WO1993022397A1 - Electrooptical liquid crystal system - Google Patents

Electrooptical liquid crystal system Download PDF

Info

Publication number
WO1993022397A1
WO1993022397A1 PCT/EP1993/000989 EP9300989W WO9322397A1 WO 1993022397 A1 WO1993022397 A1 WO 1993022397A1 EP 9300989 W EP9300989 W EP 9300989W WO 9322397 A1 WO9322397 A1 WO 9322397A1
Authority
WO
WIPO (PCT)
Prior art keywords
compounds
phenylene
liquid crystal
independently
liquid crystalline
Prior art date
Application number
PCT/EP1993/000989
Other languages
English (en)
French (fr)
Inventor
David Coates
Owain Llyr Parri
Simon Greenfield
Martin David Tillin
Mark John Goulding
Patrick Nolan
Original Assignee
Merck Patent Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=8209579&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO1993022397(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Merck Patent Gmbh filed Critical Merck Patent Gmbh
Priority to EP93909833A priority Critical patent/EP0591508B2/en
Priority to DE69325555T priority patent/DE69325555D1/de
Priority to US08/081,280 priority patent/US5871665A/en
Priority to JP1993518891A priority patent/JP3739389B6/ja
Publication of WO1993022397A1 publication Critical patent/WO1993022397A1/en
Priority to US09/750,102 priority patent/US6565769B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/34Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
    • C09K19/3441Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having nitrogen as hetero atom
    • C09K19/345Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having nitrogen as hetero atom the heterocyclic ring being a six-membered aromatic ring containing two nitrogen atoms
    • C09K19/3458Uncondensed pyrimidines
    • C09K19/3469Pyrimidine with a specific end-group other than alkyl, alkoxy or -C*-
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/12Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings at least two benzene rings directly linked, e.g. biphenyls
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/14Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a carbon chain
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/20Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers
    • C09K19/2007Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers the chain containing -COO- or -OCO- groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/32Non-steroidal liquid crystal compounds containing condensed ring systems, i.e. fused, bridged or spiro ring systems
    • C09K19/322Compounds containing a naphthalene ring or a completely or partially hydrogenated naphthalene ring
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/34Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
    • C09K19/3441Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having nitrogen as hetero atom
    • C09K19/3444Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having nitrogen as hetero atom the heterocyclic ring being a six-membered aromatic ring containing one nitrogen atom, e.g. pyridine
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/38Polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/542Macromolecular compounds
    • C09K19/544Macromolecular compounds as dispersing or encapsulating medium around the liquid crystal
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K2019/0444Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group
    • C09K2019/0448Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group the end chain group being a polymerizable end group, e.g. -Sp-P or acrylate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K2019/0477Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by the positioning of substituents on phenylene
    • C09K2019/0481Phenylene substituted in meta position
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • C09K2323/05Bonding or intermediate layer characterised by chemical composition, e.g. sealant or spacer
    • C09K2323/057Ester polymer, e.g. polycarbonate, polyacrylate or polyester

