WO1997022550A1 - Verfahren zur abtrennung von mittelsiedern aus einem gemisch aus leicht-, mittel- und hochsiedern - Google Patents

Verfahren zur abtrennung von mittelsiedern aus einem gemisch aus leicht-, mittel- und hochsiedern Download PDF

Info

Publication number
WO1997022550A1
WO1997022550A1 PCT/EP1996/005772 EP9605772W WO9722550A1 WO 1997022550 A1 WO1997022550 A1 WO 1997022550A1 EP 9605772 W EP9605772 W EP 9605772W WO 9722550 A1 WO9722550 A1 WO 9722550A1
Authority
WO
WIPO (PCT)
Prior art keywords
column
medium
low
mixture
fraction
Prior art date
Application number
PCT/EP1996/005772
Other languages
English (en)
French (fr)
Inventor
Otto Watzenberger
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US08/688,281 external-priority patent/US5837107A/en
Priority to CA002239791A priority Critical patent/CA2239791C/en
Priority to AU13039/97A priority patent/AU704998B2/en
Priority to BR9612073A priority patent/BR9612073A/pt
Priority to JP52252397A priority patent/JP4376969B2/ja
Priority to DE59609239T priority patent/DE59609239D1/de
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to IL12473796A priority patent/IL124737A/en
Priority to EP96944615A priority patent/EP0868398B1/de
Priority to KR10-1998-0704679A priority patent/KR100466771B1/ko
Priority to US09/077,584 priority patent/US6254735B1/en
Publication of WO1997022550A1 publication Critical patent/WO1997022550A1/de
Priority to NO19982849A priority patent/NO322631B1/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/082Compounds containing nitrogen and non-metals and optionally metals
    • C01B21/14Hydroxylamine; Salts thereof
    • C01B21/1409Preparation
    • C01B21/1445Preparation of hydoxylamine from its salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column
    • B01D3/143Fractional distillation or use of a fractionation or rectification column by two or more of a fractionation, separation or rectification step
    • B01D3/146Multiple effect distillation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/34Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping with one or more auxiliary substances
    • B01D3/38Steam distillation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/082Compounds containing nitrogen and non-metals and optionally metals
    • C01B21/14Hydroxylamine; Salts thereof
    • C01B21/1463Concentration
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/082Compounds containing nitrogen and non-metals and optionally metals
    • C01B21/14Hydroxylamine; Salts thereof
    • C01B21/1472Separation

