WO1996020891A1 - Zeolite cocristalline zsm-5/zsm-11 contenant des terres rares - Google Patents

Zeolite cocristalline zsm-5/zsm-11 contenant des terres rares Download PDF

Info

Publication number
WO1996020891A1
WO1996020891A1 PCT/CN1995/000099 CN9500099W WO9620891A1 WO 1996020891 A1 WO1996020891 A1 WO 1996020891A1 CN 9500099 W CN9500099 W CN 9500099W WO 9620891 A1 WO9620891 A1 WO 9620891A1
Authority
WO
WIPO (PCT)
Prior art keywords
zeolite
rare earth
weight
aluminum
zsm
Prior art date
Application number
PCT/CN1995/000099
Other languages
English (en)
French (fr)
Inventor
Qingxia Wang
Shurong Zhang
Guangyu Cai
Feng Li
Longya Xu
Zuxian Huang
Yuying Li
Original Assignee
China Petro-Chemical Corporation
Dalian Institute Of Chemical Physics, Chinese Academy Of Sciences
Fushun Petro-Chemical Company, Sinopec
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=5036726&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO1996020891(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by China Petro-Chemical Corporation, Dalian Institute Of Chemical Physics, Chinese Academy Of Sciences, Fushun Petro-Chemical Company, Sinopec filed Critical China Petro-Chemical Corporation
Priority to KR1019960704586A priority Critical patent/KR100249393B1/ko
Priority to BR9507194A priority patent/BR9507194A/pt
Priority to JP52066496A priority patent/JP3337221B2/ja
Priority to AU42965/96A priority patent/AU690402B2/en
Priority to EP95941571A priority patent/EP0801027B1/en
Publication of WO1996020891A1 publication Critical patent/WO1996020891A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/36Pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • C01B39/365Type ZSM-8; Type ZSM-11; ZSM 5/11 intermediate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/80Mixtures of different zeolites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/36Pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S423/00Chemistry of inorganic compounds
    • Y10S423/22MFI, e.g. ZSM-5. silicalite, LZ-241
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S423/00Chemistry of inorganic compounds
    • Y10S423/29MEL, e.g. ZSM-11

