WO1992006949A1 - Procede de production de sels d'acide aminocarboxylique - Google Patents

Procede de production de sels d'acide aminocarboxylique Download PDF

Info

Publication number
WO1992006949A1
WO1992006949A1 PCT/JP1991/001440 JP9101440W WO9206949A1 WO 1992006949 A1 WO1992006949 A1 WO 1992006949A1 JP 9101440 W JP9101440 W JP 9101440W WO 9206949 A1 WO9206949 A1 WO 9206949A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
sodium
aluminum
copper
catalyst
Prior art date
Application number
PCT/JP1991/001440
Other languages
English (en)
French (fr)
Inventor
Yoshiaki Urano
Yukio Kadono
Takakiyo Goto
Original Assignee
Nippon Shokubai Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co., Ltd. filed Critical Nippon Shokubai Co., Ltd.
Priority to JP3516543A priority Critical patent/JP2916256B2/ja
Priority to DE69115883T priority patent/DE69115883T2/de
Priority to EP91917813A priority patent/EP0506973B1/en
Priority to KR1019920701507A priority patent/KR950006892B1/ko
Publication of WO1992006949A1 publication Critical patent/WO1992006949A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J25/00Catalysts of the Raney type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C227/00Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C227/02Formation of carboxyl groups in compounds containing amino groups, e.g. by oxidation of amino alcohols

Definitions

  • the present invention relates to a novel method for producing an aminocarboxylate useful as a raw material of a baba medicine / medicine, a chelating agent, a food additive and the like.
  • 2,384,817 discloses a method for obtaining monoglycamine by reacting monoethanolamine and hydroxylating lime in an anhydrous manner under a copper catalyst to obtain a glycine lipodium salt. According to the findings of the present inventors, the yield of glycine salt is not good.
  • U.S. Patent No. 3,578,709 discloses triethanolamine and zinc hydroxide as zinc oxide. Although a method for obtaining nitrilotriacetic acid salt by reacting in the presence of a catalyst is disclosed, this method is not satisfactory in the yield of nitrilotriacetic acid salt.
  • 3,842,081 teaches that relatively high yields of iminodiacetate can be obtained by reacting diethanolamine with a hydroxide sphere in the presence of an oxidizing dome. Is disclosed. U.S. Patent No. 3,535,3,733, U.S. Patent No. 3,579,709, and U.S. Patent No. 3,739,021, oxidize triethanolamine and alcohol hydroxide It is disclosed that by reacting in the presence of force domite, nitrilotriphosphate can be obtained in relatively high yield.
  • these cadmium oxide-catalyzed methods cannot be used at all or have problems with waste due to the danger of poisonous cadmium compounds being mixed into the reaction product. As a result, the technology could not compete with the Strecker method.
  • an aminocarboxylate by reacting an amino alcohol in the presence of an alkali hydroxide, water and a catalyst containing copper, or in the presence of a catalyst containing copper and zirconium (US (Patent No. 4 7 8 2 1 8 3)).
  • US Patent No. 4 7 8 2 1 8 3
  • the main by-products are oxalates when producing glycine salts from monoethanolamine as a raw material, and glycine salts when producing iminodiacetic acid salts from diethanolamine.
  • An object of the present invention is to produce an aminocarboxylate salt without problems of toxicity, with a small amount of by-products, a high yield and a high selectivity, and capable of repeatedly using a catalyst. Decide to provide new ways possible.
  • R 1 and R 2 are each independently hydrogen atom, arsenic Dorokishechiru group, an alkyl group having 1 to 8 carbon atoms, or an amino Noaruki Le group having 2 to 3 carbon atoms)
  • the method of the present invention the general formula of ⁇ Mi Roh alcohol represented by (1) (:. 11 2 0 11 Motogaji 0 0 11 is oxidative dehydrogenation in group R 1 Ya of the general formula (1)
  • R 2 is a hydroxyxetyl group
  • these CH 20 H groups are also oxidatively dehydrogenated to C 00 H groups.
  • Examples of the amino alcohol represented by the general formula (1) include monoethanolamine, diethanolamine, triethanolamine, N-methylethanolamine, and N-ethylethanolamine. , N-isopropylethanolamine, N-butylethanolamine, N-nonylethanolanolamine, N— (2-aminoethyl) ethanolamine, N— (31-aminopropyl) ethanolamine, N, ⁇ -Dimethylethanolamine, ⁇ , ⁇ -Jetinooleta Nonoreamine, ⁇ , ⁇ -Dibutinolethanone-Noreamine, ⁇ -Methyljetanolamine, ⁇ -Ethyljetanolamine, ⁇ -Isopropyl Diethanolamine, ⁇ -butyl jetanolamine, ⁇ ethyl, ⁇ — (2-aminoethyl) ethanolamine, ⁇ — Chill, ⁇ - - there is a (3 Ami knob opening pill) Etan
  • aminocarboxylic acids include glycine, iminodiacetic acid, tritriacetic acid, ⁇ -methylglycine, ⁇ -ethylglycine, ⁇ -isopropylglycine, ⁇ -butylglycine, and ⁇ -nonylglycine.
  • the catalyst used in the present invention contains copper as an essential component.
  • Copper sources include metallic copper; copper oxides; copper hydroxides; copper inorganic salts, such as copper nitrates, sulfates, sulfates, halides, and the like; organic copper salts, such as copper divider acid Salts, acetates, propionates, lactates, etc. can be used.
  • the form of the catalyst is not particularly limited. For example, a catalyst obtained by oxidizing the surface of metallic copper and then reducing it with hydrogen, a catalyst obtained by developing Raney copper with an aqueous solution of Arikari, copper formate, copper carbonate, etc. The activated copper thus obtained can be used as it is or supported on an alkali-resistant carrier.
  • the catalyst When used by being supported on an alkali-resistant carrier, there is an advantage that the catalyst can be easily separated from the reaction mixture after the reaction, so that it can be easily recovered and reused.
  • particularly preferred corrosion media are expanded Raney copper and copper supported on zirconium oxide or silicon carbide by a coprecipitation method or an impregnation method.
  • the amount of the catalyst to be used is 1 to 70 weight i%, preferably 10 to 40 weight: 6% based on the amino alcohol.
  • hydroxide of alkaline metal or hydroxide of alkaline earth metal used in the present invention sodium hydroxide, potassium hydroxide and the like are particularly suitable. These can be used in the form of flakes, powders, pellets, aqueous solutions, etc., but aqueous solutions are preferred from the viewpoint of handling.
