US7989622B2 - Phosphatidylinositol 3-kinase inhibitors and methods of their use - Google Patents

Phosphatidylinositol 3-kinase inhibitors and methods of their use Download PDF

Info

Publication number
US7989622B2
US7989622B2 US11/988,862 US98886206A US7989622B2 US 7989622 B2 US7989622 B2 US 7989622B2 US 98886206 A US98886206 A US 98886206A US 7989622 B2 US7989622 B2 US 7989622B2
Authority
US
United States
Prior art keywords
nhc
amino
quinoxalin
alkyl
phenyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US11/988,862
Other languages
English (en)
Other versions
US20100087440A1 (en
Inventor
William Bajjalieh
Lynne Canne Bannen
S. David Brown
Patrick Kearney
Morrison B. Mac
Charles K. Marlowe
John M. Nuss
Zerom Tesfai
Yong Wang
Wei Xu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Exelixis Inc
Original Assignee
Exelixis Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=37847021&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US7989622(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
US case filed in Court of Appeals for the Federal Circuit litigation https://portal.unifiedpatents.com/litigation/Court%20of%20Appeals%20for%20the%20Federal%20Circuit/case/2013-1175 Source: Court of Appeals for the Federal Circuit Jurisdiction: Court of Appeals for the Federal Circuit "Unified Patents Litigation Data" by Unified Patents is licensed under a Creative Commons Attribution 4.0 International License.
US case filed in Court of Appeals for the Federal Circuit litigation https://portal.unifiedpatents.com/litigation/Court%20of%20Appeals%20for%20the%20Federal%20Circuit/case/2013-1198 Source: Court of Appeals for the Federal Circuit Jurisdiction: Court of Appeals for the Federal Circuit "Unified Patents Litigation Data" by Unified Patents is licensed under a Creative Commons Attribution 4.0 International License.
US case filed in Virginia Eastern District Court litigation https://portal.unifiedpatents.com/litigation/Virginia%20Eastern%20District%20Court/case/1%3A12-cv-00096 Source: District Court Jurisdiction: Virginia Eastern District Court "Unified Patents Litigation Data" by Unified Patents is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Exelixis Inc filed Critical Exelixis Inc
Priority to US11/988,862 priority Critical patent/US7989622B2/en
Assigned to EXELIXIS, INC. reassignment EXELIXIS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KEARNEY, PATRICK, BAJJALIEH, WILLIAM, BANNEN, LYNNE CANNE, BROWN, S. DAVID, MAC, MORRISON B., MARLOWE, CHARLES K., NUSS, JOHN M., TESFAI, ZEROM, WANG, YONG, XU, WEI
Publication of US20100087440A1 publication Critical patent/US20100087440A1/en
Application granted granted Critical
Publication of US7989622B2 publication Critical patent/US7989622B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/498Pyrazines or piperazines ortho- and peri-condensed with carbocyclic ring systems, e.g. quinoxaline, phenazine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/4985Pyrazines or piperazines ortho- or peri-condensed with heterocyclic ring systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/04Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/18Drugs for disorders of the alimentary tract or the digestive system for pancreatic disorders, e.g. pancreatic enzymes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/08Drugs for disorders of the urinary system of the prostate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • A61P5/14Drugs for disorders of the endocrine system of the thyroid hormones, e.g. T3, T4
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D241/00Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings
    • C07D241/36Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings condensed with carbocyclic rings or ring systems
    • C07D241/38Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings condensed with carbocyclic rings or ring systems with only hydrogen or carbon atoms directly attached to the ring nitrogen atoms
    • C07D241/40Benzopyrazines
    • C07D241/44Benzopyrazines with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to carbon atoms of the hetero ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/12Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/12Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/12Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/12Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • This invention relates to the field of protein kinases and inhibitors thereof.
  • the invention relates to inhibitors of phosphatidylinositol 3-kinase (PI3K) signaling pathways, and methods of their use.
  • PI3K phosphatidylinositol 3-kinase
  • the protein kinases are a large and diverse family of enzymes that catalyze protein phosphorylation and play a critical role in cellular signaling. Protein kinases may exert positive or negative regulatory effects, depending upon their target protein. Protein kinases are involved in specific signaling pathways which regulate cell functions such as, but not limited to, metabolism, cell cycle progression, cell adhesion, vascular function, apoptosis, and angiogenesis. Malfunctions of cellular signaling have been associated with many diseases, the most characterized of which include cancer and diabetes. The regulation of signal transduction by cytokines and the association of signal molecules with protooncogenes and tumor suppressor genes have been well documented.
  • Phosphatidylinositol 3-kinase (PI3K or PIK3CA) is composed of an 85 kDa regulatory subunit and a 110 kDa catalytic subunit.
  • the protein encoded by this gene represents the catalytic subunit, which uses ATP to phosphorylate PtdIns, PtdIns4P and PtdIns(4,5)P2.
  • PTEN a tumor suppressor which inhibits cell growth through multiple mechanisms, can dephosphorylate PIP3, the major product of PIK3CA.
  • PIP3 is required for translocation of protein kinase B (AKT1, PKB) to the cell membrane, where it is phosphorylated and activated by upstream kinases. The effect of PTEN on cell death is mediated through the PIK3CA/AKT1 pathway.
  • PI3K ⁇ has been implicated in the control of cytoskeletal reorganization, apoptosis, vesicular trafficking, proliferation and differentiation processes. Increased copy number and expression of PIK3CA is associated with a number of malignancies such as ovarian cancer (Campbell et al., Cancer Res 2004, 64, 7678-7681; Levine et al., Clin Cancer Res 2005, 11, 2875-2878; Wang et al., Hum Mutat 2005, 25, 322; Lee et al., Gynecol Oncol 2005, 97, 26-34), cervical cancer, breast cancer (Bachman, et al.
  • inhibitors and/or modulators of this protein kinase are desirable.
  • the invention comprises compounds of Formula I and Ia that inhibit PI3K and pharmaceutical compositions thereof.
  • the invention is also directed to methods of inhibiting PI3K in a cell, and methods for treating a disease, disorder, or syndrome.
  • a first aspect of the invention provides a compound of Formula I:
  • a second aspect of the invention provides a compound of Formula II:
  • the invention is directed to a pharmaceutical composition which comprises a compound of Formula I or a pharmaceutically acceptable salt thereof and a pharmaceutically acceptable carrier, excipient, or diluent.
  • the invention comprises a method of inhibiting PI3K in a cell, comprising contacting a cell with a compound of Formula I or II or a pharmaceutically acceptable salt or solvate thereof, or with a pharmaceutical composition comprising a therapeutically effective amount of a compound of Formula I and a pharmaceutically acceptable carrier, excipient, or diluent.
  • the Invention provides a method for treating a disease, disorder, or syndrome which method comprises administering to a patient a pharmaceutical composition comprising a therapeutically effective amount of a compound of Formula I or II or a pharmaceutically acceptable salt or solvate thereof, or a pharmaceutical composition comprising a therapeutically effective amount of a compound of Formula I, Ia, or II and a pharmaceutically acceptable carrier, excipient, or diluent.
  • a sixth aspect of the invention is directed to a process of preparing a compound of Formula I, comprising:
  • R a is R 7 , R 9 , R 11 , R 13 , R 17 , R 18 , R 20 , R 21 , R 22 , or R 24 , each as defined in the Summary of the Invention for a Compound of Formula I and all other groups are as defined in the Summary of the Invention; with an intermediate of formula 9(a), 9(b), 9(c), 9(d), 9(e), 9(f), or 9(g):
  • R 100 is —C(O)R 9a , —C(O)NR 11a R 11b , —C(O)OR 13a , —C(O)—C 1 -C 6 -alkylene-N(R 18b )C(O)R 18a , —C(O)—C 1 -C 6 -alkylene-C(O)R 20a , or —S(O) 2 R—C 1 -C 6 -alkylene-N(R 21b )R a ; or
  • administering means introducing the compound or a prodrug of the compound into the system of the animal in need of treatment.
  • a compound of the invention or prodrug thereof is provided in combination with one or more other active agents (e.g., surgery, radiation, and chemotherapy, etc.)
  • administration and its variants are each understood to include concurrent and sequential introduction of the compound or prodrug thereof and other agents.
  • Alkenyl or “lower alkenyl” means a straight or branched hydrocarbon radical having from 2 to 6 carbon atoms and at least one double bond and includes ethenyl, propenyl, 1-but-3-enyl, 1-pent-3-enyl, 1-hex-5-enyl and the like.
  • Alkenylcarbonyl means a C(O)R group where R is alkenyl, as defined herein.
  • Alkenyloxy or “lower alkenyloxy” means an —OR group where R is alkenyl, as defined herein. Representative examples include methoxy, ethoxy, 1-methoxyprop-1-en-3-yl, propoxy, isopropoxy, cyclopropyloxy, cyclohexyloxy and the like.
  • Alkoxy or “lower alkoxy” means an —OR group where R is alkyl, as defined herein. Representative examples include methoxy, ethoxy, 1-methoxyprop-1-en-3-yl, propoxy, isopropoxy, cyclopropyloxy, cyclohexyloxy and the like.
  • Alkoxyalkyl means an alkyl group, as defined herein, substituted with one, two, or three alkoxy groups, as defined herein.
  • Alkoxycarbonyl means a —C(O)OR group where R is alkyl as defined herein.
  • Alkoxycarbonylalkyl means an alkyl group, as defined herein, substituted with one, two, or three alkoxycarbonyl groups, as defined herein.
  • Alkyl or “lower alkyl” means a linear or branched hydrocarbon group having one to six carbon atoms. Examples of lower alkyl groups include methyl, ethyl, propyl, isopropyl, butyl, s-butyl, t-butyl, isobutyl, pentyl, hexyl and the like.
  • a “C 0 ” alkyl (as in “C 0 -C 6 -alkyl”) is a covalent bond.
  • C 6 alkyl refers to, for example, n-hexyl, iso-hexyl, and the like.
  • Alkylamino means a —NHR radical where R is alkyl as defined herein, or an N-oxide derivative thereof, e.g., methylamino, ethylamino, n-, iso-propylamino, n-, iso-, tert-butylamino, or methylamino-N-oxide, and the like.
  • Alkylaminoalkyl means an alkyl group substituted with one or two alkylamino groups, as defined herein.
  • Alkylaminoalkyloxy means an —OR group where R is alkylaminoalkyl, as defined herein.
  • Alkylcarbonyl means a C(O)R group where R is alkyl, as defined herein.
