WO1996007622A1 - Procede de fabrication de clinker par cuisson - Google Patents

Procede de fabrication de clinker par cuisson Download PDF

Info

Publication number
WO1996007622A1
WO1996007622A1 PCT/JP1995/001748 JP9501748W WO9607622A1 WO 1996007622 A1 WO1996007622 A1 WO 1996007622A1 JP 9501748 W JP9501748 W JP 9501748W WO 9607622 A1 WO9607622 A1 WO 9607622A1
Authority
WO
WIPO (PCT)
Prior art keywords
clinker
cement
fluidized bed
air
discharge
Prior art date
Application number
PCT/JP1995/001748
Other languages
English (en)
French (fr)
Inventor
Isao Hashimoto
Shozo Kanamori
Mikio Murao
Norio Yokota
Nichitaka Sato
Katsuji Mukai
Original Assignee
Kawasaki Jukogyo Kabushiki Kaisha
Sumitomo Osaka Cement Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo Kabushiki Kaisha, Sumitomo Osaka Cement Co., Ltd. filed Critical Kawasaki Jukogyo Kabushiki Kaisha
Priority to KR1019960702286A priority Critical patent/KR0139048B1/ko
Priority to DE69532230T priority patent/DE69532230T2/de
Priority to BR9506358A priority patent/BR9506358A/pt
Priority to DK95930032T priority patent/DK0728714T3/da
Priority to EP95930032A priority patent/EP0728714B1/en
Priority to US08/637,765 priority patent/US5690730A/en
Publication of WO1996007622A1 publication Critical patent/WO1996007622A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/36Manufacture of hydraulic cements in general
    • C04B7/43Heat treatment, e.g. precalcining, burning, melting; Cooling
    • C04B7/44Burning; Melting
    • C04B7/45Burning; Melting in fluidised beds, e.g. spouted beds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B15/00Fluidised-bed furnaces; Other furnaces using or treating finely-divided materials in dispersion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B15/00Fluidised-bed furnaces; Other furnaces using or treating finely-divided materials in dispersion
    • F27B15/003Cyclones or chain of cyclones
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B15/00Fluidised-bed furnaces; Other furnaces using or treating finely-divided materials in dispersion
    • F27B15/02Details, accessories, or equipment peculiar to furnaces of these types
    • F27B15/09Arrangements of devices for discharging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D15/00Handling or treating discharged material; Supports or receiving chambers therefor
    • F27D15/02Cooling
    • F27D15/0286Cooling in a vertical, e.g. annular, shaft

