 また、 表面粗さ R ζが 30〃mを超えるものについてはクラックが発 生した。 これは、 凹凸が大きいため、 その凹部等に応力集中が起こ りや すいからであると考えられる。 したがって、 第 2 9の実施の形態による 測定結果から、 研磨部分 3 Aの表面粗さ R zは 0. l〜30 zmが最適 であることがわかる。 くく 第 3 1の実施の形態 >>
第 3 1の実施の形態は、 図 7 8〜図 8 0に示すように通電発熱体 2と ィオン電流検出用電極 3とを電気的に接続して一体化したものである。 図 7 8〜図 8 0に示すように、 ィオン電流検出用電極 3の露出部 3 Bの 面積を変更し、 その面積とイオン電流検出精度との関係を試験した。 ま た、 グロ一プラグ本体の直径 Dは 3. 5 mm、 ハウジング 4からの突出 長さ Lは 1 O mmとした。
図 7 8に示したグロ一プラグ 1 0 3は、 イオン電流検出用電極 3の露 出部 3 Bを本体 1 0の先端部の半球面部分全体に設け、 さらに露出部 3 B全体を表面粗さ R z = 4. 5 の研磨部分 3 Aとした。 この場合の 露出部 3 Bの面積 (研磨部分 3 Aの面積) は、 0. 5 c m2 である。
図 7 9に示したグローブラグ 1 04は、 ィオン電流検出用電極 3の露 出部 3をできるだけ小さく し、 さらに露出部 3 B全体を表面粗さ R z = 4. 5 /mの研磨部分 3 Aとした。 この場合の露出部 3 Bの面積 (研磨 部分 3 Aの面積) は、 1 X 1 0 _6 c m2 である。
図 8 0に示したグロ一プラグ 1 0 5は、 ィオン電流検出用電極 3の露 出部 3を上記図 7 8、 図 7 9の場合の中間程度の大きさとし、 さらに露 出部 3 B全体を表面粗さ R z = 4. 5 zmの研磨部分 3 Aとした。 この 場合の露出部 3 Bの面積 (研磨部分 3 Aの面積) は、 0. 0 0 8 c m2 である。
また、 例えば図 8 0に示したグロ一プラグを用いた全体図は図 6 9 A に示されたものであり、 これと組み合わせて用いる回路は例えば図 7 2 に示したものを用いることができる。 すなわち、 図 6 9 Aに示すように、 通鼋発熱体 2 とイオン電流検出用電極 3 とが一体化している場合には、 通電発熱体 2に設けたリー ド線 2 2 0を、 絶縁体 1 1の上端に設けた端 子部 3 1に接続する。 このように構成したグローブラグは、 第 2 8の実 施の形態と同様にして、 シリ ンダへッ ド 4 5に装着される。
また、 本実施の形態の場合には、 通電発熱体 2 とイオン電流検出用電 極 3とが一体化されているので、 グローブラグの作動回路は図 7 2に示 す構成のものを用いることができる。 通電発熱体 2を発熱させる場合に は、 同図に示すように、 イオンリレー 5 3 0はオフとし、 グロ一リ レー 5 3、 5 3 1はオンとする。 一方、 イオン電流検出用電極 3によりィォ ン電流を検出する場合には、 イオンリ レー 5 3 0をオンとし、 グロ一リ レ一5 3及び 5 3 1はオフとする。
次に、 上記 3種類のグロ一プラグ 1 0 3、 1 04、 1 0 5を用いて、 第 3 1の実施の形態と同様の条件により、 イオン電流の検出精度を調べ た。 その結果、 いずれのグロ一プラグも検出精度が 1 0 0 %となり、 非 常に良好であった。 この結果から、 露出部 3 Βに上記特定の範囲内の表 面粗さ R ζを有する研磨部分を設けることによって、 露出部 3 Βの面積 が 1 x 1 0— 6〜0. 5 c m2 の範囲内において変動しても、 十分良好に イオン電流の検出ができることがわかる。
また、 本実施の形態の結果から、 露出部 3 Bの面積は、 1 X 1 0 _6 c m2 という非常に小さい面積でもよいことから、 少しでも露出部 3 Bが 外部に露出していれば有効であることもわかる。 第 3 2実施の形態 >>
第 3 2の実施の形態のグロ一ブラグ 1は、 図 8 1 Aに示すように本体 1 0と本体 1 0を保持するハウジング 4とからなる。 上記本体 1 0は、 絶縁体 1 1 と、 絶縁体 1 1の内部に設けられた通鼋発熱体 2と、 通電発 熱体 2の両端部に電気的に接続されて絶縁体の他端側に導出された一対 のリー ド線 2 1、 2 2 とを有する。
また、 上記通電発熱体 2 と電気絶縁されて、 上記絶縁体 1 1の内部に 配設された、 火炎中のイオン化の状態を検出するためのィオン電流検出 用電極 3を有する。 また、 イオン電流検出用電極 3の先端部 3 Cには、 上記絶縁体 1 1の先端部も含めて、 上記火炎中へ連通する連通孔 3 8 0 (図 8 3 ) を有する絶縁性多孔質層 3 8が被覆されている。
上記本体 1 0は、 図 8 1 A、 図 8 2に示すように、 金属製のハウジン グ 4内に、 金属製の環状支持体 4 1 を介して、 固定されている。 そして、 上記通電発熱体 2の一方のリード線 2 1は、 絶縁体 1 1の内部を上昇し て、 本体 1 0の側面に設けた導電性の端子部 1 2 3を介して内部リード 線 2 3 1 に電気的に接続されている。 また、 他方のリード線 2 2は、 上 記環状支持体 4 1 を介してハウジング 4に電気的に接続されている。 また、 上記イオン電流検出用電極 3の上端部は、 絶縁体 1 1の上端部に 設けた導電性の端子部 3 1 を介して内部リード線 3 3に電気的に接続さ れている。
一方、 ハウジング 4は、 上記環状支持体 4 1を有し、 図 8 2に示すよ うに、 その上部に保護筒 4 2を有している。 また、 ハウジング 4は、 ェ ンジンのシリ ンダへヅ ド 4 5へ装着するための、 雄ねじ部 4 3を有する。 上記保護筒 4 2の上方開口部には、 ゴムブッシュ 4 2 1が嵌合されてい る。 また、 ゴムブッシュ 4 2 1 には、 外部リード線 2 3 3、 3 3 3が貫 挿され、 これらはそれそれ接続端子 2 3 2、 3 3 2を介して、 上記内部 リード線 2 3 1、 3 3に接続されている。
したがって、 外部リード線 2 3 3は通電発熱体 2の一端に、 外部リー ド線 3 3 3はィオン電流検出用電極 3にそれそれ電気的に導通されてい る ο
なお、 通電発熱体 2の他端は、 上記のように、 環状支持体 4 1 を介し てハウジング 4に電気的に導通している (図 8 1 A ) 。 また、 本体 1 0 の先端部 (下端部) は、 図 8 1 Aに示すように、 半球面形状に形成され ており、 ィオン電流検出用電極 3の先端部 3 Cが露出している。
次に、 上記グロ一プラグ本体 1 0の製造方法につき図 8 4 A、 図 8 4 B、 図 8 5 を用いて説明する。 まず、 グロ一プラグの本体 1 0は、 図 8 1 Aに示したように、 絶縁体 1 1 とその中に埋設した通電発熱体 2 とィ オン電流検出用電極 3 と、 上記絶縁性多孔質層 3 8 とよりなる。 そこで、 まず図 8 4 A、 図 8 4 Bに示すように、 導電状のセラ ミ ック粉末により、 U字形状の通鼋発熱体 2 と、 棒状のイオン電流検出用電極 3 とをあらか じめ作製しておく。
一方、 図 8 5 に示すように、 絶縁体 1 1を形成するための、 略半円状 の下部 1 1 1 と略板状の中部 1 1 2 と略半円状の上部 1 1 3 とを、 絶縁 性のセラミ ック粉末を用いてあらかじめ作製しておく。 上記下部 1 1 1 の上面と中部 1 1 2の下面には、 上記通電発熱体 2を入れるための U字 溝 1 1 5、 1 1 6を形成しておく。
また、 中部 1 1 2の上面と、 下部 1 1 3の下面には、 上記イオン電流 検出用電極 3を入れるための棒状溝 1 1 7、 1 1 8を形成しておく。 そ して、 上記 U字溝 1 1 5、 1 1 6に上記通電発熱体 2を、 棒状溝 1 1 7、 1 1 8に上記ィオン電流検出用電極 3を入れ、 これらを積層する。 なお、 この際、 通電発熱体 2にはリード線 2 1、 2 2を接続しておく。
これによ り、 図 8 6 A ( A ) の上方に示すごとき、 積層体が得られる。 そこで、 積層体の先端部 1 8に、 あらかじめ作成しておいた円板状の絶 緣性多孔質層 3 8 2 を接着剤により接合する。 次いで、 これらを加熱、 焼結して、 一体焼結体とする。 さらに、 図 8 6 A ( B ) に示すように、 上記一体焼結体の下方を、 研削加工し (同図の下方の点線) 、 半球面状 とする。 これにより、 上記図 8 1 Aに示したグローブラグ本体 1 0が得 られる。
次に、 上記のように本体 1 0 とハウジング 4などとによつて構成し たグロ一プラグ 1は、 図 6 4に示すように、 エンジンのシ リ ンダヘッ ド 4 5に対して、 ハウジンク 4の雄ねじ部を螺合することにより装着する。 これにより、 グロ一プラグ本体 1 0の先端部が、 シリ ンダヘッ ド 4 5の 燃焼室の一部である渦流室 4 5 1 に突出した状態で装着される。 なお、 符号 4 5 7は主燃焼室、 4 5 8はビス ト ン、 4 5 9は燃料噴射ノズルで ある。
また、 上記グロ一プラグ 1は、 図 6 4に示すように、 グロ一プラグ作 動回路に接続され、 図 6 5のフローチャートにそって既に説明したよう にその通電が制御される。
上記のように、 本実施の形態のグローブラグにおいては、 絶縁体 1 1 の内部に通電発熱体 2 とリード線 2 1、 2 2 とが形成され、 さらに絶縁 体 1 1の内部にイオン電流検出用電極 3が設けてあり、 これらは一体的 に構成されている。 そのため、 通鼋発熱体 2によるグロ一動作 (発熱動 作) と、 イオン電流検出用電極 3によるイオン電流検出とを 1つのグロ —プラグにより達成できる。
また、 グロ一ブラグ本体 1 0の表面、 つまり上記絶縁体 1 1の表面に カーボンが付着した場合にも、 イオン電流検出用電極 3の近くにある通 電発熱体 2に通電して発熱させることにより、 上記カーボンを焼き切り、 イオン電流検出を正常状態に戻すことができる。 そのため、 絶縁性多孔 質層 3 8の連通孔 3 8 0 (図 8 3 ) を介してイオンを精度良く検出する ことができる。
そして、 ここに重要なことは、 上記イオン電流検出用電極 3の先端部 3 Cは上記絶縁性多孔質層 3 8によ り被覆されている (図 8 3 ) ので、 イオン電流検出用電極 3は直接に火炎にさらされることがない。 そのた め、 イオン電流検出用電極 3は、 高温の火炎による熱的衝擎に基づく応 力集中が生ぜず、 クラ ック等の損傷を生ずることがない。 また、 絶縁性 多孔質層 3 8は上記連通孔 38 0を有するので、 上記ィオンはこの連通 孔 38 0を通じてィオン電流検出用電極 3とシリ ンダヘッ ド 4 5との間 に流れ、 イオン電流として正確に検出される。
また、 上記絶縁体 1 1、 通電発熱体 2、 リード線 2 1、 2 2、 イオン 電流検出用電極 3、 及び絶縁性多孔質層 38を一体構成しているので、 構成簡単である。 また、 通鼋発熱体 2、 リー ド線 2 1、 2 2、 イオン電 流検出用電極 3は、 絶縁体 1 1の内部に設けてあるので、 燃焼ガスによ る酸化等の腐食もなく、 耐久性に優れている。 また、 絶縁体 1 1の先端 部は、 半球面状 (図 8 1 A〜図 83) と してあるので、 燃焼室内におけ る熱衝撃を吸収することができる。 くく 第 33実施の形態 >>
次に、 第 32実施の形態に示したグローブラグ本体の具体例につき、 表 6に、 比較例と共に示す。 まず、 上記通電発熱体は、 小粒径の導電性 の M o S i 2 (二珪化モリブデン) 粉末と大粒径の絶縁性の S i N 4
(窒化珪素) と焼結助剤である Y 2 0 と、 有機バイ ンダーとを用い て U字状に成形した (図 84 Α) 。 また、 イオン電流検出用電極も同じ 材料を用いて棒状に成形した (図 84 Β) 。
次に、 上記絶縁体は、 小粒径の S i 3 N4 と、 ほぼ同粒径の Mo S i 2 と Y 2 03 と有機バイ ンダーとを用いて、 上記図 85に示したよう に、 上部 1 1 1、 中部 1 1 2、 下部 1 1 3にそれそれ成形した。 一方、 絶縁性多孔質層 38は、 上記絶縁体 1 1用と同じ材料で有機バイ ンダ一 の量を多く したものを用いて、 板状体 3 82に成形した。
そして、 これらを上記のように、 積層するとともにこの積層体の先端 部に、 図 8 6 Αに示すように、 上記絶縁性多孔質層の板状体 382を接 着剤を介して接合した。 そして、 これらの生成形体の積層品を、 45 0°Cで有機バイ ンダーを脱脂後、 1 7 5 0 °Cで 6 0分間、 加圧焼結した。 さらに、 グロ一プラグの先端部を半球面状に研削し、 図 8 1 Aに示すグ ロープラグ本体を得た。
なお、 上記グロ一プラグ本体 1 0における、 上記絶縁性多孔質層 3 8 の厚みは表 6に示すように、 種々に変えた。 絶縁性多孔質層 3 8の厚み は、 先端部が半球状であるため、 最大厚みを示した。
次に、 上記グロ一プラグを、 第 3 1実施の形態の図 7に示すように、 ディーゼルエンジンのシリ ンダヘッ ド 4 5に装着した。 そして、 グロ一 プラグの通電発熱体に通電して 1 2 0 0 °Cに加熱後、 エンジンを始動し、
1分間のアイ ド リ ングを行ない、 エンジン停止 1分間の後、 再び上記通 電、 始動、 停止を繰り返すエンジンテス トを 2 0、 0 0 0回及び 3 0、
0 00回行なった。 そして、 イオン電流検出用電極の先端部、 及びその 周囲の絶縁体のクラック等の損傷状況を観察した。 その結果を、 表 6に 示す。
表 6よ りわかるように絶縁性多孔質層 3 8を設けていない試料 (N 0. 1 ) は 2万回テス 卜でクラ ックによるチッビングが発生していた。 また、 絶縁性多孔質層を設けたもののうち厚み 0. 1及び 1 . 6 mm (試料 N o . 2、 7 ) は、 3万回テス トでクラック等の損傷が発生していた。 な お、 上記テス トは過酷な条件であるため、 試料 N o . 2及び 7も実用上 殆ど問題ないが、 特に試料 N o . 3〜 6のものは優れた耐久性を有して いる。 表 6
Figure imgf000159_0001
※ 〇…クラック発生なし 厶…クラック発生若干あり
X…クラックによるチツビング発生あり
くく 第 3 4の実施の形態 >>
本実施の形態は、 図 8 7に示すように、 グロ一プラグ本体 1 0におい て、 通電発熱体 2の U字状の下端にィオン電流検出用電極 3を一体的に 設け、 ィオン電流検出用電極 3の先端部 3 Cに第 3 1実施の形態と同様 の絶縁性多孔質層 3 8を設けた例である。 本実施の形態によれば、 通電 発熱体 2の先端部にイオン電流検出用電極 3を設けるのでグロ一プラグ の構造が簡単になる。 その他は第 3 2実施の形態と同様であり、 第 3 2 実施の形態と同様の効果を得ることができる。 くく 第 3 5の実施の形態 >>
本実施の形態は、 図 8 8に示すように、 U字状の通電発熱体 2をィォ ン電流検出用電極 3 として兼用した例である。 本実施の形態においては、 イオン電流検出用電極 3の先端部 (U字状の下端部) 及び下方側面を絶 縁性多孔質層 3 8により被覆している。 本実施の形態によれば、 イオン 電流検出用電極と通電発熱体とを兼用しているので構造が簡単である。 本実施の形態のグローブラグの作動回路としては、 後述する第 3 6の実 施の形態で用いるものを使用することができる。 その他は第 3 1実施の 形態と同様であり、 第 3 1実施の形態と同様の効果を得ることができる。 くく 第 3 6の実施の形態 >>
本実施の形態は、 図 8 9 A、 図 1 5に示すように、 上記第 3 4の実施 の形態及び第 3 4の実施の形態に示した、 通鼋発熱体とィオン電流検出 用電極とを一体化した場合の、 グロ一プラグ本体の全体断面図、 及びグ ロープラグ作動回路を示すものである。 すなわち、 図 8 9 Aに示すよう に、 上記一体化の場合には、 通電発熱体 2に設けたリード線 2 2を、 絶 縁体 1 1の上端に設けた端子部 3 1 に接続する。 このように構成したグロ一プラグは、 第 3 1実施の形態の図 1 1 と同 様にして、 シリ ンダヘッ ド 4 5に装着する。 また、 本実施の形態の場合 には、 通電発熱体 2 とイオン電流検出用電極 3 とが一体化されているの で、 グロ一プラグの作動回路は、 図 1 5に示す構成となる。
そして、 通鼋発熱体 2を発熱させる場合には、 同図に示すように、 ィ オンリ レ一 5 3 0はオフとし、 グロ一リ レ一 5 3はオンとする。 一方、 イオン電流検出用電極 3によりイオン電流を検出する場合には、 イオン リ レー 5 3 0をオンとし、 グロ一リ レー 5 3はオフとする。
これによ り、 第 3 1実施の形態と同様の効果が得られる。
その他は、 第 3 1実施の形態と同様である。
<< 第 3 7の実施の形態 >>
第 3 7の実施の形態は第 2 6の実施の形態 (図 6 9 A他) の変形例で ある。 図 6 9 Aに示すように、 グローブラグの本体 1 0は、 絶縁体 1 1 と、 絶縁体 1 1の内部に設けられた断面 U字状の通鼋発熱体 2及び通電 発熱体 2の両端部に電気的に接続されて絶縁体 1 1の外部に導出された 一対のリード線 2 1、 2 2を有する。 また、 上記通電発熱体 2の途中に 電気的に接続されて上記絶縁体 1 1の内部に配設された、 火炎中のィォ ン化の状態を検出するための、 1つのイオン電流検出用電極 3 とを有す る。 上記イオン電流検出用電極 3の先端 3 Cは上記火炎にさらされるよ うに上記絶縁体 1 1から露出している。