  • Alkylcarbonylamino means a —NRC(O)R′ group where R is hydrogen or alkyl, as defined herein, and R′ is alkyl, as defined herein.
  • Alkylene refers to straight or branched divalent hydrocarbon, containing no unsaturation and having from two to eight carbon atoms. Examples of alkylene include ethdiyl (—CH 2 CH 2 —), prop-1,3-diyl (—CH 2 CH 2 CH 2 —), 2,2-dimethylprop-1,3-diyl (—CH 2 C(CH 3 ) 2 CH 2 —), and the like.
  • Alkylsulfonyl means a —S(O) 2 R group where R is alkyl, as defined herein.
  • Alkylthio means a —SR group where R is alkyl, as defined herein. Examples of alkylthio include methylthio and ethylthio, and the like.
  • Alkylthioalkyl means an alkyl group substituted with one or two alkylthio groups, as defined herein, e.g. 2-(methylthio)-ethyl and 2-(ethylthio)-ethyl.
  • Alkynyl or “lower alkynyl” means a straight or branched hydrocarbon radical having from 2 to 6 carbon atoms and at least one triple bond and includes ethynyl, propynyl, butynyl, pentyn-2-yl and the like.
  • Amino means a —NH 2 .
  • aminoalkyl means an alkyl group substituted with at least one, specifically one, two, or three, amino groups.
  • aminoalkyloxy means an —OR group where R is aminoalkyl, as defined herein.
  • Aryl means a monovalent six- to fourteen-membered, mono- or bi-carbocyclic ring, wherein the monocyclic ring is aromatic and at least one of the rings in the bicyclic ring is aromatic. Representative examples include phenyl, naphthyl, and indanyl, and the like.
  • Arylalkyl means an alkyl group, as defined herein, substituted with one or two aryl groups, as defined herein. Examples include benzyl, phenethyl, phenylvinyl, phenylallyl and the like.
  • Aryloxy means a —OR group where R is aryl as defined herein.
  • Arylalkyloxy means a —OR group where R is arylalkyl as defined herein.
  • Arylsulfonyl means a —SO 2 R group where R is aryl as defined herein.
  • Carboxyalkyl means an alkyl group, as defined herein, substituted with one, two, or three —C(O)OH groups.
  • Carboxy ester means a —C(O)OR group where R is lower alkyl, lower alkenyl, lower alkynyl, cycloalkyl, aryl or arylalkyl, each of which is defined herein. Representative examples include methoxycarbonyl, ethoxycarbonyl, and benzyloxycarbonyl, and the like.
  • Cyanoalkyl means an alkyl, alkenyl, or alkynyl radical, as defined herein, substituted with at least one, specifically one, two, or three, cyano groups.
  • Cycloalkyl means a monocyclic or polycyclic hydrocarbon radical having three to thirteen carbon atoms.
  • the cycloalkyl can be saturated or partially unsaturated, but cannot contain an aromatic ring. Cycloalkyl includes fused, bridged, and spiro ring systems. Examples of such radicals include cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl.
  • Cycloalkylalkyl means alkyl group substituted with one or two cycloalkyl group(s), as defined herein. Representative examples include cyclopropylmethyl and 2-cyclobutyl-ethyl, and the like.
  • Cycloalkylcarbonyl means a —C(O)R group where R is cycloalkyl as defined herein.
  • Dialkylamino means a —NRR′ radical where R and R′are independently alkyl as defined herein, or an N-oxide derivative, or a protected derivative thereof, e.g., dimethylamino, diethylamino, N,N-methylpropylamino or N,N-methylethylamino, and the like.
  • Dialkylaminoalkyl means an alkyl group substituted with one or dialkylamino group(s), as defined herein.
  • Dialkylaminoalkyloxy means an —OR group where R is dialkylaminoalkyl, as defined herein.
  • fused ring system and “fused ring” refer to a polycyclic ring system that contains bridged or fused rings; that is, where two rings have more than one shared atom in their ring structures.
  • fused-polycyclics and fused ring systems are not necessarily all aromatic ring systems.
  • fused-polycyclics share a vicinal set of atoms, for example naphthalene or 1,2,3,4-tetrahydro-naphthalene.
  • a spiro ring system is not a fused-polycyclic by this definition, but fused polycyclic ring systems of the invention may themselves have spiro rings attached thereto via a single ring atom of the fused-polycyclic.
  • two adjacent groups on an aromatic system may be fused together to form a ring structure.
  • the fused ring structure may contain heteroatoms and may be optionally substituted with one or more groups. It should additionally be noted that saturated carbons of such fused groups (i.e. saturated ring structures) can contain two substitution groups.
  • Haloalkoxy means an —OR′ group where R′ is haloalkyl as defined herein, e.g., trifluoromethoxy or 2,2,2-trifluoroethoxy, and the like.
  • Haloalkoxyalkyl means an alkyl group, as defined herein, substituted with one, two, or three haloalkoxy, as defined herein.
  • Halogen or “halo” means fluoro, chloro, bromo and iodo.
  • Haloalkenyl means an alkenyl group, as defined herein, substituted with one or more halogens, specifically one to five halo atoms.
  • Haloalkyl means an alkyl group, as defined herein, substituted with one or more halogens, specifically one to five halo atoms. Representative examples includes 2,2-difluoroethyl, trifluoromethyl, and 2-chloro-1-fluoroethyl, and the like.
  • Heteroaryl means a monocyclic, fused bicyclic, or fused tricyclic, monovalent radical of 5 to 14 ring atoms containing one or more, specifically one, two, three, or four ring heteroatoms independently selected from —O—, —S(O) n — (n is 0, 1, or 2), —N—, —N(R x )—, and the remaining ring atoms being carbon, wherein the ring comprising a monocyclic radical is aromatic and wherein at least one of the fused rings comprising a bicyclic or tricyclic radical is aromatic.
  • One or two ring carbon atoms of any nonaromatic rings comprising a bicyclic or tricyclic radical may be replaced by a —C(O)—, —C(S)—, or —C( ⁇ NH)— group.
  • R x is hydrogen, alkyl, hydroxy, alkoxy, acyl, or alkylsulfonyl.
  • Fused bicyclic radical includes bridged ring systems.
  • the valency may be located on any atom of any ring of the heteroaryl group, valency rules permitting. In particular, when the point of valency is located on the nitrogen, R x is absent.
  • heteroaryl includes, but is not limited to, 1,2,4-triazolyl, 1,3,5-triazolyl, phthalimidyl, pyridinyl, pyrrolyl, imidazolyl, thienyl, furanyl, indolyl, 2,3-dihydro-1H-indolyl (including, for example, 2,3-dihydro-1H-indol-2-yl or 2,3-dihydro-1H-indol-5-yl, and the like), isoindolyl, indolinyl, isoindolinyl, benzimidazolyl, benzodioxol-4-yl, benzofuranyl, cinnolinyl, indolizinyl, naphthyridin-3-yl, phthalazin-3-yl, phthalazin-4-yl, pteridinyl, purinyl, quinazolinyl, quinox
  • Heteroarylalkyl means an alkyl group substituted with one or two heteroaryl group(s) as defined herein.
  • Heterocycloalkyl means a saturated or partially unsaturated monovalent monocyclic group of 3 to 8 ring atoms or a saturated or partially unsaturated monovalent fused bicyclic group of 5 to 12 ring atoms in which one or more, specifically one, two, three, or four ring heteroatoms independently selected from —O—, —S(O) n — (n is 0, 1, or 2), —N ⁇ , —N(R y )— (where R y is hydrogen, alkyl, hydroxy, alkoxy, acyl, or alkylsulfonyl), the remaining ring atoms being carbon.
  • One or two ring carbon atoms may be replaced by a —C(O)—, —C(S)—, or —C( ⁇ NH)— group.
  • Fused bicyclic radical includes bridged ring systems. Unless otherwise stated, the valency of the group may be located on any atom of any ring within the radical, valency rules permitting. In particular, when the point of valency is located on a nitrogen atom, R y is absent.
  • heterocycloalkyl includes, but is not limited to, azetidinyl, pyrrolidinyl, 2-oxopyrrolidinyl, 2,5-dihydro-1H-pyrrolyl, piperidinyl, 4-piperidonyl, morpholinyl, piperazinyl, 2-oxopiperazinyl, tetrahydropyranyl, 2-oxopiperidinyl, thiomorpholinyl, thiamorpholinyl, perhydroazepinyl, pyrazolidinyl, imidazolinyl, imidazolidinyl, dihydropyridinyl, tetrahydropyridinyl, oxazolinyl, oxazolidinyl, isoxazolidinyl, thiazolinyl, thiazolidinyl, quinuclidinyl, isothiazolidinyl, octahydroindo
  • Heterocycloalkylalkyl means an alkyl group, as defined herein, substituted with one or two heterocycloalkyl group(s), as defined herein.
  • Hydroalkyl means an alkyl radical, as defined herein, substituted with at least one, specifically one, two, or three, hydroxy group(s), provided that if two hydroxy groups are present they are not both on the same carbon atom.
  • Representative examples include, but are not limited to, hydroxymethyl, 2-hydroxyethyl, 2-hydroxypropyl, 3-hydroxypropyl, 1-(hydroxymethyl)-2-methylpropyl, 2-hydroxybutyl, 3-hydroxybutyl, 4-hydroxybutyl, 2,3-dihydroxypropyl, 1-(hydroxymethyl)-2-hydroxyethyl, 2,3-dihydroxybutyl, 3,4-dihydroxybutyl and 2-(hydroxymethyl)-3-hydroxypropyl, specifically 2-hydroxyethyl, 2,3-dihydroxypropyl, or 1-(hydroxymethyl)-2-hydroxyethyl, and the like.
  • Haldroxyamino means a —NH(OH) group.
