WO1993002283A1 - Tankentlüftungsanlage und kraftfahrzeug mit einer solchen sowie verfahren und vorrichtung zum prüfen der funktionsfähigkeit einer solchen - Google Patents

Tankentlüftungsanlage und kraftfahrzeug mit einer solchen sowie verfahren und vorrichtung zum prüfen der funktionsfähigkeit einer solchen Download PDF

Info

Publication number
WO1993002283A1
WO1993002283A1 PCT/DE1992/000502 DE9200502W WO9302283A1 WO 1993002283 A1 WO1993002283 A1 WO 1993002283A1 DE 9200502 W DE9200502 W DE 9200502W WO 9302283 A1 WO9302283 A1 WO 9302283A1
Authority
WO
WIPO (PCT)
Prior art keywords
tank
valve
pressure
line
ventilation
Prior art date
Application number
PCT/DE1992/000502
Other languages
English (en)
French (fr)
Inventor
Manfred Mezger
Andreas Blumenstock
Rainer Frank
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to US08/030,314 priority Critical patent/US5349935A/en
Priority to JP51069592A priority patent/JP3459247B2/ja
Publication of WO1993002283A1 publication Critical patent/WO1993002283A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • F02M25/0809Judging failure of purge control system
    • F02M25/0818Judging failure of purge control system having means for pressurising the evaporative emission space
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • B60K15/035Fuel tanks characterised by venting means
    • B60K15/03504Fuel tanks characterised by venting means adapted to avoid loss of fuel or fuel vapour, e.g. with vapour recovery systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • F02M25/0809Judging failure of purge control system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/26Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors
    • G01M3/32Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for containers, e.g. radiators
    • G01M3/3236Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for containers, e.g. radiators by monitoring the interior space of the containers

Definitions

  • the following relates to a tank ventilation system for a motor vehicle and a motor vehicle with such a system and to a method and a device for checking the functionality of a tank ventilation system.
  • a tank ventilation system typically has the following components:
  • the tank ventilation valve is connected to the intake manifold of an internal combustion engine , so that fuel vapors are sucked out of the tank ventilation system with the aid of the negative pressure in the intake manifold.
  • the adsorption filter is thereby Regenerates air that is supplied via the ventilation line.
  • tank ventilation systems There is a risk that tank ventilation systems will leak or become blocked. Such systems must therefore be checked repeatedly for functionality during the operation of a motor vehicle.
  • the most important method for checking the functionality of a motor vehicle tank ventilation system is based on a proposal from the California environmental agency CARB. According to this method, a check is made to open the tank ventilation valve to determine whether a lambda regulator has to correct its manipulated value in the direction of a lean mixture. This is always the case when air is drawn in with fuel vapor from the tank ventilation system. However, it is now the case that the adsorption filter can be completely regenerated and that the fuel in the tank is completely degassed. Then, when the tank ventilation valve is opened, no fuel is supplied in addition to that which is supplied to the injection valves of the internal combustion engine in accordance with the control value of the lambda control.
  • the lambda regulator does not have to make a correction, and it is unclear whether the tank ventilation system is leaking or no fuel is being supplied for the reasons just mentioned.
  • the signal from the lambda controller is only eliminated when a fuel temperature sensor indicates that a predetermined minimum temperature of the fuel in the tank has been exceeded and a tank level sensor reports that the vehicle has been refueled. It is assumed that fuel vapor should then be present in the system in any case, which is sucked out when the tank ventilation valve is opened and leads to a correction by the lambda controller.
  • wrong decisions are always made in this method when in fact evaporated fuel in the tank befin ⁇ det, just such a fuel is refilled and the Adsorp ⁇ tion is substantially regenerated filter.
  • a motor vehicle has the following features:
  • a changeover valve for selectively switching the air from the compressed air source to the pressure connection on the valve line of the tank ventilation system.
  • a tank ventilation system with a compressed air connection near the tank ventilation valve, a pressure sensor on the tank and a shut-off valve in the ventilation line can be checked for functionality according to the invention as follows:
  • the device according to the invention for checking the functionality of a tank ventilation system has devices for carrying out the above-mentioned steps.
  • a tank ventilation system must be pressure-resistant up to a differential pressure of 5000 Pascal (0.5 bar) to the ambient pressure. In normal operation, however, only differential pressures of a maximum of a few 10 mbar occur, when a lot of gas is evolved when the tank contents suddenly slosh and the tank is relatively full. Between these few 10 mbar and the 500 mbar, which the tank must at least withstand, there is a wide pressure range in which the tank ventilation system can be reliably checked for leaks and blockages. For example, a test pressure of 100 millibars can be specified. This is well above the maximum values which can be achieved in normal operation and well below the values which, if repeated frequently, lead to the tank aging rapidly.
  • Fig. 1 schematic representation of a tank ventilation system with compressed air supply and with test device
  • the tank ventilation system shown in FIG. 1 has a tank 10 with a differential pressure meter 11, an adsorption filter 13 connected to the tank via a tank connection line 12 with a ventilation line 14 with an inserted shut-off valve 15 and a tank ventilation valve 16 which is inserted into a valve line 17, which connects the adsorption filter 13 to the intake manifold 18 of an internal combustion engine 19.
  • the tank Breather valve 17 is controlled by a valve control device 20 depending on the time and the operating state of the engine 19.
  • a compressed air connection 21 is located in the valve line 17 near the tank ventilation valve 16 on the side facing the adsorption filter 13. This can be supplied with compressed air from a secondary air pump 23 via an electromagnetically controllable 3/2-way valve 22.
  • the corresponding switching position of the 3/2-way valve 22 is shown in FIG. 1. In the other switching position, the air is supplied from the secondary air pump 23 to the exhaust gas duct 25 of the internal combustion engine 19 via a check valve 24.
  • An increasing number of vehicles are equipped with a secondary air pump which serves to supply air to the exhaust gas when a combustion engine is warming up, in order to use it to reduce unburned constituents in the exhaust gas which are present in a particularly high proportion during warming up, since In this operating state, a rich mixture is fed to the internal combustion engine, but conventional systems do not have a check valve 24. This is present in order to prevent hot exhaust gases from penetrating into the tank 10 if the 3/2-way valve 22 leaks.
  • a check valve to the suction side of an internal combustion engine is useful if a turbocharger is used as the compressed air source. In this case too, hot gas could blow back from the engine to the tank.
  • the check valve can be dispensed with if compressed air is used by a brake air compressor.
  • the test device 27 first emits signals to the tank ventilation valve 16, the shut-off valve 15, the 3/2-way valve 22 and the secondary air source 23, which ensure that the tank ventilation system by closing the tank ventilation valve 16 and the shut-off valve 15 is separated from the environment and compressed air is supplied to it. It then evaluates the signal from the differential pressure meter 11 on the tank 10 to check.
  • test method which is carried out by the test device 27 in accordance with the preferred exemplary embodiment is described below with reference to the flow diagram of FIG. 2.
  • step S1 the valves mentioned in the previous paragraph are first brought to the test positions mentioned there (step S1), and the secondary air pump 23 is actuated.
  • step S2 a check is carried out to determine whether a predetermined time t1 has elapsed since the completion of step sl or whether an upper test pressure has been reached. Reaching the upper test pressure can be checked with either software or hardware. In the former case, each time step s2 is run through, the pressure currently reported by the differential pressure meter 11 is recorded and compared with the upper test pressure.
  • step s4 the secondary air pump 23 is switched off.
  • the 3/2-way valve is at the same time in the position tet vice scarf ⁇ , in which it connects the secondary air pump 23 with the exhaust passage 25th.
  • a 3/2-way valve there can also be a 3/3-way valve which, in a further position (not shown in FIG. 1), allows air to pass from the inlet line to everyone of the two output lines blocks.
  • step s4 a period of time t2 is started, which is necessary for a supplementary test which is carried out from step s7 in the preferred exemplary embodiment.
  • step s5 it is then examined whether the measured tank pressure has reached the upper tank pressure. These steps are necessary above all if in step s2 only a check was made to see if the time period tl had elapsed. If, on the other hand, a test was also carried out to determine whether the upper test pressure had been reached, it is only necessary to examine whether step s2 was left due to the expiry of the time period t1 or the upper test pressure being reached. If the latter is the case, it is immediately clear that the upper test pressure is currently present, and step s7 follows.
  • a step s6 follows in which an error message is issued that the tank ventilation system is not functional, be it because of a blockage between the tank ventilation valve and the tank or because of a large leak or finally because of a fault in the compressed air supply.
  • further tests are prohibited, and any operation of the secondary air source is prohibited, including that when the internal combustion engine 19 is warmed up again, because, as already mentioned, a fault in the compressed air supply cannot be ruled out, and accordingly it cannot be ruled out that a connection between the exhaust duct 25 and the tank 10 could exist.
  • the compressed air source can also continue to be operated in the event of a fault, which in the case of compressed air supply via the brake air compressor means that the entire vehicle can continue to be operated.
  • the end of the method is reached after step s6.
  • the required minimum length of time tl depends on the compressed air source used.
  • a secondary air pump is a relatively weak compressed air source, which typically delivers approximately 400 1 / min at a pressure of approximately 1 bar.
  • a test pressure of e.g. B. 100 mbar is reached within a few seconds, so that the time period tl to z. B. 5 seconds can be set.
  • the time period can be even shorter.
  • a pressure reducing valve must be present between the compressed air source and the tank ventilation system, or the differential pressure sensor 11 must immediately switch the above-mentioned valves back to the normal position as soon as the upper test pressure reaches 100 mbar is.
  • step s7 the tank pressure (tank differential pressure) is measured after the time period t2 set in step s4. Then (step s7) the shut-off valve 15 is opened and the tank ventilation valve 16 is actuated in a manner predetermined by the valve control device 20 so that the tank ventilation system works as such again.
  • the difference is calculated (step s9) from the pressures measured in steps s4 and s8, that is to say those at the beginning and end of the time period t2, and it is examined (step s10) whether this difference is smaller than a test difference. If this is the case, the end of the procedure is reached. Otherwise an error message is output (step sll) and further checking of the system is prohibited. This is also followed by the end of the procedure.
  • test pressure is always precisely defined at the beginning of time t2, ⁇ . B. because the air supply is interrupted immediately as soon as the upper test pressure, for. B. 100 mbar is reached, it is not necessary to carry out step s9, but it can be checked immediately after measuring the pressure in step s8 whether this pressure has fallen below a lower test pressure, in the example 70 mbar .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Examining Or Testing Airtightness (AREA)
  • Testing Of Engines (AREA)
  • Supplying Secondary Fuel Or The Like To Fuel, Air Or Fuel-Air Mixtures (AREA)

