HRP960601A2 - Process for separating medium boiling substances from a mixture of low, medium and high boiling substances - Google Patents
Process for separating medium boiling substances from a mixture of low, medium and high boiling substances Download PDFInfo
- Publication number
- HRP960601A2 HRP960601A2 HR08/688,281A HRP960601A HRP960601A2 HR P960601 A2 HRP960601 A2 HR P960601A2 HR P960601 A HRP960601 A HR P960601A HR P960601 A2 HRP960601 A2 HR P960601A2
- Authority
- HR
- Croatia
- Prior art keywords
- column
- low
- fraction
- boiling
- medium
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 47
- 238000009835 boiling Methods 0.000 title claims description 105
- 239000000203 mixture Substances 0.000 title claims description 42
- 239000000126 substance Substances 0.000 title description 22
- 238000000605 extraction Methods 0.000 claims description 21
- 238000004821 distillation Methods 0.000 claims description 20
- 230000006835 compression Effects 0.000 claims description 4
- 238000007906 compression Methods 0.000 claims description 4
- 239000012141 concentrate Substances 0.000 claims description 2
- 239000008240 homogeneous mixture Substances 0.000 claims description 2
- AVXURJPOCDRRFD-UHFFFAOYSA-N Hydroxylamine Chemical compound ON AVXURJPOCDRRFD-UHFFFAOYSA-N 0.000 abstract description 44
- 239000000243 solution Substances 0.000 abstract description 18
- 239000007864 aqueous solution Substances 0.000 abstract description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 8
- 150000003839 salts Chemical class 0.000 abstract description 6
- 238000000354 decomposition reaction Methods 0.000 abstract description 5
- 230000008646 thermal stress Effects 0.000 abstract description 2
- 238000000926 separation method Methods 0.000 description 11
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 6
- 239000011521 glass Substances 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 229910052938 sodium sulfate Inorganic materials 0.000 description 6
- 235000011152 sodium sulphate Nutrition 0.000 description 6
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 5
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 5
- 235000011130 ammonium sulphate Nutrition 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000011084 recovery Methods 0.000 description 5
- QARVLSVVCXYDNA-UHFFFAOYSA-N bromobenzene Chemical compound BrC1=CC=CC=C1 QARVLSVVCXYDNA-UHFFFAOYSA-N 0.000 description 4
- 239000012159 carrier gas Substances 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 239000007832 Na2SO4 Substances 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 238000005192 partition Methods 0.000 description 3
- 238000006116 polymerization reaction Methods 0.000 description 3
- SCYULBFZEHDVBN-UHFFFAOYSA-N 1,1-Dichloroethane Chemical compound CC(Cl)Cl SCYULBFZEHDVBN-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 241000779819 Syncarpia glomulifera Species 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 150000001299 aldehydes Chemical class 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000003245 coal Substances 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 239000001739 pinus spp. Substances 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- 239000012266 salt solution Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000001256 steam distillation Methods 0.000 description 2
- 229940036248 turpentine Drugs 0.000 description 2
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- STNJBCKSHOAVAJ-UHFFFAOYSA-N Methacrolein Chemical compound CC(=C)C=O STNJBCKSHOAVAJ-UHFFFAOYSA-N 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000010533 azeotropic distillation Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- VEFXTGTZJOWDOF-UHFFFAOYSA-N benzene;hydrate Chemical compound O.C1=CC=CC=C1 VEFXTGTZJOWDOF-UHFFFAOYSA-N 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 150000008280 chlorinated hydrocarbons Chemical class 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 210000003298 dental enamel Anatomy 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000000895 extractive distillation Methods 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000007792 gaseous phase Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- -1 low Substances 0.000 description 1
- 150000007524 organic acids Chemical group 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B21/00—Nitrogen; Compounds thereof
- C01B21/082—Compounds containing nitrogen and non-metals and optionally metals
- C01B21/14—Hydroxylamine; Salts thereof
- C01B21/1409—Preparation
- C01B21/1445—Preparation of hydoxylamine from its salts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D3/00—Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
- B01D3/14—Fractional distillation or use of a fractionation or rectification column
- B01D3/143—Fractional distillation or use of a fractionation or rectification column by two or more of a fractionation, separation or rectification step
- B01D3/146—Multiple effect distillation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D3/00—Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
- B01D3/34—Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping with one or more auxiliary substances
- B01D3/38—Steam distillation
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B21/00—Nitrogen; Compounds thereof
- C01B21/082—Compounds containing nitrogen and non-metals and optionally metals
- C01B21/14—Hydroxylamine; Salts thereof
- C01B21/1463—Concentration
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B21/00—Nitrogen; Compounds thereof
- C01B21/082—Compounds containing nitrogen and non-metals and optionally metals
- C01B21/14—Hydroxylamine; Salts thereof
- C01B21/1472—Separation
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
- Compounds Of Unknown Constitution (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Seasonings (AREA)
- Gas Separation By Absorption (AREA)
- Disintegrating Or Milling (AREA)
- Extraction Or Liquid Replacement (AREA)
Abstract
Description
Predloženi izum odnosi se na postupak odvajanja frakcije srednjeg vrelišta iz mješavine frakcija niskog, srednjeg i visokog vrelišta, koju se rastavlja na frakciju koja sadrži nisko i srednje vrelišta i frakciju koja sadrži nisko i visoko vrelište. The proposed invention relates to the process of separating the medium boiling point fraction from a mixture of low, medium and high boiling point fractions, which is separated into a fraction containing low and medium boiling points and a fraction containing low and high boiling points.
Problem, koji se često susreće u kemijskoj industriji, je odvajanje srednjih vrelišta u čisti oblik ili samo s tragovima niskog vrelišta iz tekuće mješavine, koja sadrži više tekućih tvari, i koja se sastoji od frakcija niskog (L), srednjeg (M) i visokog vrelišta (H). A problem, which is often encountered in the chemical industry, is the separation of intermediate boiling points in pure form or with only traces of low boiling points from a liquid mixture, which contains more liquid substances, and which consists of fractions of low (L), medium (M) and high boiling point (H).
Da se to izvrši mogu- se primijeniti poznate metode destilacije, na primjer one koje su opisane u Ullmannovoj Enciklopediji industrijske kemije, vol. B3, str. 4-46 et seq. Opće obilježje poznatih metoda destilacije je da se visoka vrelišta izvlače pri dnu u čistom obliku, ili eventualno sa zaostalim tragovima srednjeg vrelišta, a da se komponenta srednjeg vrelišta odvaja pri vrhu kolone pri temperaturama određenim uglavnom koncentracijom komponente visokog vrelišta i njenog vrelišta. Nadalje, s poznatim metodama ne može se zajedno odvojiti mješavinu niskog i srednjeg vrelišta, jer se istovremeno odvaja mješavina niskog i visokog vrelišta koja je bez srednjeg vrelišta. Međutim, to je poželjno u mnogim slučajevima, posebno ako su niska i visoka vrelišta predviđena za kasniju zajedničku upotrebu (prodaja, ponovno dobivanje, uklanjanje). To do this, known distillation methods can be applied, for example those described in Ullmann's Encyclopedia of Industrial Chemistry, vol. B3, p. 4-46 et seq. A general feature of known distillation methods is that high boiling points are extracted at the bottom in pure form, or possibly with residual traces of the medium boiling point, and that the medium boiling point component is separated at the top of the column at temperatures determined mainly by the concentration of the high boiling point component and its boiling point. Furthermore, with known methods, it is not possible to separate a mixture of low and medium boiling point together, because a mixture of low and high boiling point, which is without a medium boiling point, is simultaneously separated. However, this is desirable in many cases, especially if the low and high boiling points are intended for later joint use (sale, recovery, disposal).