  • the amount of the alkali metal hydroxide or alkaline earth metal hydroxide used is at least equivalent to the hydroxyl group of the amino alcohol used in the reaction, preferably in the range of 1.0 to 2.0 equivalents. It is.
  • the aluminum compound used in the present invention include aluminum hydroxide; aluminum salts such as sodium aluminate and potassium aluminate; and aluminum halides such as aluminum chloride. , Etc.
  • sodium aluminate or aluminum hydroxide is preferably used.
  • the addition amount of aluminum metal and the Z or aluminum compound is 0.01% by weight or more based on the weight of amino alcohol as aluminum waste, and is effective in suppressing by-products. It is preferably in the range of 0.002 to 0.5% by weight. The use of an amount exceeding 0.5% by weight does not adversely affect the yield of the aminocarboxylate, but is economically disadvantageous.
  • the catalyst can be separated and recovered from the reaction system and reused in the next reaction. At that time, a required amount of unused catalyst may be added to the reaction system in order to capture the amount lost in the previous reaction or to capture the reduced activity. If the unused catalyst contains an aluminum metal and a zirconium or aluminum compound, the aluminum metal and the z or aluminum compound are added to the reaction yarn according to the present invention. It is considered an aluminum compound.
  • the method of the present invention is performed in the presence of water.
  • the use of water has the merit that amino alcohol can be reacted with the alkali metal hydroxide and Z or alkaline earth metal oxide in a homogeneous system, and the aminocarboxylate can be obtained in low yield. Indispensable.
  • the amount of water used in the reaction is 10% by weight or more, preferably 50 to 500% by weight, based on the amino alcohol.
  • the reaction temperature depends on the carbon content of the amino alcohol and the generated amino carboxylic acid. -To prevent thermal decomposition and hydrogenolysis of nitrogen bond, the temperature is usually 22 CTC or less, preferably 120 to 210 ° C, and particularly preferably 140 to 200 ° C. .
  • the reaction pressure is preferably as low as possible from the viewpoint of the reaction rate.
  • a pressure above the minimum pressure to drive the reaction in the liquid phase preferably in the range of 5 to 50 kg Z cm 2 G, is used.
  • any of batch, semipatch and continuous reaction methods can be used.
  • the desired aqueous solution of the aminocarboxylate is obtained as a nitrate solution. This can be appropriately purified as necessary to obtain a high quality aminocarboxylate as a product.
  • the separated catalyst can be recovered and reused for the next reaction as it is. Of course, the recovered catalyst may be used after being subjected to a regeneration treatment as needed.
  • the present invention when oxidizing and dehydrogenating an amino alcohol in the coexistence of a hydroxide of an alkali metal and a hydroxide of an alkali metal or an alkaline earth metal, a copper-containing catalyst and water, as a result of adding the aluminum metal and the Z or aluminum compound to the reaction system, the desired aminocarboxylate can be produced with high yield and high selectivity.
  • the method of the present invention is particularly effective when the catalyst is recovered and used repeatedly because by-products can be suppressed remarkably, as compared with the conventional method in which no aluminum metal or aluminum compound is added to the reaction system.
  • the recovered catalyst is not regenerated.
  • the cost of the catalyst can be significantly reduced, the purification of the target aminocarboxylate can be facilitated, the amount of waste can be reduced, and high-quality products can be supplied at low cost.
  • the method of the present invention can be carried out using a copper-containing catalyst recovered from a reaction mixture by a conventional method in which no aluminum metal or aluminum compound is added to the reaction system, and also in this case, by-products can be suppressed.
  • the reaction was carried out in the same manner as in Example 1 except that sodium aluminate was not used.80 g of diethanolamine, 64 g of sodium hydroxide, 170 g of water, and 8 g of developed Raney copper were added in a volume of 500 ml. Charge in an autoclave, internal g ⁇ 3 times with hydrogen gas, then temperature 170. C, and a pressure 1 0 k gZc m 2 G, the reaction was carried out until the evolution of hydrogen is eliminated.
  • the developed copper recovered from the reaction solution of the third repetition experiment in Comparative Example 3 was used, and aluminum chloride 0.10 g (based on the weight of aluminum alcohol, 0.025 (Equivalent to 10% by weight) was added each time, and an experiment was conducted in which the catalyst was repeatedly used 10 times in the same manner as in Comparative Example 3.
  • the reaction time required for the 10th repetition experiment was 13 hours, and the analysis of the reaction solution showed that the conversion of ethanolamine was 98.5% and the selectivity of sodium iminodiacetate was determined. Was 98.5% and the selectivity for sodium glycine was 1.3%.
  • reaction solution was taken out and analyzed.
  • the conversion of monoethanolamine was 99.8%
  • the selectivity of glycine sodium was 99.4%
  • the selection of sodium oxalate as a by-product was performed.
  • the rate was 0.6%.
  • the reaction time required for the 10th experiment was 5 hours after the temperature was raised.
  • Triethanolamine (58 g), sodium hydroxide (51 g), water (170 g), and developed Raney copper (17 g) were charged into a 500 ml autoclave, and the inside of the autoclave was replaced three times with hydrogen gas.
  • the reaction was carried out at a temperature of 10 ° C. and a reaction pressure of 10 kg / cm 2 G until no more hydrogen was generated.
  • Repeated experiments were performed under the same reaction conditions to check the repetition performance of the catalyst.
  • the reaction time required for the 10th repeated experiment was 15 hours after the temperature was raised.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