Definitions

  • the present invention relates to a crystalline aluminosilicate zeolite, and a preparation method and application thereof. More specifically, the present invention relates to a
  • ZSMS and ZSM11 co-crystalline aluminosilicate zeolites, their preparation methods, and their applications in the catalytic conversion of hydrocarbons.
  • ZSM5 zeolite is a high-silica zeolite with five-membered ring structure (USP3, 7 02,886) developed by Mobil. Because of its unique pore structure, it is widely used as a catalytic material for isomerization and disproportionation. , catalytic cracking and catalytic dewaxing. USP4,10 7, 22 4 discloses a process for using ZSM5 zeolite catalyzed alkylation of benzene with ethylene to get ethylbenzene, ethylene required inert hydrocarbon feedstock in the process
  • dilute ethylene is taken from the tail gas on some units in the refinery, such as catalytic cracking dry gas, coke oven gas, etc. However, when using these tail gas as a source of dilute ethylene, the H 2 S, H 2 0, C0 2 and other impurities are removed to less than 10 ppm.
  • the zeolite with ZSMS / ZSM11 intermediary structure is another zeolite product (USP4,229,424) developed by Mobil Company. It is synthesized using quaternary ammonium salt as a template, has a specific X-ray diffraction spectrum, and has ZSM 5 (denoted I) and ZSM11 (denoted S) SISI, SSII, IISIIISI,
  • cations in zeolites can be at least partially substituted by other cations according to known techniques.
  • USP4,289,607 It further discloses the catalytic application of the zeolite: for example, the conversion of methanol to gasoline, oligomerization of olefins, alkylation of aromatics, isomerization of xylene, and catalytic cracking of hydrocarbons.
  • REY zeolite obtained by ion exchange between NaY zeolite and RE 3 + has higher cracking activity and hydrothermal stability than NaY zeolite (USP3, 402,996 ).
  • high-silica zeolites such as ZSM5, ZSM11, ZSM5 / ZSM11, because of its high silicon-aluminum ratio, there are fewer charge centers in the pores and strong hydrophobicity. In addition, the openings of the pores are small.
  • GB2,033,358A discloses the synthesis of ZSM5 zeolites containing metals (including trivalent metals) by adding inorganic acid salts (including salts of trivalent metals) to synthetic raw materials.
  • CN90104732.5, USP5, 232,675 disclose the use of rare earth-containing faujasite zeolites as seeds to synthesize ZSM5 high-silica zeolites containing rare earths. This has been seen so far through synthesis instead of traditional The ion exchange method has introduced reports of rare earths in ZSM5 zeolite. However, there have never been any reports on how to directly synthesize rare earth-containing zeolites with Z SM 5 and ZSM 1 1 co-crystal structures.
  • One of the objects of the present invention is to provide a zeolite containing a rare earth and having a co-crystal structure of ZSM5 and ZSM11;
  • a synthesis method for the zeolite; the third purpose is to provide the application of the zeolite in some catalytic conversion processes.
  • the zeolite provided by the present invention contains a rare earth and has a co-crystal structure of ZSM5 and ZSM1 1, wherein the weight ratio of the part having the ZSM5 crystal phase structure to the part having the ZSM1 1 crystal phase structure is 0.1 to 10, and the molar ratio of the oxide is
  • the sodium form of the zeolite has X-ray diffraction lines as shown in Table 1.
  • the zeolite provided by the present invention uses a diamine of c 2 -c 8 as a template Agent, synthesized in the presence of water glass, aluminum source, inorganic acid, salts of rare earth elements.
  • the zeolite can be used as a catalyst for aromatic alkylation, alkane aromatization, and conversion of methanol to lower olefins. Details of the invention description
  • the zeolite provided by the present invention contains single or mixed rare earth and has
  • zeolite ZSM5 and co-crystal structure of ZSM 11 zeolite ZSM5 portion having a crystalline structure and the weight ratio of the portion having a crystalline structure of ZSM 1 1 0 1 - 10 free of the zeolite in a molar ratios of oxides
  • the sodium in the zeolite can be replaced by other cations through traditional ion exchange technology. That is, the sodium zeolite synthesized can be converted into other forms such as ammonium (or hydrogen) by ion exchange technology. Type, zinc type, gallium type, magnesium type, etc.
  • the sodium form of the zeolite provided by the present invention has the X- ray diffraction spectrum shown in Table 1.
  • X-ray diffraction is performed in accordance with standard measurement techniques, using 1 ⁇ "radiation of copper, Nickel filter and scintillation counter. The corresponding crystal plane spacing of each diffraction line in the table
  • Table 2 also lists the X-ray diffraction lines of the zeolite provided by the present invention and the patented ZSM5 / ZSM11 mesophase zeolite. As can be seen from Table 2 , the positions of the two sets of diffraction lines are different, but the relative intensity is different It is more obvious. ZSM5 / ZS 11 The zeolite of the present invention
  • the surface area of the zeolite provided by the present invention is 300-400 m 2 / g (measured by BET low temperature nitrogen adsorption method). Under the conditions of 25 1C and an adsorbate partial pressure of 20 mmH g , the zeolite has a good performance against n-hexane and cyclohexyl ring.
  • the adsorption capacity of the zeolite is 9 to 11% by weight and 3 to 5% by weight ; under the conditions of 25 TC and the adsorbent partial pressure of 12 m mH g , the adsorption capacity of the zeolite for water is 4-8% by weight.
  • the zeolite provided by the present invention is synthesized by using a C 2 -C 8 diamine as a template agent in the presence of water glass, an aluminum source, an inorganic acid, and a salt of a rare earth element.
  • the water zeolite, C 2 -8 A homogeneous mixture of a diamine and water I and a homogeneous mixture of an aluminum source, an inorganic acid, a salt of a rare earth element and water ⁇ Mix under strong stirring to form a gel, so that the colloid is stirred at 100-200 ⁇ crystallization 0 ⁇ 5 - 4 days, and then rapidly cooled to room temperature, washed with decationized to PH8 - 9, and finally dried to obtain the finished zeolite.
  • the diamine is selected from any one of c 2 -c 8 diamines or a mixture of two diamines.
  • the aluminum source is selected from the group consisting of Inorganic salts of aluminum including aluminum chloride, aluminum bromide, aluminum nitrate, aluminum sulfate, and aluminum phosphate.
  • the inorganic acid is selected from sulfuric acid, hydrochloric acid, nitric acid, and phosphoric acid, and sulfuric acid is preferably used.
  • the rare earth element The salt is selected from the hydrochloride, nitrate and sulfate salts of rare earth elements, and can be either a single rare earth element salt or a mixed rare earth element salt.
  • the molar ratio of the above raw materials is as follows: Na 2 0 / Al 2 0 3 7 ⁇ 12; RE 2 0 3 / AI 2 0 3 0.01 ⁇ 1.0; Si0 2 / Al 2 0 3 30-600; H 2 0 / Si0 2 20-100; Amine / Si0 2 0.1-0.5.
  • La-ZSM5 / ZSM11 eutectic zeolite provided by the present invention was prepared by using hexamethylene diamine as a mold agent.
  • LaCl 3 6H 2 0 and 2100 ml of decationized water were mixed uniformly to obtain a working solution ⁇ .
  • the zeolite has X- ray diffraction lines shown in Table 1 , and more detailed lines are listed in Table 3.
  • the zeolite has a silicon-to-aluminum ratio of 53 and a La content of 2.50% by weight, which have ZSM5 and ZSM11 crystal phases, respectively.
  • the weight ratio of components in the structure is 30: 70 in the unit cell parameters values
  • ZSM5 zeolite structures are as follows:.
  • the adsorption capacities of this zeolite for n-hexane, cyclohexane, and water are 10.2% by weight, 4.1% by weight, and 6.0% by weight.
  • Propanediamine as template in the preparation of the present invention provides La _ ZSM5 / ZSM11 zeolite eutectic.
  • the two working liquids are mixed into a gel.
  • the stirring speed is reduced to about ⁇ ⁇ 0 rpm, the system is heated to 180 and kept at a constant temperature, and the crystallization reaction is performed for 56 hours under stirring.
  • the material after the crystallization reaction is rapidly cooled to room temperature, and the obtained crystals are washed with decationized water until the pH value of the washing effluent is 8-9, filtered, and dried at 1 10 ⁇ 10 TC for 10 hours to obtain La-ZSM5 / ZSM11. Eutectic zeolite.