そして、 図 9 0に示すように、 上記通電発熱体 2に発熱用の直流電流 を流すときにブラス側となるプラス端 2 1 8から最初の上記ィオン電流 検出用電極 3が接続されている最初の接続部分 3 9の中心部 2 0 9 まで の、 通電発熱体 2における第 1発熱部 2 0 1の電気抵抗を R 1、 上記最 初の接続部分 3 9の中心部 2 0 9からマイナス端 2 2 8までの、 通電発 熱体 2における第 2発熱部 2 0 2の電気抵抗を R 2と し、 上記イオン電 流検出用電極 3における上記最初の接続部分 3 9から先端 3 Cまでの電 気抵抗を rとしたとき、 R 2〉 rの関係が満足されている。
また、 上記イオン電流検出用電極 3は、 U字状の通電発熱体 2の下端 に通電発熱体 2と一体的に設けられ、 その先端 3 Cは絶縁体 1 1から露 出している。 先端 3 Cには白金 (P t ) がコーディ ングしてある。
次に、 上記グロ一プラグ本体 10の製造に当たっては、 まず図 1 00 に示すごとき通電発熱体 2とィオン電流検出用電極 3との一体成形品 2 9を準備する。 一体成形品 2 9は、 通電発熱体 2及びィオン電流検出用 電極 3用のセラ ミ ック粉末を、 主成分のパラフィ ンヮックスと樹脂との 混合バイ ンダと混合し、 その混合物を射出成形する。 あるいはセラ ミ ツ ク粉未をそのままブレス成形する。
そして、 この一体成形品 2 9は、 絶縁体 1 1の中に埋設し、 これらを ホッ トブレスにて一体的に加圧焼成する。 上記の加圧焼成は、 アルゴン ガス雰囲気下、 1気圧で、 加圧力 400 kg f /cm2 とし、 焼成温度 は 1 800。C、 保持時間 60分で行う。 なお、 上記埋設に先立って、 上 記リード線 2 1、 2 2を接続しておく。 これにより、 上記グローブラグ 本体 10が得られる。
次に、 上記セラ ミ ック粉末等の具体例は、 前述した様に、 通電発熱体、 イオン電流検出用電極、 絶縁体の導電性セラ ミ ックとして M 0 S i 2 を、 絶縁性セラ ミ ックとして S i 3 N 4 を用いる。 また、 焼結助材と して
Y 0 と A 1 0 とを用いる。
通電発熱体におけるセラ ミ ヅクの配合割合は、 Mo S i 2 : S i N 4 = 20 : 80とした。 また、 イオン電流検出用電極の配合割合は、 M 0 S i : S i N 4 = 40 : 6 0とした。 そして、 上記 Mo S i2 の平均粒径は 1 m、 S i N 4 の平均粒径は 1 5 /mを用いた。 ま た、 絶縁体におけるセラ ミ ックの配合割合は Mo S i : S i N 4 = 30 : 70とし、 ? 03 12 の平均粒径は l zm、 S i 3 N 4 の平 均粒径は l〃mを用いた。 また、 焼結助材は、 上記いずれの場合も Y2 0 5 wt %、 A 1 0 5 wt %を外部添加した。 各材料の平均粒径 は 1 mを用いた。
また、 イオン電流検出用電極 3の先端部 3 Cは、 燃焼ガスに接触する よう露出しており (図 69 A) 、 その露出部分 3 Bには P t等の貴金属 がコーティ ングしてある。 そのため、 酸化等によるイオン電流検出用電 極表面の絶縁物生成が抑制され電極の導電性あるいは初期抵抗値が確保 され、 検出精度の劣化を防止する効果がある。 また、 イオン電流検出用 電極 3は、 絶縁体 1 1の直径方向の中心に配設してある。 そのため、 燃 焼室内におけるあらゆる方向におけるィオン電流を高精度で検出するこ とができる。
<< 第 38の実施の形態 >>
本実施の形態は、 表 7に示すように、 第 37の実施の形態に示したグ ローブラグ本体 1 0にっき、 上記電気抵抗 R 2と rの割合を変えた具体 例を示す。 グロ一プラグ本体 1 0の製造に当たっては、 まず上記通電発 熱体 2及びイオン電流検出用電極 3は、 あらかじめ、 射出成形により上 記一体成形品 2 9 (図 1 00) を作製しておく。
一方、 絶縁体 1 1としは、 半円柱体の 2つ割品を準備する。 この半円 柱体には、 絶縁体 1 1を構成する際に内側となる部分 (直径部分) に、 上記一体成形品 2 9を埋設するための U字状の溝が設けてある (図 6 9 A参照) 。 そこで、 上記一体成形品 2 9を、 上記絶縁体 1 1の半円柱体 の U字状溝に入れ、 さらに一方の半円柱を覆い、 これらを加圧焼結する これにより、 図 6 9 Aに示すように、 上記一体成形品よりなる通鼋発熱 体 2及びィオン電流検出用電極 3を内蔵した絶縁体 1 1が得られる。
次に、 上記通電発熱体 2は、 上記第 2発熱部の電気抵抗 R 2が 0. 8 Ωとなるように、 導電性セラ ミ ック粉末である Mo S i 2 粉末 35 % (重量比、 以下同じ) と、 絶縁性セラ ミ ック材料としての S i 3 N 4 粉末 6 5 %とを混合したものを用いた。 また、 上記イオン電流検出用電 極 3は、 下記表 7の電気抵抗 rとなるように、 Mo S i 2 粉末と S i 3 N 4 粉末との割合を変えて用いた。
また、 絶縁体 1 1は、 S i 3 N 4 粉末と M 0 S i 2 粉末とを混合し たものを用いた。 その割合は、 S i 3 N 4 粉末 80 %、 Mo S i 2 粉 末 20 %とした。 また、 焼結助材は、 通電発熱体、 イオン電流検出用電 極、 絶縁体ともに、 Y 2 0 5 wt %、 A 1 0 5 vvt %を、 外部添 加した。 各材料の平均粒径は第 37の実施の形態と同じにした。 そして、 上記加圧焼結は、 400 k g/c m2 、 1 800 °C, 60分で行なった c 次に、 上記のように、 構成した種々のグロ一プラグを第 37の実施の 形態のように、 シリ ンダヘッ ド 45に装着した。 そして、 絶縁体 1 1の 表面に、 図 90に示すように、 カーボンが付着した状態にして、 付着力 —ボンの焼き切り (焼失) 良否を実験した。
その結果を表 7に示した。
表 7
Figure imgf000165_0001
· 〇…焼失優 厶…焼失良 X…焼失不可を表す 表 7よりわかるように R 2 > rの場合 (N o . 1〜4 ) にはカーボン が焼き切られることが、 特に R 2 2 rの場合 (実験 N 0. 1〜 3 ) に は優れた焼き切りができる。 なお、 R 2≤ rの場合 (実験 N o . 5、 6) には、 力一ボンに直流電流が殆ど流れないため、 カーポンを焼き切るこ とができない。
<< 第 3 9の実施の形態 >>
なお、 上記第 3 8の実施の形態では、 通電発熱体及びイオン電流検出 用電極の導電性セラ ミ ックとして M o S i 2 を用いた場合について述べ たが、 導電性セラミ ックとして他の金属の炭化物、 窒化物、 硼化物を用 いても同様の結果が得られる。
本実施の形態においては、 これを確認するため、 表 8、 表 9に示すよ うに導電性セラ ミ ックを W C、 M 0 C、 T i N、 M o 4.8 S i 3 C 0. 、 W S i 、 M o B、 T i B 、 Z r B 2 に変更し、 それそれについ て、 抵抗値を第 3 8の実施の形態の N o . 3、 N o . 6の水準と同様の 試料となし、 これらについてカーボン焼失実験を行なった。 各材料の平 均粒径は、 l〜 3 >u mである。 その他については、 第 3 8の実施の形態 と同様である。
また、 通電発熱体とイオン電流検出用電極の導電性セラ ミ ックについ て別々の材料でも実施した。 また、 上記絶縁性セラ ミ ックを S i 3 N 4 から、 その他の A l 2 0 3 、 B Nに代えた場合についても同様に実施 した。 A 1 2 0 3 の平均粒径は、 2 5〃m、 B Nの平均粒径は のものを用いた。 その他は第 3 8の実施の形態と同様である。 実験の結 果を表 8及び表 9に示す。
また、 表 1 0には、 通電発熱体、 ィオン電流検出用電極とも導電性セ ラミ ックのみの場合について同様に示した。 表 8 ~ 1 0よ り明らかなよ うに、 本発明の範囲では全てカーボンが焼失することが分かる。
to 表 8
Figure imgf000167_0001
表 9
Figure imgf000168_0001
CO
o
表 1 0 導電性セラミ ック 力一ボン焼失状態
No. 絶縁性セラミック
·τΗ Ψ ffl蜜 IK
Figure imgf000169_0001
IN O . IN U . Ό
W し W し 添力 n廿ず V
M O 2し IV1 O 2 し 廿ず リ Λ v* o 1 丄 丄 丄 丄 丄 N
44 WS i 2 WS i 2 添力 Πせず 〇 X
45 M O 4. 8 S 1 3 M O 4. 8 S 1 3 - 添加せず 〇 X
0. 6 し 0 , 6
46 Mo B M o B 添加せず 〇 X
47 T i B2 T i B2 添加せず 〇 X
48 Z r B 2 Z r B 2 添加せず 〇 X
49 Mo S i 2 M o S i 2 添加せず 〇 x 1
くく 第 4 0の実施の形態 >>
次に、 イオン電流検出用電極に高融点金属の線材を用いた場合と、 ィ オン電流検出用電極に高融点金属材料と絶縁性セラミ ックとの混合体を 用いた場合について述べる。
まず、 ィオン電流検出用電極に高融点金属の線材を用いた場合につき 示す。 ここに、 高融点金属とは前述したように融点 1 200 °C以上のも のをいう。 かかる高融点金属としては、 C r、 C o、 F e、 Mo、 N i、 R e、 T i、 W、 Z r等がある。 また、 F e— N i— C r、 N i— C o、 F e— C o、 W— R e等の合金材料もある。
通鼋発熱体は、 第 38の実施の形態の組成を用いた。 またイオン電流 検出用電極の構造は、 第 37の実施の形態の図 69 Aに示したイオン電 流検出用電極 3の構造に代えて、 上記高融点金属の線材を用いた。 各場 合とも、 第 38の実施の形態の N 0. 3、 N o. 6の水準と同様の抵抗 値に作成して、 力一ボンの焼失実験を行なった。 その他は、 第 38の実 施の形態と同様である。 その結果を表 1 1に示す。 同表より本発明の範 囲では、 カーボンが焼失することが分かる。
次に、 イオン電流検出用電極に高融点金属材料と絶縁性セラ ミ ックと の混合体を用いた。 グローブラグの作製に当たっては、 第 38の実施の 形態のイオン電流検出用電極の導電体である M o S i 2 の代わりに、 上 記金属の粉末を用いた。 各材料の平均粒径は、 1〜 1 0 111のものを用 いた。 その他は、 第 38の実施の形態と同様である。 その結果を表 1 2 に示す。
同表より、 本発明の範囲では、 カーボンが焼失することが分かる。 表 1 導電性セラミック 力一ボン焼失状態
No. イオン検出用電極
通 電 発 熱 体 イオン検出用電極 N o . 3 No. 6
50 M o S i 2 S i 3N4 W 〇 X
51 Mo S i 2 S i 3N4 M 0 〇 X
52 M o S i 2 S i 3N4 N i 〇 X as
53 Mo S i 2 S i 3 N 4 T i 〇 X
54 M o S i 2 S i 3 N 4 Fe-Cr-Ni 〇 X
55 Mo S i 2 S i 3N4 N i - C 0 〇 X
56 M o S i 2 S i 3 N 4 F e - C 0 〇 X
57 M o S i 2 S i 3 N 4 W-R e 〇 X
o
表 12 導電性セラミ ヅク 絶 縁 性 セ ラ ミ ッ ク 力-ホ 焼失状態
No.
通 電 発 熱 体 イオン検出用電極 導電性 絶縁性セラミック No.3 No.6 ΐフ^ソク
58 Mo S i z S i 3 N W S i 3N4 〇 X
59 M o S i 2 S i 3N4 Μ ο S i 3 N 4 〇 X
^3 60 Mo S i 2 S i 3N4 N i S i 3 4 〇 X
61 Mo S i 2 S i 3 N 4 T i S i 3 N 4 〇 X
62 Mo S i 2 S i 3 N 4 S i 3 N 4 〇 X
63 Mo S i 2 S i 3 4 Ni-Co S i 3 4 〇 X
64 M o S i a S i 3 N 4 Fe-Co S i 3 4 〇
くく 第 4 1の実施の形態 >>
本実施の形態は、 図 9 1 に示すように、 U字状の通電発熱体 2の左右 両側に、 イオン電流検出用電極 3 0 1、 3 0 2を 2個設けた例である。 本実施の形態では、 イオン電流検出用電極 3 0 1が通電発熱体 2のブラ ス端に近い位置にあるので、 この部分が通電発熱体 2 とイオン電流検出 用電極 3 との最初の接続部分 3 9 となる。 そのため、 イオン電流検出用 電極 3 0 1 との最初の接続部分 3 9からマイナス端までの部分が第 2発 熱部 2 0 2 となる。
カーボン焼き切り時には、 イオン電流検出用電極 3 0 1から絶縁体 1 1表面のカーボンへ焼き切り用の直流電流が流れることになる。 また、 本実施の形態ではイオン電流検出用電極を 2個設けてあるので、 より精 度良くイオン電流を検出することができる。 その他は第 3 7の実施の形 態と同様であり、 第 3 7の実施の形態と同様の効果を得ることができる。 く〈 第 4 2の実施の形態 >>
本実施の形態例にかかるグローブラグにつき、 図 9 2 A、 図 9 2 B、 図 9 3を用いて説明する。 このグローブラグは、 第 2 6の実施の形態 (図 6 9 A他) の変形例であり、 異なる点についてのみ説明する。 本実 施の形態のグロ一プラグ 1は、 セラミ ックグロ一プラグであり、 図 9 2 A、 図 9 2 Bに示すように、 本体 1 0 と本体 1 0を支持するハウジング 4 とを有している。 上記本体 1 0は、 絶縁体 1 1 と、 絶縁体 1 1の内部 に設けられた通電発熱体 2 と、 通電発熱体 2の両端部に電気的に接続さ れて絶縁体の他端側に導出された一対のリ一 ド線 2 1、 2 2 とを有する c また、 上記絶縁体 1 1の内部に配設された、 火炎中のイオン化の状態 を検出するためのイオン電流検出用電極 3を有する。 イオン電流検出用 電極 3は、 通電発熱体 2の途中に電気的に接続されているとともに、 そ の先端 3 Cは上記火炎にさらされるように絶縁体 1 1から露出して、 露 出部 3 Bとなっている。
かつ、 図 9 2 A、 図 9 3に示すように、 イオン電流検出用電極 3の先 端 3 Cは、 ハウジングの先端部 4 1 1から 2 m m以上離れた位置に配設 されている。 また、 本実施の形態においては、 通電発熱体 2全体の電気 抵抗値を R ( Ω ) 、 通電発熱体 2のブラス端 2 1 8からイオン電流検出 用電極 3の先端までの電気抵抗を B ( Ω ) としたとき、 B ( Ω ) ≥ R ( Ω ) / 3の関係になるように構成してある。 なお、 通電発熱体 2全体 の電気抵抗値 Rは発熱体 2の両端 2 1 8 , 2 2 8の間の抵抗値である。
また、 上記本体 1 0は、 図 9 2 A示すように、 金属製のハウジング 4 内に金属製の環状支持体 4 1を介して固定されている。 上記通鼋発熱体 2の一方のリード線 2 1は、 絶縁体 1 1の内部を上昇して、 本体 1 0の 側面に設けた導電性の端子部 1 2 3を介して内部リード線 2 3 1に電気 的に接続されている。 また、 他方のリード線 2 2は、 絶縁体 1 1の上端 部に設けた導電性の端子部 3 1 を介して内部リード線 3 3に電気的に接 続されている。 なお、 外部リード線 2 3 1は、 通電発熱体 2 とイオン電 流検出用電極 3用のリード線として共用されている。
一方、 ハウジング 4は、 上記環状支持体 4 1を有し、 本実施の形態と イオン電流検出用電極 3の構成は異なるが、 全体の構成が類似している 第 3 1の実施の形態を示す図 8 2に示すように、 その上部に保護筒 4 2 を有している。 また、 ハウジング 4は、 エンジンのシリ ンダヘッ ド 4 5 へ装着するための、 雄ねじ部 4 3を有する。 上記保護筒 4 2の上方開口 部には、 ゴムブッシュ 4 2 1が嵌合されている。 また、 ゴムブッシュ 4 2 1 には、 外部リー ド線 2 3 3、 3 3 3が貫挿され、 これらはそれそれ 接続端子 2 3 2、 3 3 2を介して、 上記内部リー ド線 2 3 1、 3 3に接 続されている。 したがって、 外部リード線 2 33は通電発熱体 2の一端に、 外部リー ド線 3 33は通電発熱体 2の他端にそれそれ電気的に導通されている。 また、 本体 10の先端部 (下端部) は、 図 9 2 Aに示すように、 半球面 形状に形成されており、 ィオン電流検出用電極 3の先端 3 Cが露出して いる。
次に、 上記グローブラグ本体 1 0を製造するに当たっては、 まず図 9 4に示すごとき、 通電発熱体 2とイオン電流検出用電極 3との一体成形 品 2 9を準備する。 この一体成形品 2 9は、 通電発熱体 2及びイオン電 流検出用電極 3用のセラミ ック粉末を用いて射出成形、 あるいはブレス 成形により作製する。 この一体成形品 2 9は、 絶縁体 1 1の中に埋設し、 これらをホッ トプレスにて一体的に成形する。 なお、 上記埋設に先立つ て、 上記リード線 2 1、 2 2を接続しておく。 これによ り、 上記グロ一 プラグ本体 1 0が得られる。
また、 通電発熱体 2、 イオン電流検出用電極 3、 絶縁体 1 1は、 いず れも絶縁性セラ ミ ックと導電性セラミ ックとを主成分として作製した。 そして、 絶縁性セラ ミ 、ソク粒子及び導電性セラ ミ ック粒子の混合割合、 粒径の調整等により、 これら通電発熱体 2、 イオン電流検出用電極 3、 絶縁体 1 1における、 それぞれの線膨張係数、 電気抵抗等の物理的特性 を調整した。