Definitions

  • the invention relates to an electrooptical liquid system - which between 2 electrode layers contains a PDLC film comprising a liquid crystal mixture forming microdroplets in an optically isotropic, transparent polymer matrix,
  • the crystal mixture is matched to the refractive index of the polymer matrix, - which exhibits an electrically switchable transparency which is essentially independent of the polarization of the incident light, - the precursor of the PDLC film of which comprises one or more monomers, oligomers and/or prepolymers and a photoinitiator, and is cured photoradically, and - the liquid crystal mixture of which comprises one or more compounds of the formula I
  • trans-1,4-cyclohexylene 1,4-phenylene, 2-fluoro-1,4-phenylene, 3-fluoro-1, 4-phenylene, 2,3-difluoro-1, 4- phenylene or 3,5-difluoro-1,4-phenylene and one of may
  • pyrimidine-2,5-diyl pyridine-2,5-diyl or trans-1,3-dioxane- 2,5-diyl
  • X 1 and X 2 independently from one another, are H or F
  • Q is CF 2 , OCF 2 , C 2 F 4 , OC 2 F 4 or a single bond
  • Y is H, F, Cl or CN
  • n is 0, 1 or 2
  • PDLC polymer dispersed liquid crystal
  • the liquid crystal mixture is first homogenously mixed with monomers and/or oligomers of the matrix-forming material; phase-separation is then induced by polymerization. Differentiation must further be made between TIPS (temperature-induced phase separation) and SIPS (solvent-induced phase separation) (Mol. Cryst. Liq. Cryst. Inc. Nonlin. Opt. 157 (1988) 427) both being also methods to produce PDLC films.
  • TIPS temperature-induced phase separation
  • SIPS solvent-induced phase separation
  • the Swiss cheese morphology is preferred because it exhibits a reversible electrooptical characteristic line while the polymer ball system shows a distinct hysteresis generally leading to a drastic deterioration of the electrooptical characteristic line when comparing the virgin and the second run.
  • the Swiss cheese morphology is promoted in case the polymerization reaction runs via a step mechanism, and in WO 89/06264 it is pointed out that the step mechanism is favoured in case the precursor of the polymer matrix consists of multifunctional acrylates and multifunctional mercaptanes.
  • one of the refractive indices of the liquid crystal mixture customarily the ordinary refractive index n o , is selected in such a way that it more or less coincides with the refractive index n p of the polymeric matrix. If no voltage is applied to the electrodes, the liquid crystal molecules in the droplets exhibit a distorted alignment, and incident light is scattered at the phase boundary between the polymeric and liquid crystal phases.
  • PDLC systems provided with active matrix addressing have been proposed on the basis of these favourable transmission properties in particular for projection applications, but in addition also for displays having high information content and for further applications.
  • the liquid crystal mixtures used for producing PDLC systems have to meet a wide range of demands.
  • One of the refractive indices of the liquid crystal mixture is selected such that it matches with the refractive index of the polymer matrix.
  • the term matching of refractive indices used here covers not only the case n o (resp. another refractive index of the liquid crystal mixture) ⁇ n p , but also the condition n o (resp.
  • the liquid crystal mixture preferably has a positive dielectrical anisotropy but the use of dielectrically negative liquid crystal mixtures (see, for example, WO 91/01511) or two-frequency liquid crystal mixtures (see, for example, N.A. Vaz et al., J. Appl. Phys. 65, 1989, 5043) is also discussed.
  • the liquid crystal mixture should have a high clearing point, a broad nematic range, no smectic phases down to low temperatures and a high stability and should be distinguished by an optical anisotropy ⁇ n and a flow viscosity ⁇ which can be optimized with respect to the particular application, and by a high electrical anisotropy.
  • Electrooptical systems containing PDLC films can be addressed passively or actively.
  • Active driving schemes employing an active matrix having nonlinear addressing elements like, for example, TFT transistors integrated with the image point, are especially useful for displays with high information content.
  • each image point represents a capacitive load with respect to the particular active nonlinear element, which is charged at the rhythm of the addressing cycle. In this cycle, it is of paramount importance that the voltage applied to an addressed image point drops only slightly -until the image point is again charged in the next addressing cycle.
  • HR holding ratio
  • liquid crystal mixture has insufficient miscibility with the monomers, oligomers and/or prepolymers of the polymer used for forming the matrix, which limits in particular the use of PIPS technology in microdroplet matrix systems.
  • a further disadvantage is in particular that the liquid crystal mixture or individual components of the liquid crystal mixture are in many cases distinguished by an excessively high and/or significantly temperature dependent solubility in the cured, matrix-forming polymer.
  • solubility or the temperature-dependence of the solubility of one or several components differs quite significantly from that of the remaining components, it may happen that the physical properties of the mixture and in particular also of the refractive indices n e and n o are substantially affected, which disturbs the adjustment of n o or n e or another refractive index of the liquid crystal mixture to n M , thus resulting in a deterioration of the optical properties of the system.
  • the threshold voltage V th is usually defined as the voltage V 10,0,20 at which a transmission of 10 % is observed at a temperature of 20 °C and under a viewing angle ⁇ of 0° while the saturation voltage is the lowest voltage for which the maximum transmission is observed at 20 °C and a viewing angle of 0°.
  • the switching on time t on is usually reported as the time necessary for the transmission to rise from 0 % to 90 % of the maximum transmission when the saturation voltage is applied while t off is the time necessary for the transmission to drop from 100 % to 10 % when the voltage is switched off.
  • the switching voltage must not be chosen too high because of several reasons (power consumption, safety of operation, compatibility with conventional modules of microeletronic).
  • the object of the invention was to provide PDLC systems of this type and precursors of these PDLC systems containing monomers, oligomers and/or prepolymers of the polymer used and a liquid crystal mixture.
  • Other aims of the present invention are immediately evident to the person skilled in the art from the following detailed description.
  • the invention thus relates to an electrooptical liquid crystal system - which between 2 electrode layers contains a PDLC film
  • liquid crystal mixture comprising a liquid crystal mixture forming microdroplets in an optically isotropic, transparent polymer matrix, - in which one of the refractive indices of the liquid
  • the crystal mixture is matched to the refractive index of the polymer matrix, - which exhibits an electrically switchable transparency which is essentially independent of the polarization of the incident light, - the precursor of the PDLC film of which comprises one or more monomers, oligomers and/or prepolymers and a photoinitiator, and is cured photoradically, and _ the liquid crystal mixture of which comprises one or more compounds of the formula I
  • trans-1 4-cyclohexylene, 1, 4-phenylene, 2-fluoro-1,4-phenylene, 3-fluoro-1, 4-phenylene, 2,3-difluoro-1, 4- phenylene or 3,5-difluoro-1,4-phenylene and one of may
  • X 1 and X 2 independently from one another, are H or F,
  • Q is CF 2 , OCF 2 , C 2 F 4 or a single bond
  • the reactive liquid crystalline compounds which can be used in the electrooptical systems according to the present invention is new, and such new reactive liquid crystalline compounds are also claimed.
  • the present invention also relates to reactive liquid crystalline compounds of formula III
  • P is alkylene with up to 12 C atoms, it being also possible for one or more CH 2 groups to be replaced by O,
  • X is -O-, -S-, -COO-, -OCO- or a single bond.
  • R 2 is alkyl radical with up to 15 C atoms which is unsubstituted, mono-or polysubstituted by halogen, it being also possible for one or more CH 2 groups in these radicals to be replaced, in each case independently of one another, by -O-, -S-, -CO-, -OCO-, -CO-O- or -O-CO-O- in such a manner that oxygen atoms are not linked directly to one another, -CN, -F, -Cl, or alternatively R2 has one of the meanings given for R 1 -P-X,
  • a 3 is a 1,4-phenylene or a napthalene-2, 6-diyl radical which is unsubstituted or substituted with 1 to 4 halogen atoms.
  • a 4 is (a) or
  • radicals (a) and (b) it being possible for radicals (a) and (b) to be substituted by CN or halogen and one of the 1,4-phenylene groups in (a) and (b) can also be replaced by a 1,4-phenylene radical in which one or two CH groups are replaced by N, and is -CO-O-, -O-CO-, -CH 2 CH 2 - or a single bond.
  • the construction of the electrooptical system according to the present invention corresponds to the customary mode of construction for systems of this type.
  • the term customary mode of construction is in this case broadly interpreted and includes all adaptations and modifications.
  • the matrix formed by the transparent medium in which the liquid crystal mixture is microdispersed or microencapsulated is arranged between conducting electrodes like a sandwich.
  • the electrodes are applied, inter alia, to substrate sheets of, for example, glass, plastic or the like; if desired, however, the matrix can also be provided directly with electrodes so that the use of substrates can be avoided.
  • One of the electrodes forms an active matrix while the other one acts as counter electrode.
  • the precursor of the PDLC film comprising the precursor of the matrix, the liquid crystal mixture and one or more reactive liquid crystalline compounds can be capillary filled between two substrates which are provided with electrode layers, and the precursor of the PDLC film is subsequently cured, for example, by irradiation with UV light.
  • Another technique comprises coating of the precursor of the PDLC film on a substrate with subsequent curing. The film may be peeled off and arranged between 2 substrates provided with electrode layers . It is also possible that the substrate onto which the precursor of the PDLC film is applied exhibits an electrode layer so that the electrooptical system can be obtained by applying a second electrode layer and, optionally, a second substrate onto the coated and cured film.
  • the electrooptical system according to the invention can be operated reflectively or tramsmissively so that at least one electrode and, if present, the associated substrate are transparent.
  • Both systems customarily contain no polarizers, as a result of which a distinctly higher light transmission results.
  • no orientation layers are necessary, which is a considerable technological simplification in the production of these systems compared with conventional liquid crystal systems such as, for example, TN or STN cells.
  • TIPS thermally induced phase separation
  • SIPS solvent induced phase separation
  • the thickness d of the electrooptical system is customarily chosen to be small in order to achieve a threshold voltage V th which is as low as possible.
  • V th threshold voltage
  • layer thicknesses of 0.8 and 1.6 mm are reported in US 4,435,047, while values for the layer thickness between 10 and 300 ⁇ m are given in US 4,688,900 and between 5 and 30 ⁇ m in
  • the electrooptical systems according to the invention only have layer thicknesses d greater than a few mm in exceptional cases; layer thicknesses below 200 ⁇ m and especially below 100 ⁇ m are preferred. In particular, the layer thickness is between 2 and 100 ⁇ m, especially between 3 and 50 ⁇ m and very particularly between 3 and 25 ⁇ m.
  • reactive liquid crystalline compounds denotes rodlike compounds of formula II R'-G'-R" II wherein at least one of the terminal groups R' and R" is a reactive group exhibiting one reaction site such as a
  • a styrene type group - O -CW' CW' 2 with W' being independently from each other H or an alkyl group with 1-5 C atoms
  • the other terminal group is also, independently from the first terminal group, a reactive group with one or more reactive sites or an alkyl radical with up to 15 C atoms which is unsubstituted or mono- or polysubstituted by halogene, it being also possible for one or more CH 2 groups in these radicals to be replaced, in each case independently of one another, by -O-, -S-, -CO-, -OCO-, -CO-O- or -O-CO-O- in such a manner that 0 atoms are not linked directly to one another.
  • G is a rod-like diyl group of the formula -Si-(A 5 -Z 3 ) m -A 6 -S 2 - with S 1 and S 2 being independently from each other alkylene groups with 0-20 C atoms which can be linear or branched, it also being possible for one or more CH 2 groups to be replaced, in each case independently from each other, by -O-, -CO-, -S- or -NW'- with the proviso that 0 atoms are not linked
  • a 5 and A 6 denote, independently from each other, a) a cyclohexylene group, wherein one or two non-adjacent CH 2 groups may be replaced by O or S atoms. b) an unsubstituted 1,4-phenylene group wherein one to three CH grops may be replaced by -N- or a 1,4-phenylene group which is mono- or polysubstituted by F, Cl and/or CH 3 , c) a bicyclo (2,2,2) octylene group, a naphthaline-2, 6-diyl group, a decahydronaphthaline-2, 6-diyl group or 1,2,3,4- tetrahydronaphthaline group,
  • Z 3 is independently from each other -CO-O-, -O-CO-, -CH 2 CH 2 -, -CH 2 O-, -OCH 2 -, -C ⁇ C- or a single bond, and m denotes 1,2,3, or 4.
  • reactive liquid crystalline compounds refers to reactive rod-like molecules like, for example, those of formula III or other rod-like reactive compounds which may be enantiotropic, monotropic or isotropic, preferably, however, enantiotropic or monotropic.
  • At least one of R' and R'' preferably is or contains an ene-group
  • the reactive liquid crystalline compounds being contained in the liquid crystalline phase when phase separation starts, are reacting with each other thus obviously forming some internal structure in the liquid crystalline microdroplets.
  • This structure may be considered as some kind of network which divides the liquid crystalline microdroplet in some smaller sub-compartments which may be in contact with each or be separated from each other.
  • the term "some kind of network” is to be understood in a wide sense and comprises a wide range of geometries of the internal structure.
  • the surrounding polymer matrix and the internal structure may be connected or not.
  • At least one of R' and R'' is a reactive group exhibiting one reactive site, and in particular a hydroxyl group, a thiol group, a carboxyl group, an amino group or an isocyanato group.
  • Reactive liquid crystalline compounds of this type can be attached to the surrounding polymeric matrix in a coupling reaction or they can also react with each other, especially in case of suitably chosen co-reactive compounds of formula II.
  • the coupling reaction may occur during the polymerization of the surrounding matrix or afterwards as a polymer-analogous reaction.
  • the addition of one or more reactive liquid crystalline compounds of formula II exhibiting two reactive groups R' and R" to the liquid crystalline mixture is generally preferred. Also preferred is the addition of a reactive liquid crystalline component, containing at least two different reactive liquid crystalline compounds according to formula II at least one of which contains 2 reactive groups R' and R'' .