  • Optionally substituted alkyl means an alkyl radical, as defined herein, optionally substituted with one or more group(s), specifically one, two, three, four, or five groups, independently selected from alkylcarbonyl, alkenylcarbonyl, cycloalkylcarbonyl, alkylcarbonyloxy, alkenylcarbonyloxy, amino, alkylamino, dialkylamino, aminocarbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, cyano, cyanoalkylaminocarbonyl, alkoxy, alkenyloxy, hydroxy, hydroxyalkoxy, carboxy, alkylcarbonylamino, alkylcarbonyloxy, alkyl-S(O) 0-2 —, alkenyl-S(O) 0-2 —, aminosulfonyl, alkylaminosulfonyl, dialkylaminosulfonyl, alkylsulfonyl-NR
  • Optionally substituted alkenyl means an alkenyl radical, as defined herein, optionally substituted with one or more group(s), specifically one, two, or three groups, independently selected from alkylcarbonyl, alkenylcarbonyl, cycloalkylcarbonyl, alkylcarbonyloxy, alkenylcarbonyloxy, amino, alkylamino, dialkylamino, aminocarbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, cyano, cyanoalkylaminocarbonyl, alkoxy, alkenyloxy, hydroxy, hydroxyalkoxy, carboxy, alkylcarbonylamino, alkylcarbonyloxy, alkyl-S(O) 0-2 —, alkenyl-S(O) 0-2 —, aminosulfonyl, alkylaminosulfonyl, dialkylaminosulfonyl, alkylsulfonyl-NR c
  • Optionally substituted aryl means an aryl group, as defined herein, which is optionally substituted with one, two, three, four, of five groups selected from halo, haloalkyl, haloalkoxy, hydroxy, lower alkyl, lower alkenyl, lower alkynyl, alkoxy, carboxy, carboxy ester, amino, alkylamino, dialkylamino, optionally substituted cycloalkyl, optionally substituted heterocycloalkyl, optionally substituted heteroaryl, —C(O)NR′R′′ (where R′ is hydrogen or alkyl and R′′ is hydrogen, alkyl, aryl, heteroaryl, or heterocycloalkyl), —NR′C(O)R′′ (where R′ is hydrogen or alkyl and R′′ is alkyl, aryl, heteroaryl, or heterocycloalkyl), and —NHS(O) 2 R′ (where R′ is alkyl, aryl, or heteroaryl
  • Optionally substituted heteroaryl means a heteroaryl group, as defined herein, optionally substituted with one, two, three, four, or five groups selected from halo, haloalkyl, haloalkoxy, lower alkyl, lower alkenyl, lower alkynyl, alkoxy, hydroxy, oxo (valency rules permitting), carboxy, carboxy ester, amino, alkylamino, dialkylamino, optionally substituted cycloalkyl, optionally substituted heterocycloalkyl, heteroaryl, optionally substituted aryl, —C(O)NR′R′′ (where R′ is hydrogen or alkyl and R′′ is hydrogen, alkyl, aryl, heteroaryl, or heterocycloalkyl), —NR′C(O)R′′ (where R′ is hydrogen or alkyl and R′′ is alkyl, aryl, heteroaryl, or heterocycloalkyl), and —NHS(O) 2 R′ (where R′
  • Optionally substituted heterocycloalkyl means a heterocycloalkyl, as defined herein, optionally substituted with one, two, three, four, or five groups selected from halo, haloalkyl, haloalkoxy, hydroxy, oxo, lower alkyl, lower alkenyl, lower alkynyl, alkoxy, optionally substituted cycloalkyl, heterocycloalkyl, optionally substituted aryl, optionally substituted heteroaryl, alkylaminoalkyl, dialkylaminoalkyl, carboxy, carboxy ester, —C(O)NR′R′′ (where R′ is hydrogen or alkyl and R′′ is hydrogen, alkyl, aryl, heteroaryl, or heterocycloalkyl), —NR′C(O)R′′ (where R′ is hydrogen or alkyl and R′′ is alkyl, aryl, heteroaryl, or heterocycloalkyl), amino, alkylamino, dialkyla
  • “Saturated bridged ring system” refers to a bicyclic or polycyclic ring system that is not aromatic. Such a system may contain isolated or conjugated unsaturation, but not aromatic or heteroaromatic rings in its core structure (but may have aromatic substitution thereon). For example, hexahydro-furo[3,2-b]furan, 2,3,3a,4,7,7a-hexahydro-1H-indene, 7-aza-bicyclo[2.2.1]heptane, and 1,2,3,4,4a,5,8,8a-octahydro-naphthalene are all included in the class “saturated bridged ring system.”
  • “Spirocyclyl” or “spirocyclic ring” refers to a ring originating from a particular annular carbon of another ring.
  • a ring atom of a saturated bridged ring system (rings C and C′), but not a bridgehead atom, can be a shared atom between the saturated bridged ring system and a spirocyclyl (ring D) attached thereto.
  • a spirocyclyl can be carbocyclic or heteroalicyclic.
  • Patient for the purposes of the present invention includes humans and other animals, particularly mammals, and other organisms. Thus the methods are applicable to both human therapy and veterinary applications. In a specific embodiment the patient is a mammal, and in a more specific embodiment the patient is human.
  • Kinase-dependent diseases or conditions refer to pathologic conditions that depend on the activity of one or more protein kinases. Kinases either directly or indirectly participate in the signal transduction pathways of a variety of cellular activities including proliferation, adhesion, migration, differentiation and invasion. Diseases associated with kinase activities include tumor growth, the pathologic neovascularization that supports solid tumor growth, and associated with other diseases where excessive local vascularization is involved such as ocular diseases (diabetic retinopathy, age-related macular degeneration, and the like) and inflammation (psoriasis, rheumatoid arthritis, and the like).
  • ocular diseases diabetic retinopathy, age-related macular degeneration, and the like
  • inflammation psoriasis, rheumatoid arthritis, and the like.
  • phosphatases can also play a role in “kinase-dependent diseases or conditions” as cognates of kinases; that is, kinases phosphorylate and phosphatases dephosphorylate, for example protein substrates. Therefore compounds of the invention, while modulating kinase activity as described herein, may also modulate, either directly or indirectly, phosphatase activity. This additional modulation, if present, may be synergistic (or not) to activity of compounds of the invention toward a related or otherwise interdependent kinase or kinase family. In any case, as stated previously, the compounds of the invention are useful for treating diseases characterized in part by abnormal levels of cell proliferation (i.e. tumor growth), programmed cell death (apoptosis), cell migration and invasion and angiogenesis associated with tumor growth.
  • abnormal levels of cell proliferation i.e. tumor growth
  • apoptosis programmed cell death
  • angiogenesis associated with tumor growth.
  • “Therapeutically effective amount” is an amount of a compound of the invention, that when administered to a patient, ameliorates a symptom of the disease.
  • the amount of a compound of the invention which constitutes a “therapeutically effective amount” will vary depending on the compound, the disease state and its severity, the age of the patient to be treated, and the like.
  • the therapeutically effective amount can be determined routinely by one of ordinary skill in the art having regard to their knowledge and to this disclosure.
  • “Cancer” refers to cellular-proliferative disease states, including but not limited to: Cardiac: sarcoma (angiosarcoma, fibrosarcoma, rhabdomyosarcoma, liposarcoma), myxoma, rhabdomyoma, fibroma, lipoma and teratoma; Lung: bronchogenic carcinoma (squamous cell, undifferentiated small cell, undifferentiated large cell, adenocarcinoma), alveolar (bronchiolar) carcinoma, bronchial adenoma, sarcoma, lymphoma, chondromatous hanlartoma, inesothelioma; Gastrointestinal: esophagus (squamous cell carcinoma, adenocarcinoma, leiomyosarcoma, lymphoma), stomach (carcinoma, lymphoma, leiomyosarcoma), pancreas (
  • a “pharmaceutically acceptable salt” of a compound means a salt that is pharmaceutically acceptable and that possesses the desired pharmacological activity of the parent compound. It is understood that the pharmaceutically acceptable salts are non-toxic. Additional information on suitable pharmaceutically acceptable salts can be found in Remington's Pharmaceutical Sciences, 17 th ed., Mack Publishing Company, Easton, Pa., 1985, which is incorporated herein by reference or S. M. Berge, et al., “Pharmaceutical Salts,” J. Pharm. Sci., 1977; 66:1-19 both of which are incorporated herein by reference.
  • Examples of pharmaceutically acceptable acid addition salts include those formed with inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, and the like; as well as organic acids such as acetic acid, trifluoroacetic acid, propionic acid, hexanoic acid, cyclopentanepropionic acid, glycolic acid, pyruvic acid, lactic acid, oxalic acid, maleic acid, malonic acid, succinic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, cinnamic acid, 3-(4-hydroxybenzoyl)benzoic acid, mandelic acid, methanesulfonic acid, ethanesulfonic acid, 1,2-ethanedisulfonic acid, 2-hydroxyethanesulfonic acid, benzenesulfonic acid, 4-chlorobenzenesulfonic acid, 2-naphthalenesulfonic acid, 4-tol
  • Examples of a pharmaceutically acceptable base addition salts include those formed when an acidic proton present in the parent compound is replaced by a metal ion, such as sodium, potassium, lithium, ammonium, calcium, magnesium, iron, zinc, copper, manganese, aluminum salts and the like. Specific salts are the ammonium, potassium, sodium, calcium, and magnesium salts. Salts derived from pharmaceutically acceptable organic non-toxic bases include, but are not limited to, salts of primary, secondary, and tertiary amines, substituted amines including naturally occurring substituted amines, cyclic amines and basic ion exchange resins.
  • organic bases examples include isopropylamine, trimethylamine, diethylamine, triethylamine, tripropylamine, ethanolamine, 2-dimethylaminoethanol, 2-diethylaminoethanol, dicyclohexylamine, lysine, arginine, histidine, caffeine, procaine, hydrabamine, choline, betaine, ethylenediamine, glucosamine, methylglucamine, theobromine, purines, piperazine, piperidine, N-ethylpiperidine, tromethamine, N-methylglucamine, polyamine resins, and the like.
  • Exemplary organic bases are isopropylamine, diethylamine, ethanolamine, trimethylamine, dicyclohexylamine, choline, and caffeine.
  • Prodrug refers to compounds that are transformed (typically rapidly) in vivo to yield the active ingredient of the above formulae, for example, by hydrolysis in blood.
  • a prodrug include, but are not limited to, ester and amide forms of a compound having an active form bearing a carboxylic acid moiety.
  • pharmaceutically acceptable esters of the compounds of this invention include, but are not limited to, alkyl esters (for example with between about one and about six carbons) the alkyl group is a straight or branched chain. Acceptable esters also include cycloalkyl esters and arylalkyl esters such as, but not limited to benzyl.
  • pharmaceutically acceptable amides of the compounds of this invention include, but are not limited to, primary amides, and secondary and tertiary alkyl amides (for example with between about one and about six carbons).