明 細 書
ァミ ノ カルボン酸塩の製造方法
技術分野
本発明は、 鏖薬ゃ医薬品の原料、 キレート剤、 食品添加物等として有 用なアミノカルボン酸塩の新規な製造方法に関する。
背景技術 .
ァミ ノカルボン酸塩の工業的製造方法として、 今日、 青酸とホルムァ ルデヒ ドを原料としてグリシン塩、 ィミ ノジ醉酸塩あるいは二トリロ ト リ酢酸塩などを得るストレッカー法が一般的に用いられている。 しかし ながら、 青酸は猛毒ガスであるために製造設備、 取扱、 立地面などで大 きな制約を受け、 しかも青酸は、 その大半がアク リ ロニ ト リル製造時の 副生物として得られるものであるため、 原料の安定確保の面でも大きな 問題があった。
ァミ ノアルコールを苛性アル力リ中で酸化脱水素してァミ ノカルボン 酸塩を製造する方法も知られている (米国特許第 2 3 8 4 8 1 6号、 米 囯特許第 2 3 8 4 8 1 7号、 米国特許第 3 5 3 5 3 7 3号、 米国特許第 3 8 4 2 0 8 1号、 米国特許第 3 7 3 9 0 2 1号等) 。 米国特許第 2 3 8 4 8 1 6号にはァミノアルコールとアル力リ金属水酸化物を無触媒下 で反応させる方法が開示されているが、 この方法は反応時間が長く、 し かもアミノカルボン酸塩の収率が低い。 米国特許第 2 3 8 4 8 1 7号に はモノエタノールァミンと水酸化力リゥムを銅触媒下、 無水で反応させ てグリシンの力リゥム塩を得る方法が開示されているが、 この方法は本 発明者らの知見によれば、 グリ シン塩の収率がよくない。 米国特許第 3 5 7 8 7 0 9号にはトリエタノールァミンと水酸化アル力リを酸化亜鉛 触媒の存在下に反応させて二 トリロ トリ酢酸塩を得る方法が開示されて いるが、 この方法は二トリロ トリ酢酸塩の収率において満足できるもの ではない。 米国特許第 3 8 4 2 0 8 1号にはジエタノールァミ ンと水酸 化力リゥムを酸化力 ドミゥムの存在下に反応させることによってィ ミ ノ ジ酢酸の力リゥム塩が比較的高収率で得られることが開示されている。 米国特許第 3 5 3 5 3.7 3号、 米国特許第 3 5 7 8 7 0 9号、 及び米国 特許第 3 7 3 9 0 2 1号にはトリエタノールァミ ンと水酸化アル力リを 酸化力 ドミゥムの存在下に反応させることによって二トリロ トリ齚酸塩 が比較的高収率で得られることが開示されている。 しかしながら、 これ らの酸化カ ドミ ウムを触媒とする方法は、 有毒なカ ドミ ウム化合物が反 応生成物中に混入する危険性があるため、 用途によっては全く使用でき なかったり廃棄物の問題もあって、 ス トレッカー法と競合しうる技術に はなり得なかった。
また、 ァミ ノアルコールを水酸化アルカ リ、 水及び銅含有触媒の共存 下に、 または銅及びジルコニウム含有触媒の共存下に、 反応させてアミ ノカルボン酸塩を得る方法も知られている (米国特許第 4 7 8 2 1 8 3 号) 。 しかしながら、 これらの方法では、 ァミノカルボン酸塩の選択率 は 9 5 %と高いものの、 触媒を繰り返し使用すると選択率が低下し副生 物が増加する傾向がある。 主な副生物は、 モノエタノールアミンを原料 としてグリ シン塩を製造する場合においては蓚酸塩であり、 ジエタノー ルアミンを原料としてィ ミ ノジ酢酸塩を製造する場合においてはグリシ ン塩であり、 トリエタノールァミンを屎料として二トリ口 トリ酢酸塩を 製造する場合においてはィ ミ ノジ齚酸塩、 グリシン塩などである。 従つ て、 ァミ ノ カルボン酸塩を選択率よく得るためには、 触媒を短期間で交 換するか、 複雑な精製工程にかけて再生する必要がある。
本発明の目的は、 毒性面の問題がなく、 副生物が少なく、 収率及び選 択率が高く、 かつ触媒の繰り返し使用が可能で、 従って経済的に有利に ァミノカルボン酸塩を製造することが可能な新規な方法を提供すること にめる。
発明の開示 .
本発明者らは、 上記の問題点に鑑みて、 ァミ ノアルコールを銅含有触 媒を用いて酸化脱水素してァミノカルボン酸塩を得る方法について種々 検討した結果、 酸化脱水素反応系にアルミニウム金属及びノ又はアルミ ニゥム化合物を添加すると、 副生物の生成が抑制される効果があること を見いだし、 更に鋭意検討した結果、 本発明を完成した。 斯く して本発 明によれば、 一般式 (1 )
N-CH5CH20H ( 1 )
82 (式中、 R 1及び R 2は各々独立して水素原子、 ヒ ドロキシェチル基、 炭素数 1 ~ 1 8のアルキル基、 または炭素数 2 ~ 3のアミ ノアルキ ル基を示す)
で示されるアミノアルコールから、 アル力リ金属の水酸化物及び Z又は アル力リ土類金属の水酸化物、 銅含有触媒及び水の共存下での酸化脱水 素反応によってァミ ノカルボン酸塩を製造する方法において、 アルミ二 ゥム金属及び Z又はアルミニウム化合物を反応系に添加して反応を遂行 することを特徵とする方法が提供される。 '
本発明の方法により、 一般式 ( 1 ) で示されるァミ ノ アルコールの (: 11 2 0 11基がじ 0 0 11基に酸化脱水素される。 一般式 ( 1 ) の R 1や R 2がヒ ドロキシェチル基の場合、 これらの C H 20 H基も C 0 0 H基に 酸化脱水素されるが、 こうした複数の C O O H基を有するアミ ノカルポ ン酸の塩を得ることも本発明に含まれる。
—般式 ( 1 ) で示されるアミ ノアルコールと しては、 例えば、 モノエ タノールァミ ン、 ジエタノールァミ ン、 ト リエタ ノールァミ ン、 N—メ チルエタノールァミ ン、 N—ェチルエタノールァミ ン、 N—イ ソプロ ピ ルエタノールァミ ン、 N—ブチルエタノールァミ ン、 N—ノニルェタ ノ ールァミ ン、 N— (2—アミ ノエチル) エタノールァミ ン、 N— ( 3一 ァミ ノ プロピル) ェタノールァミ ン、 N , Ν—ジメチルエタノールァミ ン、 Ν,Ν—ジェチノレエタ ノーノレアミ ン、 Ν, Ν—ジブチノレエタノ一ノレア ミ ン、 Ν—メチルジェタノールァミ ン、 Ν—ェチルジェタノールァミ ン、 Ν—イ ソプロピルジエタノールァミ ン、 Ν—ブチルジェタノールァミ ン、 Ν—ェチル、 Ν— (2—アミ ノエチル) エタノールァミ ン、 Ν—メチル、 Ν— (3 -アミ ノ ブ口 ピル) ェタノールァミ ン等がある。