また、 本実施の形態においては絶縁性セラ ミ ックとして窒化珪素 (S i 3 N 4 ) を、 導電性セラ ミ ックとして珪化モリブデン (M o S i 2 ) を用いた。 その他、 絶縁性セラ ミ ックとしては、 A 103 、 BN、 A 1 N等を用いることができる。 また、 導電性セラミ ックとしては、 Mo 5 S i 3 、 WC、 T i N等を用いることもできる。
また、 本実施の形態における上記の電気抵抗 R ( Ω ) 、 B ( Ω ) の調 整は、 上記距離 Lの値を 2 mm以上に保持しつつ、 イオン電流検出用電 極 3の接続位置を変えることにより調整した。 すなわち、 通電長さの調 整によって、 B ( Ω ) ≥R ( Ω ) / 3の関係を実現させた。
次に、 上記のように本体 1 0 とハウジング 4などとによって構成した グロ一プラグ 1は、 前'述の図 7 0に示すように、 エンジンのシ リ ンダへ ヅ ド 4 5に対して、 ハウジンク 4の雄ねじ部を螺合することにより装着 する。 これによ り、 グロ一プラグ本体 1 0の先端部が、 シリ ンダへヅ ド 4 5の燃焼室の一部である渦流室 4 5 1 に突出した状態で装着される。 なお、 符号 4 5 7は主燃焼室、 4 5 8はビス ト ン、 4 5 9は燃料噴射ノ ズルである。
また、 上記グロ一プラグ 1は、 図 7 0に示したグローブラグ作動回路 に接続することができ、 前述の図 6 5のフローチャー トによる手顧でグ 口一リ レーが E C U 5 2によ り制御され、 その通電が制御される。
上述のように本実施の形態では、 イオン電流検出用電極 3の先端 3 C とハウジング 4の先端部 4 1 1 との距離 が 2 m m以上である。 そのた め、 グローブラグ本体に燃料燃焼により発生した力一ボン (スス) が堆 積しても、 イオン電流を確実に検出することができる。 しかしながら、 グローブラグのイオン電流検出用電極 3に、 燃料燃焼により発生した力 一ボン (スス) が付着した状態、 すなわち燻りが発生したときには、 図 6 6 Bに示すように、 イオン電流が燃料噴射時期の前には低く、 その後 には上昇していく という現象が発生する (図 6 6 Aと図 6 6 Bを比較) 。 なお、 図 6 6 Bの I t hは燻り状態を判別しグロ一リ レー 5 3、 5 3 1 をオンにするか否かを判断するための波高値の判定レベル (しきい値) を表している。
そこで、 このような燻り現象が発生したときには、 上記グロ一リ レー 5 3、 5 3 1 をオンとし、 通電発熱体 2を発熱させ、 上記の付着カーボ ンを焼き切る操作を行う。 この動作は前述の図 6 7のフローチャー トに よる処理であり、 重複した説明は省略する。
そして、 ここに重要なことは、 図 9 3に示すように、 通電発熱体 2全 体の電気抵抗 R ( Ω ) と、 通電発熱体 2のブラス端 2 1 8からイオン電 流検出用電極 3の先端 3 Cまでの電気抵抗 B ( Ω ) とは、 B ( Ω ) ≥ R ( Ω ) / 3の関係にある。
そのため、 グローブラグ本体 1 0に力一ボンが堆積してイオン電流検 出用電極 3 とハウジング 4 との間が短絡に近い状態になっても、 適正な 電流が流れる。
すなわち、 グロ一ブラグ本体 1 0に力一ボンが堆積して短絡に近い状 態になった場合には、 通鼋発熱体から、 イオン電流検出用電極、 付着力 —ボンという経路の回路に適正な電流を流すごとができる。 そのため、 上記回路の通電発熱によりカーボンを焼失させることができる。 また、 上記短絡状態が解消した後には、 通電発熱体に電流が流れ、 さらにカー ボンの焼失が促進される。
なお、 上記電気抵抗 B ( Ω ) が非常に大きい場合には、 上記の通電発 熱体、 イオン電流検出用電極、 付着力一ボンの回路の抵抗値が大きくな る。 この場合には、 付着力一ボンが存在していても、 通電発熱体全体に ほぼ正常な電流が流れ、 通電発熱体の発熱により付着力一ボンを焼失さ せることができる。
また、 上記のように、 本実施の形態のグロ一プラグにおいては、 絶縁 体 1 1の内部に通電発熱体 2 とリード線 2 1、 2 2 とィオン電流検出用 電極 3 とが設けてあり、 これらは一体的に構成されている。 そのため、 通電発熱体 2によるグロ一動作 (発熱動作) と、 イオン電流検出用電極 3によるィオン電流検出とを 1つのグロ一プラグによ り達成できる。 ま た、 そのためグローブラグがコンパク トになる。
また、 イ オン電流検出用電極 3、 グローブラグ表面にカーボンが付着 した場合にも、 上記のように通電発熱体 2.に通電して発熱させることに より、 上記力一ボンを焼き切り、 イオン電流検出用電極 3 をさらに正常 状態にすることができる。 そのため、 イオン電流を精度良く検出するこ とができる。
また、 通電発熱体 2、 リー ド線 2 1、 2 2、 イオン電流検出用電極 3 は、 絶縁体 1 1の内部に設けてあるので、 燃焼ガスによる酸化等の腐食 もなく、 耐久性に優れている。 また、 絶縁体 1 1の先端部は、 半球形状 としてあるので、 燃焼室内における熱衝撃を吸収することができる。 また、 イオン電流検出用電極 3の先端部 3 Cは、 燃焼ガスに接触する よう露出している (図 9 2 A ) 。 なお、 イオン電流検出用電極 3を図 9 5に示すように、 絶縁体 1 1の先端部に配置することもできる。 この場 合には、 燃焼室内におけるあらゆる方向におけるイオン電流を高精度で 検出することができる。 くく 第 4 3の実施の形態 >>
本実施の形態は、 図 9 6に示すように、 第 4 2の実施の形態に示した グロ一ブラグ本体 1 0にっき、 ィオン電流検出用電極 3の先端 3 Cとハ ウジング 4の先端部 4 1 1 との距離 Lと、 イオン出力の検出率との相関 についての試験を行った具体例である。 グローブラグ本体 1 0の製造に 当たっては、 上記距離 Lに対応する位置にイオン電流検出用電極 3を配 設した種々の一体成形品 2 9をあらかじめ射出成形により作製しておく (図 9 4 ) 。 次いで、 一体成形品 2 9をセラミ ック粉末中に埋設してホ ヅ トプレスすることにより、 絶縁体 1 1 中に通鼋発熱体 2及びイオン電 流検出用電極 3を内蔵した絶縁体 1 1を作製する。 このようにして、 上 記距離 Lの異なるグロ一プラグを種々作製し、 準備する。
また、 イオン出力の検出率は、 次にように定義した。 すなわち、 ェン ジン運転中にイオン電流を連続サンプリ ングすると、 図 6 6 Aに示すィ オン波形の波高値は一定でなく、 燃焼毎のバラツキ、 カーボン付着によ る出力低下等により、 バラツキがある。 そこで、 一定時間かつ一定条件 での運転中の波高値 Hの平均値 hを求め、 平均値 hの 0. 3倍以上の波 高値を有する場合を検出精度良好として、 全燃焼回数中の hの 0. 3倍 以上の発生率をイオン出力の検出率とした。
また、 試験は、 4気筒 2 0 0 0 c cのディーゼルェンジンを用い、 ま ずグロ一プラグ本体にカーボンを堆積させる運転を行い、 次いで、 ィォ ン電流検出状況を調べた。
力一ボンの堆積運転は、 上記エンジンを無負荷 8 0 0 r p mにおいて 2分間運転し、 次いで無負荷 4 0 0 0 r pmにおいて 2分間運転するこ とを 1サイ クルとして、 これを 3 0サイ クル行うことによ り実施した。 また、 イオン電流検出状況の測定は、 上記サイクルをさらに 1 0サイク ル行い、 その間のイオン電流検出により行った。
測定結果を図 9 6に示す。 同図は、 横軸に距離 L (mm) を、 縦軸に イオン出力の検出率 (%) を取った。 同図よりわかるように、 距雜 が 2 mm以上の場合には、 イオン出力の検出率が 1 0 0 %となり、 一方、 距離 Lが 2 mm未満の場合には、 Lが小さいほど検出率が小さくなる。 << 第 4 4の実施の形態 >>
本実施の形態は、 表 1 3に示すように、 第 4 2の実施の形態に示した グロ一プラグ本体 1 0にっき、 上記通電発熱体 2の全電気抵抗 R ( Ω) (図 9 3 ) と、 通電発熱体 2のプラス端 2 1 8からイオン電流検出用鼋 極 3の先端 3 Cまでの電気抵抗 B ( Ω ) (図 9 3 ) との関係を種々変更 し、 試験したものである。 電気抵抗 B ( Ω ) の変更は、 第 4 3の実施の 形態と同様に、 通電発熱体 2 とイオン電流検出用電極 3の一体成形品に おけるィォン電流検出用電極 3の配設位置を変更することによ り行った。 そして、 試験する試料と しては、 表 1 3に示すように、 通電発熱体 2 の全電気抵抗 R ( Ω ) を全て一定とし、 B ( Ω ) の値を変化させた 8種 類のグローブラグ (試料 N o . C 1〜C 3、 E 1〜E 5 ) を準備した。 なお、 グロ一プラグの製造方法、 構造、 その他については、 第 4 2の実 施の形態と同様である。
また、 耐久試験は、 4気筒のディーゼルエンジンを用いた。 そして、 ェンジン停止状態において通電発熱体 2に通電を開始し、 2分後に通電 を停止する。 一方エンジンは、 上記通電開始後 5秒後に始動し、 始動直 後に無負荷 8 0 0 r p mにおいて 1分間運転し、 次いで無負荷 4 0 0 0 r pmにおいて 2分間運転し、 次いで無負荷 8 0 0 r pmにおいて 1分 間運転した後停止する。 そして、 上記の通電発熱体 2への通電開始から エンジン停止までを 1サイ クルとし、 これを 5 0 0サイクル実施した。 試験結果を表 1 3に示す。 表 1 3よりわかるように、 B ( Ω ) < R ( Ω ) / 3の場合 ( C 1〜 C 3 ) には、 いずれも早期にヒューズが溶断 してしまった。 これは、 イオン電流検出用電極 3の先端 3 Cとハウジン グ 4の先端部 4 1 1 との間が短絡状態になり、 プラス側リード線との間 において短絡回路が形成され、 この状態で、 通電発熱体への通鼋がされ たため、 ヒューズが溶断するほどの大電流が流れたことを示している。 一方、 Β ( Ω) Ι ( Ω) /3の場合 ( Ε 1〜Ε 5 ) には、 上記試験の 5 0 0サイ クルの間においては、 何ら異常は発生しなかった。 表 1 3
Figure imgf000181_0001
<< 第 4 5の実施の形態 >>
本実施の形態は第 2 6の実施の形態 (図 6 9 A他) の変形例であり、 異なる点のみを説明する。 このグローブラグ 1は、 図 6 9 Aに示すよう に、 本体 1 0 と本体 1 0を装着するハウジング 4とからなる。 上記本体 1 0は、 絶縁体 1 1 と、 絶縁体 1 1の内部に設けられた通電発熱体 2 と、 通電発熱体 2の両端部に電気的に接続されて絶縁体の他端側に導出され た一対のリード線 2 1 2 2 とを有する。
また、 上記絶縁体 1 1の内部に配設された、 火炎中のイオン化の状態 を検出するためのィオン電流検出用電極 3を有する。 ィオン電流検出用 電極 3は、 絶縁体の直径方向の中心位置に設けてある。 そして、 イオン 電流検出用電極 3の先端は、 上記火炎にさらされるよう、 絶縁体 1 1の 先端部に露出する露出部 3 Bを有している。
また、 上記イオン電流検出用電極 3の線膨張係数を K、 通電発熱体 2 の線膨張係数を H、 絶縁体の線膨張係数を S としたとき、 H S、 H≥ Kの関係にある。 この各線膨張係数 K、 H、 Sの調整は、 後述するよう に、 その材料と して用いた絶縁性セラ ミ ックと導電性セラ ミ ックとの混 合比の調整により行った。
グロ一プラグ本体 1 0の製造に当たっては、 まず後述する図 1 0 0に 示すような通電発熱体 2 とイオン電流検出用電極 3 との一体成形品 2 9 を準備する。 一体成形品 2 9は、 通電発熱体 2 ¾びイオン電流検出用電 極 3用のセラ ミ ツク粉末を用いて射出成形、 あるいはブレス成形により 作製する。 この一体成形品 2 9は、 絶縁体 1 1の中に埋設し、 これらを ホッ トプレスにて一体的に焼結する。 その後、 研削によって絶縁体 1 1 の形状を円筒 ' 球面加工する。 なお、 上記埋設に先立って、 上記リード 線 2 1、 2 2を接続しておく。 これによ り、 上記グロ一プラグ本体 1 0 が得られる。
通電発熱体 2、 イオン電流検出用電極 3、 絶縁体 1 1のセラミ ック材 料としては、 いずれも絶縁性セラミ ヅクとしての窒化珪素 ( S i 3 N 4 ) と、 導電性セラ ミ ックとしての珪化モリブデン (M o S i 2 ) とを 用い、 これに焼結助剤を添加した。 そして、 S i 3 N 4 と M o S i 2 との混合比を変化させると線膨張係数が変化するという、 後述する図 9 7に示されたような特性を利用して、 各線膨張係数 H、 K、 Sを調整し た。 これにより、 H K、 H≥ Sを実現した。
なお、 上記通鼋発熱体 2、 イオン電流検出用電極 3、 絶縁体 1 1の各 絶縁抵抗の調整は、 各セラ ミ ツク材料の粒度の調整により行った。
上述のように本実施の形態においては、 イオン電流検出用電極 3、 通 電発熱体 2、 絶縁体 1 1の各線膨張係数 K、 Η、 が、 H≥ S及び Η Kの関係にある。 すなわち、 本体 1 0の表面に露出したイオン電流検出 用電極 3、 絶縁体 1 1 よりも、 内部に完全に埋設された通電発熱体 2の 線膨張係数が大きい。 それ故、 本実施の形態のグロ一プラグ 1は、 その 使用時において本体 1 0の表面を常に圧縮応力状態にすることができ、 耐久性に優れている。 くく 第 4 6の実施の形態 >>
本実施の形態においては、 第 45の実施の形態における通電発熱体 2、 イオン電流検出用電極 3、 絶縁体 1 1の主材料である絶縁性セラ ミ ック としての S i 3 N と導電性セラミ ックとしての M o S i 2 との混合比 を変更し、 この混合比と線膨張係数との関係を調査した。 さらに、 本実 施の形態においては、 上記各線膨張係数 H、 K、 Sを変化させたグロ一 プラグを準備して耐久試験を行い、 本発明の有効性を確認した。
まず、 上記 S i a N 4 と Mo S i 2 の混合比と線膨張係数との関係 は、 S i 3 N 4 を 1 00として、 これに導電体としての M 0 S i 2を 0 〜 100%まで 1 0%刻みで添加して焼結体を作成し、 その線膨張係数 を測定した。 なお、 焼結助剤として、 Y 2 03 と A l 2 03 とを合計 1 0重量%外部添加した。 測定結果を図 9 7に示す。 図 97は、 横軸に S i 3 N4 に対する Mo S i 2 の添加量を、 縦軸に線膨張係数をとつた。 図 97よりわかるように、 M o S i 2 の添加量を増加させるほど線膨 張係数が増加する。 また、 この線膨張係数は、 材料の粒度等にはあまり 左右されず、 混合比だけでほぼ决定されることもわかっている。 そのた め、 S i 3 N 4 と Mo S i 2 の混合比が同一であれば、 上記通電発熱 体、 イオン電流検出用電極、 絶縁体の線膨張係数は同一となる。
次に、 図 97に示された特徴を利用して、 S i 3 N 4 と Mo S i 2 の混合比を種々変化させ、 通電発熱体等の線膨張係数が異なる種々のグ ローブラグを準備し、 耐久試験を行った。 なお、 本実施の形態において は、 わかりやすくするために、 イオン電流検出用電極と絶縁体の線膨張 係数 、 sを常に同一にした。
準備したグロ一プラグ (試料 N o . E l ~E 1 3、 C 1〜C 6) の線 膨張係数差 〔H— K ( S ) 〕 を表 1 4に示す。 試料 N o. E 1〜E 1 3 が本発明品であり、 C 1〜( 6が比較品である。 また、 耐久試験は、 ェ ンジンの始動を最高 1 00 00サイクルまで繰り返し、 そのサイクルの 増加に対する、 クラックの発生時期、 通電発熱体の抵抗上昇率、 イオン 電流検出の可否について調べた。
結果を表 14に示す。 表 14よりわかるように、 試料 N o . C 1〜C 6についてはいずれも 1 0000サイクル未満においてグロ一プラグ本 体にクラックが発生し、 そのクラックによってイオン電流検出ができな くなつた。 これに対し、 試料 N 0 . E 1〜E 1 3は、 1 0000サイク ルにおいても本体にクラックが発生せず、 常に正常なィオン電流検出を 行うことができた。 なお、 1 0000サイクルの間正常であれば、 市場 において問題を起こさないことはわかっている。
また、 通電発熱体の抵抗上昇率は、 線膨張係数差 〔H— K (S) 〕 が 2. 0 x 1 0— 6を超える場合に徐々に増加した。 この通電発熱体の抵抗 上昇は、 その発熱温度が低下し、 速熱性が遅くなるという問題がある。 それ故、 線膨張係数差 〔H— K (S) 〕 としては、 2. 0 x 1 0— 6以下 であることが好ましいことがわかる。
表 1 4
試 料 線膨張係数差 クラック発生 通鼋発熱体 ィオン電流
No. Η— Κ ( S ) サイク レ 抵抗上昇率 検出可否
10"6 (/°C)
C 1 -3. 0 4200 20 %以下 クラック後不可 i
C 2 -2. 0 5600 t 个
C 3 - 1. 0 6800 个 个
C4 -0. 5 7800 个 个
1
j C 5 -0. 3 9 100 个 个
! C 6 - 0. 1 9600 个 个
! E 1 0. 0 クラック発生無し 个 常時可能
E 2 0. 1 个 个 个
E 3 0. 3 个 个 个
E 4 0. 5 个 个 t
! E 5 1. 0 个 个
1 E 6 1. 5 个 个 个
E 7 1. 7 个 个 个
E8 1. 9 t 个 个
E 9 2. 0 t 个 个
E10 2. 1 个 22% 个
1 Ell 2. 3 个 26% 个 j E12 2. 5 个 34% 个