Na stranama 4-48 gore spomenute publikacije opisuje se upotreba bočnih kolona za odvajanje srednjih vrelišta iz mješavine niskog, srednjeg i visokog vrelišta (L, M, H mješavine). U tom slučaju uvijek se odvajaju također i niska i srednja vrelišta. Isto se odnosi na izravno ili posredno povezane kolone opisane na stranama 4-62 i 4-63 u gore navedenoj publikaciji. U svim tim slučajevima bezuvjetlo je potrebno destilacijom odvojiti komponentu srednjeg vrelišta od komponente visokog vrelišta, što u svakom slučaju zahtjeva vrelišta koja su barem jednaka onom od komponente srednjeg vrelišta i, u ekstremnim slučajevima, blizu vrelišta komponente visokog vrelišta, i stoga su vrlo visoka. To je posebno slučaj ako se komponenta srednjeg vrelišta mora potpuno odvojiti od komponente visokog vrelišta. Tako visoke temperature, čak u slučaju toplinski relativno postojanih tvari, mogu narasti tiloko da dođe do razgradnje ili kemijske pretvorbe (polimerizacije itd.) uključene tvari. Zbog toga za potrebe odvajanja te vrste često nužni složeni postupci destilacije, na primjer blage destilacije koje se provode pod uvjetima smanjenog tlaka (tankoslojni isparivači, molekulska mlazna destilacija, itd.). Nedostatak takovih postupaka destilacije je njihov ekstremno nizak učin. To dovodi do visokih kapitalnih ulaganja i proizvodnih troškova, koji tada znače, da odvajanje destilacijom, koje je samo po sebi korisno, može biti neekonomično za provedbu. Pages 4-48 of the aforementioned publication describe the use of side columns to separate medium boiling point mixtures from low, medium and high boiling point mixtures (L, M, H mixtures). In this case, low and medium boiling points are always separated as well. The same applies to the directly or indirectly related columns described on pages 4-62 and 4-63 of the above publication. In all these cases, it is absolutely necessary to separate the medium-boiling component from the high-boiling component by distillation, which in any case requires boiling points that are at least equal to that of the medium-boiling component and, in extreme cases, close to the boiling point of the high-boiling component, and therefore very high. This is especially the case if the medium-boiling component must be completely separated from the high-boiling component. Such high temperatures, even in the case of thermally relatively stable substances, can rise enough to cause decomposition or chemical conversion (polymerization, etc.) of the substance involved. For this reason, complex distillation procedures are often necessary for the separation of this type, for example mild distillations carried out under conditions of reduced pressure (thin-layer evaporators, molecular jet distillation, etc.). The disadvantage of such distillation processes is their extremely low efficiency. This leads to high capital investment and production costs, which then mean that separation by distillation, which is beneficial in itself, can be uneconomical to implement.
Također su poznati posebni postupci za odvajanje teško rastavljivih tekućih mješavina. Posebni postupci dolaze u obzir samo ako su troškovno učinkovitiji ili kad drugi, opći postupci, ne zadovoljavaju. Oni se često koriste kod tvari ograničenih svojstava izdržljivosti toplinskih naprezanja, tj. ako je njihovo vrelište iznad ili blizu temperature razgradnje. Poznata metoda razdvajanja komponenata niske hlapljivosti iz mješavine koja sadrži nemješljive komponente je destilacija pomoću nosećeg plina. Metoda se temelji na tome, da se u mješavini nemješljivih tvari svaka tvar ponaša kao da druge tamo nema; drugim riječima, pri datoj temperaturi svaka tvar ima parcijalni tlak koji je-neovisno o sastavu mješavine - jedan k tlaku para dotične tvari r Posljedica toga je, da je tlak takove mješavine jednak zbroju tlakova para pojedinačnih komponenata. Poznat primjer takovog sistema je sistem voda/brombenzen. Vrelište mješavine je pri 95°C, pri čemu čiste tvari imaju vrelište pri 100°C (voda) i 156°C (brombenzen). Noseći plin za destilaciju posebno je prikladan za rastavljanje nemješljvih komponenata relativno visokog vrelišta (npr. glicerol), za razdvajanje tvari koje polimeriziraju ili se razgrađuju čak prije dosizanja vrelišta (masne kiseline), i za razdvajanje tvari s kojima se vrlo teško rukuje, te za tvari čije izravno grijanje do vrelišta može biti opasno (npr. terpentin). Special procedures for separating difficult-to-dissolve liquid mixtures are also known. Special procedures come into consideration only if they are more cost-effective or when other, general procedures are not satisfactory. They are often used for substances with limited thermal stress endurance properties, i.e. if their boiling point is above or close to the decomposition temperature. A well-known method of separating low-volatility components from a mixture containing immiscible components is distillation using a carrier gas. The method is based on the fact that in a mixture of immiscible substances, each substance behaves as if the other is not there; in other words, at a given temperature, each substance has a partial pressure that is - regardless of the composition of the mixture - one to the vapor pressure of the respective substance r. The result is that the pressure of such a mixture is equal to the sum of the vapor pressures of the individual components. A well-known example of such a system is the water/bromobenzene system. The boiling point of the mixture is at 95°C, while the pure substances have a boiling point at 100°C (water) and 156°C (bromobenzene). The carrier gas for distillation is particularly suitable for the separation of immiscible components with a relatively high boiling point (e.g. glycerol), for the separation of substances that polymerize or decompose even before reaching the boiling point (fatty acids), and for the separation of substances that are very difficult to handle, and for substances whose direct heating to boiling point can be dangerous (eg turpentine).
Najpoznatiji primjer destilacije s nosećim plinom, je destilacija s parom, tj. gdje je para noseći plin. To se naširoko koristi, na primjer, u industriji prerade nafte, za odstranjivanje lakih ugljikovodika iz apsorcijskih ulja; u industriji ugljena, za parnu destilaciju ugljikovodičnih frakcija pri destilaciji ugljena; za odvajanje terpentina iz smole u gumarskoj industriji; i u preparativnoj kemijskoj industriji. Parna destilacija je naročit oblik azeotropne ili ekstrakcijske destilacije, kako je opisana u gore navedenoj publikaciji na stranama 4-50 do 4-52. Tehnički učinak tog postupka temelji se na saznanju da se dodatkom zamjenske tvari (sredstvo za izvlačenje), nadilazi azeotropnu točku i, zato se željena koncentracija postiže iznad azeotropne točke. The best-known example of distillation with a carrier gas is distillation with steam, i.e. where steam is the carrier gas. This is widely used, for example, in the oil refining industry, to remove light hydrocarbons from absorption oils; in the coal industry, for steam distillation of hydrocarbon fractions during coal distillation; for separating turpentine from resin in the rubber industry; and in the preparative chemical industry. Steam distillation is a special form of azeotropic or extractive distillation, as described in the above publication on pages 4-50 to 4-52. The technical effect of this procedure is based on the knowledge that with the addition of a substitute substance (extracting agent), the azeotropic point is exceeded and, therefore, the desired concentration is achieved above the azeotropic point.