Definitions

  • the present invention relates to a method for firing a cement clinker using one of a fluidized bed granulation and firing furnace, and a firing apparatus for performing the method.
  • Cement crin power is produced by mixing limestone, silica sand, etc., preheating raw material powder, granulating preheated and partially calcined raw material powder, firing it, and then cooling it.
  • a sintering apparatus equipped with a spouted bed granulation furnace or two furnaces of a fluidized bed granulation furnace and a fluidized bed sintering furnace is often used for the production (for example, see Japanese Patent Application Laid-Open No. 2-2299745). No.).
  • the apparatus for manufacturing a cement clinker described in Japanese Patent Application Laid-Open No. 2-294745 further includes a primary cooler and a secondary cooler.
  • the present invention has been made in view of the above points, and an object of the present invention is to provide a very simple
  • An object of the present invention is to provide a method and an apparatus capable of firing a high-quality cement clinker at a low running cost with equipment having a single furnace structure.
  • a method for firing cement clinking force of the present invention comprises the steps of: granulating a preheated cement raw material powder in a fluidized bed granulation / firing furnace; firing; and then granulating and firing the clinker.
  • the fluidized bed granulation / falling furnace is installed on the upper surface of the gas dispersion plate (perforated plate) or on the radial extension of the upper surface of the gas dispersion plate.
  • the clinking force is discharged through the opening, and air for classifying and cooling the clinker is blown into the discharge chamber connected to the falling port, and the air flow rate blown out from the falling port is controlled by the nozzle (opening) of the gas dispersion plate.
  • the flow velocity of the air blown out from the falling port is controlled so as to be smaller than the flow velocity of the air flowing into the fluidized bed through the opening of the dispersion plate.
  • the fluidized-bed granulating / firing furnace may form an annular flowing eyebrow on a gas dispersion plate by concentrically providing a mountain-shaped member having a mountain-shaped upper end. Further, it is preferable to adjust the opening area of the falling port so that the fluidized bed differential pressure is in a substantially constant range. Also, instead of injecting the classification and cooling air, the classification air and the cooling air are blown separately.
  • the sintering apparatus for cement cleansing of the present invention comprises the steps of: Granulation, granulation in a baking furnace, baking, and granulation.
  • a cement-clinical baking apparatus that cools the clinker that has been granulated and fired, a fluidized bed granulator.
  • a clinker drop port is provided on the radial extension of the upper surface, and this clinker drop port is connected to a cooler via a discharge shot and a hermetic discharge means, so that the clinker is classified and cooled in a discharge chute. It is characterized by connecting an air blowing pipe.
  • the fluidized-bed granulating and firing furnace may form an annular fluidized bed on the gas dispersion plate by concentrically providing a mountain-shaped member whose upper end protrudes in a mountain shape.
  • a classification air cooling pipe and a cooling air blowing pipe may be separately provided instead of the classification / cooling air blowing pipe.
  • the gas dispersion plate is inclined, and a plurality of nozzles (openings) are provided on the radial extension of the downward inclined end, and the cleansing force drops through the cleansing force drop port and the discharge groove formed between the gas dispersing plate. It is preferable to provide a mouth, and to classify the cleansing force immediately above the drop outlet and on the discharge groove.
  • the diameter of the nozzle (opening) of the discharge groove is different from the diameter of the nozzle (opening) of the gas dispersion plate.
  • a discharge member between the clink force drop port and the air blowing pipe may be provided with a throttle member for secondary classification, or a large block discharge port may be provided near the clinker drop port.
  • a cooler is formed such that a moving bed is formed in the cooler main body and moved by cooling air blown into the main body, and a partial fluidized bed is formed above the moving bed. It is preferable that the cross-sectional area of the upper part of the main body is selected. For example, a throttle is provided in the upper part of the cooler body to increase the air flow velocity in this area to form a partial fluidized bed and eliminate segregation of particles.
  • the preheated cement raw material powder is fed into a fluidized bed of a flow bed granulation / firing furnace where it is granulated and fired.
  • the granulated and fired clinker is classified by the air blown into the discharge chute at the discharge groove on the upper surface of the gas dispersion plate and just above the dropout, and small particles hardly fall into the discharge chute. That is, the particles in the discharge chute and the fluidized bed Mixing with O 9 particles is eliminated.
  • the particles that fall into the discharge chute are efficiently cooled by the cooling air.
  • the temperature of the throat is reduced, which eliminates the coaching on the lower surface of the dispersion plate.
  • the particle size distribution in the fluidized bed granulation baking furnace is narrowed, and agglomeration can be prevented, and the baking temperature can be increased.
  • FIG. 1 is an overall system diagram showing an embodiment of a cement cleansing firing apparatus according to the present invention, a suspension preheater, and the like.
  • FIG. 2 is an enlarged cross-sectional view taken along the line III-III in FIG. However, the fluidized bed is omitted.
  • FIG. 3 is an enlarged sectional view showing a modified example corresponding to the embodiment of FIG.
  • FIG. 4 is an enlarged sectional view taken along line IV-W in FIG. However, the moving layer is omitted.
  • FIG. 5 is a sectional view showing another embodiment of the device S of the present invention.
  • FIG. 6 is a sectional view taken along line VI-VI in FIG. However, the fluidized bed is omitted.
  • FIG. 7 is a cross-sectional explanatory view showing another example of the hermetic discharge means in FIG.
  • FIG. 8 is an explanatory sectional view showing still another example of the device of the present invention.
  • FIG. 9 is a particle size distribution diagram (RR diagram) in the method of the present invention and the conventional method.
  • FIG. 10 is an explanatory diagram showing another example around the fluidized bed and the gas dispersion plate in the apparatus of the present invention.
  • FIGS. 11 and 12 are explanatory views showing a modification of the fluidized-bed granulating and firing furnace in the apparatus according to the present invention.
  • FIG. 1 shows a cement cleaning device as a first embodiment of the present invention
  • FIG. Fig. 1 shows an enlarged cross section taken along the line ⁇ - ⁇
  • Fig. 4 shows an enlarged cross section taken along the line IV-W in Fig. 1.
  • 10 is a suspension preheater including cyclones c, to c ⁇ ,
  • Reference numeral 12 denotes a calciner
  • 14 denotes a fluidized bed granulating and firing furnace
  • 16 denotes a cooler.
  • the cement raw material powder preheated and partially calcined in the suspension preheater 10 and the calciner 12 is introduced into the fluidized bed 18 of the fluidized bed granulator / firing furnace 14 where the lower cooler 1 It is granulated and fired while being fluidized by the air sent from 6 through the throat 20 and the gas dispersion plate 22.
  • 4 2 is Edge X Kuta.
  • a plurality of openings are provided on the radial extension of the gas distribution plate 22 through a discharge groove 24 formed between the gas distribution plate 22 and the clinker drop port 26.
  • a clinker drop port 26 is provided, and this clinker drop port 26 is connected to the cooler 16 via the discharge shutter 28 and the airtight discharge means 30 to classify the discharge chute 28 and blow cooling air. Tube 32 is connected.
  • a clinker dropper 26 can be provided on the dispersion plate 22.