Abstract

Eine Tankentlüftungsanlage weist folgende Merkmale auf: einen Tank (10); ein Adsorptionsfilter (13), das mit dem Tank über eine Tankanschlußleitung (12) verbunden ist und eine durch ein Absperrventil (15) verschließbare Belüftungsleitung (14) aufweist; ein Tankentlüftungsventil (16), das mit dem Adsorptionsfilter über eine Ventilleitung verbunden ist; einen Druckanschluß (21) an der Ventilleitung nahe dem Tankentlüftungsventil und einen Drucksensor (11) am Tank. Mit dieser Tankentlüftungsanlage ist folgendes Verfahren ausführbar: Schließen des Tankentlüftungsventils und des Absperrventils; Zuführen von Druckluft an den Druckanschluß; Messen des Drucks im Tank und Überprüfen, ob der Druck einer vorgegebenen Druckbedingung genügt, und Beurteilen der Tankentlüftungsanlage als nicht funktionsfähig, falls dies nicht der Fall ist. Die genannte Anlage ist mit dem genannten Verfahren sehr zuverlässig auf Funktionsfähigkeit überprüfbar, da sich ohne jede Beschädigungsgefahr für die Anlage Prüfdrücke einstellen lassen, die deutlich über den ohne von außen angelegten Druck auftretenden Drücken in einer Tankentlüftungsanlage liegen.