Nedostatak svih tih postupaka je da se dodatak (sredstvo za izvlačenje) uvodi u sistem koji se želi destilirati, i to sredstvo za izvlačenje se mora ponovno odvojiti iz sistema dodatnim postupkom. The disadvantage of all these processes is that an additive (extracting agent) is introduced into the system that is to be distilled, and this extracting agent must be separated from the system again by an additional process.
Daljnja poznata metoda odstranjivanja tvari relativno visokog vrelišta iz mješavine tvari je izvlačenje. Nedostatak izvlačnje je da ono u mediju za izvlačenje uvijek daje samo visoko razrijeđene otopine komponente visokog vrelišta ili komponente srednjeg vrelišta. Općenito, postupak je ekonomičan samo ako se proizvod može odvojiti faznim odvajanjem, tj. ako mješavina tvari pokazuje nedostatak smješijivosti. Cilj predloženog izuma je stoga osigurati jednostavan i blagi postupak za odvajanje komponente srednjeg vrelišta ili frakcije koja sadrži nisko i srednje vrelište od mješavine koja uključuje nisko, srednje i visoko vrelište. Another known method of removing relatively high-boiling substances from a mixture of substances is extraction. The disadvantage of extraction is that it always yields only highly dilute solutions of the high-boiling component or the medium-boiling component in the extraction medium. In general, the process is only economical if the product can be separated by phase separation, i.e. if the mixture of substances shows a lack of miscibility. The object of the proposed invention is therefore to provide a simple and mild process for separating the medium boiling point component or fraction containing low and medium boiling points from a mixture including low, medium and high boiling points.
Mi smo pronašli da se taj cilj može postići, iznenađujuće, ako se gore spomenutu mješavinu u koloni obradi pri dnu s parom niskog vrelišta. We have found that this goal can be achieved, surprisingly, by treating the above-mentioned mixture in a column at the bottom with low-boiling steam.
Predloženi izum osigurava, prema tome, postupak za odvajanje frakcije koja sadrži nisko i srednje vrelište (L, M frakciju) i frakcije koja sadrži nisko i visoko vrelište (L, H frakcija) iz homogene smjese koja sadrži nisko, srednje i visoko vrelište (L, M, H smjesa), koji postupak uključuje obradu L, M, H smjese u koloni s parom niskog vrelišta i rastavljanje na L, M frakciju i L, H frakciju. Komponenta srednjeg vrelišta skuplja se u pari niskog vrelišta, tako da se L, M frakcija može ponovno dobiti iznad strane dovoda mješavine, a L,H frakcija se dobije u tekućoj fazi. The proposed invention therefore provides a process for separating a fraction containing low and medium boiling points (L, M fraction) and a fraction containing low and high boiling points (L, H fraction) from a homogeneous mixture containing low, medium and high boiling points (L , M, H mixture), which process involves treating the L, M, H mixture in a low-boiling steam column and separating it into the L, M fraction and the L, H fraction. The medium-boiling component is collected in the low-boiling vapor, so that the L, M fraction can be recovered above the feed side of the mixture, and the L, H fraction is recovered in the liquid phase.
Mješavina koju se želi rastaviti općenito ide izravno na vrh kolone. Obrada mješavine s parom niskog vrelišta provodi se ponajprije u protustruji, a naročito prolaskom pare niskog vrelišta u dno kolone ili dovodm tekuće komponente niskog vrelišta i njenim iskuhavanjem pri dnu. Komponneta niskog vrelišta, dovedena u kolonu, obično je ona ista koja je prisutna u mješavini. The mixture to be separated generally goes directly to the top of the column. Processing of the mixture with low-boiling steam is primarily carried out in a countercurrent, and especially by passing the low-boiling steam into the bottom of the column or introducing the low-boiling liquid component and boiling it at the bottom. The low-boiling component fed to the column is usually the same one present in the mixture.
Pronađeno je posebno korisnim provesti obradu s parom niskog vrelišta u koloni za izvlačenje. To može biti uobičajena tanjurasta kolona, na primjer frakcijska tanjurasta ili sitasta tanjurasta kolona, ili kolona opremljena s uobičajenim pakiranjem, na primjer Raschigovim prstenovima, Pallovim prstenovima, savinutim osnovicama, itd., a ponajprije ima teorijski broj tanjura u rasponu od 5 do 100. Ovisno o zadatku odvajanja, broj tanjura može biti čak veći od 100. It has been found particularly useful to carry out the treatment with low-boiling steam in the extraction column. It may be a conventional plate column, for example a fractional plate or mesh plate column, or a column equipped with conventional packing, for example Raschig rings, Pall rings, bent bases, etc., preferably having a theoretical number of plates in the range of 5 to 100. Depending on the separation task, the number of plates can be even higher than 100.
Kao rezultat prolaska pare niskog vrelišta u dno kolone, komponenta srednjeg vrelišta skuplja se pari niskog vrelišta. L,M frakcija dobije se korisno na visini dovodnog tanjura ili iznad njega. Ponajprije, L,M frakcija se izvlači s vrha kolone. As a result of the low-boiling vapor passing to the bottom of the column, the medium-boiling component collects the low-boiling vapor. The L,M fraction is usefully obtained at the height of the feed plate or above it. First, the L,M fraction is extracted from the top of the column.
L, M frakcija općenito uključuje komponentu niskog vrelišta, velikim do vrlo velikog suviška. Zbog toga je posebno korisno koncentrirati L,M frakciju da se obogati s komponentom srednjeg vrelišta. To se može učiniti, na primjer, prolaskom L, M frakcije u odvojenu, višefaznu kolonu, koja služi za rektifikaciju, u kojoj se odvaja komponenta niskog vrelišta i dobije se L, M frakcija obogaćena s komponentom srednjeg vrelišta, ili čak čista komponenta srednjeg vrelišta. The L, M fraction generally includes a low-boiling component, with large to very large excess. This is why it is particularly useful to concentrate the L,M fraction to enrich it with the medium boiling point component. This can be done, for example, by passing the L, M fraction through a separate, multiphase rectification column, in which the low-boiling component is separated and the L, M fraction is enriched with the intermediate-boiling component, or even the pure intermediate-boiling component is obtained. .