これらのァミノアルコールを原料として対応するァミ ノカルボン酸塩 が製造できる。 ァミノカルボン酸の具体例としては、 グリシン、 ィ ミ ノ ジ酢酸、 二 ト リ 口 ト リ酢酸、 Ν—メチルグリ シン、 Ν—ェチルグリ シン、 Ν—イ ソプロ ピルグリ シン、 Ν—ブチルグリ シン、 Ν—ノニルグリ シン、 Ν - ( 2—アミ ノエチル) グリ シン、 Ν— (3—アミ ノ ブ口 ピル) グリ シン、 Ν , Ν—ジメチルグリシン、 Ν , Ν—ジェチルグリ シン、 Ν,Ν - ジブチルグリシン、 Ν—メチルイ ミ ノジ酢酸、 Ν—ェチルイ ミ ノジ酢酸、 Ν—イ ソプロピルイ ミ ノ ジ酢酸、 Ν—ブチルイ ミ ノジ齚酸、 Ν—ェチル、 Ν - ( 2一アミ ノエチル) グリ シン、 Ν—メチル、 Ν— (3—アミ ノ ブ 口ピル) グリ シン等が挙げられる。 本発明の方法では、 これらのァミ ノ カルボン酸はアル力リ金属の塩及び z又はアル力リ土類金属の塩として 製造される。
本癸明に用いられる触媒は銅を必須成分と して含有するものである。 銅源としては、 金属銅;銅の酸化物;銅の水酸化物;銅の無機塩たとえ ば銅の硝酸塩、 硫酸塩、 崁酸塩、 ハロゲン化物など;銅の有機塩たとえ ば銅の孃酸塩、 酢酸塩、 プロビオン酸塩、 乳酸塩など、 が使用できる。 触媒の形態は特に限定されない。 例えば金属銅表面を酸化したのち水素 により還元してえられた触媒、 ラネー銅をアル力リ水溶液で展開し得ら れた触媒、 蟻酸銅、 炭酸銅等を熱分解及びノまたは還元してえられた活 性化銅を、 そのままで、 または耐アルカリ性担体に担持して、 使用する ことができる。 耐アルカリ性担体に担持して使用すると、 反応後に反応 混合物から触媒を容易に分離できるのでそれを回収して再使用しやすい 利点がある。 特に、 触媒の活性及び寿命の点から特に好ましい蝕媒は展 開ラネー銅及び、 共沈法または含浸法にて銅を酸化ジルコニウムまたは シリ コンカーバイ トに担持させたものである。 触媒の使用量は、 ァミ ノ アルコールに対して 1〜7 0重 i%、 好ましくは 1 0〜4 0重: 6%であ る。
本発明で使用するアル力リ金属の水酸化物あるいはアル力リ土類金属 の水酸化物と しては、 特に水酸化ナトリウム、 水酸化カリゥムなどが好 適である。 これらはフ レーク、 粉末、 ペレッ ト、 水溶液等の形態で用い ることができるが、 取扱いの点からは水溶液が好ましい。 アルカ リ金属 の水酸化物あるいはアル力リ土類金属の水酸化物の使用量は反応に使用 するア ミ ノアルコールの水酸基に対して当量以上、 好ましくは 1 . 0 ~ 2 . 0当量の範囲である。 本発明で使用するアルミニゥム化合物としては、 例えば水酸化アルミ 二ゥム ; アルミ ン酸ナ ト リ ゥムまたはアルミ ン酸カ リ ゥム等の如きアル ミン酸塩;塩化アルミニゥム等の如きハロゲン化アルミ二ゥム、 等が挙 げられる。 特に取り扱い面及び経済性の面からアルミン酸ナト リ ウム又 は水酸化アルミニウムが好適に使用される。 アルミニウム金属及び Z又 はアルミニゥム化合物の添加量はァミ ノアルコールの重量に基いて、 ァ ルミ二ゥム屎子として、 0 . 0 0 1重量%以上であれば副生物抑制に効 杲があり、 好ましくは 0 . 0 0 2 ~ 0 . 5重量%の範囲である。 0 . 5重 量%を超える量の使用は、 ァミノカルボン酸塩の収率などに悪影響を及 ぼすことはないけれども、 経済的に不利である。
なお、 本発明の方法では、 反応が終了したのちに触媒を反応系から分 離回収して次の反応に再使用することができる。 その際、 さきの反応で ロスされた量を捕なうために、 又は活性低下した分を捕うために未使用 の触媒の所要量を反応系に添加してもよい。 この未使用の触媒がアルミ ニゥム金属及びノ又はアルミニウム化合物を含有するものである場合に は、 そのアルミニウム金属及び z又はアルミニウム化合物は、 本癸明に 従って反応糸に添加されるアルミニゥム金属及び z又はアルミ二ゥム化 合物とみなされる。
本発明の方法は水の存在下で遂行される。 水の使用は、 アミノアルコ ールとアル力リ金属水酸化物及び Z又はアル力リ土類金属酸化物を均一 系で反応できるメリットがあり、 ァミ ノカルボン酸塩を髙収率で得るた めには不可欠である。 反応に用いられる水の量はァミノアルコールに対 して 1 0重量%以上、 好ましくは 5 0 ~ 5 0 0重量%の範囲である。 反応温度は、 ァミ ノアルコール及び生成したァミノ カルボン酸の炭素 -窒素結合の熱分解及び水素化分解を防ぐため、 通常 2 2 CTC以下、 好 ましくは 1 2 0〜 2 1 0 °C、 特に好ましくは 1 4 0〜 2 0 0 °Cの範囲で ある。
反応圧力は、 できるだけ低い方が反応速度の面から好ましい。 通常、 反応を液相で進めるための最低圧力以上、 好ましく は 5〜 5 0 k g Z c m 2 Gの範囲の圧力が使用される。
反応の形式はバッチ、 セミパッチ及び連統反応いずれの方法も用いる ことができる。
反応を終了した反応混合物から触媒を濂別することにより、 濂液とし て、 目的とするアミ ノカルボン酸塩の水溶液が得られる。 これを必要に より適宜精製して高品質のアミノカルボン酸塩を製品として得ること力 S できる。 一方、 濂別された触媒は回収してそのまま次の反応に再使用す ることができる。 もちろん、 回収した触媒を必要に応じて適宜再生処理 を行って使用してもよい。
発明の効果
本発明によれば、 ァミ ノアルコールを、 アルカリ金属の水酸化物及び ノ又はアル力リ土類金属の水酸化物、 銅含有触媒及び水の共存下にて酸 化脱水素する際に、 アルミニウム金属及び Z又はアルミニウム化合物を 反応系に添加する結果として、 目的とするアミノカルボン酸塩を髙収率 及び高選択率で製造できる。
本発明の方法は、 アルミニゥム金属やアルミニウム化合物を反応系に 添加しない従来の方法に比べて、 触媒を回収して繰り返し使用する場合 に特に顕著に副生物が抑制できて効果的である。 斯く して本発明の方法 によれば、 ほとんどの場合に、 回収された触媒を再生処理することなし に循環再使用できて触媒のコス 卜が著しく低減され、 目的とするアミノ カルボン酸塩の精製が容易となり、 廃棄物の量が少なくなり、 高品質の 製品を安価に供給することができる。 なお、 アルミニゥム金属やアルミニゥム化合物を反応系に添加しない 従来の方法による反応混合物から回収された銅含有触媒を用いて、 本発 明の方法を行うこともでき、 この場合も副生物が抑制できる。
発明を実施するための最良の形態
以下、 実施例により本発明を具体的に説明する。 但し、 本凳明はこれ らの実施例により制限されるものではない。 ここでァミノアルコールの転化率及びァミ ノカルボン酸の選択率は次 の式から導き出される。
ァミノアルコールの転化率 (%) =
反応したァミ ノアルコールのモル数
X 1 0 0
反応に供したァミ ノアルコールのモル数