  • Methodabolite refers to the break-down or end product of a compound or its salt produced by metabolism or biotransformation in the animal or human body; for example, biotransformation to a more polar molecule such as by oxidation, reduction, or hydrolysis, or to a conjugate (see Goodman and Gilman, “The Pharmacological Basis of Therapeutics” 8.sup.th Ed., Pergamon Press, Gilman et al. (eds), 1990 for a discussion of biotransformation).
  • the metabolite of a compound of the invention or its salt may be the biologically active form of the compound in the body.
  • a prodrug may be used such that the biologically active form, a metabolite, is released in vivo.
  • a biologically active metabolite is discovered serendipitously, that is, no prodrug design per se was undertaken.
  • An assay for activity of a metabolite of a compound of the present invention is known to one of skill in the art in light of the present disclosure.
  • Treating” or “treatment” of a disease, disorder, or syndrome includes (i) preventing the disease, disorder, or syndrome from occurring in a human, i.e. causing the clinical symptoms of the disease, disorder, or syndrome not to develop in an animal that may be exposed to or predisposed to the disease, disorder, or syndrome but does not yet experience or display symptoms of the disease, disorder, or syndrome; (ii) inhibiting the disease, disorder, or syndrome, i.e., arresting its development; and (iii) relieving the disease, disorder, or syndrome, i.e., causing regression of the disease, disorder, or syndrome.
  • One embodiment (A) of the invention is directed to a compound of Formula I where W 1 , W 2 , W 3 , and W 4 are —C(R 1 ) ⁇ ; or one or two of W 1 , W 2 , W 3 , and W 4 are independently —N ⁇ and the remaining are —C(R 1 ) ⁇ ; where each R 1 is independently hydrogen, alkyl, haloalkyl, nitro, alkoxy, haloalkoxy, halo, hydroxy, cyano, amino, alkylamino, or dialkylamino; and all other groups are as defined in the Summary of the Invention.
  • W 1 , W 2 , W 3 , and W 4 are —C(R 1 ) ⁇ and each R 1 is independently hydrogen or alkyl; or one of W 1 and W 4 is —N ⁇ and the other is —C(H) ⁇ . More specifically, W 1 , W 2 , W 3 , and W 4 are —C(R 1 ) ⁇ where each R 1 is independently hydrogen or alkyl. Even more specifically, R 1 is hydrogen.
  • R 50 is hydrogen, alkyl, alkenyl, halo, haloalkyl, haloalkenyl, hydroxy, alkoxy, alkenyloxy, haloalkoxy, nitro, amino, alkylamino, dialkylamino, —N(R 55 )C(O)—C 1 -C 6 -alkylene-N(R 55a )R 55b , alkylcarbonyl, alkenylcarbonyl, carboxy, alkoxycarbonyl, cyano, alkylthio, —S(O) 2 NR 55 R 55a , or alkylcarbonylamino; where R 55 and R 55b are independently hydrogen, alkyl, or alkenyl and R 55a is hydrogen, alkyl, alkenyl, hydroxy, or alkoxy; and all other groups are as defined in the Summary of the Invention. Specifically, R 50 is hydrogen.
  • R 51 is hydrogen or alkyl; and all other groups are as defined in the Summary of the Invention. Specifically, R 51 is alkyl, More specifically, R 51 is methyl.
  • Another embodiment (D) of the invention is a Compound of Formula I where R 52 is hydrogen or halo; and all other groups are as defined in the Summary of the Invention. Specifically R 52 is hydrogen or fluoro. More specifically, R 52 is hydrogen.
  • Another embodiment (E) of the invention is a Compound of Formula I where R 53 is hydrogen, alkyl, alkenyl, halo, haloalkyl, haloalkenyl, hydroxy, alkoxy, alkenyloxy, haloalkoxy, nitro, amino, alkylamino, dialkylamino, —N(R 55 )C(O)—C 1 -C 6 -alkylene-N(R 55a )R 55b , alkylcarbonyl, alkenylcarbonyl, carboxy, alkoxycarbonyl, cyano, alkylthio, —S(O) 2 NR 55 R 55a , or alkylcarbonylamino; where R 55 and R 55b are independently hydrogen, alkyl, or alkenyl and R 55a is hydrogen, alkyl, alkenyl, hydroxy, or alkoxy; and all other groups are as defined in the Summary of the Invention.
  • R 53 is hydrogen, alkoxy, nitro, amino, or —N(R 55 )C(O)—C 1 -C 6 -alkylene-N(R 55a )R 55b . More specifically, R 53 is hydrogen, methoxy, nitro, amino, or —NHC(O)CH 2 N(CH 3 ) 2 . Even more specifically, R 53 is hydrogen or methoxy.
  • R 54 is hydrogen, alkyl, alkenyl, halo, haloalkyl, haloalkenyl, hydroxy, alkoxy, alkenyloxy, haloalkoxy, nitro, amino, alkylamino, dialkylamino, —N(R 55 )C(O)—C 1 -C 6 -alkylene-N(R 55a )R 55b , alkylcarbonyl, alkenylcarbonyl, carboxy, alkoxycarbonyl, cyano, alkylthio, —S(O) 2 NR 55 R 55a , or alkylcarbonylamino; where R 55 and R 55b are independently hydrogen, alkyl, or alkenyl and R 55a is hydrogen, alkyl, alkenyl, hydroxy, or alkoxy; and all other groups are as defined in the Summary of the Invention. Specifically, R 54 is hydrogen, alkyl,
  • Another embodiment (G) of the invention is directed to a compound of Formula I where R 50 , R 52 , and R 53 are hydrogen and R 54 is halo or alkoxy; R 50 , R 52 , and R 54 are hydrogen and R 53 is alkoxy; or R 50 and R 52 are hydrogen and R 53 and R 54 together with the carbons to which they are attached form a 6-membered heteroaryl; and all other groups are as defined in the Summary of the Invention.
  • R 50 , R 52 , and R 53 are hydrogen and R 54 is chloro or methoxy; R 50 , R 52 , and R 54 are hydrogen and R 53 is methoxy; or R 50 and R 52 are hydrogen and R 53 and R 54 together with the carbons to which they are attached form pyridinyl. Even more specifically, R 50 , R 52 , and R 53 are hydrogen and R 54 is chloro or methoxy; or R 50 , R 52 , and R 54 are hydrogen and R 53 is methoxy.
  • embodiment G1 of embodiment G is a compound of Formula I where R 51 is methyl.
  • Another embodiment (H) of the invention is a compound of Formula I where B is phenyl substituted with R 3a and optionally further substituted with one, two, or three R 3 ; and all other groups are as defined in the Summary of the Invention. Specifically, B is phenyl substituted with R 3a . More specifically the Compound is of Formula I(a):
  • B is phenyl substituted with R 3a as depicted in Ia and is not further substituted with R 3 .
  • Another embodiment of the Invention (J) is directed to a compound of Formula I where B is heteroaryl optionally substituted with one, two, or three R 3 .
  • B is thien-3-yl, pyridinyl, pyrimidinyl, pyridazinyl, pyrazinyl, oxazolyl, isoxazolyl, pyrrolyl, imidazolyl, pyrazolyl, or thiazolyl, each of which is optionally substituted with one or two R 3 .
  • B is thien-3-yl, pyridin-2-yl, pyridin-3-yl, pyridin-4-yl, oxazol-2-yl, oxazol-4-yl, oxazol-5-yl, isoxazol-3-yl, isoxazol-4-yl, isoxazol-5-yl, imidazol-2-yl, pyrrol-2-yl, pyrrol-3-yl, imidazol-4-yl, imidazol-5-yl, pyrazol-3-yl, pyrazol-4-yl, or pyrazol-5-yl, each of which is optionally substituted with one or two R 3 .
  • B is thien-3-yl, pyridin-3-yl, pyridin-4-yl, isoxazol-4-yl, or pyrazol-4-yl, each of which is optionally substituted with one or two R 3 .
  • B is pyridin-3-yl, 2-hydroxy-pyridin-5-yl, isoxazol-4-yl, or pyrazol-4-yl, each of which is optionally substituted with one or two R 3 .
  • Another embodiment (K) provides a compound of Formula I or Ia where R 3a is cyano; hydroxyamino; carboxy; alkylsulfonyl, aminoalkyloxy; alkylaminoalkyloxy; dialkylaminoalkyloxy; —N(R 7 )C(O)—C 1 -C 6 -alkylene-N(R 7a )(R 7b ); —C(O)NR 8 R 8a ; —NR 9 C(O)R 9a ; —C(O)N(R 10 )—C 1 -C 6 -alkylene-N(R 10a )R 11b ; —NR 11 C(O)NR 11a R 11b where R 11a ; —C(O)R 12 ; —NR 13 C(O)OR 13a ; —C(O)N(R 14 )N(R 14a )(R 14b ); —S(O) 2 N(R 15 )—C 1
  • R 3a is —NHC(O)CH 2 NH(CH 3 ), —NHC(O)CH 2 NH(CH 2 CH 3 ), —NHC(O)CH(CH 3 )NH 2 , —NHC(O)C(CH 3 ) 2 NH 2 , —NHC(O)CH 2 N(CH 3 ) 2 , —NHC(O)CH 2 N(CH 3 )CH 2 CH 2 N(CH 3 ) 2 , —NHC(O)CH(NH 2 )CH 2 CH 3 , —NHC(O)CH 2 N(CH 3 )CH 2 CH 2 N(CH 3 ) 2 , —NHC(O)CH(CH 3 )NH(CH 3 ), —NHC(O)CH 2 NH 2 , —NHC(O)H, —NHC(O)CH 2 (azetidin-1-yl), —NHC(O)(pyrrolidin-2-yl), —NHC(O)CH
  • the compound of Formula I or Ia is that where R 3a is hydroxyamino, —N(R 7 )C(O)—C 1 -C 6 -alkylene-N(R 7a )(R 7b ), —C(O)NR 8 R 8a , —NR 9 C(O)R 9a , —C(O)N(R 10 )—C 1 -C 6 -alkylene-N(R 10a )R 10b , NR 11 C(O)NR 11a R 11b , —N(R 22 )C(O)—C 1 -C 6 -alkylene-N(R 22b )—N(R 22c )(R 22a ), NR 13 C(O)OR 13a , —N(R 18 )C(O)—C 1 -C 6 -alkylene-N(R 18b )C(O)R 18a , —NR 24 C(O)—C
  • R 3a is —NHC(O)CH 2 NH(CH 3 ), —NHC(O)CH(CH 3 )NH 2 , —NHC(O)C(CH 3 ) 2 NH 2 , —NHC(O)CH 2 N(CH 3 ) 2 , —NHC(O)CH 2 N(CH 3 )CH 2 CH 2 N(CH 3 ) 2 , —NHC(O)CH(NH 2 )CH 2 CH 3 , —NHC(O)CH 2 N(CH 3 )CH 2 CH 2 N(CH 3 ) 2 , —NHC(O)CH(CH 3 )NH(CH 3 ), —NHC(O)H, —NHC(O)CH 2 (azetidin-1-yl), —NHC(O)(pyrrolidin-2-yl), —NHC(O)CH(NH 2 )CH 2 OH, —NHC(O)(azetidin-4-yl), —NHC
  • the compound is of Formula I or Ia and R 3a —N(R 7 )C(O)—C 1 -C 6 -alkylene-N(R 7a )(R 7b ); and R 7 is hydrogen or alkyl and R 7a and R 7b are independently hydrogen, alkyl, aminoalkyl, alkylaminoalkyl, or dialkylaminoalkyl; and all other groups are as defined in the Summary of the Invention.