  • a gate 34 is provided in the vicinity of the cleansing force drop port 26 so that the opening area of the drop port 26 can be adjusted.
  • the gate 34 is configured to be horizontally movable by driving means (not shown) such as a hydraulic cylinder, a pneumatic cylinder, and a motor cylinder.
  • the diameter of the nozzle (opening) of the discharge groove 24 is preferably different from the diameter of the nozzle (opening) of the gas distribution plate 22. With this configuration, the cleansing force on the dispersion plate 22 can be dropped into the drop port 26 while being classified.
  • cooler 16 As the cooler 16, a fluidized bed cooler, a cooler having a partially fluidized bed above the moving bed, and the like are used. 1 and 4 show the latter as an example.
  • 36 is a cooling air introduction pipe
  • 38 is a cone part
  • 40 is a cooling air main pipe.
  • the air introduced into the cooler 16 is blown into the bed from the cooling air inlet pipe 36 and the lower part of the cone section 38 to form a moving bed in the cooler 16 and is applied by the cleaning force.
  • the heated air expands to increase the flow velocity, forming a partially fluidized bed in the upper part of the cooler 16. Details will be described later with reference to FIG.
  • FIG. 5 shows a cement sintering apparatus as Example 2 of the present invention
  • FIG. 6 shows a section taken along line VI-VI of FIG.
  • the upper surface of the gas dispersion plate 22 is inclined, and a plurality of openings are provided on the extension of the downward inclined end, and the discharge groove formed between the gas dispersion plate 22 and the cleansing force drop port 26 is formed.
  • a clinker drop port 26 is provided through 24, and classification is made such that the cleaning force is classified just above the drop port and on the discharge groove.
  • the angle of the upper surface of the gas distribution plate 22 with respect to the horizontal direction is 5 to 30 degrees, preferably 5 to 15 degrees.
  • a throttle member 44 for secondary classification is provided in the discharge shout 28 between the clinker drop port 26 and the air inlet pipe 32, and the upper part of the drop port 26 is the primary classification section 46.
  • the upper side adjacent to the aperture member 44 is defined as a secondary classification section 48.
  • a large lump discharge port 50 for discharging a large lump such as coagulated sediment is provided in the vicinity of the cleaning force drop port 26.
  • Reference numeral 52 denotes a driving means for the gate 34
  • 54 denotes a driving means for the aperture member 44
  • 56 denotes a wrench.
  • the hermetic discharge means 30 temporarily accumulates the granules inside, shuts off the ventilation by the material sealing action of the granules themselves, and pushes out the granules by compressed air or mechanical means.
  • the cooler 16 has, as an example, a moving bed 58 formed by blowing cooling air inside the cooler body, and an upper part of the cooler body such that a partial fluidized bed 60 is formed above the moving bed 58. Have a selected cross-sectional area.
  • a throttle section 62 is provided at the upper part of the cooler main body, and the air that has been heated and expanded by the clin force forming the moving layer 58 further increases the flow velocity at the throttle section 62 to form a partial fluidized bed 60.
  • FIG. With this configuration, the partial fluidized bed 60 is formed above the moving bed 58, and there is an advantage that the clin force is fluidized, segregation is reduced, and air drift is reduced.
  • Other configurations and operations are the same as those of the first embodiment.
  • a valve such as a rotary valve 64 is provided at the lower end of the discharge chute 28, and the discharge chute 28 By adjusting the discharge amount of the rotary valve 64 so that a certain amount of the granulated material is accumulated in the chamber, the granulated material can be introduced into the cooler 16.
  • FIG. 8 shows a cement cleaning device as a third embodiment of the present invention.
  • a classification air injection pipe 66 and a cooling air injection pipe 68 are separately provided.
  • the control valve 76 provided in the pulse air pipe 74 is connected to the bed differential pressure detector 78 provided in the fluidized bed of the discharge chute 28 to detect the differential pressure of the fluidized bed 18.
  • the differential pressure detector 86 is connected to a control valve 90 provided on the classifying air blowing pipe 66 and a driving means 52 of the gate 34 via a layer differential pressure controller (not shown).
  • Reference numeral 80 denotes a temperature sensor for the product clean power
  • reference numeral 82 denotes a control valve for the cooling air supply pipe 84.
  • Other configurations are the same as those in the first embodiment.
  • the differential pressure of the flow layer 18 is detected by the differential pressure detector 86, and the driving means 52 of the gate 34 is controlled so that the differential pressure is constant. Control is performed so that the particle residence time in the layer is constant at the opening of 4. Further, the layer differential pressure is finely adjusted by the control valve 90. In some cases, the emission is controlled by the temperature in the bed without changing the gate opening. (Emission varies depending on particle size.)
  • the temperature of the cleaning force inside the discharge chute 28 is detected by the temperature detector 72, and the cooling air blowing pipe is set so that this temperature (primary cooling temperature) is maintained at 110 ° C or lower.
  • the control valve 70 provided at 68 is controlled.
  • the layer differential pressure between the two points in the discharge chute 28 is detected by the layer differential pressure detector 78, and if there is a criminal force at this detection position (if the differential pressure is large), the pulse air tube 7 is detected. Open the control valve 76 of 4 and discharge the clinker from the airtight discharge means 30.If there is no clin force at the detection position (if the differential pressure is small), close the control valve 76 to discharge the clink force. stop. This is to keep the height of the material seal of the discharge shot 28 almost constant.
  • control valve 90 Since the control valve 90 is used for classifying control, sampling is performed from the sampling means 88 of the airtight discharge means 30.If the particle size of the cleaning force is large, the control from the layer differential pressure detector 86 is released. Classifying air blowing pipe 66 by squeezing the control valve 90 to reduce the amount of classified air, and classify by increasing the opening of the control valve 90 if the particle size of the sampled clean force is small. Increase air volume.
  • FIG. 9 is a particle size distribution diagram (R-R line) showing the results of an experiment performed using the apparatus of the present invention shown in FIG. 8 and a conventional apparatus (an apparatus excluding the classification and discharge mechanism from the apparatus shown in FIG. 8).
  • the horizontal axis indicates the particle size, and the vertical axis indicates the residual amount.
  • Table 1 below shows the cement cleansing force using the apparatus of the present invention shown in FIG. 8 and the conventional two-furnace type apparatus shown in FIG. 1 of Japanese Patent Application Laid-Open No. 2-229745. It shows a performance comparison when manufactured. From Table 1, it can be seen that the method of the present invention has a smaller number of apparatuses (the number of fluidized beds), so that heat consumption and power consumption are reduced.
  • the raw material powder and the fuel are supplied from the side of the flowing eyebrows.
  • the force can be supplied from below the fluidized bed 18 as shown in Fig. 10. is there.
  • the fluidized bed granulating and firing furnace has a configuration in which a mountain-shaped member whose upper end protrudes in a mountain shape is concentrically provided on a gas dispersion plate to form an annular fluidized bed. Good. As shown in FIG. 12, this chevron member may have a concentric recess reaching the gas distribution plate in the center.
  • the present invention is configured as described above, and has the following effects.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Crucibles And Fluidized-Bed Furnaces (AREA)
  • Furnace Details (AREA)