Posebno je korisno staviti kolonu za rektifikaciju kao odvojenu destilacijsku kolonu ili montirati ju izravno na kolonu u kojoj se odvija obrada s parom niskog vrelišta i izdestilirati komponentu niskog vrelišta pri vrhu. Obogaćena L, M frakcija, ili komponenta srednjeg vrelišta, može se ukloniti odvođenjem s bočnom strujom iz povratne struje kolone. U tom konekstu posebno je korisno primijeniti uglavnom okomiti razdjelni zid. U tom slučaju, mješavina, koju se želi rastaviti, dovodi se otprilike u središte kolone za izvlačenje/rektifikaciju. Na visini te točke dovoda, razdjelni zid instaliran je u koloni tako da je se proteže visinom općnito od 1 do 10, ponajprije od 1 do 5 teorijskih tanjura, tako da kolonu dijeli za dva okomita odvojena prostora, pri čemu se dobava vrši otprilike u središtu razdjelnog zida. Na taj način, frakcija obogaćena s komponentom srednjeg vrelišta može se oduzeti na strani nasuprot strani dovoda, u području razdjelnog zida. Razdjelni zid odvaja stranu odvoda od strane dovoda. Jednake koncentracije komponente srednjeg vreliSta prisutne su na obje strane razdjelnog zida, ali su visoka vrelišta prisutna u mješavini samo na strani dovoda. Frakcija obogaćena s komponentom srednjeg vrelišta odvodi se ponajprije na visini dovoda ili, ako je prikladno, malo ispod te točke. It is particularly useful to place the rectification column as a separate distillation column or to mount it directly on a low-boiling steam treatment column and distill off the low-boiling component near the top. The enriched L, M fraction, or mid-boiling component, can be removed by stripping with a side stream from the column return stream. In this context, it is particularly useful to use a mostly vertical dividing wall. In this case, the mixture to be separated is fed approximately to the center of the extraction/rectification column. At the height of that supply point, a partition wall is installed in the column so that it extends in height generally from 1 to 10, preferably from 1 to 5 theoretical plates, so that it divides the column into two vertical separate spaces, whereby the supply is made approximately in the center dividing wall. In this way, the fraction enriched with the intermediate boiling point component can be subtracted on the side opposite the feed side, in the region of the dividing wall. A dividing wall separates the drain side from the supply side. Equal concentrations of the medium-boiling component are present on both sides of the partition wall, but the high-boiling components are present in the mixture only on the inlet side. The fraction enriched with the medium-boiling component is preferably drained at the feed level or, if appropriate, slightly below that point.
U alternativnoj izvedbi, koja uključuje razdjelni zid, također se može montirati bočnu kolonu nasuprot koloni za izvlačenje/rektifikaciju, na takav način da je bočna kolona u dodiru s plinovitom i tekućom fazom kolone za izvlačenje/rektifikaciju, u svakom slučaju za jedan ili više stupnjeva odvajanja iznad ili ispod strane dovoda, i frakcija bogatija komponentom srednjeg vrelišta odvodi se preko bočne kolone. Bočna kolona raspoređena je tako da komponenta visokog vrelišta ne može prijeći preko strane odvoda bočne kolone. Mjere prikladne za tu svrhu poznate su stručnjacima. In an alternative embodiment, which includes a partition wall, a side column can also be mounted opposite the extraction/rectification column, in such a way that the side column is in contact with the gaseous and liquid phases of the extraction/rectification column, in each case by one or more degrees separations above or below the feed side, and the fraction richer in the medium-boiling component is removed via the side column. The side column is arranged so that the high-boiling component cannot pass over the drain side of the side column. Measures suitable for this purpose are known to those skilled in the art.
Po želji, separator kapljica (odvlaživač ili drugi uobičajen uređaj) može se instalirati iznad dovodnog tanjura, ili u odvod pare, na takav način da se spriječi ponovni ulazak komponente visokog vrelišta s kapljicama. Optionally, a droplet separator (dehumidifier or other conventional device) can be installed above the feed plate, or in the steam drain, in such a way as to prevent re-entry of the high-boiling component with droplets.
L, M frakcija obogaćena s komponentom srednjeg vrelišta, pomoću gore spomenute rektifikacijske kolone, po želji, odvaja se, ili se koncentrira u slijedećoj koloni s rektifikacijskim odsječkom i odsječkom za izvlačenje. The L, M fraction enriched with the medium-boiling component, by means of the above-mentioned rectification column, is optionally separated, or concentrated in the following column with a rectification section and an extraction section.
Daljnja korisna izvedba novog postupka uključuje prolazak para iz kolone za izvlačenje, ili kolone za izvlačenje/destilaciju, po mogućnosti nakon uobičajene kompresije, kao komponente niskog vrelišta, ili pare niskog vrelišta, natrag u dno kolone za obradu. A further useful embodiment of the novel process involves passing vapor from the stripper, or stripper/distillation column, preferably after conventional compression, as a low-boiling component, or low-boiling vapor, back to the bottom of the processing column.
Budući da se po novom postupku grije izravno s komponentom niskog vrelišta, ili s parom niskog vrelišta, a kompresija pare treba samo prevladati diferencijalni pritisak preko kolone, moguće je značajno smanjenje utroška energije, i, istovremeno, utroška potrebnog za hlađenje. Since the new process heats directly with a low-boiling component, or with low-boiling steam, and steam compression only needs to overcome the differential pressure across the column, a significant reduction in energy consumption is possible, and, at the same time, the consumption required for cooling.
Kolona za obradu i/ili kolona za rektifikaciju ili kolona za destilaciju može raditi pod atmosferskim, podatmosferkim ili nadatmosferskim pritiskom i kontinuirano ili šaržno. Nasuprot toj osnovnoj činjenici, uvjeti ovise naravno o mješavini koju se želi rastaviti, i stručnjak ih može odrediti na uobičajen način. Kritični faktor je temperatura pare niskog vrelišta, koja mora biti dovoljno visoka da se izdestilira L,M frakcija i da se L, H frakcija dobije na dnu kolone. The processing column and/or the rectification column or the distillation column can operate under atmospheric, sub-atmospheric or supra-atmospheric pressure and continuously or batchwise. Against this basic fact, the conditions depend of course on the mixture to be separated, and can be determined by the expert in the usual way. The critical factor is the temperature of the low-boiling steam, which must be high enough to distil the L,M fraction and to obtain the L,H fraction at the bottom of the column.
Prednost novog postupka je to da se može lako provesti i da se provodi bez dodatka ikakve druge tvari. Koncentracija komponente srednjeg vrelišta je niska u ulaznom područja procesa. Vrijeme zadržavanja u procesu, tj. u koloni, je relativno kratko. Zbog jednostavnosti procesa, potrebno kapitalno ulaganje je nisko. Čak štoviše, postupak je gotovo beskrajan u svojim mogućnostima dogradnje. The advantage of the new procedure is that it can be easily carried out and that it is carried out without the addition of any other substance. The concentration of the intermediate boiling point component is low in the inlet region of the process. The retention time in the process, i.e. in the column, is relatively short. Due to the simplicity of the process, the required capital investment is low. Even more, the procedure is almost endless in its possibilities of extension.
