WO1994012053A1 - Low-phosphorus whey protein, process for producing the same, hydrolyzate of purified low-phosphorus whey protein, and process for producing the same - Google Patents

Low-phosphorus whey protein, process for producing the same, hydrolyzate of purified low-phosphorus whey protein, and process for producing the same Download PDF

Info

Publication number
WO1994012053A1
WO1994012053A1 PCT/JP1993/001729 JP9301729W WO9412053A1 WO 1994012053 A1 WO1994012053 A1 WO 1994012053A1 JP 9301729 W JP9301729 W JP 9301729W WO 9412053 A1 WO9412053 A1 WO 9412053A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
protein
whey protein
low
exchange resin
Prior art date
Application number
PCT/JP1993/001729
Other languages
English (en)
French (fr)
Inventor
Seiichi Shimamura
Yoshitaka Tamura
Terruhiko Mizota
Yasushi Kawaguchi
Yoko Nagasako
Hiroshi Ochi
Original Assignee
Morinaga Milk Industry Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Morinaga Milk Industry Co., Ltd. filed Critical Morinaga Milk Industry Co., Ltd.
Priority to JP51297694A priority Critical patent/JP3411035B2/ja
Priority to EP94901007A priority patent/EP0671126B1/en
Priority to US08/428,129 priority patent/US5744179A/en
Priority to AU55750/94A priority patent/AU682479B2/en
Priority to DE69329923T priority patent/DE69329923T2/de
Publication of WO1994012053A1 publication Critical patent/WO1994012053A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y304/00Hydrolases acting on peptide bonds, i.e. peptidases (3.4)
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J3/00Working-up of proteins for foodstuffs
    • A23J3/30Working-up of proteins for foodstuffs by hydrolysis
    • A23J3/32Working-up of proteins for foodstuffs by hydrolysis using chemical agents
    • A23J3/34Working-up of proteins for foodstuffs by hydrolysis using chemical agents using enzymes
    • A23J3/341Working-up of proteins for foodstuffs by hydrolysis using chemical agents using enzymes of animal proteins
    • A23J3/343Working-up of proteins for foodstuffs by hydrolysis using chemical agents using enzymes of animal proteins of dairy proteins
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J1/00Obtaining protein compositions for foodstuffs; Bulk opening of eggs and separation of yolks from whites
    • A23J1/20Obtaining protein compositions for foodstuffs; Bulk opening of eggs and separation of yolks from whites from milk, e.g. casein; from whey
    • A23J1/205Obtaining protein compositions for foodstuffs; Bulk opening of eggs and separation of yolks from whites from milk, e.g. casein; from whey from whey, e.g. lactalbumine
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs

Definitions

  • the present invention relates to a low phosphorus protein, a method for producing the same, a low phosphorus purified protein hydrolyzate, and a method for producing the same. More specifically, the present invention relates to a low lymphoprotein useful for enhancing the nutritional value or protein of various foods, an easy and inexpensive method for producing the protein, various foods, The present invention relates to a low-purified whey protein hydrolyzate which is useful as a protein or amino acid substitute for pharmaceuticals and is also useful as a cosmetic material, and a method for producing the same.
  • the protein (or whey protein) hydrolyzate refers to the peptide obtained from the protein (or whey protein) hydrolyzate and the free amino acid.
  • Free amino acid content is defined as the weight percentage of free amino acid content relative to total amino acid content in protein (or whey protein) hydrolyzate.
  • Whey is obtained as a by-product from the production of cheese or casein from milk, and the protein contained in whey (hereinafter referred to as whey protein) Has high nutritional value.
  • whey protein concentrate with increased whey protein content has not only higher nutritional value but also excellent properties such as foaming properties, high solubility, and gel forming ability. It is used in many food products such as dairy products, beverages, meat products, confectionery / cakes, breads, etc., and is also used to enhance the protein content of powdered milk for childcare.
  • peptides have been shown to have better digestibility and absorption, lower antigenicity, lower osmotic pressure, and lower physiological activity than proteins and amino acid mixtures of the same amino acid composition. Due to its excellent nutritional and physiological properties, such as its activity, the use of peptides has attracted attention from various fields.In addition to conventional foods, its use in cosmetics and pharmaceuticals is being considered. However, various studies have been made on hydrolysates of whey protein with enzymes because of its suitability for industrially preparing this peptide in large quantities.
  • the reduction of protein which is an essential nutrient, is particularly important.
  • the whey protein is usually desalted, but the reduction of the phosphorus content is the most difficult, and the amount of whey protein per gram of evening protein is It has hitherto been impossible to produce whey protein with a reduced phosphorus content of less than 0.15 mg.
  • Conventional methods for removing phosphorus in foods include: (a) contacting skim milk, whose pH has been adjusted to 5.2 to 6.0, with an anion exchanger; (Japanese Unexamined Patent Publication No. 6.0-2563642) and (b) a method in which calcium is added to whey to precipitate free phosphoric acid as calcium phosphate (Japanese Unexamined Patent Publication No. (JP-A-63-91037) and (c) a method of contacting a liquid food with activated alumina (JP-A-2-49548).
  • milk-derived protein when milk-derived protein is used as a raw material for producing a whey protein hydrolyzate, components that need to be adjusted or removed, such as minerals, lactose, and fat, in the raw material.
  • a highly purified whey protein hydrolyzate that satisfies all of the above conditions has not been obtained.
  • the conventional protein hydrolyzate having the properties related to the above conditions and the method for producing the same are: (d) Main peak 1, 000 to 5,000, with a molecular weight distribution of 100, 000 or less. 0, free amino acid content 20% or less (weight; hereinafter the same unless otherwise specified), and antigenicity ⁇ -lactoglobulin antigenicity 1 Z10,000 or less Reduced allergen whey protein hydrolyzate and whey protein are enzymatically degraded using protein hydrolase at ⁇ ⁇ 6 to 10 and heated to deactivate the enzyme.
  • Production method of whey protein hydrolyzate Japanese Patent Application Laid-Open No.
  • some of the inventors of the present invention show that the peptides contained do not show antigenicity when the molecular weight is not more than 1,000, the free amino acid content is not more than 20%, A low-molecular-weight peptide composition having an amino acid content of 1.0% or less of the total amount of amino acid, and a protein raw material until the antigenicity is no longer recognized by a protease, and A method for producing a low molecular weight peptide composition in which the aromatic amino acid contained in water is decomposed until 90% or more of the free amino acid is obtained, and the peptide portion is recovered by gel filtration (Japanese Patent Application Laid-Open No. No.
  • prior application 2 is a peptide mixture having a molecular weight of not more than 1,000 and in which 90% or more of the aromatic amino acid is free amino.
  • Hydrolyzate of milk protein which is a non-acidic acid and does not have milk protein antigenicity
  • Japanese Patent Application Laid-Open No. Hei 266,604 A mixture of peptides having a molecular weight of less than 1,000 daltons, having an aromatic amino acid content of 5% or less based on the total amino acid content, and having the milk protein antigenicity
  • Fractions of hydrolysates of milk proteins that are not used Japanese Patent Application Laid-Open No.
  • Prior application 4 Hei 4-26605, hereinafter referred to as prior application 4
  • Prior application 5 hydrolyzing whey proteins having a purity of at least 70%.
  • Profit Is molecular weight distribution 2, 0 0 0 Dal tons or less, the antigen residual presence activity measured by Eraiza inhibition test using anti-whey protein sera 1 0 _ 4 or less, free to total
  • a Mi Bruno acid content An oligopeptide mixture characterized by an amino acid content of 5% or less and a whey protein having a purity of at least 70% are dissolved in water at a concentration of 10% or less. The resulting aqueous solution is adjusted to pH 7.5 to 10 and hydrolyzed with an enzyme, and the enzyme is inactivated by heating or the enzyme is removed by ultrafiltration.
  • a patent application was previously filed for a method for producing a gopeptide mixture (Japanese Patent Application Laid-Open No. 4-248959, hereinafter referred to as Prior Application 5).
  • the pH of the protein solution was adjusted before contact with the cation exchange resin or anion exchange resin.
  • the lower limit of pH adjustment was usually limited by the occurrence of isoelectric precipitation of the target protein.
  • the pH decreases and the solution becomes acidic, so that the solution must be bothersome before contacting with the H ′ type cation exchange resin. Adjusting the pH to acidic has not been considered at all, except for the earlier application1.
  • the inventors of the present invention filed a patent for the methods of the above-mentioned prior applications 1 to 5, and then conducted intensive research on a method for producing a whey protein with a further reduced phosphorus content.
  • a method for producing a whey protein with a further reduced phosphorus content By contacting the whey protein with a cation exchange resin and an anion exchange resin at a lower pH than in method 1 It has been found that the phosphorus content of whey protein can be significantly reduced, and the hydrolysis of whey protein with a low phosphorus content obtained by this method is eagerly studied.
  • the protein content was lower than that of the protein hydrolyzates of the above-mentioned prior applications 2 to 5, and other mineral content, lactose content, molecular weight distribution, free amino acid content, antigenicity,
  • the present inventors have found that a highly hydrolyzed protein hydrolyzate having a reduced doxin content can be obtained and completed the present invention.
  • the present invention is a low lymphoprotein characterized in that the phosphorus content per gram of protein is 0.15 mg or less.
  • the pH of a solution containing whey protein is adjusted to 4 or less, and the solution is sequentially contacted with an H + type cation exchange resin and an anion exchange resin to obtain a solution per 1 g of protein.
  • This is a method for producing low phosphorus whey protein, characterized by reducing the phosphorus content to 0.15 mg or less.
  • the present invention is a low phosphorus purified whey protein hydrolyzate having the following properties (1) to (6).
  • Lactose content is not more than 0%
  • the fraction having a molecular weight of 1,200 or less is 90% or more
  • the free amino acid content is 6% or less.
  • E La Isa suppression test method and the child is less than or equal to La-click toggle Roburi emissions of antigenicity of 1 0 _ Q, - - antigenicity was measured by (ELISA E nzyme 1 inkedimmuno sorbentassay) is ⁇
  • Endotoxin in 1 g of dry matter is less than 10 EU and ⁇
  • Et al is, the present invention is to adjust the p H of the solution containing the whey over protein in 4 below, are sequentially contacted with Eta tau Katachihii on- exchange resins and 0 H "Katachikage Ion exchange resins, The pH is adjusted to 5 or more and 10 or less, lactose is removed by ultrafiltration, and two or more kinds of proteases of animal origin and proteases produced by microorganisms of the genus Bacii 1us are produced.
  • Complex enzymes or proteases of animal origin Three or more complex enzymes consisting of oral protease and other proteases are added for enzymatic degradation, heating to inactivate the enzyme and unreacted proteins to precipitate, followed by ultrafiltration to precipitate.
  • the pH of the solution containing whey protein is adjusted to less than 3.
  • whey protein with a remarkably low phosphorus content which could not be achieved conventionally, can be produced extremely easily and inexpensively, and whey is efficiently processed in large quantities on an industrial scale. can do.
  • the pH of a solution containing whey protein is adjusted to 4 or less, and the solution is brought into contact with an H + type cation exchange resin and an anion exchange resin successively, thereby It is characterized by reducing the phosphorus content per lg to less than 0.15 mg.
  • Whey is the remaining liquid obtained by adding acid or rennet to whole or skim milk and removing the casein produced, and contains about 0.3 to 0.7% protein. ing.
  • the starting material used in the method for producing low-lew protein according to the present invention is a whey protein concentrate having a protein content of 70% or more, and a commercially available product can be used. It may be a concentrate obtained by separating protein from whey by a known method and concentrating the protein content to 70% or more. This concentrate can be obtained by, for example, a method of concentrating protein while removing low-molecular substances by fractionation using an ultrafiltration membrane, and a method of separating protein into a positive ion exchanger and a negative ion exchanger.
  • the protein can be produced by a method of adsorbing and then eluted and concentrating it, or a method of recovering protein simultaneously with desalting and de-lactose using a column filled with a gel filtration carrier.
  • the phosphorus content of whey and protein concentrates varies depending on the production method.For example, the protein content of commercially available protein concentrates per gram of protein is as follows. The range is 0.4 to 5. Omg.
  • the starting material is diluted to prepare a solution having a concentration of about 5 to 20% of whey protein, and the pH is adjusted to pH 4 or less, preferably pH 3 by adding an acid.
  • the acid used for adjusting the pH include hydrochloric acid, citric acid, lactic acid, acetic acid, and sulfuric acid.
  • the cation exchange resin to be used may be either a strongly acidic resin or a weakly acidic resin, such as DIAION SK18 (trademark, manufactured by Mitsubishi Kasei Kogyo Co., Ltd.), Duolight C-26 ( Trademarks: Chemical Process Co., Ltd .; Amberlite IR-120B (trademark; Organo Corporation); Dowex MSC-1 (trademark: Dow Chemical Company).
  • the pH of the solution containing whey protein is usually about 1 to 2.5 due to the contact with this H + type cation exchange resin.
  • the mixing ratio of the solution containing whey protein and the cation exchange resin depends on the adsorption capacity of the ion exchange resin, but the total exchange capacity (equivalent) of the cation exchange resin is lower than that of the whey protein. It is necessary that it be larger than the total amount of cations (equivalent) of the solution containing, and 2 to 5 times the amount is desirable from the viewpoint of resin use efficiency.
  • the temperature at the time of contact between the solution containing whey protein and the cation exchange resin may be 0 to 60 ° C, which does not cause thermal denaturation of whey protein. It is desirable to carry out at 0 to 10 ° C for prevention.
  • the solution containing whey protein after contact with the cation exchange resin is further contacted with the anion exchange resin.
  • Either a strongly basic or weakly basic resin may be used as the anion exchange resin.
  • Diaion PA318 (trademark, manufactured by Mitsubishi Kasei Kogyo), Duolight A-1
  • 16 (trademark, manufactured by Chemical Process)
  • Amberlite IRA-411 (trademark, manufactured by Organo)
  • Dowex MWA-11 (trademark, manufactured by Dow Chemical) are available. Examples can be given.
  • the counterion of the anion exchange resin may be either the 0 H— or C 1 ′′ form, but if prepared and used in the ⁇ H— form, the solution can be desalted, In addition, since the pH increases and the acidity decreases, the amount of the neutralizing agent (alkaline agent) used can be reduced when neutralization is performed after the treatment.
  • the contact method and contact conditions are the same as for the cation exchange resin.
  • purified water can be passed through the ion-exchange resin in order to recover solids contained in the solution that has been brought into contact with the ion-exchange resin.
  • the pH of the solution obtained by the ion exchange treatment is usually about pH 1 to 4, and if necessary, a neutralizing agent such as sodium hydroxide or potassium hydroxide (alkaline) To neutralize with You can do that too.
  • a neutralizing agent such as sodium hydroxide or potassium hydroxide (alkaline)
  • desalting and desalting of the obtained low lymphoprotein in solution by performing constant volume running water diafiltration (diafiltration) using an ultrafiltration membrane or the like. It is also possible to produce lactose low lymphoprotein.
  • the solution containing low lymphoprotein obtained in this way can be used as a product as it is. If necessary, it can be concentrated by a conventional method, dried and made into a powder.
  • the whey protein obtained in the manner described above is a whey protein having an extremely low phosphorus content containing 0.15 mg or less of phosphorus per lg of the evening protein, which is the same as that of the conventional whey protein.
  • whey protein can be used as a food material by utilizing its excellent nutritional value, foaming properties, emulsifying power, etc. It is also suitable as a nutritious food material for restricted persons, and can be used as highly purified whey protein with significantly reduced phosphorus that is most difficult to remove.
  • the method for producing a low-purified whey protein hydrolyzate of the present invention comprises adjusting the pH of the solution containing whey protein to 4 or less, and exchanging the ⁇ -type cation ion. Resin and 0 0-type anion-exchange resin in order, adjust the ⁇ 5 to 5 or more and 9 or less, remove lactose by ultrafiltration, and remove animal-derived protease and bacillus (Bacill 1).
  • the starting materials used in the method for producing a low-purified whey protein hydrolyzate of the present invention are the same as the starting materials used in the method for producing a low-phosphorus protein protein of the present invention described above. It is a whey protein concentrate.
  • This starting material is diluted and prepared into a solution having a concentration of about 5 to 20% of whey protein, and the pH is adjusted to pH 4 or less, preferably less than PH 3 by adding an acid.
  • the acid used for adjusting the pH can be exemplified by hydrochloric acid, citric acid, lactic acid, acetic acid, sulfuric acid, and the like.However, the use of hydrochloric acid ⁇ does not adversely affect the flavor of the final product. It is also desirable because C 1 -ions are removed by the OH-type anion-exchange resin and eventually do not remain.
  • the pH of the solution containing whey protein Since the pH of the solution containing whey protein is near neutral, it will pass through the isoelectric point of the whey protein (around pH 5) when adjusting the pH.
  • the amount of acid needed to adjust the pH of the whey protein is determined in advance, the entire amount is added within a few seconds to one minute, and the mixture is rapidly mixed and agitated. Does not cause coagulation In addition, the pH can be adjusted to a predetermined value.
  • a solution containing whey protein whose pH has been adjusted to 4 or less is first brought into contact with an H + type cation exchange resin, and further contacted with an OH— type anion exchange resin to remove the solution.
  • the type of ion-exchange resin to be used, the contact method of the ion-exchange resin, the contact conditions, and the like are the same as those of the above-described method for producing a low reoxyprotein of the present invention.
  • the solution can be desalted by preparing the ionic form of the anion exchange resin in the OH-form and using it.
  • the pH of the solution is made neutral to alkaline after the ion exchange treatment, the amount of the neutralizing agent (alkaline agent) used is reduced. be able to.
  • purified water can be passed through the ion-exchange resin in order to recover the solid content contained in the solution that has been brought into contact with the ion-exchange resin.
  • a desalting treatment such as an ion exchange resin and electrodialysis was performed after the hydrolysis.
  • the protein before the hydrolysis was ionized. Desalting by the exchange resin prevents loss due to adsorption of peptides and amino acids to the ion exchange resin.
  • a neutralizing agent an alkaline agent
  • the pH is adjusted to a range of 5 or more and 10 or less, preferably to a pH of 6 or more and 9 or less.
  • the neutralizing agent (alkaline agent) used for adjusting the pH include sodium hydroxide and sodium hydroxide.
  • the purpose of this pH adjustment operation is, for example, to prevent oxidative corrosion of the manufacturing equipment and at the same time prevent elution of inorganic ions from the metal part of the manufacturing equipment. It is another object of the present invention to adjust the pH of the whey protein solution to the optimum pH range of the enzyme used in the enzymatic hydrolysis operation of the present invention.
  • the pH adjustment operation on the desalted whey protein solution for the purpose of adjusting to the optimal pH range of the enzyme is performed.
  • the pH is not adjusted immediately after the desalting operation, the next lactose removal operation is performed, and immediately before the enzymatic hydrolysis operation, the desalting / de-lactose fog is removed.
  • the pH of the desalted whey protein solution is roughly adjusted to a range that can prevent oxidative corrosion of the production equipment.
  • the pH of the desalted / de-lactose whey protein solution can be adjusted to the optimum pH range of the enzyme used in the present invention.
  • the lactose in the desalted whey protein solution is removed by ultrafiltration.
  • Ultrafiltration membranes having a molecular weight cut-off of 2,000 to 10,000 can be used. Ultrafiltration is performed by a method generally used in this technical field. it can.
  • a module for ultrafiltration for example, a module such as a flat membrane type, a tubular type, a spiral type, and a hollow fiber type can be used, but in consideration of separation efficiency and economy. The use of tubular type and hollow fiber type is desirable.
  • ⁇ -lactoglobulin and ⁇ -lactalbumin of the whey protein contained in the desalted whey protein solution have a molecular weight of about 18,000 and about 14,1, respectively. Since it is 0, these whey proteins do not pass through the ultrafiltration membrane due to the ultrafiltration of the desalted whey protein solution, and lactose having a small molecular weight is eliminated as a membrane permeate fraction. . Furthermore, lactose can be almost completely removed by performing diafiltration (diafiltration) with purified water under constant volume. Since the whey protein does not pass through the ultrafiltration membrane and is retained in the membrane, the operation of diafiltration with constant volume running water does not affect the yield. In addition, ultrafiltration also eliminated inorganic substances to the membrane permeate side. Therefore, the effect of desalination is also obtained.
  • This desalting / lactose whey protein solution is adjusted to a whey protein concentration of less than 10%, and then the enzyme is added to the solution.
  • the enzymes used are two or more complex enzymes consisting of proteases of animal origin and proteases of Bacillus (Bacillus) microorganisms, or proteases of animal origin and proteases of Bacillus microorganisms. And other proteases.
  • animal-derived proteases include trypsin, chymotribcin, punkcreatin, and the like, all of which are commercially available products (for example, “PTN 6.0S” trademark. Novo (Nordisk, Inc.).
  • Proteases produced by microorganisms belonging to the genus Bacillus include Protease N (trademark, manufactured by Amano Pharmaceutical Co., Ltd.), Bioprase (trademark, manufactured by Nagase Biochemical Co., Ltd.), and Pro Leather (trademark, manufactured by Amano Pharmaceutical Co., Ltd.) , Alcalaze (produced by Novo Nordisk) and the like.
  • the purpose is achieved with a combined enzyme consisting only of a combination of a protease of animal origin and a protease produced by a microorganism of the genus Bacillus. Gain, but such a combination
  • the flavor of the whey protein hydrolyzate obtained by using the combined complex enzyme is not excellent, the flavor can be improved by using other proteases in combination.
  • Other proteases that can be used in this case include papine, promelin (manufactured by Amano Pharmaceutical Co., Ltd.), protease produced by microorganisms belonging to the genus Aspergillus, and Penicillium (Penium).
  • Proteases produced by microorganisms belonging to the genus 1ci11ium can be exemplified.
  • the amount of enzyme used should be between 3800 and 1 g of whey protein.
  • the pH to be hydrolyzed is in the range of pH 5 to 10 and preferably pH 6 to 9 because the optimum pH of the enzyme used in the present invention is from neutral to alkaline. It is.
  • the temperature conditions for the hydrolysis by the enzymatic reaction are not particularly limited, and can be selected from a range that can be put to practical use, including an optimum temperature range in which the enzymatic action is exhibited, and is usually 30 ° C. or more
  • the temperature can be selected from a temperature range of 30 ° C or lower, preferably 30 ° C or higher and 60 ° C or lower, and more preferably 50 ° C or higher and 60 ° C or lower.
  • maintaining the temperature within the range of 50 ° C to 60 ° C can prevent spoilage of the whey protein solution during the enzymatic reaction.
  • the time of the enzymatic reaction can be determined in advance by preliminary experiments.
  • the reaction solution is sampled at fixed time intervals from the start of the enzyme reaction, and the sampled reaction solution is subjected to the enzyme reaction termination treatment and ultrafiltration treatment of the present invention, respectively, to obtain the reaction solution.
  • the filtrate obtained is dried by a conventional method to obtain a powder, and the molecular weight distribution, free amino acid content, and antigenicity of the powder are determined by the methods described below, and an enzymatic reaction is performed when a powder having a desired composition is obtained.
  • Time may be used as the enzymatic reaction time for the subsequent implementation of the present invention.
  • the enzymatic reaction time for obtaining a whey protein hydrolyzate having the following properties is approximately 8 to 36 hours.
  • a fraction having a molecular weight of 1,200 or less is 90% or more, and (ii) a free amino acid content is 6% or less.
  • the antigenicity of ⁇ -lactogloprin measured by the ELISA test is 10- D or less.
  • the enzyme After the enzymatic reaction proceeds and the whey protein hydrolyzate reaches the stage having the above properties, it is heated to inactivate the enzyme.
  • the enzyme can be inactivated by heating the reaction solution at 80 ° C or higher for 6 minutes or longer. This heating produces about 20% (by volume) of insolubles when the reaction solution is centrifuged.
  • Whey protein hydrolyzate after inactivating the enzyme The solution is subjected to ultrafiltration to remove insolubles and fats, to clarify the solution, and to remove endotoxin. Since insoluble matter, fat and endoxin do not permeate the ultrafiltration membrane and remain on the membrane retentate side, the membrane permeate is collected to clarify and eliminate the whey protein hydrolyzate solution. Endotoxin can be removed.
  • the ultrafiltration membrane those having a molecular weight cut-off of 5,000 or less can be used, and a method generally used in the art can be applied to the ultrafiltration method.
  • the ultrafiltration module for example, a module of a flat membrane type, a tubular type, a spiral type, a hollow fiber type, or the like can be used, but in consideration of separation efficiency and economy, a tuber type is used. And the use of hollow fiber type is desirable.
  • the recovery rate of peptides, which are valuable solids in the stock solution can be increased. it can.
  • the liquid thus obtained may be commercialized as it is, or, if necessary, concentrated by a conventional method and dried to obtain a powder.
  • the low-purified purified protein hydrolyzate of the present invention obtained as described above has the following properties (1) to (6).
  • the protein contains the following amount of minerals per lg: Sodium 20 mg or less
  • Lactose content is not more than 0%
  • the fraction having a molecular weight of 1,200 or less is 90% or more
  • the properties of the low-lysine purified protein hydrolyzate of the present invention can be generally exemplified by the following ranges (a) to ( ⁇ ). Is not limited to the following range.
  • the low-lysine purified whey protein hydrolyzate of the present invention has a low inorganic content and almost no endotoxin and antigenicity.
  • it can be suitably used in place of amino acid as a nitrogen component in an intravenous infusion, and in that case, the contents of free amino acid, minerals and lactose are all kept low.
  • discoloration of the solution due to the aminocarbonyl reaction during autoclaving or storage during the process of producing an intravenous infusion can be prevented.
  • the low-purified whey protein hydrolyzate of the present invention is a mixture of a peptide and free amino acid, but the content of free amino acid is as low as 6% or less.
  • Intravenous infusions using the low-lean purified whey protein hydrolyzate of the present invention compared to intravenous infusions using an amino acid mixture of the same composition as the nitrogen component, Infusions with low osmotic pressure can be obtained. Furthermore, since the most difficult-to-remove phosphorus among the minerals has been significantly reduced, it is highly purified and has excellent digestibility and absorbability as a protein substitute such as hyperphosphatemia. It can also be used as a nutritional food material for people with restricted intake.
  • test of the low-purified whey protein hydrolyzate of the present invention was performed by the following method.
  • the contents of sodium, calcium, magnesium, phosphorus and calcium can be determined by standard methods (edited by the Society for Analytical Chemistry, ICP Emission Spectroscopy, Series of Instrumental Analysis Techniques, page 25, Kyoritsu Shuppan, 1
  • the amount of protein per 1 g of protein in the sample was calculated based on the protein content in the sample measured by a conventional method.
  • Chlorine content was measured by a potentiometric titration method (Japanese Society of Food Industry, Edited Committee for Food Analysis, “Food Analysis”, 2nd edition, p. 368, Korin, Showa 59).
  • Non-trip fans, cystines, and non-methionines For amino acids, the sample was hydrolyzed with 6N hydrochloric acid at 110 ° C for 24 hours, and for tritophan phantoms at 110 ° C for 22 hours with hydroxide hydroxide. Alkaline decomposition, cystine and methionine were treated with formic acid, and then hydrolyzed with 6N hydrochloric acid at 110 ° C for 18 hours. Each of them was subjected to an amino acid analyzer (manufactured by Hitachi, Ltd .: 83 (Type 5), and the content of each amino acid was determined.
  • the free amino acid content was obtained by deproteinizing the sample with sulfosalicylic acid, analyzing it with an amino acid analyzer (Hitachi, Model 835), and analyzing the amino acid composition described above. It was expressed as a percentage of the content of free amino acid relative to the total content of each amino acid.
  • ELISA Enzyme1inkedimmuno—sorbentassay
  • Test example 1 is a diagrammatic representation of Test example 1
  • Whey protein concentrate (produced by Mirai, Germany; protein content 90%, phosphorus content 0.0 mg / protein lg) is added to purified water to reduce whey protein concentration to 10%.
  • the sample was adjusted to pH and the pH was not adjusted (pH 7.18; sample 1 and sample 2), pH was adjusted to 4.00 (sample 3 and sample 6) with 3N hydrochloric acid, and 3. 600 g of each sample adjusted to 00 (sample 4) and 2.0 (sample 5) were prepared. 2) Test method.
  • Sample 1 was used for measurement of the phosphorus content without any contact with the ion exchange resin.
  • Sample 6 was treated in the same manner as in Method 2 above, except that it was not contacted with 0H "type anion exchange resin.
  • the phosphorus content of the six types of samples obtained by the above three methods was measured by the test method described above, and based on the protein content of the sample measured by a conventional method, 1 g of the protein in the sample was obtained. The phosphorus content per unit was calculated and the state of phosphorus removal was tested.
  • the amount was almost the same as that of the sample 2 treated with the ion-exchange tree---fat without adjusting the pH.
  • the pH of the solution is preferably 4 or less, preferably PH 3 or less. Adjusting to less than is an essential condition. The test was conducted with different whey protein concentrates and resin types, and almost the same results were obtained.
  • Whey protein concentrate (manufactured by Calpu Co .; protein content 80%, phosphorus content 3.5 mg / protein lg) is added to purified water to reduce the concentration of whey protein. Samples 7 to 9 were adjusted to 10% and adjusted to pH 3.0 with 3N hydrochloric acid to prepare 100 g of each of the samples.
  • Sample 7 was used for measurement of phosphorus content without any contact with the ion exchange resin.
  • Charge 9 was processed in the same manner as Method 2.
  • the phosphorus content of the three types of samples obtained by the above method was measured by the same method as in Test Example 1, and the state of phosphorus removal was tested.
  • the unit of the content of sodium, calcium, magnesium, phosphorus, calcium and chlorine is lg of the MgZ protein.
  • Example 1 the above-mentioned test methods were employed for measuring the inorganic content, lactose content, molecular weight distribution, free amino acid content, antigenicity and endotoxin content.
  • Example 1 the above-mentioned test methods were employed for measuring the inorganic content, lactose content, molecular weight distribution, free amino acid content, antigenicity and endotoxin content.
  • Whey protein concentrate (purified by Mirai, Germany, protein 90.3%, sodium 5.1, calcium 0.26, magnesium 0.33, purified water 0.39 and calcium 3.98) to adjust the whey protein concentration to 10%, and add 13.4 ml of 3N hydrochloric acid to 1 kg of this solution.
  • p H was adjusted to 3.
  • H + Katachihi ion exchange resin a Nbarai preparative IR- 1 2 0 B (manufactured by organo Corporation) 7 5 ml onto a column packed with SV 1 2.
  • the powder obtained in this manner was tested by the test method described above, and as a result, the inorganic composition was 0.3 sodium, 0.08 magnesium, and 0.0000 magnesium. 0, phosphorus 0.11 and calcium 0.008, and the phosphorus was significantly removed.
  • Whey protein concentrate (manufactured by Calp Co., Ltd .; protein 83.0%, sodium 1.45, potassium 4.0, magnesium 0.65, purified water) (Including phosphorus 3.39 and calcium 3.98) to adjust the concentration of whey protein to 10%, and add 76.2 ml of 5N hydrochloric acid to 1 kg of this solution.
  • the powder obtained in this manner was tested by the above-mentioned test method, and as a result, the inorganic composition was sodium 0.038, potassium 0.059, magnesium 0.025. , Phosphorus 0.125, and calcium 0.0213, and phosphorus was significantly removed.
  • Whey protein concentrate (produced by Mirai of Germany, protein 90.3%, sodium 7.7, calcium 0.60, magnesium 0.4, lithium (Including 0.38 and calcium 4.43) to adjust the concentration of whey protein to 12.4%, and 35% salt was added to 400 kg of this solution.
  • the powder obtained in this manner was tested by the above-described test method, and as a result, the inorganic composition was sodium 0.06, potassium 0.03, magnesium 0.06, and magnesium. 0.119 and calcium 0.023, and phosphorus was significantly removed.
  • this solution was subjected to ultrafiltration using an ultrafiltration module SEP-1013 (manufactured by Asahi Kasei Corporation, molecular weight cut-off: 300,000) to remove insolubles as a membrane-retaining component.
  • SEP-1013 manufactured by Asahi Kasei Corporation, molecular weight cut-off: 300,000
  • the obtained membrane permeate was concentrated and spray-dried by an ordinary method to obtain about 256 g of a spray-dried product of a low-purified purified protein hydrolyzate.
  • the inorganic composition was determined to be sodium 15.2, potassium 0.22, magnesium 0.04, and phosphorus 0. . 1 2, Calcium 19, chlorine 0.48, lactose content 0.26%, fraction having a molecular weight of 1,200 or less 92.4%, free amino acid content 5.4%, antigen sex / 3 -. la click preparative globulin emissions is 1 0 _ 6 less antigenic, et emissions de butoxy down the Hoe one protein hydrolyzate dry matter 1 g of 5 1 5 EUZ g der ivy . Industrial applicability
  • the low lymphoprotein of the present invention is useful for enhancing the nutritional value or protein of various foods.
  • the low phosphorus purified protein of the present invention has a very low phosphorus content, and is suitable for patients who need to limit the intake of phosphorus such as renal failure and hyperlinemia. It is useful in the food production and medical fields as a protein nutrient source administered orally or directly to the stomach and intestines. It is also non-antigenic and has good absorption, and is suitable for oral or stomach treatment for allergic patients, patients with intestinal immunity due to physical weakness, illness, allergic diarrhea, infants, preoperative and postoperative patients, etc. ⁇ It can be used as a protein nutrient source for direct administration to the intestine. Furthermore, its extremely low content of minerals, lactose and endotoxin allows it to be used in the medical field as a nitrogen source for intravenous infusions and peritoneal dialysis fluids. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Food Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Nutrition Science (AREA)
  • Wood Science & Technology (AREA)
  • Dairy Products (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