Description

明 細 耆 セメントクリン力の焼成方法及び焼成装置 技術分野
本発明は、 流動層造粒 ·焼成炉の 1炉を使用してセメントクリンカを焼成する 方法及びこの方法を実施する焼成装置に関するものである。
背景技術
セメントクリン力は、 石灰石や珪砂等を配合 ·粉砕した原料粉を予熱し、 予熱 及び一部仮焼された原料粉を造粒し、 それを焼成した後、 冷却することによって 製造されるが、 近年、 その製造には、 噴流層造粒炉又は流動層造粒炉と流動層焼 成炉との 2炉を備える焼成装置がよく使用される (例えば、 特開平 2— 2 2 9 7 4 5号公報参照) 。 なお、 この特開平 2— 2 2 9 7 4 5号公報記載のセメントク リンカの製造装置は、 さらに 1次冷却器及び 2次冷却器を備えている。
また、 近年、 造粒と焼成とを一つの流動層炉で実施するようにしたセメントク リン力の焼成装置も知られている (例えば、 特開昭 5 8— 1 1 5 0 4 7号公報参 照) 。
特開平 2— 2 2 9 7 4 5号公報記載のセメントクリン力の焼成装置においては、 噴流層造粒炉で造粒し、 流動層焼成炉で焼成し、 1次流動層冷却装置で急冷した 後、 2次流動層冷却装置で冷却するとともに熱回収している。 このように、 噴流 層造粒炉と流動層焼成炉との 2炉としたことにより、 高温焼成が可能となり、 き わめて高品質のセメントクリン力を焼成できる。 しかし、 この装置では装置数が 多い上にランニングコストも増加するという問題点がある。 このため、 コンパク 卜な設備で、 熱消費 ·電力消費を大幅に低減し得る焼成装置の開発が望まれてい た。
また、 特開昭 5 8 - 1 1 5 0 4 7号公報記載のセメントクリン力の焼成装置に おいては、 焼成炉からの排出シユート内に複数の風速の異なる分級ゾーンを形成 するように、 冷却器排気を排出シュートに導入している。 しかし、 各ダク トの通 風量は差圧で決まるので、 排出シユー卜への造粒物の落下状況等により変動し、 所定の風速に制御することが困難であった。 また、 一度シュート内に落下したら、 シユート内での分散は悪いので、 小粒子を流動眉に戻す分級効果も少ない。
従って、 クリン力粒度分布が広くなり品質が低下する (小粒子は焼成不十分) また、 層内の粒度分布も広くなるので、 造粒物同士の付着が進行しすぎる、 いわ ゆるアグロメレーシヨンという不都合な現象が生じ易くなり、 十分焼成温度を上 げられず、 高品質のセメントクリンカを得ることができないという問題があった 発明の開示
本発明は上記の諸点に鑑みなされたもので、 本発明の目的は、 きわめて簡単な
1炉構造の設備で、 少ないランニングコス卜で高品質のセメントクリンカを焼成 することができる方法及び装置を提供することにある。
上記の目的を達成するために、 本発明のセメントクリン力の焼成方法は、 予熱 されたセメント原料粉を流動層造粒 ·焼成炉で造粒 ·焼成した後、 造粒 ·焼成さ れたクリンカを冷却器に導入するセメントクリ ン力の焼成方法において、 流動層 造粒 ·焼成炉からこの炉のガス分散板 (多孔板) 上面又はガス分散板上面の半径 方向の延長上に設けられた落下口を介してクリン力を排出し、 この落下口に連な る排出シユー卜にクリンカを分級 ·冷却するための空気を吹き込むとともに、 落 下口から吹き出す空気流速が前記ガス分散板のノズル (開口) を通って流入する 空気流速と異なるように吹込空気量、 特に分級,冷却用の吹込空気量を調節し、 分級 ·冷却空気吹込位置より下方の気密排出手段を経てクリンカを冷却器に導入 するように構成される。 通常は、 落下口から吹き出す空気流速が、 分散板の開口 を通つて流動層内に流入する空気流速より小さくなるように制御する。
この方法において、 流動層造粒 ·焼成炉はガス分散板上に、 上端が山型に突出 した山型部材を同心に設け、 環状流動眉を形成することもある。 また、 流動層差 圧が略一定範囲になるように、 落下口の開口面積を調整することが好ましい。 また、 分級 ·冷却空気を吹き込む代わりに、 分級空気と冷却空気とを別々に吹 さ込 < と t»める。
さらに、 排出シュート内のクリン力の温度を検出し、 この温度により冷却空気 量を調節してクリン力の冷却温度を制御することが好ましい。
本発明のセメントクリン力の焼成装置は、 予熱されたセメント原料粉を流動層 造粒 ·焼成炉で造粒 ·焼成し、 造粒 ·焼成されたクリンカを冷却器で冷却するセ メントクリン力の焼成装置において、 流動層造粒 ·焼成炉のガス分散板上面又は ガス分散板上面の半径方向の延長上にクリンカ落下口を設け、 このクリンカ落下 口を排出シユート及び気密排出手段を介して冷却器に接続し、 排出シュートにク リンカを分級するとともに冷却するための分級 ·冷却空気吹込管を接続したこと を特徴としている。
この装置において、 流動層造粒 ·焼成炉はガス分散板上に、 上端が山型に突出 した山型部材を同心に設け、 環状流動層を形成することもある。 また、 クリン力 落下口近傍に、 この落下口の開口面積を調整可能なゲートを設けることが好まし い。
また、 分級 ·冷却空気吹込管の代わりに、 分級空気吹込管及び冷却空気吹込管 を別々に設けることもある。
さらに、 ガス分散板を傾斜させ、 下向き傾斜端の半径方向の延長上に複数のノ ズル (開口) を有しクリン力落下口とガス分散板間に形成された排出溝部を介し てクリン力落下口を設け、 この落下口直上及び排出溝部上でクリン力の分級を行 うように構成することが好ましい。
この場合、 排出溝部のノズル (開口) 直径がガス分散板のノズル (開口) 直径 と異なるようにすることが好ましい。 また、 クリン力落下口と空気吹込管との間 の排出シユー卜に 2次分級のための絞り部材を設けたり、 クリンカ落下口の近傍 に大塊排出口を設けたりすることがある。
冷却器としては、 一例として、 冷却器本体内に移動層を形成しこの本体内に吹 込まれる冷却空気により移動して、 この移動層の上側に部分流動層が形成される ように、 冷却器本体上部の横断面積が選択された構造とすることが好ましい。 例 えば、 冷却器本体上部に絞り部を設けて、 この部分の空気流速を大きくして、 部 分流動層を形成させ、 粒子の偏析をなくすようにする。
予熱されたセメント原料粉は、 流勳層造粒 ·焼成炉の流動層に投入され造粒 · 焼成される。 造粒 ·焼成されたクリンカはガス分散板上面側方の排出溝部及び落 下口直上で、 排出シュート内に吹き込まれた空気により分級され、 小粒子は排出 シュート内にほとんど落下しない。 すなわち、 排出シュート内の粒子と流動層の O 9 粒子とのミキシングがなくなる。 また、 排出シュート内に落下した粒子は、 冷却 用空気により効率よく冷却される。 さらに、 スロートの温度が低くなり、 分散板 下面のコーチングが除外される。