ァミノカルボン酸の選択率 (%) - 生成したァミ ノカルボン酸のモル数
X 1 0 0
反応したァミ ノアルコールのモル数
実施例 1
ジェタノールァミ ン 8 0 g、 水酸化ナ ト リ ウム 6 4 g、 水 1 7 0 g、 展開ラネー銅 8 g、 及びアルミ ン酸ナ ト リ ウム 0 . 1 3 g (アミ ノアル コールの重量に基いて、 アルミニウム原子として、 0 . 0 5 4重量%に 相当する) を 5 0 0 m lのオートクレーブに仕込み、 水素ガスで 3回内 部置換したのち、 温度 1 7 0 °C、 圧力 1 0 k g Z c m 2 Gで、 水素の発 生がなくなるまで反応を行った。 反応に要した時間 ( 1 7 0 °Cに昇温し たのち反応が終了するまでの時間一以下においても同じ) は 5時間であ つた。 反応終了後、 反応液を取り出し分析を行ったところ、 ジェタ ノ一 ルァミンの転化率は 98.5%、 ィ ミ ノジ酢酸ナトリゥムの選択率は 9 9 - 3 %であり、 副生したグリ シンナトリウムの選択率は 0.5 %であつ た
触媒の繰り返し性能をみるため、 同様の反応条件で、 繰り返し実験を 行ったところ、 1 0回目の繰り返し実験において要した反応時間は 1 3 時間であり、 その反応液の分析によると、 ジヱタノールァミ ンの転化率 は 98.5 %、 ィ ミ ノジ酢酸ナトリゥムの選択率は 98.7%、 グリシン ナ ト リ ウムの選択率は 1.0 %であった。
比較例 1
アルミン酸ナトリゥムを用いない以外は実施例 1 と同様に反応を行つ ジエタノールァミ ン 80 g、 水酸化ナ ト リ ウム 64 g、 水 1 70 g、 及び展開ラネー銅 8 gを 500 m 1のオートクレープに仕込み、 水素ガ スで 3回内部 g换したのち、 温度 1 70。C、 圧力 1 0 k gZc m2Gで、 水素の発生がなくなるまで反応を行った。
触媒の操り返し性能をみるため、 同様の反応条件で、 操り返し実験を 行ったところ、 1 0回目の繰り返し実験において要した反応時間は 1 3 時間であり、 その反応液の分析によると、 ジヱタノールァミ ンの転化率 は 97.5%、 イ ミノ ジ酢酸ナ ト リ ウムの選択率は 93.5 %、 グリ シン ナトリゥムの選択率は 5.8 %であった。
実施例 2
ジエタノールァミ ン 80 g、 水酸化ナ ト リ ウム 64 g、 水 1 70 s、 展開ラネー銅 8 g、 及び水酸化アルミニゥム 0.1 2 g (アミノアルコ ールの重量に基いて、 アルミニウム原子として、 0.0 5 2重量%に相 当する) を 5 0 0 m 1のォー卜クレーブに仕込み、 水素ガスで 3回内部 置換したのち、 温度 1 7 0。C、 圧力 1 0 k c m2Gで、 水素の発生 がなくなるまで反応を行った。 反応に要した時間は 5時間であった。 反 応終了後、 反応液を取.り出し分析を行ったところ、 ジエタ ノールァミン の転化率は 9 8.5 %、 ィ ミ ノ ジ酢酸ナトリゥムの選択率は 98.8 %、 グリ シンナトリゥムの選抚率は 0.8 %であった。
触媒の繰り返し性能をみるため、 同様の反応条件で、 繰り返し実験を 行ったところ、 1 0回目の繰り返し実験において要した反応時間は 1 3 時間であり、 その反応液の分析によると、 ジエタノールァミ ンの転化率 は 9 8.5 %、 ィ ミ ノ ジ酢酸ナ ト リ ゥムの選択率は 9 8.2%、 グリ シン ナトリウムの選択率は 1.0 %であった。
実施例 3
ォキシ塩化ジルコニウム 24.8 gと硝酸銅 4.0 gを水 3 0 0 m 1 に 溶解した溶液へ水酸化ナトリゥムを添加し、 固体不溶物を沈殿せしめ、 この沈殿を水洗し乾燥後、 空気中 5 0 0。Cで 3時間加熱処理し.、 次いで 水素気流中 23 0でで 6時間還元処理して、 銅及びジルコニウム含有触 媒を調製した。
ジエタ ノ一ルァミ ン 8 0 g、 水酸化ナ ト リ ウム 6 4 g、 水 1 7 0 g、 及び先に調製した銅及びジルコニウム含有触媒 8 g、 及びアルミン酸ナ ト リ ウム 0.1 3 g (ァミ ノアルコールの重量に基いて、 アルミニゥム 原子として、 0.0 5 4重量%に相当する) を 5 0 0 m lのオートタレ ーブに仕込み、 水素ガスで 3回内部置換したのち、 温度 1 7 0。C、 圧力 1 O k gZc m2Gで、 水素の発生がなくなるまで反応を行った。 反応 に要した時間は 5時間であった。 反応終了後、 反応液を取り出して分析 したところ、 ジエタ ノールァミ ンの転化率は 9 9.0 %、 イミノ ジ酢酸 ナトリゥムの選択率は 9 9.5 %、 グリシンナトリゥムの選択率は 0 · 4 %であった。
触媒の繰り返し性能.をみるため、 同様の反応条件で、 繰り返し実験を 行ったところ、 1 0回目の繰り返し実験において要した反応時間は、 昇 温後 1 0時間であり、 その反応液の分析によると、 ジエタノールァミ ン の転化率は 9 8.5 %、 ィ ミ ノ ジ酢酸ナ ト リゥムの選択率は 9 9.0 %、 グリシンナトリゥムの選択率は 0.8 %であった。
比皎例 2
アルミン酸ナトリゥムを用いない以外は実施例 3と同様に反応を行つ i o
ォキシ塩化ジルコニウム 2 4.8 gと硝酸銅 4.0 gを水 3 0 0 m 1 に 溶解した溶液へ水酸化ナトリウムを添加し、 固体不溶物を沈 «せしめ、 この沈激を水洗し乾燥後、 空気中 5 0 0。Cで 3時間加熱処理し、 次いで 水素気流中 2 3 0 °Cで 6時間還元処理して、 銅及びジルコニウム含有触 媒を調製した。 この触媒 8 gを、 ジエタ ノールァミ ン 8 0 g、 水酸化ナ トリウム 6 4 g及び水 1 7 0 gと共に、 5 0 0 m lのオートクレープに 仕込み、 水素ガスで 3回内部置換したのち、 温度 1 7 0 °C、 圧力 1 0 k gZc m2Gで、 水素の発生がなくなるまで反応を行った。
触媒の繰り返し性能をみるため、 同様の反応条件で、 繰り返し実験を 行ったところ、 1 0回目の繰り返し実験において要した反応時間は 1 0 時間であり、 その反応液の分析によると、 ジエタノールァミ ンの転化率 は 9 7.5 %、 ィ ミ ノ ジ酢酸ナ ト リ ゥムの選択率は 9 5.0%、 グリ シン ナトリゥムの選択率は 4.5 %であった。
比較例 3
ジェタノ一ルァミ ン 8 0 g、 水酸化ナ ト リ ウム 6 4 g、 水 1 7 0 s、 及び展開ラネ一銅 8 gを 5 0 0 m 1のオートク レープに仕込み、 水素ガ スで 3回内部置換したのち、 温度 1 7 0。C、 圧力 1 0 k g/c m Gで、 水素の発生がなくなるまで反応を行った。 触媒を繰り返し使用し、 3回 目の繰り返し実験における反応液を分析したところ、 ジエタノ ールァミ ンの転化率は 9 8.5%、 ィ ミ ノジ齚酸ナトリゥムの選択率は 9 6.5%、 ダリシンナ卜リゥムの選択率は 3.0 %であった。