  • R 3a is —NHC(O)CH 2 NH(CH 3 ), —NHC(O)CH(CH 3 )NH 2 , —NHC(O)C(CH 3 ) 2 NH 2 , —NHC(O)CH 2 N(CH 3 ) 2 , —NHC(O)CH 2 N(CH 3 )CH 2 CH 2 N(CH 3 ) 2 , —NHC(O)CH(NH 2 )CH 2 CH 3 , —NHC(O)CH 2 N(CH 3 )CH 2 CH 2 N(CH 3 ) 2 , or —NHC(O)CH(CH 3 )NH(CH 3 ).
  • Embodiment (N) provides a compound of Formula I where each R 3 is independently halo; cyano; alkyl; alkenyl; alkoxy; hydroxyamino; carboxy; alkylsulfonyl, aminoalkyloxy; alkylaminoalkyloxy; dialkylaminoalkyloxy; —N(R 7 )C(O)—C 1 -C 6 -alkylene-N(R 7a )(R 7b ); —C(O)NR 8 R 8a ; —NR 9 C(O)R 9a ; —C(O)N(R 10 )—C 1 -C 6 -alkylene-N(R 10a )R 10b ; —NR 11 C(O)NR 11a R 11b where R 11a ; —C(O)R 12 ; —NR 13 C(O)OR 13a ; —C(O)N(R 14 )N(R 14a )(R 14b
  • each R 3 is independently methyl, bromo, chloro, fluoro, —NHC(O)CH 2 NH(CH 3 ), —NHC(O)CH 2 NH(CH 2 CH 3 ), —NHC(O)CH(CH 3 )NH 2 , —NHC(O)C(CH 3 ) 2 NH 2 , —NHC(O)CH 2 N(CH 3 ) 2 , —NHC(O)CH 2 N(CH 3 )CH 2 CH 2 N(CH 3 ) 2 , —NHC(O)CH(NH 2 )CH 2 CH 3 , —NHC(O)CH 2 N(CH 3 )CH 2 CH 2 N(CH 3 ) 2 , —NHC(O)CH(CH 3 )NH(CH 3 ), —NHC(O)CH 2 NH 2 , —NHC(O)H, —NHC(O)CH 2 (azetidin-1-yl), —NHC(O)(CH 2
  • the Compound of Formula I is that where each R 3 is independently halo, alkyl, hydroxyamino, —N(R 7 )C(O)—C 1 -C 6 -alkylene-N(R 7a )(R 7b ), —C(O)NR 8 R 8a , —NR 9 C(O)R 9a , —C(O)N(R 10 )—C 1 -C 6 -alkylene-N(R 10a )R 10b —NR 11 C(O)NR 11a R 11b , —N(R 22 )C(O)—C 1 -C 6 -alkylene-N(R 22b )—N(R 22c )(R 22a ), —NR 13 C(O)OR 13a , —N(R 18 )C(O)—C 1 -C 6 -alkylene-N(R 18b )C(O)R 18a , —NR
  • each R 3 is independently methyl, chloro, —NHC(O)CH 2 NH(CH 3 ), —NHC(O)CH(CH 3 )NH 2 , —NHC(O)C(CH 3 ) 2 NH 2 , —NHC(O)CH 2 N(CH 3 ) 2 , —NHC(O)CH 2 N(CH 3 )CH 2 CH 2 N(CH 3 ) 2 , —NHC(O)CH(NH 2 )CH 2 CH 3 , —NHC(O)CH 2 N(CH 3 )CH 2 CH 2 N(CH 3 ) 2 , —NHC(O)CH(CH 3 )NH(CH 3 ), —NHC(O)H, —NHC(O)CH 2 (azetidin-1-yl), —NHC(O)(pyrrolidin-2-yl), —NHC(O)CH(NH 2 )CH 2 OH, —NHC(O)(azetidin
  • the Compound of Formula I is that where R 3 is alkyl or —N(R 7 )C(O)—C 1 -C 6 -alkylene-N(R 7a )(R 7b ); and R 7 is hydrogen or alkyl and R 7a and R 7b are independently hydrogen, alkyl, aminoalkyl, alkylaminoalkyl, or dialkylaminoalkyl; and all other groups are as defined in the Summary of the Invention.
  • each R 3 is independently methyl, —NHC(O)CH 2 NH(CH 3 ), —NHC(O)CH(CH 3 )NH 2 , —NHC(O)C(CH 3 ) 2 NH 2 , —NHC(O)CH 2 N(CH 3 ) 2 , —NHC(O)CH 2 N(CH 3 )CH 2 CH 2 N(CH 3 ) 2 , —NHC(O)CH(NH 2 )CH 2 CH 3 , —NHC(O)CH 2 N(CH 3 )CH 2 CH 2 N(CH 3 ) 2 , or —NHC(O)CH(CH 3 )NH(CH 3 ).
  • the Compound of Formula I is that where B is phenyl, R 3 is not present or R 3 is halo, alkyl, or alkoxy;
  • R 3a is —C(O)NR 8 R 8a , —NR 9 C(O)R 9a , —N(R 7 )C(O)—C 1 -C 6 -alkylene-N(R 7a )(R 7b ), or —C(O)N(R 10 )—C 1 -C 6 -alkylene-N(R 10a )R 10b where each of the alkylene in R 3a is independently optionally further substituted with 1, 2, 3, 4, or 5 groups selected from halo, hydroxy, and amino; and all other groups are as defined in the Summary of the Invention.
  • the compound is that where R 50 , R 52 , and R 53 are hydrogen and R 54 is halo or alkoxy; R 50 , R 52 , and R 54 are hydrogen and R 53 is alkoxy; or R 50 and R 52 are hydrogen and R 53 and R 54 together with the carbons to which they are attached form a 6-membered heteroaryl; and all other groups are as defined in the Summary of the Invention.
  • R 50 , R 52 , and R 53 are hydrogen and R 54 is halo or alkoxy; or R 50 , R 52 , and R 54 are hydrogen and R 53 is alkoxy.
  • the compound is that where R 51 is methyl.
  • R 3 is not present or R 3 is alkyl and R 3a is —N(R 7 )C(O)—C 1 -C 6 -alkylene-N(R 7a )(R 7b ), —C(O)NR 8 R 8a , —NR 9 C(O)R 9a , or —C(O)N(R 10 )—C 1 -C 6 -alkylene-N(R 10a )R 10b ; where each of the alkylene in R 3a is independently optionally further substituted with 1, 2, 3, 4, or 5 groups selected from halo, hydroxy, and amino; and all other groups are as defined in the Summary of the Invention. Specifically, R 3 is not present or is methyl. More specifically, R 3 is not present.
  • S1 of embodiment S is that where R 7 is hydrogen or alkyl and R 7a , and R 7b are independently hydrogen, alkyl, hydroxyalkyl, aminoalkyl, alkylaminoalkyl, or dialkylaminoalkyl; R 8 is hydrogen or alkyl and R 8a is heterocycloalkyl or heterocycloalkylalkyl; R 9 is hydrogen or alkyl and R 9a is hydrogen, heterocycloalkyl, or heterocycloalkylalkyl; and R 10 , R 10a , and R 10b are independently hydrogen, alkyl, hydroxyalkyl, aminoalkyl, alkylaminoalkyl, or dialkylaminoalkyl.
  • embodiment S2 is that where R 50 , R 52 , and R 53 are hydrogen and R 54 is halo or alkoxy; or R 50 , R 52 , and R 54 are hydrogen and R 53 is alkoxy; or R 50 and R 52 are hydrogen and R 53 and R 54 together with the carbons to which they are attached form a 6-membered heteroaryl.
  • R 50 , R 52 , and R 53 are hydrogen and R 54 is halo or alkoxy; or R 50 , R 52 , and R 54 are hydrogen and R 53 is alkoxy.
  • the compound is that where R 51 is methyl.
  • the Compound of Formula I is that where B is heteroaryl, one R 3 is halo, alkyl, or alkoxy and a second R 3 is —C(O)NR 8 R 8a , —NR 9 C(O)R 9a , —N(R 7 )C(O)—C 1 -C 6 -alkylene-N(R 7a )(R 7b ), or —C(O)N(R 10 )—C 1 -C 6 -alkylene-N(R 10a )R 10b where each of the alkylene in R 3 is independently optionally further substituted with 1, 2, 3, 4, or 5 groups selected from halo, hydroxy, and amino; and all other groups are as defined in the Summary of the Invention.
  • the compound is that where R 7 is hydrogen or alkyl and R 7a , and R 7b are independently hydrogen, alkyl, hydroxyalkyl, aminoalkyl, alkylaminoalkyl, or dialkylaminoalkyl; R 8 is hydrogen or alkyl and R 8a is heterocycloalkyl or heterocycloalkylalkyl; R 9 is hydrogen or alkyl and R 9a is hydrogen, heterocycloalkyl, or heterocycloalkylalkyl; R 10 , R 10a , and R 10b are independently hydrogen, alkyl, hydroxyalkyl, aminoalkyl, alkylaminoalkyl, or dialkylaminoalkyl.
  • each R 3 (when R 3 is present) is independently halo, alkyl, alkoxy, aminoalkyloxy, alkylaminoalkyloxy, dialkylaminoalkyloxy, alkylamino, dialkylamino, —C(O)NR 8 R 8a , —NR 9 C(O)R 9a , —N(R 7 )C(O)—C 1 -C 6 -alkylene-N(R 7a )(R 7b ), or —C(O)N(R 10 )—C 1 -C 6 -alkylene-N(R 10a )R 10b ; and all other groups are as defined in the Summary of the Invention.