明細書
低リ ンホエータ ンパク質、 その製造方法、 低リ ン精製 ホェ一タ ンパク質加水分解物およびその製造方法
技術分野
この発明は、 低リ ンホェ一タ ンパク質、 その製造方法、 低リ ン精製ホェ一タ ンパク質加水分解物およびその製造方 法に関する ものである。 さ らに詳し く は、 この発明は、 各 種食品の栄養価またはタ ンパク質の強化に有用な低リ ンホ エータ ンパク質、 そのタ ンパク質の容易、 かつ安価な製造 方法と、 各種食品、 医薬品のタ ンパク質またはア ミ ノ酸の 代替物と して有用であり、 化粧品素材と しても有用な低リ ン精製ホエータ ンパク質加水分解物およびその製造方法に 関する ものである。
なお、 下記の説明において、 タ ンパク質 (またはホエー タ ンパク質) 加水分解物とは、 タ ンパク質 (またはホェ一 タ ンパク質) の加水分解物によ り得られるペプチ ドと遊離 ア ミ ノ酸との混合物であり、 遊離ア ミ ノ酸含量とは、 タ ン パク質 (またはホエータ ンパク質) 加水分解物中の全ア ミ ノ酸の含量に対する遊離ア ミ ノ酸の含量の重量百分率であ 背景技術
ホエ ー (乳清) は、 牛乳からチーズまたはカゼイ ンを製 造したと きの副産物と して得られるが、 ホエーに含まれて いるタ ンパク質 (以下ホェ一タ ンパク質と記載する こ とが ある) は高い栄養価を有している。 また、 ホエ ータ ンパク 質の含量を増加したホエ ータ ンパク質濃縮物は、 さ らに高 い栄養価を有する他に、 起泡性、 高い溶解性、 ゲル形成能 などの優れた特性を有し、 乳製品、 飲料、 肉製品、 菓子 · ケーキ類、 パン類など多く の食品に使用され、 育児用調製 粉乳の夕 ンパク質強化にも用いられている。
さ らに近年、 ペプチ ドが、 同一ア ミ ノ酸組成のタ ンパク 質およびア ミ ノ酸混合物に比較して消化吸収性の良さ、 抗 原性の低さ、 浸透圧の低さ、 および生理活性を有するなど 栄養学的、 生理学的な面で優れる こ とから、 ペプチ ドの利 用が様々な分野から注目され、 従来の食品への利用のほか に、 化粧品および医薬品への幅広い利用が検討されている が、 このペプチ ドを工業的に大量に調製するのに適してい る こ となどから、 ホェ一タ ンパク質の酵素による加水分解 物が種々研究されている。
と ころで、 これらのホェ一夕 ンパク質およびその加水分 解物は、 その用途の拡大にと もない、 各種用途に応じた独 特の品質が要求されるよ う になってきており、 特に医療目 的の原料と してホエ ータ ンパク質およびその加水分解物を 使用する場合には、 その成分組成に種々の制約が課せられ るこ とから、 高度な精製が不可欠なものとなっている。
また近年、 食品などからのリ ンの過剰摂取が骨代謝に及 ぼす悪影響が明らかになり、 リ ン摂取量の抑制が注目され ている。 たとえば、 医療分野では、 腎不全のため透析治療 を行っている患者の血中リ ン濃度の増加が、 骨の成長阻害、 その他疾患を惹起するこ とが明らかとなり、 これらの患者 の摂取する食品からはリ ンの低減が望まれている。 また、 種々の要因により生ずる高リ ン血症に対しては、 現在のと ころ副作用のない有効な治療法がないため、 患者用の低リ ン栄養食が待望されている。
以上のように リ ン含量を低減した食品が望まれているこ とから、 特に必須栄養素であるタ ンパク質の低リ ン化は重 要な課題となっている。 例えば、 ホエ ータ ンパク質の無機 質組成の改善を目的とする場合、 通常はホエ ータ ンパク質 を脱塩処理するが、 リ ン含量の減少は最も困難であり、 夕 ンパク質 l g当りの リ ン含量を 0 . 1 5 m g以下に減少さ せたホエ ータ ンパク質を製造することは従来不可能であつ た。
食品中の リ ンを除去する従来の方法は、 ( a ) p Hを 5 . 2 〜 6 . 0 に調整した脱脂乳を、 陰イオ ン交換体と接触さ せる方法 (特開昭 6.0— 2 5 6 3 4 2号公報) 、 (b) 乳 清中にカ ルシウ ムを加えて遊離リ ン酸をリ ン酸カルシウム と して沈殿させる方法 (特開昭 6 3 - 9 1 0 3 7号公報) および ( c ) 液状食品を活性アルミ ナと接触させる方法 (特開平 2 - 4 9 5 4 8号公報) が知られている。
またこ の発明の発明者らの一部は、 低リ ンホエー タ ンパ ク質を製造するためのホエーの処理方法を開発し、 特許出 願を行った (特開平 2— 1 1 7 3 6 6号公報。 以下先願 1 と記載する) 。 この先願 1の方法は、 甘性ホエーを限外濾 過法により 3倍以上に濃縮し、 p Hを 3. 0〜 4. 5に調 整し、 陽イオン交換体に接触させてタ ンパク質を吸着させ、 吸着したタ ンパク質を塩類の溶液でイ オ ン交換体から溶出 する方法である。
一方、 例えば経静脈用輸液の窒素成分と してァ ミ ノ酸に 代えてタ ンパク質加水分解物を使用する こ とを考えた場合、 そのタ ンパク質加水分解物は、 抗原性が除去されている必 要があり、 しかも リ ンをはじめとする無機質の組成は、 経 静脈用輸液全体の組成から制限を受ける。 また、 経静脈用 輸液の製造工程中の高圧蒸気滅菌または保存中などにおけ るァ ミ ノ カルボニル反応による液の着色を防ぐために、 夕 ンパク質加水分解物中に遊離ア ミ ノ酸と無機質および還元 糖 (例えば乳糖) とが共存していないこ とが望ま し く 、 力、 つ血中に投与する ことからェン ド トキシンにも制限が設け られる。 さ らには、 ア ミ ノ酸の代替物という こ とから当然 遊離ア ミ ノ酸含量はできる限り低く 抑えられるべきである。
しかし、 ホエータ ンパク質加水分解物を製造するための 原料と して牛乳由来のタ ンパク質を使用する場合には、 そ の原料中に無機質、 乳糖、 脂肪など調整または除去する必 要のある成分が多く 含まれており、 上記の条件をすベて満 たすような高度に精製されたホェ一タ ンパク質加水分解物 はこれまで得られていなかった。
なお、 上記条件に関連する特性を有する従来のタ ンパク 質加水分解物およびその製造方法は、 ( d ) 分子量分布が 1 0 , 0 0 0以下でメ イ ンピーク 1 , 0 0 0 〜 5 , 0 0 0 、 遊離ア ミ ノ酸含量 2 0 % (重量。 以下、 特に断りのない限 り同じ) 以下、 抗原性が δ —ラク トグロブリ ンの抗原性の 1 Z 1 0 , 0 0 0以下である低アレルゲン化したホェ一夕 ンパク加水分解物、 およびホエータ ンパクを ρ Η 6 ~ 1 0 においてタ ンパク加水分解酵素を用いて酵素分解し、 これ を加熱して酵素を失活させる低ア レルゲン化したホエ ー夕 ンパク加水分解物の製造法 (特開平 4 一 1 1 2 7 5 3号公 報) 、 ( e ) 分子量 6 , 0 0 0 ダル ト ン以下のペプチ ド類 および場合によりア ミ ノ酸類からなり、 かつア レルゲン性 物質およびラ ク トースを含有しない乳清の加水分解による ぺプチ ド製品、 並びに濃縮した乳清を透析濾過して得た乳 清タ ンパク質残留物を酵素的に加水分解するべプチ ド製品 の製造方法 (特許出願公表昭 6 3 - 5 0 2 0 0 4号公報) などがある。
また、 この発明の発明者らの一部は、 含まれるぺプチ ド の分子量が 1 , 0 0 0以下で抗原性を呈さず、 遊離ア ミ ノ 酸含有量が 2 0 %以下で、 芳香族ア ミ ノ酸含有量が、 全ァ ミ ノ酸量の 1 . 0 %以下である低分子量ペプチ ド組成物、 および蛋白質原料を蛋白質分解酵素により抗原性を認めな く なるまで、 かつ、 原料蛋白質に含まれる芳香族ア ミ ノ酸 が、 9 0 %以上遊離ア ミ ノ酸になるまで分解し、 ゲル濾過 法によりべプチ ド部分を回収する低分子量べプチ ド組成物 の製造方法 (特開平 2 - 1 3 8 9 9 1号公報。 以下先願 2 と記載する) 、 分子量が 1, 0 0 0以下のぺプチ ド混合物 で、 芳香族ア ミ ノ酸の 9 0 %以上が遊離ア ミ ノ酸であり、 乳蛋白質の抗原性を有しない乳蛋白質の加水分解物 (特開 平 4 一 2 6 6 0 4号公報。 以下先願 3 と記載する) 、 分子 量が 1, 0 0 0 ダル ト ン以下のペプチ ド混合物で、 全ア ミ ノ酸含量に対する芳香族ァ ミ ノ酸含量が 5 %以下であり、 乳蛋白質の抗原性を有しない乳蛋白質の加水分解物の分画 物 (特開平 4 一 2 6 6 0 5号公報。 以下先願 4 と記載する) 、 少なく と も 7 0 %の純度の乳清蛋白質を加水分解して得 られ、 分子量分布が 2, 0 0 0ダル ト ン以下、 抗乳清蛋白 質血清を用いたェライザ抑制試験法により測定した抗原残 存活性が 1 0 _ 4以下、 全ア ミ ノ酸含量に対する遊離ア ミ ノ 酸含量が 5 %以下であるこ とを特徴とするオ リ ゴぺプチ ド 混合物、 および少なく とも 7 0 %の純度の乳清蛋白質を 1 0 %以下の濃度で水に溶解し、 得られた水溶液を p H 7 . 5〜 1 0に調整し、 酵素加水分解し、 加熱により酵素を失 活するかまたはウル トラフィ ル ト レーシ ョ ンにより酵素を 除去するこ とを特徴とするオ リ ゴペプチ ド混合物の製造法 (特開平 4 — 2 4 8 9 5 9号公報。 以下先願 5 と記載する) を先に特許出願した。
しかしながら、 食品中のリ ンを除去する従来技術につい ては、 前記 ( a ) 、 ( b ) および ( c ) の方法では乳また は液状の食品から高度にリ ンを除去するこ とは不可能であ り、 タ ンパク質 l g当りの リ ン含量は、 それぞれ 4 0 m g、 1 0 m gおよび 6 . 4 m gが限度であつた。 また、 前記先 願 1の方法によれば、 ホェ一夕 ンパク質について夕 ンパク 質 1 g当り 0 . 4 4 m gに減少させるこ とは可能である力く、 タ ンパク質 1 g当りのリ ン含量を 0 . 1 5 m g以下の微量 にまで減少させる こ とは不可能であった。
さ らに、 従来技術においても陽イオン交換樹脂または陰 イオン交換樹脂と接触させる前にタ ンパク質溶液の P H調 整を行う こ とはなされていたが、 p H調整の下限は対象と するタ ンパク質の等電点沈殿の発生によ り制限されるのが 通例であっ た。 しかも、 原料タ ンパク質溶液を H + 形陽ィ ォ ン交換樹脂と接触させる場合、 P Hが低下して溶液が酸 性になるので、 H ' 形陽イオン交換樹脂と接触させる前に わざわざ溶液の P Hを酸性に調整する こ とは、 先願 1 を除 き従来全く 考慮されていなかった。
一方、 タ ンパク質加水分解物およびその製造方法につい ては、 前記 ( d ) 、 ( e ) 、 先願 2 〜 5 などの従来技術で は、 乳糖含量、 分子量分布、 遊離ア ミ ノ酸含量、 抗原性な どの条件の う ちの数項目については検討しているが、 タ ン パク質 1 g当りの リ ン含量を 0 . 1 5 m g以下の微量まで 減少させる こ とは不可能であり、 その他無機質含量、 乳糖 含量、 分子量分布、 遊離ア ミ ノ酸含量、 抗原性、 エン ド ト キシン含量のすべての項目にわたって検討された精製度の 高いタ ンパク質加水分解物はこれまで報告されていなかつ た。
この発明の発明者らは、 前記先願 1 〜 5 の方法を特許出 願した後、 よ り リ ン含量を減少させたホエ ータ ンパク質の 製造方法について鋭意研究を行った結果、 先願 1 の方法よ り もさ らに低い p Hにおいてホエ ータ ンパク質を陽イオ ン 交換樹脂および陰イオ ン交換樹脂と接触させる こ とによ つ てホェ一夕 ンパク質.の リ ン含量を顕著に低減し得る こ とを 見出 し、 さ らに当該方法によ り得られる リ ン含量の低いホ エ ータ ンパク質の加水分解について鋭意研究を行い、 前記 先願 2〜 5のタ ンパク質加水分解物よ り さ らに リ ン含量が 低く 、 その他無機質含量、 乳糖含量、 分子量分布、 遊離ァ ミ ノ酸含量、 抗原性、 エ ン ド トキシ ン含量のすべてが低減 された精製度の高いタ ンパク質加水分解物が得られる こ と を見出し、 この発明を完成した。
発明の開示
こ の発明は、 タ ンパク質 1 g当りの リ ン含量が、 0. 1 5 m g以下である こ とを特徴とする低リ ンホエ ータ ンパク 質である。
この発明は、 ホェ一タ ンパク質を含有する溶液の p Hを 4以下に調整し、 H + 形陽イオ ン交換樹脂および陰イ オ ン 交換樹脂に順次接触させ、 タ ンパク質 1 g当り の リ ン含量 を 0. 1 5 m g以下に減少させる こ とを特徴とする低リ ン ホエ ー夕 ンパク質の製造方法である。
また、 この発明は、 以下の ( 1 ) 〜 ( 6 ) の性質を有す る低リ ン精製ホエ ータ ンパク質加水分解物である。
( 1 ) タ ンパク質 1 g当り に以下の量の無機質を含有する こ と、
ナ ト リ ウ ム 2 0 m g以下 カ リ ウム .2 0 m g以下
マグネシウム 0. 0 5 7 m g以下
リ ン 0 . 1 5 m g以下
カノレシゥ ム 0 . 2 2 7 m g以下
塩素 0. 5 6 8 m g以下
( 2 ) 乳糖含量が 0 5 %以下であるこ と、
( 3 ) 1 , 2 0 0以下の分子量を有する画分が 9 0 %以上 であるこ と、
( 4 ) 遊離ア ミ ノ酸含量が 6 %以下であるこ と、
( 5 ) ェラ イザ抑制試験法 ( E L I S A : E n z y m e 1 i n k e d i m m u n o — s o r b e n t a s s a y ) により測定した抗原性が β — ラ ク トグ ロブリ ンの抗原性の 1 0 _ Q以下であるこ と、
( 6 ) 乾燥物 1 g中のエン ド トキシンが 1 0 E U以下であ る ^ と
さ らに、 この発明は、 ホエ ータ ンパク質を含有する溶液 の p Hを 4以下に調整し、 Η τ 形陽イ オ ン交換樹脂および 0 H " 形陰ィォン交換樹脂に順次接触させ、 p Hを 5以上 1 0以下に調整し、 限外濾過にて乳糖を除去し、 動物起源 のプロテアーゼとバシラ ス (B a c i i 1 u s )属の微生物が産出す るプロテアーゼとからなる 2種以上の複合酵素、 または動 物起源のプロテアーゼ、 バシラス属の微生物が産出するプ 口テアーゼおよびその他のプロテアーゼとからなる 3種以 上の複合酵素を添加して酵素分解し、 加熱して酵素を失活 させる と共に未反応のタ ンパク質を沈殿させ、 次いで限外 濾過して沈殿および脂肪を除去するこ とを特徴とする低リ ン精製ホエータ ンパク質加水分解物の製造方法である。 なお、 この発明の上記製造方法の各々においては、 ホェ 一タ ンパク質を含有する溶液の p Hを 3未満に調整するこ とを好ま しい態様と してもいる。