Novi postupak omogućuje provedbu ekstremno blagog odvajanja L,M frakcije ili komponente srednjeg vrelišta iz mješavine koja sadrži nisko, srednje i visoko vrelište, pri razini temperature vrelišta komponente niskog vrelišta. Postupak je stoga posebno koristan ako je potrebno, pod što je moguće blažim uvjetima, iz L,M, H mješavine odvojiti toplinski osjetljivu komponentu srednjeg vrelišta, koja je sklona, na primjer, razgradnji ili polimerizaciji. Postupak je posebno koristan ako je komponenta visokog vrelišta prisutna u sirovoj mješavini, u svoin čistom ili visoko obogaćenom obliku, ili ako je inače visoke viskoznosti, kao talog ili kao čvrsta tvar, ili ako je pri relativno visokoj koncentraciji sklona kemijskoj reakciji, na primjer polimerizaciji. Novi postupak u stvari osigurava mogućnost izvlačenja komponente visokog vrelišta otopljena u komponenti niskog vrelišta. Kao rezultat, potrebno je samo upravljati otopine; drugim riječima, izbjegnuti su problemi s viskoznošću, čvrstim tvarima, itd. The new process enables the implementation of an extremely mild separation of the L,M fraction or the medium-boiling component from a mixture containing low, medium and high boiling points, at the level of the boiling temperature of the low-boiling component. The process is therefore particularly useful if it is necessary, under as mild conditions as possible, to separate the heat-sensitive component of the medium boiling point, which is prone, for example, to decomposition or polymerization, from the L, M, H mixture. The process is particularly useful if the high-boiling component is present in the raw mixture, in pure or highly enriched form, or if it is otherwise of high viscosity, as a precipitate or as a solid, or if at a relatively high concentration it is prone to chemical reaction, for example polymerization . The new process actually ensures the possibility of extracting the high-boiling component dissolved in the low-boiling component. As a result, it is only necessary to manage the solution; in other words, problems with viscosity, solids, etc. are avoided.
Novi postupak posebno je prikladan za dobivanje toplinski osjetljivih proizvoda. Primjeri te primjene jesu: The new procedure is particularly suitable for obtaining heat-sensitive products. Examples of this application are:
- dobivanje vodene otopine hidroksilaraina iz vodene otopine soli hidroksilamina, - obtaining an aqueous solution of hydroxylamine from an aqueous solution of a salt of hydroxylamine,
- dobivanje spojeva koji mogu polimerizirati, na primjer ponovno dobivanje polistirena iz mješavine dobivene u proizvodnji stirena, - obtaining compounds that can polymerize, for example recovering polystyrene from the mixture obtained in the production of styrene,
- dobivanje kloriranih ugljikovodika, na primjer, ponovno dobivanje dikloretana iz mješavine dobivene u proizvodnji dikloretana, - recovery of chlorinated hydrocarbons, for example, recovery of dichloroethane from the mixture obtained in the production of dichloroethane,
- ponovno dobivanje karboksilnih kiselina i aldehida iz kiselina za izvlačenje oksidacije cikloheksana sa zrakom ili iz proizvodnje adipinske kiseline, - recovery of carboxylic acids and aldehydes from acids for the extraction of cyclohexane oxidation with air or from the production of adipic acid,
- rastavljanje organskih kiselina i aldehida, kao octene kiseline, akrilne kiseline, metakroleina ili metakrilne kiseline, koje zbog proizvodnih utjecaja još uvijek mogu sadržavati visoka vrelišta, organske spojeve, soli (katalizatore), itd., i - decomposition of organic acids and aldehydes, such as acetic acid, acrylic acid, methacrolein or methacrylic acid, which due to production influences may still contain high boiling points, organic compounds, salts (catalysts), etc., and
- odvajanje amina iz mješavine koja sadrži amonijak i visoka vrelišta. - separation of amines from mixtures containing ammonia and high boiling points.
Novi postupak objašnjen je s više pojedinosti rasporeda prikazanog na slici 1. The new procedure is explained in more detail by the layout shown in Figure 1.
Slika 1 prikazuje kolonu za rastavljanje L, M, H mješavine, koja se sastoji od kolone za izvlačenje 1, na koju je montirana kolona za rektifikaciju. Mješavina, koju se razdvaja, dovodi se izravno na vrh kolone za izvlačenje 1. Para niskog vrelišta L ide u dno kolone za izvlačenje l u protustruji prema toj mješavini. Pri dnu kolone odvodi se L,H frakcija, dok se pri vrhu kolone dobiva L,M frakciju, koja je uglavnom bez komponenata visokog vrelišta. Tu frakciju se koncentrira, tj. obogaćuje s komponentom srednjeg vrelišta, u koloni za rektifikaciju. Obogaćena L,M frakcija odvodi se otprilike iznad mjesta dovoda mješavine koju se rastavlja. Komponenta niskog vrelišta dobije se pri vrhu kolone za rektifikaciju, i, po želji, može se kondenzirati, ili ide na daljnju upotrebu. Alternativno, komponenta niskog vrelišta može se vratiti, izravno ili nakon stlačivanja, u dno kolone za izvlačenje 1. Figure 1 shows a column for separating the L, M, H mixture, which consists of an extraction column 1, on which a rectification column is mounted. The mixture, which is separated, is fed directly to the top of the extraction column 1. The low-boiling steam L goes to the bottom of the extraction column l in countercurrent to the mixture. At the bottom of the column, the L,H fraction is removed, while at the top of the column, the L,M fraction is obtained, which is mostly free of high-boiling components. This fraction is concentrated, i.e. enriched with the medium boiling point component, in a rectification column. The enriched L,M fraction is discharged approximately above the feed point of the mixture to be separated. The low-boiling component is obtained at the top of the rectification column, and, if desired, can be condensed, or it can be used further. Alternatively, the low-boiling component can be returned, directly or after compression, to the bottom of the recovery column 1.
Primjeri koji slijede ilustriraju izum ali ga ne ograničavaju. The following examples illustrate the invention but do not limit it.
Primjer 1 Example 1
Dobivanje vodene otopine hidroksilarnina (HA) iz otopine hidroksilamina (HA)/amonijevog sulfata (AS) pomoću kolone za izvlačenje. Obtaining an aqueous solution of hydroxylamine (HA) from a solution of hydroxylamine (HA)/ammonium sulfate (AS) using an extraction column.
Vodena otopina koja sadrži 218 g HA/l i 680 g AS/l dovodi se brzinom od 300 ml/h u najviši dio kolone za izvlačenje. Kolona za izvlačenje bila je izrađena od stakla, imala je visinu 2 m i promjer 35 mm i bila je pakirana do visine od 1,8 m sa staklenim Raschigovim prstenovima od 3 mm. Na dno kolone dovedeno je 1000 ml/h destilirane vode. Kolona je bila pod pritiskom od 40 kPa. An aqueous solution containing 218 g HA/l and 680 g AS/l is fed at a rate of 300 ml/h into the highest part of the extraction column. The extraction column was made of glass, had a height of 2 m and a diameter of 35 mm and was packed to a height of 1.8 m with 3 mm glass Raschig rings. 1000 ml/h of distilled water was brought to the bottom of the column. The column was under a pressure of 40 kPa.