Description

Tankentlüftungsanlage und Kraftfahrzeug mit einer solchen sowie Verfahren und Vorrichtung zum Prüfen der Funktions¬ fähigkeit einer solchen
Beschreibung
Das Folgende betrifft eine Tankentlüftungsanlage für ein Kraftfahrzeug und ein Kraftfahrzeug mit einer solchen Anlage sowie ein Verfahren und eine Vorrichtung zum überprüfen der Funktionsfähigkeit einer Tankentlüftungsanlage.
Stand der Technik
Eine Tankentlüftungsaniage weist typischerweise folgende Bauteile auf:
- einen Tank mit Tankverschlußeinrichtung;
- ein Adsorptionsfilter mit einer Belüftungsleitung;
- ein Tankentlüftungsventil;
- eine Tankansc lußleitung zwischen dem Tank und dem Adsorp¬ tionsfilter; und
- eine Ventilleitung zwischen dem Adsorptionsfilter und dem Tankentlüftungsventil .
Das Tankentlüftungsventil ist mit dem Saugrohr eines Ver¬ brennungsmotors verbunden,, damit mit Hilfe des Unterdrucks im Saugrohr Kraftstoffdämpfe aus der Tankentlüftungsanlage abgesaugt werden. Dabei wird das Adsorptionsfilter durch Luft regeneriert, die über die Belüftungsleitung zugeführt wird.
Es besteht die Gefahr, daß Tankentlüftungsanlagen undicht werden oder Verstopfungen entstehen. Derartige Anlagen sind daher während des Betriebs eines Kraftfahrzeugs wiederholt auf Funktionsfähigkeit zu überprüfen.
Das wichtigste Verfahren zum überprüfen der Funktionsfähig- keit einer Kraftfahrzeug-Tankentlüftungsanlage beruht auf einem Vorschlag der kalifornischen Umweltbehörde CARB. Nach diesem Verfahren wird zum öffnen des Tankentlüftungsventils überprüft, ob ein Lambdaregler eine Korrektur in seinem Stellwert in Richtung eines mageren Gemisches vornehmen muß. Dies ist immer dann der Fall, wenn aus der Tankentlüftungs- anlage Luft mit Kraftstoffdampf angesaugt wird. Nun ist es jedoch so, daß das Adsorptionsfilter ganz regeneriert sein kann und daß der Kraftstoff im Tank völlig entgast ist. Dann wird beim öffnen des Tankentlüftungsventils kein Kraftstoff zusätzlich zu demjenigen geliefert, der gemäß dem Stellwert der Lambdaregelung an die Einspritzventile der Brennkraft¬ maschine geliefert wird. In diesem Fall muß der Lambdaregler keine Korrektur vornehmen, und es ist unklar, ob die Tank¬ entlüftungsanlage undicht ist oder aus den eben genannten Gründen kein Kraftstoff geliefert wird. Um diese Frage ent¬ scheiden zu können, erfolgt gemäß dem bekannten Verfahren eine Ausscheidung des Signals vom Lambdaregler nur dann, wenn ein Kraftstofftemperaturfühler das überschreiten einer vorgegebenen Mindesttemperatur des Kraftstoffs im Tank an¬ zeigt und ein Tankfüllstandssensor meldet, daß das Fahrzeug betankt wurde. Es wird davon ausgegangen, daß dann auf jeden Fall Kraftstoffdampf in der Anlage vorhanden sein müßte, der beim öffnen des Tankentlüftungsventils abgesaugt wird und zu einer Korrektur durch den Lambdaregler führt. Jedoch tre¬ ten bei diesem Verfahren immer wieder Fehlentscheidungen auf, wenn sich nämlich ausgegaster Kraftstoff im Tank befin¬ det, ebensolcher Kraftstoff nachgetankt wird und das Adsorp¬ tionsfilter weitgehend regeneriert ist.
In der nicht vorveröffentlichten DE-A-40 03 751 ist eine Tankentlüftungsanlage beschrieben, die in der Belüftungslei¬ tung des Adsorptionsfilters ein steuerbares Absperrventil aufweist. Dieses Absperrventil ermöglicht es, ein Verfahren auszuführen, bei dem das Absperrventil geschlossen, das Tankentlüftungsventil geöffnet und dann überprüft wird, ob sich im Tank ein Unterdruck aufbaut. Ist dies der Fall, wird auf Funktionsfähigkeit der Anlage geschlossen.
Beim eben genannten Verfahren kann es zu Fehlentscheidungen kommen, wenn der Kraftstoff besonders stark gast. Außerdem ist es erforderlich, einen besonderen Prüfzyklus mit ge¬ schlossenem Absperrventil auszuführen, bei dem das Adsorp¬ tionsfilter nicht regeneriert werden kann.
Es bestand demgemäß das Problem, ein besonders zuverlässiges Verfahren zum überprüfen der Funktionsfähigkeit der Tankent¬ lüftungsanlage für ein Kraftfahrzeug anzugeben, wie auch eine Vorrichtung zum Ausführen eines solchen Verfahrens und eine Tankentlüftungsanlage, deren Funktionsfähigkeit sich besonders umfangreich und zuverlässig prüfen läßt.
Darstellung der Erfindung
Die erfindungsgemäße Tankentlüftungsanlage weist die Be¬ standteile der eingangs genannten üblichen Anlage auf und ist durch folgende Merkmale gekennzeichnet:
- einen Druckanschluß an der Ventilleitung nahe dem Tankent¬ lüftungsventi1;
- einen Drucksensor am Tank und
- ein Absperrventil in der Belüftungsleitung. Dem Druckanschluß kann Druckluft von einer Druckluftquelle zugeführt werden, die zur Tankentlüftungsanlage selbst gehört, jedoch ist es vorteilhafter, die Druckluft von einer ohnehin an einem Kraftfahrzeug vorhandenen Druckluftquelle umzu¬ schalten, z. B. die von einer Sekundärluftquelle, einem Turbolader oder einem Bremsluftkompressor. Demgemäß weist ein erfindungs emäßes Kraftfahrzeug folgende Merkmale auf:
- einen Verbrennungsmotor;
- eine erfindungsgemäße Tankentlüftungsanlage;
- eine Druckluftquelle und
- ein Umschaltventil zum wahlweisen Umschalten der Luft von der Druckluftquelle auf den Druckanschluß an der Ventillei¬ tung der Tankentlüftungs nlage.
Eine Tankentlüftungsanlage mit Druckluftanschluß nahe dem Tankentlüftungsventil, einem Drucksensor am Tank und einem Absperrventil in der Belüftungsleitung läßt sich erfindungs¬ gemäß wie folgt auf Funktionsfähigkeit prüfen:
- Schließen des Tankentlüftungsventils und des Absperrven¬ tils in der Belüftungsleitung;
- Zuführen von Druckluft;
- Messen des Drucks im Tank und
- überprüfen, ob der Druck einer vorgegebenen Druckbedingung genügt, und Beurteilen der Tankentlüftungsaniage als nicht funktionsfähig, falls dies nicht der Fall ist.
Die erfindungsgemäße Vorrichtung zum überprüfen der Funk¬ tionsfähigkeit einer Tankentlüftungsanlage weist Einrichtun¬ gen zum Ausführen der vorstehend genannten Schritte auf.
Von besonderem Vorteil ist es, am Tank keinen Drucksensor vorzusehen, der den Absolutdruck im Tank mißt, sondern einen Sensor, der als Differenzdruckmesser wirkt, der nämlich die Druckdifferenz zwischen dem Druck im Tank und dem Umgebungs- druck mißt .
In Zusammenhang mit den vorstehend genannten Lehren ist zu beachten, daß eine Tankentlüftungsanlage bis zu einem Diffe¬ renzdruck von 5000 Pascal (0,5 bar) zum Umgebungsdruck druckfest sein muß. Im Normalbetrieb treten jedoch nur Dif¬ ferenzdrücke von maximal einigen wenigen 10 mbar auf, wenn nämlich bei plötzlichem starkem Schwappen des Tankinhalts viel Gas entwickelt wird und dabei der Tank relativ voll ist. Zwischen diesen wenigen 10 mbar und den 500 mbar, denen der Tank mindestens standhalten muß, besteht ein weiter Druckbereich, in dem die Tankentlüftungsanlage zuverlässig auf Dichtheit und Verstopfungen überprüft werden kann. Z. B. kann ein Prüfdruck von 100 Millibar vorgegeben werden. Dies liegt deutlich über den bei Normalbetrieb maximal erreichba¬ ren Werten und deutlich unter den Werten, die bei häufiger Wiederholung zu einer schnellen Alterung des Tanks führen.
Zeichnung
Fig. 1: schematische Darstellung einer Tankentlüftungsanlage mit Druckluftversorgung und mit Prüfvorrichtung; und
Fig. 2: Flußdiagramm zum Erläutern eines von der PrüfVor¬ richtung in Fig. 1 ausgeführten Verfahrens.
Beschreibung von Ausführungsbeispielen
Die in Fig. 1 dargestellte Tankentlüftungsanlage weist einen Tank 10 mit Differenzdruckmesser 11, ein mit dem Tank über eine Tankanschlu leitung 12 verbundenes Adsorptionsfilter 13 mit Belüftungsleitung 14 mit eingefügtem Absperrventil 15 und ein Tankentlüftungsventil 16 auf, das in eine Ventillei¬ tung 17 eingesetzt ist, die das Adsorptionsfilter 13 mit dem Saugrohr 18 eines Verbrennungsmotors 19 verbindet. Das Tank- entlüftungsventil 17 wird von einer VentilSteuereinrichtung 20 abhängig von der Zeit und vom Betriebszustand des Motors 19 angesteuert.
Nahe dem Tankentlüftungsventil 16 befindet sich in der Ven¬ tilleitung 17 auf der dem Adsorptionsfilter 13 zugewandten Seite ein Druckluftanschluß 21. Diesem kann über ein elek¬ tromagnetisch ansteuerbares 3/2-Wegeventil 22 Druckluft von einer Sekundä luftpumpe 23 zugeführt werden. In Fig. 1 ist die entsprechende Schaltstellung des 3/2-Wegeventils 22 ein¬ gezeichnet. In der anderen Schaltstellung wird die Luft von der Sekundärluftpumpe 23 über ein Rückschlagventil 24 dem Abgaskanal 25 des Verbrennungsmotors 19. zugeführt.