E13 3. 0 个 48% t くく 第 4 7の実施の形態 >〉
本実施の形態を図 9 8 A〜図 1 0 1 を用いて説明する。 本実施の形態 のグロ一プラグ 1は、 図 9 8 A、 図 9 8 Bに示すように、 本体 1 0 と本 体 1 0を装着するハウジング 4 とからなる。 上記本体 1 0は、 絶縁体 1 1 と、 絶縁体 1 1の内部に設けられた通電発熱体 2 と、 通電発熱体 2の 両端部に電気的に接続されて絶縁体の他端側に導出された一対のリ一ド 線 2 1、 2 2 とを有する。
また、 上記絶縁体 1 1の内部に配設された、 火炎中のイオン化の状態 を検出するためのイオン電流検出用電極 3を有する。 また、 絶縁体 1 1 の表面には、 イオン電流検出用電極 3に電気的に接続され、 外周には角 状のエッジ部分 6 1 を有する導電層 5を配設してある。 本実施の形態に おける導電層 5は、 図 9 8 Aに示すように、 グローブラグ本体 1 0の先 端をキヤップ状に覆う形状を有しており、 上端部分のみにエッジ部分 6
1を有するベ夕層となっている。
また、 上記本体 1 0は、 既述の他の実施の形態を示す図 6 9 A、 図 8 2などと同様に金属製のハウジング 4内に金属製の璟状支持体 4 1 を介 して、 固定されている。 通電発熱体 2の一方のリード線 2 1は、 絶縁体 1 1の内部を上昇して、 本体 1 0の側面に設けた導電性の端子部 2 3を 介して内部リー ド線 2 3 1に電気的に接続されている。 また、 他方のリ —ド線 2 2は、 絶縁体 1 1の上端部に設けた導電性の端子部 3 1を介し て内部リード線 3 3に電気的に接続されている。 なお、 外部リード線 2 3 1は、 通電発熱体 2 とィオン電流検出用電極 3用のリード線として共 用されている。
一方、 ハウジング 4は、 上記環状支持体 4 1 を有し、 図 6 9 Aに示す ように、 その上部に保護筒 4 2 を有している。 また、 ハウジング 4は、 エンジンのシリ ンダへッ ド 4 5へ装着するための、 雄ねじ部 4 3を有す る。 上記保護筒 4 2の上方開口部には、 ゴムブッシュ 4 2 1が嵌合され ている。 また、 ゴムブヅシュ 4 2 1 には、 外部リード線 2 3 3、 3 3 3 が貫挿され、 これらはそれぞれ接続端子 2 3 2、 3 3 2を介して、 上記 内部リー ド線 2 3 1、 3 3に接続されている。
したがって、 外部リード線 2 3 3は通電発熱体 2の一端に、 外部リー ド線 3 3 3は通電発熱体 2の他端にそれそれ電気的に導通されている。 また、 本体 1 0の先端部 (下端部) は、 図 9 8 Aに示すように、 半球面 形状に形成されている。
次に、 上記グロ一プラグ本体 1 0を製造するに当たっては、 まず図 1 0 0に示すごとき、 通電発熱体 2 とイオン電流検出用電極 3との一体成 形品 2 9を準備する。 この一体成形品 2 9は、 通電発熱体 2及びイオン 電流検出用電極 3用のセラ ミ ック粉末を用いて射出成形、 あるいはプレ ス成形により作製する。 そして、 この一体成形品 2 9は、 絶縁体 1 1の 中に埋設し、 これらをホッ トブレスにて一体的に加圧焼成する。 なお、 上記埋設に先立って、 上記リー ド線 2 1、 2 2を接続しておく。 これに より、 通電発熱体 2 とイオン電流検出用電極 3 とを内蔵した絶縁体 1 1 が得られる。
次に、 絶縁体 1 1の表面に導電層 5を形成するに当たっては、 絶縁体 1 1の表面を粗く した後、 導電層材料を印刷する。 まず、 絶縁体 1 1表 面粗さは、 リン酸等によるエッチングにより粗くする。 また、 絶縁体 1 1 を円筒研削する部分については、 # 3 0 0以下の粗い砥石を使用して 表面粗さを大きくすることもできる。 これにより、 絶縁体 1 1 と導電層 5 との密着性を高める。
次いで、 グローブラグ本体 1 0先端の球面部分はパ、ソ ト印刷法によ り、 円筒部分は円筒スク リーン印刷法により、 導電層材料を印刷する。 この とき、 導電層材料が上記ィオン電流検出用電極の露出部分に接触するよ うに印刷する。 次いで、 真空雰囲気中又は窒素雰囲気中において、 9 0 0 °C以上の温度で導電層を焼き付ける。 これにより、 図 9 8 Aに示すよ うに、 絶縁体 1 1表面に導電層 5が形成される。 また、 本実施の形態に おいては、 上記導電層材料として、 金属を主体とする材料を用いた。 具 体的には、 A u 9 3重量%、 N i 5重量%、 V 2重量%の混合材を用い た。 また、 導電層の厚さは 1 0 mとした。
さらに本実施の形態においては、 絶縁体 1 1の表面に導電層 5を配設 してある。 そして、 導電層 5は、 その上端にエッジ部分 6 1 を有する。 そのため、 イオン電流検出用電極の露出面積が拡大されるとともに、 上 記エッジ部分 6 1のエッジ効果によって、 イオン電流の検出精度、 及び 応答性を向上させることができる。
すなわち、 図 1 0 1に示すように、 ィオン電流の検出においては、 最 初の立ち上がり角度 Dと、 ピーク値 Pが重要である。 そして、 本実施の 形態においては、 上記導電層 5を設けているために、 立ち上がり角度 D が大きく急峻な立ち上がりが得られ、 またビーク値 Pも非常に大きい。 それ故、 イオン電流検出精度が一層向上し、 さらに精度よく燃料の燃焼 状態を制御することができる。 なお、 本実施の形態においては、 上記ェ ヅ ジ部分 6 1 を角状としたが、 これを丸い状態にした場合においても、 ェッジ部を形成する限りほぼ同等の効果が得られる。 くく 第 4 8の実施の形態 >>
本実施の形態においては、 第 4 7の実施の形態のグローブラグにおけ る導電層の効果を明確にすべく、 イオン電流の検出試験を実施した。 準 備した試料は、 第 4 7の実施の形態に示したキヤッブ状の大きなベタ層 の導電層 5 を有するグロ一プラグ (試料 N 0 . E 1 ) と、 図 1 0 2 A、 図 1 0 2 Bに示すように皿状の小さなベ夕層の導電層 5 0 2を有するグ ローブラグ (試料 N o . E 2 ) と、 導電層を設けていないグローブラグ (試料 N o . C 1 ) の 3種類である。 これらは、 導電層以外の部分は第 4 7の実施の形態のグローブラグと同様である。
試験は、 各グロ一プラグをそれそれ同じディーゼルエンジンに装着し て、 同一条件においてイオン電流を測定した。 そして、 前述した図 1 0 1 に示すように、 得られたイオン電流の波形を比較し、 その立ち上がり 角度 Dとビーク値 Pによりイオン電流検出精度及び応答性を評価した。 なお、 上記立ち上がり角度 Dが大きいほど、 またビーク値 Pが大きいほ ど、 検出精度及び応答性が良い。
評価結果を表 1 5 に示す。 表 1 5によりわかるように、 導電層 5、 6 0 2を有する場合 ( E 1、 E 2 ) には、 導電層を有さない場合 ( C 1 ) に比べて、 立ち上がり角度 D、 ビーク値 P共に優れていた。 この結果か ら、 導鼋層 5、 6 0 2を配設することにより、 イオン電流の検出精度及 び応答性が格段に向上することがわかる。 また、 £ 1 と £ 2はそれ程大 きな差は見られないが、 若干導電層の面積が広く、 エッジ部分 6 1が大 きい E 1の方が優れていた。 表 1 5 試料 No. 導 電 層 立ち上がり角度 D ビーク値
E 1 ベタ層 (キヤッブ状) 7 8 ° 1 . 4
E 2 ベタ層 (皿状) 7 6 ° 1 . 2
C 1 無し 7 1 ° 0 . 8 << 第 4 9の実施の形態 〉>
本実施の形態においては、 図 1 0 3〜図 1 0 5に示すように、 第 4 7 の実施の形態に示したグロ一ブラグにおける導電層 5の貫通孔のパター ン (絶縁体 1 1の露出部分の形状) を種々変更した試料を準備し (試料 N o . E 3〜E 5 ) 、 そのパターンによる影響を試験した。 また、 各導 電層の全体形状は第 4 7の実施の形態と同様のキヤップ状とし、 その大 きさも全て統一した。 また、 各試料 ( E 3〜E 5 ) は、 導電層部分以外 は第 4 7の実施の形態と同様である。 また試験方法は、 第 4 8の実施の 形態と同様である。
変更した導電層のパターンを図 1 0 3〜図 1 0 5に示す。 なお、 図 1 0 3〜図 1 0 5は導電層 5が覆っている絶縁体 1 1の一部をミ クロ的に 示したものであり、 これらに図に示された形状は導電層 5の輪郭を示す ものではない。 図 1 0 3は、 試料 N 0 . E 3の碁盤目状の網目パターン を有する導電層 6 0 3を示している。 この導電層 6 0 3は、 図 1 3に示 すように、 各網目の間から絶縁体 1 1が露出しており、 各網目を構成す る貫通孔の表面側 (絶縁体 1 1 とは反対側) には、 ェッジ部分 6 1が設 けられている。
図 1 0 4は、 試料 N o . E 4の導電層 6 04のパターンを示している。 導電層 6 0 4は、 上記 E 3の絶縁体 1 1露出部分の形状を円形状に変更 したものであり、 その境界部分にはエッジ部分 6 1を設けてある。 また、 図 1 0 5は、 試料 N o . E 5の導電層 6 0 5のパターンを示している。 導電層 6 0 5は、 絶縁体 1 1の露出部分が櫛歯状となるような櫛歯型の 貫通部分のパターンを有しており、 その表面側にエッジ部分 6 1を有し ている。 また、 上記導電層 6 0 4、 6 0 5を装着した本体 1 0を正面か ら見た形状は、 パターン以外は図 1 0 6 と同様である。
このような種々のパターンの導電層を有するグローブラグを用いて、 第 4 8の実施の形態と同様にイオン電流検出波形の立ち上がり角度 Dと ピーク値 Pを求めた。 その結果を上記 E 1の結果と共に表 1 6に示す。 表 1 6 よりわかるように、 導電層にパターンを設けた本実施の形態の試 料 ( E 3 ~ E 5 ) は、 いずれもパターンを有さない E 1 よ りもさらに立 ち上がり角度 Dとビーク値 Pが向上した。 これは、 導電層に図 1 0 3〜 図 1 0 5に示すように、 絶縁体 1 1 を露出させるパターンを付すること により、 エッジ部分 6 1を増加させることができ、 上記のエッジ効果を 確実に発揮させることができるからであると考えられる。
なお、 本実施の形態においては、 上記のように 3種類のパターンの導 電層について評価したが、 その他図 1 0 7、 図 1 0 8に示すごときパ夕 —ンを有する導電層 6 0 6、 6 0 7を設けた場合にも、 上記 E 3〜 E 5 と同様の効果が得られる。
6
Figure imgf000191_0001
くく 第 5 0の実施の形態 >>
本実施の形態は、 第 4 7の実施の形態を既述の実施形態にあつたよう に通電発熱体 2 とイオン電流検出用電極 3を別体とし、 これらを電気的 に絶縁した状態でそれそれ絶縁体 1 2 A内に埋設した例に適用したもの である。 すなわち、 図 1 0 9 A、 1 0 9 Bに示されているように、 本体 1 0の先端には、 第 4 7の実施の形態と同様のキヤップ状の導電層 5を 図 9 8 A同様に配設してある。 その他は、 第 4 7の実施の形態と同様で ある。 本実施の形態の場合においても、 第 4 7の実施の形態と同様の作 用効果が得られる。 なお、 第 4 8〜 4 9実施の形態を図 1 0 9 Aに示さ れる通電発熱体 2とイオン電流検出用電極 3を別体とし、 これらを電気 的に絶縁した状態でそれそれ絶縁体 1 2 A内に埋設した例に適用するこ ともできる。 くく 第 5 1の実施形態 >〉
本発明の実施形態例にかかるグロ一ブラグにっき、 図 1 1 O A〜図 1 1 4を用いて説明する。 本実施の形態のグロ一ブラグは、 ディーゼルェ ンジンの始動補助装置として用いられる、 セラ ミ ックグロ一プラグであ る。 本実施の形態のグロ一ブラグ 1は、 本体 1 0 (図 1 1 0 A、 図 1 1 0 B ) と本体 1 0を装着するハウジング 4とからなる。 上記本体 1 0は、 図 1 1 0 Aに示すように、 第 1絶縁基板 1 2 Aと、 第 1絶縁基板 1 2 A の表側面においてその一端側に印刷形成された通電発熱体 2 と、 通電発 熱体 2の両端部に電気的に接続されて第 1絶縁基板の他端側に導出され た一対のリード線 2 1、 2 2 とを有する。
また、 第 1絶縁基板 1 2 Aの表側面に上記通電発熱体 2及びリード線 2 1、 2 2を覆うように配設した被覆絶縁基板 1 2 Cと、 上記第 1絶縁 基板 1 2 Aの裏側面に積層された第 2絶縁基板とを有する。 そして、 上 記通電発熱体 2 と電気絶縁されて上記第 2絶縁基板 1 2 Bの表側面に配 設された、 火炎中のイオン化の状態を検出するためのィオン電流検出用 電極 3を有する。 イオン電流検出用電極 3は、 本体 1 0の直径方向の略 中心位置に設けてある。 これらは、 後述のように、 焼成により一体的に 形成されている。
上記本体 1 ◦は、 図 1 1 0 A、 図 1 1 1に示すように、 金属製のハウ ジング 4内に、 金属製の環状支持体 4 1 を介して、 固定されている。 そして、 上記通電発熱体 2の一方のリード線 2 1は、 本体 1 0の内部 を上昇して、 本体 1 0の側面に設けた導電性の端子部 1 2 3を介して内 部リード線 2 3 1 に電気的に接続されている。 また、 他方のリード線 2 2は、 上記環状支持体 4 1 を介してハウジング 4に電気的に接続されて いる。 また、 上記イオン電流検出用電極 3の上部は、 本体 1 0の上方側 部に設けた導電性の端子部 3 1 を介して内部リー ド線 3 3に電気的に接 続されている。
一方、 ハウジング 4は、 上記環状支持体 4 1 を有し、 図 1 1 1に示す ように、 その上部に保護筒 4 2を有している。 また、 ハウジング 4は、 エンジンのシリ ンダへッ ド 4 5へ装着するための、 雄ねじ部 4 3を有す る。 上記保護筒 4 2の上方開口部には、 ゴムブッシュ 4 2 1が嵌合され ている。 また、 ゴムブッシュ 4 2 1には、 外部リード線 2 3 3、 3 3 3 が貫挿され、 これらはそれそれ接続端子 2 3 2、 3 3 2を介して、 上記 内部リード線 2 3 1、 3 3に接続されている。 したがって、 外部リード 線 2 3 3は通電発熱体 2の一端に、 外部リード線 3 3 3はイオン電流検 出用電極 3にそれそれ電気的に導通されている。
なお、 通電発熱体 2の他端は、 上記のように、 環状支持体 4 1を介し てハウジング 4に電気的に導通している (図 1 1 0 A ) 。 また、 本体 1 0の先端部 (下端部) は、 図 1 1 O Aに示すように、 半球面形状に形成 されており、 ィオン電流検出用電極 3の先端 3 Cが露出している。
次に、 上記グロ一ブラグ本体 1 0の製造方法につき図 1 1 2〜図 1 1 4を用いて説明する。 まず、 第 1絶縁基板 1用の板状成形体 1 1 0、 第 2絶縁基板用の第 2成形体 1 2 0、 被覆絶縁基板用の第 3成形体 1 3 0 を準備する。 上記第 2成形体 1 20は下面に、 一方第 3成形体 1 30は 上面にそれぞれ曲面形状部 1 2 1、 1 3 1を有する。 そして、 これら 3 つの成形体は、 電気絶縁性のセラ ミ ツク材料からなる生成形体 (グリ一 ンシー ト) である。
上記成形体 1 1 0、 1 2 0、 1 3 0はセラ ミ ック材料、 樹脂バイ ンダ 一等からなる原料を混合し、 ブレス成形して、 上記形状に成形する (図 1 1 2 (a) (b) ( c) ) 。 次いで、 まず第 ί成形体 1 10の表面側 に通鼋発熱体用の導電性ペース トを用いて、 スク リーン印刷により通電 発熱体部分 20を印刷形成する (図 1 1 2 ( d ) ) 。 また、 同様にして、 リード線部分 2 1 0、 220を印刷形成する (図 1 1 2 ( e ) ) 。 また、 第 2成形体 1 2 0の表側面にィオン電流検出用電極用の導電ペース トを 用いて、 ィオン電流検出用電極部分 30を印刷形成する (図 1 1 2 ( f ) 次に、 図 1 1 3 ( A) に示すように、 上記第 2成形体 1 20の上に第 1成形体 1 1 0を、 更にその上に第 3成形体 1 30を積層する。 次に、 予備加熱により脱脂を行ない、 本加熱を行なって、 これらを一体的に焼 成する。 これにより、 上記各生成形体は、 第 1絶縁基板 1 2 A、 第 2絶 縁基板 1 2 B、 被覆絶縁基板 1 2 Cとなる。
次に、 上記焼成体につき、 図 1 1 3 (B) に示すように、 上記第 2成 形体、 第 3成形体の半円状の曲面形状部 1 2 1、 1 3 1を利用して、 研 削により、 グローブラグを断面円形に作製する。 次に、 上記リード線部 分 2 1 0の端部に〇 11、 次いで N iのメ ヅキを施して、 端子部 1 2 3と する (図 1 1 3 (C) 、 図 1 1 0 A) 。 さらに、 図 1 14に示すように、 この端子部 1 2 3に内部リー ド線 2 3 1 (図 1 1 0 A) を、 ロウ付けに より組み付け、 更にその表面に N iメ ツキを施す。 また、 同様に端子部 3 1を形成し、 これに内部リー ド線 33を接続する。 これにより、 上記 図 1 1 0 A、 図 1 1 4に示したグロ一プラグ本体 1 0が得られる。
次に、 上記グローブラグ本体 1 0にっき、 その具体例を例示する。 ま ず、 第 1絶縁基板 1 2 A、 第 2絶縁基板 1 2 B、 被覆絶縁基板 1 2 Cの 成形体の原料は、 S i 3 N 4 (窒化珪素) 粉末 6 3 % (重量比) と、 M 0 S i 2 (二珪化モリブデン) 粉末 1 8 %と、 Y 2 0 3 (イ ッ ト リア) 粉 末 4 %と、 A l 23 (アルミナ) 粉末 3 %と、 パラフィ ン W A Xを主成 分とする複合バイ ンダ一 1 2 %とを混合して用いた。