  • the zeolite has X-ray diffraction lines shown in Table 1 , and a more detailed line is shown in Table 3.
  • the zeolite has a silicon-aluminum ratio of 180 and a La content of 1.15% by weight, which respectively have a crystal phase structure of ZSM5 and ZSM1 1
  • the weight ratio of the part is 50:50.
  • the adsorption capacities of the zeolite for n-hexane, cyclohexane, and water are 10.6% by weight, 4.0% by weight, and 4 ⁇ 8% by weight, respectively.
  • the RE-ZSM5 / ZSM11 eutectic zeolite provided by the present invention was prepared.
  • the material after the crystallization reaction is rapidly cooled to room temperature, and the obtained crystals are washed with decationized water until the pH value of the washing effluent is 8-9, filtered, and dried at 110 ⁇ 10 1C for 10 hours to obtain RE-ZSM5 / ZSM11 total. Crystallite.
  • the zeolite has X-ray diffraction lines shown in Table 1 , and more detailed lines are listed in Table 3.
  • the zeolite has a silicon-to-aluminum ratio of 35 and a RE content of 4.50% by weight, which have ZSM5 and ZSM11 crystal phases, respectively.
  • the weight ratio of the structural part is 40: 60.
  • the adsorption capacities of the zeolite for n-hexane, cyclohexane, and water are 9.8% by weight, 3.2% by weight, and 6.5% by weight, respectively.
  • La-ZSM5 / ZSM1 1 eutectic zeolite provided by the present invention is prepared by using a mixed diamine of ethylenediamine and hexamethylenediamine as a template.
  • the zeolite has X- ray diffraction lines shown in Table 1 , and more detailed lines are listed in Table 3.
  • the zeolite has a silicon-to-aluminum ratio of 60 and a La content of 5.20% by weight, which have ZSM5 and ZSM11 crystal phases, respectively.
  • the weight ratio of the structural part is 60:40.
  • the adsorption capacities of the zeolite for n-hexane, cyclohexane, and water are 11.7% by weight, 3.0% by weight, and 5.3% by weight.
  • Example 3 Example 4 d (A) 1001/1. d (A) blue / I. d (A) Sa / I. d (A) 1001/1.
  • This example illustrates that the rare earth-containing eutectic zeolite provided by the present invention has good Good acidic hydrothermal stability.
  • the four zeolite samples prepared in Examples 1 to 4 were respectively calcined at 54 0 TC for S hours to remove the organic amine template, and then they were mixed with a mixed solution of 0.8N NH 4 N0 3 and 0.1N NH 4 OH. Ammonium ion exchange was performed separately. The exchanged zeolite was washed with decationized water to free N0 3—. After filtration, it was dried at 110 ⁇ 10 TC for 24 hours to obtain an ammonium sample having a sodium content of less than 0.05% by weight. 5 4 0 TC roasted for 4 hours to convert to hydrogen type.
  • the hydrogen-type sample is roasted in the presence of 550 ⁇ 20 l C and 100% water vapor for 4 hours, and the amount of water passed into the roaster is 5-per gram of sample per hour-
  • the total number of acid centers is calculated from the signal of ammonia desorption at a desorption temperature of 200-600 TC.
  • “Medium strength acid center%” refers to the amount of medium strength acid centers after hydrothermal treatment. The percentage of the total amount; the amount of medium-strength acid centers is calculated from the signal of ammonia desorption at a desorption temperature of 320 ⁇ 4S0 :.
  • the rare earth-containing eutectic zeolite provided by the present invention has good acidic hydrothermal stability, which has great industrial and practical significance for catalytic processes involving hydrothermal treatment (such as catalyst regeneration).
  • This example illustrates the application of the zeolite provided by the present invention in the alkylation of dilute ethylene and benzene.
  • the zeolite in the catalyst was converted to hydrogen form by exchange and roasting; and the hydrogen zeolite catalyst sample was hydrothermally treated at 550 ⁇ 20 ⁇ , 100% water vapor for 4 hours in the same manner as described in Example 5.
  • a 10 ml continuous-flow fixed-bed reaction device was charged with 5 ml of the above-mentioned hydrothermally-treated catalyst sample to carry out the alkylation reaction of dilute ethylene with benzene.
  • the composition (vol%) of the dilute ethylene gas in the raw material was: ethylene 20, hydrogen 20, Nitrogen 60.
  • the alkylation conditions are: reaction temperature 370 TC, reaction pressure 0.7 MPa, ethylene weight space velocity 1.0— ', molar ratio of benzene to ethylene 5.
  • the reaction results are as follows: The ethylene conversion rate is 98 8%, selectivity of the product ethylbenzene 91.5%, alkylation (based on the total production of ethylbenzene and diethylbenzene) selectivity 99.9% ⁇
  • This example illustrates the application of the zeolite provided by the present invention in the alkylation of ethylene and benzene in a catalytic cracking dry gas.
  • Hydrogen-treated zeolite catalyst samples were prepared according to the method described in Example 6 .
  • a 200 ml adiabatic continuous-flow fixed-bed reaction device was charged with the above-mentioned catalyst sample ⁇ 00 ml, and the benzene alkylation reaction was performed using the catalytic cracked dry gas as a raw material.
  • the composition of the raw material catalytic cracked dry gas (vol%) was as follows: Methane 33.0, ethylene 19.5, ethane 16.0, hydrogen 14.0, nitrogen 10.2, carbon dioxide 4.0, carbon monoxide 1.5, oxygen 0.8, propylene 0.8, propane 2.2, hydrogen sulfide 3500 g / m3 , Water 1500ppm.
  • the alkylation conditions are: reactor inlet temperature 350 TC, outlet temperature 425 TC, reaction pressure 0.7 MPa (gauge pressure), ethylene weight space velocity 1 ⁇ 0-molar ratio of benzene to ethylene 5. continuous After 45 days of operation, the conversion of ethylene remained at 99-
  • This example illustrates the application of the zeolite provided by the present invention in the aromatization process of alkanes.
  • Zeolite / alumina particles were prepared according to the method described in Example 6. --500 X:-540 TC after a series of roasting treatments, ammonium ion exchange was carried out according to the method described in Example 5. The obtained ammonium-type zeolite catalyst was immersed in a Zn (N0 3 ) 2 aqueous solution at room temperature for 12 hours and filtered. After 110 ⁇ 10 X: dried for 6 hours, calcined at Soo X for 3 hours, and then the zinc-type zeolite catalyst sample was treated at 550 ⁇ 20 X :, 100% water vapor for 4 hours according to the method described in Example 5. Zn content in this catalyst sample was 2.0% by weight
  • a 10-liter continuous-flow fixed-bed reaction device was charged with 5 liters of the catalyst sample to perform propane aromatization.
  • Ga (N0 3 ) 3 is used instead of Zn (N0 3 ) 2 to modify the zeolite catalyst, and a catalyst sample with a Ga content of 2.0% by weight is used for the above-mentioned propane aromatization reaction, similar reaction results are obtained. .
  • This example illustrates the application of the zeolite provided by the present invention in the process of converting methanol to lower olefins.
  • Hydrogen-type zeolite catalyst in accordance with the methods described in Example 6 obtained according to a modification of the catalyst in the method of Example 8 to M g ( ⁇ 0 3) 2 instead of Zn (N0 3) 2 to obtain an amount of M g 2 ⁇ 4% by weight catalyst sample ⁇
  • reaction temperature 500 TC reaction temperature 1 atmosphere
  • methanol weight space velocity I ⁇ 5 -the reaction results are as follows : Methanol conversion rate is 100%, and the hydrocarbon yield in the product is 99.5%.
  • Methanol conversion rate is 100%, and the hydrocarbon yield in the product is 99.5%.
  • the rest are c 2 -C 4 alkanes.
  • the zeolite provided by the invention has good acidic hydrothermal stability and resistance to impurities (such as H 2 S, H 2 0, CO, C 0 2 etc.), and it can be further processed by traditional ion exchange technology like other zeolites. It can be modified to have different catalytic properties.
  • the modified zeolite can be supplemented with a suitable substrate to make the catalyst required in various processes.
  • the zeolite can be used as an ammonium ion exchange and can be used as a hydrogen type after heating.
  • Aromatic alkylation catalyst for example, the zeolite can be used as an alkane aromatization catalyst after being changed to zinc or gallium type by zinc or gallium ion exchange; and when the zeolite is changed to magnesium type by magnesium ion exchange, it can be used as methanol conversion It is a catalyst for low-carbon olefins.
  • the zeolite can also be converted into other forms and used in other hydrocarbon conversions such as isomerization, cracking, disproportionation and other reactions.