Eine zunehmende Anzahl von Fahrzeugen ist mit einer Sekun¬ därluftpumpe ausgerüstet, die dazu dient, dem Abgas im Warm¬ lauf eines Verbrennungsmotors Luft zuzuführen, um mit dieser noch unverbrannte Bestandteile im Abgas zu reduzieren, die im Warmlauf in besonders hohem Anteil vorhanden sind, da bei diesem Betriebszustand dem Verbrennungsmotor ein fettes Ge¬ misch zugeführt wird, übliche Anlagen weisen jedoch kein Rückschlagventil 24 auf. Dieses ist vorhanden, um ein Durch¬ schlagen heißer Abgase bis in den Tank 10 zu vermeiden, falls das 3/2-Wegeventil 22 undicht wird. In ähnlicher Weise ist ein Rückschlagventil zur Saugseite eines Verbrennungs¬ motors sinnvoll, wenn als Druckluftquelle ein Turbolader verwendet wird. Auch in diesem Fall könnte heißes Gas vom Motor bis in den Tank zurückschlagen. Auf das Rückschlagven¬ til kann dagegen verzichtet werden, wenn Druckluft von einem Bremsluftkompressor verwendet wird.
In Fig. 1 sind noch eine Motorsteuereinrichtung zum Treiben des Motors in der Sekundärluftquelle 23 und eine Prüfvor¬ richtung 27 eingezeichnet. Letztere dient zum Ausführen eines Prüfablaufs zum überprüfen der Funktionsfähigkeit der Tankentlüftungsanlage. Um einen Prüfablauf zu starten, gibt die Prüfvorrichtung 27 zunächst Signale an das Tankentlüf¬ tungsventil 16, das Absperrventil 15, das 3/2-Wegeventil 22 und die Sekundärluftquelle 23 ab, die dafür sorgen, daß die Tankentlüftungsaniage durch Schließen des Tankentlüftungs¬ ventils 16 und des Absperrventils 15 von der Umgebung ge¬ trennt wird und ihr Druckluft zugeführt wird. Sie wertet dann zum überprüfen das Signal vom Differenzdruckmesser 11 am Tank 10 aus.
Das Prüfverfahren, das gemäß dem bevorzugten Ausführungsbei- spiel von der PrüfVorrichtung 27 ausgeführt wird, wird im folgenden anhand des Flußdiagramms von Fig. 2 beschrieben.
Nach dem Start des Verfahrens werden zunächst (Schritt sl) die im vorigen Absatz genannten Ventile auf die dort genann¬ ten PrüfStellungen gebracht, und die Sekundärluftpumpe 23 wird betätigt. In einem Schritt s2 wird überprüft, ob seit Abschließen des Schrittes sl eine vorgegebene Zeitspanne tl abgelaufen ist oder ein oberer Prüfdruck erreicht ist. Das Erreichen des oberen Prüfdrucks kann entweder mit Soft- oder Hardwaremitteln überprüft werden. Im ersteren Fall wird bei jedem Durchlaufen des Schrittes s2 der aktuell vom Diffe¬ renzdruckmesser 11 gemeldete Druck erfaßt und mit dem oberen Prüfdruck verglichen. Bei hardwaremäßiger Lösung ist am Dif¬ ferenzdruckmesser 11 ein Kontakt vorhanden, der bei Errei¬ chen des oberen Prüfdruckes ein Signal ausgibt, das einen Interrupt auslöst, über den das von der PrüfVorrichtung 27 ausgeführte Programm erfährt, daß der obere Prüfdruck er¬ reicht wurde. Es ist auch möglich, in Schritt s2 nur eine Untersuchung auf Ablauf einer vorgegebenen Zeitspanne tl vorzunehmen.
Ist die Bedingung von Schritt s2 erfüllt, wird in einem Schritt s3 der Tankdruck gemessen und anschließend (Schritt s4) wird die Sekundärluftpumpe 23 abgeschaltet. Vorzugsweise wird zugleich das 3/2-Wegeventil in die Stellung umgeschal¬ tet, in der es die Sekundärluftpumpe 23 mit dem Abgaskanal 25 verbindet. Es sei an dieser Stelle darauf hingewiesen, daß statt eines 3/2-Wegeventils auch ein 3/3-Wegeventil vor¬ handen sein kann, das in einer weiteren, in Fig. 1 nicht eingezeichneten Stellung die Weitergabe von Luft von der Eingangsleitung zu jeder der beiden Ausgangsleitungen sperrt. In Schritt s4 wird schließlich noch eine Zeitspanne t2 gestartet, was für eine Ergänzungsprüfung erforderlich ist, die beim bevorzugten Ausführungsbeispiel ab einem Schritt s7 ausgeführt wird.
In einem Schritt s5 wird dann untersucht, ob der gemessene Tankdruck den oberen Tankdruck erreicht hat. Diese Schritte sind vor allem dann erforderlich, wenn in Schritt s2 nur auf das Ablaufen der Zeitspanne tl geprüft wurde. Wurde dagegen auch auf Erreichen des oberen Prüfdrucks geprüft, ist ledig¬ lich zu untersuchen, ob Schritt s2 wegen Ablaufs der Zeit¬ spanne tl oder Erreichen des oberen Prüfdrucks verlassen wurde. Ist letzteres der Fall, ist unmittelbar klar, daß aktuell der obere Prüfdruck vorliegt, und es schließt sich Schritt s7 an. Andernfalls folgt, wie auch bei Verneinen der Abfrage in Schritt s5, ein Schritt s6, in dem eine Fehler¬ meldung dahingehend ergeht, daß die Tankentlüftungsanlage nicht funktionsfähig ist, sei es wegen einer Verstopfung zwischen dem Tankentlüftungsventil und dem Tank oder wegen eines großen Lecks oder schließlich wegen eines Fehlers in der Druckluftversorgung. Gleichzeitig werden weitere Prüfun¬ gen verboten, und jedes Betreiben der Sekundärluftquelle wird verboten, also auch ein solches bei einem erneuten Warmlauf des Verbrennungsmotors 19. Dies, weil, wie bereits genannt, ein Fehler in der Druckluftversorgung nicht auszu¬ schließen ist, und demgemäß auch nicht auszuschließen ist, daß eine Verbindung zwischen dem Abgaskanal 25 und dem Tank 10 bestehen könnte. Wird eine andere Druckluftquelle verwen¬ det, insbesondere ein Bremsluftkompressor, kann die Druck¬ luftquelle auch im Fehlerfall weiterbetrieben werden, was im Fall der Druckluftversorgung über den Bremsluftkompressor bedeutet, daß das gesamte Fahrzeug weiterbetrieben werden kann. Nach Schritt s6 wird das Ende des Verfahrens erreicht.
Die erforderliche Mindestlänge der Zeitspanne tl hängt von der verwendeten Druckluftquelle ab. Eine Sekundärluftpumpe ist eine relativ schwache Druckluftquelle, die typischer¬ weise etwa 400 1/min bei einem Druck von etwa 1 bar liefert. Ein Prüfdruck von z. B. 100 mbar ist hierbei innerhalb eini¬ ger Sekunden erreicht, so daß die Zeitspanne tl auf z. B. 5 Sekunden gesetzt werden kann. Im Fall der Druckluftversor¬ gung über einem Bremsluftkompressor kann die Zeitspanne noch kürzer sein. Um den Tank vor Überdruck zu schützen, muß ent¬ weder ein Druckminderventil zwischen der Druckluftquelle und der Tankentlüftungsanlage vorhanden sein, oder der Diffe¬ renzdruckfühler 11 muß die oben genannten Ventile sofort in die NormalStellung zurückschalten, sobald der obere Prüf¬ druck von 100 mbar erreicht ist.
Mit dem bisher beschriebenen Verfahrensablauf ist es nicht möglich, sehr kleine Lecks, z. B. Löcher von nur 1 mm Durch¬ messer festzustellen, da die Druckluftquelle typischerweise soviel Luft liefert, daß der Verlust über das kleine Leck mehr als ausgeglichen wird. Um auch kleine Lecks feststellen zu können, schließt sich ein Ablauf an, wie er nun anhand der Schritte s7 bis sll des Flußdiagramms von Fig. 2 erläu¬ tert wird. Dieser Ablauf dient dazu, zu untersuchen, " ob der Druck in der geschlossenen Tankentlüftungsaniage nach Ab¬ schalten der Druckluftzufuhr unerwartet stark abfällt.
In Schritt s7 wird der Tankdruck (Tankdifferenzdruck) nach Ablauf der in. Schritt s4 gesetzten Zeitspanne t2 gemessen. Anschließend (Schritt s7) wird das Absperrventil 15 geöff¬ net, und das Tanken lüftungsventil 16 wird in von der Ven¬ tilSteuereinrichtung 20 vorgegebenen Weise angesteuert, da¬ mit die Tankentlüftungsaniage wieder als solche arbeitet. Aus den in den Schritten s4 und s8 gemessenen Drücken, also denjenigen zu Beginn und Ende der Zeitspanne t2, wird die Differenz berechnet (Schritt s9), und es wird untersucht (Schritt slO), ob diese Differenz kleiner ist als eine Prüf¬ differenz. Ist dies der Fall, wird das Ende des Verfahrens erreicht. Andernfalls wird eine Fehlermeldung ausgegeben (Schritt sll), und eine weitere Überprüfung der Anlage wird verboten. Auch hierauf folgt das Ende des Verf hrens.
Durch ein Loch von 1 mm Durchmesser gehen bei einem Druck von 100 mbar etwa 5 1/min verloren. Dies bedeutet, daß auch bei einem großen Tank, der fast ganz leer ist, der Druck innerhalb von etwa 20 sec von 100 mbar auf etwa 70 mbar fällt. In diesem Fall kann als Zeitspanne t2 der Wert von 20 sec und als Prüfdifferenz der Wert 30 mbar vorgegeben wer¬ den.
Wenn der Prüfdruck zu Beginn der Zeitspanne t2 immer genau festliegt, ∑. B. deswegen, weil die Luftzufuhr sofort unter¬ brochen wird, sobald der obere Prüfdruck, z. B. 100 mbar, erreicht ist, ist es nicht erforderlich, Schritt s9 auszu¬ führen, sondern es kann nach dem Messen des Drucks in Schritt s8 unmittelbar überprüft werden, ob dieser Druck einen unteren Prüfdruck, im Beispielsfall 70 mbar, unter¬ schritten hat.
In der Praxis ist es von Vorteil, die Fehlermeldungen der Schritte s6 oder sll nicht beim ersten Feststellen eines Fehlers auszugeben, sondern die Prüfroutine nochmals zu durchlaufen und erst bei zweimaligem Feststellen eines Feh¬ lers eine Fehlermeldung zu aktivieren.