実施例 4
比較例 3における 3回目の繰り返し実験の反応液から回胶した展開ラ ネ一銅を用いたこと、 及び塩化アルミニゥム 0.1 0 g (ァミ ノアルコ ールの重量に基いて、 アルミニウム原子として、 0.02 5重量%に相 当する) を毎回添加したこと以外は比較例 3と同様にして、 さらに 1 0 回触媒を繰り返し使用する実験を行った。 1 0回目の繰り返し実験にお いて要した反応時間は 1 3時間であり、 その反応液の分析によるとジェ タノールァミ ンの転化率は 98.5%、 ィ ミ ノ ジ酢酸ナ ト リ ゥムの選択 率は 98.5%、 グリシンナトリウムの選択率は 1.3%であった。
実施例 5
ジェタノールァミ ン 8 0 g、 水酸化ナ ト リ ウム 6 4 g、 水 1 7 0 g、 展開ラネー銅 1 6 g、 及びアルミン酸ナトリウム 0.0 2 4 g (ァミノ アルコールの重量に基いて、 アルミニウム原子として、 0.0 1 0重量 %に相当する) を 5 0 0 m 1 のォー卜クレーブに仕込み、 水素ガスで 3 回内部置換したのち、 反応温度 1 6 0°C、 反応圧力 1 0 k g/c m2G で、 水素の発生がなくなるまで反応を行った。 反応に要した時間は 1 6 0°Cに昇温後 5時間であった。 反応終了後、 反応液を取り出し分析を行 つたところ、 ジエタ ノールァミ ンの転化率は 9 8 .5 %、 イ ミノ ジ酢酸 ナトリウムの選択率は 9 9. 1 %であり、 副生したグリシンナトリウム の選択率は 0.5 %であった。
触媒の繰り返し性能をみるため、 同様の反応条件で、 緣り返し実験を 行ったところ、 1 0回目の繰り返し実験において要した反応時間は、 昇 温後 1 3時間であった。
1 0回目の反応終了後、 反応液を取り出し分析を行ったところ、 ジェ タノールァミ ンの転化率は 9 9.0 %、 ィ ミ ノ ジ酢酸ナ ト リ ゥムの選択 率は 9 8.4 %であり、 副生したグリシンナトリゥムの選択率は 1 .4 % であった。
実施例 6
モノヱタノ一ルァミ ン 8 4 g、 水酸化ナト リ ウム 6 1 g、 水 1 3 2 g、 開ラネー銅 1 7 g、 及びアルミン酸ナト リ ウム 0.0 3 5 g (アミ ノア ルコールの重量に基いて、 アルミニウム原子として、 0.0 1 4重量% に相当する) を 5 0 0 m lのオートクレーブに仕込み、 水素ガスで 3回 内部置換したのち、 反応温度 1 6 0。C、 反応圧力 1 0 k gZc m2Gで、 水素の発生がなくなるまで反応を行った。 反応に要した時間は 1 6 0。C に畀温後 4時間であった。 反応終了後、 反応液を取り出し分析を行った ところ、 モノエタノールァミ ンの転化率は 9 9.8 %、 グリ シンナ ト リ ゥムの選択率は 9 9.4 %であり、 副生した蓚酸ナトリゥムの選択率は 0.6 %であった。 触媒の繰り返し性能をみるため、 同様の反応条件で、 繰り返し実験を行ったところ、 1 0回目の繰り返し実験において要した 反応時間は、 昇温後 5時間であった。
反応終了後、 反応液を取り出して分析したところ、 モノエタノールァ ミンの転化率は 99.5%、 グリ シンナトリゥムの選択率は 99.3 %で あり、 副生した蓚酸ナ ト リ ウムの選択率は 0.7%であった。
比較例 4
アルミン酸ナトリゥムを用いない以外は実施例 5と同様に反応を行つ た。
モノエタノールァミ ン 84 g、 水酸化ナ ト リ ウム 6 1 g、 水 1 32 g、 展開ラネー銅 1 7 gを 5 0 0 m lのオートクレーブに仕込み、 水素ガ スで 3回内部置換したのち、 反応温度 1 6 0。C、 反応圧力 1 0 k g/ c m2Gで、 水素の発生がなくなるまで反応を行った。 触媒の繰り返し 性能をみるため、 同様の反応条件で、 繰り返し実験を行ったところ、 1 0回目の繰り返し実験において要した反応時間は、 昇温後 5時間であ つた。
反応終了後、 反応液を取り出して分析したと ころ、 モノエタノールァ ミンの転化率は 98.3%、 グリ シンナトリゥムの選択率は 96.0%で あり、 副生した蓚酸ナトリゥムの選択率は 3.5 %であった。
実施例 7
ト リエタノールァミ ン 58 g、 水酸化ナ ト リ ウム 5 1 g、 水 1 70 g、 展開ラネー銅 1 7 g、 及びアルミン酸ナト リ ウム 0.035 g (ァミ ノ アルコールの重量に基いて、 アルミニウム原子として、 0.020重量 %に相当する) を 500m lのオー トクレーブに仕込み、 水素ガスで 3 回内部置換したのち、 反応温度 1 90。C、 反応圧力 1 0 k gZc m2G で、 水素の発生がなくなるまで反応を行った。 反応に要した時間は I 9 CTCに昇温後 7時間であった。 反応終了後、 反応液を取り出し分析を行 つたところ、 トリエタノールァミンの転化率は 99.8%、 二トリロ ト リ酢酸ナトリゥムの選択率は 97.2 %であり、 副生したィ ミノジ酢酸 ナ卜リゥムの選択率は I .5%であった。 触媒の繰り返し性能をみるた め、 同様の反応条件で、 繰り返し実験を行ったところ、 I 0回目の繰り 返し実験において要した反応時間は、 畀瘟後 I 5時間であった。
反応終了後、 反応液を取り出して分析したところ、 トリエタノールァ ミンの転化率は 99.5%、 二トリロ トリ酢酸ナトリゥムの選択率は 9 4.3%であり、 副生したィ ミノジ酢酸ナトリゥムの選択率は 4.0%で あった。
比較例 5
アルミン酸ナトリゥムを用いない以外は実施例 5と同様に反応を行つ た。
トリエタノールァミ ン 58 g、 水酸化ナト リ ウム 5 1 g、 水 1 70 g、 展開ラネー銅 1 7 gを 500m lのオートクレーブに仕込み、 水素ガス で 3回内部置換したのち、 反応温度 1 90°C、 反応圧力 10 k g/c m2 Gで、 水素の発生がなくなるまで反応を行った。 触媒の繰り返し性能を みるため、 同様の反応条件で、 繰り返し実験を行ったところ、 1 0回目 の繰り返し実験において要した反応時間は、 昇温後 1 5時間であった。 反応終了後、 反応液を取り出して分析したところ、 トリエタノールァ ミ ン 転化率は 98.5%、 二 ト リ 口 ト リ酢酸ナトリゥムの選択率は 90.5 %であり、 副生したィミ ノジ酢酸ナトリゥムの選択率は 7.5 % であった。