また、 流動層造粒 '焼成炉内の粒度分布が狭くなり、 アグロメレーシヨンを防 止することができるとともに、 焼成温度を上げることができる。
図面の簡単な説明
図 1は、 本発明のセメントクリン力の焼成装置の一実施例及びサスペンション プレヒータなどを示す全体系統図である。
図 2は、 図 1における Π— Π線拡大断面図である。 ただし、 流動層を省略して いる。
図 3は、 図 2の実施例に対応する変更例を示す拡大断面図である。
図 4は、 図 1における IV— W線拡大断面図である。 ただし、 移動層を省略して いる。
図 5は、 本発明の装 Sの他の実施例を示す断面図である。
図 6は、 図 5における VI— VI線断面図である。 ただし、 流動層を省略している c 図 7は、 図 5における気密排出手段の他の例を示す断面説明図である。
図 8は、 本発明の装置のさらに他の例を示す断面説明図である。
図 9は、 本発明の方法及び従来の方法における粒度分布線図 (R— R線図) で わる。
図 1 0は、 本発明の装置における流動層及びガス分散板まわりの他の例を示す 説明図である。
図 1 1 , 1 2は、 本発明による装置における流動層造粒 ·焼成炉の変形例を示 す説明図である。
発明を実施するための最良の形態
以下、 本発明を実施例に基づいてさらに詳細に説明する力 本発明は下記実施 例に何ら限定されるものではなく、 適宜変更して実施することが可能なものであ る。
実施例 1
図 1は本発明の実施例 1としてのセメントクリン力の焼成装置を示し、 図 2は 図 1の Π— Π線拡大断面を、 図 4は図 1の IV— W線拡大断面を示している。
図 1において、 1 0はサイクロン c , 〜c < を含むサスペンションプレヒータ、
1 2は仮焼炉、 1 4は流動層造粒 ·焼成炉、 1 6は冷却器である。 なお、 仮焼炉
1 2は必ずしも必要ではなく、 設置されない場合もある。
サスペンションプレヒータ 1 0及び仮焼炉 1 2で予熱及び一部仮焼されたセメ ント原料粉は、 流動層造粒 ·焼成炉 1 4の流動層 1 8に導入され、 ここで下方の 冷却器 1 6からスロート 2 0及びガス分散板 2 2を経て送られる空気により流動 化しつつ造粒 '焼成される。 4 2はェジ Xクタ一である。
図 2に示すように、 ガス分散板 2 2の半径方向の延長上に、 複数の開口を有し ガス分散板 2 2とクリンカ落下口 2 6の間に形成された排出溝部 2 4を介してク リンカ落下口 2 6を設け、 このクリンカ落下口 2 6を排出シュ一ト 2 8及び気密 排出手段 3 0を介して冷却器 1 6に接統し、 排出シュート 2 8に分級 ·冷却空気 吹込管 3 2を接続している。 なお、 図 3に示すようにクリンカ落下ロ2 6を分散 板 2 2に設けることも可能である。
また、 クリン力落下口 2 6の近傍には、 この落下口 2 6の開口面積を調整可能 なゲート 3 4が設けられる。 このゲート 3 4は、 油圧シリンダ、 空気圧シリンダ、 モータシリンダ等の駆動手段 (図示略) により水平方向に移動できるように構成 されている。
排出溝部 2 4のノズル (開口) 直径は、 ガス分散板 2 2のノズル (開口) 直径 と異なることが好ましい。 このように構成すれば、 分散板 2 2上のクリン力は、 分級されながらも、 落下口 2 6内に落下することができる。
冷却器 1 6としては、 流動層式冷却器、 移動層の上側に部分流動層を有する冷 却器などが用いられる。 図 1及び図 4は、 一例として後者を示している。 3 6は 冷却空気導入管、 3 8はコーン部、 4 0は冷却空気主管である。
冷却器 1 6内に導入された空気は、 冷却空気導入管 3 6及びコーン部 3 8の下 部から層内に吹き込まれて、 冷却器 1 6内に移動層を形成し、 クリン力により加 熱された空気は膨張して流速を上げ、 冷却器 1 6内の上部に部分流動層を形成す る。 詳細は図 5に基づいて後述する。
実施例 2 図 5は本発明の実施例 2としてのセメントクリン力の焼成装置を示し、 図 6は 図 5の VI— VI線断面を示している。
本実施例では、 ガス分散板 2 2の上面を傾斜させ、 下向き傾斜端の延長上に複 数の開口を有しガス分散板 2 2とクリン力落下口 2 6の間に形成された排出溝部 2 4を介してクリンカ落下口 2 6を設け、 この落下口直上及び排出溝部上でクリ ン力の分級を行うように構成している。 この場合、 ガス分散板 2 2上面の水平方 向に対する角度は 5〜 3 0度、 好ましくは 5〜 1 5度である。
また、 クリンカ落下口 2 6と空気吹込管 3 2との間の排出シユート 2 8に 2次 分級のための絞り部材 4 4を設けて、 落下口 2 6の直上を 1次分級部 4 6とし、 絞り部材 4 4に隣接した上側を 2次分級部 4 8としている。
また、 クリン力落下口 2 6の近傍に、 コーチングの剝離物などの大塊を排出す るための大塊排出口 5 0が設けられている。 5 2はゲー卜 3 4の駆動手段、 5 4 は絞り部材 4 4の駆動手段、 5 6はパーナである。
気密排出手段 3 0は、 造粒物を一旦内部に堆積させ、 その造粒物自身によるマ テリアルシール作用で通気を遮断するとともに、 圧縮空気や機械的手段で押し出 すことにより、 造粒物を冷却器 1 6に払い出すように構成されたものである。 冷却器 1 6は、 一例として、 冷却器本体内に冷却空気吹込による移動層 5 8を 有し、 この移動層 5 8の上側に部分流動層 6 0が形成されるように、 冷却器本体 上部の横断面積が選択された構造を有している。 図 5では、 冷却器本体上部に絞 り部 6 2を設け、 移動層 5 8を形成するクリン力で加熱され膨張した空気が絞り 部 6 2でさらに流速を上げ、 部分流動層 6 0を形成する構成を示している。 このように構成することにより、 移動層 5 8の上側に部分流動層 6 0が形成さ れ、 クリン力が流動化して偏析を少なくし空気の偏流を少なくすることができる という利点がある。 他の構成及び作用は実施例 1の場合と同様である。
図 5においては、 気密排出手段 3 0として Lバルブを用いている力《、 図 7に示 すように、 排出シュート 2 8の下端にロータリバルブ 6 4などの弁を設け、 排出 シュート 2 8内に一定量の造粒物が溜まるように、 このロータリバルブ 6 4の排 出量を調整することにより、 造粒物を冷却器 1 6内に導入するように構成するこ ともできる。 実施例 3