Claims

Patentansprüche
1. Tankentlüftungsaniage mit
- einem Tank (10);
- einem Adsorptionsfilter (13), das mit dem Tank über eine Tankanschlußleitung (12) verbunden ist, und eine Belüftungs¬ leitung (14) aufweist; und
- ein Tankentlüftungsventil (16), das mit dem Adsorptions¬ filter über eine Ventilleitung (17) verbunden ist; gekennzeichnet durch
- einen Druckanschluß (22) an der Ventilleitung nahe dem Tankentlüftungsventil;
- einen Drucksensor (11) am Tank und
- ein Absperrventil (15) in der Belüftungsleitung.
2. Kraftfahrzeug mit
- einem Verbrennungsmotor (19);
- einer Tankentlüftungsanlage (10 - 17) mit einem Tankent¬ lüftungsventil und einem Adsorptionsfilter mit Belüftungs- leitung; und
- einer Druckluftquelle (23); gekennzeichnet durch
- eine Tankentlüftungsanlage gemäß Anspruch 1 und
- ein Umschaltventil (22) zum wahlweisen Umschalten der Luft von der Druck! ftquelle auf den Druckanschluß (21) an der Ventilleitung (17) der Tankentlüftungsanlage.
3. Kraftfahrzeug nach Anspruch 2, gekennzeichnet durch
- eine Sekundärluftpumpe (23) als Druckluftquelle und
- ein durch den Druck der Sekundärluftpumpe öffnendes Rück¬ schlagventil (24) zwischen dem Umschaltventil (22) und dem Abgaskanal (25) des Verbrennungsmotors (19) .
4. Verfahren zum Prüfen der Funktionsfähigkeit einer Tank¬ entlüftungsanlage mit einem Tank, einem Adsorptionsfilter, das mit dem Tank über eine Tankanschlußleitung verbunden ist und eine Belüftungsleitung aufweist, und einem Tankent¬ lüftungsventil, das mit dem Adsorptionsfilter über eine Ven¬ tilleitung verbunden ist, gekennzeichnet durch folgende Schritte:
- Schließen des Tankentlüftungsventils und der Belüftungs¬ leitung mit Hilfe eines an ihr angebrachten Absperrventils;
- Zuführen von Druckluft zur Tankentlüftungsanlage an der dem Adsorptionsfilter zugewandten Seite des Tankentlüftungs- venti1s;
- Messen des Drucks im Tank und
- überprüfen, ob der Druck einer vorgegebenen Druckbedingung genügt, und Beurteilen der Tankentlüftungsanlage als nicht funktionsfähig, falls dies nicht der Fall ist.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß als Druckbedingung untersucht wird, ob ein oberer Prüfdruck erreicht oder überschritten wird.
6. Verfahren nach einem der Ansprüche 4 oder 5, dadurch ge¬ kennzeichnet, daß nach dem überschreiten eines vorgegebenen Drucks und dem Beenden der Zufuhr von Druckluft der Druck¬ abfall im Tank untersucht wird, und die Tankentlüftungsanla¬ ge als funktionsfähig beurteilt wird, wenn der Druckabfall unter einer Prüfdifferenz bleibt, andernfalls die Anlage als nicht funktionsfähig beurteilt wird.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß der Druckabfall dadurch untersucht wird, daß der Druck nach einer vorgegebenen Zeitspanne nach dem Beenden der Druck¬ luftzufuhr gemessen wird und die Differenz zum Druck be¬ stimmt wird, wie er zu Beginn der Zeitspanne gemessen wurde.
8. Verfahren zum Prüfen der Funktionsfähigkeit einer Tank¬ entlüftungsanlage mit einem Tank, einem Adsorptionsfilter, das mit dem Tank über eine Tankanschlu leitung verbunden ist und eine Belüftungsleitung aufweist, und einem Tankentlüf¬ tungsventil, das mit dem Adsorptionsfilter über eine Ventil¬ leitung verbunden ist, gekennzeichnet durch
- eine Ansteuereinrichtung (27) zum Ansteuern des Tankent¬ lüftungsventils, eines Absperrventils für die Belüftungslei¬ tung und einer Druckluftversorgung, die der Tankentlüftungs- anlage auf der dem Adsorptionsfilter zugewandten Seite des Tankentlüftungsventils Druckluft zuführt, so daß sich im Tank bei ordnungsgemäßer Funktion ein Überdruck aufbaut; und
- eine Prüfeinrichtung (27) zum Überprüfung des Druckes im Tank beim Versorgen desselben mit Druckluft, und zum Beur¬ teilen der Tankentlüftungsaniage als nicht funktionsfähig, wenn der überprüfte Druck einer vorgegebenen Druckbedingung nicht genügt.
9. Vorrichtung zum Prüfen der Funktionsfähigkeit einer Tankentlüftungsaniage mit einem Tank, einem Adsorptionsfil¬ ter, das mit dem Tank über eine Tankanschlußleitung verbun¬ den ist und eine Belüftungsleitung aufweist, und einem Tank¬ entlüftungsventil, das mit dem Adsorptionsfilter über eine Ventilleitung verbunden ist, gekennzeichnet durch folgende Einrichtungen:
- eine Einrichtung (27) zum Schließen des Tankentlüftungs¬ ventils und der Belüftungsleitung mit Hilfe eines an ihr angebrachteh Absperrventi1s;
- eine Einrichtung (27) zum Zuführen von Druckluft zur Tank¬ entlüftungsanlage an der dem Adsorptionsfilter zugewandten Seite des Tankentlüftungsventils;
- eine Einrichtung (27) zum Messen des Drucks im Tank und
- eine Einrichtung (27) zum überprüfen, ob der Druck einer vorgegebenen Druckbedingung genügt, und zum Beurteilen der Tankentlüftungsanlage als nicht funktionsfähig, falls dies nicht der Fall ist.
PCT/DE1992/000502 1991-07-24 1992-06-19 Tankentlüftungsanlage und kraftfahrzeug mit einer solchen sowie verfahren und vorrichtung zum prüfen der funktionsfähigkeit einer solchen WO1993002283A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US08/030,314 US5349935A (en) 1991-07-24 1992-06-19 Tank-venting system and motor vehicle having the system as well as a method and an arrangement for checking the operability of the system
JP51069592A JP3459247B2 (ja) 1991-07-24 1992-06-19 タンク排気装置及びタンク排気装置を備えた自動車、並びにタンク排気装置の機能を検査するための方法及び装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4124465A DE4124465C2 (de) 1991-07-24 1991-07-24 Tankentlüftungsanlage und Kraftfahrzeug mit einer solchen sowie Verfahren und Vorrichtung zum Prüfen der Funktionsfähigkeit einer solchen
DEP4124465.6 1991-07-24