  • Reactive liquid crystalline components containing at least one reactive liquid crystalline compound with one reactive group R' (monofunctional reactive liquid crystalline compound) and at least one reactive liquid crystalline compound with two reactive compounds (difunctional reactive liquid crystalline compound) often are especially preferred while reactive liquid crystalline components consisting of one or more monofunctional reactive liquid crystalline compounds usually are less advantageous.
  • di-ene type compounds such as divinyls, diacry- lates or dimethacrylates, furthermore diols, dithiols and diisocyanates, but also compounds with different reactive groups such as ene-ols, ene-thiols, vinylacrylates etc.
  • the groups S 1 and S 2 acting as spacer groups between the reactive groups R' and R" and the mesogenic core -(A 5 -Z 3 ) m -A 6 are independently from each other an alkylene group with 0-20 C atoms which can be linear or branched, it also being possible for one or more CH 2 groups to be replaced, in each case independently from each other by -0-, -CO-, -S- or -NW'- with the proviso that oxygen atoms are not linked directly to one another.
  • the length and the structure of the groups S 1 and S 2 determine whether the mesogenic group exhibits a more or less pronounced degree of flexibility.
  • suitable groups S 1 and S 2 is intended to be illustrative and not limiting: ethylene, propylene, butylene, pentylene, hexylene, heptylene, octylene, decylene, undecylene, dodecylene, octadecylene, ethyleneoxyethylene, methyleneoxybutylene, ethylenethio ethylene, ethylene-N-methyliminoethylene, (1-oxy)methyleneoyloxy, (2-oxy)ethyleneoyloxy, (3-oxy)propyleneoyloxy, (4-oxy)butyleneoyloxy, (5-oxy)pentyleneoyloxy, (6-oxy)hexy1-eneoyloxy, (7-oxy)heptyleneoyloxy, (8-oxy) octyleneoyloxy, (1-oxy
  • reactive liquid crystalline compounds exhibiting 2-, 3- or 4-ring mesogenic groups according to formula (1)-(3) and in particular 2- or 3-ring mesogenic groups according to formula (1) or (2).
  • Cyc is a 1,4-cyclohexylene group
  • Phe is a 1,4-phenylene group which can be unsubstituted or mono-, di- or trifluorinated
  • Dio is a 1,3-dioxane-2,5-diyl group
  • Pyd is a pyridine-2,5-diyl group
  • Pyr is a pyrimidine-2,5-diyl group
  • Pip is a piperidine-1,4-diyl group.
  • Bio is a 1,4-bicyclo(2,2,2)octylene group.
  • Nap is a naphthaline-2, 6-diyl group and Thn is a 1,2,3,4-tetrahydronaphthaline-2, 6-diyl group; the abbreviations Dio, Pyd, Pyr and Pip comprise all possible positional isomers. Especially preferred is the following smaller group of mesogenic cores according to formula (2):
  • Electrooptical systems according to the present invention containing one or more reactive liquid crystalline compounds containing a two-ring mesogenic structure according to formulae (2)a-(2)c generally exhibit especially advantageous properties.
  • Electrooptical systems containing both at least one 2-ring reactive liquid crystalline compound with a mesogenic group according to formula 2 (a)-2 (f) and at least one 3-ring reactive liquid crystalline compound with a mesogenic group according to formulae 3 (a)-3 (f) are preferred.
  • first linking group second linking group - - CH 2 CH 2
  • Electrooptical systems containing one or more reactive liquid crystalline compounds according to formula II which contain a mesogenic group with 4 rings according to formulae (4)a-(4)f exhibit advantageous properties: -Cyc-Z 3 -phe-Z 3 -Phe-Z 3 -Phe- (4) a
  • At least one of Z 3 preferably is a single bond.
  • the other two linking groups preferably denote independently from each other a single bond, -COO-, -OCO- OR -CH 2 CH 2 -.
  • R is a hydrogen atom or a methyl group
  • Z' is independently from each other -COO- or -OCO- (s-OOC)
  • Hikmet describes in Mol. Cryst. Liq. Cryst., 198, 357-70 anisotropic gels which were obtained by curing a mixture of a low-molecular weight liquid crystal and liquid crystalline diacrylates.
  • the use of reactive liquid crystalline compounds in PDLC systems is not reported in literature and it was completely surprising that PDLC systems the liquid crystalline mixture of which additionally contains one or more reactive liquid crystalline compounds, exhibits short switching times even at low temperature and simultaneously advantageous values of the switching voltages.
  • Table 2 summarizes the electrooptical properties of systems each of them containing only one monofunctional reactive liquid crystalline compound. It can be taken from table 2 that the addition of monofunctional reactive liquid crystalline compounds alone is often less advantageous. Both in experiment no. 5 and no. 6 the switching times at least of 0 °C are inferior to the switching times of the conventional PDLC system according to comparative experiment No. 1. Especially disadvantageous is often the addition of monofunctional reactive liquid crystalline compounds wherein the non-reactive terminal group is a nitrile group.
  • monofunctional reactive liquid crystalline compounds with a less polar or unpolar non-reactive terminal group such as F, Cl, CF 3 , OCF 3 , OCHF 2 , alkyl or alkoxy, however, arid/or the use of reactive liquid crystalline components containing at least one difunctional and at least one monofunctional liquid crystalline compound, is often preferred.
  • the reactive liquid crystalline compounds which are completely soluble (i.e. soluble at any concentration ratio of liquid crystal mixture and reactive additive) or at least highly soluble in the liquid crystal mixture, are polymerized and form a network or some other kind of structure within the droplets.
  • the switching times are the lower the more close-meshed the substructure is.
  • the reactive liquid crystalline compound binds into the interface of polymeric matrix and liquid crystal micro- droplet which results in increased anchoring and hence restoring forces on the components of the liquid crystal mixture. This leads to an increase of the switching voltages which is the more pronounced the higher the concentration of the reactive liquid crystalline compounds is.
  • the concentration of the reactive liquid crystalline component has therefore to be adjusted properly in order to realize a drastical reduction of switching times in connection with no or only a tolerable increase in switching voltages.
  • the concentration of the reactive liquid crystalline component which consists of one or more reactive liquid crystalline compounds must not be chosen too high and preferably is not more than 5 % and especially less than 2.5 % with respect to the mass of the precursor of the PDLC film.
  • the reactive liquid crystalline compounds can be chosen from the great pool of known and new reactive liquid crystalline compounds embraced by formula II.
  • the reactive liquid crystalline compounds preferably exhibit a high or very high solubility in the liquid crystal mixture.
  • the reactive liquid crystalline component preferably contains not more than 10 and in particular not more than 5 reactive crystalline compounds.
  • Difunctional reactive liquid crystal-line compounds are generally preferred and in case of these compounds, the reactive liquid crystalline component perferably contains 1-6, especially 1-3 and in particular not more than 2 reactive liquid crystalline compounds.
  • reactive liquid crystalline components comprising at least one difunctional and one monofunctional reactive liquid crystalline compound.
  • reactive liquid crystalline components comprising at least one monofunctional reactive liquid crystalline compound with the second terminal group being F, Cl, CF 3 , OCF 3 , OCHF 2 or non-polar group such as alkyl or alkoxy.
  • BL036 is a liquid crystal mixture available through ML, Poole, GB; TMPTMP is trimethylolpropanetri (3-mercaptopropionate); EHA is 2-ethyl-hexanolacrylate; HDDA is hexanedioldiacrylate, E 270 is a commercially available oligomer (Ebecryl 270, aliphatic urethane diacrylate, molecular weight ⁇ 1,200) and D 1173 is Darocur 1173 available through E. Merck, Darmstadt. Fig.
  • Fig. 2 shows an electrooptical curve and the off-state transmission for the same system at 70 °C.
  • Fig. 3 shows electrooptical curves for this system at 70 °C which were recorded after the off-switching in Fig. 2.
  • the transmission starts at the high level of Fig. 2 and stops at this level during subsequent operations.
  • the system can be fully recovered only when it is being cooled to lower temperatures of, for example, 20 °C but the effect appears again when returning to higher temperatures of operation.
  • the electrooptical systems according to the present invention are characterized by a drastically reduced memory effect as can be seen from Fig. 4 showing an electrooptical characteristic line for a system according to the present invention the precursor of which contains 59.8 % of BL036, 0.2 % of
  • Fig 5 shows the electroptical characteristic line for this system according to the present invention at 20 °C, which is excellent and only shows a slight increase with respect to V sat when compared to the system of Fig. 1.
  • the properties of the systems of Fig. 1 and Fig. 5 are compared in the following table with T on resp.
  • T off being on-state resp. off-state transmission.
  • Fig. 6 shows an electrooptical curve at 70 °C for a system according to the present invention which contains 58 % of BL036, 2 % of the reactive liquid crystalline compound used in Fig. 4 and the same precursor of the matrix as in the system of Fig. 4. No memory effect is observed but the saturation voltage is at the same time considerably increased in comparison tot he saturation voltage of the system of Fig. 1 as was noted already above.
  • Electrooptical systems according to the present invention the reactive liquid crystalline component of which amounts do not more than 1 % quite generally represent a very low memory effect on the one hand and a small and at any rate tolerable increase of the saturation voltage on the other hand.
  • the electrooptical systems according to the present invention are characterized by advantageous electrooptical properties and, in particular, by low switching times, especially at low temperatures, and a considerably reduced memory effect.
  • the liquid crystalline mixture used in the electrooptical systems according to the invention contains at lest 2 non-reactive liquid crystalline compounds which, for the sake of simplicity, are also simply termed as liquid crystalline compounds.
  • the liquid crystalline mixture preferably comprises at least one compound of formula I
  • pyrimidine-2,5-diyl pyridine-2,5-diyl or trans-1,3-dioxane- 2,5-diyl, ⁇ 1 and X 2 independently from one another, are H or F,
  • Q is CF 2 , OCF 2 , C 2 F 4 or a single bond
  • Y is H, F, Cl or CN
  • n is 0, 1 or 2
  • Phe is 1,4-phenylene
  • Phe.2F is 2-fluoro-1,4-phenylene
  • Phe.3F is 3-fluoro-1,4-phenylene
  • Cyc is trans-1,4-cyclohexylene
  • Pyr is pyrimidine-2,5-diyl and Pyd is pyridine-2,5-diyl, the two abbreviations Pyr and Pyd comprising in each case the two possible positional isomers.
  • Phe. (F) is intended to designate a 1,4-phenylene group which may be unsubstituted or monosubstituted by fluorine in the 2 or 3 position.
  • Phe.2F3F and Phe.3F5F are a 1,4-phenylene group which is difluorinated in the 2 and 3, and 3 and 5 position respectively.
  • Liquid crystal compounds according to formula I, wherein Y is H, F or Cl will be termed in the following as SFM compounds (superfluorinated materials) according to formula I.
  • Electrooptical systems whose liquid crystal mixture contains one or more binuclear compounds of the formula 12 are preferred:
  • R is preferably alkyl or alkoxy having 1-10, but in particular 1-8, C atoms, the straight-chain radicals being preferred. Furthermore, n-alkoxyalkyl compounds and in particular n-alkoxymethyl and n-alkoxyethyl compounds are preferred.
  • Z 2 is preferably -CH 2 CH 2 -, -COO- or a single bond, in particular a single bond or -CH 2 CH 2 - and very particularly a single bond.
  • Y is -F, -Cl, -CN, -OCHF 2 , -OCF 3 or -CF 3 preferably -F, -Cl or -CN; in case of actively addressed PDLC systems according to the present invention Y is preferably -F, -Cl or -OCF 3 .
  • Compounds of the formula 12 in which at least one of X 1 and X 2 is different from H are particularly preferred. is preferably Cyc, Phe.(F), Phe.3F5F, Phe.2F3F, Pyr,
  • electrooptical systems whose liquid crystal mixture contains one or more trinuclear compounds of the formula 13 are preferred:
  • R is preferably n-alkyl or n-alkoxy having 1-10 C atoms, furthermore also n-alkoxymethyl or n-alkoxyethyl having 1-8 C atoms and n-alkenyl having up to 7 C atoms.
  • R is methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, methoxy, ethoxy, propoxy, butoxy, pentoxy, hexoxy, heptoxy, octoxy, methoxymethyl, ethoxymethyl, propoxymethyl, butoxymethyl, methoxyethyl, ethoxyethyl or propoxyethyl.
  • Z 1 and Z 2 in the compounds of the formulae 13 are, independently of one another, preferably -CH 2 CH 2 -, -COO- or a single bond and in particular
  • Y is -F, -Cl, -CN, -OCHF 2 , -OCF 3 or
  • Y is in particular -F, -Cl, -OCHF 2 and -OCF 3 .
  • electrooptical systems whose liquid crystal mixture contains one or more tetranuclear compounds of the formula 14 are preferred:
  • R is preferably n-alkyl or n-alkoxy having 1-10 C atoms, furthermore also n-alkoxymethyl or n-alkoxyethyl having 1-8 C atoms.
  • R is methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, methoxy, ethoxy, propoxy, butoxy, pentoxy, hexoxy, heptoxy or octoxy.
  • weight proportion of the compounds of the formulae 14 in the liquid crystal mixture of the electrooptical systems according to the invention is preferably not too high and is in particular less than 20 %, the use of laterally fluorinated compounds of the formula 14 being in many cases preferred.
  • the proportion of the compounds of the formula I in the liquid crystal mixtures used according to the invention is preferably not too small and is in particular more than 15 % and very particularly more than 20 %. Liquid crystal mixtures containing more than 40 % and in particular not less than 50 % of compounds of the formula I are particularly preferred.
  • the liquid crystal mixtures used according to the invention can contain further components which are preferably selected from nematic or nematogenic (monotropic or isotropic) substances, in particular substances from the group comprising azoxybenzenes, benzylideneanilines, biphenyls, terphenyls.
  • nematic or nematogenic (monotropic or isotropic) substances in particular substances from the group comprising azoxybenzenes, benzylideneanilines, biphenyls, terphenyls.
  • phenyl or cyclohexyl benzoates phenyl or cyclohexyl cyclohexanecarboxylates, phenyl or cyclohexyl cyclohexylbenzoates, phenyl or cyclohexyl cyclohexylcyclohexanecarboxylates, cyclohexylphenyl benzoate, cyclohexylphenyl cyclohexanecarboxylate, or cyclohexylphenyl cyclohexylcyclohexanecarboxylate, phenylcyclohexanes, cyclohexylbiphenyls, phenylcyclohexylcyclohexanes, cyclohexylcyclohexanes, cyclohexylcyclohexenes, cyclohexylcyclohexylcyclohexenes, 1,4-bis(cyclo
  • L and E which may be identical or different, are each, independently of one another, a bivalent radical from the group comprising -Phe-, -Cyc-, -Phe-Phe-, -Phe-Cyc-, -Cyc-Cyc-, -Pyr-, -Dio-, -G*-Phe- and -G*-Cyc- and mirror images thereof, Phe being unsubstituted or fluorine-substituted 1,4-phenylene, Cyc being trans-1,4-cyclohexylene or 1,4-cyclohexenylene, Pyr being pyrimidine-2,5-diyl or pyridine-2,5-diyl, Dio being 1,3-dioxane-2,5-diyl and G* being 2-(trans-1,4-cyclohexyl)ethyl, pyrimidine-2,5-diyl, ⁇
  • One of the radicals L and E is preferably Cyc, Phe or Pyr. E is preferably Cyc, Phe or Phe-Cyc.