Definitions

  • the present invention relates to a process for separating medium boilers from a mixture of low, medium and high boilers which is separated into a fraction containing light and medium boilers and a fraction containing light and high boilers
  • the known distillation methods can be used, for example those described in Ullmann's Encyclopedia of Industrial Chemistry Voi B3, pages 4-46 ff.
  • the known distillation methods have in common that the high boiler over the bottom m is purer Form or, if appropriate, is withdrawn with residual proportions of medium boilers and that the middle boilers are separated off at the top of the column at temperatures which are largely determined by the concentration of the high boilers and their boiling temperature.
  • there is no common separation of a light and Medium boiler mix with simultaneous medium boiler free separation of a light and high boiler mix possible In many cases, however, this would be desirable, especially if high and low boilers are to be subjected to further joint use (sale, recycling, disposal)
  • distillations often require complex distillation processes, for example gentle distillation processes operated under vacuum conditions (thin-film evaporator, molecular beam distillation, etc.). These distillation processes have the disadvantage that the throughput quantities are very small. This leads to high investment and product costs, which can mean that the advantageous distillative separation cannot be carried out economically.
  • Carrier gas distillation is a known method for separating non-volatile components from mixtures which contain components which are immiscible with one another. It is based on the fact that in a mixture of substances which are immiscible with one another, each substance behaves as if the other were not present, ie each substance has a partial pressure at a certain temperature which, regardless of the composition of the mixture, is equal to the vapor pressure of the substance in question.
  • the pressure over such a mixture is equal to the sum of the vapor pressures of the individual components.
  • a well-known example of this is the water / bromobenzene system.
  • the mixture boils at 95 ° C, while the pure substances boil at 100 ° C (water) and 156 ° C (bromobenzene).
  • Carrier gas distillation is used in particular to agglomerate components which are immiscible with one another and have a relatively high boiling point (for example glycerol), substances which disintegrate or polymerize (fatty acids) even before the boiling point is reached and substances which are very difficult to handle and where direct heating up to boiling can be dangerous (e.g. terpine).
  • the best known example of a carrier gas distillation is steam distillation, where water vapor is the carrier gas. It is used, for example, to a great extent in the petroleum-processing industry, for removing light hydrocarbons from absorber oils, in the coal industry for steam distillation of carbon cuts from hard coal distillation, for separating turpentine from resins in the rubber industry and in preparative organic chemistry.
  • the steam distillation is a special version of the azeotrope or ex tractive distillation, as described in the above-mentioned publication on pages 4-50 to 4-52.
  • the procedural effect of this process is based on the fact that the addition of a substitute (an entrainer) overcomes the azeotropic point and thus the desired concentration the azeotropic point is reached
  • stripping Another known method for removing high-boiling substances from a mixture of substances is stripping.
  • the stripping has the disadvantage that only a very dilute solution of the high boilers or middle boilers is obtained in the stripping medium and accordingly a complex and costly separation is necessary .
  • the process is usually only economical if the products can be separated by phase separation, ie. if the mixture of substances has a mixture gap
  • the object of the present invention is therefore to provide a simple and gentle method for separating a medium boiler or a fraction of low and medium boilers from a mixture which contains low, medium and high boilers.
  • the present invention therefore relates to a process for separating a fraction containing low and medium boilers (L, M fraction) and a fraction containing low and high boilers (L, H fraction) from a low, medium and high boilers ⁇ der- containing homogeneous mixture (L, M, H mixture), which is characterized in that the L, M, H mixture is treated in a column with low boiler steam and into an L, M fraction and an L, H Fract ⁇ on is separated
  • the medium boiler accumulates in the low boiler steam, so that the L, M-Frakt ⁇ on above the feed point of the mixture can be obtained and the L, H-fraction accumulates at the bottom.
  • the mixture to be separated is generally fed directly to the top of the column.
  • the mixture is preferably treated with the low boiler steam in countercurrent and in particular by introducing low boiler steam into the bottom of the column or by supplying liquid low boiler and boiling in the bottom.
  • the low boiler which is fed to the column is usually the same as that which is in the mixture.
  • This can be a conventional tray column, for example a bell or sieve tray column, or can be provided with a customary packing, for example Raeschig-Rmgen, Pall-Rmgen, saddle bodies, etc., and it preferably has a theoretical number of trays in the range from 5 to 100 depending on the separation problem, the number of trays can also be more than 100
  • the middle boiler By introducing low boiler steam into the bottom of the column, the middle boiler accumulates in the low boiler steam.
  • the extraction of the L, M fraction. expediently takes place at the level of the feed tray or above it.
  • the L, M fraction is preferably taken off at the top of the column.
  • the L, M fraction generally contains the low boiler in a large to very large excess. It is therefore particularly advantageous to concentrate the L, M fraction for enrichment with medium boilers. This can be done, for example, by leading the L, M fraction into a separate multi-stage column which serves as an amplifier column in which one Separation of Lei low boilers is carried out, so that an L, M fraction richer in medium boilers or even pure middle boilers is obtained
  • the amplifier column is particularly preferred to provide the amplifier column as a separate distillation column or to place it directly on the column in which the treatment with low boiler steam is carried out and to distill off the low boiler overhead.
  • the enriched L, M fraction or the middle boiler can be discharged via a side stream draw from the column reflux. It is particularly preferred to use an essentially vertically used dividing wall.
  • the mixture to be separated is fed approximately in the middle of the stripping-intensifier column.
  • the height of this feed is generally from 1 to 10, preferably 1 to 5, theoretical plates, a dividing wall is attached to the column in such a way that the column is separated vertically into two separate sections, the feed being located approximately in the middle of the dividing wall.
  • the fraction enriched in middle boilers in the field of The bulkhead is separated from the feed point by the bulkhead.
  • concentrations of medium boilers are present on both sides of the partition wall, but high boilers are present in the mixture only on the side of the feed point.
  • the fraction enriched in medium boilers is preferred approximately at the level of the feed or, if appropriate, a little less
  • a side column can also be attached to the stripping-strengthening column in such a way that the side column is connected to the stripping-strengthening column on the gas and liquid sides above and below the feed point the medium-boiling fraction is removed via the side column.
  • the side column is designed in such a way that em
  • a droplet separator (demister or another conventional device) is installed above the inlet bottom or in the vapor outlet in such a way that droplets of the high boiler are prevented by droplets
  • the L, M fraction enriched in medium boilers by the aforementioned amplifier column can, if appropriate, be concentrated or separated in a further column having an amplifier and stripping point
  • a further advantageous embodiment of the process according to the invention consists in once again passing the vapors of the stripping or stripping distillation column, optionally after compression in a known manner, as low boilers or low boiler steam in the bottom of the treatment column since in the process according to the invention direct heating with low boilers - or light steam occurs and the vapor compression only has to overcome the differential pressure across the column, the energy consumption and at the same time the cow running wall can be drastically reduced.
  • the treatment column and / or amplifiers or distillation colums can be operated at normal pressure, reduced pressure or excess pressure and continuously or discontinuously.
  • the conditions naturally depend on the mixtures to be separated and can be determined in a conventional manner by the person skilled in the art.
  • the temperature of the low boiler steam is decisive, it must be so high that the L, M fraction distills off and the L H fraction is obtained in the bottom of the column
  • the process according to the invention has the advantage that it can be carried out easily and the addition of foreign matter can be dispensed with.
  • the concentration of medium boilers is low over the entire process range.
  • the residence time in the process, ie in the columns, is relatively short due to the simple process ⁇ design, only minor investments are required.
  • the method can be scaled up to almost any size
  • the process according to the invention enables an extremely gentle separation of an L, M fraction or the middle boiler from a mixture containing light, medium and high boilers at the temperature level of the boiling point of the low boiler.
  • the process is therefore particularly advantageous when it is necessary to separate a thermally sensitive medium boiler, which tends, for example, to decompose or polymerize, as gently as possible from an L, M, H mixture.
  • the process is particularly advantageous when the high boiler contained in the crude mixture is in pure or highly enriched form Form is highly viscous, precipitates as a solid or tends to undergo a chemical reaction, for example polymerization, in a higher concentration.
  • the process according to the invention ensures that the high boiler, dissolved in the low boiler, can be removed. This means that only solutions have to be handled , ie viscosity problems, solid sample leme etc are avoided
  • the method according to the invention is particularly suitable for obtaining thermally sensitive products. Examples of this
  • FIG. 1 shows a column for separating an L, M, H mixture, which comprises a stripping column 1, on which a reinforcing column 2 is placed.
  • the mixture to be separated is fed directly to the top of stripping column 1.
  • low boiler steam L is passed into the bottom of stripping column 1.
  • An L, H fraction is drawn off at the bottom of the column, while an essentially high-boiler-free L, M fraction is obtained at the top of the column.
  • This is concentrated in the amplifier column, i.e. enriched in medium boiler.
  • the enriched L, M fraction is drawn off somewhat above the feed point of the mixture to be separated.
  • low boilers are obtained, which may be condensed and fed to a further utilization.
  • the low boiler can be passed back into the bottom of stripping column 1 directly or after compression.
  • HA aqueous hydroxylamine
  • AS ammonium sulfate
  • aqueous solution containing 218 g HA / 1 and 680 g AS / 1 was added to the top stage of a stripping column at 300 ml / h.
  • the glass stripping column 2 m high, 35 mm in diameter, was filled with 3 mm glass Raschig rings over a height of 1.8 m.
  • 1000 ml / h of distilled water were fed to the bottom of the column.
  • the column was under a pressure of 40 kPa.
  • the bottom temperature was 84 ° C. 1000 ml / h of aqueous, salt-free HA solution were distilled off at the top of the column at 39.0 g of HA / h, corresponding to 59.6% of the total HA in the feed.
  • 300 ml / h of ammonium sulfate solution with an HA content of 86.0 g HA / 1 were withdrawn from the bottom of the column. This corresponds to 39.4% of the total HA
  • the concentration of HA in the column was a maximum of 100 g / l.
  • the amount of liquid in the column was depending on the loading
  • the stripping column made of enamel, 2 m high, 50 mm in diameter, was filled with 5 mm glass rasch ⁇ g ⁇ ngen. The column was under normal pressure. Steam at 2.5 bar absolute was passed into the bottom of the column. The steam / feed ratio was 2.9: 1. 985 g / h of sodium sulfate solution with an HA content of 1.7 g HA / L were withdrawn from the bottom of the column. This corresponds to 1% of the total HA in the feed. Over the top of the column, 3593 g / h aqueous, salt-free HA solution were distilled off with 36.8 g HA / 1, corresponding to 99.2% of the total HA in the feed.
  • the aqueous HA solution (product solution) was drawn off from base 12 at 1180 ml / h and a concentration of 44 g / 1 via a side stream. 400 ml / h of salt solution were drawn off at the bottom of the column.
  • aqueous HA solution containing 11% by weight of HA and 23.6% by weight of Na 2 SO 4 , was placed on the 11th theoretical plate of a glass bubble plate column, 50 mm in diameter (number of plates corresponding to 30 theoretical plates) ) given. Steam, 2.5 bar absolute, temperature approx. 125 ° C., was fed to the bottom of the column. The pressure in the column was 101 kPA. Largely HA-free water (0.05 g, HA / 1) was drawn off at the top of the column. The aqueous, salt-free HA solution (product solution) was with a Concentration of 8.3% by weight withdrawn from the bottom 12 in liquid form. The salt solution with a residual HA content of 0.2% by weight was drawn off at the bottom of the column.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Compounds Of Unknown Constitution (AREA)
  • Disintegrating Or Milling (AREA)
  • Gas Separation By Absorption (AREA)
  • Seasonings (AREA)
  • Extraction Or Liquid Replacement (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Verfahren zur Abtrennung einer Leicht- und Mittelsieder-enthaltenden Fraktion aus einem Gemisch aus Leicht-, Mittel- und Hochsieder, wobei das Gemisch in einer Kolonne im Sumpf mit Leichtsiederdampf behandelt wird, so daß sich der Mittelsieder im Leichtsiederdampf anreichert und auf dem Temperaturniveau des Leichtsieders gewonnen werden kann.