Publications (1)

Publication Number Publication Date
WO1993002283A1 true WO1993002283A1 (de) 1993-02-04

Family

ID=6436868

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1992/000502 WO1993002283A1 (de) 1991-07-24 1992-06-19 Tankentlüftungsanlage und kraftfahrzeug mit einer solchen sowie verfahren und vorrichtung zum prüfen der funktionsfähigkeit einer solchen

Country Status (4)

Country Link
US (1) US5349935A (de)
JP (1) JP3459247B2 (de)
DE (1) DE4124465C2 (de)
WO (1) WO1993002283A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994017298A1 (en) * 1993-01-27 1994-08-04 Siemens Electric Limited Positive pressure canister purge system integrity confirmation
EP0611674A1 (de) * 1993-02-13 1994-08-24 Lucas Industries Public Limited Company Verfahren und Vorrichtung zum Ermitteln eines Lecks im Kraftstoffsystem
EP0635633A1 (de) * 1993-07-21 1995-01-25 Siemens Aktiengesellschaft Verfahren zum Überwachen einer Kraftstoffdämpfe auffangenden und einer Brennkraftmaschine zuleitenden Tankentlüftungsanlage
WO1996027738A1 (fr) * 1995-03-06 1996-09-12 Siemens Automotive S.A. Procede de diagnostic du fonctionnement de la vanne de purge d'un systeme de recuperation de vapeurs de carburant, pour un vehicule automobile