Temperatura pri dnu bila. je 84°C. 1000 ml /h vodene otopine HA bez soli izdestiliralo je brzinom od 39,0 g HA/h s vrha kolone, što je odgovaralo 59,6% ulaznog HA na dovodu. 300 ml/h otopine amonijevog sulfata, sa sadržajem HA od 86% HA/l, odvedeno je s dna kolone. To odgovara 39,4% od ukupnog HA na dovodu. The temperature at the bottom was is 84°C. 1000 ml/h of salt-free HA aqueous solution distilled at a rate of 39.0 g HA/h from the top of the column, which corresponded to 59.6% of the input HA at the feed. 300 ml/h of ammonium sulfate solution, with an HA content of 86% HA/l, was taken from the bottom of the column. This corresponds to 39.4% of the total HA at the inlet.
Maksimalna koncentracija HA u koloni bila je 100 g/l. Količina tekućine u koloni, koja ovisi o pojedinačnom punjenju, bila je 20-225 ml. Vrijeme zadržavanja u koloni bilo je stoga samo 1,5-10 minuta. Pri tako niskoj koncentraciji i za tako kratko vrijeme, brzina razgradnje je niska. The maximum concentration of HA in the column was 100 g/l. The amount of liquid in the column, which depends on the individual filling, was 20-225 ml. The retention time in the column was therefore only 1.5-10 minutes. At such a low concentration and for such a short time, the rate of degradation is low.
Daljnji pokusi prikazani su u dolnjoj tablici. Further experiments are shown in the table below.
[image] [image]
Primjer 2 Example 2
Odvajanje vodene otopine HA iz vodene otopine HA/Na2SO4 upotrebom kolone za izvlačenje Separation of aqueous HA solution from aqueous HA/Na2SO4 solution using an extraction column
Vodena otopina iz primjera 3, koja je sadržavala 11 mas. % HA i 23,6 mas. % Na2SO4, dovođena je brzinom od 978 g/l na najviši stupanj kolone za izvlačenje. Kolona za izvlačenje bila je izrađena od emajla, imala je visinu 2 m i promjer 50 mm, a bila je pakirana s Raschigovim staklenim prstenovima od 5 mm. Kolona je bila pod atmosferskim tlakom. Para pod 2,5 bara, apsolutno, ulazila je a dno kolone. Omjer para/dobava bio je 2,9:1. S dna kolone odvedeno je 985 g/h otopine natrijevog sulfata sa sadržajem HA od 1,7 g HA/l. To odgovara 1% na ulazu HA u dovodu. 3 vrha kolone izdestiliralo je 3593 g/h vodene otopine HA bez soli, koja je sadržavala 36, 8 g HA/l, što je odgovaralo 99,2% ulaznog HA na dovodu. The aqueous solution from example 3, which contained 11 wt. % HA and 23.6 wt. % Na2SO4, was fed at a rate of 978 g/l to the highest stage of the extraction column. The extraction column was made of enamel, had a height of 2 m and a diameter of 50 mm, and was packed with 5 mm Raschig glass rings. The column was under atmospheric pressure. Steam under 2.5 bar absolutely entered the bottom of the column. The steam/supply ratio was 2.9:1. 985 g/h of sodium sulfate solution with an HA content of 1.7 g HA/l was removed from the bottom of the column. This corresponds to 1% at the inlet HA in the feed. 3 tops of the column distilled 3593 g/h of salt-free HA aqueous solution, which contained 36.8 g HA/l, which corresponded to 99.2% of the input HA at the feed.
Daljnji primjeri izloženi su dolje u tablici. Further examples are set out in the table below.
[image] [image]
Primjer 3 Example 3
Dobivanje vodene otopine HA iz vodene otopine HA/natrijevog sulfata pomoću kolone za izvlačenje-destilaciju Obtaining an aqueous HA solution from an aqueous HA/sodium sulfate solution using an extraction-distillation column
Vodena otopina koja je sadržavala 221 g HA/l i 540 g AS/l dovođena je brzinom od 202 ml/h na jedanaesti tanjur staklene frakcijske tanjuraste kolone promjera 35 mm, ukupne visine 1,6 m i sa 21 tanjurom (najniži tanjur = tanjur 1). 1300 ml/h pare (pri temperaturi od pribl. 125°C) dovođeno je na dno kolone. Pritisak u koloni bio je 99 kPa. Pri vrhu kolone odvedeno je 180 ml/h vode uglavnom bez HA (0,6 g HA/l) pri temperaturi glave kolone od 99, 8°C i s omjerom refluksa od 1:3 (povratna struja: ponovni dovod). Vodena otopina HA (otopina proizvoda), koncentracije 44 g/l, odvođena je brzinom od 1180 ml/h s bočnom strujom s tanjura 12. S dna kolone odvedeno je 400 ml/h otopine soli. An aqueous solution containing 221 g HA/l and 540 g AS/l was fed at a rate of 202 ml/h to the eleventh plate of a glass fractional plate column with a diameter of 35 mm, a total height of 1.6 m and with 21 plates (lowest plate = plate 1) . 1300 ml/h of steam (at a temperature of approx. 125°C) was fed to the bottom of the column. The pressure in the column was 99 kPa. At the top of the column, 180 ml/h of mostly HA-free water (0.6 g HA/l) was taken at a column head temperature of 99.8°C and a reflux ratio of 1:3 (return stream: re-feed). Aqueous solution of HA (product solution), concentration 44 g/l, was removed at a speed of 1180 ml/h with a side flow from plate 12. 400 ml/h of salt solution was removed from the bottom of the column.
Primjer 4 Example 4
Dobivanje vodene otopine HA iz vodene otopine HA/natrijevog sulfata pomoću kolone za izvlačenje-destilaciju s koncentriranjem preko bočnog odvoda Obtaining an aqueous HA solution from an aqueous HA/sodium sulfate solution using a strip-distillation column with side-drain concentration
Vodena otopina kao u primjeru 3, koja je sadržavala 11 mas. % HA i 23,6 mas. % Na2SO4, dovođena je na jedanaesti teorijski tanjur staklene kolone s frakcijskim tanjurima, pri čemu je promjer kolone bio 50 mm (broj tanjura odgovara 30 teorijskih tanjura). Para pod pritiskom od 2,5 bara i pri pribl. 125°C dovođena je na dno kolone. Pritisak u koloni bio je 101 kPa. S vrha kolone odvođena je voda uglavnom bez HA (0,0 5 g HA/l). Vodena otopina HA bez soli (otopina proizvoda) izvučena je u tekućem obliku, s koncentracijom od 8,3 mas. %, preko bočne struje s tanjura 12. Otopina soli odvedena je pri dnu kolone sa zaostalim sadržajem HA od 0,2 mas.%. Aqueous solution as in example 3, which contained 11 wt. % HA and 23.6 wt. % Na2SO4, was fed to the eleventh theoretical plate of a glass column with fractional plates, where the diameter of the column was 50 mm (the number of plates corresponds to 30 theoretical plates). Steam under a pressure of 2.5 bar and at approx. 125°C was brought to the bottom of the column. The pressure in the column was 101 kPa. Water mostly without HA (0.05 g HA/l) was removed from the top of the column. Aqueous solution of HA without salt (product solution) was extracted in liquid form, with a concentration of 8.3 wt. %, via the side current from plate 12. The salt solution was removed at the bottom of the column with a residual HA content of 0.2 wt.%.