  • the liquid crystals according to the invention preferably contain one or more components selected from compounds of the formulae 1 and 2, in which L and E are selected from the group comprising Cyc, Phe and Pyr and simultaneously one or more components are selected from the compounds of the formulae 1 and 2, in which one of the radicals L and E is selected from the group comprising Cyc, Phe and Pyr and the other radical is selected from the group comprising -Phe-Phe-, -Phe-Cyc-, -Cyc-Cyc-, -G*-Phe- and -G*-Cyc-, and, if desired, one or more components are selected from the compounds of the formulae 1 and 2, in which the radicals L and E are selected from the group comprising -Phe-Cyc-, -Cyc-Cyc-, -G*-Phe- and
  • R* and R** in the compounds of the formulae 1 and 2 are each, independently of one another, preferably alkyl, alkenyl, alkoxy, alkenyloxy or alkanoyloxy having up to 8 carbon atoms. In most of these compounds, R* and R** are different from one another, one of these radicals being in particular alkyl, alkoxy or alkenyl. Especially preferred is the following smaller group of dielectrically neutral compounds of formulae 3 and 4
  • Z* is independently from each other a single bond
  • 1 and m are independently from each other 0 or 1
  • the weight proportion of the compounds of the formulae 1-4 in the liquid crystals used according to the invention is preferably 0-50 % and in particular 0-40 %.
  • the liquid crystal mixtures used in the electrooptical systems according to the invention preferably contain 1-98 %, in particular 5-05 %, of compounds of the formula I.
  • the liquid crystals preferably contain 1-20, but in particular 1-15, and very particularly 1-12, compounds of the formula I.
  • One skilled in the art can select additives for the liquid crystal mixtures described from the large pool of nematic or nematogenic substances in such a manner that the birefringence ⁇ n and/or the ordinary refractive index n o and/or other refractive indices and/or the viscosity and/or the dielectric anisotropy and/or further parameters of the liquid crystal are optimized with respect to the particular application.
  • the liquid crystal mixture can contain further additives such as, for example, chiral compounds and other customary addi- tives.
  • concentration of such additives is preferably not more than 7.5 % and, in particular, lower than 5 %.
  • Formula II embraces both known and new reactive liquid crystalline compounds, and the present invention also relates to the new reactive liquid crystalline compounds of formula II.
  • the reactive liquid crystalline compounds known so far are often characterized by high or very high melting points and values of the birefringence which are not high enough for many applications.
  • P is alkylene with up to 12 C atoms, it being also possible for one or more CH 2 groups to be replaced by O, is -O-, -S-, -COO-, -OCO- or a single bond.
  • R 2 is alkyl radical with up to 15 C atoms which is unsubstituted, mono-or polysubstituted by halogen, it being also possible for one or more CH 2 groups in these radicals to be replaced, in each case independently of one another, by -O-, -S-, -CO-, -OCO-, -CO-O- or -O-CO-O- in such a manner that oxygen atoms are not linked directly to one another, -CN, -F, -Cl or alternatively R2 has one of the meanings given for R 1 -Q-X,
  • a 3 is a 1,4-phenylene or a napthalene-2,6-diyl radical which both can be unsubstituted or substituted with 1 to 4 halogen atoms, or trans-1,4-cyclohexylene
  • a 4 is (a) or
  • 1,4-phenylene groups in radicals (a) and (b) can be substituted by CN or halogen and one of the 1,4-phenylene groups in (a) and (b) can also be replaced by a 1,4-phenylene radical in which one or two CH groups are replaced by N, and is -CO-O-, -O-CO-, -CH 2 CH 2 - or a single bond. exhibit favorable properties and, in particular, advantageous values of birefringence and melting point.
  • Electrooptical systems according to the present invention the reactive liquid crystalline component of which contains at least one compound according to formula III exhibit especially advantageous properties.
  • Formula III covers reactive liquid crystalline compounds with 3 rings of formulae III1-III20
  • Phe is a 1,4-phenylene group, which is unsubstituted or mono- or polysubstituted by CN or halogen
  • Nap' is a naphtaline-2, 6-diyl group
  • the compounds of formulae III1-III20 are preferred. Especially preferred are the compounds of fromulae III1-III3, III6-III10,III13-III15, III18-III20, III21 and III22 and, in particular the compounds of formulae III1, III8, III15 and III20.
  • CH 2 CH-, , HWN-, HS-CH 2 -(CH 2 )m-COO- with W being H,
  • R1 is a vinyl group, an acrylate group, an amino group or a mercapto group, and especially prefered are the following meanings of R 1 :
  • the spacer-type group P is akylene with up to 24 C atoms, it is also being possible for one or more non adjacent CH 2 groups to be replaced by O.
  • P may be straight-chain or branched.
  • P especially preferred is ethylene, propylene, butylene, 1-methyl-propylene, 2-methyl-propylene, pentylene, 1-methyl-butylene, 2-methyl-butylene, hexylene, 2-ethyl-butylene, 1,3-dimethyl-butylene, hephylene, 1-methylhexylene, 2-methylhexylene, 3-methylhexylene, 4-methylhexylene, 5-methylhexylene, 6-methylhexylene, octylene, 3-ethyl-hexylene, nonylene, 1-methyloctylene, 2-methyloctylene, 7-methyloctylene, decylene, undecylene, dodecylene, 2-methylundecylene, 2,7,5-trimethyl-nonylene or 3-propyl-nonylene.
  • P may be straight- chain or branched.
  • P is 1-oxa-ethylene, 1-oxa-propylene, 2-oxapro ⁇ ylene, 1-oxa-butylene, 2-oxabutylene, 1,3-dioxabutylene, 1-oxa-pentylene, 2-oxa-pentylene, 3-oxy-pentylene, 2-oxa-3-methyl-butylene, 1-oxahexylene, 2-oxa-hexylene, 3-oxa-hexylene, 1,3-dioxa-hexylene, 1,4-dioxy-hexylene, 1,5-dioxa-hexylene, 1-oxy-heptylene, 2-oxa-heptylene, 1,3-dioxa-heptylene, 1,4-dioxa-heptylene, 1,5-dioxa-heptylene, 1,6-
  • X is -O-, -S-, -COO-, -OCO- or a single bond and in particular -O-, -COO-, -OCC- or a single bond.
  • X is -O-, -S- or -OCO-, the adjacent CH 2 -group of Q is not replaced by -O-.
  • Z is -COO-, -OCO-, -CH 2 CH 2 - or a single bond.
  • Z preferably is -COO-, -OCO-, -CH 2 CH 2 - or a single bond and, in particular, -COO-, -OCO- or a single bond.
  • Z preferably is -CH 2 CH 2 - or a single bond.
  • R 2 can be an alkyl radical with up to 15 C atoms which is unsubstituted, mono- or polysubstituted by halogen, it also being possible for one or more CH 2 groups in these radicals to be replaced, in each case independently from one another, by -O-, -S-, -CO-, -OCO-, -COO- or -O-COO- in such a manner that oxygen atoms are not linked directly to one another. If R 2 is an alkyl radical or alkoxy radical, it may be straight-chain or branched.
  • it is straight-chain, has 2, 3, 4, 5, 6, 7 or 8 carbon atoms and accordingly os preferably ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, ethoxy, propoxy, butoxy, pentoxy, hexoxy, heptoxy or octoxy, and furthermore methyl, nonyl, decyl, undecyl, tridecyl, tetradecyl, pentadecyl, methoxy, nonoxy, decoxy, undecoxy, dodecoxy, tridecoxy or tetradecoxy.
  • Preferred branched radicals R 2 are isopropyl, 2-butyl
  • 6-methyloctanyloxy 5-methylheptyloxycarbonyl, 2-methylbutyryloxy, 3-methylvaleryloxy, 4-methylhexanoyloxy, 2-chloropropionyloxy, 2-chloro-3-methylbutyryloxy, 2-chloro-4-methylvaleryloxy, 2 cloro-3-methylvaleryloxy, 2-methyl-3-oxypentyl, 2-methyl-3-oxahexyl.
  • R 2 can also be a polar terminal group and in particular -CN, -Cl or -F; R 2 can also be - (L)-C d H e F 2d+1-e wherein L is a single bond -O- or -S-, d is 1 or 2 and e is 0, 1, 2, 3, 4 or 5.
  • R 2 can also have one of the meanings given for R 1 -Q-X- above.
  • R 1 is an - optionally substituted - alkyl radical
  • R 1 preferable is a vinyl or acrylate group while in case R 2 is
  • R 1 -Q-X all meanings given above for R 1 are preferred.
  • R 1 Especially preferred is the following smaller group of reactive liquid crystalline compounds according to formula III1:
  • CH 2 CH- or HS-CH 2 -(CH 2 ) m COO-,
  • V 1 is independently from each other -O-, -COO-,
  • W 1 is independently from each other H, Cl or CH 3 , n is independently from each other 2-12,
  • n is independently from each other 1-7, and is independently from each other 1,4-phenylene,
  • 1,4-phenylene groups may be substituted independently from each other by 1, 2 or 3 F atoms. Laterally fluorinated compounds are preferred.
  • V 2 is independently from each other -O- or a single bond
  • n is independently from each other 2-12, and has the meaning indicated for III1-1,
  • the compounds according to this formula may be laterally unsubstituted (all groups denote 1,4-phenylene) or 1, 2
  • V 3 is independently from each other -O-, -COO-, -OOC-,
  • W 3 is independently from each other H, Cl or CH 3 , a is 0 or 1,- n is independently from each other 2-12, r is 1 or 2,
  • n is independently from each other 1-7, and has the meaning indicated for III1-1.
  • V3 is -O- or a single bond
  • the compounds of this specific subgroup are characterized by advantageous values of the melting point and the birefringence.
  • V 4 is independently from each other -O-, -COO-, -OCO-,
  • W 4 is independently from each other H, CH 3 or Cl, m is independently from each other 1-7,
  • n is independently from each other 1-12
  • t is 0, 1 or 2, and has the meaning indidated for III1-1. Conpounds of this type are partly covered by formula III1.
  • the compounds according to this formula may be laterally unsubstituted (all groups denote 1,4-phenylene) or 1, 2 or 3 1,4-phenylene groups may be substituted independently from each other by 1, 2 or 3 F atoms. Laterally fluorinated compounds are preferred.
  • the compounds of this specific subgroup are characterized by advantageous values of the melting pount and the birefringence. Especially preferred is further the following smaller group of reactive liquid crystalline compounds according to the following formula
  • V 5 is independently from each other -0-, -COO-, -OCO-,
  • W 5 is independently from each other H, CH 3 or Cl, n is independently from each other 1-12,
  • n 1-7
  • the compounds according to formula III-1 may be laterally unsubstituted (all groups. denote 1,4-phenylene) or 1, 2 or 3 1,4-phenylene groups may be substituted independently from each other by 1, 2 or 3 F atoms. Laterally fluorinated compounds are preferred. Compounds of this type are partly covered by formula III1. Particularly preferred in the following rather small group of compounds:
  • W 6 is independently from each other H, CH 3 or Cl
  • T 6 is independently from each other straicfit chain (CH 2 ) n or
  • n is independently from each other 1-7
  • n is independently from each other 1-12
  • v is independently from each other 1-8
  • w is independently from each other 0 or 1
  • z is independently from each other 0-4,
  • V 6 is independently from each other -O-, -S-, -COO-,
  • c and d are independently from each other 0, 1 or 2, c+d is 1, 2 or 3,
  • X is N or CH, and has the meaning indicated for III1-1.
  • V 7 is independently from each other -O-, -COO-, -OOC-, -S- or a single bond
  • W 7 is independently from each other H, Cl or CH 3 ,
  • n is independently from each other 1-7
  • b is independently from each other 0-11
  • the reactive liquid crystalline compounds according to formula I and, in particular, the preferred compounds according to formula III and according to the preferred subclasses can be prepared by methods which are known per se and which are described, for example, in standard works of organic chemistry such as, for example, Houben-Weyl, Methoden der Organischen Chemie, Thieme-Verlag, Stuttgart. Some specific methods can be taken from the examples. In the following and in the preceding, all percentages given are percentages by weight. Temperatures are given in degrees Celsius. The following exapmles are intended to illustrate the invention without restricting it.
  • Example 1 The reactive liquid crystalline compounds (1) is prepared via the sequence of reaction steps shown in diagram 1. Pd(Ph) 3 tetrakis triphenylphosphine palladium and ⁇ denotes heating.
  • step 6 of diagram 1 1 mol of the phenylether obtained in step 5 and 1.1 mol of acryloyl chloride are dissolved in 1 1 of dichlormethane. 1.1 mol of triethylamine are added, and the mixture is stirred for 3 hours at room temperature.
  • TEA triethylamine
  • DCM dichloromethane
  • rt room temperature
  • step 4 of diagram 2 2.2 mol of triethylamine is added dropwise to a mixture of 1 mol of the alcohol obtained in step 3, and 2.1 mol of acryloyl chlorid in 2 1 of dichloromethane. After 24 hours the reaction mixture is washed with water, and volumne chromatography gives (2).
  • DME is dimethoxyethane.
  • step 5 of diagram 3 2.2 mol of triethylamine is added dropwise to a solution of 1 mol of the hydroxyterphenyl obtained in step 4 of diagram 3, and 2.1 mol acryloyl chloride in 21 dichloromethane. It is stirred for 4 hours at room temperature. Aqueous work-up and column chromatography fives (3).
  • step 4 of diagram 4 2.2 mol triethylamine is added dropwise to a solution of the ester obtained in step 3 of diagram 4, and 2.1 mol acryloyl chloride in 2 1 dichloromethane. The reaction mixture is stirred at room temperature for 4 hours. Aqueous work-up and column chromatography gives (4).
  • step 4 2.2 mol of triethylamine is added dropwise to a solution of 1 mol of the substituted pyrimidine obtained in step 3 of diagram 5, and 2.1 mol of acryloyl chloride in 2 1 dichloromethane. The reaction mixture is stirred at room temperature for 4 hours. Aqeous work-up and column chromatographic gives (5).
  • Example 6 The reactive liquid crystalline compound (6) is prepared via the sequence of reaction steps shown in diagram 6.
  • step 4 2.2 mol of triethylamine is added dropwise to a solution of 1 mol of the substituted pyrimidine obtained in step 3 of diagram 6, and 2.1 mol of acryloyl chloride in 2 1 dichloromethane, and the reaction mixture is stirred at room temperature for 4 hours. Aqueous work-up and column chromatographic gives (6).
  • Example 7
  • step 4 2.2 mol of triethylamine is added dropwise to a solution of 1 mol of the ethylene linked compound obtained in step 3 of diagram 4, and 2.1 mol of acryloyl chloride in 2 1 dichloromethane. The reaction mixture is stirred for 4 hours at room temperature. Aqueous work-up and column chromatography gives (7).
  • Example 8 The optically active reactive liquid crystalline compound (8)
  • THF is tetrahydrofurane and Br-CH 2 -CH 2 -THP is 2-bromo-1-(tetrahydropyranyl)-ethanol which can be prepared according to the method described in A. Hoppmann, Tetrahedron, 34 (1978), 1723.
  • step 5 2.2 mol of triethylamine is added dropwise to a solution of 1 mol of the diol obtained in step 4 of diagram 8, and 2.1 mol of acryloyl chloride in 2 1 dichloromethane. The reaction mixture is stirred at room temperature for 4 hours. Aqeous work-up and column chromatography gives (8).
  • Example 9
  • Et 3 N is (CH 3 CH 2 ) 3 N.
  • Compound (9) exhibits the following phase sequence: K 112 N 150 I.
  • Compound (10) exhibits the following phase sequence:
  • Compound (11) exhibits the following phase sequence :
PCT/EP1993/000989 1992-04-27 1993-04-23 Electrooptical liquid crystal system WO1993022397A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP93909833A EP0591508B2 (en) 1992-04-27 1993-04-23 Electrooptical liquid crystal system
DE69325555T DE69325555D1 (de) 1992-04-27 1993-04-23 Elektrooptisches fluessigkristallsystem
US08/081,280 US5871665A (en) 1992-04-27 1993-04-23 Electrooptical liquid crystal system
JP1993518891A JP3739389B6 (ja) 1992-04-27 1993-04-23 電気光学液晶システム
US09/750,102 US6565769B2 (en) 1992-04-27 2000-12-29 Electrooptical liquid crystal system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP92107137.9 1992-04-27
EP92107137 1992-04-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/008,587 Division US6042745A (en) 1992-04-27 1998-01-16 Electrooptical liquid crystal system