図 8は本発明の実施例 3としてのセメントクリン力の焼成装置を示している。 本実施例は、 分級空気吹込管 6 6及び冷却空気吹込管 6 8を別々に設けたもの である。 そして、 パルスエア管 7 4に設けられた調節弁 7 6と、 排出シュート 2 8の流動層に設けられた層差圧検出器 7 8とを接続し、 流動層 1 8の差圧を検知 する層差圧検出器 8 6と、 分級空気吹込管 6 6に設けられた調節弁 9 0及びゲー 卜 3 4の駆動手段 5 2とを層差圧調節計 (図示略) を介して接続している。 8 0 は製品クリン力の温度検出器、 8 2は冷却空気供給管 8 4の調節弁である。 他の 構成は実施例 1の場合と同様である。
つぎに、 本発明のセメントクリン力の焼成装置における操作について、 図 8に 基づいて説明する。
( 1 ) 流勳層 1 8の層差圧を層差圧検出器 8 6で検出し、 層差圧が一定になる ようにゲート 3 4の駆動手段 5 2を制御して、 ゲ一ト 3 4の開度で層内の粒子滞 留時間が一定になるように制御する。 さらに、 層差圧は調節弁 9 0によって微調 整される。 なお、 ゲートの開度を変えずに層内温度により排出量を制御すること もある。 (粒径により排出量が変わる。 )
( 2 ) 排出シュート 2 8内のクリン力の温度を温度検出器 7 2で検知し、 この 温度 (1次冷却温度) が 1 1 0 0 °C以下に維持されるように、 冷却空気吹込管 6 8に設けられた調節弁 7 0を制御する。
( 3 ) 排出シュート 2 8内の 2点間の層差圧を層差圧検出器 7 8で検知し、 こ の検出位置にクリン力力く存在すると (差圧が大きいと) 、 パルスエア管 7 4の調 節弁 7 6を開として気密排出手段 3 0からクリンカを排出し、 検出位置にクリン 力が存在しないと (差圧が小さいと) 、 調節弁 7 6を閉としてクリン力の排出を 止める。 これは排出シユート 2 8のマテリアルシール高さをほぼ一定に保っため である。
( 4 ) 調節弁 9 0は分級制御用であるので気密排出手段 3 0のサンプリング手 段 8 8からサンプリングし、 クリン力の粒径が大きいと、 層差圧検出器 8 6から の制御を離れて分級空気吹込管 6 6の調節弁 9 0を絞って分級空気量を少なくし、 サンプリングしたクリン力の粒径が小さいと調節弁 9 0の開度を大きくして分級 空気量を多くする。
(5) 冷却器 1 6出口の製品クリン力の温度を温度検出器 80で検知して、 冷 却空気供給管 84の弁 82を調節して冷却器 1 6内の 2次冷却温度を制御する。 図 9は、 図 8に示す本発明の装置、 及び従来の装置 (図 8に示す装置から分級 排出機構を除いた装置) を用いて実験を行なった結果を示す粒度分布図 (R— R 線図) である。 横軸は粒径を示し、 縦軸は残留量を示している。
図 9から従来の方法では、 粒度分布曲線の傾き Nは、 N= 2. 5〜4と小さく て粒径が揃つていないことがわかり、 また他の多数の実験から平均粒子径の檩準 偏差 CTd p 5 0 ( 5 0重量%通過粒径 (d p 5 0) の標準偏差) も 0. 3〜0. 4と広くなつていることが判明した。 これに対し、 本発明の方法では、 図 9から N= 4. 5〜5と大きいため粒径が揃っていることがわかる。 また、 他の多数の 実験から平均粒子径の標準偏差 σ d p 5 0も 0. 1〜0. 1 5と狭くなつている ことが判明した。
以下に示す表 1は、 図 8に示す本発明の装置、 及び特開平 2— 2 297 4 5号 公報の第 1図に記載された 2炉型式の従来の装置を用いて、 セメントクリン力を 製造した場合の性能比較を示している。 表 1から、 本発明の方法の方が、 装置数 (流動層数) が少なくなるので、 熱消費及び電力消費が少なくなつていることが わ力、る。
【表 1】 従来の方法 本発明の方法 生産量 (tZd) 2 0 0 2 0 0 熱消 (kcal/kgcl) 8 0 0 7 0 0
¾力消 S ( WH/tcl) 3 0 2 0 設備費 {%) 1 0 0 8 0 上記の実施例は、 いずれも原料粉及び燃料を流動眉の側方から供耠するもの である力《、 図 1 0に示すように、 流動層 1 8の下方から供耠することも可能であ る。 また、 図 1 1, 1 2に示すように、 流動層造粒 ·焼成炉は、 ガス分散板上に 上端が山型に突出した山型部材を同心に設け、 環状流動層を形成してもよい。 図 1 2に示すように、 この山型部材は中央部にガス分散板に達する同心の凹部を備 えてもよい。
また、 分級排出機構を一系列設ける場合について説明したが、 炉が大型化する と、 分級排出機構を複数系列設けることも可能である。
産業上の利用可能性
本発明は上記のように構成されているので、 つぎのような効果を奏する。
( 1 ) 粒径制御が精密に行なえるので、 流動層造粒 ·焼成炉内の粒径分布が狭 くなり、 1炉方式においても 1 4 5 0 °C以上の焼成が可能となり、 高品質の製品 を得ることができる。 従って、 特開平 2— 2 2 9 7 4 5号公報におけるような流 動層焼成炉は不要となる。 また、 冷却器での偏折がなくなり、 熱回収効率が向上 する。
( 2 ) 排出溝部及び落下口直上で分級されるので、 小粒子は排出シュートにほ とんど落下しない (シユート内粒子 (g r a n u l e s ) と層内粒子とのミキシ ングがない) 。 従って、 流動層造粒 ·焼成炉で燃料を低減でき、 排出シュートで の冷却効率も良くなる。
( 3 ) 排出シュート内で急冷されるので (例えば 1 1 0 0 °C以下に急冷され る) 、 排出シュート閉塞も熱損失も少なく特開平 2— 2 2 9 7 4 5号公報に記載 されているような 1次冷却器が不要となる。 なお、 特開平 2— 2 2 9 7 4 5号公 報記載の装置では、 造粒炉排出シュ一ト及び焼成炉排出シユー卜の閉塞防止のた め水冷 ·空冷が必要となり、 熱損失が大で、 品質にも悪影響がある。
( 4 ) 流動層焼成炉及び 1次冷却器が不要となるので、 建設費、 熱消費、 電力 消費が大幅に低減でき、 運転操作も簡単になる。
( 5 ) スロート温度が低くなるので、 流動層造粒 ·焼成炉の分散板下面のコ一 チングが除外される。
( 6 ) 分散板を下向き傾斜にする場合、 排出溝のノズルを分散板のノズルと異 なる直径とする場合、 排出シユートに 2次分級のための絞り部材を設ける場合は、 分級効率がさらに向上する。
( 7 ) 排出シュートでの冷却温度を制御する場合、 冷却風量と落下口面稹を調 整する場合、 落下口付近に大塊排出口を設ける場合は、 分級粒径、 冷却温度を一 定に維持できるので、 運転が安定する。
( 8 ) 移動層冷却器の層上部が流動化するように冷却器上部の断面積を選ぶ場 合は、 さらに熱消費を低減でき、 冷却器を小型化することができる。
( 9 ) 装置を大型化しても分級性能は変わらず、 大型化が容易となる。