Primjer 5 Example 5
Koncentriranje vodene otopine hidroksilamana bez soli destilacijom Concentration of an aqueous solution of hydroxylamine without salt by distillation
U staklenu kolonu s frakcijskim dnom promjera 50 mm i 30 frakcijskih tanjura, na osmi tanjur kontinuirano je dovođena stabilizirana otopina hidroksilamina bez soli. Dodatno, na najvišem tanjuru, tanjuru br. 30, u kolonu je odmjerena mala količina stabilizatora otopljenog u otopini hidroksilamina. Omjer refluksa namješten je na 0,5. Voda je izdestilirala s vrha kolone. Destilat je još uvijek sadržavao zaostalu količinu hidroksilamina od 0,07 mas. %. Pribl. 240 ml/h otopine hidroksilamina koncentracije 50 mas. % izvučeno je pomoću pumpe s dna kolone. In a glass column with a fractional bottom with a diameter of 50 mm and 30 fractional plates, a stabilized solution of hydroxylamine without salt was continuously supplied to the eighth plate. Additionally, on the highest plate, plate no. 30, a small amount of stabilizer dissolved in the hydroxylamine solution was measured into the column. The reflux ratio was set to 0.5. Water distilled from the top of the column. The distillate still contained a residual amount of hydroxylamine of 0.07 wt. %. Approx. 240 ml/h of hydroxylamine solution with a concentration of 50 wt. % was extracted using a pump from the bottom of the column.
Claims (12)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19547758 | 1995-12-20 | ||
US08/688,281 US5837107A (en) | 1995-12-20 | 1996-07-29 | Process for production of aqueous solutions of free hydroxylamine |
Publications (2)
Publication Number | Publication Date |
---|---|
HRP960601A2 true HRP960601A2 (en) | 1998-04-30 |
HRP960601B1 HRP960601B1 (en) | 2001-12-31 |
Family
ID=26021480
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
HR960601A HRP960601B1 (en) | 1995-12-20 | 1996-12-19 | Process for separating medium boiling substances from a mixture of low, medium and high boiling substances |
Country Status (16)
Country | Link |
---|---|
EP (2) | EP0868399B1 (en) |
JP (2) | JP4376969B2 (en) |
CN (2) | CN1102531C (en) |
AT (1) | ATE222565T1 (en) |
AU (2) | AU704998B2 (en) |
BR (2) | BR9612073A (en) |
CA (2) | CA2239791C (en) |
DE (2) | DE59609239D1 (en) |
DK (1) | DK0868399T3 (en) |
ES (2) | ES2181933T3 (en) |
HR (1) | HRP960601B1 (en) |
IL (2) | IL124739A (en) |
NO (2) | NO319309B1 (en) |
PT (1) | PT868399E (en) |
TR (2) | TR199801154T2 (en) |
WO (2) | WO1997022551A1 (en) |
Families Citing this family (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19725851A1 (en) * | 1997-06-18 | 1998-12-24 | Basf Ag | Process for the preparation of high-purity, aqueous hydroxylamine solutions |
US5788946A (en) * | 1997-07-16 | 1998-08-04 | Ashland Inc. | Purification of hydroxylamine |
DE19733681A1 (en) | 1997-08-04 | 1999-02-11 | Basf Ag | Process for the preparation of an aqueous solution of free hydroxylamine |
DE19806578A1 (en) * | 1998-02-17 | 1999-08-19 | Basf Ag | Production of aqueous hydroxylamine solution containing essentially no metal ions, used in electronics industry |
US6235162B1 (en) | 1998-05-28 | 2001-05-22 | Sachem, Inc. | Ultrapure hydroxylamine compound solutions and process of making same |
DE19936594A1 (en) | 1999-08-04 | 2001-02-08 | Basf Ag | Process for the preparation of high-purity stabilized hydroxylamine solutions |
DE10004818A1 (en) * | 2000-02-04 | 2001-08-09 | Basf Ag | Process for recycling stripper solutions containing hydroxylamine |
JP3503115B2 (en) * | 2000-06-27 | 2004-03-02 | 東レ・ファインケミカル株式会社 | Method for producing free hydroxylamine aqueous solution |
DE10037774A1 (en) * | 2000-08-03 | 2002-02-14 | Bayer Ag | Method and device for obtaining organic substances from a gas mixture containing these substances |
DE10131788A1 (en) * | 2001-07-04 | 2003-01-16 | Basf Ag | Process for the preparation of a salt-free, aqueous hydroxylamine solution |
DE10134389A1 (en) | 2001-07-04 | 2003-01-16 | Basf Ag | Process for the preparation of a salt-free, aqueous hydroxylamine solution |
DE10131787A1 (en) | 2001-07-04 | 2003-01-16 | Basf Ag | Process for the preparation of a salt-free, aqueous hydroxylamine solution |
DE10314492B4 (en) * | 2003-03-27 | 2008-10-16 | Domo Caproleuna Gmbh | Process for the preparation of an aqueous solution of hydroxylamine |
TW200508176A (en) * | 2003-08-13 | 2005-03-01 | Showa Denko Kk | Process for producing hydroxylamine |
EP1663862A2 (en) | 2003-08-13 | 2006-06-07 | Showa Denko K.K. | Process for producing hydroxylamine |
JP4578885B2 (en) * | 2003-08-13 | 2010-11-10 | 昭和電工株式会社 | Method for producing hydroxylamine |
FR2860223B1 (en) * | 2003-09-26 | 2005-12-16 | Jean Pierre Schirmann | PROCESS FOR PRODUCING AQUEOUS HYDROXYLAMINE BASE SOLUTIONS |
US7396519B2 (en) | 2004-01-26 | 2008-07-08 | San Fu Chemical Company, Ltd. | Preparation of a high purity and high concentration hydroxylamine free base |
JP2005239702A (en) * | 2004-01-28 | 2005-09-08 | Showa Denko Kk | Method for producing hydroxylamine |
JP2006056742A (en) * | 2004-08-19 | 2006-03-02 | Hosoya Fireworks Co Ltd | Method for producing aqueous solution of hydroxylamine nitrate |
JP4578988B2 (en) * | 2005-01-21 | 2010-11-10 | 昭和電工株式会社 | Method for producing hydroxylamine |
JP4578998B2 (en) * | 2005-02-10 | 2010-11-10 | 昭和電工株式会社 | Method for producing hydroxylamine |
JP4578999B2 (en) * | 2005-02-10 | 2010-11-10 | 昭和電工株式会社 | Method for producing hydroxylamine |
JP2006219343A (en) * | 2005-02-10 | 2006-08-24 | Showa Denko Kk | Method for producing hydroxylamine |
DE102005032430A1 (en) * | 2005-07-12 | 2007-01-25 | Bayer Materialscience Ag | Process for the preparation of toluenediamine |
WO2017204936A1 (en) | 2016-05-26 | 2017-11-30 | Exxonmobil Chemical Patents Inc. | Production of cyclic imides suitable for oxidation catalysis |
WO2017204935A1 (en) | 2016-05-26 | 2017-11-30 | Exxonmobil Chemical Patents Inc. | Production of cyclic imides suitable for oxidation catalysis |