Claims

請 求 の 範 囲
1 - —般式 ―
^N-CH2CH20H
R2 Z (式中、 R 1及び R 2は各々独立して水素原子、 ヒ ドロキシヱチル基、 炭素数 1 ~ 1 8のアルキル基、 または炭素数 2〜 3のアミノアルキ ル基を示す)
で表されるアミノアルコールから、 アル力リ金属の水酸化物及びノ又は アル力リ土類金属の水酸化物、 銅含有触媒及び水の共存下での酸化脱水 素反応によってァミ ノカルボン酸塩を製造する方法において、 アルミ二 ゥム金属及び Z又はアルミニゥム化合物を反応系に添加して反応を遂行 することを特徵とする方法。
2 . ァミ ノアルコールの重量に基いて、 アルミニウム原子として、 0 - 0 0 1重量%以上のアルミニゥム金属及び 又はアルミニウム化合 物を反応系に添加する、 請求の範囲第 1項に記載の方法。
3 . 反応に使用した後の銅含有触媒を回収し、 次の反応に再使用する 請求の範囲第 1項又は第 2項に記載の方法。
PCT/JP1991/001440 1990-10-23 1991-10-21 Procede de production de sels d'acide aminocarboxylique WO1992006949A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP3516543A JP2916256B2 (ja) 1990-10-23 1991-10-21 アミノカルボン酸塩の製造方法
DE69115883T DE69115883T2 (de) 1990-10-23 1991-10-21 Verfahren zur herstellung von salzen von aminocarbonsäuren
EP91917813A EP0506973B1 (en) 1990-10-23 1991-10-21 Process for producing salt of amino carboxylic acid
KR1019920701507A KR950006892B1 (ko) 1990-10-23 1991-10-21 아미노카르복실산 염의 제조방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP28667090 1990-10-23
JP2/286670 1990-10-23

Publications (1)

Publication Number Publication Date
WO1992006949A1 true WO1992006949A1 (fr) 1992-04-30

Family

ID=17707441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1991/001440 WO1992006949A1 (fr) 1990-10-23 1991-10-21 Procede de production de sels d'acide aminocarboxylique

Country Status (11)

Country Link
US (1) US5220055A (ja)
EP (1) EP0506973B1 (ja)
JP (1) JP2916256B2 (ja)
KR (1) KR950006892B1 (ja)
AU (1) AU636803B2 (ja)
CA (1) CA2071999C (ja)
DE (1) DE69115883T2 (ja)
DK (1) DK0506973T3 (ja)
ES (1) ES2081497T3 (ja)
MX (1) MX9101721A (ja)
WO (1) WO1992006949A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU673260B2 (en) * 1993-04-12 1996-10-31 Monsanto Technology Llc Process to prepare amino carboxylic acid salts
EP1125634A1 (de) 2000-02-18 2001-08-22 Degussa AG Geformter Festbettraney-Kupferkatalysator
US7632967B2 (en) 2000-02-18 2009-12-15 Degussa Ag Raney copper

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5602279A (en) * 1986-04-15 1997-02-11 Exxon Research And Engineering Company Primary hindered aminoacids for promoted acid gas scrubbing process
US5292936A (en) * 1993-04-12 1994-03-08 Monsanto Company Process to prepare amino carboxylic acid salts
US5606512A (en) * 1994-07-27 1997-02-25 The Dow Chemical Company Determining the biodegradability of iminodiacetic acid derivatives
DE69515671T3 (de) * 1994-07-27 2004-06-17 The Dow Chemical Co., Midland Bestimmung der biodegradabilität von asparaginsäurederivaten, abbaubare chelatbildner, verwendungen und zusammensetzungen davon
DE59711079D1 (de) * 1996-09-26 2004-01-15 Akzo Nobel Nv Katalysator zur dehydrogenierung von aminoalkoholen zu aminocarbonsäuren oder von ethylenglykol(derivaten) zu oxycarbonsäuren, verfahren zu seiner herstellung und seine verwendung
ITTO980249A1 (it) 1998-03-23 1999-09-23 Finchimica Srl Procedimento per la preparazione di sali di acidi carbossilici
AR043078A1 (es) 1998-09-14 2005-07-20 Dow Agrosciences Llc Procesos para preparar acidos carboxilicos
PL347972A1 (en) 1998-12-01 2002-05-06 Syngenta Participations Ag Process for preparation of aminocarboxylic acids
CZ20013893A3 (cs) 1999-05-03 2002-05-15 Monsanto Technology Llc A Corporation Of The State Způsob přípravy solí karboxylových kyselin z primárních alkoholů
US6376708B1 (en) * 2000-04-11 2002-04-23 Monsanto Technology Llc Process and catalyst for dehydrogenating primary alcohols to make carboxylic acid salts
CA2463776A1 (en) 2001-10-18 2003-04-24 Monsanto Technology Llc Process and catalyst for dehydrogenating primary alcohols to make carboxylic acid salts
US7682724B2 (en) * 2002-10-18 2010-03-23 Monsanto Technology Llc Use of metal supported copper catalysts for reforming alcohols
CN102791676B (zh) 2010-03-18 2015-12-16 巴斯夫欧洲公司 以低副产物生产氨基羧酸盐的方法
MX2013011858A (es) * 2011-04-12 2013-11-01 Basf Se Metodo para producir aminopolicarboxilatos a partir de aminoacidos.
US8785685B2 (en) 2011-04-12 2014-07-22 Basf Se Process for preparing aminopolycarboxylates proceeding from amino acids
RU2594884C2 (ru) 2011-05-23 2016-08-20 Басф Се Способ получения аминополикарбоксилатов
US8609894B2 (en) 2011-05-23 2013-12-17 Basf Se Process for preparing aminopolycarboxylates