この発明によれば、 従来達成し得なかったリ ン含量の顕 著に低いホエータ ンパクを、 極めて容易かつ安価に製造す ることができ、 しかも、 ホェ一を工業的規模で大量に効率 よく処理する こ とができる。
また、 リ ン、 無機質、 乳糖、 エン ド トキシンの含量が非 常に低く 、 非抗原性、 吸収性に優れたホェ一タ ンパク質加 水分解物が提供される。 発明を実施するための最良の形態
まず、 この発明の低リ ンホエータ ンパク質の製造方法は ホエータ ンパク質を含有する溶液の p Hを 4以下に調整し H + 形陽イオン交換樹脂および陰イオン交換樹脂に順次接 触させ、 タ ンパク質 l g当りの リ ン含量を 0 . 1 5 m g以 下に減少させるこ とを特徴と している。 ホエーとは、 全脂乳または脱脂乳に酸またはレ ンネ ッ ト を添加し、 生ずるカゼイ ンを除去した残りの液体であ り、 約 0 . 3 〜 0 . 7 %のタ ンパク質を含有している。
この発明の低リ ンホエ ータ ンパク質の製造方法において 使用する出発原料は、 タ ンパク質含量 7 0 %以上のホエ ー タ ンパク質濃縮物であり、 市販品を使用する こ と もできる が、 ホエーから公知の方法によ り タ ンパク質を分離し、 夕 ンパク質含量を 7 0 %以上に濃縮した濃縮物であってもよ い。 この濃縮物は、 例えば、 限外濾過膜による分画によつ て低分子物質を除去しながらタ ンパク質を濃縮する方法、 陽イ オ ン交換体および陰イ オ ン交換体にタ ンパク質を吸着 させた後溶出して濃縮する方法、 ゲル濾過担体を充填した カ ラ ムによって脱塩および脱乳糖と同時にタ ンパク質を回 収する方法などによ り製造する こ とができる。 ホエ ータ ン 、°ク質濃縮物の リ ン含量は、 製造方法によって相違があ り、 現在市販されているタ ンパク質濃縮物について例示すれば、 タ ンパク質 1 g当りの リ ン含量は 0 . 4 ~ 5 . O m gの範 囲である。
この出発原料を希釈し、 ホェ一タ ンパク質 5 〜 2 0 %程 度の濃度の溶液に調製し、 酸を添加して p H 4以下、 望ま し く は p H 3未満に調整する。 p Hの調整に用い られる酸 は、 塩酸、 ク ェ ン酸、 乳酸、 酢酸、 硫酸などを例示する こ とができる。 ホエータ ンパク質を含有する溶液の p Hは中 性付近であるため、 p Hの調整に際してホェ一タ ンパク質 の等電点 ( p H 5付近) を通過することになるが、 所望の P Hに調整するために必要な酸の添加量を予め決定し、 そ の所定添加量を数秒〜 1分間以内に全量を添加し、 速やか に混合、 撹拌し、 ホエータ ンパク質の凝固などを惹起せず に、 所定の p Hに調整するこ とができる。
次いで p Hを 4以下に調整したホエータ ンパク質を含有 する溶液を、 まず H + 形陽イオ ン交換樹脂と接触させる。 使用する陽イ オ ン交換樹脂は、 強酸性または弱酸性のいず れの樹脂であってもよ く、 ダイアイオン S K 1 8 (商標。 三菱化成工業社製) 、 デュオライ ト C一 2 6 (商標。 ケ ミ カル · プロセス社製) 、 ア ンバーラ イ ト I R— 1 2 0 B (商標。 オルガノ社製) 、 ダウエッ クス M S C— 1 (商標 ダウケ ミ カル社製) などの市販品を例示するこ とができる この H+ 形陽イオン交換樹脂との接触によりホエータ ン パク質を含有する溶液の P Hは、 通常 1〜2. 5程度とな る。 ホエータ ンパク質を含有する溶液の p Hを調整せずに 中性付近で H + 形陽イ オ ン交換樹脂と接触させた場合、 後 記する試験例から明らかなように リ ン含量を低減させる効 果が認められないばかりではな く、 p Hの低下によりホェ —タ ンパク質の等電点 ( p H 5付近) を通過するために凝 固が生成し、 連続的なィォン交換樹脂処理が不可能となる p Hを調製したホエ ータ ンパク質を含有する溶液と陽ィ オ ン交換樹脂との接触はバッ チ攪拌法、 カラム連続法など 適宜の方法で行う こ とができ、 溶液と陽イオ ン交換樹脂と を十分接触させる こ とのできる方法であればいずれであつ てもよいが、 工業的規模で実施する場合には操作が簡便な 力ラム連続法が望ま しい。
ホェ一タ ンパク質を含有する溶液と陽イオ ン交換樹脂と の混合比率は、 イオン交換樹脂の吸着能力によって異なる が、 陽イオ ン交換樹脂の総交換容量 (当量) がホエ ータ ン パク質を含有する溶液の陽イオン総量 (当量) よ り大きい こ とが必要であ り、 樹脂利用効率の点から 2 〜 5倍量が望 ま しい。
ホエ ータ ンパク質を含有する溶液と陽イオ ン交換樹脂と の接触時の温度は、 ホェ一夕 ンパク質の熱変性が生じない 0 〜 6 0 °Cであればよいが、 微生物による腐敗を予防する ために 0 〜 1 0 °Cで実施するのが望ま しい。 ホエ ータ ンパ ク質を含有する溶液との接触時間は、 接触時の温度、 採用 する接触方式などを勘案して適宜決定する こ とができ る。 例えば、 バッ チ攪拌法においては反応槽において 0 . 5 〜 3時間程度攪拌、 混合しながら接触させ、 カラム連続法に おいては S V = 0 . 0 1 〜 2 0 h—丄、 望ま し く は S V = 2 〜 1 5 h _ 1の通液速度で実施する。
次いで陽イ オ ン交換樹脂に接触した後のホエータ ンパク 質を含有する溶液をさ らに陰イオン交換樹脂と接触させる。 使用する陰イ オ ン交換樹脂と しては、 強塩基性または弱塩 基性のいずれの樹脂でもよ く、 ダイアイオン P A 3 1 8 (商標。 三菱化成工業社製) 、 デュオライ ト A— 1 1 6 (商標。 ケ ミ カル · プロセス社製) 、 ア ンバーラ イ ト I R A - 4 1 1 (商標。 オルガノ社製) 、 ダウエッ クス M W A 一 1 (商標。 ダウケ ミ カル社製) などの市販品を例示する ことができる。 陰イオン交換樹脂の対イオンは 0 H— 形ま たは C 1 " 形のいずれであってもよいが、 〇 H — 形に調製 して使用すれば溶液の脱塩を行う こ とができ、 しかも p H が上昇して酸性度が減少するので、 処理後に中和を行う場 合には中和剤 (アルカ リ剤) の使用量を低減させることが できる。 なお、 陰イ オ ン交換樹脂の接触方法、 接触条件な どは陽イオ ン交換樹脂の場合と同様である。
また、 イオン交換樹脂に接触させた溶液に含まれている 固形分を回収するため、 イ オ ン交換樹脂に精製水を通液す るこ と もできる。
イ オ ン交換処理して得られた溶液の P Hは、 通常 p H 1 ~ 4程度であり、 必要に応じて水酸化ナ ト リ ウ ム、 水酸化 カ リ ウムなどの中和剤 (アルカ リ剤) を用いて中和を行う こ と もでき る。 また、 得られた低リ ンホエ ータ ンパク質を 溶液状態で限外瀘過膜などによる定容流水透析濾過 (ダイ ァフ ィ ル ト レーシ ヨ ン) を行う こ とによ り脱塩および脱乳 糖された低リ ンホエ ータ ンパク質を製造する こ と もできる , このよ う して得られた低リ ンホェ一タ ンパク質を含む溶液 は、 このままで製品とする こ と もでき るが、 必要に応じて 常法によ り濃縮し、 乾燥し、 粉末とする こ と もできる。
以上のよ う に して得られたホエ ー夕 ンパク質は、 夕 ンパ ク質 l g当り 0 . 1 5 m g以下の リ ンを含有する極めて低 ぃ リ ン含量のホエータ ンパク質であり、 従来のホエ ータ ン パク質と同様に、 優れた栄養価、 起泡性、 乳化力などを利 用 して食品素材などに使用する こ と も可能であ り、 高リ ン 血症などリ ン摂取制限者用栄養食品素材と しても好適であ り、 最も除去が困難な リ ンを顕著に低減した高度精製ホェ 一タ ンパク質と して利用する こ と もでき る。
次に、 この発明の低リ ン精製ホエ ータ ンパク質加水分解 物の製造方法は、 ホエ ータ ンパク質を含有する溶液の p H を 4以下に調整し、 Η Ί 形陽イ オ ン交換樹脂および 0 Η— 形陰イ オ ン交換樹脂に順次接触させ、 Ρ Ηを 5以上 9以下 に調整し、 限外濾過にて乳糖を除去し、 動物起源のプロテ ァーゼとバシラ ス (B a c i 1 1 u s )属の微生物が産出するプロテ ァーゼとからなる 2種以上の複合酵素、 または動物起源の プロテア一ゼ、 バシラス属の微生物が産出するプロテア一 ゼおよびその他のプロテア一ゼとからなる 3種以上の複合 酵素を添加して酵素分解し、 加熱して酵素を失活させる と 共に未反応のタ ンパク質を沈殿させ、 次いで限外濾過して 沈殿および脂肪を除去する こ とを特徴と している。
この発明の低リ ン精製ホエ ータ ンパク質加水分解物の製 造方法において使用する出発原料は、 前記したこ の発明の 低リ ンホェ一タ ンパク質の製造方法において使用する出発 原料と同一のホェ一タ ンパク質濃縮物である。
この出発原料を希釈し、 ホエ ータ ンパク質 5 ~ 2 0 %程 度の濃度の溶液に調製し、 酸を添加して P H 4以下、 望ま し く は P H 3未満に調整する。 p Hの調整に用いられる酸 は、 塩酸、 ク ェ ン酸、 乳酸、 酢酸、 硫酸などを例示する こ とができるが、 塩酸を用いる こ と力 <、 最終製品の風味に悪 影響を及ぼさず、 かつ O H— 形陰イ オ ン交換樹脂によ って C 1 — イオ ンが除去され最終的に残存しな く なるので望ま しい。 ホェ一タ ンパク質を含有する溶液の p Hは中性付近 であるため、 p Hの調整に際してホェ一夕 ンパク質の等電 点 ( p H 5付近) を通過する こ とになるが、 所望の p Hに 調整するために必要な酸の添加量を予め決定し、 その所定 添加量を数秒〜 1分間以内に全量を添加し、 速やかに混台、 撹拌する こ とで、 ホエータ ンパク質の凝固などを惹起せず に、 所定の p Hに調整する こ とができる。
次いで p Hを 4以下に調整したホエ ータ ンパク質を含有 する溶液を、 まず H + 形陽イオ ン交換樹脂と接触させ、 さ らに O H— 形陰イ オ ン交換樹脂と接触させて脱塩する。 使 用するイ オ ン交換樹脂の種類、 イオ ン交換樹脂の接触方法、 接触条件などは前記したこの発明の低リ ンホエ ータ ンパク 質の製造方法と同様であるが、 最終的に得られるホェ一夕 ンパク質加水分解物の無機質含量を低く 保っために、 陰ィ オ ン交換樹脂の対イ オ ンを O H— 形に調製して使用する こ とで溶液の脱塩を行う こ とができ、 しかも p Hが上昇して 酸性度が減少するので、 イオ ン交換処理後に溶液の p Hを 中性〜アルカ リ性とする場合に、 中和剤 (アルカ リ剤) の 使用量を低減させる こ とができる。 なお、 イオ ン交換樹脂 に接触させた溶液に含まれている固形分を回収するため、 イ オ ン交換樹脂に精製水を通液する こ と もでき る。 なお、 従来のタ ンパク質加水分解物製造方法では、 加水分解後に イ オ ン交換樹脂、 電気透析などの脱塩処理をおこなってい たが、 この発明では、 加水分解前のタ ンパク質をイオ ン交 換樹脂によ り脱塩する こ とによ り、 ペプチ ドおよびア ミ ノ 酸のイオ ン交換樹脂への吸着による損失を防止している。
このよ う に して得られた脱塩ホエ ータ ンパク質溶液は酸 性の p Hを有しているため、 中和剤 (ァ リ カ リ剤) を添加 して p H 5以上 1 0 .以下、 望ま し く は p H 6以上 9以下の 範囲に調整する。 p Hの調整に用いられる中和剤 (ア リ カ リ剤) は、 水酸化ナ ト リ ウム、 水酸化力 リ ウムなどを例示 することができる。 この P H調整操作は、 例えば製造設備 の酸化腐食を防止すると同時に製造設備の金属部分からの 無機質イオ ンの溶出を防ぐことなどを目的と している。 さ らに、 ホエ ータ ンパク質溶液の p Hを、 この発明の酵素加 水分解操作において使用する酵素の最適 P H範囲に合わせ るこ とをも目的と している。 よって、 製造設備の酸化腐食 などの恐れがない場合には、 前記酵素の最適 p H範囲に合 わせるこ とを目的と した、 脱塩ホェ一夕 ンパク質溶液に対 する p H調整操作は、 前記のように脱塩操作の直後に行う 必要はなく 、 酵素加水分解操作の前までに適宜行う ことが 可能である。 例えば、 製造設備の酸化腐食がない場合には、 脱塩操作の直後に P Hを調整せずに、 次の乳糖除去操作を 行った後、 酵素加水分解操作の直前に、 脱塩 · 脱乳糖ホェ —タ ンパク質溶液の P Hを、 この発明で使用する酵素の最 適 p H範囲に調整することが可能である。 また、 別の例と しては、 脱塩操作の直後に、 前記脱塩ホエ ータ ンパク質溶 液の p Hを、 製造設備の酸化腐食を防止できる範囲に大ま かに調整し、 次の乳糖除去操作を行った後、 酵素加水分解 操作の直前に、 脱塩 · 脱乳糖ホエ ータ ンパク質溶液の p H を、 この発明で使用する酵素の最適 P H範囲に調整する こ と も可能である。
次いで脱塩ホエータ ンパク質溶液の乳糖を限外濾過によ り除去する。 限外濾過膜は分画分子量 2 , 0 0 0〜 1 0, 0 0 0のものが使用可能であ り、 限外濾過の方法は、 この 技術分野で一般的に用いられている方法が適用でき る。 限 外濾過用モジュールと しては、 例えば平膜型、 チューブラ 一型、 スパイ ラル型、 ホロ一フ ァ イバ一型などのモジユー ルが使用可能であるが、 分離効率および経済性を考慮する とチューブラー型およびホロ一フ ァイバー型の使用が望ま しい。
脱塩ホエータ ンパク質溶液に含有されるホェ一タ ンパク 質の; β —ラ ク ト グロブリ ン、 および α —ラ ク トアルブミ ン の分子量は、 それぞれ約 1 8, 0 0 0 および約 1 4, 1 0 0であるため、 脱塩ホエータ ンパク質溶液の限外濾過によ り これらホエータ ンパク質は限外濾過膜を透過せず、 分子 量の小さい乳糖が膜透過液画分と して排除される。 さ らに 精製水による定容流水透析濾過 (ダイ ァフ ィ ル ト レーシ ョ ン) を行う こ とによ り、 乳糖をほぼ完全に除去できる。 ホ エータ ンパク質は限外濾過膜を透過せず膜内に保持される ため、 定容流水透析濾過の操作は歩留り に影響しない。 ま た、 限外濾過によ り、 無機質も膜透過液側へ排除されるた め、 脱塩の効果も得.られる。