Description

稀土 - ZSM5/ZSM11共结晶沸石 技术领域
本发明是关于一种结晶硅铝酸盐沸石及其制备方法和 应用 . 更具体地说, 本发明是关于一种含有稀土的具有
ZSMS和 ZSM11共结晶结构的硅铝酸盐沸石、 其制备方法 以及该沸石在烃类的催化转化过程中的应用 .
发明背景
ZSM5 沸石是 Mobil 公司开发出的具有五元环结构的 高硅沸石 ( USP3,702,886 ) , 由于该沸石具有独特的孔结 构, 因而它被作为催化材料广泛地应用于异构化、 歧化、 催化裂化和催化脱蜡过程. USP4,107,224 中披露了使用 ZSM5 沸石催化剂催化苯与乙烯的烷基化反应制取乙苯的 工艺方法, 在该工艺中原料乙烯需用惰性烃类予以稀释. 为工业应用起见, 稀乙烯取自炼油厂中一些装置上的尾 气, 例如催化裂化干气、 焦炉气等. 但使用这些尾气作稀 乙烯来源时, 需经预处理将其中的 H2S、 H20、 C02等杂 质脱除至 l Oppm以下.
具有 ZSMS/ZSM11中介结构的沸石是 Mobil公司开发 出的另一沸石产品 ( USP4,229,424 ) , 它是以季胺盐为模 板剂合成的,具有特定的 X光衍射谱图, 并具有 ZSM 5 ( 记 作 I ) 和 ZSM11 ( 记作 S ) 的 SISI、 SSII、 IISIIISI、
SSSISI、 IISISI……等结构, 其无水状态的、 以氧化物摩 尔比形式表示的化学组成式为 0 ·9 ± 0 3 M 2/n O : A1203
ZSi02, 其中 M是阳离子, 最好是氢或氢的前身物, 例如 NH + 4 ; n是阳离子的价数; Z至少是 5, 可达 5000 . 该 专利中说明: 可以根据公知技术将沸石中的阳离子通过与 其 它 阳 离 子 进 行 交 换 的 方 法 至 少 部 分 地 取 代 . USP4,289,607中则进一步地披露了该沸石在催化方面的应 用: 例如, 甲醇转化为汽油、 烯烃的低聚、 芳烃的烷基化、 二甲苯的异构化、 烃类的催化裂化.
一般说来, 将稀土元素引入沸石中会提高沸石的活性 和稳定性, 例如 NaY沸石与 RE3 +离子交换得到的 REY沸 石 就具 有 比 NaY 沸 石 高 的 裂 化 活 性和 水 热 稳 定 性 ( USP3, 402,996 ) . 然而对于象 ZSM5 、 ZSM11 、 ZSM5/ZSM11 —类的高硅沸石而官, 由于其硅铝比高因而 孔道内 电荷中心少、 疏水性强, 再加上孔道的开口较小, 因此要想通过传统的离子交换技术在水溶液介质中将稀土 这种大离子半径的三价阳离子引入该沸石的晶 内是十分困 难的, 因为 RE3 +难以与低密度的骨架铝原子负 电中心相 配位 ( P. Cho and F. G. Dwyer, ACS Symp. Ser., 218,
59-78,1983 ) . GB2,033,358A 中公开了通过在合成原料 中加入无机酸盐类 ( 包括三价金属的盐 ) 的方法合成出含 有金属( 包括三价金属 )的 ZSM5沸石. CN89108836.9、 CN90104732.5、 USP5,232,675 中则公开了采用含稀土的 八面沸石为晶种合成出含有稀土的 ZSM5类高硅沸石. 这 是迄今为止所见到的通过合成而不是通过传统的离子交换 方法在 ZSM5沸石中引入稀土的报导. 然而, 从未见有文 献报导关于如何直接合成出含有稀土的、 具有 Z SM 5 和 ZSM1 1 共结晶结构的沸石.
本发明的 目 的之一是提供一种直接合成的含有稀土的 并具有 ZSM5和 ZSM11共结晶结构的沸石; 目 的之二是提 供该沸石的合成方法; 目 的之三是提供该沸石在某些催化 转化过程中的应用 .
发明的概述
本发明提供的沸石含有稀土并具有 ZSM5与 ZSM1 1的 共结晶 结构, 其 中具有 ZSM5 晶相结构的部分与具有 ZSM1 1 晶相结构的部分的重量比为 0·1 - 10, 以氧化物的 摩尔比表示的该沸石的无水状态合成原型的化学组成式如 下: XNa20 · YRE203 A1203 ZSi02 ,其中 X = 0·1 ~
1.0 , Υ = 0.01 - 1.0 , Ζ - 20 ~ 300; 该沸石的钠型具 有如表 1 所示的 X 光衍射谱线. 本发明提供的沸石是以 c2 - c8的二元胺为模板剂, 在水玻璃、 铝源、 无机酸、 稀 土元素的盐存在下合成得到的 . 该沸石可用于芳烃烷基 化、 烷烃芳构化、 甲醇转化为低碳烯烃等过程的催化剂 . 发明的详细描述
本发明提供的沸石含有单一的或混合的稀土, 并具有
ZSM5和 ZSM 11共结晶的结构, 沸石中具有 ZSM5晶相结 构的部分与具有 ZSM 1 1 晶相结构的部分的重量比为 01 - 10 , 以氧化物的摩尔比表示的该沸石的无水状态合成原型 的 化 学 组 成 式 如 下 : XN^O - YRE203 Al203 ZSi02 , 其中 X = 0·1 ~ 1 ·0, Υ = 0.01 - 1.0 , Ζ = 20 - 300 . 与其它所有的沸石一样, 该 沸石中的钠可以通过传统的离子交换技术而被其它阳离子 所取代, 也就是说, 合成得到的钠型沸石可以通过离子交 换技术转化为其它形式, 如铵 ( 或氢) 型、 锌型、 镓型、 镁型等.
本发明提供的沸石的钠型具有如表 1 所示的 χ光衍射 谱线. X光衍射是按照标准测定技术进行的, 采用铜的 1^ "辐射、 镍滤 波和 闪 烁计数器 . 表 中各衍射线相应 的 晶 面 间 距
( d ) 是根据 Bragg方程及记录纸上记载的各衍射峰的位 置 2 θ ( Θ 为 Bragg 角 ) 计算得到的 . 表中的相对强度 ( ιοοι/ι„ ) 即记录纸上记载的各衍射峰高 ( 即衍射强度 )
I 与最高的衍射峰高 ( 最大的衍射强度) Ιο的比值与 loo 的乘积, 共中 VS ( 很强 )表示相对强度的值为 100 - 60、 S ( 强 ) 表示 60 ~ 40、 M ( 中 ) 表示 40 ~ 20、 W ( 弱 ) 表示 20以下.
表 1 d( A) 1001/1。
11.2士 0.2
10.1士 0.2 M
6.05士0.14 W
; 4.40士 0.08 W
3.86士 0.07 VS
! 3· 72士 0.07 s
3.65士 0.07 W-M
I 2.01-0.02 w
I
表 2 中 同 时 列 出 了 本发 明 提供 的 沸 石 与 专 利 的 ZSM5/ZSM11 中介晶相沸石的 X 光衍射谱线. 由表 2 可 见, 两组衍射谱线的位置有所差异, 而相对强度的差异则 更明显. ZSM5/ZS 11 本发明沸石
(USP4,229,424)
d( A) 1001/1。 1001/1。 j
11.2士 0.2 VS M i j
10.1士 0.2 VS M
; 6.73±0.14 W —
6.05士 0.14 一
4.63士 0.08 W ―
4.40士 0.08 ― w
3.86士 0.07 S VS
! 3.72士 0.07 M-S s
3.65士 0.07 W-M 2.01士 0.02 W
J 本发明提供的沸石的表面积为 300 - 400 米 2/克 ( BET 低温氮吸附法测得) . 在 25 1C、 吸附质分压为 20mmHg的条件下, 该沸石对正己烷、 环己环的吸附容量 分别为 9 ~ 11 重%、 3 ~ 5重% ; 在 25 TC、 吸附质分压 为 12mmHg的条件下, 该沸石对水的吸附容量为 4 - 8重 % .
本发明提供的沸石是以 C2 - C8的二元胺为模板剂,在 水玻璃、 铝源、 无机酸、 稀土元素的盐存在下合成得到的. 具体地说, 将由水玻璃、 C2 - 8的二元胺和水组成的均 匀混合物 I 与由铝源、 无机酸、 稀土元素的盐和水组成的 均匀混合物 Π在强烈搅拌下混合成胶, 使胶体在搅拌下于 100 - 200匸晶化 0·5 - 4天, 然后迅速冷却至室温, 用脱 阳离子水洗至 PH8 - 9, 最后干燥, 即得沸石成品. 在该合成方法中, 所说的二元胺选自 c2 - c8二元胺 中的任一种二元伯胺或其中两种二元伯胺的混合物. 所说 的铝源选自包括氯化铝、 溴化铝、 硝酸铝、 硫酸铝和磷酸 铝在内的铝的无机盐. 所说的无机酸选自硫酸、 盐酸、 硝 酸和磷酸, 最好选用硫酸. 所说的稀土元素的盐选自稀土 元素的盐酸盐、 硝酸盐和硫酸盐, 既可以是某种单一稀土 元素的盐, 也可以是混合稀土元素的盐.