Publications (1)

Publication Number Publication Date
WO1993022397A1 true WO1993022397A1 (en) 1993-11-11

Family

ID=8209579

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1993/000989 WO1993022397A1 (en) 1992-04-27 1993-04-23 Electrooptical liquid crystal system

Country Status (5)

Country Link
US (8) US5871665A (US06565769-20030520-C00115.png)
EP (1) EP0591508B2 (US06565769-20030520-C00115.png)
JP (4) JP4154350B2 (US06565769-20030520-C00115.png)
DE (1) DE69325555D1 (US06565769-20030520-C00115.png)
WO (1) WO1993022397A1 (US06565769-20030520-C00115.png)

Cited By (108)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2281566A (en) * 1993-09-02 1995-03-08 Merck Patent Gmbh Composite liquid crystal - polymer material
EP0648827A1 (en) * 1993-10-15 1995-04-19 MERCK PATENT GmbH Reactive liquid crystal compounds
WO1995022586A1 (de) * 1994-02-19 1995-08-24 Basf Aktiengesellschaft Neue polymerisierbare flüssigkristalline verbindungen
WO1995024454A1 (de) * 1994-03-11 1995-09-14 Basf Aktiengesellschaft Neue polymerisierbare flüssigkristalline verbindungen
EP0700981A3 (US06565769-20030520-C00115.png) * 1994-09-12 1996-03-27 Hoffmann La Roche
EP0699731A3 (US06565769-20030520-C00115.png) * 1994-08-31 1996-03-27 Hoffmann La Roche
GB2297549A (en) * 1995-02-06 1996-08-07 Merck Patent Gmbh Monomeric direactive mesogenic compounds, intermediates therefor and polymers therefrom
WO1996024647A1 (en) * 1995-02-06 1996-08-15 Merck Patent Gmbh Direactive mesogenic compounds and intermediates
US5622648A (en) * 1993-10-15 1997-04-22 Merck Patent Gesellschaft Mit Beschrankter Haftung Reactive liquid crystal compounds
GB2305925A (en) * 1995-10-06 1997-04-23 Merck Patent Gmbh Anisotropic polymer
US5641426A (en) * 1994-04-29 1997-06-24 Minnesota Mining And Manufacturing Company Light modulating device having a vinyl ether-based matrix
US5645760A (en) * 1994-06-14 1997-07-08 Sharp Kabushiki Kaisha Polymeric compounds, and liquid crystal element using the same
WO1997034862A1 (en) * 1996-03-19 1997-09-25 Merck Patent Gmbh Reactive liquid crystal compounds
WO1998047979A1 (de) * 1997-04-22 1998-10-29 Basf Aktiengesellschaft Verfahren zur herstellung polymerisierbarer flüssigkristalliner verbindungen
WO1998052905A1 (en) * 1997-05-22 1998-11-26 Rolic Ag New polymerisable liquid crystalline compounds
WO2000023539A1 (fr) * 1998-10-20 2000-04-27 Asahi Glass Company Ltd. Element optique a cristal liquide et procede de preparation associe
EP1256617A1 (en) * 2001-05-08 2002-11-13 MERCK PATENT GmbH Polymerizable liquid crystal material
EP1342770A1 (en) * 2002-03-04 2003-09-10 Fuji Photo Film Co., Ltd. Polymerizable liquid crystal compound, liquid crystal polymer and applications thereof
EP1357163A1 (en) * 2002-04-24 2003-10-29 MERCK PATENT GmbH Reactive mesogenic benzodithiophenes
US6676857B2 (en) 2001-07-25 2004-01-13 Merck Patent Gesellschaft Mit Mono-, oligo- and poly-4-fluorothiophenes and their use as charge transport materials
US6696585B1 (en) 1993-04-13 2004-02-24 Southwest Research Institute Functionalized nanoparticles
US6695978B2 (en) 2001-09-29 2004-02-24 Merck Patent Gesellschaft Mit Beschraenkter Haftung Mono-, oligo- and polymers of benzo[b]thiophene and 2,2′-bisbenzo[b]thiophene and their use as charge transport materials
EP1431050A2 (en) 2002-12-19 2004-06-23 MERCK PATENT GmbH Process for laser marking of a liquid crystal film
US6805922B2 (en) 2001-08-17 2004-10-19 Merck Patent Gmbh Mono-, oligo-and polyalkylidenefluorenes and their use as charge transport materials
US6806374B2 (en) 2001-07-25 2004-10-19 Merck Patent Gmbh Mono-, oligo- and poly-3-(1,1-difluoroalkyl)thiophenes and their use as charge transport materials
US6824706B2 (en) 2001-07-25 2004-11-30 Merck Patent Gesellschaft Mit Beschrank Haftung Mono-, Oligo- and poly-difluorovinyl-(hetero)arylenes, their synthesis and their use as charge transport materials
WO2005005573A1 (en) * 2003-07-12 2005-01-20 Merck Patent Gmbh Polymerised liquid crystal film with improved adhesion
US6863841B2 (en) 2001-12-13 2005-03-08 Merck Patent Gmbh Oxadiazole derivative and its use as charge transport and light emitting material
US6914126B2 (en) 2002-04-10 2005-07-05 Keraplast Technologies, Ltd. Methods for producing, films comprising, and methods for using heterogenous crosslinked protein networks
US6913710B2 (en) 2002-04-24 2005-07-05 Merck Patent Gmbh Reactive mesogenic benzodithiophenes
US6924861B2 (en) 2002-02-06 2005-08-02 Merck Patent Gmbh Birefringement film containing liquid crystal material having multi domains with splayed structure
US6953611B2 (en) 2001-09-25 2005-10-11 Merck Patent Gmbh Anisotropic polymer film
US6958797B2 (en) 2002-07-23 2005-10-25 Nitto Denko Corporation Optical film having low chromaticity variation and quarter wavelength plate, and liquid crystal display using the same
US6989437B2 (en) 2002-04-10 2006-01-24 Keraplast Technologies, Ltd. Methods for producing, films comprising, and methods for using heterogeneous crosslinked protein networks
US7001987B2 (en) 2002-04-22 2006-02-21 Keraplast Technologies, Ltd. Hydrogel with controllable mechanical, chemical, and biological properties and method for making same
US7001988B2 (en) 2001-09-25 2006-02-21 Keraplast Technologies, Ltd. Methods for controlling peptide solubility, chemically modified peptides, and stable solvent systems for producing same
WO2006027076A1 (en) * 2004-09-06 2006-03-16 Merck Patent Gmbh Polymerisable liquid crystal material
US7041234B2 (en) 2001-01-23 2006-05-09 Southwest Research Institute Methods for synthesis of liquid crystals
US7046443B2 (en) 2002-07-24 2006-05-16 Nitto Denko Corporation Anisotropic light scattering element, anisotropic light scattering polarizing plate using the same, and image display device using the same
US7074836B1 (en) 1996-07-31 2006-07-11 Shionogi & Co., Ltd. Para-terphenyl compounds
US7081282B2 (en) 2001-07-02 2006-07-25 Merck Patent Gmbh Optically variable marking
US7083834B2 (en) 2002-02-13 2006-08-01 Merck Patent Gmbh Method of preparing an anisotropic polymer film on a substrate with a structured surface
EP0951520B2 (de) 1996-10-01 2006-08-02 Basf Aktiengesellschaft Flächengebilde mit cholesterisch, flüssigkristalliner ordnungsstruktur
US7094358B2 (en) 2001-03-07 2006-08-22 The University Of Texas System Ultra-low shrinkage composite resins based on blended nematic liquid crystal monomers
US7098359B2 (en) 2001-07-09 2006-08-29 Southwest Research Institute Mesogens and methods for their synthesis and use
EP1925954A2 (en) 2006-11-21 2008-05-28 FUJIFILM Corporation Process of producing patterned birefringent product
DE112006002690T5 (de) 2005-11-24 2008-10-23 Merck Patent Gmbh Regioreguläre Polyselenophene
US7443585B2 (en) 2002-04-23 2008-10-28 Nitto Denko Corporation Polarizer, polarization light source and image display unit using them
WO2008143470A2 (en) * 2007-05-22 2008-11-27 Lg Chem, Ltd. Polymerizable liquid crystal composition and optical film and device using the same
EP2033707A1 (de) 2007-09-07 2009-03-11 MERCK PATENT GmbH Verfahren zur Herstellung einer homogenen flüssigen Mischung
EP2065361A2 (de) 2007-11-30 2009-06-03 Merck Patent GmbH Polymerisierbare Verbindungen
US7557883B2 (en) 2006-07-12 2009-07-07 Nitto Denko Corporation Polarizing plate with optical compensation layer, method of producing the same, and liquid crystal panel, liquid crystal display, and image display including the same
EP2093609A2 (en) 2008-02-19 2009-08-26 FUJIFILM Corporation Substrate for liquid crystal display device and liquid crystal display device
EP2098584A1 (en) 2008-03-05 2009-09-09 Merck Patent GmbH Liquid-crystalline medium and liquid-crystal display having high twist
US7683203B2 (en) 2004-11-04 2010-03-23 Adeka Corporation Polymerizable compound and composition containing the polymerizable compound
EP2209027A1 (en) 2002-02-13 2010-07-21 MERCK PATENT GmbH Security marking comprising an anisotropic polymer film on a substrate with a structured surface
EP2218764A1 (en) 2009-02-13 2010-08-18 Merck Patent GmbH Chiral reactive mesogen mixture
EP2224281A2 (en) 2009-02-27 2010-09-01 FUJIFILM Corporation Substrate for liquid crystal display device and liquid crsytal display device
WO2010108593A1 (en) 2009-03-26 2010-09-30 Merck Patent Gmbh Process of preparing an anisotropic multilayer using particle beam alignment
EP2309318A1 (en) 2008-02-29 2011-04-13 Merck Patent GmbH Alignment film for liquid crystals optainable by direct particle beam deposition
WO2011050896A1 (en) 2009-10-30 2011-05-05 Merck Patent Gmbh Polymerisable lc material and polymer film with negative optical dispersion
DE102010047409A1 (de) 2009-10-28 2011-05-05 Merck Patent Gmbh Polymerisierbare Verbindungen und ihre Verwendung in Flüssigkristallanzeigen
EP2320268A1 (en) 2009-10-26 2011-05-11 Merck Patent GmbH Alignment layer for planar alignment of a polymerizable liquid crystalline or mesogenic material
WO2011078055A1 (ja) 2009-12-24 2011-06-30 日東電工株式会社 広帯域コレステリック液晶フィルムの製造方法
DE102011011836A1 (de) 2010-03-09 2011-09-15 Merck Patent Gmbh Polymerisierbare Verbindungen und ihre Verwendung in Flüssigkristallmedien und Flüssigkristallanzeigen
WO2011120620A1 (en) 2010-03-30 2011-10-06 Merck Patent Gmbh Method for producing multicoloured coatings
EP2399972A2 (en) 2010-06-25 2011-12-28 Merck Patent GmbH Liquid-crystalline medium and liquid-crystal display having high twist
WO2012076533A1 (en) 2010-12-07 2012-06-14 Sicpa Holding Sa Simplified control of color shifting properties of a chiral liquid crystal polymer
WO2012076534A1 (en) 2010-12-07 2012-06-14 Sicpa Holding Sa Composite marking based on chiral liquid crystal precursors
WO2012152409A1 (en) 2011-05-09 2012-11-15 Merck Patent Gmbh Reactive mesogen based polymer particles
WO2012163778A1 (en) 2011-05-27 2012-12-06 Sicpa Holding Sa Substrate with a modified liquid crystal polymer marking
WO2013143829A2 (en) 2012-03-27 2013-10-03 Sicpa Holding Sa Multilayer flake with high level of coding
DE102012011464A1 (de) 2012-06-12 2013-12-12 Merck Patent Gmbh Verfahren zur Erzeugung von dreidimensionalen Mustern in flüssigkristallinen Beschichtungen
WO2014000846A1 (en) 2012-06-26 2014-01-03 dedeMERCK PATENT GMBH Method of preparing a birefringent polymer film
WO2014094949A1 (en) * 2012-12-21 2014-06-26 Merck Patent Gmbh Reactive mesogens
WO2015004129A1 (en) 2013-07-10 2015-01-15 Sicpa Holding Sa Marking comprising a printable code and a chiral liquid crystal polymer layer
WO2015058832A1 (en) 2013-10-21 2015-04-30 Merck Patent Gmbh Method of preparing a birefringent polymer film
WO2015067683A1 (en) 2013-11-08 2015-05-14 Sicpa Holding Sa Salt-free composite marking based on chiral liquid crystal precursors comprising chiral acrylate dopants
DE102013018094A1 (de) 2013-12-03 2015-06-03 Merck Patent Gmbh Mischvorrichtung und deren Verwendung
DE102013020400A1 (de) 2013-12-10 2015-06-11 Merck Patent Gmbh Reinigungsvorrichtung
DE102013021279A1 (de) 2013-12-18 2015-06-18 Merck Patent Gmbh Verfahren zum Reinigen einer Flüssigkristallmischung
DE102013020638A1 (de) 2013-12-16 2015-06-18 Merck Patent Gmbh Abfüllvorrichtung und deren Verwendung zur Abfüllung eines Fluids
US9073850B2 (en) 2011-11-24 2015-07-07 Jnc Corporation Polymerizable compound
US9243169B2 (en) 2013-05-16 2016-01-26 Sicpa Holding Sa Security laminate
WO2016070952A1 (en) 2014-11-06 2016-05-12 Merck Patent Gmbh Light modulation element
WO2016096076A1 (en) 2014-12-19 2016-06-23 Merck Patent Gmbh Light modulation element
WO2016116123A1 (en) 2015-01-23 2016-07-28 Merck Patent Gmbh Light modulation element
WO2016116254A1 (en) 2015-01-23 2016-07-28 Merck Patent Gmbh Light modulation element
WO2017001043A1 (en) 2015-07-02 2017-01-05 Merck Patent Gmbh Process of preparing a light modulation element
WO2017001041A1 (en) 2015-07-02 2017-01-05 Merck Patent Gmbh Process of preparing a light modulation element
US9567524B2 (en) 2015-02-06 2017-02-14 Samsung Electronics Co., Ltd. Polymerizable liquid crystal compound, and compensation film, antireflective film, and display device including the same
US9567522B2 (en) 2004-12-17 2017-02-14 Merck Patent Gmbh Liquid crystal system and liquid crystal display
WO2017059942A1 (en) 2015-10-06 2017-04-13 Merck Patent Gmbh Chiral compounds
US9778201B2 (en) 2012-07-03 2017-10-03 Sicpa Holding Sa Capsule or cork comprising security features
WO2017198586A1 (en) 2016-05-17 2017-11-23 Merck Patent Gmbh Light modulation element
US9834031B2 (en) 2012-12-20 2017-12-05 Sicpa Holding Sa Chiral liquid crystal polymer layer or pattern comprising randomly distributed craters therein
WO2018042026A1 (en) 2016-09-05 2018-03-08 Merck Patent Gmbh Uv curable adhesion promoters based on functionalised polyvinyl alcohols
WO2018073459A2 (en) 2017-03-28 2018-04-26 Merck Patent Gmbh Liquid crystal device
US9987866B2 (en) 2014-03-31 2018-06-05 Sicpa Holding Sa Marking comprising a chiral liquid crystal polymer and a luminescent substance
WO2018099883A1 (en) 2016-12-01 2018-06-07 Merck Patent Gmbh Polymerisable lc medium and polymer film with flat optical dispersion
WO2018192896A1 (en) 2017-04-20 2018-10-25 Merck Patent Gmbh Light modulation element
US10308872B2 (en) 2013-11-08 2019-06-04 Sicpa Holding Sa Composite marking based on chiral liquid crystal precursors and modifying resins
WO2019121368A1 (en) 2017-12-18 2019-06-27 Merck Patent Gmbh Liquid crystal medium and liquid crystal device
DE10257711B4 (de) 2001-12-27 2019-09-26 Merck Patent Gmbh Polymerisierbare monocyclische Verbindungen enthaltende Flüssigkristallmischungen
US10654307B2 (en) 2013-10-17 2020-05-19 Sicpa Holding Sa Rotogravure printing processes for producing optically variable security features
US10689480B2 (en) 2016-03-01 2020-06-23 Toyo Tire Corporation Liquid-crystal compound, thermally responsive material, and production method therefor
WO2023032675A1 (ja) 2021-09-01 2023-03-09 日東電工株式会社 高分子分散型液晶フィルムおよび高分子分散型液晶フィルムの製造方法
WO2023165863A1 (en) 2022-03-01 2023-09-07 Sicpa Holding Sa Overt security features