この脱塩 · 脱乳糖ホェ一タ ンパク質溶液をホエ ー夕 ンパ ク質濃度 1 0 %未満に調整し、 のち当該溶液に酵素を添加 する。
使用する酵素は、 動物起源のプロテアーゼとバシラ ス (B a c i 1 l u s )属の微生物が産出するプロテアーゼとからなる 2 種類以上の複合酵素、 または動物起源のプロテアーゼ、 バ シラス属の微生物が産出するプロテアーゼおよびその他の プロテアーゼとからなる 3種類以上の複合酵素である。 動 物起源のプロテアーゼと しては、 ト リ プシン、 キモ ト リ ブ シ ン、 パンク レアチ ンなどを例示する こ とができ、 いずれ も市販品 (例えば 「 P T N 6 . 0 S」 商標。 ノ ボ , ノ ルデ イ スク社製) と して入手する こ とができる。 バシラス属の 微生物が産出するプロテア一ゼと しては、 プロテア一ゼ N (商標。 天野製薬社製) 、 ビオプラーゼ (商標。 長瀬生化 学工業社製) 、 プロ レザー (商標。 天野製薬社製) 、 アル カラーゼ (ノ ボ · ノ ルディ スク社製) などを例示する こ と ができ る。
また、 得られるホエ ータ ンパク質加水分解物の抗原性を 減少させるためには、 動物起源のプロテアーゼとバシラス 属の微生物が産出するプロテア一ゼとからなる組み合わせ のみの複合酵素でその目的は達し得るが、 そのよ うな組み 合わせの複合酵素の使用で得られるホエ ータ ンパク質加水 分解物の風味が優れない場合には、 その他のプロテアーゼ を併用 して風味の改善を図る こ とができる。 この場合に使 用可能なその他のプロテアーゼと しては、 パパイ ン、 プロ メ ライ ン (天野製薬社製) 、 ァスペルギルス (Aspergi l l us ) 属の微生物が産出するプロテアーゼ、 ぺニシ リ ウム (Pen
1 c i 11 ium) 属の微生物が産出するプロテアーゼなどを例示 する こ とができる。
使用する酵素量はホエ ータ ンパク質 1 g当り 3 8 0 0〜
2 0 , 0 0 0活性単位の割合であり、 複合酵素を混合また は分割して添加する。
加水分解の行なわれる P Hは、 この発明で使用する酵素 の最適 P Hが中性からアルカ リ側にある こ とから、 p H 5 以上 1 0以下、 望ま し く は p H 6以上 9以下の範囲である。
酵素反応による加水分解の温度条件は格別の制限はな く 、 酵素作用の発現する最適温度範囲を含む実用に供せられ得 る範囲から選択する こ とができ、 通常 3 0 °C以上 7 0 °C以 下、 望ま し く は 3 0 °C以上 6 0 °C以下、 更に望ま し く は 5 0 °C以上 6 0 °C以下の温度範囲から選ぶこ とができ る。 特 に、 温度を 5 0 °C以上 6 0 °C以下の範囲に維持する こ とに よ り、 酵素反応中のホエ ータ ンパク質溶液の腐敗を防止す る こ とができ る。 酵素反応の時間は、 予備実験により予め決定する こ とが できる。 すなわち、 例えば、 酵素反応の開始から一定の時 間間隔で反応液を少量づっ採取し、 採取した反応液をそれ ぞれこの発明の酵素反応の停止処理および限外濾過処理に 付し、 得られた濾過液を常法により乾燥して粉末と し、 こ の粉末について後記の方法で分子量分布および遊離ァ ミ ノ 酸含量および抗原性を求め、 所望の組成の粉末の得られた 場合の酵素反応時間をもってその後のこの発明の実施の際 の酵素反応時間とすればよい。 たとえば、 この発明におい て、 次の性質を有するホエータ ンパク質加水分解物を得る ための酵素反応時間は、 ほぼ 8〜 3 6時間である。
( i ) 1 , 2 0 0以下の分子量を有する画分が 9 0 %以上, ( i i ) 遊離ア ミ ノ酸含量が 6 %以下。
( i i i ) ェライザ抑制試験法により測定した抗原性が β — ラ ク トグロプリ ンの抗原性の 1 0— D以下。
酵素反応が進行し、 ホエー夕 ンパク質加水分解物が上記 の性質を有する段階に達した後、 加熱して酵素を失活させ る。 酵素の失活は、 反応液を 8 0 °C以上で 6分間以上加熱 する こ とにより行う こ とができる。 この加熱により、 反応 液を遠心分離したとき約 2 0 (容量) %の不溶物が生成す o
酵素を加熱失活させた後のホエータ ンパク質加水分解物 溶液を限外濾過し、 不溶物および脂肪分を除去して液の清 澄化を行う と と もにエン ド トキシ ン除去を行な う。 不溶物、 脂肪分およびエ ン ド トキシ ンは限外濾過膜を透過せず、 膜 保持液側に止ま るため、 膜透過液を採取する こ とによって ホエータ ンパク質加水分解物溶液の清澄化およびェン ド ト キシ ン除去ができる。 限外濾過膜は分画分子量 5, 0 0 0 以下のものが使用可能であり、 限外濾過の方法は、 当分野 で一般的に用いられている方法が適用できる。 限外濾過用 モジュールと しては、 例えば平膜型、 チューブラ一型、 ス パイ ラル型、 ホローフ ァ ィバー型などのモジュールが使用 可能であるが、 分離効率および経済性を考慮する とチュー ブラー型およびホロ一フ ァ イバー型の使用が望ま しい。
さ らに精製水による定容流水透析濾過 (ダイ ァフ ィ ル ト レーシ ヨ ン) を行う こ とによ り、 原液中の有価固形分であ るべプチ ドの回収率を高める こ とができる。
このよ う に して得られた液は、 このままで製品化しても よ く 、 また必要に応じて常法によ り濃縮し、 乾燥し、 粉末 とする こ と もできる。
以上のよ う に して得られたこの発明の低リ ン精製ホェ一 タ ンパク質加水分解物は、 次の ( 1 ) 〜 ( 6 ) の性質を有 している。
( 1 ) タ ンパク質 l g当り次の量の無機質を含有する こ と、 ナ ト リ ウム 2 0 m g以下
カ リ ウ ム 2 0 m g以下
マグネシゥ ム 0. 0 5 7 m g以下
リ ン 0. 1 5 m g以下
カノレシゥ ム 0. 2 2 7 m g以下
塩素 0. 5 6 8 m g以下
( 2 ) 乳糖含量が 0 5 %以下であるこ と、
( 3 ) 1 , 2 0 0以下の分子量を有する画分が 9 0 %以上 であるこ と、
( 4 ) 遊離ア ミ ノ酸含量が 6 %以下であること、
( 5 ) ェライザ抑制試験法により測定した抗原性が^ -ラ ク トグロプリ ンの抗原性の 1 0—6以下であるこ と、 ( 6 ) 乾燥物 1 g中のエン ド トキシンが 1 0 E U以下であ る し と o
さ らに詳し く は、 この発明の低リ ン精製ホェ一タ ンパク 質加水分解物の性質は、 通常次の ( a ) 〜 ( ί ) に示す範 囲を例示することができるが、 この発明は以下の範囲に限 定される ものではない。
( a ) タ ンパク質 1 g当りの無機質含有量、
ナ ト リ ウ ム 0. 0 4〜 1 7 m g
カ リ ウム 0. 0 1 〜; L 7 m g
マグネシウム 0. 0 3〜 0. 0 5 m g リ ン 0. 1 1〜 0. 1 3 m g
カルシウム 0. 1 5〜 0. 2 0 m g
塩素 0. 4 0 - 0. 5 0 m g
( b ) 乳糖含量は 0. 1〜 0. 4 %、
( c ) 1 , 2 0 0以下の分子量を有する画分が 9 0〜 9 4 %、
( d ) 遊離ア ミ ノ酸含量は 4〜 6 %、
( e ) ェライザ抑制試験法によ り測定した抗原性が β — ラ ク ト グロブリ ンの抗原性の 1 0 _6以下 (後記のエラ ィザ抑制試験法による検出限界) 、
( f ) 乾燥物 l g中のエン ド トキシンが 2〜 8 E U。
前記 ( 1 ) 〜 ( 6 ) に示したとおり、 この発明の低リ ン 精製ホエ ータ ンパク質加水分解物は、 無機質含量が低く 、 ェン ド トキシンおよび抗原性がほとんど除去されているた め、 例えば経静脈用輸液の窒素成分と してァ ミ ノ酸に代え て好適に使用可能であり、 またその場合には遊離ア ミ ノ酸、 無機質および乳糖の含量が共に低く 抑えられているため、 経静脈用輸液の製造工程中の高圧蒸気滅菌または保存中な どにおけるァ ミ ノ カルボニル反応による液の着色を防ぐこ とができ る。 また、 この発明の低リ ン精製ホエー タ ンパク 質加水分解物はべプチ ドと遊離ア ミ ノ酸との混合物である が、 遊離ア ミ ノ酸含量は 6 %以下と低いため、 窒素成分と してこの発明の低リ.ン精製ホエータ ンパク質加水分解物を 使用した経静脈用輸液は、 窒素成分と して同一組成のア ミ ノ酸混合物を使用した経静脈用輸液に比較して、 浸透圧の 低い輸液とすることができる。 さ らに、 無機質のなかでも 最も除去が困難な リ ンが顕著に低減されているので、 精製 度が高く 、 消化吸収性の優れた夕 ンパク質代替物と して高 リ ン血症などリ ン摂取制限者用栄養食品素材と しても使用 できる。
なお、 この発明の低リ ン精製ホェ一夕 ンパク質加水分解 物の試験は、 次の方法により行った。
① 無機質含量の測定方法
ナ ト リ ウム、 カ リ ウム、 マグネシウム、 リ ンおよびカル シゥムの含量は常法 (分析化学会編、 機器分析実技シリ ー ズ 「 I C P発光分析法」 、 第 2 2 5ページ、 共立出版、 1 9 8 8年) により定量し、 常法により測定した試料中の夕 ンパク質含量をもとに、 試料中のタ ンパク質 1 g当りの含 量を算出した。 塩素の含量は、 電位差滴定法 (日本食品ェ 業学会、 食品分析法編集委員会編、 「食品分析法」 、 第 2 版、 第 3 6 8ページ、 光琳、 昭和 5 9年) により測定した
② 乳糖含量の測定方法
高速液体ク ロマ トグラフィ ーにより測定した (日本食品 工業学会誌、 第 2 7巻、 第 7号、 第 3 6ページ、 1 9 8 0 年) 。 シ ョ ーデッ ク ス (Shod ex) D C 6 1 3 (昭和電工社 製) カラムを用い、 ァセ トニ ト リル : 水の比が 7 5 : 2 5 の溶出液により、 溶出速度 1. 2 m l Z分で溶出した。 検 出は、 ポス トラベル法 [ブンセキ · カガク (BUNSEK1 KAGA Κϋ) 、 セ ク シ ョ ン E (Se c t i on E ) 、 第 3 2巻、 第 6号、 第 E 2 0 7ページ、 1 9 8 3年] によ り蛍光検出器 (島津 製作所製 : 島津 R F 5 3 0 ) を用い、 内部標準法 (曰本分 析化学会関東支部編、 「高速液体ク ロマ ト グラ フ ィ ーハ ン ドブッ ク」 、 第 2 7 7ページ、 丸善株式会社、 昭和 6 0年) により乳糖含量を算出した。
③ 分子量分布の測定方法
高速液体ク ロマ ト グラ フ ィ ーによ り測定した (宇井信生 等編、 「タ ンパク質 · ペプチ ドの高速液体ク ロマ トグラフ ィ 一」 、 化学増刊第 1 0 2号、 第 2 4 1ページ、 株式会社 化学同人、 1 9 8 4年) 。 ポ リ · ヒ ドロキ シェチル · ァス ノ、-ノレタ ミ 卜 [Po l y Hydro y e thy l A s p a r t a ni i d e . ポリ * ェ ル · シ一 (Po l y LC) 社製] カラムを用い、 5 0 m M蟻酸に より溶出速度 0. 5 m 1 Z分で溶出した。 検出は R I 検出 器 (島津製作所製) を用い、 データー解析は G P C分析シ ステム (島津製作所製) を使用した。
④ 遊離ア ミ ノ酸含量の測定方法
ト リ プ ト フ ァ ン、 システィ ンおよびメ チォニ ン以外のァ ミ ノ酸については、 .試料を 6規定の塩酸で 1 1 0 °C、 2 4 時間加水分解し、 ト リ ブ トフ ァ ンについては水酸化バリ ゥ ムで 1 1 0 °C、 2 2時間アルカ リ分解し、 システィ ン及び メ チォニンについては過ギ酸処理後、 6規定の塩酸で 1 1 0 °C、 1 8時間加水分解し、 それぞれァ ミ ノ酸分析機 (日 立製作所製 : 8 3 5型) により分解し、 各ア ミ ノ酸の含量 を求めた。 遊離ア ミ ノ酸含量は、 スルホサリチル酸で試料 を除蛋白 して、 ア ミ ノ酸分析機 (日立製作所製 : 8 3 5型) により分析し、 前記ア ミ ノ酸組成の分析でえられた各ア ミ ノ酸の全含量に対する遊離ア ミ ノ酸の含量の百分率で表し た。
⑤ 抗原性の測定方法
以下に示すェライザ ( E L I S A : E n z y m e 1 i n k e d i mm u n o — s o r b e n t a s s a y ) 抑制試験法によつた。
9 6穴プレー ト (ヌ ンク社製) に; S—ラク トグロブリ ン をコ一ティ ングし、 洗浄後、 ^一ラク トグロプリ ンを感作 して調製したゥサギ抗血清とホェ一タ ンパク質加水分解物 試料との混合液をプレー 卜の穴に供給して反応させ、 洗浄 後アルカ リ ホスファ タ一ゼ標識ャギ抗ゥサギ I g G抗体
[ツァイム ド · ラボラ ト リ ーズ(Z y m e d L ε b c r o r i e s )社製] を反応させ、 洗浄後、 酵素基質である P —二 ト ロフエニル リ ン酸ナ ト リ ゥムを添加し、 3 0分後に 5規定水酸化ナ ト リ ウムを添加して反応を停止させ、 反応生成物をマイ ク ロ プレー ト リ ーダ一で測定した (日本小児ァレルギ一学会誌、 第 1巻、 第 2号、 第 3 6ページ、 1 9 8 7年) 。
⑥ エン ド トキシン含量の測定方法
リ ムルス (L I MU L U S) 試験 (丹羽允、 日本細菌学 雑誌、 第 3 0巻、 第 4 3 9ページ、 1 9 7 5年) に従い、 リ ムルス H S I I テス ト ヮコー (和光純薬工業社製) を用 い、 ゲル形成時間を トキシノ メ —ター E T 2 0 1 (和光純 薬工業社製) にて測定した。
次に試験例を示してこの発明をさ らに詳し く説明する。 試験例 1
この試験は、 リ ン含量の減少に及ぼすホエータ ンパク質 を含有する溶液の p Hの影響を調べるために行った。
1 ) 試料の調製