合成中, 上述原料的摩尔配比如下: Na20/Al203 7 ~ 12 ; RE203/AI203 0.01 ~ 1.0; Si02/ Al203 30-600 ; H20/Si02 20 - 100; 胺 /Si02 0.1 - 0.5 .
在本发明方法中, 添加较低分子量的二元胺或混合二 元胺作为模板剂时, 有利于共结晶沸石中 ZSM5含量的增 加. 此外, 改变晶化温度和控制晶化时间也可调节共结晶 沸石中 ZSM5和 ZSM11 的比值.
下面的实施例将对本发明予以进一步的说明, 但并不 因此而限制本发明 .
实施例中沸石产品的晶胞参数及其中具有 ZSM5 晶相 结构的部分与具有 ZSM 11 晶相结构的部分的重量比是用
X 光衍射法测定计算的; 钠和稀土含量及硅铝比是用原子 吸收光谱法測定计算的; 正 己烷和环己烷的吸附容量是在 25 TC . 吸附质分压为 20mmHg的条件下测定的; 水的吸附 容量是在 25 C、 吸附质分压为 12m mHg的条件下测定的. 本发明的最佳实施方式
实施例 1
以 己 二 胺 为 模 板 剂 制 备 本 发 明 提 供 的 La- ZSM5/ZSM11共晶沸石.
将 3000亳升水玻璃 ( 其中含 SiO2180克 /升、 Na2O60 克 /升) 、 1900毫升脱阳离子水、 250克含量为 98 %的己 二胺混合均匀, 得到工作液 I .
将 51克含量为 97 %的 A1C13 · 6H20、 400毫升浓度 为 4 摩 尔 /升 的 H2S04 、 35 克 含 量 为 99 % 的
LaCl3 6H20 、 2100毫升脱阳离子水混合均匀, 得到工 作液 Π .
在强烈的搅拌下将上述二工作液混合成胶, 继续搅拌 30 分钟后将搅拌转速降至 100 转 /分左右, 将体系升温至
175 TC并保持恒温, 在搅拌下晶化反应 72小时.
将晶化反应后的物料迅速冷却至室温, 并用脱阳离子 水洗涤所得结晶物直至洗涤流出液的 PH值为 8 ~ 9, 过 滤, 在 1 10 ± 10 TC干燥 10小时即得 La-ZSM5/ZSM1 1 共 晶沸石.
该沸石具有表 1所示的 x光衍射谱线, 更详细的谱线 列于表 3 . 该沸石的硅铝比为 53, La含量为 2·50重% , 其中分别具有 ZSM5 和 ZSM11 晶相结构的部分的重量比 为 30 : 70 . 沸石中 ZSM5 结构的晶胞参数数值如下: a=2.01 18纳米, b=1.9970纳米, c=L3426纳米, 晶胞体 积 V = 5.393纳米 3; 沸石中 ZSM1 1结构的晶胞参数数值 如下: a=b=1.9989纳米, c=1.3420纳米, 晶胞体积 =
5.362纳米 3 . 该沸石对正己烷、 环己烷、 水的吸附容量分 别为 10.2重%、 4.1重%、 6.0重% ·
实施例 2
以 丙 二 胺 为 模 板 剂 制 备 本 发 明 提 供 的 La_ ZSM5/ZSM11共晶沸石.
将 600亳升水玻璃 (规格同实施例 1 ) 、 420毫升脱 阳离子水、 34克含量为 98 %的丙二胺混合均匀, 得到工 作液 I .
将 3.5克含量为 98 %的 Al2 ( S04 ) 3 · 18H20、 77 毫升浓度为 4 摩尔 /升的 H2S04 、 3.3 克含量为 99 %的 LaCl3 6H2O v 380毫升脱阳离子水混合均匀, 得到工作 液 Π .
在强烈的搅拌下将上述二工作液混合成胶,继续搅拌 5 分钟后将搅拌转速降至 Ϊ ΟΟ转 /分左右,将体系升温 至 180 并保持恒温, 在搅拌下晶化反应 56小时.
将晶化反应后的物料迅速冷却至室温, 并用脱阳离子 水洗涤所得结晶物直至洗涤流出液的 PH值为 8 - 9 , 过 滤, 在 1 10 ± 10 TC干燥 10小时即得 La-ZSM5/ZSM11 共 晶沸石.
该沸石具有表 1所示的 X光衍射谱线, 更详细的谱线 列于表 3 . 该沸石的硅铝比为 180, La含量为 1.15重%, 其中分别具有 ZSM5 和 ZSM1 1 晶相结构的部分的重量比 为 50 : 50 . 该沸石对正己烷、 环己烷、 水的吸附容量分 别为 10.6重%、 4·0重%、 4·8重% ·
实施例 3
以 己 二 胺 为 模 板 剂 制 备本 发 明 提供 的 RE - ZSM5/ZSM11共晶沸石.
将 580毫升水玻璃 (规格同实施例 1 ) 、 420毫升脱 阳离子水、 58克含量为 98 %的己二胺混合均匀, 得到工 作液 I .
将 49.5克含水的 Α1Ρ04胶(其中含 Al203 5.4重% )、
74亳升浓度为 4摩尔 /升的 H 2 S0 4、 Β·4克含量为 98 %的 RECI3 - 6H20 (其中 La203与 Ce203的重量比为 0.6 ) 、 351 毫升脱阳离子水混合均匀, 得到工作液 Π . 在强烈的搅拌下将上述二工作液混合成胶,继续搅拌 5 分钟后将搅拌转速降至 100转 /分左右, 将体系升温至 uo 在搅拌下晶化反应 16小时, 再将体系升温至 180 TC , 在搅拌下继续晶化 38小时.
将晶化反应后的物料迅速冷却至室温, 并用脱阳离子 水洗涤所得结晶物直至洗涤流出液的 PH值为 8 ~ 9, 过 滤, 在 110 ± 10 1C干燥 10小时即得 RE - ZSM5/ZSM11 共晶沸石.
该沸石具有表 1所示的 X光衍射谱线, 更详细的谱线 列于表 3 . 该沸石的硅铝比为 35, RE含量为 4·50重%, 其中分别具有 ZSM5和 ZSM11 晶相结构的部分的重量比 为 40 : 60 . 该沸石对正己烷、 环己烷、 水的吸附容量分 别为 9.8重%、 3·2重%、 6·5重% .
实施例 4
以乙二胺和己二胺的混合二元胺为模板剂制备本发明 提供的 La-ZSM5/ZSM1 1共晶沸石.
将 400毫升水玻璃 (其中 Si02 223克 /升、 Na20 70.4 克 /升) 、 326毫升脱阳离子水、 13克乙二胺与 21克己二 胺 ( 二者含量均为 98 % ) 混合均匀, 得到工作液 I - 将 1 1.5克含量为 99 %的 Al2 ( S04 ) 3 . 18H20、 67 毫升浓度为 4 摩尔 /升的 H2S04 、 Π 克含量为 99 % 的 LaCI3 6H20、 370亳升脱阳离子水混合均匀, 得到工作 液 Π .
在强烈的搅拌下将上述二工作液混合成胶,继续搅拌 5 分钟后将搅拌转速降至 100转 /分左右, 将体系升温至 1 *70
TC并保持恒温, 在搅拌下晶化反应 70小时.
将晶化反应后的物料迅速冷却至室温, 并用脱阳离子 水洗涤所得结晶物直至洗涤流出液的 PH值为 8 - 9, 过 滤, 在 110 ± 10 TC干燥 10小时即得 La-ZSM5/ZSM11 共 晶沸石.
该沸石具有表 1 所示的 x光衍射谱线, 更详细的谱线 列于表 3. 该沸石的硅铝比为 60, La含量为 5·20重%, 其中分别具有 ZSM5和 ZSM11 晶相结构的部分的重量比 为 60 : 40. 该沸石对正 己烷、 环己烷、 水的吸附容量分 别为 11.7重%、 3.0重%、 5.3重% .
表 3 实施例 1 实施例 2
实施例 3 实施例 4 d( Α) 1001/1。 d(A) 蘭/I。 d( A) 薩/I。 d( A) 1001/1。
11.182 34 11.225 35 11 224 31 11.230 36
10.017 28 10.065 29 10.063 28 10.081 30
5.960 6.010 6 6. 005 8 6.017 9
16 4.389 17 4. 386 15 4.387 16
4.291 15 4.300 16 4. 289 12 4.295 13