Claims

請 求 の 範 囲
1. 予熱されたセメン卜原料粉を流動層造粒 ·焼成炉で造粒 ·焼成した後、 造 粒 ·焼成されたクリンカを冷却器に導入するセメントクリン力の焼成方法におい て、 流動層造粒 ·焼成炉からこの炉のガス分散板上面又はガス分散板上面の半径 方向の延長上に設けられた落下口を介してクリンカを排出し、 この落下口に連な る排出シユートにクリンカを分級 ·冷却するための空気を吹き込むと共に、 落下 口から吹き出す空気流速が前記ガス分散板のノズルを通つて流入する空気流速と 異なるように吹込空気量を調節し、 分級 ·冷却吹込位置より下方の気密排出手段 を経てクリンカを冷却器に導入することを特徴とするセメン卜クリン力の焼成方
2. 流動層造粒 ·焼成炉のガス分散板上に、 上端が山型に突出した山型部材を 同心に設け、 環状流動層を形成した請求項 1記載のセメントクリン力の焼成方法。
3. 流動層差圧が略一定範囲になるように、 落下口の開口面積を調整する請求 項 1記載のセメントクリン力の焼成方法。
4. 分級 ·冷却空気を吹き込む代わりに、 分級空気と冷却空気とを別々に吹込 む請求項 1記載のセメントクリン力の焼成方法。
5. 排出シュート内のクリン力の温度を検出し、 この温度により冷却空気量 を調節してクリン力の冷却温度を制御する請求項 1記載のセメントクリン力の焼 成方法。 .
6. 予熱されたセメント原料粉を流動層造粒 ·焼成炉で造粒 ·焼成し、 造粒 · 焼成されたクリンカを冷却器で冷却するセメントクリン力の焼成装置において、 流動層造粒 ·焼成炉のガス分散板上面又はガス分散板上面の半径方向の延長上に クリンカ落下口を設け、 このクリンカ落下口を排出シュ一ト及び気密排出手段を 介して冷却器に接続し、 排出シュートにクリン力を分級すると共に冷却するため の分級 ·冷却空気吹込管を接続したことを特徵とするセメントクリン力の焼成装 置。
7. 流動層造粒 ·焼成炉のガス分散板上に、 上端が山型に突出した山型部材を 同心に設け、 環状流動層を形成した請求項 6記載のセメントクリン力の焼成装置。
8. クリン力落下口近傍に、 この落下口の開口面積を調整可能なゲートを設け た請求項 6記載のセメントクリン力の焼成装置。
9. 分級 ·冷却空気吹込管の代わりに、 分級空気吹込管及び冷却空気吹込管を 別々に設けた靖求項 6記載のセメントクリン力の焼成装置。
1 0. 前記分散板の上面を傾斜させ、 下向きの傾斜端の半径方向の延長上に複数 のノズルを有し分散板とクリンカ落下口の間に形成された排出溝部を介してクリ ンカ落下口を設け、 この落下口直上及び排出溝部上でクリン力の分級を行うよう にした請求項 6記載のセメントクリンカの焼成装置。
1 1. 前記排出溝部のノズル直径が前記ガス分散板のノズル直径と異なる請求項 1 0記載のセメントクリン力の焼成装置。
1 2. クリン力落下口と空気吹込管との間の排出シュートに 2次分級のための絞 り部材を設けた請求項 6記載のセメントクリン力の焼成装置。
1 3. クリンカ落下口の近傍に大塊排出口を設けた請求項 6に記載のセメントク リン力の焼成装置。
1 4. 冷却器本体内に形成された移動層はこの冷却器本体内への冷却空気吹込に より移動し、 この移動層の上側に部分流動層が形成されるように、 冷却器本体上 部の横断面積が選択された構造である請求項 6記載のセメントクリン力の焼成装 o
1 5. 冷却器本体上部に絞り部が設けられた請求項 1 4記載のセメントクリンカ の焼成装置。
PCT/JP1995/001748 1994-09-08 1995-09-01 Procede de fabrication de clinker par cuisson WO1996007622A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1019960702286A KR0139048B1 (ko) 1994-09-08 1995-09-01 시멘트 클링커 소성방법 및 그 소성장치
DE69532230T DE69532230T2 (de) 1994-09-08 1995-09-01 Verfahren und Vorrichtung zum Sintern von Zementklinkern
BR9506358A BR9506358A (pt) 1994-09-08 1995-09-01 Processo e aparelho de sinterizaç~o de clínqueres de cimento
DK95930032T DK0728714T3 (da) 1994-09-08 1995-09-01 Fremgangsmåde og apparatur til fremstilling af cementklinker ved brænding
EP95930032A EP0728714B1 (en) 1994-09-08 1995-09-01 Method and apparatus for making cement clinker by firing
US08/637,765 US5690730A (en) 1994-09-08 1995-09-01 Sintering method of cement clinkers and sintering apparatus of the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP6240686A JP2618836B2 (ja) 1994-09-08 1994-09-08 セメントクリンカの焼成方法及び焼成装置
JP6/240686 1994-09-08

Publications (1)

Publication Number Publication Date
WO1996007622A1 true WO1996007622A1 (fr) 1996-03-14

Family

ID=17063205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1995/001748 WO1996007622A1 (fr) 1994-09-08 1995-09-01 Procede de fabrication de clinker par cuisson

Country Status (10)

Country Link
US (1) US5690730A (ja)
EP (1) EP0728714B1 (ja)
JP (1) JP2618836B2 (ja)
KR (1) KR0139048B1 (ja)
CN (1) CN1073054C (ja)
BR (1) BR9506358A (ja)
DE (1) DE69532230T2 (ja)
DK (1) DK0728714T3 (ja)
TW (1) TW366332B (ja)
WO (1) WO1996007622A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100344568C (zh) * 2006-03-29 2007-10-24 缪建通 水泥熟料烧成工艺
WO2012051957A1 (zh) * 2010-10-21 2012-04-26 川崎重工业株式会社 包含污泥的废弃物的处理设备