精製水にホエータ ンパク質濃縮物 ( ドイツの ミ ライ社製。 タ ンパク質含量 9 0 %、 リ ン含量 0. O m g/タ ンパク 質 l g) を添加してホエータ ンパク質の濃度を 1 0 %に調 整し、 p Hを調整しない試料 (p H 7. 1 8。 試料 1およ び試料 2 ) 、 3規定塩酸により p Hを 4. 0 0 (試料 3お よび試料 6 ) 、 3. 0 0 (試料 4 ) 、 および 2. 0 0 (試 料 5 ) にそれぞれ調整した各試料 6 0 0 gを調製した。 2 ) 試験方法 .
1. 方法 1
試料 1 はイオン交換樹脂との接触を全く 行わず、 そのま ま リ ン含量の測定に供した。
2. 方法 2
試料 2から 5をそれぞれ別個に、 H τ 形陽イオ ン交換樹 脂アンバーライ ト I R— 1 2 0 B (オルガノ社製) 5 0 m 1 を充填したカラムに S V = 5 h _1で通液して接触させ、 次いで O H 形陰イオン交換樹脂アンバーライ ト I R A— 4 1 1 (オルガノ社製) 1 0 0 m 1 を充填したカラムに S V = 5 h _1で通液して接触させ、 試料の リ ンを除去した。
3. 方法 3
0 H" 形陰イオン交換樹脂と接触させなかったこ とを除 き、 試料 6を前記方法 2 と同一の方法で処理した。
4. リ ン含量の測定
前記 3方法により得られた 6種類の試料の リ ン含量を前 記の試験方法により測定し、 常法により測定した試料中の タ ンパク質含量をもとに、 試料中のタ ンパク質 1 g当りの リ ン含量を算出し、 リ ンの除去状態を試験した。
3 ).試験結果
この試験の結果は表 1 に示したとおりである。 表 1から 明らかなよ う に、 p Hの調整を行わない試料 1 および試料 2においては、 イオン交換処理を行っても リ ン含量がタ ン ノ、。ク質 l g当り 0. 4 0 m gから 0. 2 4 m gに減少した のみである。 これに対して p Hを 4以下に調整した後、 陽 イ オ ン交換樹脂処理および陰イオ ン交換樹脂処理した試料 3から 5 においては、 いずれの試料でも リ ン含量が夕 ンパ ク質 1 g当り 0. 1 5 m g以下に減少した。 また、 ホエー タ ンパク質を含有する溶液の p Hを 4に調整した場合でも. H 1 形陽イ オ ン交換樹脂のみと接触させた試料 6のリ ン含 処 o o o o
H H H H
量は、 p Hを調整せずにイオン交換樹 - - - 脂処理した試料 2の それとほぼ同様であった。
以上の結果から、 この発明の方法においては、 ホェ一夕 ンパク質を含有する溶液を陽イオ ン交換樹脂および陰ィォ ン交換樹脂と接触させる前にその P Hを 4以下、 望ま しく は P H 3未満に調整するこ とが必須の条件である。 なお、 ホエータ ンパク質濃縮物および樹脂の種類を変更して試験 したが、 ほぼ同様の結果が得られた。
表 1 拭料番号 PH イオン交換処理 リン含 S(ug/タン"'ク質 lg)
1 7.18 (未 0.393 2 7.18 (未 ¾製) H 0.2(1 3 4.00 H 0.114 4 3.00 H 0.107 5 2.00 H 0.093 6 4.00 H 0.291 試験例 2
この試験は、 接触させる陰陽イ オ ン交換樹脂の順序の変 更がリ ンの除去に及ぼす影響を調べるために行った。
1 ) 試料の調製
精製水にホエ ータ ンパク質濃縮物 (カルプ口社製。 タ ン パク質含量 8 0 %、 リ ン含量 3. 5 m g /タ ンパク質 l g ) を添加してホエ ータ ンパク質の濃度を 1 0 %に調整し、 3 規定塩酸により P Hを 3. 0 0に調整した試料 7〜 9を各 1 0 0 g調製した。
2 ) 試験方法
① 方法 1
試料 7 はイ オ ン交換樹脂との接触を全く行わず、 そのま ま リ ン含量の測定に供した。
② 方法 2
試料 8を、 H + 形陽イオン交換樹脂アンバーライ ト I R - 1 2 0 B (オルガノ社製) 1 8. 5 m l を充填したカラ ムに S V = 5 h—1で通液して接触させ、 次いで C 1 — 形陰 イ オ ン交換樹脂ア ンバーラ イ ト I R A— 4 1 1 (オルガノ 社製) 4 1. 4 m 1 を充填したカ ラ ムに S V = 5 h一1で通 液して接触させ、 試料の リ ンを除去した。
③ 方法 3
陰イ オ ン交換樹脂との接触を先に行ったこ とを除き、 試 料 9を方法 2 と同一の方法で処理した。
④ リ ン含量の測定
前記の方法により得られた 3種類の試料の リ ン含量を試 験例 1 と同一の方法により測定し、 リ ンの除去状態を試験 した。
3 ) 試験結果
この試験の結果は表 2に示したとおりである。 表 2から 明らかなように、 ホエ ータ ンパク質を含有する溶液と陽ィ オ ン交換樹脂および陰イオ ン交換樹脂との接触の順序は、 陽ィォン交換樹脂が先でなければ、 リ ンが除去されないこ とが判明した。 従って、 この発明の方法においては、 ホェ 一タ ンパク質を含有する溶液を陽イオン交換樹脂と最初に 接触させ、 次いで陰イ オ ン交換樹脂と接触させるこ とが必 須である。 なお、 ホエ ータ ンパク質濃縮物および樹脂の種 類を変更して試験したが、 ほぼ同様の結果が得られた。
表 2 試料番号 H イオン交換処理 リン含量 (ag/タンバタ貧 )
7 3. 00 未 1処 理 3. 513 8 3. 00 H . C 1 , 0. 126 9 3. 00 C 1 , H 3. 025 . 実施例
次に実施例を示してこの発明をさ らに詳細かつ具体的に 説明するが、 この発明は以下の実施例に限定される もので はない。
なお、 以下の実施例においてナ ト リ ウム、 カ リ ウム、 マ グネシゥム、 リ ン、 カルシウムおよび塩素含量の単位は m gZタ ンパク質 l gである。
また、 この発明の実施例において、 無機質含量、 乳糖含 量、 分子量分布、 遊離ア ミ ノ酸含量、 抗原性およびエン ド トキシン含量の測定方法は、 前記の試験方法を採用 した。 実施例 1
精製水にホエー夕 ンパク質濃縮物 ( ドイ ツの ミ ライ社製, タ ンパク質 9 0. 3 %、 ナ ト リ ウム 5. 1、 カ リ ウム 0. 2 6、 マグネシウム 0. 3 3、 リ ン 0. 3 9、 およびカル シゥム 3. 9 8を含む) を添加してホエータ ンパク質の濃 度を 1 0 %に調整し、 この溶液 1 k gに 3規定塩酸 1 3 4 m l を添加し、 p Hを 3. 0に調整し、 H + 形陽イオン交 換樹脂ア ンバーライ ト I R— 1 2 0 B (オルガノ社製) 7 5 m l を充填したカラムに S V = 1 2. 5 h— 1で通液して 接触させ、 次いで C 1 — 形陰イオ ン交換樹脂ア ンバーライ ト I R A— 4 1 1 (オルガノ社製) 1 2 0 m l を充填した カラムに S V = 1 2. 5 h— 1で通液して接触させ、 さ らに 固形分を回収するために精製水を通液し、 P H 2. 1 1 の ホェ一夕 ンパク質を含有する液約 3 k gを回収し、 常法に よ り凍結乾燥し、 約 9 6 gの低リ ンホエ ータ ンパク質粉末 を得た。
このよ う に して得られた粉末について前記試験方法によ り試験した結果、 無機質組成がナ ト リ ウ ム 0. 3、 力 リ ウ ム 0. 0 0 8、 マグネ シウ ム 0. 0 0 0 5、 リ ン 0. 1 1、 およびカルシウム 0. 0 0 8であり、 リ ンが顕著に除去さ れていた。
実施例 2
精製水にホエ ータ ンパク質濃縮物 (カルプ口社製。 タ ン パク質 8 3. 0 %、 ナ ト リ ウ ム 1. 4 5、 カ リ ウ ム 4. 0、 マグネシウム 0. 6 5、 リ ン 3. 3 9、 およびカルシウム 3. 9 8を含む) を添加してホエ ータ ンパク質の濃度を 1 0 %に調整し、 この溶液 l k gに 5規定塩酸 7 6. 2 m l を添加し、 p Hを 2. 8に調整し、 H + 形陽イ オ ン交換樹 脂ア ンバーライ ト I R— 1 2 0 B (オルガノ社製) 1 0 0 m l を充填したカ ラ ムに S V = 2. 5 h _1で通液して接触 させ、 次いで C 1 ~ 形陰イ オ ン交換樹脂ア ンバーライ ト I R A - 4 1 1 (オルガノ社製) 2 2 0 m l を充填したカラ ムに S V = 2. 5 h— 1で通液して接触させ、 さ らに固形分 を回収するために精製水を通液し、 p H l . 9 6のホエ ー タ ンパク質を含有する回収液約 3 k gを得た。 この回収液 を常法によ り凍結乾燥し、 約 8 4 gの低リ ンホエ ータ ンパ ク質粉末を得た。
このよ う に して得られた粉末について前記試験方法によ り試験した結果、 無機質組成がナ ト リ ウム 0. 0 3 8、 力 リ ウム 0. 0 5 9、 マグネシウム 0. 0 0 2 5、 リ ン 0. 1 2 5、 およびカルシウム 0. 0 2 1 3であり、 リ ンが顕 著に除去されていた。
実施例 3
精製水にホエ ータ ンパク質濃縮物 ( ドイ ツの ミ ライ社製, タ ンパク質 9 0. 3 %、 ナ ト リ ウム 7. 7、 カ リ ウム 0. 6 0、 マグネシウム 0. 4、 リ ン 0. 3 8、 およびカルシ ゥム 4. 4 3を含む) を添加してホエ ータ ンパク質の濃度 を 1 2. 4 %に調整し、 この溶液 4 0 3 0 k gに 3 5 %塩 酸 6 8 k gを添加し、 p Hを 3. 0 5に調整し、 H + 形陽 イオン交換樹脂ア ンバーライ ト I R— 1 2 0 B (オルガノ 社製) 3 5 0 1 を充填したカラムに S V = 1 0 h 1で通液 して接触させ、 次いで O H— 形陰イオン交換樹脂ア ンバ一 ライ ト I R A— 4 1 1 (オルガノ社製) 7 0 0 1 を充填し たカラムに S V = 5 h— 1で通液して接触させ、 さ らに固形 分を回収するために精製水を通液し、 p H 3. 5 0のホェ 一夕 ンパク質を含有する回収液約 6 8 2 5 k gを得た。 この回収液を常法によ り凍結乾燥し、 約 4 3 7 k gの低リ ンホエ ータ ンパク質粉末を得た。
このよ う に して得られた粉末について前記試験方法によ り試験した結果、 無機質組成がナ ト リ ウム 0. 0 6、 カ リ ゥム 0. 0 3、 マグネシウム 0. 0 0 6、 リ ン 0. 1 1 9、 およびカルシウム 0. 0 2 3であり、 リ ンが顕著に除去さ れていた。
実施例 4
精製水にホェ一夕 ンパク質濃縮物 ( ドイ ツの ミ ライ社製。 タ ンパク質 9 0. 3 %、 ナ ト リ ウム 5. 1、 カ リ ウム 0. 2 5 6、 マグネシウム 0. 3 3 1、 リ ン 0. 3 9 2、 およ びカルシウム 3. 9 8、 乳糖 1 %を含む) を添加してホェ 一タ ンパク質の濃度を 1 2. 4 %に調整し、 この溶液 4 k gに 3 5 %塩酸 6 8 gを添加し、 p Hを 2. 9 5 に調整し、 H 1 形陽イオ ン交換樹脂アンバーライ ト I R— 1 2 0 B (オルガノ社製) 3 5 0 m l を充填したカラムに S V = 1 0 h _1で通液して接触させ、 次いで O H— 形陰イオ ン交換 樹脂ア ンバーライ ト I R A— 4 1 1 (オルガノ社製) 7 0 0 m 1 を充填したカラムに S V = 5 h _1で通液して接触さ せ、 さ らに固形分を回収するために精製水を通液し、 p H 3. 5 0のホエ ータ ンパク質を含有する液 6. 8 3 k gを 回収した。 .
この回収した液に 1 0 %水酸化ナ ト リ ゥム溶液 0. 1 5 k gを添加して p H 6. 9 に調整した後、 限外濾過モ ジ ュ —ル S E P— 1 0 1 3 (旭化成社製。 分画分子量 3 0 0 0 ) にて限外濾過を行ない、 膜透過液側に乳糖および無機質を 排出し、 脱塩 · 脱乳糖ホエータ ンパク質溶液 7. 7 k gを
1守た o
この脱塩 · 脱乳糖ホェ一タ ンパク質溶液に 1 0 %水酸化 ナ ト リ ウム溶液 3 0 gを添加して p H 8. 6に調整し、 こ こにビオプラーゼ s p — 2 0 (長瀬生化学工業社製) 4 g、 P T N 6. O S (ノ ボ · ノルディ スク社製) 2 g、 プロテ ァーゼ N 「ァマノ」 (天野製薬社製) 4 gを添加して 5 0 °Cで 1 4時間分解した後、 8 5 ° (:、 1 0分間加熱し、 酵素 を失活させた。
次いでこの溶液を、 限外濾過モジュール S E P — 1 0 1 3 (旭化成社製。 分画分子量 3 0 0 0 ) にて限外濾過を行 ない、 不溶物を膜保持成分と して除去した。 得られた膜 透過液を濃縮し、 常法により噴霧乾燥し、 低リ ン精製ホェ 一タ ンパク質加水分解物の噴霧乾燥品約 2 5 6 gを得た。
このようにして得られた粉末について前記試験方法によ り試験した結果、 無機質組成が、 ナ ト リ ウム 1 5. 2、 力 リ ウム 0. 2 2、 マグネ シウム 0. 0 4、 リ ン 0. 1 2、 カルシウム 1 9、 塩素 0 . 4 8、 乳糖含量が 0 . 2 6 %、 1 , 2 0 0以下の分子量を有する画分が 9 2 . 4 %、 遊離ァ ミ ノ酸含量 5 . 4 %、 抗原性は /3 —ラ ク ト グロブリ ンの抗原性の 1 0 _ 6以下であり、 エ ン ド トキシ ンはホェ一 タ ンパク質加水分解物乾燥物 1 g中 5 . 1 5 E U Z gであ つた。 産業上の利用可能性
この発明の低リ ンホエータ ンパク質は、 各種食品の栄養 価または夕 ンパク質の強化に有用である。
この発明の低リ ン精製ホェ一タ ンパク質は、 リ ン含量が 非常に低く 抑えられており、 腎不全および高リ ン血症など リ ンの摂取量制限が必要とされる患者などに、 経口的ある いは胃 · 腸に直接投与するタ ンパク質栄養源と して、 食品 製造および医療分野に有用である。 また、 非抗原性、 吸収 良好性に優れ、 ア レルギー患者、 体力減少、 疾病などによ る腸管免疫機構患者、 ア レルギー性下痢患者、 乳幼児、 術 前術後患者などに、 経口的あるいは、 胃 · 腸に直接投与す る タ ンパク質栄養源と して利用可能である。 さ らに、 無機 質、 乳糖、 エ ン ド トキシ ンの含量が非常に低く 抑えられて いる こ とから経静脈用輸液や'腹膜透析液の窒素源と して医 療分野に利用可能である。