  • the compound of Formula I is that where R 50 , R 52 , and R 53 are hydrogen and R 54 is halo or alkoxy; R 50 , R 52 , and R 54 are hydrogen and R 53 is alkoxy; or R 50 and R 52 are hydrogen and R 53 and R 54 together with the carbons to which they are attached form a 6-membered heteroaryl; and all other groups are as defined in the Summary of the Invention.
  • R 50 , R 52 , and R 53 are hydrogen and R 54 is halo or alkoxy; or R 50 , R 52 , and R 54 are hydrogen and R 53 is alkoxy.
  • the compound of Formula I is that where R 51 is methyl.
  • the Compound of Formula I is that where R 7 is hydrogen or alkyl and R 7a , and R 7b are independently hydrogen, alkyl, hydroxyalkyl, aminoalkyl, alkylaminoalkyl, or dialkylaminoalkyl; R 8 is hydrogen or alkyl and R 8a is heterocycloalkyl or heterocycloalkylalkyl; R 9 is hydrogen or alkyl and R 9a is hydrogen, heterocycloalkyl, or heterocycloalkylalkyl; R 10 , R 10a , and R 10b are independently hydrogen, alkyl, hydroxyalkyl, aminoalkyl, alkylaminoalkyl, or dialkylaminoalkyl
  • R 50 , R 53 , and R 54 are independently hydrogen, alkyl, alkenyl, halo, haloalkyl, haloalkenyl, hydroxy, alkoxy, alkenyloxy, haloalkoxy, nitro, amino, alkylamino, dialkylamino, —N(R 55 )C(O)—C 1 -C 6 -alkylene-N(R 55a )R 55b , alkylcarbonyl, alkenylcarbonyl, carboxy, alkoxycarbonyl, cyano, alkylthio, —S(O) 2 NR 55 R 55a , or alkylcarbonylamino and where R 55 and R 55b are independently hydrogen, alkyl, or alkenyl and R 55a is hydrogen, alkyl, alkenyl, hydroxy, or alkoxy; or R 53 and R 54 together with the carbons to which they are attached form
  • Another embodiment (X) of the invention is a Compound of Formula I where R 53 and R 54 together with the carbons to which they are attached form a 5- or 6-membered heteroaryl or 5- or 6-membered heterocycloalkyl.
  • Another specific embodiment of the invention is a pharmaceutical composition
  • a pharmaceutical composition comprising a compound of Formula I, Formula Ia, or a compound according the above Embodiments A-X and a pharmaceutically acceptable carrier, excipient, or diluent.
  • Another specific embodiment of the invention is a method of inhibiting PI3K in a cell, comprising contacting a cell in which inhibition of PI3K is desired with a compound of Formula I, Ia, or II or a compound according to Embodiments A-X.
  • the Compound is of Formula I or Ia.
  • Another specific embodiment of the invention is a method of treating a disease, disorder, or syndrome mediated by PI3K which method comprises administering to a patient a pharmaceutical composition comprising a therapeutically effective amount of a compound of Formula I, Ia, or II or a compound according to embodiments A-X.
  • the Compound is of Formula I or Ia. More specifically, the Compound is of Formula Ia.
  • the disease is cancer.
  • the cancer is breast cancer, colon cancer, rectal cancer, endometrial cancer, gastric carcinoma, glioblastoma, hepatocellular carcinoma, small cell lung cancer, non-small cell lung cancer, melanoma, ovarian cancer, cervical cancer, pancreatic cancer, prostate carcinoma, acute myelogenous leukemia (AML), chronic myelogenous leukemia (CML), or thyroid carcinoma.
  • the cancer is ovarian cancer, cervical cancer, breast cancer, colon cancer, rectal cancer, or glioblastoma.
  • Another aspect of the Invention is directed to employing the compounds of the invention in a method of screening for candidate agents that bind to, for example PI3K.
  • the protein is bound to a support, and a compound of the invention is added to the assay.
  • the compound of the invention is bound to the support and the protein is added.
  • Classes of candidate agents among which novel binding agents may be sought include specific antibodies, non-natural binding agents identified in screens of chemical libraries, peptide analogs, etc. Of particular interest are screening assays for candidate agents that have a low toxicity for human cells.
  • assays may be used for this purpose, including labeled in vitro protein-protein binding assays, electrophoretic mobility shift assays, immunoassays for protein binding, functional assays (phosphorylation assays, etc.) and the like.
  • the candidate agent (the compound of the invention) is labeled, for example, with a fluorescent or radioactive moiety and binding determined directly. For example, this may be done by attaching all or a portion of the PI3K protein to a solid support, adding a labeled agent (for example a compound of the invention in which at least one atom has been replaced by a detectable isotope), washing off excess reagent, and determining whether the amount of the label is that present on the solid support.
  • a labeled agent for example a compound of the invention in which at least one atom has been replaced by a detectable isotope
  • washing off excess reagent for example a compound of the invention in which at least one atom has been replaced by a detectable isotope
  • Various blocking and washing steps may be utilized as is known in the art.
  • label as used herein is meant to include both direct and indirect labeling with a compound that provides a detectable signal, for example, radioisotope, fluorescent tag, enzyme, antibodies, particles such as magnetic particles, chemiluminescent tag, or specific binding molecules, and the like.
  • Specific binding molecules include pairs, such as biotin and streptavidin, digoxin and antidigoxin, and the like.
  • the complementary member would normally be labeled with a molecule which provides for detection, in accordance with known procedures, as outlined above.
  • the label can directly or indirectly provide a detectable signal.
  • PI3K protein may be labeled at tyrosine positions using 125 I, or with fluorophores.
  • more than one component may be labeled with different labels; using 125 I for the proteins, for example, and a fluorophor for the candidate agents.
  • the compounds of the invention may also be used as competitors to screen for additional drug candidates.
  • candidate bioactive agent or “drug candidate” or grammatical equivalents as used herein describe any molecule, e.g., protein, oligopeptide, small organic molecule, polysaccharide, polynucleotide, etc., to be tested for bioactivity. They may be capable of directly or indirectly altering the cellular proliferation phenotype or the expression of a cellular proliferation sequence, including both nucleic acid sequences and protein sequences. In other cases, alteration of cellular proliferation protein binding and/or activity is screened. In the case where protein binding or activity is screened, some embodiments exclude molecules already known to bind to that particular protein. Exemplary embodiments of assays described herein include candidate agents, which do not bind the target protein in its endogenous native state, termed herein as “exogenous” agents. In one example, exogenous agents further exclude antibodies to PI3K.
  • Candidate agents can encompass numerous chemical classes, though typically they are organic molecules having a molecular weight of more than about 100 and less than about 2,500 daltons.
  • Candidate agents comprise functional groups necessary for structural interaction with proteins, particularly hydrogen bonding and lipophilic binding, and typically include at least an amine, carbonyl, hydroxyl, ether, or carboxyl group, for example at least two of the functional chemical groups.
  • the candidate agents often comprise cyclical carbon or heterocycloalkyl structures and/or aromatic or heteroaromatic structures substituted with one or more of the above functional groups.
  • Candidate agents are also found among biomolecules including peptides, saccharides, fatty acids, steroids, purines, pyrimidines, derivatives, structural analogs, or combinations thereof.
  • Candidate agents are obtained from a wide variety of sources including libraries of synthetic or natural compounds. For example, numerous means are available for random and directed synthesis of a wide variety of organic compounds and biomolecules, including expression of randomized oligonucleotides. Alternatively, libraries of natural compounds in the form of bacterial, fungal, plant and animal extracts are available or readily produced. Additionally, natural or synthetically produced libraries and compounds are readily modified through conventional chemical, physical and biochemical means. Known pharmacological agents may be subjected to directed or random chemical modifications, such as acylation, alkylation, esterification, amidification to produce structural analogs.
  • the binding of the candidate agent is determined through the use of competitive binding assays.
  • the competitor is a binding moiety known to bind to IGF1R, such as an antibody, peptide, binding partner, ligand, etc. Under certain circumstances, there may be competitive binding as between the candidate agent and the binding moiety, with the binding moiety displacing the candidate agent.
  • the candidate agent is labeled. Either the candidate agent, or the competitor, or both, is added first to PI3K protein for a time sufficient to allow binding, if present. Incubations may be performed at any temperature that facilitates optimal activity, typically between 4° C. and 40° C.
  • Incubation periods are selected for optimum activity, but may also be optimized to facilitate rapid high throughput screening. Typically between 0.1 and 1 hour will be sufficient. Excess reagent is generally removed or washed away. The second component is then added, and the presence or absence of the labeled component is followed, to indicate binding.
  • the competitor is added first, followed by the candidate agent.
  • Displacement of the competitor is an indication the candidate agent is binding to PI3K and thus is capable of binding to, and potentially modulating, the activity of the PI3K.
  • either component can be labeled.
  • the presence of label in the wash solution indicates displacement by the agent.
  • the candidate agent is labeled, the presence of the label on the support indicates displacement.
  • the candidate agent is added first, with incubation and washing, followed by the competitor.
  • the absence of binding by the competitor may indicate the candidate agent is bound to PI3K with a higher affinity.
  • the candidate agent is labeled, the presence of the label on the support, coupled with a lack of competitor binding, may indicate the candidate agent is capable of binding to PI3K.
  • PI3K binding site of PI3K. This can be done in a variety of ways. In one embodiment, once PI3K is identified as binding to the candidate agent, the PI3K is fragmented or modified and the assays repeated to identify the necessary components for binding.
  • Modulation is tested by screening for candidate agents capable of modulating the activity of PI3K comprising the steps of combining a candidate agent with PI3K, as above, and determining an alteration in the biological activity of the PI3K.
  • the candidate agent should both bind to (although this may not be necessary), and alter its biological or biochemical activity as defined herein.
  • the methods include both in vitro screening methods and in vivo screening of cells for alterations in cell viability, morphology, and the like.
  • differential screening may be used to identify drug candidates that bind to native PI3K, but cannot bind to modified PI3K.
  • Positive controls and negative controls can be used in the assays. For example, all control and test samples are performed in at least triplicate to obtain statistically significant results. Incubation of samples is for a time sufficient for the binding of the agent to the protein. Following incubation, samples are washed free of non-specifically bound material and the amount of bound, generally labeled agent determined. For example, where a radiolabel is employed, the samples can be counted in a scintillation counter to determine the amount of bound compound.