3.885 100 3.865 100 3. 853 100 3.862 100
3.821 56 3.823 53 3. 824 54 3.825 55
3.731 46 3.733 44 3. 732 57 3.734 46
3.647 21 3.649 24 3. 650 23 3.651 26
3.360 10 3.355 10 3. 350 12 3.358 11
3.065 12 3.063 13 3. 056 12 3.057 11
2.975 10 2.994 11 2. 998 15 2.997 13
2.965 10 2.964 10 2. 963 13 2.965 12
2.011 11 2.016 12 2. 017 12 2.016 12
2.004 12 2.003 11 2. 009 11 2.008 12
实施例 5
本实施例说明本发明提供的含稀土的共晶沸石具有 良 好的酸性水热稳定性.
将实施例 1 - 4 中制得的四个沸石样品分别在 540 TC 焙烧 S 小时脱除有机胺模板剂, 然后用 0·8Ν NH4N03和 0·1Ν NH4OH 的混合溶液对其分别进行铵离子交换, 交 换后的沸石用脱阳离子水洗涤至无游离 Ν03—, 过滤后在 110 ± 10 TC干燥 24小时即得钠含量小于 0.05重%的铵型 样品. 将铵型样品在 540 TC焙烧 4小时转为氢型.
将氢型样品在 550 ± 20 lC 、 100 %水蒸汽存在的条件 下焙烧 4小时,通入焙烧炉内的水量为每小时每克样品 5 -
10毫升.
将水热处理前、 后的各样品分别用氨吸附程序升温脱 附 ( TPD ) 方法测定其酸量变化. 测定时以 He为载气, 其流量为 20毫升 /分. 样品在吸附管内经 600 X:预活化 45 分钟, 然后降温至 150 , 恒温下注入氨进行吸附, 吸附 饱和后吹扫 30 分钟, 以 20 分的升温速度进行氨的脱 附, 用色谱仪记录特定温度范围内脱出氨的信号, 然后用 面积归一法计算样品的酸中心量, 结果列于表 4中.
4 中, 酸中心总量是由在 200 - 600 TC的脱附温度 下脱出氨的信号计算得到的. "中等强度酸中心% " 是指 经水热处理后中等强度酸中心的量占酸中心总量的百分 数; 中等强度酸中心的量则是由在 320 ~ 4S0 :的脱附温 度下脱出氨的信号计算得到的.
由表中数据可见, 本发明提供的含稀土的共晶沸石具 有良好的酸性水热稳定性, 这对于涉及到水热处理 ( 如催 化剂的再生) 的催化过程而官具有极大的工业实用意义. 相对酸中心总量
沸石 中等强度酸中心,
水热处理前 水热处理后 实施例 1 100 91 66
实施例 2 100 86 60
实施例 3 100 88 57
实施例 4 100 92 62
实施例 6
本实旄例说明本发明提供的沸石在稀乙烯与苯的烷基 化过程中的应用 .
将实施例 1 的沸石与三水氧化铝按照沸石 ( 干基) : Al203=65 : 35的重量比混合, 辅以适量浓度为 20 % 的硝 酸和田菁粉后混捏挤压成 Φ 2 x 2 - 3 毫米的颗粒, 在 110 - 120 X:干燥 24小时后, 于 450匸焙烧 1 小时、 500 焙烧 1 小时、 540 TC焙烧 5小时. 冷却后按照实例 5 中 所述的方法进行铵离子交换及焙烧, 将催化剂中的沸石转 为氢型; 并同样按实施例 5 中所述的方法将该氢型沸石催 化剂样品在 550 ± 20 匸、 100 %水蒸汽下水热处理 4 小 时.
在 10毫升的连续流动固定床反应装置中装入上述水热 处理后的催化剂样品 5 毫升进行稀乙烯与苯的烷基化反 应 . 原料稀乙烯气体的组成 ( 体积% ) 为: 乙烯 20 , 氢气 20 , 氮气 60. 烷基化条件为: 反应温度 370 TC , 反应压 力 0·7兆帕, 乙烯重量空速 1.0时— ', 苯与 乙烯的摩尔 比 5. 反应结果如下: 乙烯转化率为 98·8 %, 产物 乙苯的 选择性 91.5 % , 烷基化( 以 乙苯与二乙苯的总生成量计) 选择性为 99·0 % ·
实施例 7
本实施例说明本发明提供的沸石在催化裂化干气中 乙 烯与苯的烷基化过程中的应用 .
按照实施例 6 中所述的方法制成经水热处理后的氢型 沸石催化剂样品 .
在 200 毫升的绝热式连续流动固定床反应装置中装入 上述催化剂样品 ^00毫升, 以催化裂化干气为原料进行苯 的烷基化反应. 原料催化裂化干气的组成 ( 体积% ) 如下: 甲烷 33.0, 乙烯 19.5, 乙烷 16·0, 氢气 14.0, 氮气 10.2, 二氧化碳 4·0, 一氧化碳 1·5, 氧气 0·8 , 丙烯 0·8, 丙烷 .2 , 硫化氢 3500亳克 /米 3 , 水 1500ppm . 烷基化条件 为: 反应器入 口 温度 350 TC, 出 口 温度 425 TC , 反应压 力 0.7兆帕 ( 表压 ) , 乙烯重量空速 1·0时 - 苯与 乙烯 的摩尔比 5. 连续运转 45天, 乙烯的转化率保持在 99 -
95 %, 丙烯的转化率保持在 90 % 以上, 烷基化 ( 以 乙 苯与 二 乙苯的总生成量计 ) 选择性保持在 99 % 左右 . 当 控制 乙烯转化率在 92 % 以上时, 该催化剂可连续运转 65天保持 99 % 的烷基化选择性.
实施例 8
本实施例说明本发明提供的沸石在烷烃芳构化过程中 的应用 .
按照实施例 6中所述方法制得沸石 /氧化铝颗粒,经 450 - - 500 X: - 540 TC的一系列焙烧处理后, 按实施例 5 中 所述的方法进行铵离子交换, 所得铵型沸 石催化剂 用 Zn ( N03 ) 2水溶液在室温下浸渍 12 小时, 过滤后在 110 ± 10 X:干燥 6小时, 在 soo X 焙烧 3小时, 再按照实 施例 5 中所述方法将该锌型沸石催化剂样品在 550 ± 20 X:、 100 %水蒸汽下处理 4小时.该催化剂样品中 Zn含量 为 2.0重% ·
在 10亳升的连续流动固定床反应装置中装入上述催化 剂样品 5 亳升进行丙烷芳构化反应. 芳构化条件为: 反应 温度 500 TC , 反应压力 1 大气压, 丙烷重量空速 1·5时 - 反应结果如下: 丙烷单程转化率为 ?5 % , 芳烃选择性为 58重 % , 其中苯: 甲苯: 二 甲苯 ( 重量比 ) = 1 : 0.9 : 0.4.
如用 Ga ( N03 ) 3代替上述的 Zn ( N03 ) 2对沸石 催化剂进行改性, 用 Ga含量为 2·0重 % 的催化剂样品进 行上述丙烷芳构化反应, 则得到相似的反应结果.
实施例 9
本实施例说明本发明提供的沸石在甲醇转化为低碳烯 烃过程中的应用 .
按照实施例 6 中所述的方法制得氢型沸石催化剂 . 按 照实施例 8 中所述的催化剂改型方法, 以 Mg ( Ν03 ) 2 代替 Zn ( N03 ) 2制得 Mg含量为 2·4重 % 的催化剂样 品 ·
在 10亳升的连续流动固定床反应装置中装入上述催 化剂样品 5毫升进行甲醇转化反应 . 转化条件为: 反应 温度 500 TC , 反应压力 1 大气压, 甲醇重量空速 I·5时— 反应结果如下: 甲醇转化率 100 %, 产物中烃类收率 99·5 % , 其 中 甲烷 0.50 %、 乙烯 16.75 %、 丙烯 54·70 %、 丁烯 20·30
% , 其余为 c2 - C4的烷烃 .
工业实用性
本发明提供的沸石具有良好的酸性水热稳定性和抗杂 质 ( 如 H2S 、 H20 、 CO 、 C02等 ) 污染的能力, 它 与 其它沸石一样可以通过传统的离子交换技术进一步地予 以改性从而具有不同 的催化性能, 改性后的沸石可辅 以 适当 的基质制成各种过程中所需的催化剂 . 例如该沸石 用铵离子交换、 经加热改为氢型后可用作芳烃烷基化催 化剂; 又如该沸石用锌或镓离子交换改为锌或镓型后可 用作烷烃芳构化催化剂; 而 当该沸石用镁离子交换改为 镁型后可用作 甲醇转化为低碳烯烃的催化剂 . 该沸石还 可转为其它形式应用于其它的烃转化如异构化、 裂化、 歧化等反应 中 .