Description

Verfahren zur Abtrennung von Mittelsiedern aus einem Gemisch aus Leicht-, Mittel- und Hochsiedern
Beschreibung
Die vorliegende Erfindung betrifft ein Verfahren zur Abtrennung von Mittelsiedern aus einem Gemisch aus Leicht-, Mittel- und Hochsieder, das in eine Leicht- und Mittelsieder-enthaltende Fraktion und eine Leicht- und Schwersieder-enthaltende Fraktion aufgetrennt wird
In der chemischen Industrie steht man häufig vor dem Problem, daß aus einem flussigen Mehrstoffgemisch, das aus einer Leicht- (L) , Mittel- (M) und Hochsiederfraktion(H) besteht, der Mittelsieder in reiner Form, oder nur noch mit Anteilen an Leichtsiedern ver¬ setzt, abgetrennt werden muß
Um dies zu erreichen, kann man die bekannten Destillationsmetho- den anwenden, beispielsweise diejenigen, die m Ullmann's Ency- clopedia of Industrial Chemistry Voi B3 , Seite 4-46 ff beschrie¬ ben sind Den bekannten Destillationsmethoden ist gemeinsam daß der Hochsieder über Sumpf m reiner Form oder gegebenenfalls mit Restanteilen an Mittelsieder abgezogen wird und daß die Abtren- nung des Mittelsieders über Kopf der Kolonne unter Temperaturen erfolgt, die weitgehend durch die Konzentration des Hochsieders und dessen Siedetemperatur bestimmt werden Weiter ist bei den bekannten Methoden keine gemeinsame Abtrennung eines Leicht- und Mittelsiedergemisches bei gleichzeitiger mittelsiederfreier Ab- trennung eines Leicht- und Hochsiedergemisches möglich In vielen Fallen wäre dies jedoch wünschenswert, insbesondere wenn Leicht- und Hochsieder einer gemeinsamen weiteren Nutzung (Verkauf Ver¬ wertung, Entsorgung) unterzogen werden sollen
In der oben erwähnten Publikation wird auf Seite 4-48 die Verwen¬ dung von Seitenkolonnen zum Abtrennen von Mittelsieder aus dem Leicht-, Mittel-, Hochsiedergemisch (L, M, H-Gemisch) beschrie¬ ben Auch in diesem Fall erfolgt immer eine Trennung von Leicht- und Hochsieder Gleiches gilt für die auf den Seiten 4-62 und 4-63 in der erwähnten Publikation beschriebenen direkt oder indi¬ rekt gekoppelten Kolonnen In allen diesen Fallen muß letztlich der Mittelsieder destillativ vom Hochsieder abgetrennt werden, was immer Siedetemperaturen erfordert, die wenigstens gleich der des Mittelsieders und im Extremfall nahe bei der Siedetemperatur des Hochsieders und damit sehr hoch sind Dies gilt insbesondere dann, wenn eine vollständige Abtrennung des Mittelsieders vom Hochsieder zu bewerkstelligen ist Es können so hohe Temperaturen auftreten, daß eε auch bei thermisch weniger labilen Stoffen zu einer Zersetzung oder chemischen Umwandlung (Polymerisation etc.) der beteiligten Stoffe kommen kann. Aus diesem Grund sind für derartige Trennungen oft aufwendige Destillationsverfahren, bei- spielsweise unter Vakuumbedingungen betriebene schonende De¬ stillationsverfahren (Dünnschichtverdampfer, Molekularstrahlde¬ stillation etc.) erforderlich. Diese Destillationsverfahren be¬ sitzen den Nachteil, daß die Durchsatzmengen sehr gering sind. Dies führt zu hohen Investitions- und Produktkosten, was bedeuten kann, daß die an sich vorteilhafte destillative Abtrennung nicht wirtschaftlich durchführbar ist.
Weiter sind Sonderverfahren zur Auftrennung schwierig trennbarer Flüεsigkeitsgemische bekannt. Sonderverfahren kommen nur dann in Frage, wenn sie kostengünstiger sind oder übliche andere Verfah¬ ren versagen. Häufig kommen sie bei thermisch nur begrenzt be¬ lastbaren Substanzen zur Anwendung, d.h. wenn der Siedepunkt oberhalb oder nahe der Zersetzungstemperatur liegt. Eine bekannte Methode zur Abtrennung schwer flüchtiger Komponenten aus Gemi- sehen, die miteinander nicht mischbare Komponenten enthalten, stellt die Trägergasdestillation dar. Sie beruht darauf, daß in einem Gemisch nicht miteinander mischbarer Stoffe sich jeder Stoff so verhält, als wäre der andere nicht vorhanden, d.h. jeder Stoff besitzt bei einer bestimmten Temperatur einen Partialdruck, der unabhängig von der Zusammensetzung der Mischung gleich dem Dampfdruck des betreffenden Stoffes ist. Somit ist der Druck über einem derartigen Gemisch gleich der Summe der Dampfdrücke der Einzelkomponenten. Ein bekanntes Beispiel hierfür ist das System Wasser/Brombenzol . Das Gemisch siedet bei 95°C, während die Rein- Stoffe bei 100°C (Wasser) und 156°C (Brombenzol) sieden. Die Trä¬ gergasdestillation kommt insbesondere zur Auftrermung von mitein¬ ander nicht mischbaren Komponenten mit relativ hohem Siedepunkt (z.B. Glycerin), von Stoffen, die bereits vor Erreichen des Sie¬ depunktes zerfallen oder polymerisieren (Fettsäuren) und von Stoffen, die sehr schwer handhabbar sind und bei denen ein direk¬ tes Aufheizen bis zum Sieden gefährlich sein kann (z. B. Terpen¬ tin) .
Das bekannteste Beispiel für eine Trägergasdestillation ist die Wasserdampfdestillation, wobei Wasserdampf das Trägergas ist. Sie findet beispielsweise in großem Maße Anwendung in der erdölverar¬ beitenden Industrie, zur Entfernung leichter Kohlenwasserstoffe aus Absorberölen, in der Kohleindustrie zur Wasserdampfdestilla- tion von Kohlenstoffschnitten aus der Steinkohlendestillation, zur Abtrennung von Terpentin aus Harzen der Kautschukindustrie und in der präparativen organischen Chemie. Die Wasserdampfde¬ stillation ist eine spezielle Ausführung der Azeotrop- oder Ex- traktivdestillation, wie sie in der oben genannten Publikation auf den Seiten 4-50 bis 4-52 beschrieben ist Der verfahrenstech nische Effekt dieses Verfahrens beruht darauf, daß durch Zugabe eines Ersatzstoffes (eines Schleppmittels) der azeotrope Punkt überwunden wird und damit die gewünschte Aufkonzentration über den azeotropen Punkt hinaus erreicht wird
Alle diese Verfahren haben den Nachteil, daß in das zu destillie¬ rende System ein Zusatzstoff (Schleppmittel) eingebracht wird, welches über einen zusätzlichen Verfahrensschπtt wieder aus dem System abgetrennt werden muß.
Eine weitere bekannte Methode zur Entfernung hoher siedender Stoffe aus einem Stoffgemisch stellt das Strippen dar Das Strip- pen hat den Nachteil, daß immer nur eine stark verdünnte Losung des Schwersieders bzw Mittelsieders m dem Strippmedium erhalten und dementsprechend eine aufwendige und kostenintensive Abtren¬ nung erforderlich wird. Das Verfahren ist in der Regel nur dann wirtschaftlich, wenn eine Abtrennung der Produkte durch Phasen- trennung gelingt, d h. wenn das Stoffgemisch eine Mischungslucke aufweist
Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde ein einfaches und schonendes Verfahren zur Abtrennung eines Mittel- sieders bzw einer Fraktion aus Leicht- und Mittelsieder aus ei¬ nem Gemisch, das Leicht-, Mittel- und Hochsieder enthalt, zur Verfügung zu stellen.
Überraschenderweise wurde nun gefunden daß diese Aufgabe gelost wird, wenn man das erwähnte Gemisch in einer Kolonne im Sumpf mit Leichtsiederdampf behandelt
Gegenstand der vorliegenden Erfindung ist daher ein Verfahren zur Abtrennung einer Leicht- und Mittelsieder- enthaltenden Fraktion (L,M- Fraktion) und einer Leicht- und Hochsieder-enthaltenden Fraktion (L,H-Fraktion) aus einem Leicht-, Mittel- und Hochsie¬ der- enthaltenden homogenen Gemisch (L,M,H-Gemisch) , das dadurch gekennzeichnet ist, daß das L,M,H-Gemisch in einer Kolonne mit Leichtsiederdampf behandelt und in eine L,M-Fraktιon und eine L,H-Fraktιon aufgetrennt wird Der Mittelsieder reichert sich im Leichtsiederdampf an, so daß die L,M-Fraktιon oberhalb der Ein- speisestelle des Gemisches gewonnen werden kann und die L,H-Frak- tion am Sumpf anfallt.