  • reagents can be included in the screening assays. These include reagents like salts, neutral proteins, e.g., albumin, detergents, etc which may be used to facilitate optimal protein-protein binding and/or reduce non-specific or background interactions. Also reagents that otherwise improve the efficiency of the assay, such as protease inhibitors, nuclease inhibitors, anti-microbial agents, etc., may be used. The mixture of components can be added in any order that provides for the requisite binding.
  • Another aspect of the invention is directed to suitable x-ray quality crystals, and one of ordinary skill in the art would appreciate that they can be used as part of a method of identifying a candidate agent capable of binding to and modulating the activity of kinases.
  • Such methods may be characterized by the following aspects: a) introducing into a suitable computer program, information defining a ligand binding domain of a kinase in a conformation (e.g.
  • aspects a-d are not necessarily carried out in the aforementioned order. Such methods may further entail: performing rational drug design with the model of the three-dimensional structure, and selecting a potential candidate agent in conjunction with computer modeling.
  • Such methods may further entail: employing a candidate agent, so-determined to fit spatially into the ligand binding domain, in a biological activity assay for kinase modulation, and determining whether said candidate agent modulates kinase activity in the assay. Such methods may also include administering the candidate agent, determined to modulate kinase activity, to a mammal suffering from a condition treatable by kinase modulation, such as those described above.
  • compounds of the invention can be used in a method of evaluating the ability of a test agent to associate with a molecule or molecular complex comprising a ligand binding domain of a kinase.
  • a method may be characterized by the following aspects: a) creating a computer model of a kinase binding pocket using structure coordinates obtained from suitable x-ray quality crystals of the kinase, b) employing computational algorithms to perform a fitting operation between the test agent and the computer model of the binding pocket, and c) analyzing the results of the fitting operation to quantify the association between the test agent and the computer model of the binding pocket.
  • the invention provides pharmaceutical compositions comprising an inhibitor of PI3K according to the invention and a pharmaceutically acceptable carrier, excipient, or diluent.
  • administration may specifically be by the oral route.
  • Administration of the compounds of the invention, or their pharmaceutically acceptable salts, in pure form or in an appropriate pharmaceutical composition, can be carried out via any of the accepted modes of administration or agents for serving similar utilities.
  • administration can be, for example, orally, nasally, parenterally (intravenous, intramuscular, or subcutaneous), topically, transdermally, intravaginally, intravesically, intracistemally, or rectally, in the form of solid, semi-solid, lyophilized powder, or liquid dosage forms, such as for example, tablets, suppositories, pills, soft elastic and hard gelatin capsules, powders, solutions, suspensions, or aerosols, or the like, specifically in unit dosage forms suitable for simple administration of precise dosages.
  • compositions will include a conventional pharmaceutical carrier or excipient and a compound of the invention as the/an active agent, and, in addition, may include carriers and adjuvants, etc.
  • Adjuvants include preserving, wetting, suspending, sweetening, flavoring, perfuming, emulsifying, and dispensing agents. Prevention of the action of microorganisms can be ensured by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, and the like. It may also be desirable to include isotonic agents, for example sugars, sodium chloride, and the like. Prolonged absorption of the injectable pharmaceutical form can be brought about by the use of agents delaying absorption, for example, aluminum monostearate and gelatin.
  • a pharmaceutical composition of the invention may also contain minor amounts of auxiliary substances such as wetting or emulsifying agents, pH buffering agents, antioxidants, and the like, such as, for example, citric acid, sorbitan monolaurate, triethanolamine oleate, butylated hydroxytoluene, etc.
  • auxiliary substances such as wetting or emulsifying agents, pH buffering agents, antioxidants, and the like, such as, for example, citric acid, sorbitan monolaurate, triethanolamine oleate, butylated hydroxytoluene, etc.
  • formulation depends on various factors such as the mode of drug administration (e.g., for oral administration, formulations in the form of tablets, pills or capsules) and the bioavailability of the drug substance.
  • pharmaceutical formulations have been developed especially for drugs that show poor bioavailability based upon the principle that bioavailability can be increased by increasing the surface area i.e., decreasing particle size.
  • U.S. Pat. No. 4,107,288 describes a pharmaceutical formulation having particles in the size range from 10 to 1,000 nm in which the active material is supported on a crosslinked matrix of macromolecules.
  • 5,145,684 describes the production of a pharmaceutical formulation in which the drug substance is pulverized to nanoparticles (average particle size of 400 nm) in the presence of a surface modifier and then dispersed in a liquid medium to give a pharmaceutical formulation that exhibits remarkably high bioavailability.
  • compositions suitable for parenteral injection may comprise physiologically acceptable sterile aqueous or nonaqueous solutions, dispersions, suspensions or emulsions, and sterile powders for reconstitution into sterile injectable solutions or dispersions.
  • suitable aqueous and nonaqueous carriers, diluents, solvents or vehicles include water, ethanol, polyols (propyleneglycol, polyethyleneglycol, glycerol, and the like), suitable mixtures thereof, vegetable oils (such as olive oil) and injectable organic esters such as ethyl oleate.
  • Proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersions and by the use of surfactants.
  • One specific route of administration is oral, using a convenient daily dosage regimen that can be adjusted according to the degree of severity of the disease-state to be treated.
  • Solid dosage forms for oral administration include capsules, tablets, pills, powders, and granules.
  • the active compound is admixed with at least one inert customary excipient (or carrier) such as sodium citrate or dicalcium phosphate or
  • fillers or extenders as for example, starches, lactose, sucrose, glucose, mannitol, and silicic acid
  • binders as for example, cellulose derivatives, starch, alignates, gelatin, polyvinylpyrrolidone, sucrose, and gum acacia
  • humectants as for example, glycerol
  • disintegrating agents as for example, agar-agar, calcium carbonate, potato or tapioca starch, alginic acid, croscarmellose sodium, complex silicates, and sodium carbonate
  • solution retarders as for example paraffin
  • absorption accelerators as for example, quaternary
  • Solid dosage forms as described above can be prepared with coatings and shells, such as enteric coatings and others well known in the art. They may contain pacifying agents, and can also be of such composition that they release the active compound or compounds in a certain part of the intestinal tract in a delayed manner. Examples of embedded compositions that can be used are polymeric substances and waxes. The active compounds can also be in microencapsulated form, if appropriate, with one or more of the above-mentioned excipients.
  • Liquid dosage forms for oral administration include pharmaceutically acceptable emulsions, solutions, suspensions, syrups, and elixirs. Such dosage forms are prepared, for example, by dissolving, dispersing, etc., a compound(s) of the invention, or a pharmaceutically acceptable salt or solvate thereof, and optional pharmaceutical adjuvants in a carrier, such as, for example, water, saline, aqueous dextrose, glycerol, ethanol and the like; solubilizing agents and emulsifiers, as for example, ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propyleneglycol, 1,3-butyleneglycol, dimethylformamide; oils, in particular, cottonseed oil, groundnut oil, corn germ oil, olive oil, castor oil and sesame oil, glycerol, tetrahydrofurfuryl
  • Suspensions in addition to the active compounds, may contain suspending agents, as for example, ethoxylated isostearyl alcohols, polyoxyethylene sorbitol and sorbitan esters, microcrystalline cellulose, aluminum metahydroxide, bentonite, agar-agar and tragacanth, or mixtures of these substances, and the like.
  • suspending agents as for example, ethoxylated isostearyl alcohols, polyoxyethylene sorbitol and sorbitan esters, microcrystalline cellulose, aluminum metahydroxide, bentonite, agar-agar and tragacanth, or mixtures of these substances, and the like.
  • compositions for rectal administrations are, for example, suppositories that can be prepared by mixing the compounds of the present invention with for example suitable non-irritating excipients or carriers such as cocoa butter, polyethyleneglycol or a suppository wax, which are solid at ordinary temperatures but liquid at body temperature and therefore, melt while in a suitable body cavity and release the active component therein.
  • suitable non-irritating excipients or carriers such as cocoa butter, polyethyleneglycol or a suppository wax, which are solid at ordinary temperatures but liquid at body temperature and therefore, melt while in a suitable body cavity and release the active component therein.
  • Dosage forms for topical administration of a compound of this invention include ointments, powders, sprays, and inhalants.
  • the active component is admixed under sterile conditions with a physiologically acceptable carrier and any preservatives, buffers, or propellants as may be required.
  • Ophthalmic formulations, eye ointments, powders, and solutions are also contemplated as being within the scope of this invention.
  • Compressed gases may be used to disperse a compound of this invention in aerosol form.
  • Inert gases suitable for this purpose are nitrogen, carbon dioxide, etc.
  • the pharmaceutically acceptable compositions will contain about 1% to about 99% by weight of a compound(s) of the invention, or a pharmaceutically acceptable salt or solvate thereof, and 99% to 1% by weight of a suitable pharmaceutical excipient.
  • the composition will be between about 5% and about 75% by weight of a compound(s) of the invention, or a pharmaceutically acceptable salt or solvate thereof, with the rest being suitable pharmaceutical excipients.
  • composition to be administered will, in any event, contain a therapeutically effective amount of a compound of the invention, or a pharmaceutically acceptable salt or solvate thereof, for treatment of a disease-state in accordance with the teachings of this invention.
  • the compounds of the invention are administered in a therapeutically effective amount which will vary depending upon a variety of factors including the activity of the specific compound employed, the metabolic stability and length of action of the compound, the age, body weight, general health, sex, diet, mode and time of administration, rate of excretion, drug combination, the severity of the particular disease-states, and the host undergoing therapy.
  • the compounds of the present invention can be administered to a patient at dosage levels in the range of about 0.1 to about 1,000 mg per day. For a normal human adult having a body weight of about 70 kilograms, a dosage in the range of about 0.01 to about 100 mg per kilogram of body weight per day is an example. The specific dosage used, however, can vary.
  • the dosage can depend on a number of factors including the requirements of the patient, the severity of the condition being treated, and the pharmacological activity of the compound being used.
  • the determination of optimum dosages for a particular patient is well known to one of ordinary skill in the art.
  • Certain compounds of this invention have been tested using the assay described in Biological Example 1 and have been determined to be PI3K inhibitors.
  • compounds of Formula I are useful for treating diseases, particularly cancer in which PI3K activity contributes to the pathology and/or symptomotology of the disease.