Claims

請求の範囲 1 タ ンパク質 1 g当り の リ ン含量が 0. 1 5 m g以下で ある こ とを特徴とする低リ ンホエ ータ ンパク質。 2 ホェ一タ ンパク質を含有する溶液の p Hを 4以下に調 整し、 形陽イ オ ン交換樹脂および陰イ オ ン交換樹脂に 順次接触させ、 タ ンパク質 1 g当りの リ ン含量を 0. 1 5 m g以下に減少させる こ とを特徴とする低リ ンホエ ータ ン パク質の製造方法。 3 ホエ ータ ンパク質を含有する溶液の p Hを 3未満に調 整する請求項 1の低リ ンホエ ータ ンパク質の製造方法。 4 次の ( 1 ) 〜 ( 6 ) の性質を有する低リ ン精製ホエ ー タ ンパク質加水分解物、
( 1 ) タ ンパク質 1 g当り次の量の無機質を含有する こ と ナ ト リ ウム 2 0 m g以下
カ リ ウム 2 0 m g以下
マ グネ シウム 0. 0 5 7 m g以下
リ ン 0. 1 5 m g以下
カルシウ ム 0.
2 2 7 m g以下
塩素 0. 5 6 8 m g以下 ( 2 ) 乳糖含量が 0. 5 % (重量) 以下である こ と、
( 3 ) 1, 2 0 0以下の分子量を有する画分が 9 0 % (重 量) 以上である こと、
( 4 ) 遊離ア ミ ノ酸含量が 6 % (重量) 以下であるこ と、
( 5 ) ェ ラ イ ザ ( E L I S A : E n z y m e 1 i n k e d i mm u n o — s o r b e n t a s s a y ) 抑制試験法により測定した抗原性が β ーラク トグロプリ ンの抗原性の 1 0— 6以下であるこ とヽ
( 6 ) 乾燥物 1 g中のェン ド トキシンが 1 0 E U以下であ るこ と。
5 ホェ一タ ンパク質を含有する溶液の p Hを 4以下に調 整し、 H i 形陽イオ ン交換樹脂および◦ H - 形陰イオ ン交 換樹脂に順次接触させ、 P Hを 5以上 1 0以下に調整し、 限外濾過にて乳糖を除去し、 動物起源のプロテア一ゼとバ シラ ス (Baci l lus) 属の微生物が産出するプロテアーゼと からなる 2種以上の複合酵素、 または動物起源のプロテア ーゼ、 バラシス属の微生物が産出するプロテアーゼおよび その他のプロテアーゼとからなる 3種以上の複合酵素を添 加して酵素分解し、 加熱して酵素を失活させると共に未反 応のタ ンパク質を沈殿させ、 次いで限外濾過して沈殿およ び脂肪を除去するこ とを特徴とする低リ ン精製ホェ一 タ ン パク質加水分解物の製造方法。
6 ホエ ータ ンパク質を含有する溶液の p Hを 3未満に調 整する請求項 4 の低 リ ン精製ホェ一タ ンパク質加水分解物 の製造方法。
PCT/JP1993/001729 1992-11-30 1993-11-26 Low-phosphorus whey protein, process for producing the same, hydrolyzate of purified low-phosphorus whey protein, and process for producing the same WO1994012053A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP51297694A JP3411035B2 (ja) 1992-11-30 1993-11-26 低リンホエータンパク質,その製造方法,低リン精製ホエータンパク質加水分解物およびその製造方法
EP94901007A EP0671126B1 (en) 1992-11-30 1993-11-26 Low-phosphorus whey protein, process for producing the same, hydrolyzate of purified low-phosphorus whey protein, and process for producing the same
US08/428,129 US5744179A (en) 1992-11-30 1993-11-26 Low-phosphorus whey protein, manufacturing method thereof, low-phosphorus purified whey hydrolysate and manufacturing method thereof
AU55750/94A AU682479B2 (en) 1992-11-30 1993-11-26 Low-phosphorus whey protein, manufacturing method thereof, low-phosphorus purified whey hydrolysate and manufacturing method thereof
DE69329923T DE69329923T2 (de) 1992-11-30 1993-11-26 Molkenprotein und molkenproteinhydrolysate, und verfahren zur herstellung

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP4/320857 1992-11-30
JP32085792 1992-11-30
JP12969693 1993-05-31
JP5/129696 1993-05-31

Publications (1)

Publication Number Publication Date
WO1994012053A1 true WO1994012053A1 (en) 1994-06-09