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5788482A (en) * 1994-09-08 1998-08-04 Kawasaki Jukogyo Kabushiki Kaisha Sintering method of cement clinkers and sintering apparatus of the same
DE19830697C2 (de) * 1998-07-08 2001-06-07 Metallgesellschaft Ag Verfahren zum Entfernen von relativ grobkörnigen Feststoffen aus einem stationären Wirbelbett
AU2010317363B2 (en) * 2009-11-16 2014-07-10 Mitsubishi Materials Corporation Mixing/calcining furnace
JP6393981B2 (ja) * 2012-12-26 2018-09-26 三菱マテリアル株式会社 流動仮焼炉
CN103868355B (zh) * 2014-03-11 2016-03-09 成都建筑材料工业设计研究院有限公司 一种磷矿脱碳煅烧方法
CN110057189B (zh) * 2019-05-14 2024-04-19 金刚新材料股份有限公司 一种无机粉体和制品的一体化制备炉窑及制备方法
CN110500894A (zh) * 2019-08-12 2019-11-26 宜兴天山水泥有限责任公司 分解炉缩口调整装置
HRP20221243T1 (hr) * 2020-04-08 2022-12-09 Thyssenkrupp Industrial Solutions Ag Postupak proizvodnje cementnog klinkera

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58115047A (ja) * 1981-12-28 1983-07-08 石川島播磨重工業株式会社 粉末原料の焼成設備
JPS61270243A (ja) * 1985-05-22 1986-11-29 川崎重工業株式会社 セメントクリンカ製造炉のシユ−ト装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH652940A5 (de) * 1982-01-09 1985-12-13 Sandoz Ag Verfahren zur herstellung nicht staubender granulate und vorrichtung hierfuer.
JPH0760065B2 (ja) * 1986-03-31 1995-06-28 川崎重工業株式会社 噴流層炉または流動層炉の排出シユ−ト閉塞防止方法
CA1285761C (en) * 1986-04-01 1991-07-09 Kawasaki Jukogyo Kabushiki Kaisha Plant for manufacturing cement clinker
JPH02229745A (ja) * 1988-11-10 1990-09-12 Sumitomo Cement Co Ltd セメントクリンカの製造装置並びに該装置に用いる流動層焼成炉及び該炉底部の粗粒検出・抜出方法
DK0605832T3 (da) * 1992-12-28 2001-11-05 Kawasaki Heavy Ind Ltd Apparat til fremstilling af cementklinker
TW332857B (en) * 1993-02-26 1998-06-01 Kawasaki Heavy Ind Ltd Cement clinker

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58115047A (ja) * 1981-12-28 1983-07-08 石川島播磨重工業株式会社 粉末原料の焼成設備
JPS61270243A (ja) * 1985-05-22 1986-11-29 川崎重工業株式会社 セメントクリンカ製造炉のシユ−ト装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0728714A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100344568C (zh) * 2006-03-29 2007-10-24 缪建通 水泥熟料烧成工艺
WO2012051957A1 (zh) * 2010-10-21 2012-04-26 川崎重工业株式会社 包含污泥的废弃物的处理设备
CN102452802A (zh) * 2010-10-21 2012-05-16 川崎重工业株式会社 包含污泥的废弃物的处理设备

Also Published As

Publication number Publication date
JP2618836B2 (ja) 1997-06-11
KR960705752A (ko) 1996-11-08
JPH0881245A (ja) 1996-03-26
CN1073054C (zh) 2001-10-17
US5690730A (en) 1997-11-25
KR0139048B1 (ko) 1998-04-27
BR9506358A (pt) 1997-09-16
EP0728714B1 (en) 2003-12-03
DE69532230D1 (de) 2004-01-15
CN1137786A (zh) 1996-12-11
DE69532230T2 (de) 2004-10-21
EP0728714A4 (en) 2001-02-21
TW366332B (en) 1999-08-11
DK0728714T3 (da) 2004-03-29
EP0728714A1 (en) 1996-08-28

Similar Documents

Publication Publication Date Title
WO1996007622A1 (fr) Procede de fabrication de clinker par cuisson
EP0605832B1 (en) Apparatus for manufacturing cement clinker
EP0622596B1 (en) Method and apparatus for sintering cement clinker
JP2612532B2 (ja) セメントクリンカの焼成方法および焼成装置
JP3058778B2 (ja) 流動層の層差圧調整装置
JP3032204B1 (ja) セメントクリンカの焼成方法及び装置
JP2596694B2 (ja) 流動層炉からの大塊排出装置
JP3325880B2 (ja) セメントクリンカ焼成方法及び焼成装置
US5944513A (en) Apparatus for manufacturing cement clinker
JP2506033B2 (ja) セメントクリンカの焼成装置
JPH02229745A (ja) セメントクリンカの製造装置並びに該装置に用いる流動層焼成炉及び該炉底部の粗粒検出・抜出方法
JP2898611B2 (ja) セメントクリンカの焼成方法及び焼成装置
JP2501525B2 (ja) 流動層炉からの粒子排出装置
JP2549812B2 (ja) セメントクリンカの焼成装置
JPS61136944A (ja) セメントクリンカの焼成方法および装置
JP2002003247A (ja) 流動層セメントクリンカ焼成装置における気密排出装置
JP3277259B2 (ja) セメントクリンカの焼成装置
JP2506034B2 (ja) セメントクリンカの焼成装置
JP2519020Y2 (ja) 粉粒状原料の流動層焼成装置
JP2506037B2 (ja) セメントクリンカの製造装置
JPH0524891A (ja) 粉体造粒設備
JP2536642B2 (ja) 予備還元炉を備えた溶融還元設備における予備還元用ガス流れの調整方法
JPH031257B2 (ja)
JPH0717414B2 (ja) 流動層炉における造粒粒径制御方法および造粒用流動層炉
JP2000034144A (ja) 流動層セメント焼成・制御方法及び装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 95191081.7

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): BR CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1995930032

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 08637765

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1995930032

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 1997 822717

Country of ref document: US

Date of ref document: 19970325

Kind code of ref document: A

WWG Wipo information: grant in national office

Ref document number: 1995930032

Country of ref document: EP