Die Zuleitung des aufzutrennenden Gemisches erfolgt im allgemei¬ nen direkt auf den Kopf der Kolonne. Vorzugsweise erfolgt die Be¬ handlung des Gemisches mit dem Leichtsiederdampf im Gegenstrom und insbesondere durch Einleiten von Leichtsiederdampf in den Sumpf der Kolonne oder durch Zufuhren von flüssigem Leichtsieder und Aufkochen im Sumpf Als Leichtsieder, welcher der Kolonne zu¬ geführt wird, verwendet man üblicherweise den gleichen, als den, der sich im Gemisch befindet.
Als besonders zweckmäßig hat es sich erwiesen, die Behandlung mit Leichtsiederdampf m einer Strippkolonne vorzunehmen. Diese kann eine übliche Bodenkolonne, z B. eine Glocken- oder Siebbodenko- lonne oder mit einer üblichen Packung versehen sein, z B Ra- schig-Rmgen, Pall-Rmgen, Sattelkorpern etc , und sie weist vor¬ zugsweise eine theoretische Bodenzahl im Bereich von 5 bis 100 auf Je nach Trennproblem kann die Bodenzahl auch mehr als 100 betragen
Durch das Einleiten von Leichtsiederdampf in den Sumpf der Ko¬ lonne reichert sich der Mittelsieder im Leichtsiederdampf an Die Gewinnung der L,M-Fraktioi. erfolgt zweckmaßigerweise in Hohe des Zulaufbodens oder oberhalb davon Vorzugsweise wird die L,M-Frak- tion über Kopf der Kolonne abgezogen.
Die L,M-Fraktιon enthalt den Leichtsieder im allgemeinen in gro¬ ßem bis sehr großem Überschuß. Es ist daher besonders vorteil¬ haft, die L,M-Fraktιon zur Anreicherung an Mittelsieder einer Aufkonzentrierung zuzuführen Dies kann beispielsweise dadurch erfolgen, daß man die L,M-Fraktιon in eine separate mehrstufige Kolonne fuhrt, die als Verstarkerkolonne dient, in welcher eine Abtrennung von Leicntsieder vorgenommen wird, so daß eine an Mit¬ telsieder reichere L,M-Fraktιon oder sogar reiner Mittelsieder erhalten wird
Besonders bevorzugt ist eε, die Verstarkerkolonne als separate Destillationskolonne vorzusehen oder sie direkt auf die Kolonne, in welcher die Behandlung mit Leichtsiederdampf erfolgt, aufzu- setzen und den Leichtsieder über Kopf abzudestiliieren. Die ange¬ reicherte L, M-Fraktion bzw. der Mittelsieder kann über eine Sei¬ tenstromentnahme des Kolonnenrucklaufs ausgeschleust werden. Be¬ sonders bevorzugt ist dabei die Anwendung einer im wesentlicher vertikal eingesetzten Trennwand Die Zufuhrung des aufzutrennen- den Gemisches erfolgt dabei etwa m der Mitte der Stripp-Verstar- kerkolonne Auf der Hohe dieser Zufuhrung ist über eine Hohe von im allgemeinen 1 bis 10, vorzugsweise 1 bis 5, theoretischen Bo¬ den eine Trennwand m der Kolonne derart angebracht, daß die Ko¬ lonne vertikal in zwei separate Abschnitte getrennt wird, wobei sich die Zuspeisung etwa in der Mitte der Trennwand befindet Auf diese Weise kann auf der der Einspeisestelle gegenüberliegenden Seite die an Mittelsieder angereicherte Fraktion im Bereich der Trennwand entnommen werden Durch die Trennwand wird die Entnah¬ mestelle von der Zuspeisestelle getrennt Auf beiden Seiten der Trennwand liegen gleiche Konzentrationen an Mittelsieder vor, wo¬ bei sich aber nur auf der Seite der Emspeisestelle Hochsieder m dem Gemisch befindet Die an Mittelsieder angereicherte Fraktion wird vorzugsweise in etwa auf Hohe der Zuspeisung oder gegebenen¬ falls etwas darunter entnommen
Alternativ zur Ausführungsform mit Trennwand kann auch eine Sei- tenkolonne derart an die Stripp-Verstarkerkolonne angesetzt wer¬ den, daß die Seitenkolonne jeweils ein oder mehrere Trennstufen oberhalb und unterhalb von der Emspeisestelle gas- und flussig- keitsseitig mit der Stripp-Verstarkerkolonne verbunden ist und die Entnahme der Mittelsieder reicheren Fraktion über die Seiten- kolonne erfolgt Die Seitenkolonne ist so gestaltet, daß em
Übertritt von Hochsieder in die Entnahmestelle der Seitenkolonne vermieden wird Geeignete Maßnahmen hierzu sind dem Fachmann be¬ kannt
Gegebenenfalls wird über dem Zulaufboden oder im Brudenabzug noch ein Tropfchenabscheider (Demister oder eine andere übliche Vor¬ richtung) derart installiert, daß ein Mitreißen des Hochsieders durch Tropfchen verhindert wird
Die durch die erwähnte Verstarkerkolonne an Mittelsieder ange- reichterte L,M-Fraktιon kann gegebenenfalls in einer weiteren Ko¬ lonne mit Verstarker- und Abtriebstell aufkonzentriert oder auf¬ getrennt werden
Eine weitere vorteilhafte Ausführungsform des erfindungsgemaßen Verfahrens besteht darin, die Brüden der Stripp- bzw der Stripp- destillationskolonne, gegebenenfalls nach Kompression in bekann¬ ter Weise, wieder als Leichtsieder oder Leichtsiederdampf m den Sumpf der Behandlungskolonne zu leiten Da im erfindungsgemaßen Verfahren eine Direktbeheizung mit Leichtsieder- bzw Leichtsie¬ derdampf erfolgt und die Brudenkompression nur den Differenzdruck über die Kolonne überwinden muß, laßt sich der Energieverbrauch und gleichzeitig der Kuhlaufwand drastisch absenken.
Die Behandlungskolonne und/oder Verstarker bzw Destillationsko- lorme können bei Normaldruck, Unterdruck oder Überdruck und kon¬ tinuierlich oder diskontinuierlich betrieben werden. Die Bedin¬ gungen richten sich dabei natürlich nach den zu trennenden Gemi¬ schen und können vom Fachmann in üblicher Weise ermittelt werden. Entscheidend ist die Temperatur des Leichtsiederdampfes, sie muß so hoch sein, daß die L,M-Fraktιon abdestilliert und die L H- Fraktion im Sumpf der Kolonne anfallt
Das erfindungsgemaße Verfahren hat den Vorteil, daß es einfach durchfuhrbar ist und auf den Zusatz von Fremdstoff verzichtet werden kann Die Konzentration an Mittelsieder ist über den ge¬ samten Prozeßbereich gering Die Verweilzeit im Prozeß, d h in den Kolonnen, ist relativ kurz Aufgrund der einfachen Prozeßge¬ staltung sind nur geringe Investitionen erforderlich Zudem ist das Verfahren nahezu beliebig scale-upfahig
Das erfindungsgemaße Verfahren ermöglicht eine äußerst schonende Abtrennung einer L,M-Fraktιon bzw des Mittelsieders aus einem Gemisch, das Leicht- Mittel- und Schwersieder enthalt, auf derr Temperaturniveau der Siedetemperatur des Leichtsieders Das Ver¬ fahren ist deshalb besonders vorteilhaft, wenn es erforderlich ist, einen thermisch empfindlichen Mittelsieder, der beispiels¬ weise zur Zersetzung oder zur Polymerisation neigt, möglichst schonend aus einem L,M, H-Gemisch abzutrennen Besonders vorteil- haft ist das Verfahren, wenn der im Rohgemisch enthaltene Hoch¬ sieder in reiner oder hoch angereicherter Form hoch-viskos ist, als Feststoff ausfallt oder in höherer Konzentration dazu neigt eine chemische Reaktion, beispielsweise eine Polymerisation, ein¬ zugehen Das erfindungsgemaße Verfahren gewährleistet namlich, daß der Hochsieder, m dem Leichtsieder gelost, abgezogen werden kann Dadurch müssen nur Losungen gehandhabt werden, d h Visko- sitatsprobleme, Feststoffprobleme etc werden vermieden
Das erfindungsgemaße Verfahren ist besonderε geeignet zur Gewin- nung von thermisch empfindlichen Produkten Beispiele hierfür
Gewinnung einer wäßrigen Hydroxylammlosung aus einer wäßri¬ gen Losung eines Hydroxylammsalzes, - Gewinnung von polymerisierbaren Verbindungen, beispielsweise die Ruckgewinnung von Styrol aus Gemischen, die bei der Sty- rolproduktion anfallen,