Family

ID=26465010

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1993/001729 WO1994012053A1 (en) 1992-11-30 1993-11-26 Low-phosphorus whey protein, process for producing the same, hydrolyzate of purified low-phosphorus whey protein, and process for producing the same

Country Status (8)

Country Link
US (1) US5744179A (ja)
EP (1) EP0671126B1 (ja)
JP (1) JP3411035B2 (ja)
AU (1) AU682479B2 (ja)
CA (1) CA2150571C (ja)
DE (1) DE69329923T2 (ja)
NZ (1) NZ258207A (ja)
WO (1) WO1994012053A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002000291A (ja) * 2000-06-27 2002-01-08 Morinaga Milk Ind Co Ltd 乳糖含量の少ない乳蛋白質加水分解物の製造方法
KR101837299B1 (ko) 2016-10-21 2018-03-09 김나연 발효 유청단백질의 제조방법 및 발효 유청단백질
WO2018079762A1 (ja) * 2016-10-31 2018-05-03 株式会社明治 風味の優れたホエイタンパク質加水分解物の製造方法

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997001966A1 (en) * 1995-06-30 1997-01-23 Md Foods Amba A method of producing a peptide mixture
ATE275831T1 (de) * 1998-06-17 2004-10-15 New Zealand Dairy Board Bioaktive molke-eiweisshydrolysate
US6051687A (en) * 1999-02-22 2000-04-18 Nutra-Flo Company Purification of liquid protein hydrolysate and the resultant products
US6998259B1 (en) 1999-05-20 2006-02-14 Davisco Foods International Enzymatic treatment of whey proteins for the production of antihypertensive peptides and the resulting products
US6261624B1 (en) 1999-07-14 2001-07-17 North Carolina State University Thermal and PH stable protein thickening agent and method of making the same
US6630320B1 (en) 2000-05-08 2003-10-07 Devisco Foods International, Inc. Treatment of hypertension in mammals with hydrolyzed whey proteins
EP1062873A1 (en) * 1999-12-13 2000-12-27 N.V. Nutricia Improved infant formula, protein hydrolysate for use in such an infant formula, and method for producing such a hydrolysate
MXPA02011018A (es) * 2000-05-08 2004-08-19 Davisco Internat Foods Inc Tratamiento enzimatico de proteinas de suero para la produccion de peptidos de antihipertension, los productos resultantes y el tratamiento de hipertension en mamiferos.
EP1281325A1 (en) 2001-07-30 2003-02-05 Societe Des Produits Nestle S.A. Nutritional composition preventing bacterial overgrowth
US7618669B2 (en) * 2005-06-01 2009-11-17 Mead Johnson Nutrition Company Low-lactose partially hydrolyzed infant formula
US20060286208A1 (en) * 2005-06-01 2006-12-21 Nagendra Rangavajla Methods for producing protein partial hydrolysates and infant formulas containing the same
US9131721B2 (en) 2007-12-04 2015-09-15 Nestec S.A. Gut microbiota in infants
DE102008032828A1 (de) * 2008-07-02 2010-01-07 Technische Universität Dresden Tryptophanhaltige Peptide aus alpha-Lactalbumin mit blutdrucksenkender und vasoprotektiver Wirkung für biofunktionelle Lebensmittel
RU2525711C2 (ru) * 2009-09-25 2014-08-20 Моринага Милк Индастри Ко., Лтд. Способ получения сыворотки с низким содержанием фосфора
FI125332B (fi) * 2011-11-11 2015-08-31 Valio Oy Menetelmä maitotuotteen valmistamiseksi
JP6139150B2 (ja) * 2013-01-31 2017-05-31 国立大学法人 新潟大学 タンパク質栄養組成物
JP7001316B2 (ja) 2015-06-25 2022-01-19 ニュートラバイオ 特に有機分野に適した脱ミネラル乳タンパク質組成物を製造する方法及び脱ミネラル乳タンパク質組成物
JP6709661B2 (ja) * 2016-03-31 2020-06-17 森永乳業株式会社 発酵乳製品の製造方法
CN107557418A (zh) * 2016-06-30 2018-01-09 天津唐朝食品工业有限公司 酪蛋白磷酸肽提取方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4954568A (ja) * 1972-08-17 1974-05-27
JPS6248695A (ja) * 1984-03-02 1987-03-03 ザ ダウ ケミカル カンパニ− 水性流体成分の分離方法
JPS6391037A (ja) 1986-10-06 1988-04-21 Terumo Corp 低リン化牛乳の製造法
JPS63502003A (ja) * 1985-12-18 1988-08-11 ポウルセン,オツト− メルヒオル 耐熱非苦味水溶性ペプチド生成物の製造方法、該方法により生産される生成物、並びに該生成物を含有する栄養物、飲食物及び規定食
JPH02117366A (ja) 1988-10-28 1990-05-01 Morinaga Milk Ind Co Ltd 低燐乳清蛋白質及び塩類含量の低下された脱蛋白ホエーを製造するホエーの処理方法
JPH02138991A (ja) 1988-11-19 1990-05-28 Morinaga Milk Ind Co Ltd 低分子量ペプチド組成物およびその製造方法
JPH03187348A (ja) * 1989-10-02 1991-08-15 Sandoz Nutrition Ltd 有機生成物に関する改良
JPH0360468B2 (ja) * 1985-05-24 1991-09-13 Meiji Milk Prod Co Ltd
JPH0426604A (ja) 1990-05-18 1992-01-29 Morinaga Milk Ind Co Ltd 化粧料及び皮膚外用剤
JPH0426605A (ja) 1990-05-18 1992-01-29 Morinaga Milk Ind Co Ltd 化粧料及び皮膚外用剤
JPH04112753A (ja) 1990-08-31 1992-04-14 Snow Brand Milk Prod Co Ltd 低アレルゲン化したホエータンパク加水分解物及びその製造法
JPH04248959A (ja) 1991-01-30 1992-09-04 Morinaga Milk Ind Co Ltd オリゴペプチド混合物及びその製造法
JPH04330252A (ja) * 1991-01-21 1992-11-18 Snow Brand Milk Prod Co Ltd α−ラクトアルブミン含有量の高い組成物の製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2477558A (en) * 1945-04-26 1949-08-02 M & R Dietetic Lab Inc Preparation of high-grade crude lactose
US2566477A (en) * 1948-02-03 1951-09-04 Abrahamczik Ernst Process for the treatment of lacteal sera
US3419398A (en) * 1965-02-26 1968-12-31 Creative Chemistry Inc Liquid food product and process for preparing same
DE2405589C3 (de) * 1974-02-06 1980-08-07 Agfa-Gevaert Ag, 5090 Leverkusen Verfahren zur Herstellung leicht benetzbarer, wasserlöslicher natürlicher Eiweißprodukte
FR2634104B1 (fr) * 1988-07-18 1991-10-18 Union Coop Agricole Hydrolysat partiel de proteines de lactoserum, procede enzymatique de preparation de cet hydrolysat, et aliment lacte dietetique hypoallergenique le contenant
DE4002204A1 (de) * 1990-01-26 1991-08-01 Westfalen Milchwerke Diaetetisches nahrungsmittel fuer patienten mit niereninsuffizienz
NL9001650A (nl) * 1990-07-19 1992-02-17 Ver Coop Melkind Werkwijze voor de bereiding van een melkeiwit-isolaat.

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4954568A (ja) * 1972-08-17 1974-05-27
JPS6248695A (ja) * 1984-03-02 1987-03-03 ザ ダウ ケミカル カンパニ− 水性流体成分の分離方法
JPH0360468B2 (ja) * 1985-05-24 1991-09-13 Meiji Milk Prod Co Ltd
JPS63502003A (ja) * 1985-12-18 1988-08-11 ポウルセン,オツト− メルヒオル 耐熱非苦味水溶性ペプチド生成物の製造方法、該方法により生産される生成物、並びに該生成物を含有する栄養物、飲食物及び規定食
JPS63502004A (ja) 1985-12-18 1988-08-11 サムエルソン,エルンスト‐グナー ペプチド製品、その製造方法及びペプチド製品の用途
JPS6391037A (ja) 1986-10-06 1988-04-21 Terumo Corp 低リン化牛乳の製造法
JPH02117366A (ja) 1988-10-28 1990-05-01 Morinaga Milk Ind Co Ltd 低燐乳清蛋白質及び塩類含量の低下された脱蛋白ホエーを製造するホエーの処理方法
JPH02138991A (ja) 1988-11-19 1990-05-28 Morinaga Milk Ind Co Ltd 低分子量ペプチド組成物およびその製造方法
JPH03187348A (ja) * 1989-10-02 1991-08-15 Sandoz Nutrition Ltd 有機生成物に関する改良
JPH0426604A (ja) 1990-05-18 1992-01-29 Morinaga Milk Ind Co Ltd 化粧料及び皮膚外用剤
JPH0426605A (ja) 1990-05-18 1992-01-29 Morinaga Milk Ind Co Ltd 化粧料及び皮膚外用剤
JPH04112753A (ja) 1990-08-31 1992-04-14 Snow Brand Milk Prod Co Ltd 低アレルゲン化したホエータンパク加水分解物及びその製造法
JPH04330252A (ja) * 1991-01-21 1992-11-18 Snow Brand Milk Prod Co Ltd α−ラクトアルブミン含有量の高い組成物の製造方法
JPH04248959A (ja) 1991-01-30 1992-09-04 Morinaga Milk Ind Co Ltd オリゴペプチド混合物及びその製造法

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
"Food Analysis Methods", 1984, KORIN PUBLISHING COMPANY, article "Japan Food Industry Association", pages: 368
"High Performance Liquid Chromatography Handbook", 1985, MARUZEN COMPANY, article "Japan Society of Analytical Chemistry, edited by Kanto Branch", pages: 277
BUNSEKI KAGAKU, SECTION E, vol. 32, no. 6, 1983, pages E207
JOURNAL OF THE JAPAN FOOD INDUSTRY ASSOCIATION, vol. 27, no. 7, 1980, pages 36
JOURNAL OF THE JAPAN INFANT ALLERGY ASSOCIATION, vol. 1, no. 2, 1987, pages 36
KYORITSU SHUPPAN: "Japan Society of Analytical Chemistry, Machine Analysis Practice Series", ICP EMISSION ANALYSIS METHOD, 1988, pages 225
N. NIWA, JOURNAL OF THE JAPAN BACTERIOLOGY SOCIETY, vol. 30, 1975, pages 439
N. UI ET AL.: "High-Performance Liquid Chromatography of Protein and Peptide", 1984, KAGAKU DOJIN COMPANY, pages: 241
N. UI ET AL.: "igh-Rate Liquid Chromatography of Protein and Peptide", 1984, KAGAKU DOJIN COMPANY, pages: 241
See also references of EP0671126A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002000291A (ja) * 2000-06-27 2002-01-08 Morinaga Milk Ind Co Ltd 乳糖含量の少ない乳蛋白質加水分解物の製造方法
KR101837299B1 (ko) 2016-10-21 2018-03-09 김나연 발효 유청단백질의 제조방법 및 발효 유청단백질
WO2018079762A1 (ja) * 2016-10-31 2018-05-03 株式会社明治 風味の優れたホエイタンパク質加水分解物の製造方法
JPWO2018079762A1 (ja) * 2016-10-31 2019-09-19 株式会社明治 風味の優れたホエイタンパク質加水分解物の製造方法
JP7084873B2 (ja) 2016-10-31 2022-06-15 株式会社明治 風味の優れたホエイタンパク質加水分解物の製造方法
US11477999B2 (en) 2016-10-31 2022-10-25 Meiji Co., Ltd. Method for producing whey protein hydrolysate

Also Published As

Publication number Publication date
NZ258207A (en) 1996-02-27
DE69329923D1 (de) 2001-03-15
CA2150571C (en) 1998-09-29
CA2150571A1 (en) 1994-06-09
EP0671126A1 (en) 1995-09-13
EP0671126A4 (en) 1996-03-27
US5744179A (en) 1998-04-28
DE69329923T2 (de) 2001-09-27
AU682479B2 (en) 1997-10-09
EP0671126B1 (en) 2001-02-07
JP3411035B2 (ja) 2003-05-26
AU5575094A (en) 1994-06-22

Similar Documents

Publication Publication Date Title
WO1994012053A1 (en) Low-phosphorus whey protein, process for producing the same, hydrolyzate of purified low-phosphorus whey protein, and process for producing the same
US4042575A (en) Extraction of glycoproteins and sialic acid from whey
JP2920427B2 (ja) κ−カゼイングリコマクロペプチドの製造法
US5278288A (en) Process for producing κ-casein glycomacropeptides
US4042576A (en) Extraction of glycoproteins and sialic acid from whey
AU620964B2 (en) Production process of sialic-acids-containing lactose
NZ500848A (en) Method for purifying GMP from a lactic raw material
JPH05505304A (ja) 酵素加水分解物の製造方法
JP2004521650A (ja) ミルクおよびカゼイン塩からカゼイン分画を抽出する方法、および新規生成物の製造方法
US5061622A (en) Process for the production of κ-casein glycomacropeptide
US5216129A (en) Production of kappa-caseino-glycomacropeptide
JPH10507641A (ja) 乳タンパク質加水分解産物の製法、その乳タンパク質加水分解産物及びその乳タンパク質加水分解産物の使用
US2566477A (en) Process for the treatment of lacteal sera
JP3035833B2 (ja) シアル酸類含有組成物の製造方法
CN110483622B (zh) 酪蛋白磷酸肽及其制备方法、应用
AU765219B2 (en) Protein hydrolyzates, process for producing the same and drinks and foods containing the protein hydrolyzates
KR100390529B1 (ko) 참치정소로부터 핵산복합물질을 추출하는 방법 및 이방법에 의해 얻어진 핵산복합물질
JP3222638B2 (ja) オリゴペプチド混合物及びその製造法
EP0443763A2 (en) Formulated milk for infants analogous to human milk
JP3789564B2 (ja) ポリアミンの調製方法
JP2785956B2 (ja) ペプチド混合物
JP3406367B2 (ja) ミネラル吸収促進効果を有する大豆蛋白質の製造法
JPH10271958A (ja) 臭気の低減された蛋白質加水分解物の製造方法
JP2887302B2 (ja) カゼインホスホオリゴペプチド混合物、その製造法、及び該混合物を含有する健康食品
JP2980362B2 (ja) シアル酸含量の高いグリコオリゴペプチド混合物及びその製造法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA JP NZ US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 258207

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 2150571

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1994901007

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 08428129

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1994901007

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1994901007

Country of ref document: EP