Families Citing this family (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0591508B2 (en) 1992-04-27 2003-01-15 MERCK PATENT GmbH Electrooptical liquid crystal system
US6830787B1 (en) 1994-03-17 2004-12-14 Hitachi, Ltd. Active matrix liquid crystal display apparatus
KR100411922B1 (ko) * 1995-02-17 2004-05-10 메르크 파텐트 게엠베하 중합체성필름
GB2315072B (en) * 1996-07-04 2000-09-13 Merck Patent Gmbh Circular UV polariser
JP2903493B2 (ja) * 1996-09-25 1999-06-07 チッソ株式会社 テルフェニル誘導体、液晶組成物および液晶表示素子
US6579577B2 (en) 1996-09-25 2003-06-17 Chisso Corporation Substituted benzene derivative, liquid crystal composition, and liquid crystal display element
KR100247640B1 (ko) * 1997-06-27 2000-03-15 김영환 액정 표시 소자 및 그 제조방법
DE69907579T2 (de) * 1998-07-15 2004-04-01 Merck Patent Gmbh Polymerisierbare mesogene Fluorphenylene
EP1100766B1 (en) * 1998-07-24 2004-04-07 Rolic AG Crosslinkable liquid crystalline compounds
US6194481B1 (en) * 1999-05-19 2001-02-27 Board Of Regents Of The University Of Texas System Mechanically strong and transparent or translucent composites made using zirconium oxide nanoparticles
US7060200B1 (en) * 1999-09-03 2006-06-13 Merck Patent Gmbh Multireactive polymerizable mesogenic compounds
EP1174412B1 (en) 2000-01-21 2008-12-17 DIC Corporation Polymerizable composition showing liquid-crystal phase and optically anisotropic film prepared from said composition
DE10015247A1 (de) * 2000-03-28 2001-10-04 Merck Patent Gmbh Bananenförmige Flüssigkristalle zur Induktion von Flexoelektrischer Polarisation
WO2002028813A1 (en) 2000-09-30 2002-04-11 Loctite Low shrinkage thermosetting resin compositions and methods of use therefor
US6963001B2 (en) * 2000-09-30 2005-11-08 Henkel Corporation Low shrinkage thermosetting resin compositions and methods of use therefor
US6416827B1 (en) * 2000-10-27 2002-07-09 Research Frontiers Incorporated SPD films and light valves comprising same
JP2002205974A (ja) * 2000-12-12 2002-07-23 Merck Patent Gmbh バナナ形状重合性メソゲン化合物
EP1215195A1 (en) * 2000-12-12 2002-06-19 MERCK PATENT GmbH Banana-shaped polymerizable mesogenic compounds
US20040199004A1 (en) * 2001-01-23 2004-10-07 Southwest Research Institute Novel mesogens
US7147800B2 (en) * 2001-01-23 2006-12-12 Southwest Research Institute Selective ether cleavage synthesis of liquid crystals
WO2003006468A2 (en) * 2001-07-09 2003-01-23 Merck Patent Gmbh Polymerisable charge transport compounds
US20050156839A1 (en) * 2001-11-02 2005-07-21 Webb Homer L. Field sequential display device and methods of fabricating same
JP2005512142A (ja) * 2001-12-13 2005-04-28 ソニー インターナショナル (ヨーロッパ) ゲゼルシャフト ミット ベシュレンクテル ハフツング 複合材の形成方法
WO2003062286A1 (fr) * 2002-01-22 2003-07-31 Japan Science And Technology Agency Composite a cristaux liquides conducteur d'ions polymerisable, composite polymere a cristaux liquides conducteur d'ions de maniere anisotrope et procede de production
US6844904B2 (en) * 2002-12-07 2005-01-18 Cubic Corporation Fast PDLC device
JP4637839B2 (ja) 2003-08-08 2011-02-23 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング 反応性メソゲンを有する、液晶分子を配向させるための配向層
KR101174749B1 (ko) * 2003-11-06 2012-08-17 스미또모 가가꾸 가부시끼가이샤 배향된 중합체막을 포함하는 이색성 게스트 호스트 편광체
JP5151479B2 (ja) * 2005-04-13 2013-02-27 旭硝子株式会社 重合性液晶組成物、光学異方性材料、光学素子および光ヘッド装置
US8414477B2 (en) * 2005-05-04 2013-04-09 Olympus Endo Technology America Inc. Rotate-to-advance catheterization system
US20070097291A1 (en) * 2005-10-31 2007-05-03 Hewlett-Packard Development Company, Lp Polymer dispersed liquid crystal
JP4545095B2 (ja) * 2006-01-11 2010-09-15 株式会社Adeka 新規重合性化合物
WO2008077261A1 (en) 2006-12-22 2008-07-03 Rolic Ag Patternable liquid crystal polymer comprising thio-ether units
EP2176377B1 (en) * 2007-06-25 2012-09-26 Vlyte Innovations Limited Polymer-dispersed liquid crystal structures
WO2009015744A1 (de) * 2007-07-30 2009-02-05 Merck Patent Gmbh Flüssigkristallanzeige
DE102008035718A1 (de) 2007-08-29 2009-03-05 Merck Patent Gmbh Flüssigkristallanzeige
CN103820126B (zh) 2007-08-30 2015-09-09 默克专利股份有限公司 液晶显示器
KR101638756B1 (ko) 2007-08-30 2016-07-12 메르크 파텐트 게엠베하 액정 디스플레이
US8114310B2 (en) 2007-10-22 2012-02-14 Merck Patent Gmbh Liquid-crystal display
US8283000B2 (en) * 2008-02-22 2012-10-09 Adeka Corporation Liquid crystal composition containing polymerizable compound and liquid crystal display using the liquid crystal composition
US8623238B2 (en) 2008-06-27 2014-01-07 Transitions Optical, Inc. Mesogenic stabilizers
US7910019B2 (en) 2008-06-27 2011-03-22 Transitions Optical, Inc. Mesogen containing compounds
US7910020B2 (en) * 2008-06-27 2011-03-22 Transitions Optical, Inc. Liquid crystal compositions comprising mesogen containing compounds
US8628685B2 (en) * 2008-06-27 2014-01-14 Transitions Optical, Inc Mesogen-containing compounds
US8613868B2 (en) 2008-06-27 2013-12-24 Transitions Optical, Inc Mesogenic stabilizers
US8349210B2 (en) 2008-06-27 2013-01-08 Transitions Optical, Inc. Mesogenic stabilizers
US8431039B2 (en) 2008-06-27 2013-04-30 Transitions Optical, Inc. Mesogenic stabilizers
CN104762092B (zh) 2008-06-27 2017-09-19 默克专利股份有限公司 液晶介质
US11726332B2 (en) 2009-04-27 2023-08-15 Digilens Inc. Diffractive projection apparatus
JP5609871B2 (ja) 2009-07-08 2014-10-22 旭硝子株式会社 ジ(メタ)アクリレート化合物、重合性液晶性組成物、光学異方性材料、光学素子および光情報記録再生装置
EP2292720A1 (en) 2009-09-08 2011-03-09 Merck Patent GmbH Liquid-crystal display
JP5648352B2 (ja) * 2010-07-21 2015-01-07 Dic株式会社 重合性ナフタレン化合物
US9005477B2 (en) * 2009-12-14 2015-04-14 Dic Corporation Liquid crystal composition containing polymerizable compound and liquid crystal display element using the same
JP5693865B2 (ja) * 2010-03-24 2015-04-01 株式会社Adeka 重合性化合物を含有する液晶組成物及び該液晶組成物を用いた液晶表示素子
DE102011105930A1 (de) * 2010-07-21 2012-01-26 Merck Patent Gmbh Polymerisierbare Mischungen und ihre Verwendung in Flüssigkristallanzeigen
WO2012055473A1 (en) 2010-10-26 2012-05-03 Merck Patent Gmbh Liquid-crystal medium and process for preparing a liquid-crystal device
JP5678798B2 (ja) * 2011-05-20 2015-03-04 Dic株式会社 重合性化合物含有液晶組成物及びそれを使用した液晶表示素子
EP2557140B1 (en) 2011-08-09 2016-09-21 Merck Patent GmbH Liquid-crystalline medium
EP2743331B1 (en) * 2011-08-11 2019-09-11 DIC Corporation Liquid crystal composition containing polymerizable compound and liquid crystal display element using same
WO2016020630A2 (en) 2014-08-08 2016-02-11 Milan Momcilo Popovich Waveguide laser illuminator incorporating a despeckler
CN102629013B (zh) * 2011-09-15 2014-12-17 北京京东方光电科技有限公司 一种液晶显示装置及其制作方法
US9933684B2 (en) * 2012-11-16 2018-04-03 Rockwell Collins, Inc. Transparent waveguide display providing upper and lower fields of view having a specific light output aperture configuration
CN103207469B (zh) 2013-03-18 2016-01-27 北京京东方光电科技有限公司 液晶面板、显示装置及液晶面板的制造方法
WO2016020040A1 (en) * 2014-08-05 2016-02-11 Merck Patent Gmbh Polymerisable mesogenic compound, liquid crystal medium and liquid crystal display
EP3245444B1 (en) 2015-01-12 2021-09-08 DigiLens Inc. Environmentally isolated waveguide display
US9632226B2 (en) 2015-02-12 2017-04-25 Digilens Inc. Waveguide grating device
JP6598269B2 (ja) 2015-10-05 2019-10-30 ディジレンズ インコーポレイテッド 導波管ディスプレイ
CN105602578A (zh) * 2015-12-18 2016-05-25 石家庄诚志永华显示材料有限公司 一种广视角的pdlc组合物
CN108780224B (zh) 2016-03-24 2021-08-03 迪吉伦斯公司 用于提供偏振选择性全息波导装置的方法和设备
WO2018129398A1 (en) 2017-01-05 2018-07-12 Digilens, Inc. Wearable heads up displays
KR20200108030A (ko) 2018-01-08 2020-09-16 디지렌즈 인코포레이티드. 도파관 셀 내의 홀로그래픽 격자의 높은 처리능력의 레코딩을 위한 시스템 및 방법
WO2020023779A1 (en) 2018-07-25 2020-01-30 Digilens Inc. Systems and methods for fabricating a multilayer optical structure
US20200264378A1 (en) 2019-02-15 2020-08-20 Digilens Inc. Methods and Apparatuses for Providing a Holographic Waveguide Display Using Integrated Gratings
JP2022523365A (ja) * 2019-02-22 2022-04-22 ディジレンズ インコーポレイテッド 高い回折効率および低いヘイズを有するホログラフィック高分子分散液晶混合物
KR20220016990A (ko) 2019-06-07 2022-02-10 디지렌즈 인코포레이티드. 투과 및 반사 격자를 통합하는 도파관 및 관련 제조 방법
CN114450608A (zh) 2019-08-29 2022-05-06 迪吉伦斯公司 真空布拉格光栅和制造方法
CN110964542B (zh) * 2019-12-12 2020-10-02 珠海兴业新材料科技有限公司 Pdlc组合物及利用其制成的防断电变透pdlc薄膜以及其制造方法
CN113493693A (zh) * 2020-04-01 2021-10-12 北京八亿时空液晶科技股份有限公司 一种含有聚合性化合物的液晶组合物及其应用
CN116813960A (zh) * 2023-05-29 2023-09-29 苏州科技大学 一种高反射可调液晶薄膜及其制备方法
CN116535569A (zh) * 2023-05-29 2023-08-04 苏州科技大学 一种无侧基丙烯酸酯液晶化合物及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991005029A1 (de) * 1989-10-02 1991-04-18 MERCK Patent Gesellschaft mit beschränkter Haftung Elektrooptisches flüssigkristallsystem
EP0484972A2 (en) * 1990-11-09 1992-05-13 Canon Kabushiki Kaisha Liquid crystal device, display apparatus using same and display method using same
EP0488116A2 (en) * 1990-11-26 1992-06-03 Seiko Epson Corporation Polymer dispersed liquid crystal display element and method of fabricating the same
DE4104183A1 (de) * 1991-01-25 1992-07-30 Merck Patent Gmbh Elektrooptisches system
EP0506176A1 (en) * 1991-03-26 1992-09-30 Koninklijke Philips Electronics N.V. Light-scattering element

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4890902A (en) * 1985-09-17 1990-01-02 Kent State University Liquid crystal light modulating materials with selectable viewing angles
FR2604440B1 (fr) * 1986-09-30 1988-11-10 Thomson Csf Polymeres mesomorphes a chaines laterales derives du 1-(phenyl)-2-(4-cyanophenyl) ethane
CA1307576C (en) * 1987-10-20 1992-09-15 Yoshi Arai Liquid crystal devices and process for producing the same
EP0359801B1 (en) * 1987-12-30 1995-05-17 Hughes Aircraft Company Acrylate polymer-dispersed liquid crystal material and devices made therefrom
US4994204A (en) * 1988-11-04 1991-02-19 Kent State University Light modulating materials comprising a liquid crystal phase dispersed in a birefringent polymeric phase
US5240636A (en) * 1988-04-11 1993-08-31 Kent State University Light modulating materials comprising a liquid crystal microdroplets dispersed in a birefringent polymeric matri method of making light modulating materials
NL8901167A (nl) * 1989-05-10 1990-12-03 Philips Nv Methode voor de vervaardiging van een polarisatiefilter, een aldus verkregen polarisatiefilter en een display dat voorzien is van het polarisatiefilter.
US5015057A (en) * 1989-09-21 1991-05-14 Tektronix, Inc. Liquid crystal fiber optic attenuator and process for making same
US4971719A (en) * 1989-09-22 1990-11-20 General Motors Corporation Polymer dispersed liquid crystal films formed by electron beam curing
US5210630A (en) * 1989-10-18 1993-05-11 U.S. Philips Corporation Liquid-crystal display device
GB8928282D0 (en) * 1989-12-14 1990-02-21 Secr Defence Pdlc materials
JP2737801B2 (ja) * 1990-02-22 1998-04-08 富士通株式会社 文書表示方法および装置
US5354498A (en) * 1990-03-16 1994-10-11 Fuji Xerox Co., Ltd. Phase separation liquid crystal polymer
NL9000808A (nl) * 1990-04-06 1991-11-01 Koninkl Philips Electronics Nv Vloeibaar kristallijn materiaal en beeldweergeefcel die dit materiaal bevat.
US5211876A (en) * 1990-06-29 1993-05-18 General Motors Corporation Polymer dispersed liquid crystal material having an extended wave-length response
US5225104A (en) * 1991-03-12 1993-07-06 General Motors Corporation Polymer dispersed liquid crystal films having improved optical performance
JPH05105878A (ja) * 1991-03-13 1993-04-27 Merck Patent Gmbh 電気光学的系
DE4115415A1 (de) * 1991-05-10 1992-11-12 Basf Ag Fluessigkristalline polymere mit nahezu einheitlichem molekulargewicht
WO1993009202A1 (en) * 1991-11-01 1993-05-13 MERCK Patent Gesellschaft mit beschränkter Haftung Electrooptical liquid crystal system
EP0591508B2 (en) * 1992-04-27 2003-01-15 MERCK PATENT GmbH Electrooptical liquid crystal system
GB9220750D0 (en) * 1992-10-02 1992-11-18 Merck Patent Gmbh Liquid crystalline material forming ananisotropic
DE69422256D1 (de) * 1993-10-15 2000-01-27 Merck Patent Gmbh Reaktive Flüssigkristallverbindungen
US5494604A (en) * 1993-12-06 1996-02-27 Fujitsu Limited Polymer-dispersed liquid crystal material and process
DE19504224A1 (de) * 1994-02-23 1995-08-24 Merck Patent Gmbh Flüssigkristallines Material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991005029A1 (de) * 1989-10-02 1991-04-18 MERCK Patent Gesellschaft mit beschränkter Haftung Elektrooptisches flüssigkristallsystem
EP0484972A2 (en) * 1990-11-09 1992-05-13 Canon Kabushiki Kaisha Liquid crystal device, display apparatus using same and display method using same
EP0488116A2 (en) * 1990-11-26 1992-06-03 Seiko Epson Corporation Polymer dispersed liquid crystal display element and method of fabricating the same
DE4104183A1 (de) * 1991-01-25 1992-07-30 Merck Patent Gmbh Elektrooptisches system
EP0506176A1 (en) * 1991-03-26 1992-09-30 Koninklijke Philips Electronics N.V. Light-scattering element