Gewinnung von chlorierten Kohlenwasserstoffen, beispielsweise Ruckgewinnung von Dichlorethan aus Gemischen, uie bei der Dichlorethanproduktion anfallen,
Ruckgewinnung von Carbonsauren und Aldehyden aus den Ab¬ streifsauren der Cyclohexanoxidation mit Luft oder der Adi- pmsaureproduktion, Abtrennung von organischen Sauren und Aldehyden, wie Essig- saure, Acrylsäure, Methacrolem oder Methacry1 saure aus Pro- duktionsabwassern, die gegebenenfalls noch Hocnsieder, orga¬ nische Verbindungen, Salze (Katalysatoren) etc enthalten und Abtrennung von Ammen aus Ammoniak und Hochsieder enthalten¬ den Gemischen.
Das erfindungsgemaße Verfahren wird weiter anhand des in der Fi- gur 1 gezeigten Schemas erläutert:
Die Figur 1 zeigt eine Kolonne zur Auftrennung eines L,M,H-Gemi- sches, die eine Strippkolonne 1 umfaßt, auf die eine Verstarker¬ kolonne 2 aufgesetzt ist. Das aufzutrennende Gemisch wird direkt auf den Kopf der Strippkolonne 1 geführt. Im Gegenstrom dazu wird Leichtsiederdampf L in den Sumpf der Strippkolonne 1 geleitet. Am Sumpf der Kolonne wird eine L,H-Fraktιon abgezogen, wahrend am Kopf der Kolonne eine im wesentlichen hochsiederfreie L,M-Frak- tion anfällt. Diese wird in der Verstarkerkolonne aufkonzen- triert, d.h. an Mittelsieder angereichert. Die angereicherte L,M- Fraktion wird etwas oberhalb der Einspeisestelle des aufzutren¬ nenden Gemisches abgezogen. Am Kopf der Verstarkerkolonne fällt Leichtsieder an, der gegebenenfalls kondensiert und einer wei¬ teren Verwertung zugeführt werden kann. Alternativ dazu kann der Leichtsieder direkt oder nach Kompression wieder in den Sumpf der Strippkolonne 1 geleitet werden.
Die nachfolgenden Beispiele erläutern die Erfindung ohne sie zu begrenzen.
Beispiel 1
Gewinnung einer wäßrigen Hydroxylamin(HA) -Losung aus einer Hydro¬ xylamin(HA) -Ammoniumsulfat(AS) -Losung mit einer Strippkolonne
Eine wäßrige Lösung, enthaltend 218 g HA/1 udn 680 g AS/1, wurde mit 300 ml/h auf die oberste Stufe einer Strippkolonne gegeben. Die Strippkolonne aus Glas, 2 m hoch, 35 mm Durchmesser, war über eine Höhe von 1,8 m mit 3-mm-Raschigringen aus Glas gefüllt. Dem Sumpf der Kolonne wurden 1000 ml/h destilliertes Wasser zuge¬ führt. Die Kolonne stand unter einem Druck von 40 kPa. Die Sumpf- temperatur betrug 84°C. Über Kopf der Kolonne wurden 1000 ml/h wäßrige, salzfreie HA-Lösung mit 39,0 g HA/h abdestilliert, ent¬ sprechend 59,6 % des gesamten HA im Feed. Aus dem Sumpf der Ko- lonne wurden 300 ml/h Ammoniumsulfatlosung mit einem Gehalt an HA von 86,0 g HA/1 abgezogen. Das entspricht 39,4 % des gesamten HA im Feed.
Die Konzentration an HA in der Kolonne betrug maximal 100 g/1. Die Flüssigkeitsmenge in der Kolonne betrug je nach Belastung
20-225 ml. Die Verweilzeit der Flüssigkeit in der Kolonne betrug damit nur 1,5-10 min. Die Zersetzungsrate ist bei dieser geringen Konzentration und innerhalb der kurzen Zeit gering
Weitere Versuche sind in nachstehender Tabelle aufgelistet
Tabelle 1
Abtrennung einer wäßrigen HA-Losung aus einer wäßrigen HA-/AS- Losung
Feed HA-Gehalt H2C7 Dampf Druck Kopf tem¬ HA über HA im ml/h g/l kPa peratur Kopf Sumpf °C g/1 (%) g/l (%)
318 222 1156* 50, 0 81,0 40,5 66, 9 48,6 21,2
170 222 1060* 70, 0 90, 5 22,8 65, 6 45,2 17,2
370 219 1475Λ 100,4 100,9 32,4 62,2 75,6 47, 8
179 105,5 1530Λ 100,8 100,6 9,0 70,5 29,0 27,6
245 220, 0 1530Λ 100,8 100, 6 28,0 73,3 54,0 42,2
150 4 990Λ 100,8 100,0 0,4 68,1 0,8 15,7
150 5,6 990Λ 100, 8 99, 9 0,6 73, 0 0,4 5, 6
119 204 1063 Λ 101,5 100,4 15,4 67, 6 40, 5 19,7
* Der Sumpf der Kolonne wurde über einen Tnermostaten beheizt
Λ Das Wasser wurde zur gleichzeitigen Sumpfbeheizung als über¬ hitzter Dampf zugeführt.
Beispiel 2
Abtrennung einer wäßrigen HA-Losung aus einer wäßrigen HA-/-Na2So4-Losung mit einer Strippkolonne
Die wäßrige Losung aus Beispiel 3, enthaltend 11 Gew.% HA und 23,6 Gew.% Na2S04, wurde mit 978 g/h auf die oberste Stufe einer Strippkolonne gegeben. Die Strippkolonne aus Email, 2 m hoch, 50 mm Durchmesser, war mit 5-mm-Raschιgπngen aus Glas gefüllt. Die Kolonne stand unter Normaldruck In den Sumpf der Kolonne wurde Dampf mit 2,5 bar absolut geleitet. Das Dampf/Feed-Verhaltnis be¬ trug 2,9:1. Aus dem Sumpf der Kolonne wurden 985 g/h Natriumsul¬ fatlosung mit einem Gehalt an HA von 1,7 g HA/L abgezogen. Das entspricht 1% des gesamten HA im Feed. Über Kopf der Kolonne wur¬ den 3593 g/h wäßrige, salzfreie HA-Losung mit 36,8 g HA/1 abde- stilliert, entsprechend 99,2 % des gesamten HA im Feed.
Weitere Versuche sind in nachstehender Tabelle aufgelistet.
Tabelle 2 Abtrennung einer wäßrigen HA-Losung aus einer wäßrigen HA-/Natπ- umsulfatlosung
Figure imgf000011_0001
Beispiel 3
Gewinnung einer wäßrigen HA-Losung aus einer wäßrigen HA-/Natrι- umsulfatlosung mit einer Stripp-Destrillationskolonne
Eine wäßrige Losung, enthaltend 221 g HA/1 und 540 g AS/1, wurde mit 202 ml/h auf den 11. Boden einer Glockenbodenkolonne aus Glas, 35 mm Durchmesser, 1,6 m Gesamthohe, 21 Boden (unterster Boden = Boden 1), gegeben. Dem Sumpf der Kolonne wurden 1300 ml/h Wasserdampf (ca. 125°C) zugeführt. Der Druck in der Kolonne betrug 99 kPa. Air. Kopf der Kolonne wurden bei einer Kopftemperatur von 99,8°C und einem RucklaufVerhältnis von 1:3 (Rucklauf: Zulauf) 180 ml/h weitgehend HA-freies WAsser (0o,6 g HA/1) abgezogen. Die wäßrige HA-Losung (Produktlosung) wurde mit 1180 ml/h und einer Konzentration von 44 g/1 über einen Seitenstrom von Boden 12 ab¬ gezogen. Am Sumpf der Kolonne wurden 400 ml/h Salzlosung abgezo¬ gen.
Beispiel 4
Gewinnung einer wäßrigen HA-Losung aus einer wäßrigen HA-/Natri- umsulfatlosung mit einer Strippdestillationskolonne unter Aufkon¬ zentrierung über einen Seitenabzug
Eine wäßrige HA-Losung gemäß Beispiel 3, enthaltend 11 Gew.% HA und 23,6 Gew.% Na2S04, wurde auf den 11. theoretischen Boden einer Glockenbodenkolonne aus Glas, 50 mm Durchmesser (Bodenanzahl ent¬ sprechend 30 theoretischen Böden) gegeben. Dem Sumpf der Kolonne wurde Wasserdampf, 2,5 bar absolut, Temperatur ca. 125°C, zuge- fuhrt. Der Druck in der Kolonne betrug 101 kPA. Am Kopf der Ko¬ lonne wurde weitgehend HA-freies Wasser (0,05 g, HA/1) abgezogen. Die wäßrige, salzfreie HA-Losung (Produktlosung) wurde mit einer Konzentration von 8,3 Gew.% über einen Seitenstrom von Boden 12 flüssig entnommen. Am Sumpf der Kolonne wurde die Salzlosung mit einem Restgehalt an HA von 0,2 Gew.% abgezogen.
Beispiel 5
Aufkonzentration einer salzfreien wäßrigen Hydroxylaminlösung durch Destillation
In einer Glasglockenbodenkolonne, 50 mm Durchmesser, 30 Glocken¬ boden, wurden kontinuierlich auf den 8. Boden 1600 g/h einer 8,3 gew.%igen wäßrigen, salzfreien, stabilisierten Hydroxylaminlösung eingespeist. Auf den obersten Boden, Boden Nr. 30, wurde zusatz¬ lich eine geringe Menge an Stabilisator, gelost in Hydroxylamin- Lösung, m die Kolonne dosiert. Das Rucklaufverhältnis wurde auf 0,5 eingestellt. Über Kopf der Kolonne wurde Wasser abdestil¬ liert. Das Destillat enthielt noch eine Restmenge an Hydroxalamin von 0,07 Gew.%. Aus dem Sumpf der Kolonne wurden ca. 240 ml/h ei¬ ner 50 gew%ιgen Hydroxylaminlösung über eine Pumpe ausgetragen.