Families Citing this family (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4140255C3 (de) * 1991-12-06 1999-05-20 Bosch Gmbh Robert Entlüftungsvorrichtung für einen Brennstofftank einer Brennkraftmaschine
US5411004A (en) * 1993-02-03 1995-05-02 Siemens Automotive Limited Positive pressure canister purge system integrity confirmation
DE4303997B4 (de) * 1993-02-11 2006-04-20 Robert Bosch Gmbh Verfahren und Vorrichtung zur Tankentlüftungsdiagnose bei einem Kraftfahrzeug
DE4307100C2 (de) * 1993-03-06 1997-08-07 Daimler Benz Ag Verfahren zur Funktionsüberprüfung eines Regenerierventils in einer Tankentlüftungsanlage
DE4312720A1 (de) * 1993-04-20 1994-10-27 Bosch Gmbh Robert Tankentlüftungsanlage für ein Kraftfahrzeug sowie Verfahren zu deren Betreiben
WO1994027131A1 (en) * 1993-05-14 1994-11-24 Chrysler Corporation Leak detection assembly
DE4335126B4 (de) * 1993-10-15 2006-07-06 Robert Bosch Gmbh Vorrichtung zur Dichtheitsprüfung eines Tankentlüftungssystems
DE4335276C1 (de) * 1993-10-15 1995-05-04 Siemens Ag Verfahren und Anordnung zum Überprüfen eines Tankentlüftungssystems für ein Kraftfahrzeug
DE4401085C1 (de) * 1994-01-15 1995-04-27 Daimler Benz Ag Verfahren und Vorrichtung zur stationären Bestimmung von Undichtigkeiten in einer Tankentlüftungsanlage
US5390645A (en) * 1994-03-04 1995-02-21 Siemens Electric Limited Fuel vapor leak detection system
US5507176A (en) * 1994-03-28 1996-04-16 K-Line Industries, Inc. Evaporative emissions test apparatus and method
US5644072A (en) * 1994-03-28 1997-07-01 K-Line Industries, Inc. Evaporative emissions test apparatus and method
DE19502775C1 (de) * 1995-01-25 1996-06-05 Siemens Ag Verfahren zum Überprüfen der Funktionstüchtigkeit einer Tankentlüftungsanlage für ein Kraftfahrzeug
DE19502776C1 (de) * 1995-01-25 1996-06-13 Siemens Ag Tankentlüftungsanlage für ein Kraftfahrzeug und Verfahren zum Überprüfen deren Funktionsfähigkeit
JP3269751B2 (ja) * 1995-06-22 2002-04-02 株式会社日立製作所 内燃機関制御装置
US5685279A (en) * 1996-03-05 1997-11-11 Chrysler Corporation Method of de-pressurizing an evaporative emission control system
DE19623740A1 (de) * 1996-06-14 1997-12-18 Knecht Filterwerke Gmbh Adsorptions-Filter einer Kraftstoff-Entlüftungsanlage eines Verbrennungsmotors
DE19628153B4 (de) * 1996-06-14 2009-04-16 Mahle Filtersysteme Gmbh Verfahren zum Betreiben einer Kraftstofftank-Entlüftungsanlage eines Verbrennungsmotors
DE19639116B4 (de) * 1996-09-24 2009-01-15 Robert Bosch Gmbh Tankentlüftungseinrichtung für Kraftfahrzeuge
DE19709903A1 (de) * 1997-03-11 1998-09-17 Pierburg Ag Vorrichtung zum Spülen einer Aktivkohlefalle und zur zeitweiligen Dichtheitsprüfung einer mit dieser verbundenen Brennstofftankanlage einer Fahrzeug-Brennkraftmaschine
DE19735549B4 (de) * 1997-08-16 2008-02-14 Robert Bosch Gmbh Vorrichtung zur Diagnose einer Tankentlüftungsanlage eines Fahrzeugs
JP3338644B2 (ja) * 1997-12-09 2002-10-28 株式会社ユニシアジェックス 内燃機関の蒸発燃料処理装置
DE19750193A1 (de) * 1997-11-13 1999-05-20 Bosch Gmbh Robert Kfz-Tankdichtheitsdiagnose bei Änderungen der Kfz-Betriebshöhe
US6016691A (en) * 1998-02-25 2000-01-25 Siemens Canada Ltd. Calibrated toggle lever of leak detection module pump
US6016793A (en) * 1998-02-25 2000-01-25 Siemens Canada Limited Leak detection module having electric-operated toggle levers for pump and valve
US6009746A (en) * 1998-02-25 2000-01-04 Siemens Canada Ltd. Electric-operated toggle lever of leak detection module pump
DE19809384C2 (de) * 1998-03-05 2000-01-27 Bosch Gmbh Robert Verfahren zur Prüfung der Funktionsfähigkeit einer Tankentlüftungsanlage
US6119663A (en) * 1998-03-31 2000-09-19 Unisia Jecs Corporation Method and apparatus for diagnosing leakage of fuel vapor treatment unit
DE19831188C2 (de) * 1998-07-11 2003-05-08 Freudenberg Carl Kg Tankentlüftungseinrichtung für Kraftfahrzeuge
DE19834332B4 (de) * 1998-07-30 2005-06-02 Robert Bosch Gmbh Verfahren zur Prüfung der Funktionsfähigkeit eines Behältnisses
DE19836967C2 (de) * 1998-08-14 2000-06-29 Bosch Gmbh Robert Verfahren zur Prüfung der Funktionsfähigkeit eines Behältnisses
JP3516599B2 (ja) * 1998-11-16 2004-04-05 株式会社日立ユニシアオートモティブ 蒸発燃料処理装置のリーク診断装置
US6334355B1 (en) * 2000-01-19 2002-01-01 Delphi Technologies, Inc. Enhanced vacuum decay diagnostic and integration with purge function
DE10013347A1 (de) * 2000-03-17 2001-10-11 Bosch Gmbh Robert Verfahren und Vorrichtung zur Dichtheitsprüfung eines Tanksystems eines Fahrzeugs
DE10018441B4 (de) * 2000-04-13 2005-12-29 Robert Bosch Gmbh Verfahren und Vorrichtung zur umweltschonenden Dichtheitsprüfung eines Behältnisses
DE10019905C2 (de) * 2000-04-20 2002-04-25 Bosch Gmbh Robert Verfahren und Vorrichtung zur Erkennung der Vereisungsgefahr bei zur Tankleckdiagnose bei Kraftfahrzeugen eingesetzten Pumpen
DE10040574A1 (de) * 2000-08-18 2002-02-28 Daimler Chrysler Ag Verfahren zum Betreiben einer Brennkraftmaschine
JP2002256986A (ja) * 2001-03-02 2002-09-11 Denso Corp 燃料蒸気処理装置
DE10126521B4 (de) * 2001-05-30 2006-05-04 Robert Bosch Gmbh Verfahren und Vorrichtung zur Tankleckdiagnose bei erhöhter Brennstoffausgasung
DE10129695A1 (de) 2001-06-22 2003-01-30 Bosch Gmbh Robert Verfahren und Vorrichtung zur Tankleckdiagnose mittels einer Referenzmessmethode
DE10136183A1 (de) 2001-07-25 2003-02-20 Bosch Gmbh Robert Verfahren und Steuergerät zur Funktionsdiagnose eines Tankentlüftungsventils einer Brennstofftankanlage insbesondere eines Kraftfahrzeuges
JP3776811B2 (ja) * 2002-01-11 2006-05-17 トヨタ自動車株式会社 燃料蒸気パージシステムの故障診断装置
JP3896588B2 (ja) * 2002-06-28 2007-03-22 株式会社デンソー エバポリークチェックシステム
US7113280B2 (en) * 2004-07-09 2006-09-26 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Dye detection method and apparatus
JP4457310B2 (ja) * 2005-07-29 2010-04-28 株式会社デンソー 蒸発燃料処理装置
DE102005058298A1 (de) 2005-12-07 2007-06-21 Robert Bosch Gmbh Verfahren und Vorrichtung zur Erkennung von Tanklecks
DE102007018232A1 (de) * 2007-04-18 2008-10-23 Robert Bosch Gmbh Verfahren zur Diagnose eines Tankentlüftungssystems eines Fahrzeugs und Vorrichtung zur Durchführung des Verfahrens
DE102010055310A1 (de) * 2010-12-21 2012-06-21 Audi Ag Kraftstoffsystem sowie Verfahren zum Betreiben eines Kraftstoffsystems
DE102010055319A1 (de) * 2010-12-21 2012-06-21 Audi Ag Einrichtung zum Be- und Entlüften eines Kraftstofftanks
US8560167B2 (en) 2011-02-18 2013-10-15 Ford Global Technologies, Llc System and method for performing evaporative leak diagnostics in a vehicle
DE102012219048A1 (de) 2012-10-18 2014-04-24 Robert Bosch Gmbh Verfahren zur Überwachung der Dichtigkeit eines Kraftstofftanksystems
US9359923B2 (en) 2012-10-25 2016-06-07 Ford Global Technologies, Llc Method and system for fuel vapor management
EP2933451B1 (de) 2012-12-13 2017-04-19 Toyota Jidosha Kabushiki Kaisha Fehlerdiagnosevorrichtung für abgasreinigungssystem
US9228541B2 (en) * 2013-02-07 2016-01-05 Ford Global Technologies, Llc Partially sealed fuel vapor purge system
DE102013221794A1 (de) * 2013-10-28 2015-04-30 Robert Bosch Gmbh Tankleckdiagnose mit Kraftstofftank als Druckspeicher
DE102014217195A1 (de) * 2014-08-28 2016-03-03 Continental Automotive Gmbh Verfahren zur Leckdiagnose in einem Kraftstofftanksystem
US9657659B2 (en) 2015-02-20 2017-05-23 Ford Global Technologies, Llc Method for reducing air flow in an engine at idle
US9759168B2 (en) * 2015-05-07 2017-09-12 Ford Global Technologies, Llc Increasing crankcase ventilation flow rate via active flow control
US10024251B2 (en) 2015-06-18 2018-07-17 Ford Global Technologies, Llc Method for crankcase ventilation in a boosted engine
US10100757B2 (en) 2015-07-06 2018-10-16 Ford Global Technologies, Llc Method for crankcase ventilation in a boosted engine
CN105156210A (zh) * 2015-09-18 2015-12-16 亚普汽车部件股份有限公司 燃油箱蒸发排放系统泄漏检测装置及检测方法
DE102015221536A1 (de) 2015-11-03 2017-05-04 Volkswagen Aktiengesellschaft Vorrichtung und Verfahren zur Tankleckagediagnose
US10481043B2 (en) * 2017-09-12 2019-11-19 GM Global Technology Operations LLC Method for small leak testing of an evaporative emissions system
DE102018212149A1 (de) 2018-07-20 2020-01-23 Volkswagen Aktiengesellschaft Brennkraftmaschine mit einer in einem fluidführenden, fluidal mit einer Tankentlüftungsleitung verbundenen Bauteil vorgesehene Venturidüse
CN110031160B (zh) * 2019-05-24 2020-06-09 安徽江淮汽车集团股份有限公司 燃油蒸发泄漏检测系统及方法
DE102019219937B4 (de) * 2019-12-18 2023-05-17 Volkswagen Aktiengesellschaft Brennkraftmaschine mit einer in einem fluidführenden, fluidal mit einer Tankentlüftungsleitung verbundenen Bauteil vorgesehenen Venturidüse