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIQUID CRYSTALS vol. 10, no. 6, December 1991, LONDON pages 835 - 847 R.A.M.HIKMET 'DIELECTRIC RELAXATION OF LIQUID CRYSTAL MOLECULES IN ANISOTROPIC CONFINMENTS' *

Cited By (157)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6696585B1 (en) 1993-04-13 2004-02-24 Southwest Research Institute Functionalized nanoparticles
US6743936B1 (en) 1993-04-13 2004-06-01 Southwest Research Insittute Composites made using functionalized nanoparticles
GB2281566A (en) * 1993-09-02 1995-03-08 Merck Patent Gmbh Composite liquid crystal - polymer material
GB2281566B (en) * 1993-09-02 1998-05-13 Merck Patent Gmbh Composite material
EP0648827A1 (en) * 1993-10-15 1995-04-19 MERCK PATENT GmbH Reactive liquid crystal compounds
US5622648A (en) * 1993-10-15 1997-04-22 Merck Patent Gesellschaft Mit Beschrankter Haftung Reactive liquid crystal compounds
WO1995022586A1 (de) * 1994-02-19 1995-08-24 Basf Aktiengesellschaft Neue polymerisierbare flüssigkristalline verbindungen
WO1995024454A1 (de) * 1994-03-11 1995-09-14 Basf Aktiengesellschaft Neue polymerisierbare flüssigkristalline verbindungen
US5641426A (en) * 1994-04-29 1997-06-24 Minnesota Mining And Manufacturing Company Light modulating device having a vinyl ether-based matrix
US5702642A (en) * 1994-06-14 1997-12-30 Sharp Kabushiki Kaisha Polymeric compounds, and liquid crystal element using the same
US5645760A (en) * 1994-06-14 1997-07-08 Sharp Kabushiki Kaisha Polymeric compounds, and liquid crystal element using the same
CN1082993C (zh) * 1994-08-31 2002-04-17 罗列克股份公司 可光致交联的旋光近晶液晶化合物
EP0699731A3 (US06565769-20030520-C00115.png) * 1994-08-31 1996-03-27 Hoffmann La Roche
US5650534A (en) * 1994-08-31 1997-07-22 Rolic Ag Optically active smectic photo-cross-linkable liquid crystals
US5593617A (en) * 1994-09-12 1997-01-14 Hoffmann-Laroche Inc. Photochemically polymerizable liquid crystals
EP0700981A3 (US06565769-20030520-C00115.png) * 1994-09-12 1996-03-27 Hoffmann La Roche
US6475574B1 (en) * 1995-02-06 2002-11-05 Merck Patent Geselleschaft Mit Beschranhkter Haftung Direactive mesogenic compounds and intermediates
WO1996024647A1 (en) * 1995-02-06 1996-08-15 Merck Patent Gmbh Direactive mesogenic compounds and intermediates
US6090308A (en) * 1995-02-06 2000-07-18 Merck Patent Gesellschaft Direactive mesogenic compounds and intermediates
GB2297549B (en) * 1995-02-06 1999-06-30 Merck Patent Gmbh Direactive mesogenic compound
GB2297549A (en) * 1995-02-06 1996-08-07 Merck Patent Gmbh Monomeric direactive mesogenic compounds, intermediates therefor and polymers therefrom
GB2305925B (en) * 1995-10-06 1999-10-13 Merck Patent Gmbh Anistropic polymer
US5785889A (en) * 1995-10-06 1998-07-28 Merck Patent Gesellschaft Mit Beschrankter Haftung Anisotropic polymer
GB2305925A (en) * 1995-10-06 1997-04-23 Merck Patent Gmbh Anisotropic polymer
US6344154B1 (en) 1996-03-19 2002-02-05 Merck Patent Gmbh Reactive liquid crystal compounds
WO1997034862A1 (en) * 1996-03-19 1997-09-25 Merck Patent Gmbh Reactive liquid crystal compounds
US7220783B2 (en) 1996-07-31 2007-05-22 Shionogi & Co., Ltd. Para-terphenyl compounds
US7101915B1 (en) * 1996-07-31 2006-09-05 Shionogi & Co., Ltd. P-terphenyl compounds
US7074836B1 (en) 1996-07-31 2006-07-11 Shionogi & Co., Ltd. Para-terphenyl compounds
EP0951520B2 (de) 1996-10-01 2006-08-02 Basf Aktiengesellschaft Flächengebilde mit cholesterisch, flüssigkristalliner ordnungsstruktur
WO1998047979A1 (de) * 1997-04-22 1998-10-29 Basf Aktiengesellschaft Verfahren zur herstellung polymerisierbarer flüssigkristalliner verbindungen
US6395351B1 (en) 1997-05-22 2002-05-28 Rolic Ag Polymerisable liquid crystalline compounds
WO1998052905A1 (en) * 1997-05-22 1998-11-26 Rolic Ag New polymerisable liquid crystalline compounds
EP1690918A3 (en) * 1998-10-20 2006-11-08 Asahi Glass Company Ltd. Liquid crystal optical element and method for its production
WO2000023539A1 (fr) * 1998-10-20 2000-04-27 Asahi Glass Company Ltd. Element optique a cristal liquide et procede de preparation associe
EP1690918A2 (en) 1998-10-20 2006-08-16 Asahi Glass Company Ltd. Liquid crystal optical element and method for its production
US7011870B2 (en) 1998-10-20 2006-03-14 Asahi Glass Company, Limited Liquid crystal optical element and method for its production
US6723393B1 (en) 1998-10-20 2004-04-20 Asahi Glass Company, Limited Liquid crystal optical element and method for preparing the same
US7238831B2 (en) 2001-01-23 2007-07-03 Southwest Research Institute Mesogens
US7108801B2 (en) 2001-01-23 2006-09-19 Southwest Reasearch Institute Methods and blends for controlling rheology and transition temperature of liquid crystals
US7041234B2 (en) 2001-01-23 2006-05-09 Southwest Research Institute Methods for synthesis of liquid crystals
US7094358B2 (en) 2001-03-07 2006-08-22 The University Of Texas System Ultra-low shrinkage composite resins based on blended nematic liquid crystal monomers
US7135589B2 (en) 2001-03-07 2006-11-14 Board Of Regents, The University Of Texas System Bridged monomers
EP1256617A1 (en) * 2001-05-08 2002-11-13 MERCK PATENT GmbH Polymerizable liquid crystal material
US7081282B2 (en) 2001-07-02 2006-07-25 Merck Patent Gmbh Optically variable marking
US7098359B2 (en) 2001-07-09 2006-08-29 Southwest Research Institute Mesogens and methods for their synthesis and use
US6806374B2 (en) 2001-07-25 2004-10-19 Merck Patent Gmbh Mono-, oligo- and poly-3-(1,1-difluoroalkyl)thiophenes and their use as charge transport materials
US6676857B2 (en) 2001-07-25 2004-01-13 Merck Patent Gesellschaft Mit Mono-, oligo- and poly-4-fluorothiophenes and their use as charge transport materials
US6824706B2 (en) 2001-07-25 2004-11-30 Merck Patent Gesellschaft Mit Beschrank Haftung Mono-, Oligo- and poly-difluorovinyl-(hetero)arylenes, their synthesis and their use as charge transport materials
US6805922B2 (en) 2001-08-17 2004-10-19 Merck Patent Gmbh Mono-, oligo-and polyalkylidenefluorenes and their use as charge transport materials
US7001988B2 (en) 2001-09-25 2006-02-21 Keraplast Technologies, Ltd. Methods for controlling peptide solubility, chemically modified peptides, and stable solvent systems for producing same
US6953611B2 (en) 2001-09-25 2005-10-11 Merck Patent Gmbh Anisotropic polymer film
US6695978B2 (en) 2001-09-29 2004-02-24 Merck Patent Gesellschaft Mit Beschraenkter Haftung Mono-, oligo- and polymers of benzo[b]thiophene and 2,2′-bisbenzo[b]thiophene and their use as charge transport materials
US6863841B2 (en) 2001-12-13 2005-03-08 Merck Patent Gmbh Oxadiazole derivative and its use as charge transport and light emitting material
DE10257711B4 (de) 2001-12-27 2019-09-26 Merck Patent Gmbh Polymerisierbare monocyclische Verbindungen enthaltende Flüssigkristallmischungen
US6924861B2 (en) 2002-02-06 2005-08-02 Merck Patent Gmbh Birefringement film containing liquid crystal material having multi domains with splayed structure
EP2209027A1 (en) 2002-02-13 2010-07-21 MERCK PATENT GmbH Security marking comprising an anisotropic polymer film on a substrate with a structured surface
US7083834B2 (en) 2002-02-13 2006-08-01 Merck Patent Gmbh Method of preparing an anisotropic polymer film on a substrate with a structured surface
EP1342770A1 (en) * 2002-03-04 2003-09-10 Fuji Photo Film Co., Ltd. Polymerizable liquid crystal compound, liquid crystal polymer and applications thereof
US6989437B2 (en) 2002-04-10 2006-01-24 Keraplast Technologies, Ltd. Methods for producing, films comprising, and methods for using heterogeneous crosslinked protein networks
US6914126B2 (en) 2002-04-10 2005-07-05 Keraplast Technologies, Ltd. Methods for producing, films comprising, and methods for using heterogenous crosslinked protein networks
US7001987B2 (en) 2002-04-22 2006-02-21 Keraplast Technologies, Ltd. Hydrogel with controllable mechanical, chemical, and biological properties and method for making same
US7746555B2 (en) 2002-04-23 2010-06-29 Nitto Denko Corporation Polarizer, polarization light source and image display unit using them
US7982952B2 (en) 2002-04-23 2011-07-19 Nitto Denko Corporation Polarization component, polarization light source and image display apparatus using the same
US7443585B2 (en) 2002-04-23 2008-10-28 Nitto Denko Corporation Polarizer, polarization light source and image display unit using them
US6913710B2 (en) 2002-04-24 2005-07-05 Merck Patent Gmbh Reactive mesogenic benzodithiophenes
EP1357163A1 (en) * 2002-04-24 2003-10-29 MERCK PATENT GmbH Reactive mesogenic benzodithiophenes
US6958797B2 (en) 2002-07-23 2005-10-25 Nitto Denko Corporation Optical film having low chromaticity variation and quarter wavelength plate, and liquid crystal display using the same
US7046443B2 (en) 2002-07-24 2006-05-16 Nitto Denko Corporation Anisotropic light scattering element, anisotropic light scattering polarizing plate using the same, and image display device using the same
EP1431050A2 (en) 2002-12-19 2004-06-23 MERCK PATENT GmbH Process for laser marking of a liquid crystal film
GB2418671A (en) * 2003-07-12 2006-04-05 Merck Patent Gmbh Polymerised liquid crystal film with improved adhesion
GB2418671B (en) * 2003-07-12 2007-11-14 Merck Patent Gmbh Polymerised liquid crystal film with improved adhesion
WO2005005573A1 (en) * 2003-07-12 2005-01-20 Merck Patent Gmbh Polymerised liquid crystal film with improved adhesion
US7597942B2 (en) 2004-09-06 2009-10-06 Merck Patent Gmbh Polymerisable liquid crystal material
WO2006027076A1 (en) * 2004-09-06 2006-03-16 Merck Patent Gmbh Polymerisable liquid crystal material
KR101246154B1 (ko) * 2004-11-04 2013-03-20 가부시키가이샤 아데카 중합성 화합물 및 그 중합성 화합물을 함유하는 조성물
US7683203B2 (en) 2004-11-04 2010-03-23 Adeka Corporation Polymerizable compound and composition containing the polymerizable compound
US9567522B2 (en) 2004-12-17 2017-02-14 Merck Patent Gmbh Liquid crystal system and liquid crystal display
DE112006002690T5 (de) 2005-11-24 2008-10-23 Merck Patent Gmbh Regioreguläre Polyselenophene
US7557883B2 (en) 2006-07-12 2009-07-07 Nitto Denko Corporation Polarizing plate with optical compensation layer, method of producing the same, and liquid crystal panel, liquid crystal display, and image display including the same
EP1925954A2 (en) 2006-11-21 2008-05-28 FUJIFILM Corporation Process of producing patterned birefringent product
WO2008143470A3 (en) * 2007-05-22 2009-01-15 Lg Chemical Ltd Polymerizable liquid crystal composition and optical film and device using the same
WO2008143470A2 (en) * 2007-05-22 2008-11-27 Lg Chem, Ltd. Polymerizable liquid crystal composition and optical film and device using the same
US8243248B2 (en) 2007-05-22 2012-08-14 Lg Chem, Ltd. Polymerizable liquid crystal composition and optical film and device using the same
DE102008039745A1 (de) 2007-09-07 2009-03-12 Merck Patent Gmbh Verfahren zur Herstellung einer homogenen flüssigen Mischung
EP2033707A1 (de) 2007-09-07 2009-03-11 MERCK PATENT GmbH Verfahren zur Herstellung einer homogenen flüssigen Mischung
DE102008056221A1 (de) 2007-11-30 2009-06-04 Merck Patent Gmbh Polymerisierbare Verbindungen
EP2065361A2 (de) 2007-11-30 2009-06-03 Merck Patent GmbH Polymerisierbare Verbindungen
EP2093609A2 (en) 2008-02-19 2009-08-26 FUJIFILM Corporation Substrate for liquid crystal display device and liquid crystal display device
EP2309318A1 (en) 2008-02-29 2011-04-13 Merck Patent GmbH Alignment film for liquid crystals optainable by direct particle beam deposition
EP2098584A1 (en) 2008-03-05 2009-09-09 Merck Patent GmbH Liquid-crystalline medium and liquid-crystal display having high twist
EP2218764A1 (en) 2009-02-13 2010-08-18 Merck Patent GmbH Chiral reactive mesogen mixture
EP2224281A2 (en) 2009-02-27 2010-09-01 FUJIFILM Corporation Substrate for liquid crystal display device and liquid crsytal display device
WO2010108593A1 (en) 2009-03-26 2010-09-30 Merck Patent Gmbh Process of preparing an anisotropic multilayer using particle beam alignment
EP2320268A1 (en) 2009-10-26 2011-05-11 Merck Patent GmbH Alignment layer for planar alignment of a polymerizable liquid crystalline or mesogenic material
WO2011050893A1 (de) 2009-10-28 2011-05-05 Merck Patent Gmbh Polymerisierbare verbindungen und ihre verwendung in flüssigkristallanzeigen
DE102010047409A1 (de) 2009-10-28 2011-05-05 Merck Patent Gmbh Polymerisierbare Verbindungen und ihre Verwendung in Flüssigkristallanzeigen
WO2011050896A1 (en) 2009-10-30 2011-05-05 Merck Patent Gmbh Polymerisable lc material and polymer film with negative optical dispersion
WO2011078055A1 (ja) 2009-12-24 2011-06-30 日東電工株式会社 広帯域コレステリック液晶フィルムの製造方法
WO2011110287A1 (de) 2010-03-09 2011-09-15 Merck Patent Gmbh Polymerisierbare verbindungen und ihre verwendung in flüssigkristallmedien und flüssigkristallanzeigen
DE102011011836A1 (de) 2010-03-09 2011-09-15 Merck Patent Gmbh Polymerisierbare Verbindungen und ihre Verwendung in Flüssigkristallmedien und Flüssigkristallanzeigen
WO2011120620A1 (en) 2010-03-30 2011-10-06 Merck Patent Gmbh Method for producing multicoloured coatings
EP2399972A2 (en) 2010-06-25 2011-12-28 Merck Patent GmbH Liquid-crystalline medium and liquid-crystal display having high twist
WO2012076534A1 (en) 2010-12-07 2012-06-14 Sicpa Holding Sa Composite marking based on chiral liquid crystal precursors
WO2012076533A1 (en) 2010-12-07 2012-06-14 Sicpa Holding Sa Simplified control of color shifting properties of a chiral liquid crystal polymer
US9816031B2 (en) 2010-12-07 2017-11-14 Sicpa Holding Sa Composite marking based on chiral liquid crystal precursors
US8951438B2 (en) 2010-12-07 2015-02-10 Sicpa Hòlding SA Simplified control of color shifting properties of a chiral liquid crystal polymer
US9598587B2 (en) 2011-05-09 2017-03-21 Merck Patent Gmbh Reactive mesogen based polymer particles
US9109160B2 (en) 2011-05-09 2015-08-18 Merck Patent Gmbh Reactive mesogen based polymer particles
WO2012152409A1 (en) 2011-05-09 2012-11-15 Merck Patent Gmbh Reactive mesogen based polymer particles
WO2012163778A1 (en) 2011-05-27 2012-12-06 Sicpa Holding Sa Substrate with a modified liquid crystal polymer marking
US8821756B2 (en) 2011-05-27 2014-09-02 Sicpa Holding Sa Substrate with a modified liquid crystal polymer marking
US9073850B2 (en) 2011-11-24 2015-07-07 Jnc Corporation Polymerizable compound
WO2013143829A2 (en) 2012-03-27 2013-10-03 Sicpa Holding Sa Multilayer flake with high level of coding
US8864037B2 (en) 2012-03-27 2014-10-21 Sicpa Holding Sa Multilayer flake with high level of coding
WO2013185872A1 (de) 2012-06-12 2013-12-19 Merck Patent Gmbh Verfahren zur erzeugung von dreidimensionalen mustern in flüssigkristallinen beschichtungen
DE102012011464A1 (de) 2012-06-12 2013-12-12 Merck Patent Gmbh Verfahren zur Erzeugung von dreidimensionalen Mustern in flüssigkristallinen Beschichtungen
WO2014000846A1 (en) 2012-06-26 2014-01-03 dedeMERCK PATENT GMBH Method of preparing a birefringent polymer film
US9778201B2 (en) 2012-07-03 2017-10-03 Sicpa Holding Sa Capsule or cork comprising security features
US9834031B2 (en) 2012-12-20 2017-12-05 Sicpa Holding Sa Chiral liquid crystal polymer layer or pattern comprising randomly distributed craters therein
WO2014094949A1 (en) * 2012-12-21 2014-06-26 Merck Patent Gmbh Reactive mesogens
US10048420B2 (en) 2012-12-21 2018-08-14 Merck Patent Gmbh Reactive mesogens
CN104870609A (zh) * 2012-12-21 2015-08-26 默克专利股份有限公司 反应性介晶
US9243169B2 (en) 2013-05-16 2016-01-26 Sicpa Holding Sa Security laminate
US9579922B2 (en) 2013-07-10 2017-02-28 Sicpa Holding Sa Marking comprising a printable code and a chiral liquid crystal polymer layer
WO2015004129A1 (en) 2013-07-10 2015-01-15 Sicpa Holding Sa Marking comprising a printable code and a chiral liquid crystal polymer layer
US10654307B2 (en) 2013-10-17 2020-05-19 Sicpa Holding Sa Rotogravure printing processes for producing optically variable security features
WO2015058832A1 (en) 2013-10-21 2015-04-30 Merck Patent Gmbh Method of preparing a birefringent polymer film
WO2015067683A1 (en) 2013-11-08 2015-05-14 Sicpa Holding Sa Salt-free composite marking based on chiral liquid crystal precursors comprising chiral acrylate dopants
US10308872B2 (en) 2013-11-08 2019-06-04 Sicpa Holding Sa Composite marking based on chiral liquid crystal precursors and modifying resins
US10611919B2 (en) 2013-11-08 2020-04-07 Sicpa Holding Sa Salt-free composite marking based on chiral liquid crystal precursors comprising chiral acrylate dopants
EP2881383A2 (de) 2013-12-03 2015-06-10 Merck Patent GmbH Mischvorrichtung und deren Verwendung
DE102013018094A1 (de) 2013-12-03 2015-06-03 Merck Patent Gmbh Mischvorrichtung und deren Verwendung
DE102013020400A1 (de) 2013-12-10 2015-06-11 Merck Patent Gmbh Reinigungsvorrichtung
WO2015086125A1 (de) 2013-12-10 2015-06-18 Merck Patent Gmbh Reinigungsvorrichtung
WO2015090524A1 (de) 2013-12-16 2015-06-25 Merck Patent Gmbh Abfüllvorrichtung und deren verwendung zur abfüllung eines fluids
DE102013020638A1 (de) 2013-12-16 2015-06-18 Merck Patent Gmbh Abfüllvorrichtung und deren Verwendung zur Abfüllung eines Fluids
WO2015090565A1 (de) 2013-12-18 2015-06-25 Merck Patent Gmbh Verfahren zum reinigen einer flüssigkristallmischung
DE102013021279A1 (de) 2013-12-18 2015-06-18 Merck Patent Gmbh Verfahren zum Reinigen einer Flüssigkristallmischung
US9987866B2 (en) 2014-03-31 2018-06-05 Sicpa Holding Sa Marking comprising a chiral liquid crystal polymer and a luminescent substance
WO2016070952A1 (en) 2014-11-06 2016-05-12 Merck Patent Gmbh Light modulation element
WO2016096076A1 (en) 2014-12-19 2016-06-23 Merck Patent Gmbh Light modulation element
WO2016116254A1 (en) 2015-01-23 2016-07-28 Merck Patent Gmbh Light modulation element
WO2016116123A1 (en) 2015-01-23 2016-07-28 Merck Patent Gmbh Light modulation element
US9567524B2 (en) 2015-02-06 2017-02-14 Samsung Electronics Co., Ltd. Polymerizable liquid crystal compound, and compensation film, antireflective film, and display device including the same
WO2017001041A1 (en) 2015-07-02 2017-01-05 Merck Patent Gmbh Process of preparing a light modulation element
WO2017001043A1 (en) 2015-07-02 2017-01-05 Merck Patent Gmbh Process of preparing a light modulation element
WO2017059942A1 (en) 2015-10-06 2017-04-13 Merck Patent Gmbh Chiral compounds
US10689480B2 (en) 2016-03-01 2020-06-23 Toyo Tire Corporation Liquid-crystal compound, thermally responsive material, and production method therefor
WO2017198586A1 (en) 2016-05-17 2017-11-23 Merck Patent Gmbh Light modulation element
WO2018042026A1 (en) 2016-09-05 2018-03-08 Merck Patent Gmbh Uv curable adhesion promoters based on functionalised polyvinyl alcohols
WO2018099883A1 (en) 2016-12-01 2018-06-07 Merck Patent Gmbh Polymerisable lc medium and polymer film with flat optical dispersion
WO2018073459A2 (en) 2017-03-28 2018-04-26 Merck Patent Gmbh Liquid crystal device
WO2018192896A1 (en) 2017-04-20 2018-10-25 Merck Patent Gmbh Light modulation element
WO2019121368A1 (en) 2017-12-18 2019-06-27 Merck Patent Gmbh Liquid crystal medium and liquid crystal device
WO2023032675A1 (ja) 2021-09-01 2023-03-09 日東電工株式会社 高分子分散型液晶フィルムおよび高分子分散型液晶フィルムの製造方法
WO2023165863A1 (en) 2022-03-01 2023-09-07 Sicpa Holding Sa Overt security features