また、 通電発熱体部分 2 0の材料としては、 W (タングステン) と R e (レニウム) とからなるペース トを用いた。 また、 リー ド線部分 2 1 0 , 2 2 0を印刷形成した導電ペース ト としては、 W (タ ングステン) ペース トを用いた。 また、 上記イオン電流検出用電極 3の印刷形成に用 いた導電ペース トは、 W (タングステン) と R e (レニウム) よりなる。 次に、 上記積層体 (図 1 1 3 ( A ) ) の焼成は、 アルゴン又は窒素雰 囲気中 1 7 0 0〜 1 8 0 0。C、 1〜 2時間のホッ トプレスを行なった。 得られた本体 1 0の直径は 3 . 5 m mであった。 また、 上記イオン電流 検出用電極 3の先端部 3 Cの露出部分 3 B (図 1 1 0 A ) の表面には、
P tをコーティ ングした。
上記のように、 本実施の形態のグロ一プラグにおいては、 本体 1 0の 内部に通電発熱体 2 とリー ド線 2 1、 2 2 とが印刷形成され、 また本体 1 0の内部にイオン電流検出用電極 3が設けてあり、 これらは一体的に 構成されている。 そのため、 通電発熱体 2によるグロ一動作 (発熱動 作) と、 イオン電流検出用電極 3によるイオン電流検出とを 1つのグロ
—プラグにより達成できる。 また、 イオン電流検出用電極 3にカーボン が付着した場合にも、 イオン電流検出用電極 3の近く にある通鼋発熱体 2に通電して発熱させることにより、 上記カーボンを焼き切り、 イオン 電流検出用電極 3を正常状態に戻すことができる。 そのため、 イオン電 流を精度良く検出することができる。
また、 上記通電発熱体 2、 リード線 2 1、 2 2は、 印刷形成されてい るのでその厚みが薄く、 グロ一プラグ本体をコ ンパク トに構成できる。 また、 上記第 1、 第 2、 被覆の各絶縁基板 1 2 A、 1 2 B、 1 2 C通電 発熱体 2、 リー ド線 2 1、 2 2、 イオン電流検出用電極 3を一体構成し ているので、 構成簡単、 製造容易である。
また、 通鼋発熱体 2、 リード線 2 1、 22、 イオン電流検出用電極 3 は、 絶縁体の内部に設けてあるので、 燃焼ガスによる酸化等の腐食もな く、 耐久性に優れている。 また、 本体 1 0の先端部は、 半球形状として ある (図 1 1 0 A) ので、 燃焼室内における熱衝撃を吸収することがで ぎる。
また、 イオン電流検出用電極 3の先端部 3 Cは、 燃焼ガスに接触する よう露出しており (図 1 1 0 A) 、 その露出部分には P t等の貴金属が コーティ ングしてある。 そのため、 酸化等によるイオン電流検出用電極 表面の絶縁物生成が抑制され電極の導電性あるいは初期抵抗値が確保さ れ、 検出精度の劣化を防止する効果がある。
また、 イオン電流検出用電極 3は、 本体 1 0の直径方向の中心近傍に 配設してある。 そのため、 燃焼室内におけるあらゆる方向のイオン電流 を高精度で検出することができる。
なお、 上記各絶縁基板は、 S i 3 N 4 の他、 A 12 03 、 S i— A 1 - 0 - N (サイアロン) を用いることもできる。 また、 通電発熱体等を 印刷形成する場合の導電性ペース ト としては、 W、 Mo、 R e、 W/M o、 あるいは W/R e、 WC、 W C /R eと樹脂からなるペース トがあ る。
<< 第 5 2の実施の形態 >> 本実施の形態は、 図 1 1 5 A、 図 1 1 5 Bに示すように、 グローブラ グ本体 1 0における、 通電発熱体 2の一方のリード線 2 2 0を、 棒状絶 縁体 1 2 Aの上方側部に設けた端子部 3 1 に接続し、 リー ド線 2 2 0 と イオン電流検出用電極 3 との端子部 3 1 を共用した例である。 なおこの 場合、 通電発熱体 2の発熱用回路とイオン電流検出回路とは E C U 5 2 からの指令信号によ り、 スィ ッチ切換えされるもので、 作動状態と して は常に通電発熱体発熱状態かイオン電流検出状態のどちらか一方に接続 されている回路構成となっている。 その他は、 第 5 1の実施の形態と同 様であり、 第 5 1の実施の形態と同様の効果を得ることができる。
なお、 本実施の形態では、 上記端子部 3 1 を共用しているので、 構造 が簡単である。 また、 本実施の形態においては、 イオン電流検出状態で は通電発熱体自体もイオン電流検出電極へと作用するため、 実質イオン 電流検出電極の面積が拡大でき、 より広範囲に渡ったイオン電流検出が 可能となり検出精度向上の効果が得られる。
<< 第 5 3の実施の形態 >>
本実施の形態は、 図 1 1 6 A、 図 1 1 6 Bに示すように、 第 2絶縁基 板 1 2 Bの表側面に通電発熱体 2 とイオン電流検出用電極 3 とを、 同一 面上に印刷形成した例である。 また、 グローブラグ本体 1 0の上端に共 用端子部 3 1を設け、 これに通電発熱体 2の一方のリード線 2 2 と、 ィ オン電流検出用電極 3 とを接続したものである。 イオン電流検出用電極 3の先端 3 Cは露出していて、 露出部分 3 Bとなっている。 その他は、 第 5 1の実施の形態と同様である。
本実施の形態によれば、 通電発熱体 2、 リー ド線 2 1 、 2 2、 イオン 電流検出用電極 3を、 全て、 第 2絶縁基板 1 2 Bに印刷形成したので、 これらの印刷形成が容易である。 また、 第 2絶縁基板 1 2 Bと第 1絶縁 基板 1 2 Aとの 2つの成形体を準備すればよいので、 製造容易、 低コス トである。 その他、 第 5 1の実施の形態と同様の効果を得ることができ る。 << 第 5 4の実施の形態 >〉
本実施の形態は図 1 1 Ί Aに示すように、 第 2絶縁基板 1 2 Bの表側 面に半円状凹部 1 2 0を、 また第 1絶縁基板 1 2 Aの裏側面に半円状凹 部 1 1 0を設け、 この両者の半円状凹部の間に円柱状のイオン電流検出 用電極 3を挟持する例である。
また、 第 1絶縁基板 1 2 A、 第 2絶縁基板 1 2 B、 被覆絶縁基板 1 2 Cともに、 板状体としておく。 それ故、 グロ一プラグ本体 1 0は、 第 5 1の実施の形態と異なって断面四角形状である (図 1 1 7 B ) 。 なお、 図 1 1 7 A中、 イオン電流検出用電極 3に接触可能なようにペース ト状 の導電材料 1 2 4が第 2絶縁基板 1 2 Bの内部に印刷して設けられ、 そ の一端 1 2 5は第 2絶縁基板 1 2 Bの側面に露出し、 図示省略のリード 線と接続可能となっている。
その他は、 第 5 1の実施の形態と同様に焼成後、 棒状に研削する。 本 実施の形態においても、 第 5 1の実施の形態と同様の効果を得ることが できる。 また、 本実施の形態によれば、 イオン電流検出用電極 3は断面 が円形状の成形体であるため、 イオン電流検出すべく電極表面積を容易 に有効かつ大幅に確保でき、 特にィオン電流検出精度向上の効果を得る ことができる。
<< 第 5 5の実施の形態 >>
本実施の形態は、 図 1 1 8 A、 図 1 1 9に示すように、 U字状の 2つ の通電発熱体 2 8、 2 9を設けたものである。 まず、 図 1 1 8 A、 図 1 1 8 Bに示すグロ一プラグは、 上記一方の.通電発熱体 2 8が、 第 1絶縁 基板 1 1 と被覆絶縁基板 1 3 との間、 他方の通電発熱体 2 9は内側絶縁 基板 1 1 5 と第 2絶縁基板 1 2 との間に設けられている。 また、 イオン 電流検出用電極 3は、 上記第 1絶縁基板 1 1 と内側絶縁基板 1 1 5 との 間に配置されている。 また、 上記通電発熱体 2 8、 2 9の両端は、 第 5 1の実施の形態と同様にリー ド線 2 1、 2 2を介して、 端子部 1 2 3、 環状支持体 4 1 に接続されている。
また、 図 1 1 9に示すグロ一プラグは、 上記通電発熱体 2 8、 2 9を それそれ第 1絶縁基板 1 1 と被覆絶縁基板 1 3、 第 1絶縁基板 1 1 と内 側絶縁基板 1 1 5 との間に設け、 イオン電流検出用電極 3を内側絶縁基 板 1 1 5 と第 2絶縁基板 1 2 との間に設けたものである。 その他は、 上 記図 1 1 8 Aと同様である。
本実施の形態の場合には、 いずれも通電発熱体を 2系統設けてあるの で、 グローブラグの加熱を、 急速かつ均一に行うことができ、 イオン電 流検出用電極 3への力一ボン付着による燻りが発生した際のカーボン焼 失時間の大幅な短縮を図ることができ、 イオン電流検出状態への回復を 早め、 一層精度良くイオン電流を検出することができる。 その他は、 第 5 1の実施の形態と同様である。 また、 第 5 1の実施の形態と同様の効 果を得ることができる。 くく 第 5 6の実施の形態 >>
本実施の形態のグロ一ブラグ 1は、 図 1 2 0 A、 図 1 2 0 Bに示すよ うに、 本体 1 0 と本体 1 0を装着するハウジング 4 とからなる。 上記本 体 1 0は、 棒状絶縁体 1 1 と、 棒状絶縁体 1 1の内部においてその一端 側に印刷形成された通鼋発熱体 2 と、 通鼋発熱体 2の両端部に電気的に 接続されて棒状絶縁体の他端側に導出された一対のリード線 2 1、 2 2 とを有する。
また、 上記通電発熱体 2 と電気絶縁されて上記棒状絶縁体 1 1の内部 に配設された、 火炎中のイオン化の状態を検出するためのイオン電流検 出用電極 3を有する。 イオン電流検出用電極 3は、 棒状絶縁体の直径方 向の中心位置に設けてある。
上記本体 1 0は、 図 1 2 0 A、 図 1 2 1に示すように、 金属製のハウ ジング 4内に、 金属製の環状支持体 4 1 を介して、 固定されている。 そ して、 上記通電発熱体 2の一方のリード線 2 1は、 棒状絶縁体 1 1の内 部を上昇して、 本体 1 0の側面に設けた導電性の端子部 1 2 3を介して 内部リード線 2 3 1 に電気的に接続されている。 また、 他方のリー ド線 2 2は、 上記環状支持体 4 1 を介してハウジング 4に電気的に接続され ている。 また、 上記イオン電流検出用電極 3の上部は、 棒状絶縁体 1 1 の上端部に設けた導電性の端子部 3 1 を介して内部リード線 3 3に電気 的に接続されている。
一方、 ハウジング 4は、 上記環状支持体 4 1 を有し、 図 1 2 1に示す ように、 その上部に保護筒 4 2を有している。 また、 ハウジング 4は、 エンジンのシリ ンダへヅ ド 4 5へ装着するための、 雄ねじ部 4 3を有す る。 上記保護筒 4 2の上方開口部には、 ゴムブッシュ 4 2 1が嵌合され ている。 また、 ゴムブッシュ 4 2 1 には、 外部リード線 2 3 3、 3 3 3 が貫挿され、 これらはそれそれ接続端子 2 3 2、 3 3 2を介して、 上記 内部リード線 2 3 1、 3 3に接続されている。
したがって、 外部リード線 2 3 3は通電発熱体 2の一端に、 外部リー ド線 3 3 3はイオン電流検出用電極 3にそれぞれ電気的に導通されてい る
なお、 通電発熱体 2の他端は、 上記のように、 環状支持体 4 1 を介し てハウジング 4に電気的に導通している (図 1 2 0 A ) 。 また、 本体 1 0の先端部 (下端部) は、 図 1 2 0 Aに示すように、 半球面形状に形成 されており、 イオン電流検出用電極 3の先端部 3 Cが露出して、 露出部 3 Bとなっている。
次に、 上記グロ一プラグ本体 1 0の製造方法につき図 1 2 2を用いて 説明する。 まず、 その概要を説明すれば、 電気絶縁性のセラミ ック材料 からなるとともに、 中空部 1 3 1を有する中軸 1 3の生成形体を準備し、 上記中空部 1 3 1内にイオン電流検出用電極 3を挿入する。 一方、 電気 絶縁のセラ ミ ック材料からなる絶縁基板の生成形体のシー ト 1 5の表面 に、 上記通鼋発熱体及びリード線を印刷形成し、 次いで上記絶縁基板の 印刷形成面の上に上記中軸 1 3の生成形体を置いて上記絶縁基板を中軸 の外周に巻き付る。 その後これらを加熱して上記中軸及び絶縁基板を焼 成する。
即ち、 図 1 2 2に示すように、 まず中軸 1 3については、 セラ ミ ック 材料、 樹脂バインダ一等からなる原料を混合し (図 1 2 2 ( a) ) 、 押 出し成形 (図 1 2 2 (b) ) して、 軸方向に貫通した中空部 1 3 1を有 する、 生成形体の筒状体を作る。 また、 この中軸 1 3の中空部 1 3 1内 に、 導電性の棒状のイオン電流検出用電極 3を挿入する (図 1 2 2 ( c) 一方、 上記絶縁基板については、 まずセラ ミ ック材料、 樹脂バイ ンダ —等からなる原料を混合し (図 1 2 2 ( d) ) 、 薄板状のシ一ト 1 5を 作る (図 1 2 2 ( e ) ) 。 次いで、 シー ト 1 5に端子部形成用のスルー ホールを穿設し (図 1 2 2 ( f ) ) 、 次いで、 シート 1 5の表面側に通 電発熱体用の導電性ベース トを用いて、 スク リーン印刷により通電発熱 体部分 2 0を印刷形成する (図 1 2 2 ( g) ) 。 また、 同様にして、 リ 一ド線部分 2 1 0、 2 2 0を、 スルーホール 1 5 1 と接続するように、 印刷形成する (図 1 2 2 ( h) ) 。 さらに、 シー ト 1 5の裏面側において、 上記スルーホール 1 5 1と導 通するように、 導電性べ一ス トにより端子部分 230を印刷形成する (図 1 2 2 ( i ) ) 。
次に、 シート 1 5の表面側に、 セラ ミ ック材料と樹脂バイ ンダ一とよ りなるコーティ ング材料をコ一ト印刷する (図 1 2 2 ( j ) ) 。 これは、 上記通電発熱体部分 20等の印刷形成部分とシート表面との間の段差を なく して平坦化し、 次に示す巻回時にシ一ト 1 5と中軸 1 3との密着性 を向上させるためである。
次に、 上記シート 1 5における、 上記通電発熱体部分 2 0等を形成し た表面上に、 上記イオン電流検出用電極 3を挿入した中軸 1 3を置き、 中軸 1 3を巻き込むようにしてシート 1 5を巻き付ける (図 1 22 (k) 次に、 予備加熱により脱脂を行ない、 本加熱を行なって、 セラ ミ ック 材料よりなるシート 1 5と中軸 1 3とを一体的に焼成する (図 12 2 ( 1 ) ) 。 このとき、 シート 1 5、 中軸 1 3は、 焼成収縮のために、 両 者は強く密着接合する。 また、 イオン電流検出用電極 3は、 中軸 1 3の 焼成収縮により、 強く密着接合される。
次に、 上記端子部分 230に〇 \1、 次いで N iのメ ツキを施す (図 1 22 (m) ) 。 次いで、 端子部分 230に内部リード線 2 3 1を、 ロウ 付けにより組み付け (図 1 22 (n) ) 、 更にその表面に N iメヅキを 施す (図 1 22 ( 0 ) ) 。 また、 棒状絶縁体 1 1の先端部は、 図 1 20 Aに示すように、 球面状態に研削加工する。 これにより、 上記図 1 20 Aに示したグローブラグ本体 1 0が得られる。
次に、 上記グロ一プラグ本体 1 0にっき、 その具体例を例示すれば、 上記中軸 1 3は、 外径 3. 9mmで、 中空部 13 1を形成する内径は 0. 7 mmであった。 また、 上記シート 1 5は、 厚み 0. 3 mm、 幅 1 1. 5 mm, 長さ 5 4 mmであった。 また、 上記卷回時の外径は 4. 5 mm、 上記中空部 1 3 1内に挿入したイオン電流検出用電極 3の直径は 0. Ί m mであった。
また、 上記中軸 1 3の原料は、 S i 3 N4 (窒化珪素) 粉末 6 3 % (重量比) と、 M 0 S i 2 (ニ珪化モリブデン) 粉末 1 8 %と、 Y 203 (イ ツ ト リア) 粉末 4 %と、 A 1203 (アルミナ) 粉末 3 %と、 パラフ ィ ン WAXを主成分とする複合バイ ンダ一 1 2 %とを混合して用いた。 また、 シート 1 5の原料は、 S i 3 N4 (窒化珪素) 粉末 7 0 % (重 量比) と、 M o S i 2 (二珪化モリブデン) 粉末 2 0 %と、 パラフィ ン WAXを主成分とする複合バイ ンダ一 1 0 %とを混合して用いた。
また、 通電発熱体部分 2 0の材料としては、 W (タ ングステン) と R e (レニウム) とからなるペース トを用いた。 また、 リ一ド線部分 2 1 0、 2 2 0、 端子部分 2 3 0を印刷形成した導電ペース 卜 としては、 W (タングステン) ペース トを用いた。 また、 上記イオン電流検出用電 極の材料は、 M o S i 2 (ニ珪化モリブデン) よりなる。
次に、 上記巻回物 (図 1 2 2 ) の焼成は、 アルゴン又は窒素雰囲気中 1 7 0 0〜 1 8 0 0 °C、 2〜 4時間行なった。 この焼成により、 上記中 軸はその外径が 3. 9から 3. 1 mmに、 卷回物 (棒状絶縁体) の外径 は 4. 5 mmから 3. 6 mmに、 また、 イオン電流検出用電極は 0. 7 mmから 0. 6 mmに収縮した。 また、 上記イオン電流検出用電極 3の 先端部の露出部分 3 B (図 1 2 O A) の表面には、 P tをコ一ティ ング した。
次に、 上記のように本体 1 0とハウジング 4などとによって構成した グローブラグ 1は、 前述の図 6 4に示すように、 エンジンのシリ ンダへ ヅ ド 4 5に対して、 ハウジンク 4の雄ねじ部を螺合することにより装着 する。 なお、 グローブラグの作動回路としては、 図 6 4又は図 6 8に示 したものを使用することができ、 前述と同様の動作が行われるが重複し た説明は省略する。