WO2018075176A1 (en) | 2016-10-18 | 2018-04-26 | Exxonmobil Chemical Patents Inc. | Cyclic imide slurry compositions |
CN108946741B (en) * | 2017-05-17 | 2020-05-12 | 新特能源股份有限公司 | Process method for recovering silicon-containing high-boiling-point substance in polycrystalline silicon cold hydrogenation process and cold hydrogenation process |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4111759A (en) * | 1976-07-08 | 1978-09-05 | United States Steel Corporation | Process for separating ammonia and acid gases from waste waters containing fixed ammonia salts |
JPS597313B2 (en) * | 1980-02-08 | 1984-02-17 | チツソエンジニアリング株式会社 | Alcohol distillation equipment |
DE3302525A1 (en) * | 1983-01-26 | 1984-07-26 | Basf Ag, 6700 Ludwigshafen | DISTILLATION COLUMN FOR THE DISTILLATIVE DISASSEMBLY OF AN INLET PRODUCT MULTIPLE FRACTIONS |
DE3528463A1 (en) * | 1985-08-08 | 1987-02-19 | Basf Ag | Process for the preparation of aqueous solutions of free hydroxylamine |
DE3814255A1 (en) * | 1988-04-27 | 1989-11-09 | Metallgesellschaft Ag | DEVICE FOR DESODORING ORGANIC LIQUIDS |
US5266290A (en) * | 1992-07-10 | 1993-11-30 | Thiokol Corporation | Process for making high purity hydroxylammonium nitrate |
DE4324410C1 (en) * | 1993-07-21 | 1994-08-04 | Enviro Consult Ingenieurgesell | Removing ammonium from process water in effluent water treatment units |
US5385646A (en) * | 1993-09-03 | 1995-01-31 | Farmland Industries, Inc. | Method of treating chemical process effluent |
-
1996
- 1996-12-19 HR HR960601A patent/HRP960601B1/en not_active IP Right Cessation
- 1996-12-20 CN CN96199954A patent/CN1102531C/en not_active Expired - Lifetime
- 1996-12-20 WO PCT/EP1996/005773 patent/WO1997022551A1/en active IP Right Grant
- 1996-12-20 TR TR1998/01154T patent/TR199801154T2/en unknown
- 1996-12-20 AT AT96944616T patent/ATE222565T1/en active
- 1996-12-20 DE DE59609239T patent/DE59609239D1/en not_active Expired - Lifetime
- 1996-12-20 CA CA002239791A patent/CA2239791C/en not_active Expired - Lifetime
- 1996-12-20 DK DK96944616T patent/DK0868399T3/en active
- 1996-12-20 EP EP96944616A patent/EP0868399B1/en not_active Expired - Lifetime
- 1996-12-20 IL IL12473996A patent/IL124739A/en not_active IP Right Cessation
- 1996-12-20 TR TR1998/01163T patent/TR199801163T2/en unknown
- 1996-12-20 EP EP96944615A patent/EP0868398B1/en not_active Expired - Lifetime
- 1996-12-20 WO PCT/EP1996/005772 patent/WO1997022550A1/en active IP Right Grant
- 1996-12-20 ES ES96944616T patent/ES2181933T3/en not_active Expired - Lifetime
- 1996-12-20 AU AU13039/97A patent/AU704998B2/en not_active Expired
- 1996-12-20 BR BR9612073A patent/BR9612073A/en not_active IP Right Cessation
- 1996-12-20 CA CA002239253A patent/CA2239253C/en not_active Expired - Lifetime
- 1996-12-20 DE DE59609580T patent/DE59609580D1/en not_active Expired - Lifetime
- 1996-12-20 AU AU13040/97A patent/AU707648B2/en not_active Expired
- 1996-12-20 CN CN96199143A patent/CN1104376C/en not_active Expired - Lifetime
- 1996-12-20 JP JP52252397A patent/JP4376969B2/en not_active Expired - Lifetime
- 1996-12-20 BR BR9612053A patent/BR9612053A/en not_active IP Right Cessation
- 1996-12-20 PT PT96944616T patent/PT868399E/en unknown
- 1996-12-20 ES ES96944615T patent/ES2177828T3/en not_active Expired - Lifetime
- 1996-12-20 JP JP9522524A patent/JP2000505033A/en active Pending
- 1996-12-20 IL IL12473796A patent/IL124737A/en not_active IP Right Cessation
-
1998
- 1998-06-19 NO NO19982847A patent/NO319309B1/en not_active IP Right Cessation
- 1998-06-19 NO NO19982849A patent/NO322631B1/en not_active IP Right Cessation
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
HRP960601A2 (en) | Process for separating medium boiling substances from a mixture of low, medium and high boiling substances | |
KR100466771B1 (en) | Process for Separating Medium Boiling Substances from a Mixture of Low, Medium and High Boiling Substances | |
CN101027252A (en) | Process for recovery and recycle of ammonia from a vapor stream | |
JP2007534471A (en) | Extraction of phenol-containing effluent stream | |
JP2001513479A (en) | Method for producing free hydroxylamine aqueous solution | |
CA2876281C (en) | Process for the production of methylbutinol | |
US4720326A (en) | Process for working-up aqueous amine solutions | |
HU188717B (en) | Method for removing the urea, ammonia and carbon dioxide from lean aqueous solution | |
US4076594A (en) | Purification of formic acid by extractive distillation | |
US4400553A (en) | Recovery of BPA and phenol from aqueous effluent streams | |
US4374283A (en) | Purification of aqueous effluent streams containing BPA and phenol | |
US4469561A (en) | Azeotropic recovery of BPA and phenol from aqueous effluent streams | |
JP2002526462A (en) | Method for producing high concentration monoethylene glycol | |
SU1169528A3 (en) | Method of isolating acrylic acid | |
US4167521A (en) | Recovery of nitrated compounds using solvent extraction and distillation | |
US3965243A (en) | Recovery of sodium thiocyanate | |
CA2293319C (en) | Method for producing highly pure aqueous hydroxylamine solutions | |
JP2006514087A (en) | Purification of 1,3-propanediol by distillation | |
US2997366A (en) | Gas purification | |
JP4961208B2 (en) | Caprolactam production method | |
US6758946B2 (en) | Recycling hydroxylamine-containing stripper solutions | |
JPH05230015A (en) | Purification of caprolactam | |
JP2651622B2 (en) | Trioxane purification method | |
US3281450A (en) | Purification of acetonitrile | |
RU2754848C1 (en) | Method for the regeneration of waste ammonia water and the extraction of mercaptans |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A1OB | Publication of a patent application | ||
AIPI | Request for the grant of a patent on the basis of a substantive examination of a patent application | ||
B1PR | Patent granted | ||
ODRP | Renewal fee for the maintenance of a patent |
Payment date: 20151216 Year of fee payment: 20 |
|
PB20 | Patent expired after termination of 20 years |
Effective date: 20161219 |