Claims

权利要求 ι·一种含稀土的结晶硅铝酸盐沸石, 其特征在于:
( 1 ) 具有 ZSM5与 ZSM11 的共结晶结构, 其中具有
ZSM5晶相结构的部分与具有 ZSM11晶相结构的部分的重 量比为 0·1 - 10;
( 2 ) 以氧化物的摩尔比表示的无水状态合成原型的化 学组成式如下: XNa20 · YRE203 · Al203 · ZSi02,其 中 X = 0.1 ~ 1.0, Y = 0.01 - 1.0 , Ζ = 20 ~ 300;
( 3 ) 具有如表 1所示的 X光衍射谱线;
( 4 ) 对正 己烷、 环 己烷、 水的吸附容量分别为 9 ~ 11 重 % 、 3 — 5重 % 、 4 - 8重 % .
2. 按照权利要求 1所述的沸石, 其特征在于所说稀土 既可以是单一的也可以是混合的稀土元素.
3. 权利要求 1所述沸石的合成方法, 其特征在于: 将 由水玻璃、 C2 ~ C8的二元胺和水组成的均匀混合物 I 与 由铝源、 无机酸、 稀土元素的盐和水组成的均匀混合物 Π在强烈搅拌下混合成胶, 使胶体在搅拌下于 100 - 200 晶化 0.5 - 4天,然后迅速冷却至室温,水洗至 pH8 ~ 9, 最后干燥, 其中上述原料的摩尔記比为: Na20/Al203 7 ~ 12 ; RE203/A12030.01 ~ 1.0; Si02/Al20330 - 600; H20/Si0220 ~ 100; 胺 /Si020.1 - 0.5.
4.按照权利要求 3所述的合成方法,其特征在于所说 二元胺选自 c2~ C8二元胺中的任一种二元伯胺或其中 两种二元伯胺的混合物 .
5. 按照权利要求 3所述的合成方法, 其特征在于所 说铝源选自 氯化铝、 溴化铝、 硝酸铝、 硫酸铝和磷酸铝 . 6·按照权利要求 3所述的合成方法,其特征在于所说 无机酸选自硫酸、 盐酸、 硝酸和璘酸 .
7·按照权利要求 3所述的合成方法,其特征在于所说 稀土元素的盐选自 单一稀土元素或混合稀土元素的盐酸 盐、 硝酸盐和硫酸盐.
8·权利要求 1 的沸石作为芳烃烷基化催化剂的应用 .
9·权利要求 1 的沸石作为烷烃芳构化的催化剂 的应 用 .
10·权利要求 1 的沸石作为 甲醇转化为低碳烯烃的催化 剂的应用 .
PCT/CN1995/000099 1994-12-30 1995-12-25 Zeolite cocristalline zsm-5/zsm-11 contenant des terres rares WO1996020891A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1019960704586A KR100249393B1 (ko) 1994-12-30 1995-12-25 희토류-함유zsm-5/zsm-11공 결정성 제올라이트
BR9507194A BR9507194A (pt) 1994-12-30 1995-12-25 Zeólito co-cristalino de terras raras - zsm-5/zsm-11
JP52066496A JP3337221B2 (ja) 1994-12-30 1995-12-25 希土類−zsm−5/zsm−11 共晶ゼオライト
AU42965/96A AU690402B2 (en) 1994-12-30 1995-12-25 Rare earth-ZSM-5/ZSM-11 cocrystalline zeolite
EP95941571A EP0801027B1 (en) 1994-12-30 1995-12-25 Rare earth-zsm-5/zsm-11 cocrystalline zeolite

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN94113403.2 1994-12-30
CN94113403A CN1041399C (zh) 1994-12-30 1994-12-30 一种含稀土的结晶硅酸铝沸石

Publications (1)

Publication Number Publication Date
WO1996020891A1 true WO1996020891A1 (fr) 1996-07-11

Family

ID=5036726

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN1995/000099 WO1996020891A1 (fr) 1994-12-30 1995-12-25 Zeolite cocristalline zsm-5/zsm-11 contenant des terres rares

Country Status (10)

Country Link
US (1) US5869021A (zh)
EP (1) EP0801027B1 (zh)
JP (1) JP3337221B2 (zh)
KR (1) KR100249393B1 (zh)
CN (1) CN1041399C (zh)
AU (1) AU690402B2 (zh)
BR (1) BR9507194A (zh)
TW (1) TW295554B (zh)
WO (1) WO1996020891A1 (zh)
ZA (1) ZA9511043B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0913196A1 (en) * 1996-06-24 1999-05-06 China Petrochemical Corporation An alkylation catalyst and the application thereof

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6277355B1 (en) * 1999-07-13 2001-08-21 Exxonmobil Chemical Patents Inc. Synthesis of ZSM-5 and ZSM-11
US6346224B1 (en) * 1999-10-22 2002-02-12 Intevep, S.A. Metaloalluminosilicate composition, preparation and use
US6809055B2 (en) 2000-10-20 2004-10-26 Abb Lummus Global, Inc. Zeolites and molecular sieves and the use thereof
US7510644B2 (en) 2000-10-20 2009-03-31 Lummus Technology Inc. Zeolites and molecular sieves and the use thereof
CN1108356C (zh) * 2000-10-26 2003-05-14 中国石油化工股份有限公司 一种高活性高中油性加氢裂化催化剂及其制备方法
US6761875B2 (en) * 2001-09-05 2004-07-13 Engelhard Corporation Rare earth silicate molecular sieves
US6969692B2 (en) * 2002-08-28 2005-11-29 Albemarle Netherlands B.V. Process for the preparation of doped pentasil-type zeolites using a doped reactant
KR100460447B1 (ko) * 2002-10-14 2004-12-08 한국화학연구원 무정형 알루미노실리케이트의 제조방법
ITMI20042136A1 (it) * 2004-11-08 2005-02-08 Sasol Italy S P A Procedimento perfezionato per la preparazione di zeoliti zsm-5
CN100425343C (zh) * 2005-06-30 2008-10-15 中国石油化工股份有限公司 一种烷基芳烃异构化催化剂及使用方法
CN100438979C (zh) * 2006-09-15 2008-12-03 中国科学院山西煤炭化学研究所 一种甲醇转化制烃分子筛催化剂的制备方法
WO2009087576A2 (en) * 2008-01-09 2009-07-16 Albemarle Netherlands B.V. Fcc process employing basic cracking compositions
CN101514020B (zh) * 2008-02-20 2011-04-27 中国石油化工股份有限公司 ZSM-5/β沸石/MCM-56三相共生分子筛及其合成方法
CN101514021B (zh) * 2008-02-20 2011-01-19 中国石油化工股份有限公司上海石油化工研究院 ZSM-5/β沸石/Y沸石三相共生分子筛及其合成方法
CN101856622B (zh) * 2009-12-16 2012-06-13 中国科学院大连化学物理研究所 一种合成吡啶碱的共结晶沸石催化剂及其制备方法
US9126184B2 (en) * 2009-12-16 2015-09-08 Uop Llc Detergent alkylation using a rare earth exchanged catalyst
US20110143920A1 (en) * 2009-12-16 2011-06-16 Uop Llc Rare Earth Exchanged Catalyst for Use in Detergent Alkylation
US8470726B2 (en) * 2009-12-16 2013-06-25 Uop Llc Alkylation catalysts with low olefin skeletal isomerization activity
CN101717095B (zh) * 2009-12-23 2012-06-13 中国科学院大连化学物理研究所 一种小晶粒稀土-zsm5/zsm11共结晶沸石的合成方法
TWI411578B (zh) * 2010-02-06 2013-10-11 Dalian Chemical Physics Inst Synthesis of a Small Grain Rare Earth - ZSM5 / ZSM11 Co - Crystallized Zeolite
CN102372282B (zh) * 2010-08-18 2013-01-09 中国科学院大连化学物理研究所 一种zsm5/zsm11共结晶沸石的无胺合成方法
US8889937B2 (en) 2011-06-09 2014-11-18 Uop Llc Process for producing one or more alkylated aromatics
CN102389830A (zh) * 2011-10-31 2012-03-28 中国科学院大连化学物理研究所 一种超细共结晶分子筛催化剂的制备方法
CN103540340B (zh) * 2012-07-12 2015-10-21 中国石油化工股份有限公司 汽油精制方法
CN103539153B (zh) * 2012-07-12 2015-11-18 中国石油化工股份有限公司 纳米多级孔zsm-11/zsm-5共晶沸石的制备方法
CN104624226B (zh) * 2013-11-13 2017-04-05 中国石油天然气股份有限公司 一种zsm‑5 和zsm‑11 共晶沸石分子筛及其制备和应用
EP2926899A1 (en) * 2014-03-31 2015-10-07 Hindustan Petroleum Corporation Ltd. A catalyst composite for the reduction of olefins in the FCC naphtha stream
IN2014MU01231A (zh) * 2014-03-31 2015-10-02 Hindustan Petroleum Corp Ltd
CN106466625A (zh) * 2015-08-19 2017-03-01 中国科学院大连化学物理研究所 一种无粘结剂磷稀土-zsm5/zsm11分子筛催化剂的制备方法和应用
CN106673000B (zh) * 2015-11-09 2018-10-23 中国石油化工股份有限公司 含稀土金属的zsm-11分子筛的合成方法及其合成的分子筛
CN106673005B (zh) * 2015-11-09 2019-05-14 中国石油化工股份有限公司 含稀土金属的zsm-11/zsm-5复合分子筛的合成方法及其合成的复合分子筛
CN108238838B (zh) * 2016-12-26 2021-02-05 中国石油化工股份有限公司 一种c6烷烃高产苯的方法
CN106807442A (zh) * 2017-01-16 2017-06-09 惠生工程(中国)有限公司 一种具有高甲苯甲基化效率的择形催化剂及其制备方法和应用
WO2020018449A1 (en) 2018-07-16 2020-01-23 Battelle Energy Alliance, Llc Composite media for non-oxidative ethane dehydrogenation, and related ethane activation systems and method of processing an ethane-containing stream
CN109775714B (zh) * 2019-01-23 2021-05-14 浙江恒澜科技有限公司 一种含微量稀土离子的mfi拓扑学结构硅分子筛及其制备方法
CN109833898B (zh) * 2019-01-23 2021-05-14 浙江恒澜科技有限公司 含微量稀土离子的球形mfi拓扑学结构全硅分子筛催化剂的制备方法及己内酰胺制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0000669A1 (en) * 1977-08-01 1979-02-07 Mobil Oil Corporation Zeolite ZSM-11, a method for preparing it, and a process of catalytic conversion using a catalyst comprising it
US4229424A (en) * 1979-04-09 1980-10-21 Mobil Oil Corporation Crystalline zeolite product constituting ZSM-5/ZSM-11 intermediates
US4495166A (en) * 1982-07-19 1985-01-22 Mobil Oil Corporation Synthesis of ZSM-5 utilizing a mixture of quaternary ammonium ions and amines
EP0550917A1 (en) * 1991-02-28 1993-07-14 China Petrochemical Corporation Rare earth-containing high-silica zeolite having penta-sil structure and process for the same