上記のように、 本実施の形態のグロ一プラグにおいては、 棒状絶縁体
1 1の内部に通電発熱体 2 とリード線 2 1、 2 2 とが印刷形成され、 ま た棒状絶縁体 1 1の内部にイオン電流検出用電極 3が設けてあり、 これ らは一体的に構成されている。 そのため、 通電発熱体 2によるグロ一動 作 (発熱動作) と、 イオン電流検出用電極 3によるイオン電流検出とを
1つのグロ一プラグにより達成できる。
また、 イオン電流検出用電極 3に力一ボンが付着した場合にも、 ィォ ン電流検出用電極 3の近く にある通電発熱体 2に通亀して発熱させるこ とにより、 上記カーボンを焼き切り、 イオン電流検出用!:極 3を正常状 態にすることができる。 そのため、 イオン電流を精度良く検出すること ができる。
また、 上記通!:発熱体 2、 リード線 2 1、 2 2が印刷形成されている のでその厚みが薄く、 グロ一プラグ本体をコンパク トに構成できる。 ま た、 上記棒状絶縁体 1 1、 通電発熱体 2、 リード線 2 1、 2 2、 イオン 電流検出用電極 3を一体構成しているので、 構成簡単である。 また、 通 電発熱体 2、 リード線 2 1、 2 2、 イオン電流検出用電極 3は、 棒状絶 縁体 1 1の内部に設けてあるので、 燃焼ガスによる酸化等の腐食もなく、 耐久性に優れている。
また、 本実施の形態のグロ一ブラグ本体 1 0は、 上記図 1 2 2に示し たように、 絶縁基板用のシート 1 5に通電発熱体とリ一ド線とを印刷形 成し、 その上にイオン電流検出用電極 3を挿入した中軸 1 3を置いて巻 回し、 焼成することにより作製している。 そのため、 グロ一プラグ本体 の製造が容易である。 また、 棒状絶縁体 1 1の先端部は、 半球形状とし てあるので、 燃焼室内における熱衝撃を吸収することができる。 また、 イオン電流検出用電極 3の先端部 3 Cは、 燃焼ガスに接触する よう露出しており (図 1 20A) 、 その露出部分には P t等の貴金属が コーティ ングしてある。 そのため、 酸化等によるイオン電流検出用電極 表面の絶縁物生成が抑制され電極の導電性あるいは初期抵抗値が確保さ れ、 検出精度の劣化を防止する効果がある。
また、 イオン電流検出用電極 3は、 棒状絶縁体 1 1の直径方向の中心 に配設してある。 そのため、 燃焼室内におけるあらゆる方向におけるィ オン電流を高精度で検出することができる。
なお、 上記棒状絶縁体は S i 3 N 4 の他、 A 12 03 、 S i - A 1 - 0— N (サイアロン) を用いることもできる。 また、 通鼋発熱体等を印 刷形成する場合の導電性べ一ス トとしては、 W、 Mo、 R e、 W/Mo、 WC、 W C/R eあるいは W/R eと、 樹脂とからなるペース トがある。
また、 上記においては、 生成形体の中軸 1 3の中空部 1 3 1にイオン 電流検出用電極 3を挿入し、 次いで全体を焼成する例 (図 1 22) を示 したが、 上記イオン電流検出用電極 3は上記焼成後に上記中軸の中に挿 入し、 接着剤により固定する方法を得ることもできる (図 1 22、 右下 参照) 。 くく 第 5 7の実施の形態 >>
本実施の形態は、 図 12 3 Aに示すように、 グロ一プラグ本体 1 0に おける、 通電発熱体 2の一方のリード線 220を、 棒状絶縁体 1 1の上 端に設けた端子部 3 1に接続し、 リード線 2 20とイオン電流検出用電 極 3との端子部を共用した例である。 なお、 この場合、 通電発熱体 2の 発熱用回路とイオン電流検出回路とは E CU 52からの指令信号により、 スィ ツチ切換えされるもので作動状態と しては常に通電発熱体発熱状態 か、 ィオン電流検出状態のどちらか一方に接続されている回路構成とな つている。 その他は、 第 5 6の実施の形態と同様であり、 第 5 6の実施 の形態と同様の効果を得ることができる。
なお、 本実施の形態では、 上記端子部 3 1 を共用しているので、 構造 が簡単である。 また、 本実施の形態においては、 イオン電流検出状態で は通電発熱体自体もイオン電流検出用電極へと作用するため、 実質ィォ ン電流検出用電極の面積が拡大でき、 より広範囲に渡ったイオン電流検 出が可能となり検出精度向上の効果が得られる。 くく 第 5 8の実施の形態 >>
本発明の実施形態例にかかるグローブラグにつき、 図 1 2 4 A〜図 7 を用いて説明する。 本実施の形態のグローブラグは、 ディーゼルェンジ ンの始動補助装置として用いられる、 セラミ ックグロ一プラグである。 本実施の形態のグロ一ブラグ 1は、 図 1 2 4 A、 図 1 2 4 Bに示すよう に本体 1 0 と本体 1 0を装着するハウジング 4とからなる。 上記本体 1 0は、 棒状絶縁体 1 1 と、 棒状絶縁体 1 1の内部においてその一端側に 印刷形成された通電発熱体 2 と、 通電発熱体 2の両端部に電気的に接続 されて棒状絶縁体の他端側に導出され、 同様に印刷形成された一対のリ —ド線 2 1、 2 2 とを有する。
また、 上記通電発熱体 2 と電気絶縁されて、 上記棒状絶縁体 1 1の外 周部においてその軸方向に沿って設けられた溝 1 5 0の内部に配設され た、 火炎中のィォン化の状態を検出するためのィォン電流検出用電極 3 を有する。
上記本体 1 0は、 図 1 2 4 A、 図 1 2 5に示すように、 金属製のハウ ジング 4内に、 金属製の環状支持体 4 1 を介して、 固定されている。 そ して、 上記通電発熱体 2の一方のリード線 2 1は、 棒状絶縁体 1 1の内 部を上昇して、 本体 1 0の側面に設けた導電性の端子部 1 2 3 を介して 内部リー ド線 2 3 1 に電気的に接続されている。 また、 他方のリー ド線
2 2は、 上記環状支持体 4 1を介してハウジング 4に電気的に接続され ている。
また、 上記イオン電流検出用電極 3の上端部は、 棒状絶縁体 1 1の上 端部に設けた導電性の端子部 3 1を介して内部リード線 3 3に電気的に 接続されている。
一方、 ハウジング 4は、 上記環状支持体 4 1を有し、 図 1 2 5に示す ように、 その上部に保護筒 4 2 を有している。 また、 ハウジング 4は、 エンジンのシリ ンダへッ ド 4 5へ装着するための、 雄ねじ部 4 3を有す る。 上記保護筒 4 2の上方開口部には、 ゴムブッシュ 4 2 1が嵌合され ている。 また、 ゴムブッシュ 4 2 1 には、 外部リード線 2 3 3、 3 3 3 が貫挿され、 これらはそれそれ接続端子 2 3 2、 3 3 2を介して、 上記 内部リー ド線 2 3 1、 3 3に接続されている。 したがって、 外部リード 線 2 3 3は通電発熱体 2の一端に、 外部リ一ド線 3 3 3はイオン電流検 出用電極 3にそれそれ電気的に導通されている。
なお、 通電発熱体 2の他端は、 上記のように、 環状支持体 4 1を介し てハウジング 4に電気的に導通している (図 1 2 4 A ) 。 また、 本体 1 0の先端部 (下端部) は、 図 1 2 4 Aに示すように、 半球面形状に形成 されており、 イオン電流検出用電極 3の先端部 3 Cが露出して、 露出部
3 Bとなっている。
次に、 上記グロ一プラグ本体 1 0の製造方法につき図 1 2 6 A〜図 1 2 6 Dを用いて説明する。 まず、 セラ ミ ック材料、 樹脂バインダ一等か らなる原料を混合し、 薄板状のシ一ト 1 5を作る (図 1 2 6 A ) 。 次い で、 シート 1 5の表面側に通鼋発熱体用の導電性ペース 卜を用いて、 ス ク リーン印刷により通電発熱体部分 2 0を印刷形成する。 また、 同様に して、 リ一 ド線部分 2 1 0、 2 2 0を印刷形成する (図 1 2 6 B ) 。 さらに、 シー ト 1 5の裏面側において、 上記リ一ド線部分 2 1 0と導 通するように、 導電性ペース トにより端子部 (図示略) を印刷形成する。 次に、 シー ト 1 5の表面側に、 セラミ ック材料と樹脂パイ ンダ一とより なるコーティ ング材料をコート印刷する。 これは、 上記通電発熱体部分 20等の印刷形成部分とシート表面との間の段差をなく して平坦化し、 次に示す巻回時にシート 1 5と中軸 1 3との密着性を向上させるためで ある。 一方、 上記シート 1 5と同様の材料を用いて作製した、 円柱状の 中軸 1 3を準備する。 そして、 上記シー ト 1 5における、 上記通電発熱 体部分 20等を形成した表面上に、 上記中軸 1 3を置き、 中軸 1 3を巻 き込むようにしてシート 1 5を巻き付ける (図 1 2 6 C)
このとき、 図 1 2 6 Cに示すように、 シート 1 5の巻回方向の両端面 1 5 2、 1 53と中軸 13との間に、 軸方向に沿った溝 1 50を形成す る。 かかる溝 1 50は、 あらかじめシー ト 1 5の幅を小さ く しておき、 両端面 1 5 2、 1 53の間に隙間が出来るようにしておく ことによ り、 形成できる。 あるいは、 上記両端面 1 5 2、 1 5 3を接触させた後に、 一方の端面を小さい幅に軸方向に沿って切除し、 両者間に溝を形成する。 次に、 図 1 2 6 Dに示すように、 上記溝 1 50内に、 円柱状のィォン 電流検出用電極 3を投入し、 更にその上にセラ ミ ック材料からなる絶縁 被覆材 1 9を充填する。 次いで、 予備加熱により脱脂を行ない、 本加熱 を行なって、 セラミ ヅク材料よりなるシート 1 5と中軸 1 3とを一体的 に焼成する。 このとき、 シート 1 5、 中軸 1 3は、 焼成収縮のために、 両者は強く密着接合する。 また、 イオン電流検出用電極 3は、 上記の焼 成収縮によ り、 溝 1 5 0が狭くなり、 この溝 1 50内に強く固定される。 次に、 図 1 2 6 ADに示すように、 上記端子部 1 2 3に Cu、 次いで N iのメ ツキを施す。 次いで、 端子部 1 23に内部リード線 2 3 1 (図 1 24 A) を、 ロウ付けにより組み付け、 更にその表面に N iメ ツキを 施す。 また、 棒状絶縁体 1 1の先端部は、 図 1 24 Aに示すように、 球 面状態に研削加工する。 これにより、 上記図 1 24 Aに示したグロ一プ ラグ本体 1 0が得られる。
次に、 上記グロ一プラグ本体 1 0にっき、 その具体例を例示すれば、 上記中軸 1 3は、 外径 2. 9 mmであった。 また、 上記シート 1 5は、 厚み 0. 8mm、 幅 1 1. 5mm、 長さ 54mmであった。 また、 上記 巻回時の外径は 4. 5 mm, 上記溝 1 50内に挿入したィオン電流検出 用電極 3の直径は 0. 8 mmであった。 上記溝 1 50の幅は 0. 7 mm であった。
また、 上記中軸 1 3の原料は、 S i 3 N4 (窒化珪素) 粉末 63 % (重量比) と、 M o S i 2 (二珪化モリブデン) 粉末 1 8 %と、 Y 203 (イ ッ ト リア) 粉末 4 %と、 A 1203 (アルミナ) 粉末 3 %と、 バラフ ィ ン WAXを主成分とする複合バイ ンダ一 1 2%とを混合して用いた。 また、 シート 1 5の原料は、 S i 3 N4 (窒化珪素) 粉末 70% (重 量比) と、 Mo S i 2 (二珪化モリブデン) 粉末 20 %と、 パラフ ィ ン WAXを主成分とする複合バイ ンダ一 1 0%とを混合して用いた。
また、 通電発熱体部分 20の材料としては、 W (タ ングステン) と R e (レニウム) とからなる導電ペース トを用いた。 また、 リード線部分 2 1 0、 2 20、 端子部 1 23を印刷形成した導電ペース トとしては、 W (タングステン) ペース トを用いた。 また、 上記イオン電流検出用電 極の材料は、 M o S i 2 (二珪化モリブデン) よりなる。 また、 上記溝 1 50内に充填した絶縁被覆材 1 9は、 S i 3 N4 (窒化珪素) 粉末 6 3 %と M 0 S i 2 (二珪化モリブデン) 粉末 1 8 %と、 Y 203 (イ ッ ト リア) 粉末 4%と、 A 1203 (アルミナ) 粉末 3 %と、 パラフ ィ ン WA Xを主成分とする複合バイ ンダ一 1 0%との混合物よりなるセラミ ック 材料を用いた。 次に、 上記巻回物 (図 1 2 6 D) の焼成は、 アルゴン又は窒素雰囲気 中、 1 7 0 0〜 1 8 0 0 ° 2〜 4時間行なった。 この焼成により、 上 記巻回物 (棒状絶縁体) の外径は 4. 5 mmから 3. 6 mmに、 また、 イオン電流検出用電極は 0. 7 mmから 0. 6 mmに収縮した。 また、 上記ィオン電流検出用電極 3の先端部の露出部分 3 B (図 1 2 4 A) の 表面には、 P tをコーティ ングした。
次に、 上記のように本体 1 0 とハウジング 4などとによって構成した グロ一プラグ 1は、 前述の図 6 4に示すように、 エンジンのシリ ンダへ ヅ ド 4 5に対して、 ハウジンク 4の雄ねじ部を螺合することにより装着 する。 なお、 グローブラグの作動回路としては、 図 6 4又は図 6 8に示 したものを使用することができ、 前述と同様の動作が行われるが重複し た説明は省略する。
上記のように、 本実施の形態のグロ一プラグにおいては、 棒状絶縁体 1 1の上記溝 1 5 0内部にィオン電流検出用電極 3が形成され、 また棒 状絶縁体 1 1の内部に通電発熱体 2 と リード線 2 1、 2 2が設けてあり、 これらは一体的に構成されている。 そのため、 通鼋発熱体 2によるグロ 一動作 (発熱動作) と、 イオン電流検出用電極 3によるイオン電流検出 とを 1つのグロ一プラグにより達成できる。 また、 イオン電流検出用電 極 3にカーボンが付着した場合にも、 イオン電流検出用電極 3の近くに ある通鼋発熱体 2に通電して発熱させることにより、 上記カーボンを焼 き切り、 イオン電流検出用電極 3を正常状態に戻すことができる。 その ため、 イオン電流を精度良く検出することができる。
また、 上記通電発熱体 2、 リード線 2 1、 2 2が印刷形成されている のでその厚みが薄く、 グローブラグ本体をコンパク トに構成できる。 ま た、 棒状絶縁体 1 1、 通電発熱体 2、 リード線 2 1、 2 2、 イオン電流 検出用電極 3を一体構成しているので、 構成簡単である。 また、 通電発 熱体 2、 リード線 2 1、 2 2、 イオン電流検出用電極 3は、 棒状絶縁体 1 1の内部に設けてあるので、 燃焼ガスによる酸化等の腐食もなく、 耐 久性に優れている。
また、 本実施の形態のグローブラグ本体 1 0は、 図 1 2 6A〜図 1 2 5 Dに示したように、 絶縁性のシー ト 1 5に通電発熱体と リー ド線とを 印刷形成し、 その上に中軸 1 3を置いて巻回し、 その時形成した溝 1 5 0の中にィオン電流検出用電極 3を配置し、 次いで焼成することにより 作製している。 そのため、 グローブラグ本体の製造が容易である。 また、 棒状絶縁体 1 1の先端部は、 半球形状としてあるので、 燃焼室内におけ る熱衝擎を吸収することができる。
また、 イオン電流検出用電極 3の先端部 3 Cは、 燃焼ガスに接触する よう露出しており (図 1 24A) 、 その露出部 3 Bには P t等の貴金属 がコーティ ングしてある。 そのため、 酸化等によるイオン電流検出用電 極表面の絶縁物生成が抑制され電極の導電性あるいは初期抵抗値が確保 され、 検出精度の劣化を防止する効果がある。
なお、 上記棒状絶縁体は、 S i3 N4 の他、 A l2 03、 S i— A 1 - 0 - N (サイアロン) を用いることもできる。 また、 通電発熱体等を 印刷形成する場合の導電性べ一ス ト としては、 W、 Mo、 Re、 W/M o、 Wc、 Wc/R e、 あるいは WZR eと榭脂からなるペース トがあ る。
<< 第 5 9の実施の形態 >>
本実施の形態は、 図 1 2 7に示すように、 グロ一プラグ本体 1 0を積 層体により作製したものである。 本実施の形態においては、 第 58の実 施の形態に示した通電発熱体部分 20等を印刷形成したシート 1 5 (図 1 26 A〜図 1 2 6 D ) の上に、 中軸 1 3と同様の材料からなる上部シ ート 1 6 (図 1 2 7 ) を積層する。 上部シー ト 1 6は、 イオン電流検出 用電極 3を配設する溝 1 6 0を有する。 この溝 1 6 0に板状のイオン電 流検出用電極 3 を入れ、 更に第 5 8の実施の形態と同様に絶縁被覆材 1 9を充填する。 その後は、 第 5 8の実施の形態と同様に加熱、 焼成する か若し くはホッ トブレスする。
これにより、 図 1 2 7に示すように、 電気絶縁性のシー 卜 1 5、 1 6 よりなる棒状絶縁体の間に通電発熱体 2及びリード線 (図示略) が配設 され、 溝 1 6 0内にィオン電流検出用電極が配設されたグロ一ブラグ本 体 1 0が得られる。 本実施の形態においては、 積層法を用いているので、 製造がより簡単である。 そして、 その後、 切削 (研削) することにより、 所望の形状としている。 その他は第 5 8の実施の形態と同様であり、 第 5 8の実施の形態と同様の効果を得ることができる。 産業上の利用可能性
以上のように本発明にかかるグローブラグは内燃機関、 特にディーゼ ルエンジンにおける燃料の着火と燃焼の促進のためのグローブラグとし て有用であるとともに、 燃焼室内のイオン電流を検出して燃焼状態を知 ることができるのでエンジンの制御などに有用である。 また、 本発明の イオン電流検出装置により、 精密なイオン電流検出が実現できる。 さら に本発明のグロ一プラグの製造方法により、 簡単な構成でかつ精度がよ いグローブラグが製造可能である。