Claims

Patentansprüche
1 Verfahren zur Abtrennung emer Leicht- und Mittelsieder-ent- haltenden Fraktion (L,M-Fraktion) aus einem homogenen Gemisch aus Leicht-, Mittel- und Hochsieder (L,M, H-Gemisch) dadurch gekennzeichnet, daß das L,M, H-Gemisch in einer Kolonne im Sumpf mit Leichtsiederdampf behandelt und in eine L,M-Frak- tion und eine L,H-Fraktιon aufgetrennt wird.
Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das L,M, H-Gemisch durch Einleiten von Leichtsiederdampf m den Sumpf der Kolonne behandelt wird
3 Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Behandlung im Gegenstrom erfolgt.
Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß als Kolonne eine Strippkolonne verwendet wird
Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die L,M-Fraktιon in Hohe des Zulaufbodens oder oberhalb davon, insbesondere über Kopf der Kolonne, ab¬ gezogen wird.
Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die L,M-Fraktιon m eine Verstarkerko¬ lonne geleitet wird, in welcher eine Abtrennung des Leichts- leders vorgenommen wird, so daß eine an Mittelsieder reichere L,M-Fraktιon erhalten wird
Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß die Verstarkerkolonne auf die Behandlungskolonne aufgesetzt, Leichtsieder über Kopf abdestilliert und die an Mittelsieder angereicherte L,M-Fraktιon über eine Seitenstromentnahme aus¬ geschleust wird.
Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß die Behandlungskolonne mit dem Sumpf einer Seitenkolonne und die Verstarkerkolonne mit dem Kopf der Seitenkolonne verbunden
Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß die Strιpp-/Verstarkerkolonne in Hohe der Emspeisestelle des L,M,H-Gemιsches mit einer im wesentlichen vertikalen Trenn¬ wand ausgestattet ist.
10. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die L,M-Fraktιon in einer weiteren Ko¬ lonne mit Verstärker- und Abtriebsteil aufgetrennt oder an Mittelsieder aufkonzentriert wird.
11. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der in der Kolonne oder Verstärkerkolonne abgezogene Leichtsieder, gegebenenfalls nach Kompression, zu¬ mindest teilweise wieder in den Sumpf der Kolonne geleitet wird.
12. Verfahren nach einem der vorhergehenden Ansprüche zur Gewin¬ nung von thermisch empfindlichen Mittelsiederprodukten.
PCT/EP1996/005772 1995-12-20 1996-12-20 Verfahren zur abtrennung von mittelsiedern aus einem gemisch aus leicht-, mittel- und hochsiedern WO1997022550A1 (de)

Priority Applications (10)

Application Number Priority Date Filing Date Title
US09/077,584 US6254735B1 (en) 1995-12-20 1996-12-20 Process for separating medium boiling substances from a mixture of low, medium and high boiling substances
AU13039/97A AU704998B2 (en) 1995-12-20 1996-12-20 Separation of middle boilers from a mixture of low, middle and high boilers
BR9612073A BR9612073A (pt) 1995-12-20 1996-12-20 Processo para separação de uma fração de baixo e médio ponto de ebulição de uma mistura homogéna compreendendo frac es de baixo médio e alto ponto de ebulicão
JP52252397A JP4376969B2 (ja) 1995-12-20 1996-12-20 低沸点物と中沸点物と高沸点物とからなる混合物からの中沸点物の分離方法
DE59609239T DE59609239D1 (de) 1995-12-20 1996-12-20 Verfahren zur abtrennung von mittelsiedern aus einem gemisch aus leicht-, mittel- und hochsiedern
CA002239791A CA2239791C (en) 1995-12-20 1996-12-20 Separation of middle boilers from a mixture of low, middle and high boilers
IL12473796A IL124737A (en) 1995-12-20 1996-12-20 Process for separating a fraction containing middle boilers from a mixture of low, middle and high boilers
EP96944615A EP0868398B1 (de) 1995-12-20 1996-12-20 Verfahren zur abtrennung von mittelsiedern aus einem gemisch aus leicht-, mittel- und hochsiedern
KR10-1998-0704679A KR100466771B1 (ko) 1995-12-20 1996-12-20 저, 중 및 고 비점 물질의 혼합물로부터 중 비점 물질의 분리 방법
NO19982849A NO322631B1 (no) 1995-12-20 1998-06-19 Fremgangsmate for separering av middels hoytkokende fraksjoner fra en blanding av lavt-, middels- og hoytkokende fraksjoner