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3402996A (en) * 1966-12-19 1968-09-24 Grace W R & Co Ion exchange of crystalline zeolites
DE2017807A1 (de) * 1969-05-01 1970-11-12 W.R. Grace & Co., New York, N.Y. (V.St.A.) Synthetischer Alumosilikatzeolith und Verfahren zu dessen Herstellung
US3702886A (en) * 1969-10-10 1972-11-14 Mobil Oil Corp Crystalline zeolite zsm-5 and method of preparing the same
US4107224A (en) * 1977-02-11 1978-08-15 Mobil Oil Corporation Manufacture of ethyl benzene
US4139600A (en) * 1977-04-22 1979-02-13 Mobil Oil Corporation Synthesis of zeolite ZSM-5
CA1127134A (en) * 1978-11-02 1982-07-06 Roger A. Morrison Crystalline zeolite composition
GB2033358B (en) * 1978-11-06 1983-03-02 Mobil Oil Corp Crystalline zeolite composition
US4289607A (en) * 1979-04-09 1981-09-15 Mobil Oil Corporation Catalytic conversion with crystalline zeolite product constituting ZSM-5/ZSM-11 intermediates
US4372839A (en) * 1981-01-13 1983-02-08 Mobil Oil Corporation Production of high viscosity index lubricating oil stock
BR8202276A (pt) * 1981-04-22 1983-04-05 Nat Distillers Chem Corp Composicoes de silicato e borossilicato de metal cristalino sintetico e sua preparacao
US4585638A (en) * 1984-07-16 1986-04-29 Mobil Oil Corporation Synthesis of crystalline silicate ZSM-5
US4681747A (en) * 1984-11-16 1987-07-21 The Standard Oil Company Process for the preparation of metallosilicates of tetravalent lanthanide and actinide series metals using heterpoly metallates
DE3532748A1 (de) * 1985-09-13 1987-03-19 Degussa Templatverbindungen, ihre herstellung und verwendung
DE3803661A1 (de) * 1988-02-06 1989-08-17 Bayer Ag Verfahren zur herstellung von n-alkylierten anilinen
CN1020269C (zh) * 1989-11-30 1993-04-14 中国石油化工总公司石油化工科学研究院 含稀土五元环结构高硅沸石的合成
CN1027632C (zh) * 1990-07-23 1995-02-15 中国石油化工总公司石油化工科学研究院 含稀土五元环结构高硅沸石的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0000669A1 (en) * 1977-08-01 1979-02-07 Mobil Oil Corporation Zeolite ZSM-11, a method for preparing it, and a process of catalytic conversion using a catalyst comprising it
US4229424A (en) * 1979-04-09 1980-10-21 Mobil Oil Corporation Crystalline zeolite product constituting ZSM-5/ZSM-11 intermediates
US4495166A (en) * 1982-07-19 1985-01-22 Mobil Oil Corporation Synthesis of ZSM-5 utilizing a mixture of quaternary ammonium ions and amines
EP0550917A1 (en) * 1991-02-28 1993-07-14 China Petrochemical Corporation Rare earth-containing high-silica zeolite having penta-sil structure and process for the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0801027A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0913196A1 (en) * 1996-06-24 1999-05-06 China Petrochemical Corporation An alkylation catalyst and the application thereof
EP0913196A4 (en) * 1996-06-24 2000-03-22 China Petrochemical Corp ALKYLATION CATALYST AND USE THEREOF

Also Published As

Publication number Publication date
US5869021A (en) 1999-02-09
EP0801027B1 (en) 1999-09-08
AU4296596A (en) 1996-07-24
TW295554B (zh) 1997-01-11
KR100249393B1 (ko) 2000-03-15
CN1137022A (zh) 1996-12-04
AU690402B2 (en) 1998-04-23
EP0801027A1 (en) 1997-10-15
CN1041399C (zh) 1998-12-30
EP0801027A4 (en) 1997-09-29
JPH10501515A (ja) 1998-02-10
ZA9511043B (en) 1996-09-12
JP3337221B2 (ja) 2002-10-21
KR970701156A (ko) 1997-03-17
BR9507194A (pt) 1997-09-09

Similar Documents

Publication Publication Date Title
WO1996020891A1 (fr) Zeolite cocristalline zsm-5/zsm-11 contenant des terres rares
US4528171A (en) Zeolite and process for preparing the same
US4593138A (en) Catalytic isomerisation process employing zeolite EU-1
EP1701913B1 (en) Chabazite-type molecular sieve and its synthesis method
US4060590A (en) Zeolite Nu-1
US4836996A (en) Method of making zeolite Eu-2
CA2092938C (en) Zeolitic catalyst of mfi type, its preparation and use
JP4736008B2 (ja) ゼオライト物質の結晶核を用いるmtt構造型ゼオライトの調製方法
WO2016126431A1 (en) Process for preparing a molecular sieve
US20090192031A1 (en) Izm-1 crystalline solid and a process for its preparation
JP7085375B2 (ja) テンプレートである1,6-ビス(メチルピペリジニウム)ヘキサンジヒドロキシドの存在下でのizm-2ゼオライトの合成方法
JP7469725B2 (ja) 金属含有cha型ゼオライト及びその製造方法
JPH0153205B2 (zh)
US7658909B2 (en) Process for preparing a beta zeolite
JP2018162206A (ja) テンプレートである1,6−ビス(メチルピペリジニウム)ヘキサンジブロミドの存在下でのizm−2ゼオライトの合成方法
GB2077709A (en) Zeolite EU-2
US6093866A (en) Alkylation catalyst and the application thereof
JPH0611648B2 (ja) ゼオライトおよびその製造方法
JP2559066B2 (ja) 結晶性シリケートzsm−11の合成法
JPH0353249B2 (zh)
US20080274875A1 (en) Process for preparation of a MEL-structural-type zeolite
CN112551543A (zh) 在氢氧化物和溴化物形式的含氮有机结构化剂的混合物存在下制备izm-2沸石的方法
GB2193202A (en) Zeolite sigma-1
JPH0366245B2 (zh)
KR100478077B1 (ko) 알킬화 반응 촉매 및 이의 용도

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CA JP KR

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)

Free format text: BR,JP,KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1995941571

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1995941571

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: CA

WWG Wipo information: grant in national office

Ref document number: 1995941571

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1995941571

Country of ref document: EP