Claims

請 求 の 範 囲
1 . 燃料を燃焼させるための燃焼室内に一部がさらされ得るグロ一 プラグであって、
絶縁体と、
前記絶縁体に埋設され、 一対のリー ド線によって通鼋されて発熱する 発熱体と、
前記絶縁体に埋設されるとともに、 一部が前記燃焼室内で発生する火 炎にさらされ得、 前記火炎中のイオン化の状態を検出するためのイオン 電流検出用電極とを、
有するグローブラグ。
2 . 前記発熱体と前記ィオン電流検出用電極とは電気的に接続され ている請求項 1記載のグロ一プラグ。
3 . 前記発熱体と前記ィオン電流検出用電極とがー体成形されてい る請求項 2に記載のグローブラグ。
4 . 前記発熱体と前記イオン電流検出用電極との間には、 リー ド線 が介在されている請求項 2に記載のグローブラグ。
5 . 前記発熱体と前記イオン電流検出用電極とは絶縁されている請 求項 1 に記載のグローブラグ。
6 . 前記イオン電流検出用電極の少なく とも前記火炎にさらされ得 る箇所は導電性セラ ミ ック材料よ りなる請求項 1ないし 5のいずれか 1 つに記載のグローブラグ。
7 . 前記発熱体と前記イオン電流検出用電極とは、 異なる組成の混 合物、 あるいは異なる粒径の粉体からなる混合物を用いて別々に構成さ れている請求項 1ないし 6のいずれか 1つに記載のグロ一ブラグ。
8 . 請求項 5に記載のグローブラグを用いて燃料燃焼時に発生する ィオン電流を検出するイオン電流検出装置であって、
前記発熱体への通電状態をオン · オフするスィ ツチング手段と、 燃料燃焼前の所定時期に前記ィオン電流検出用電極よ り流れる漏洩電 流を検出する漏洩電流検出手段と、
前記漏洩電流検出手段により検出された漏洩電流が所定のしきい値よ りも大きいとき、 一時的に前記発熱体を通鼋させるよう前記スィ ッチン グ手段を操作する操作手段とを、
有するィオン電流検出装置。
9 . 前記漏洩電流検出手段は、 前記燃焼室内の圧力上昇時に前記 漏洩電流を検出するよう動作する請求項 8に記載のイオン電流検出装置。
1 0 . —対のリード線によって通電されて発熱する発熱体、 及び燃 焼火炎中のィォン化の状態を検出するためのィオン電流検出用電極を生 成する工程と、
前記発熱体及び前記イオン電流検出用電極を絶縁体にて包囲し、 それ を所定温度にてホッ トブレスする工程と、
前記絶縁体の一部を切削加工し、 前記イオン電流検出用電極を外部に 露出させる工程とを、 有するグローブラグの製造方法。
1 1 . -対のリード線によって通電されて発熱する発熱体、 及び燃 焼火炎中のィオン化の状態を検出するためのィオン電流検出用電極を薄 板状の体熱絶縁シ一ト材に設ける工程と、
前記シー ト材を棒状の耐熱性絶縁中軸部に巻き付ける工程と、 前記耐熱性絶縁シート材及び前記耐熱性中軸部を加熱処理する工程と、 前記耐熱性絶縁シート材及び前記耐熱性中軸部の一部を切削加工し、 前記イオン電流検出用電極を外部に露出させる工程とを、
有するグロ一ブラグの製造方法。
1 2 . 耐熱性絶縁材料からなる複数の積層材を用意し、 そのうち特 定の積層体に、 一対のリー ド線によって通電されて発熱する発熱体、 及 び燃焼火炎中のイオン化の状態を検出するためのイオン電流検出用電極 を設ける工程と、
前記発熱体及び前記イオン電流検出用電極を設けた積層材がほぼ中央 になるように、 前記複数の積層材を重ね合わせる工程と、
前記重ね合わせた複数の積層材を加熱処理する工程と、
前記重ね合わせた複数の積層材の一部を切削加工し、 前記イオン電流 検出用電極を外部に露出させる工程とを、
有するグロ一ブラグの製造方法。
1 3 . 一対の導電線により通電されて発熱する発熱体を有するグロ —ブラグを用いたイオン電流検出装置であって、
前記一対の導電線に電源からの供給電圧を印加する第 1の状態と、 前 記一対の導電線と前記電源との間の経路を遮断し、 かつ前記発熱体と前 記燃焼室の壁部との間に前記電源からの供給電圧を印加する第 2の状態 とを切り換えるためのスィ ツチング手段と、
前記第 2の状態において前記電源からの供給電圧によ り燃料燃焼に伴 うイオン電流を検出するィオン電流検出手段とを、
有するィオン電流検出装置。
1 4 . 前記発熱体と前記燃焼室の壁部とを結ぶ電気経路には、 前記 スィ ツチング手段を介して前記鼋源が接続されている請求項 1 3に記載 のィオン電流検出装置。
1 5 . 前記発熱体と前記燃焼室の壁部とを結ぶ電気経路には、 直接、 前記電源が接続されている請求項 1 3に記載のイオン鼋流検出装置。
1 6 . 前記第 1の状態において前記一対の導電線に電圧を印加する ための電源と、 前記第 2の状態において前記発熱体と前記燃焼室の壁部 との間に電圧を印加する電源とは、 別体の電源からなる請求項 1 3ない し 1 6のいずれか 1つに記載のイオン電流検出装置。
1 7 . 前記第 1の状態において前記一対の導電線に電圧を印加する ための電源と、 前記第 2の状態において前記発熱体と前記燃焼室の壁部 との間に電圧を印加する電源とは、 共通の電源からなる請求項 1 3ない し 1 6のいずれか 1つに記載のィォン電流検出装置。
1 8 . ディーゼルエンジンに適用されるイオン電流検出装置であつ て、
前記電源の一端には、 前記発熱体に接続された片方の導電線が接続さ れ、 他端には前記グロ一プラグを保持するためのディ一ゼルエンジンの シリンダへッ ドが接続される請求項 1 3ないし 1 7のいずれか 1つに記 載のィオン電流検出装置。
1 9 . 前記電源と前記一対の導電線の一方との間には、 前記電源に よる供給電圧を一定にする定電圧回路を設けた請求項 1 3ないし 1 8の いずれか 1つに記載のイオン電流検出装置。
2 0 . 複数のグロ一プラグを並列に接続し、 前記スイ ッチング手段 は各グローブラグについて同時に電源経路の切換え動作を行う請求項 1 3ないし 1 9のいずれか 1つに記載のィオン電流検出装置。
2 1 . 前記グロ一ブラグの一方の導電線とアース接点との間にィォ ン電流検出用の電圧検出器を配設した請求項 1 3ないし 2 0のいずれか 1つに記載のイオン電流検出装置。
2 2 . 請求項 9に記載のイ オン電流検出装置において、 前記グロ一 ブラグの一方の導電線と前記電圧検出器との間にコンデンサを配設した イオン電流検出装置。
2 3 . 前記別体の電源のアース側にイオン電流検出抵抗を設けると ともに、 その両端子にかかる電位差からイオン電流を検出するよう構成 した請求項 1 3ないし 2 0のいずれか 1つに記載のイオン電流検出装置 c
2 4 . 発熱体を有する発熱素子部を備え、 燃料を燃焼させるための 燃焼室内に前記発熱素子部が突出して設けられ得るグローブラグであつ て、
前記発熱体には前記燃焼室の内壁に対するイオン電流検出用電極を形 成した請求項 1 3ないし 2 3に記載のィオン電流検出装置に用いられる グロ一プラグ。
2 5 . 絶縁体と前記絶縁体に埋設された発熱体とを有する発熱素子 部を備え、 燃料を燃焼させるための燃焼室内に前記発熱素子部が突出し て設けられ得るグロ一ブラグであって、
前記発熱体の一部を前記絶縁体より露出させ、 前記露出部分を前記燃 焼室の内壁に対するイオン電流検出用電極とした請求項 1 3ないし 2 3 に記載のイオン電流検出装置に用いられるグロ一ブラグ。
2 6 . 前記発熱体はセラ ミ ック材料よりなる請求項 2 4又は 2 5に 記載のグローブラグ。
2 7 . 鼋源からの給電により発熱する発熱体が燃焼室内に突出して 設けられ得るグローブラグと、
前記グローブラグを用いて燃料燃焼時に発生するィオン電流を検出可 能なィオン電流検出手段と、
前記グローブラグによる発熱体の発熱状態と、 前記イオン電流検出手 段によるイオン電流検出状態とを切り換えるスィ ツチング手段と、
前記グロ一プラグによる発熱体発熱状態途中において、 少なく とも燃 料の着火時期直後に一時的にィオン電流検出状態になるよう前記スィ ッ チング手段を操作する操作手段とを、
有するイオン電流検出装置。
2 8 . 前記操作手段は、 燃焼室内への燃料噴射時期から所定期間だ けイオン電流検出状態になるよぅスィ ツチング手段を操作する請求項 2 7に記載のイオン電流検出装置。
2 9 . 前記操作手段は、 所定周波数で前記発熱体発熱状態とイオン 電流検出状態とを切換え動作させる請求項 2 7に記載のィオン電流検出
3 0 . 前記グローブラグは、 前記発熱体に電流を供給するための一 対のリード線と、 前記発熱体を埋設する絶縁体と、 前記発熱体と一体に 形成されたイオン電流検出用電極とを有し、 前記グロ一プラグを用いて 燃料燃焼時に発生するイオン電流を検出する請求項 2 7ないし 2 9のい ずれか 1つに記載のイオン電流検出装置。
3 1 . 前記グローブラグによる前記イオン電流検出状態下において、 燃料着火前の所定時期に前記露出電極部より流れる漏洩電流を検出する 漏洩電流検出手段と、
前記漏洩電流検出手段により検出された前記漏洩電流が所定のしきい 値よりも大きければ一時的に前記イオン電流検出状態から前記発熱体発 熱状態へ移行するよう前記スィ ッチング手段を操作する第 2操作手段と を有する請求項 2 7記載のイオン電流検出装置。
3 2 . 前記漏洩電流検出手段は、 前記燃焼室内の圧力上昇時に前記 漏洩電流を検出するものである請求項 3 1に記載のィオン電流検出装置
3 3 . 前記漏洩電流検出手段は、 前記燃焼室内への燃料噴射のタイ ミ ングに対応して前記漏洩電流を検出するものである請求項 3 1 に記載 のィオン電流検出装置。
3 4 . 前記第 2操作手段は、 前記漏洩電流検出手段によ り検出され た漏洩電流値に応じた時間だけ前記スィ ツチング手段を発熱体の発熱状 態に保持する請求項 3 1ないし 3 3のいずれか 1つに記載のイオン電流 検出: ¾ ¾。
3 5 . 検出された前記イオン電流に応答するハイパスフィル夕と有 し、 前記ハイパスフィル夕の出力信号をイオン電流検出信号として処理 装置に供給する請求項 3 1ないし 3 4のいずれか 1つに記載のイオン電 流検出装置。
3 6 . 前記第 2操作手段による前記漏洩電流のレベル判定用のしき い値を許容最大値付近に設定した請求項 3 5記載イオン電流検出装置。
3 7 . 前記ハイパスフィル夕の出力信号に応答し、 前記しきい値と して燃焼状態検出用のしきい値を用い、 前記ハイパスフィル夕の出力信 号と前記しきい値とを比較する比較手段を有する請求項 3 5又は 3 6記 載のイオン電流検出装置。
3 8 . 前記イオン電流検出用電極は、 少なく とも前記火炎と接触す る露出部分が、 導電性セラ ミ ック粒子により絶縁性セラミ ック粒子を包 んだ構成の導電性の混合焼結体を有し、 その焼結助剤として希土類元素 の酸化物を 1種以上含有しており、
前記混合焼結体の組織は第 1結晶相とその間の粒界相とよりなり、 前 記粒界相の一部又は全部は結晶化して前記焼結助剤を含む第 2結晶相と なっている請求項 1記載のグロ一プラグ。
3 9. 前記イオン電流検出用電極における前記焼結助剤の含有総量 は、 前記導電性セラ ミ ックと前記絶縁性セラ ミ ックの総量に対して 3 ~ 2 5重量%である請求項 3 8記載のグロ一プラグ。
4 0. 前記イオン電流検出用電極における前記第 2結晶相は、 前記 粒界相中に 5 %以上存在する請求項 3 8又は 3 9記載のグロ一ブラグ
4 1. 前記絶縁性セラミ ックは窒化珪素であり、 前記導電性セラミ ックは金属の炭化物、 珪化物、 窒化物、 又はホウ化物の 1種以上である 請求項 3 8〜 4 0のいずれか 1つに記載のグローブラグ。
4 2. 前記ィオン電流検出用電極の前記火炎にさらされるように前 記絶縁体から露出した露出部が、 0. 1 ~ 3 0 /zmの表面粗さ R z ( 1 0点平均粗さ) に研磨された研磨部分を有している請求項 1記載のグロ 一ブラグ。
4 3. 前記ィオン電流検出用電極の先端における露出部の面積は、 1 X 1 0— 6〜0. 5 c m2 である請求項 4 2記載のグロ一プラグ。
44. 前記イオン電流検出用電極は、 前記発熱体と電気的に接続さ れている請求項 4 2又は 4 3記載のグローブラグ。
4 5. 前記ィォン電流検出用電極は、 少なく ともその先端部が、 前 記火炎中へ連通可能な連通孔を有する絶縁性多孔質層によ り被覆されて いる請求項 1記載のグローブラグ。
4 6 , 前記絶縁性多孔質層の厚みは 0 . 2〜 1 . 5 m mである請求 項 4 5記載のグロ一プラグ。
4 7 . 前記絶縁性多孔質層と前記絶縁体とは、 同じ材料により形成 されている請求項 4 5又は 4 6記載のグロ一ブラグ。 4 8 . 前記イオン電流検出用電極は、 前記発熱体と兼用できる構成 である請求項 4 5ないし 4 7のいずれか 1つに記載のグローブラグ。
4 9 . 前記発熱体の両端部に電源との接続部があり、
前記発熱体の途中で前記イオン電流検出用電極に電気的に接続されて いて、
記発熱体に発熱用の直流電流を流すときにブラス側となる前記発熱体 の第 1端から前記ィオン電流検出用電極が最初に接続されている最初の 接続部分の中心部までの、 前記発熱体における第 1発熱部の電気抵抗を R 1 とし、 前記発熱体と前記ィオン電流検出用電極との前記最初の接続 部分の中心部から前記発熱体のマイナス側となる第 2端までの前記発熱 体における第 2発熱部の電気抵抗を R 2 とし、 前記最初の接続部分から 前記イオン電流検出用電極の解放端までの電気抵抗を r としたとき、 R 2 > rの関係が満足される請求項 2記載のグロ一プラグ。 5 0 . 前記電気抵抗 R 2 と rの関係は R 2≥ 2 rである請求項 4 9 記載のグローブラグ。
5 1 . 前記イオン電流検出用電極は、 主成分が金属の珪化物、 炭化 物、 窒化物、 硼化物の 1種以上の導電性セラ ミ ック材料、 又は前記導電 性セラミ ック材料と絶縁性セラ ミ ック材料との混合材料により作製され ている請求項 4 9又は 5 0記載のグローブラグ。
5 2 . 前記ィオン電流検出用電極は、 主成分が融点 1 2 0 0 °C以上 の金属の 1種以上の高融点金属材料、 又は主成分が前記高融点金属材料 と絶縁性セラミ ック材料との混合材料により作製されている請求項 4 9 ないし 5 1のいずれか 1つに記載のグロ一プラグ。
5 3 . 前記絶縁体より露出しているイオン電流検出用電極の露出部 には、 P t、 I r、 R h、 R u、 P dの 1種以上の賁金属が設けてある 請求項 4 9ないし 5 2のいずれか 1つに記載のグロ一ブラグ。
5 4 . 前記絶縁体と前記イオン電流検出用電極が本体を構成し、 前 記本体がハウジング内に支持され、 前記イオン電流検出用電極の先端は 前記火炎にさらされるように前記絶縁体から露出していて、 かつ前記ィ オン電流検出用電極の前記先端は、 前記ハウジングの先端部から 2 m m 以上離れた位置に配置されている請求項 2記載のグロ一プラグ。
5 5 . 前記発熱体全体の電気抵抗を Rとし、 前記発熱体のブラス端 から前記ィオン電流検出用電極の前記先端までの電気抵抗を Bとしたと き、 前記 Rと Bが、
B≥ R / 3
の関係を満足する請求項 5 4記載のグロ一プラグ。
5 6 . 前記イオン電流検出用電極の線膨張係数を Kとし、 前記発熱 体の線膨張係数を Ηとし、 絶縁体の線膨張係数を S としたとき、 前記 Η と S及び前記 Ηと Κがそれぞれ、
H≥ S、 Η≥Κ
の関係を満足する請求項 1記載のグローブラグ。
5 7 . 前記各線膨張係数 K、 H、 Sは、 さらに、
0≤ H - S≤ 2 . 0 X 1 0 - 6 ( /。C ) かつ、
0≤ H - K≤ 2 . O x l O - 6 ( /。C )
の関係を満足する請求項 5 6記載のグロ一プラグ。
5 8 . 前記イオン電流検出用電極は、 主成分が金属の珪化物、 炭化 物、 窒化物、 硼化物の 1種以上の導電性セラ ミック材料、 又は前記導電 性セラ ミ ック材料と絶縁性セラ ミ ック材料との混合材料により作製され ている請求項 5 6又は 5 7記載のグローブラグ。
5 9 . 前記イオン電流検出用電極は、 主成分が融点 1 2 0 0 °C以上 の金属の 1種以上の高融点金属材料、 又は主成分が前記高融点金属材料 と絶縁性セラミ ック材料との混合材料により作製されている請求項 5 6 ないし 5 8のいずれか 1つに記載のグローブラグ。
6 0 . 前記ィオン電流検出用電極の前記火炎にさらされる前記一部 を覆うように前記絶縁体の表面に設けられ、 かつ、 前記イオン電流検出 用電極に電気的に接続されている導電層を更に有する請求項 1記載のグ ローブラグ。
6 1 . 前記導電層は、 部分的に前記絶縁体を露出させるための貫通 孔を有し、 前記貫通孔の前記火炎にさらされる側にエッジ部分を有する 請求項 6 0記載のグローブラグ。
6 2 . 前記エッジ部分の断面形状が角状である請求項 6 0記載のグ ロープラグ。
6 3 . 前記導電層は、 網目構造を有し、 網目の間から前記絶縁体の 表面が露出している請求項 6 0ないし 6 2のいずれか 1つに記載のグロ 一ブラグ。
6 4 . 前記導電層は、 金属又は導電性セラミ ックである請求項 6 0 ないし 6 3のいずれか 1つに記載のグローブラグ。
6 5 . 前記導電層の厚みは、 1〜 2 0 zz mである請求項 6 0ないし 6 4のいずれか 1つに記載のグローブラグ。
6 6 . 前記絶縁体は、 第 1絶縁基板と、 前記第 1絶縁基板の表側面 に配設した被湲絶縁基板と、 前記第 1絶縁基板の褢側面に積層させた第 2絶縁基板とを有し、
前記発熱体は前記第 1絶縁基板の表側面と前記被覆絶縁基板との間に 印刷形成され、 前記一対のリ一ド線は前記発熱体の両端部に接続され るよう前記第 1絶縁基板の表側面と前記被覆絶縁基板との間に印刷形成 され、
前記ィオン電流検出用電極は前記第 1絶縁基板と第 2絶縁基板の間に 設けられている請求項 1記載のグローブラグ。
6 7 . 前記第 1絶縁基板及び前記被覆絶縁基板の外表面は、 曲面形 状部を有している請求項 6 6に記載のグロ一プラグ。
6 8 . 前記絶縁体が第 1絶縁基板と、 第 2絶縁基板と有し、 前記発 熱体と前記発熱体の両端部に接続された前記一対のリ一ド線と、 前記ィ オン電流検出用電極が前記第 1絶縁基板と、 第 2絶縁基板との間に挟み こまれている積層構造となっている請求項 1記載のグローブラグ。
6 9 . 前記イオン電流検出用電極は、 前記第 2絶縁基板の表側面に 印刷形成されている請求項 6 6ないし 6 8のいずれか 1つに記載のグロ 一ブラグ。
7 0 . 前記イオン電流検出用電極は、 導電性線材であり前記第 2絶 縁基板の表側面と前記第 1絶縁基板の裏側面との間に挟持配設されてい る請求項 6 6ないし 6 9のいずれか 1つに記載のグローブラグ。
7 1 . 前記イオン電流検出用電極の先端は、 前記火炎にさらされる よう、 前記第 2絶縁基板の先端部に露出している請求項 6 6ないし 7 0 のいずれか 1つに記載のグロ一ブラグ。
7 2 . 前記イオン電流検出用電極は M o S i 2 、 W C、 T i Nの 1 種以上の導電性セラ ミ ック材料によ り作製されている請求項 6 6ないし 7 1のいずれか 1つに記載のグローブラグ。
7 3 . 前記イオン電流検出用電極は、 W、 M o、 T iの 1種以上の 高融点金属によ り作製されている請求項 6 6ないし 7 2のいずれか 1つ に記載のグロ一ブラグ。
7 4 . 前記第 2絶縁基板より露出している前記ィオン電流検出用電 極の露出部には、 P t、 I r、 R h、 R u、 P dの 1種以上の貴金属が 設けてある請求項 6 9ないし 7 3のいずれか 1つに記載のグロ一プラグ。
7 5 . グロ一プラグ自体の先端部が半球形状である請求項 6 6ない し 7 4のいずれか 1つに記載のグロ一プラグ。
7 6 . 前記絶縁体は棒状絶縁体であり、 前記発熱体は前記棒状絶縁 体の内部に印刷形成され、 前記一対のリ一ド線は前記発熱体の両端部に 電気的に接続されて前記棒状絶縁体の外部に導出され、
前記ィオン電流検出用電極が前記発熱体と電気絶縁されて前記棒状絶 縁体の内部に配設されている請求項 1記載のグロ一ブラグ。
7 7 . 前記絶縁体は中空部を有する電気絶縁性の中軸と前記中軸の 外周に被覆された絶縁基板とよりなる棒状絶縁体であり、 前記発熱体は 前記棒状絶縁体の内部において前記中軸と前記絶縁基板との間に印刷形 成され、 前記一対のリ一ド線は前記発熱体の両端部に電気的に接続され て前記棒状絶縁体の外部に導出され、
前記ィオン電流検出用電極が前記発熱体と電気絶縁されて前記中軸の 中空部内に挿入固定されている請求項 1記載のグローブラグ。
7 8 . 前記発熱体は、 前記絶縁基板の内側面に印刷形成されている 請求項 7 7記載のグローブラグ。
7 9 . 電気絶縁性のセラ ミ ック材料からなり中空部を有する中軸の 生成形体を準備し、 前記中空部内に前記イオン電流検出用電極を挿入し、 一方、 電気絶縁性のセラ ミ ック材料からなる絶縁基板の生成形体の表 面に前記発熱体及び前記リ一ド線を印刷形成し、
次いで前記絶縁基板の印刷形成面の上に前記中軸の生成形体を置いて 前記絶縁基板を前記中軸の外周に巻き付け、
次いでこれらを加熱して前記中軸及び前記絶縁基板を焼成する、 各ステツプを有する請求項 7 7記載のグローブラグの製造方法。
8 0 . 前記絶緣体は棒状絶縁体であり、 前記発熱体は前記棒状絶縁 体の内部に設けられ、 前記一対のリード線は前記発熱体の両端部に電気 的に接続されて前記棒状絶縁体の外部に導出され、
前記イオン電流検出用電極が前記棒状絶縁体の外周部において、 その 軸方向に沿って設けられた溝の内部に、 前記発熱体と亀気絶縁されて配 設されている請求項 1記載のグロ一プラグ。
8 1 . 前記溝内に配設された前記イオン電流検出用電極の上には、 前記イオン電流検出用電極を覆うように絶縁被覆材が充填されている請 求項 8 0に記載のグローブラグ。
8 2 . 前記発熱体及び前記リード線は、 印刷形成されている請求項 8 0又は 8 1 に記載のグローブラグ。
8 3 . 前記イオン電流検出用電極の先端は、 前記火炎にさらされる よう、 前記棒状絶縁体の先端部に露出している請求項 7 6ないし 7 8及 び 8 0ないし 8 2のい
ずれか 1つに記載のグロ一ブラグ。
8 4 . 前記ィオン電流検出用電極は M 0 S i 2 、 W C、 T i Nの 1 種以上の導電性セラ ミ ック材料によ り作製されている請求項 7 6ないし
7 8及び 8 0ないし 8 3のいずれか 1つに記載のグローブラグ。
8 5 . 前記イオン電流検出用電極は、 W、 M o、 T iの 1種以上の 高融点金属により作製されている請求項 7 6ないし 7 8及び 8 0ないし 8 4のいずれか 1つに記載のグローブラグ。
8 6 . 前記棒状絶縁体より露出している前記イオン電流検出用電極 の露出部には、 P t、 I r、 R h、 R u、 P dの 1種以上の貴金属が設 けてある請求項 8 3ないし 8 5のいずれか 1つに記載のグロ一プラグ。
8 7 . 前記棒状絶縁体の先端部は半球形状である請求項 7 6ないし
7 8及び 8 0ないし 8 6のいずれか 1つに記載のグロ一ブラグ。
8 8 . 電気絶縁性のセラミ ック材料からなる絶縁基板の生成形体の 表面に前記発熱体及びリ一ド線を印刷形成し、
次いで前記絶縁基板の印刷形成面の上に電気絶縁性のセラ ミ 、ソ ク材料 よりなる中軸の生成形体を置いて前記絶縁基板を中軸の外周に巻き付け るとともに前記絶縁基板の巻回方向の両端部と前記中軸との間に軸方向 に沿った溝を形成し、 次いで、 前記溝の内部に前記イオン電流検出用電極を配置し、 次いでこれらを加熱して前記中軸及び絶縁基板を焼成する請求項 8 0 に記載のグローブラグの製造方法。
8 9 . 前記溝内にイオン電流検出用電極を配置し、 次いで前記ィォ ン電流検出用電極を覆うように前記溝内に絶縁被覆材を充填し、 その後 前記加熱、 焼成を行う請求項 8 8に記載のグロ一プラグ。
PCT/JP1997/001254 1996-04-10 1997-04-10 Bougie de prechauffage, son procede de fabrication, et detecteur de courant ionique WO1997038223A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US08/973,799 US6483079B2 (en) 1996-04-10 1997-04-10 Glow plug and method of manufacturing the same, and ion current detector
DE69731160T DE69731160T2 (de) 1996-04-10 1997-04-10 Glühkerze, ihr herstellunsverfahren und ionenstromdetektor
EP97915709A EP0834652B1 (en) 1996-04-10 1997-04-10 Glow plug, its production process and ion current detector