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE19547758 1995-12-20
DE19547758.8 1995-12-20
US08/688,281 US5837107A (en) 1995-12-20 1996-07-29 Process for production of aqueous solutions of free hydroxylamine
US08/688,281 1996-07-29

Publications (1)

Publication Number Publication Date
WO1997022550A1 true WO1997022550A1 (de) 1997-06-26

Family

ID=26021480

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/EP1996/005773 WO1997022551A1 (de) 1995-12-20 1996-12-20 Verfahren zur herstellung von wässrigen lösungen von freiem hydroxylamin
PCT/EP1996/005772 WO1997022550A1 (de) 1995-12-20 1996-12-20 Verfahren zur abtrennung von mittelsiedern aus einem gemisch aus leicht-, mittel- und hochsiedern

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/EP1996/005773 WO1997022551A1 (de) 1995-12-20 1996-12-20 Verfahren zur herstellung von wässrigen lösungen von freiem hydroxylamin

Country Status (16)

Country Link
EP (2) EP0868398B1 (de)
JP (2) JP4376969B2 (de)
CN (2) CN1104376C (de)
AT (1) ATE222565T1 (de)
AU (2) AU707648B2 (de)
BR (2) BR9612073A (de)
CA (2) CA2239791C (de)
DE (2) DE59609239D1 (de)
DK (1) DK0868399T3 (de)
ES (2) ES2181933T3 (de)
HR (1) HRP960601B1 (de)
IL (2) IL124737A (de)
NO (2) NO322631B1 (de)
PT (1) PT868399E (de)
TR (2) TR199801154T2 (de)
WO (2) WO1997022551A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6153799A (en) * 1997-06-18 2000-11-28 Basf Aktiengesellschaft Method for producing highly pure aqueous hydroxylamine solutions
US6299734B1 (en) 1997-08-04 2001-10-09 Basf Aktiengesellschaft Preparation of an aqueous solution of free hydroxylamine
US7491846B2 (en) 2003-08-13 2009-02-17 Showa Denko K.K. Process for producing hydroxylamine

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5788946A (en) * 1997-07-16 1998-08-04 Ashland Inc. Purification of hydroxylamine
DE19806578A1 (de) 1998-02-17 1999-08-19 Basf Ag Verfahren zur Herstellung wäßriger, im wesentlichen metallionenfreier Hydroxylaminlösungen
US6235162B1 (en) 1998-05-28 2001-05-22 Sachem, Inc. Ultrapure hydroxylamine compound solutions and process of making same
DE19936594A1 (de) * 1999-08-04 2001-02-08 Basf Ag Verfahren zur Herstellung von hochreinen stabilisierten Hydroxylaminlösungen
DE10004818A1 (de) * 2000-02-04 2001-08-09 Basf Ag Verfahren zum Recycling hydroxylaminhaltiger Stripperlösungen
JP3503115B2 (ja) * 2000-06-27 2004-03-02 東レ・ファインケミカル株式会社 フリーヒドロキシルアミン水溶液の製造方法
DE10037774A1 (de) * 2000-08-03 2002-02-14 Bayer Ag Verfahren und Vorrichtung zur Gewinnung organischer Substanzen aus einem diese Substanzen enthaltenden Gasgemisch
DE10131787A1 (de) * 2001-07-04 2003-01-16 Basf Ag Verfahren zur Herstellung einer salzfreien, wässrigen Hydroxylaminlösung
DE10134389A1 (de) * 2001-07-04 2003-01-16 Basf Ag Verfahren zur Herstellung einer salzfreien, wässrigen Hydroxylaminlösung
DE10131788A1 (de) * 2001-07-04 2003-01-16 Basf Ag Verfahren zur Herstellung einer salzfreien, wässrigen Hydroxylaminlösung
DE10314492B4 (de) 2003-03-27 2008-10-16 Domo Caproleuna Gmbh Verfahren zur Herstellung einer wässrigen Lösung von Hydroxylamin
JP4578885B2 (ja) * 2003-08-13 2010-11-10 昭和電工株式会社 ヒドロキシルアミンの製造方法
TW200508176A (en) * 2003-08-13 2005-03-01 Showa Denko Kk Process for producing hydroxylamine
FR2860223B1 (fr) * 2003-09-26 2005-12-16 Jean Pierre Schirmann Procede de fabrication de solutions aqueuses d'hydroxylamine base
US7396519B2 (en) 2004-01-26 2008-07-08 San Fu Chemical Company, Ltd. Preparation of a high purity and high concentration hydroxylamine free base
JP2005239702A (ja) * 2004-01-28 2005-09-08 Showa Denko Kk ヒドロキシルアミンの製造方法
JP2006056742A (ja) * 2004-08-19 2006-03-02 Hosoya Fireworks Co Ltd 硝酸ヒドロキシルアミン水溶液の製造方法
JP4578988B2 (ja) * 2005-01-21 2010-11-10 昭和電工株式会社 ヒドロキシルアミンの製造方法
JP2006219343A (ja) * 2005-02-10 2006-08-24 Showa Denko Kk ヒドロキシルアミンの製造方法
JP4578999B2 (ja) * 2005-02-10 2010-11-10 昭和電工株式会社 ヒドロキシルアミンの製造方法
JP4578998B2 (ja) * 2005-02-10 2010-11-10 昭和電工株式会社 ヒドロキシルアミンの製造方法
DE102005032430A1 (de) * 2005-07-12 2007-01-25 Bayer Materialscience Ag Verfahren zur Herstellung von Toluylendiamin
US11161812B2 (en) 2016-05-26 2021-11-02 Exxonmobil Chemical Patents Inc. Production of cyclic imides suitable for oxidation catalysis
WO2017204936A1 (en) 2016-05-26 2017-11-30 Exxonmobil Chemical Patents Inc. Production of cyclic imides suitable for oxidation catalysis
US10584096B2 (en) 2016-10-18 2020-03-10 Exxonmobil Chemical Patents Inc. Cyclic imide slurry compositions
CN108946741B (zh) * 2017-05-17 2020-05-12 新特能源股份有限公司 多晶硅冷氢化工艺中的含硅高沸物的回收工艺方法及冷氢化工艺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2730561A1 (de) * 1976-07-08 1978-01-19 Uss Eng & Consult Verfahren zur abtrennung von sauren gasen und von ammoniak aus verduennten waessrigen loesungen
EP0339700A2 (de) * 1988-04-27 1989-11-02 Metallgesellschaft Ag Vorrichtung zum Desodorieren von organischen Flüssigkeiten
DE4324410C1 (de) * 1993-07-21 1994-08-04 Enviro Consult Ingenieurgesell Verfahren zum Entfernen von Ammonium aus dem Zentratwasser einer biologischen Abwasserreinigungsanlage
US5385646A (en) * 1993-09-03 1995-01-31 Farmland Industries, Inc. Method of treating chemical process effluent
US5472679A (en) * 1992-07-10 1995-12-05 Thiokol Corporation Method of making hydroxyamine and products therefrom