Also Published As

Publication number Publication date
US5871665A (en) 1999-02-16
US5746938A (en) 1998-05-05
JP2008063337A (ja) 2008-03-21
US6042745A (en) 2000-03-28
JPH06507987A (ja) 1994-09-08
EP0591508B1 (en) 1999-07-07
US6187222B1 (en) 2001-02-13
JP4115952B2 (ja) 2008-07-09
EP0591508A1 (en) 1994-04-13
US20020158227A1 (en) 2002-10-31
JP2004269525A (ja) 2004-09-30
JP4154350B2 (ja) 2008-09-24
US20010016238A1 (en) 2001-08-23
US5723066A (en) 1998-03-03
US20030064173A1 (en) 2003-04-03
JP4348386B2 (ja) 2009-10-21
JP3739389B2 (ja) 2006-01-25
EP0591508B2 (en) 2003-01-15
JP2004244421A (ja) 2004-09-02
DE69325555D1 (de) 1999-08-12
JP2009040774A (ja) 2009-02-26
US6596193B2 (en) 2003-07-22
US6682661B2 (en) 2004-01-27
US6565769B2 (en) 2003-05-20

Similar Documents

Publication Publication Date Title
EP0591508B1 (en) Electrooptical liquid crystal system
JP2004269525A6 (ja) 電気光学液晶システム
JP2004244421A6 (ja) 電気光学液晶システム
KR100204745B1 (ko) 전광 액정 시스템
EP0615630B1 (en) Liquid crystalline material
US5476611A (en) Electrooptical liquid crystal system
US5323251A (en) Electrooptical liquid crystal system
US5958290A (en) Electrooptical liquid crystal system
WO1993024589A2 (en) Electrooptical liquid crystal system
JPH08239666A (ja) テルペノイド化合物を含有する液晶材料
US5376302A (en) Electrooptical liquid crystal system
EP0700983B1 (en) Electrooptical liquid crystal system
JP3739389B6 (ja) 電気光学液晶システム
JP3133737B2 (ja) 電気光学液晶系
CN108291148B (zh) 用于液晶混合物的萘化合物
JPH05502263A (ja) 液晶混合物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 08081280

Country of ref document: US

AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1993909833

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1993909833

Country of ref document: EP

ENP Entry into the national phase

Ref country code: US

Ref document number: 1995 474765

Date of ref document: 19950607

Kind code of ref document: A

Format of ref document f/p: F

WWG Wipo information: grant in national office

Ref document number: 1993909833

Country of ref document: EP