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4012111C1 (de) * 1990-04-14 1991-03-07 Audi Ag, 8070 Ingolstadt, De
DE4003751A1 (de) * 1990-02-08 1991-08-14 Bosch Gmbh Robert Tankentlueftungsanlage fuer ein kraftfahrzeug und verfahren zum ueberpruefen deren funktionstuechtigkeit

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3082597A (en) * 1961-06-26 1963-03-26 Universal Oil Prod Co Apparatus for injecting secondary air into engine exhaust gases and for other uses
US3934413A (en) * 1974-07-05 1976-01-27 General Motors Corporation Air flow control unit for engine secondary air supply
FR2298005A1 (fr) * 1975-01-15 1976-08-13 Peugeot & Renault Procede et dispositif de recyclage au carburateur de vapeurs d'hydrocarbures
JPS55164763A (en) * 1979-06-07 1980-12-22 Toyota Motor Corp Check device on discharge of fuel vapor
US4862856A (en) * 1986-11-29 1989-09-05 Isuzu Motors Limited Control system of evaporated fuel
DE3935612C2 (de) * 1988-11-02 2000-06-15 Volkswagen Ag Einer Brennkraftmaschine zugeordnete Einrichtung zur Rückgewinnung in einem Kraftstoffdampffilter gespeicherter Kraftstoffdämpfe
DE4025544A1 (de) * 1990-03-30 1991-10-02 Bosch Gmbh Robert Tankentlueftungsanlage fuer ein kraftfahrzeug und verfahren zum ueberpruefen deren funktionstuechtigkeit
JP2551222B2 (ja) * 1990-10-15 1996-11-06 トヨタ自動車株式会社 エバポパージシステムの故障診断装置
DE4040895C2 (de) * 1990-12-20 1999-09-23 Bosch Gmbh Robert Tankentlüftungsanlage und Verfahren zum Betreiben einer solchen
DE4108856C2 (de) * 1991-03-19 1994-12-22 Bosch Gmbh Robert Tankentlüftungsanlage sowie Verfahren und Vorrichtung zum Überprüfen der Dichtheit derselben
US5146902A (en) * 1991-12-02 1992-09-15 Siemens Automotive Limited Positive pressure canister purge system integrity confirmation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4003751A1 (de) * 1990-02-08 1991-08-14 Bosch Gmbh Robert Tankentlueftungsanlage fuer ein kraftfahrzeug und verfahren zum ueberpruefen deren funktionstuechtigkeit
DE4012111C1 (de) * 1990-04-14 1991-03-07 Audi Ag, 8070 Ingolstadt, De

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994017298A1 (en) * 1993-01-27 1994-08-04 Siemens Electric Limited Positive pressure canister purge system integrity confirmation
EP0611674A1 (de) * 1993-02-13 1994-08-24 Lucas Industries Public Limited Company Verfahren und Vorrichtung zum Ermitteln eines Lecks im Kraftstoffsystem
EP0635633A1 (de) * 1993-07-21 1995-01-25 Siemens Aktiengesellschaft Verfahren zum Überwachen einer Kraftstoffdämpfe auffangenden und einer Brennkraftmaschine zuleitenden Tankentlüftungsanlage
US5499613A (en) * 1993-07-21 1996-03-19 Siemens Aktiengesellschaft Method for monitoring a tank venting system that traps fuel vapors and feeds them to an internal combustion engine
WO1996027738A1 (fr) * 1995-03-06 1996-09-12 Siemens Automotive S.A. Procede de diagnostic du fonctionnement de la vanne de purge d'un systeme de recuperation de vapeurs de carburant, pour un vehicule automobile
FR2731467A1 (fr) * 1995-03-06 1996-09-13 Siemens Automotive Sa Procede de diagnostic du fonctionnement de la vanne de purge d'un systeme de recuperation de vapeurs de carburant, pour un vehicule automobile

Also Published As

Publication number Publication date
JP3459247B2 (ja) 2003-10-20
DE4124465C2 (de) 2002-11-14
DE4124465A1 (de) 1993-01-28
US5349935A (en) 1994-09-27
JPH06502006A (ja) 1994-03-03

Similar Documents

Publication Publication Date Title
WO1993002283A1 (de) Tankentlüftungsanlage und kraftfahrzeug mit einer solchen sowie verfahren und vorrichtung zum prüfen der funktionsfähigkeit einer solchen
EP0474803B1 (de) Tankentlüftungsanlage für ein kraftfahrzeug und verfahren zum überprüfen deren funktionstüchtigkeit
EP0466850B1 (de) Tankentlüftungsanlage für ein kraftfahrzeug und verfahren zum überprüfen deren funktionstüchtigkeit
EP0819213B1 (de) Einrichtung zur erkennung eines lecks in einem kraftstoffversorgungssystem
DE4427688C2 (de) Verfahren zum Überprüfen der Funktionstüchtigkeit einer Tankentlüftungsanlage für ein Kraftfahrzeug
EP0864741B1 (de) Vorrichtung zum Spülen einer Aktivkohlefalle und zur zeitweiligen Dichtheitsprüfung einer mit dieser verbundenen Brennstofftankanlage einer Fahrzeug-Brennkraftmaschine
DE102013223067B4 (de) Kraftstoffsystem-diagnose
DE102006056384B4 (de) Verfahren zur Funktionsüberprüfung eines Druckschalters einer Tankentlüftungsanlageund Steuereinrichtung
DE4243983A1 (de)
DE102004045962A1 (de) Diagnosevorrichtung für eine Luftübertragungseinrichtung und dessen Diagnoseverfahren
DE4312721A1 (de) Tankentlüftungsanlage sowie Verfahren und Vorrichtung zum Überprüfen der Funktionsfähigkeit eines Tankentlüftungsventils
DE19536646B4 (de) Verfahren zur Erkennung von Betankungsvorgängen an einem Kraftstofftank eines Fahrzeugs
EP0635633A1 (de) Verfahren zum Überwachen einer Kraftstoffdämpfe auffangenden und einer Brennkraftmaschine zuleitenden Tankentlüftungsanlage
DE102014211880A1 (de) Kraftstoffzuführungssystem und Verfahren zum Lokalisieren eines Lecks in einem Kraftstoffzuführungssystem
WO2020078789A1 (de) Tankentlüftungsventileinheit
DE4335276C1 (de) Verfahren und Anordnung zum Überprüfen eines Tankentlüftungssystems für ein Kraftfahrzeug
DE10126521A1 (de) Verfahren und Vorrichtung zur Tankleckdiagnose bei erhöhter Brennstoffausgasung
DE102018204717B3 (de) Verfahren und Vorrichtung zur Tankleckdiagnose bei einem Kraftfahrzeug
DE10254986B4 (de) Verfahren zur Tankleckdiagnose
DE10209432B4 (de) Verfahren zur Funktionsprüfung einer Tankentlüftungsanlage
DE19647409A1 (de) Verfahren zum Vermeiden von Fehldetektionen bei der Diagnose einer Tankentlüftungsanlage für ein Kraftfahrzeug
DE19829585A1 (de) Vorrichtung zum Spülen einer Aktivkohlefalle und zur zeitweiligen Dichtheitsprüfung einer mit dieser verbundenen Brennstofftankanlage einer Fahrzeug-Brennkraftmaschine
DE102018217662A1 (de) Verfahren zur Diagnose eines Tankentlüftungssystems
EP3368363B1 (de) Verfahren zum überprüfen der dichtheit einer kraftstoffversorgungsanlage
DE10260750A1 (de) Kraftstoffpumpvorrichtung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU MC NL SE