Applications Claiming Priority (44)

Application Number Priority Date Filing Date Title
JP8800696 1996-04-10
JP8/88006 1996-04-10
JP8/147132 1996-06-10
JP14713296 1996-06-10
JP8/166470 1996-06-26
JP8/166469 1996-06-26
JP16646996 1996-06-26
JP16647096A JP3814873B2 (ja) 1996-06-26 1996-06-26 イオン電流検出装置
JP17947096 1996-07-09
JP8/179470 1996-07-09
JP8/227733 1996-08-09
JP22773496 1996-08-09
JP8/227734 1996-08-09
JP22773396 1996-08-09
JP8/227735 1996-08-09
JP22773596 1996-08-09
JP22860496 1996-08-29
JP8/228604 1996-08-29
JP8/263673 1996-09-11
JP26367396A JP3823393B2 (ja) 1996-09-11 1996-09-11 グロープラグ
JP8/263674 1996-09-11
JP8/263672 1996-09-11
JP26367496A JP3823394B2 (ja) 1996-09-11 1996-09-11 グロープラグ
JP8/263676 1996-09-11
JP8/263675 1996-09-11
JP26367596A JP3785697B2 (ja) 1996-09-11 1996-09-11 グロープラグ
JP26367696A JP3785698B2 (ja) 1996-09-11 1996-09-11 グロープラグ
JP26367296A JP3785696B2 (ja) 1996-09-11 1996-09-11 グロープラグ
JP8/269372 1996-09-18
JP26937296A JP3834889B2 (ja) 1996-09-18 1996-09-18 グロープラグ
JP8/269371 1996-09-18
JP26937196A JP3785699B2 (ja) 1996-09-18 1996-09-18 グロープラグ
JP9/49259 1997-03-04
JP04925997A JP3605990B2 (ja) 1996-04-10 1997-03-04 イオン電流検出装置及びそれに用いられるグロープラグ
JP9/49258 1997-03-04
JP04925897A JP3605989B2 (ja) 1996-06-26 1997-03-04 イオン電流検出装置
JP9/56241 1997-03-11
JP05624197A JP3704869B2 (ja) 1996-06-10 1997-03-11 グロープラグ、グロープラグを用いたイオン電流検出装置、及びグロープラグの製造方法
JP9/86026 1997-03-18
JP8602697A JPH10110952A (ja) 1996-08-09 1997-03-18 グロープラグ
JP8578497A JPH10110950A (ja) 1996-08-09 1997-03-19 グロープラグ及びその製造方法
JP9/85785 1997-03-19
JP08578597A JP3674231B2 (ja) 1996-08-09 1997-03-19 グロープラグ及びその製造方法
JP9/85784 1997-03-19

Publications (1)

Publication Number Publication Date
WO1997038223A1 true WO1997038223A1 (fr) 1997-10-16

Family

ID=27586594

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/001254 WO1997038223A1 (fr) 1996-04-10 1997-04-10 Bougie de prechauffage, son procede de fabrication, et detecteur de courant ionique

Country Status (3)

Country Link
US (1) US6483079B2 (ja)
EP (1) EP0834652B1 (ja)
WO (1) WO1997038223A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6062185A (en) * 1998-09-25 2000-05-16 General Motors Corporation Glow sensor and engine component combination
US6144015A (en) * 1998-09-25 2000-11-07 General Motors Corporation Glow sensor--ceramic flat plate
US6148660A (en) * 1998-09-25 2000-11-21 General Motors Corporation Glow sensor-ceramic tip
US6177653B1 (en) 1999-08-18 2001-01-23 Delphi Technologies, Inc. Ion sensor bulb-shaped glow plug assembly
US6215105B1 (en) 1999-08-18 2001-04-10 Delphi Technologies, Inc. Ion sensor glow plug assembly with coating between sheath and shell
US6248980B1 (en) 1999-08-19 2001-06-19 Delphi Technologies, Inc. Ion sensor glow plug assembly
US6285007B1 (en) 1999-08-18 2001-09-04 Delphi Technologies, Inc. Ion sensor glow plug assembly

Families Citing this family (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1082533B1 (en) * 1998-05-26 2002-08-28 Mecel AB System and method for controlling fuel injection in combustion engines
DE19828595C2 (de) * 1998-06-26 2002-09-26 Beru Ag Verfahren und Vorrichtung zum Überwachen der Verbrennungsvorgänge im Brennraum einer Brennkraftmaschine
DE19842148C2 (de) 1998-09-15 2002-02-07 Beru Ag Ionenstrom-Meßglühkerze für Brennkraftmaschinen und Anordnung zum Glühen und/oder Ionenstrommessen mit einer derartigen Glühkerze
DE19920766C1 (de) * 1999-05-05 2000-12-21 Beru Ag Glühkerze und Verfahren zur Herstellung derselben
JP2001165440A (ja) 1999-12-08 2001-06-22 Ngk Spark Plug Co Ltd グロープラグ及びその製造方法
US6465759B1 (en) * 2000-03-14 2002-10-15 Delphi Technologies, Inc. Ion sensor glow plug assembly
US6512204B1 (en) * 2000-03-14 2003-01-28 Delphi Technologies, Inc. Ion sensor glow plug assembly
SK2662002A3 (en) * 2000-06-30 2002-10-08 Bosch Gmbh Robert Sheath type glowplug with ion current sensor and method for operation thereof
DE10031893A1 (de) * 2000-06-30 2002-01-10 Bosch Gmbh Robert Glühstiftkerze mit Ionenstromsensor sowie Verfahren zum Betreiben einer derartigen Glühstiftkerze
JP4808852B2 (ja) * 2001-01-17 2011-11-02 日本特殊陶業株式会社 窒化珪素/炭化タングステン複合焼結体
JP2002299012A (ja) * 2001-04-02 2002-10-11 Ngk Spark Plug Co Ltd セラミックヒータ及びその製造方法、グロープラグ及びイオン電流検出装置
DE10162253A1 (de) 2001-12-18 2003-07-10 Daimler Chrysler Ag Glüh- und Ionenstrommeßvorrichtung für einen Dieselmotor
NL1022250C2 (nl) * 2002-12-23 2004-06-24 Nefit Buderus B V Verbrandingsinrichting en inspectievenster voor een dergelijke verbrandingsinrichting.
JP3886449B2 (ja) * 2002-12-26 2007-02-28 日本特殊陶業株式会社 グロープラグ及びグロープラグの取付け構造
JP3816073B2 (ja) * 2003-01-28 2006-08-30 日本特殊陶業株式会社 グロープラグ及びグロープラグの製造方法
EP1489296B1 (de) * 2003-06-20 2009-08-19 Delphi Technologies, Inc. Treiberschaltung
EP1734304B1 (en) * 2004-04-07 2016-12-14 Ngk Spark Plug Co., Ltd. Ceramic heater and manufacturing method thereof, and glow plug using ceramic heater
US7115836B2 (en) * 2004-06-29 2006-10-03 Ngk Spark Plug Co., Ltd. Glow plug
US20060163065A1 (en) * 2005-01-26 2006-07-27 Woodward Governor Company Ion sensors formed with coatings
US7772525B2 (en) * 2005-02-05 2010-08-10 Saint-Gobain Ceramics & Plastics, Inc. Ceramic igniters
JP4037423B2 (ja) * 2005-06-07 2008-01-23 株式会社フジクラ 発光素子実装用ホーロー基板の製造方法
DE102005030134A1 (de) * 2005-06-28 2007-01-04 Siemens Ag Sensor und Betriebsverfahren zur Detektion von Ruß
DE102006010194B4 (de) * 2005-09-09 2011-06-09 Beru Ag Verfahren und Vorrichtung zum Betreiben der Glühkerzen einer selbstzündenden Brennkraftmaschine
JP2008115808A (ja) * 2006-11-07 2008-05-22 Denso Corp 内燃機関の制御装置
DE102006052634A1 (de) * 2006-11-08 2008-05-15 Robert Bosch Gmbh Kraftstoffheizer
FR2913299B1 (fr) * 2007-03-01 2009-04-17 Renault Sas Pilotage d'une pluralite de bobines bougies via un unique etage de puissance.
CN101843168B (zh) * 2007-10-29 2014-02-19 京瓷株式会社 陶瓷加热器及具备该陶瓷加热器的火花塞
KR101375989B1 (ko) * 2008-02-20 2014-03-18 니혼도꾸슈도교 가부시키가이샤 세라믹 히터 및 글로우 플러그
US20100065052A1 (en) * 2008-09-16 2010-03-18 Alexza Pharmaceuticals, Inc. Heating Units
JP5279447B2 (ja) 2008-10-28 2013-09-04 京セラ株式会社 セラミックヒータ
KR100963224B1 (ko) * 2009-02-03 2010-06-10 (주) 더몰론코리아 물 또는 공기 중에서 겸용 사용이 가능한 세라믹 코팅 히터
EP2496051B1 (en) 2009-10-27 2017-01-04 Kyocera Corporation Ceramic heater
US20120048963A1 (en) 2010-08-26 2012-03-01 Alexza Pharmaceuticals, Inc. Heat Units Using a Solid Fuel Capable of Undergoing an Exothermic Metal Oxidation-Reduction Reaction Propagated without an Igniter
US20120090890A1 (en) * 2010-10-15 2012-04-19 Honeywell International Inc. Rapidly self-drying rectifying flame rod
KR101488748B1 (ko) * 2011-01-20 2015-02-03 쿄세라 코포레이션 히터 및 이것을 구비한 글로 플러그
JP5964547B2 (ja) * 2011-01-25 2016-08-03 日本特殊陶業株式会社 グロープラグおよびその製造方法
KR101875621B1 (ko) 2012-04-09 2018-07-06 현대자동차 주식회사 글로우 플러그 및 이를 포함하는 전자식 써모스탯
EP2725299B1 (en) * 2012-10-26 2016-10-19 SIEVA d.o.o., PE Spodnja Idrija Glow plug comprising an electrically insulating sleeve and method of manufacturing the said plug
JP6253138B2 (ja) * 2012-11-01 2017-12-27 日本特殊陶業株式会社 グロープラグの検査方法及びグロープラグの製造方法、並びに、シースヒータの検査方法及びシースヒータの製造方法
DE102013201048B4 (de) * 2013-01-23 2015-08-13 Robert Bosch Gmbh Glühstiftkerze
US10117292B2 (en) * 2013-04-19 2018-10-30 Chromalox, Inc. Medium voltage heater elements moisture detection circuit
JP5795029B2 (ja) 2013-07-09 2015-10-14 日本特殊陶業株式会社 セラミックヒータ、グロープラグ、セラミックヒータの製造方法、および、グロープラグの製造方法
US9534575B2 (en) * 2013-07-31 2017-01-03 Borgwarner Ludwigsburg Gmbh Method for igniting a fuel/air mixture, ignition system and glow plug
KR101524253B1 (ko) * 2014-08-19 2015-05-29 대진글로우텍 주식회사 2중 단자를 갖는 글로우 플러그 조립체
EP4272744A3 (en) 2015-03-11 2024-01-24 Alexza Pharmaceuticals, Inc. Use of antistatic materials in the airway for thermal aerosol condensation process
DE102016114315A1 (de) * 2016-08-03 2018-02-08 Eberspächer Climate Control Systems GmbH & Co. KG Verfahren zum Betreiben eines brennstoffbetriebenen Fahrzeugheizgerätes
DE102016119057A1 (de) * 2016-10-07 2018-04-12 Balluff Gmbh Sensorelement für einen kapazitiven Sensor und Verfahren zur Herstellung des Sensorelements und des Sensors
JP6794958B2 (ja) * 2017-08-09 2020-12-02 トヨタ自動車株式会社 イオンプローブ
US11391212B2 (en) 2018-09-12 2022-07-19 Pratt & Whitney Canada Corp. Igniter for gas turbine engine
US11268447B2 (en) 2018-09-12 2022-03-08 Pratt & Whitney Canada Corp. Igniter for gas turbine engine
US11401867B2 (en) * 2018-09-12 2022-08-02 Pratt & Whitney Canada Corp. Igniter for gas turbine engine
US11391213B2 (en) 2018-09-12 2022-07-19 Pratt & Whitney Canada Corp. Igniter for gas turbine engine
US11454173B2 (en) 2018-09-12 2022-09-27 Pratt & Whitney Canada Corp. Igniter for gas turbine engine
US11408351B2 (en) 2018-09-12 2022-08-09 Pratt & Whitney Canada Corp. Igniter for gas turbine engine
US11415060B2 (en) 2018-09-12 2022-08-16 Pratt & Whitney Canada Corp. Igniter for gas turbine engine
US11268486B2 (en) * 2018-09-12 2022-03-08 Pratt & Whitney Canada Corp. Igniter for gas turbine engine
US11286861B2 (en) 2018-09-12 2022-03-29 Pratt & Whitney Canada Corp. Igniter for gas turbine engine
US11255271B2 (en) * 2018-09-12 2022-02-22 Pratt & Whitney Canada Corp. Igniter for gas turbine engine
US10957520B2 (en) * 2018-09-20 2021-03-23 Lam Research Corporation Long-life high-power terminals for substrate support with embedded heating elements
CN109556709A (zh) * 2018-12-02 2019-04-02 陕西航空电气有限责任公司 一种组合结构的航空发动机离子火焰探测器
CN111946525A (zh) * 2020-07-29 2020-11-17 蔡梦圆 用于二冲程汽油发动机热火头的转速变压式供电器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6013985A (ja) * 1983-07-06 1985-01-24 Toyota Motor Corp 内燃機関の着火時期センサ
US4739731A (en) 1984-08-01 1988-04-26 Robert Bosch Gmbh Method for measuring and controlling of operating data of internal combustion engines
JPH02176322A (ja) * 1988-12-27 1990-07-09 Babcock Hitachi Kk バーナ点火装置
JPH07259597A (ja) 1994-02-22 1995-10-09 Scania Cv Ab 燃焼エンジン燃焼室内のイオン化度を検出するセンサおよびそのようなセンサを備えた燃焼エンジン

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59160046A (ja) * 1983-03-03 1984-09-10 Nippon Denso Co Ltd 燃料噴射時期制御装置
JPS6013983A (ja) 1983-07-04 1985-01-24 Nissan Motor Co Ltd 内燃機関の点火装置
DE3706555A1 (de) * 1986-07-18 1988-01-21 Webasto Werk Baier Kg W Zuendeinrichtung fuer ein brennstoffbetriebenes heizgeraet
DE4015097C1 (ja) * 1990-05-11 1991-04-11 Webasto Ag Fahrzeugtechnik, 8035 Stockdorf, De
JP3785699B2 (ja) * 1996-09-18 2006-06-14 株式会社デンソー グロープラグ
JPH10110950A (ja) * 1996-08-09 1998-04-28 Denso Corp グロープラグ及びその製造方法
JP3834889B2 (ja) * 1996-09-18 2006-10-18 株式会社デンソー グロープラグ
JP3674231B2 (ja) * 1996-08-09 2005-07-20 株式会社デンソー グロープラグ及びその製造方法
JP3605965B2 (ja) * 1996-09-12 2004-12-22 株式会社デンソー グロープラグ
JP3796846B2 (ja) * 1996-09-12 2006-07-12 株式会社デンソー グロープラグ
US6062185A (en) * 1998-09-25 2000-05-16 General Motors Corporation Glow sensor and engine component combination
US6144015A (en) * 1998-09-25 2000-11-07 General Motors Corporation Glow sensor--ceramic flat plate
DE19852485C2 (de) * 1998-11-13 2002-09-19 Beru Ag Glühkerze und Steckanschluss für eine Glühkerze

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6013985A (ja) * 1983-07-06 1985-01-24 Toyota Motor Corp 内燃機関の着火時期センサ
US4739731A (en) 1984-08-01 1988-04-26 Robert Bosch Gmbh Method for measuring and controlling of operating data of internal combustion engines
JPH02176322A (ja) * 1988-12-27 1990-07-09 Babcock Hitachi Kk バーナ点火装置
JPH07259597A (ja) 1994-02-22 1995-10-09 Scania Cv Ab 燃焼エンジン燃焼室内のイオン化度を検出するセンサおよびそのようなセンサを備えた燃焼エンジン

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0834652A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6062185A (en) * 1998-09-25 2000-05-16 General Motors Corporation Glow sensor and engine component combination
US6144015A (en) * 1998-09-25 2000-11-07 General Motors Corporation Glow sensor--ceramic flat plate
US6148660A (en) * 1998-09-25 2000-11-21 General Motors Corporation Glow sensor-ceramic tip
US6177653B1 (en) 1999-08-18 2001-01-23 Delphi Technologies, Inc. Ion sensor bulb-shaped glow plug assembly
US6215105B1 (en) 1999-08-18 2001-04-10 Delphi Technologies, Inc. Ion sensor glow plug assembly with coating between sheath and shell
US6285007B1 (en) 1999-08-18 2001-09-04 Delphi Technologies, Inc. Ion sensor glow plug assembly
US6248980B1 (en) 1999-08-19 2001-06-19 Delphi Technologies, Inc. Ion sensor glow plug assembly

Also Published As

Publication number Publication date
US6483079B2 (en) 2002-11-19
EP0834652A1 (en) 1998-04-08
EP0834652B1 (en) 2004-10-13
EP0834652A4 (en) 1999-08-11
US20020036192A1 (en) 2002-03-28

Similar Documents

Publication Publication Date Title
WO1997038223A1 (fr) Bougie de prechauffage, son procede de fabrication, et detecteur de courant ionique
JP3605965B2 (ja) グロープラグ
US8227726B2 (en) Ceramic heater and glow plug
US6646231B2 (en) Ceramic heater and its manufacturing method, glow plug and ion current detecting device
JP3796846B2 (ja) グロープラグ
JP2004165165A (ja) 点火プラグ
WO2003092330A1 (en) Ceramic heater and glow plug having the same
JP3704869B2 (ja) グロープラグ、グロープラグを用いたイオン電流検出装置、及びグロープラグの製造方法
US20120175405A1 (en) Hot zone igniter
JPH10110951A (ja) グロープラグ及びその製造方法
JPH10110952A (ja) グロープラグ
JP3823393B2 (ja) グロープラグ
JP3601079B2 (ja) セラミックヒータ
JP4048655B2 (ja) セラミックヒータ
JP3964305B2 (ja) セラミックヒータ
JP2735725B2 (ja) セラミック発熱体
JPH10335050A (ja) セラミックヒータ
JPH1089228A (ja) グロープラグ
JP3785696B2 (ja) グロープラグ
JP3342612B2 (ja) 酸素センサ
JP3785698B2 (ja) グロープラグ
JPH10189226A (ja) セラミックヒータおよびその製造方法
JP2005093364A (ja) セラミックヒータ
JP3957969B2 (ja) 車載暖房機用セラミックヒータ
WO2005002279A1 (ja) セラミックヒータおよびその製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 08973799

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1997915709

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1997915709

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1997915709

Country of ref document: EP