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS597313B2 (ja) * 1980-02-08 1984-02-17 チツソエンジニアリング株式会社 アルコ−ルの蒸溜装置
DE3302525A1 (de) * 1983-01-26 1984-07-26 Basf Ag, 6700 Ludwigshafen Destillationskolonne zur destillativen zerlegung eines aus mehreren fraktionen bestehenden zulaufproduktes
DE3528463A1 (de) * 1985-08-08 1987-02-19 Basf Ag Verfahren zur herstellung von waessrigen loesungen von freiem hydroxylamin

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2730561A1 (de) * 1976-07-08 1978-01-19 Uss Eng & Consult Verfahren zur abtrennung von sauren gasen und von ammoniak aus verduennten waessrigen loesungen
EP0339700A2 (de) * 1988-04-27 1989-11-02 Metallgesellschaft Ag Vorrichtung zum Desodorieren von organischen Flüssigkeiten
US5472679A (en) * 1992-07-10 1995-12-05 Thiokol Corporation Method of making hydroxyamine and products therefrom
DE4324410C1 (de) * 1993-07-21 1994-08-04 Enviro Consult Ingenieurgesell Verfahren zum Entfernen von Ammonium aus dem Zentratwasser einer biologischen Abwasserreinigungsanlage
US5385646A (en) * 1993-09-03 1995-01-31 Farmland Industries, Inc. Method of treating chemical process effluent

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
R. PERRY: "PERRY'S CHEMICAL ENGINEERS' HANDBOOK", 1985, MC GRAW-HILL, NEW YORK (US), XP002030269 *
W. GERHARTZ: "Ullmann's Encyclopedia of Industrial Chemistry, Band B3", 1988, VCH-VERLAG, WEINHEIM (DE), XP002030270 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6153799A (en) * 1997-06-18 2000-11-28 Basf Aktiengesellschaft Method for producing highly pure aqueous hydroxylamine solutions
US6299734B1 (en) 1997-08-04 2001-10-09 Basf Aktiengesellschaft Preparation of an aqueous solution of free hydroxylamine
US7491846B2 (en) 2003-08-13 2009-02-17 Showa Denko K.K. Process for producing hydroxylamine

Also Published As

Publication number Publication date
NO982849L (no) 1998-08-19
ES2177828T3 (es) 2002-12-16
NO319309B1 (no) 2005-07-11
CN1209108A (zh) 1999-02-24
DE59609239D1 (de) 2002-06-27
CA2239791C (en) 2006-01-31
BR9612053A (pt) 1999-02-23
NO982847D0 (no) 1998-06-19
CA2239253C (en) 2006-01-31
CN1102531C (zh) 2003-03-05
NO322631B1 (no) 2006-11-06
DK0868399T3 (da) 2002-10-07
JP2000505033A (ja) 2000-04-25
IL124737A (en) 2001-06-14
IL124739A (en) 2001-06-14
AU1303997A (en) 1997-07-14
NO982847L (no) 1998-08-17
MX9804788A (es) 1998-10-31
BR9612073A (pt) 1999-02-17
CA2239253A1 (en) 1997-06-26
EP0868399B1 (de) 2002-08-21
TR199801163T2 (xx) 1998-09-21
EP0868398B1 (de) 2002-05-22
ES2181933T3 (es) 2003-03-01
IL124739A0 (en) 1999-01-26
TR199801154T2 (xx) 1998-12-21
AU704998B2 (en) 1999-05-13
JP2000510385A (ja) 2000-08-15
HRP960601A2 (en) 1998-04-30
CN1104376C (zh) 2003-04-02
DE59609580D1 (de) 2002-09-26
PT868399E (pt) 2003-01-31
AU707648B2 (en) 1999-07-15
ATE222565T1 (de) 2002-09-15
EP0868398A1 (de) 1998-10-07
WO1997022551A1 (de) 1997-06-26
AU1304097A (en) 1997-07-14
HRP960601B1 (en) 2001-12-31
CA2239791A1 (en) 1997-06-26
CN1205677A (zh) 1999-01-20
JP4376969B2 (ja) 2009-12-02
EP0868399A1 (de) 1998-10-07
NO982849D0 (no) 1998-06-19
IL124737A0 (en) 1999-01-26

Similar Documents

Publication Publication Date Title
WO1997022550A1 (de) Verfahren zur abtrennung von mittelsiedern aus einem gemisch aus leicht-, mittel- und hochsiedern
KR100466771B1 (ko) 저, 중 및 고 비점 물질의 혼합물로부터 중 비점 물질의 분리 방법
EP0236839B1 (de) Verfahren zur Aufarbeitung wässriger Aminlösungen
WO2001034545A2 (de) Verfahren zur herstellung von ameisensäure
EP1462431B1 (de) Verfahren zur Abtrennung von 2-Butanol aus tert.-Butanol/Wasser-Gemischen
EP4288400A1 (de) Verfahren zur energieeffizienten herstellung von alkalimetallalkoholaten
EP0989952B1 (de) Verfahren zur herstellung hochreiner, wässriger hydroxylaminlösungen
DE60218851T2 (de) Verfahren zur behandlung eines phosphat, cyclohexanon, cyclohexanonoxim enthaltenden wässrigen mediums
EP3478660A1 (de) Verfahren zur aufreinigung von ethoxyquin
EP1122215B1 (de) Verfahren zum Recycling hydroxylaminhaltiger Stripperlösungen
DE102018219557A1 (de) Verfahren zur Herstellung und Reinigung von Propylenglykol
DE10312917A1 (de) Verfahren zur Ausschleusung von 2-Butanol aus tert.-Butanol/Wasser-Gemischen
DE1618249B1 (de) Verfahren zur Abtrennung bromhaltigen Cokatalysators aus rohem Phthalsäureanhydrid
EP0003570A1 (de) Verfahren zur kontinuierlichen Aufarbeitung von bei der Phosgenierung von Monoaminen anfallenden Lösungen
EP0304499B1 (de) Verfahren zur Isolierung von Trioxan aus wässrigen Trioxanlösungen durch destillative Trennung
DE704548C (de) Verfahren zum Abtrennen von Trimethylamin aus einer Mischung der drei Methylamine
DE831237C (de) Verfahren zum Trennen von AEthylalkohol von hoeheren Alkoholen
DE2261779C3 (de) Verfahren zur Herstellung von wasserfreiem Acrolein
DE1568212C (de) Verfahren zum Gewinnen von Aceto nitnl aus einem Wasser, Cyanwasserstoff, Acrylnitril, Aceton und hoher siedende Nitrile enthaltenden Gemisch
DE1618249C (de) Verfahren zur Abtrennung bromhaltigen Cokatalysators aus rohem Phthalsäureanhydrid
EP0085372A1 (de) Verfahren zur kontinuierlichen destillativen Gewinnung von Propanol
DE3151976A1 (de) "verfahren und vorrichtung zur herstellung von vinyltoluol
DE1645366B2 (de) Verfahren zur Herstellung von Paraformaldehyddispersionen und deren Verwendung zur Erzeugung von monomerem gasförmigem Formaldeyd
DEU0002542MA (de)
DE2407157A1 (de) Verfahren zu gewinnung von ameisensaeure

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 96199143.7

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CA CN IL JP KR MX NO TR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09077584

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2239791

Country of ref document: CA

Ref document number: 2239791

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: PA/A/1998/004907

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 1019980704679

Country of ref document: KR

Ref document number: 1996944615

Country of ref document: EP

Ref document number: 1998/01154

Country of ref document: TR

WWP Wipo information: published in national office

Ref document number: 1996944615

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019980704679

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1996944615

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1019980704679

Country of ref document: KR