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6165840A (ja) * 1984-09-07 1986-04-04 Nippon Shokubai Kagaku Kogyo Co Ltd ジグリコ−ル酸塩の製造方法
US4782183A (en) * 1983-10-05 1988-11-01 Nippon Shokubai Kagaku Kogyo Co., Ltd. Method for manufacture of amino-carboxylic acid salts
JPH0641645A (ja) * 1992-07-23 1994-02-15 Mitsubishi Electric Corp プレス加工用薄板の溶接部割れ防止方法及び溶接部の通電加熱焼鈍装置
JPH0641644A (ja) * 1991-11-26 1994-02-15 Nippon Steel Corp 材質と表面品質の優れたCr−Ni系ステンレス鋼薄板の製造方法
JPH06165840A (ja) * 1992-10-29 1994-06-14 Matsushita Electric Ind Co Ltd クロロフロロカーボンの回収方法及びその再生方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3842081A (en) * 1971-08-19 1974-10-15 Jefferson Chem Co Inc Preparation of aminocarboxylic acids from aminoalcohols
US3833650A (en) * 1971-08-19 1974-09-03 Jefferson Chem Co Inc Preparation of nitrilotriacetic acid
JPS6041645A (ja) * 1983-08-17 1985-03-05 Nippon Shokubai Kagaku Kogyo Co Ltd グリシン塩の製造方法
JPS60100545A (ja) * 1983-11-08 1985-06-04 Nippon Shokubai Kagaku Kogyo Co Ltd ニトリロトリ酢酸塩の製造方法
JPS6078948A (ja) * 1983-10-05 1985-05-04 Nippon Shokubai Kagaku Kogyo Co Ltd イミノジ酢酸塩の製造方法
JPS6097945A (ja) * 1983-11-01 1985-05-31 Nippon Shokubai Kagaku Kogyo Co Ltd ニトリロトリ酢酸塩の製造方法
ES2022044A6 (es) * 1990-09-25 1991-11-16 Ercros Sa Procedimiento para la obtencion de derivados del acido acetico.
ES2031412A6 (es) * 1990-10-04 1992-12-01 Ercros Sa Perfeccionamientos introducidos en un procedimiento de obtencion de derivados de acido acetico.

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4782183A (en) * 1983-10-05 1988-11-01 Nippon Shokubai Kagaku Kogyo Co., Ltd. Method for manufacture of amino-carboxylic acid salts
JPS6165840A (ja) * 1984-09-07 1986-04-04 Nippon Shokubai Kagaku Kogyo Co Ltd ジグリコ−ル酸塩の製造方法
JPH0641644A (ja) * 1991-11-26 1994-02-15 Nippon Steel Corp 材質と表面品質の優れたCr−Ni系ステンレス鋼薄板の製造方法
JPH0641645A (ja) * 1992-07-23 1994-02-15 Mitsubishi Electric Corp プレス加工用薄板の溶接部割れ防止方法及び溶接部の通電加熱焼鈍装置
JPH06165840A (ja) * 1992-10-29 1994-06-14 Matsushita Electric Ind Co Ltd クロロフロロカーボンの回収方法及びその再生方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0506973A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU673260B2 (en) * 1993-04-12 1996-10-31 Monsanto Technology Llc Process to prepare amino carboxylic acid salts
EP1125634A1 (de) 2000-02-18 2001-08-22 Degussa AG Geformter Festbettraney-Kupferkatalysator
US7632967B2 (en) 2000-02-18 2009-12-15 Degussa Ag Raney copper

Also Published As

Publication number Publication date
JP2916256B2 (ja) 1999-07-05
KR927003515A (ko) 1992-12-18
AU8711791A (en) 1992-05-20
AU636803B2 (en) 1993-05-06
EP0506973A4 (ja) 1994-02-23
EP0506973B1 (en) 1995-12-27
DE69115883T2 (de) 1996-06-05
MX9101721A (es) 1992-06-05
DK0506973T3 (da) 1996-01-29
US5220055A (en) 1993-06-15
ES2081497T3 (es) 1996-03-16
KR950006892B1 (ko) 1995-06-26
DE69115883D1 (de) 1996-02-08
CA2071999A1 (en) 1992-04-24
EP0506973A1 (en) 1992-10-07
CA2071999C (en) 1995-11-21

Similar Documents

Publication Publication Date Title
WO1992006949A1 (fr) Procede de production de sels d'acide aminocarboxylique
KR0174786B1 (ko) 아미노 카르복실산염의 제조방법
KR880000390B1 (ko) 옥살산 디에스테르의 수소화 반응에 유용한 수소화반응 촉매 조성물
JP2002524015A (ja) アミノカルボン酸塩の製造方法
GB2148287A (en) Preparation of aminocarboxylic acid salts from amino alcohols
US3068290A (en) Process of making ethylenediamine
US5220054A (en) Process for producing aminocarboxylic acid salt
AU780040B2 (en) Process for the preparation of carboxylic acid salts from primary alcohols
AU714351B2 (en) Catalysts for dhydrogenation of amino alcohols to amino alcohols to amino carbosylic acids or of ethylene glycol (derivatives) to oxycarboxylic acids, method for their production and their use
JPS598264B2 (ja) 光学活性アミノ化合物のラセミ化方法
JP2804877B2 (ja) アミノカルボン酸塩の製法
JPH03857B2 (ja)
JP4898009B2 (ja) ラネー銅、その製造方法、ラネー銅触媒およびアルコールを接触脱水素する方法
JPH03131501A (ja) メタノールの分解方法
JP2968104B2 (ja) アミノカルボン酸塩の製造方法
JP3129547B2 (ja) グリコール酸塩の製造方法
JPH09151168A (ja) β−アラニン塩の製造方法
JPH072743A (ja) アミノカルボン酸塩の製法
JP2001302596A (ja) 3級アミンの製造法
JP2692181B2 (ja) メタノール分解触媒の製法
JPH11240856A (ja) アルコキシエチルアミンの製造方法
JPH02737A (ja) ジアルキルアミノエチルアミンの製造法
JPH0627099B2 (ja) ポリエチレングリコールジカルボン酸塩の製造方法
JPH05339200A (ja) 純度の向上した、グリセリン酸又はその塩の製造法
JPS58222056A (ja) スレオニンの製造法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BE CH DE DK ES FR GB GR IT NL SE

WWE Wipo information: entry into national phase

Ref document number: 2071999

Country of ref document: CA

Ref document number: 1991917813

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1991917813

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1991917813

Country of ref document: EP