  • cancer in which PI3K activity contributes to its pathology and/or symptomotology include breast cancer, colorectal cancer, endometrial cancer, gastric carcinoma, glioblastoma, hepatocellular carcinoma, small cell lung cancer, non-small cell lung cancer, melanoma, ovarian cancer, pancreatic cancer, prostate carcinoma, and thyroid carcinoma, and the like.
  • Suitable in vitro assays for measuring PI3K activity and the inhibition thereof by compounds are known. Typically, the assay will measure PI3K-induced ATP consumption.
  • an in vitro assay for measuring PI3K activity see Biological Examples, Example 1 infra.
  • Cellular activity can be determined using assays as described in Biological Examples 2, 3, and 4 infra.
  • Suitable in vivo models of cancer are known to those of ordinary skill in the art.
  • in vivo assays see Biological Examples 5-10, infra. Following the examples disclosed herein, as well as that disclosed in the art, a person of ordinary skill in the art can determine the inhibitory activity of a compound of this invention.
  • the reactions described herein take place at atmospheric pressure and over a temperature range from about ⁇ 78° C. to about 150° C., more specifically from about 0° C. to about 125° C. and most specifically at about room (or ambient) temperature, e.g., about 20° C. Unless otherwise stated (as in the case of an hydrogenation), all reactions are performed under an atmosphere of nitrogen.
  • Prodrugs can be prepared by techniques known to one skilled in the art. These techniques generally modify appropriate functional groups in a given compound. These modified functional groups regenerate original functional groups by routine manipulation or in vivo. Amides and esters of the compounds of the present invention may be prepared according to conventional methods. A thorough discussion of prodrugs is provided in T. Higuchi and V. Stella, “Pro-drugs as Novel Delivery Systems,” Vol 14 of the A.C.S. Symposium Series, and in Bioreversible Carriers in Drug Design, ed. Edward B. Roche, American Pharmaceutical Association and Pergamon Press, 1987, both of which are incorporated herein by reference for all-purposes.
  • the compounds of the invention may have asymmetric carbon atoms or quaternized nitrogen atoms in their structure.
  • Compounds of Formula I that may be prepared through the syntheses described herein may exist as single stereoisomers, racemates, and as mixtures of enantiomers and diastereomers.
  • the compounds may also exist as geometric isomers. All such single stereoisomers, racemates and mixtures thereof, and geometric isomers are intended to be within the scope of this invention.
  • Some of the compounds of the invention may exist as tautomers.
  • the molecule may exist in the enol form; where an amide is present, the molecule may exist as the imidic acid; and where an enamine is present, the molecule may exist as an imine. All such tautomers are within the scope of the invention.
  • B can be 2-hydroxy-pyridinyl, also described as its structure:
  • Both 2-hydroxy-pyridinyl and the above structure 14 include, and are equivalent to, pyridin-2(1H)-one and its structure 15:
  • the present invention also includes N-oxide derivatives and protected derivatives of compounds of Formula I.
  • compounds of Formula I when compounds of Formula I contain an oxidizable nitrogen atom, the nitrogen atom can be converted to an N-oxide by methods well known in the art.
  • compounds of Formula I When compounds of Formula I contain groups such as hydroxy, carboxy, thiol or any group containing a nitrogen atom(s), these groups can be protected with a suitable “protecting group” or “protective group”.
  • a comprehensive list of suitable protective groups can be found in T. W. Greene, Protective Groups in Organic Synthesis , John Wiley & Sons, Inc. 1991, the disclosure of which is incorporated herein by reference in its entirety.
  • the protected derivatives of compounds of Formula I can be prepared by methods well known in the art.
  • optically active (R)- and (S)-isomers may be prepared using chiral synthons or chiral reagents, or resolved using conventional techniques.
  • Enantiomers may be resolved by methods known to one of ordinary skill in the art, for example by: formation of diastereoisomeric salts or complexes which may be separated, for example, by crystallization; via formation of diastereoisomeric derivatives which may be separated, for example, by crystallization, selective reaction of one enantiomer with an enantiomer-specific reagent, for example enzymatic oxidation or reduction, followed by separation of the modified and unmodified enantiomers; or gas-liquid or liquid chromatography in a chiral environment, for example on a chiral support, such as silica with a bound chiral ligand or in the presence of a chiral solvent.
  • enantiomer may be synthesized by asymmetric synthesis using optically active reagents, substrates, catalysts or solvents or by converting on enantiomer to the other by asymmetric transformation.
  • enantiomer enriched in a particular enantiomer, the major component enantiomer may be further enriched (with concomitant loss in yield) by recrystallization.
  • the compounds of the present invention can exist in unsolvated as well as solvated forms with pharmaceutically acceptable solvents such as water, ethanol, and the like.
  • the solvated forms are considered equivalent to the unsolvated forms for the purposes of the present invention.
  • Compounds of Formula I can be prepared using methods known to one of ordinary skill in the art. Specifically, fusion of appropriate reagents at 180° C. in the presence of a base such as K 2 CO 3 and metallic copper is known to provide intermediates of formula 1 (see S. H. Dandegaonker and C. K. Mesta, J. Med. Chem. 1965, 8, 884).
  • each LG 1 is a leaving group (specifically, halo, more specifically,
  • an intermediate of formula 3 can be prepared by briefly heating commercially available 2,3-dichloroquinoxaline and an intermediate of formula 2 (which are commercially available or can be prepared by one of ordinary skill in the art), a base such as K 2 CO 3 , in a solvent, such as DMF or DMSO. Upon completion (about 2 hours), the reaction mixture is then poured into water and followed by 2 N HCl. The product is then extracted into a solvent such as ethyl acetate and washed with water and brine. The organic layers are combined and dried over a drying agent such as sodium sulfate, filtered, and concentrated under vacuum.
  • a base such as K 2 CO 3
  • a solvent such as DMF or DMSO
  • the intermediate of formula 3 is then treated with an intermediate of formula 4 in a solvent such as DMF or p-xylene at reflux temperature. Upon completion of the reaction (about 16 hours or less), the reaction is allowed to cool, extracted into DCM, washed with 2 N HCl and brine, dried over a drying agent such as sodium sulfate or magnesium sulfate, filtered, and concentrated to give a compound of Formula I.
  • a solvent such as DMF or p-xylene at reflux temperature.
  • quinoxaline derivatives include, but are not limited to S. V. Litvinenko, V. I. Savich, D. D. Bobrovnik, Chem. Heterocycl. Compd . (Engl. Transl), 1994, 30, 340 and W. C. Lumma, R. D. Hartman, J. Med. Chem. 1981, 24, 93.
  • LG is a leaving group such as chloro. 5 is reacted with NHR a R b or HO—C 1 -C 6 -alkylene-NHR a R b where R a and R b are independently hydrogen or alkyl. The reaction is carried out in the presence of a base, such as KHCO 3 , in a solvent such as DMF.
  • a base such as KHCO 3
  • the reaction is carried out in the presence of a base such as NaH in a solvent such as DMF.
  • R 100 in Scheme 4 is —C(O)R 9a , —C(O)NR 11a R 11b , —C(O)OR 13a , —C(O)—C 1 -C 6 -alkylene-N(R 18b )C(O)R 18a , —C(O)—C 1 -C 6 -alkylene-C(O)R 20a , or —S(O) 2 R—C 1 -C 6 -alkylene-N(R 21b )R a .
  • the reaction is carried out under standard amide coupling conditions known to one of ordinary skill in the art.
  • reaction is carried out in the presence of a coupling agent such as HATU, a base such as DIEA, and in a solvent such as DMF.
  • a coupling agent such as HATU
  • a base such as DIEA
  • a solvent such as DMF.
  • the N-protecting group is then removed using procedures known to one of ordinary skill in the art, such as treating with acid where PG is Boc.
  • LG is a leaving group such as bromo or chloro. 12 is reacted with NH(R 7b )R 7a in the presence of a base, such as DIEA, in a solvent such as ACN.
  • a base such as DIEA
  • LG in Scheme 6 is a leaving group such as chloro.
  • the reaction can be carried out by irradiating in a solvent such as DMA. Alternatively, the reaction can be carried out in the presence of acetic acid in a solvent such as DMA and by heating.
  • 6-chloropyridine-3-sulfonamide 6-chloropyridine-3-sulfonyl chloride (4.1 g, 19.3 mmol) was stirred in ammonium hydroxide (30 mL) at room temperature for 2 hr. The reaction mixture was diluted with EtOAc (150 mL) and any insoluble material filtered. The filtrate was transferred to a separatory funnel and the phases were separated. The aqueous phase was further extracted with EtOAc (1 ⁇ 15 mL).
  • 6-chloro-N-(3-chloroquinoxalin-2-yl)pyridine-3-sulfonamide 2,3-dichloroquinoxaline (1.09 g, 5.48 mmol), 6-chloropyridine-3-sulfonamide (1.05 g, 5.45 mmol), K 2 CO 3 (753 mg, 5.45 mmol) and dry DMSO (30 mL) were combined and heated to 150° C. with vigorous stirring for 3-4 hr. The reaction mixture was allowed to cool to room temperature, then poured into 1% AcOH in ice water (300 mL) with vigorous stirring.
  • 6-chloro-N-(3-(3,5-dimethoxyphenylamino)quinoxalin-2-yl)pyridine-3-sulfonamide 6-Chloro-N-(3-chloroquinoxalin-2-yl)pyridine-3-sulfonamide (775 mg, 2.2 mmol), 3,5-dimethoxyaniline (355 mg, 2.3 mmol) and toluene (12 mL) were combined and heated to 125° C. with stirring overnight. The reaction was allowed to cool to room temperature and diluted with Et 2 O with vigorous stirring.
  • 6-chloro-N-(3-(3,5-dimethoxyphenylamino)quinoxalin-2-yl)-pyridine-3-sulfonamide (100 mg, 0.21 mmol), prepared using procedures similar to those used in Example 8, KHCO 3 (40 mg, 0.40 mmol), N 1 ,N 1 -dimethylethane-1,2-diamine (225 ⁇ L, 2.0 mmol) and dry DMF (1.0 mL) were combined and heated to 130° C. with stirring overnight.
  • N-(3-(3,5-dimethoxyphenylamino)quinoxalin-2-yl)-6-(dimethylamino)pyridine-3-sulfonamide was prepared using procedures similar to those used in Example 9.
  • N-(3-(3,5-dimethoxyphenylamino)quinoxalin-2-yl)pyridine-3-sulfonamide (100 mg, 0.21 mmol), prepared using procedures similar to those described above in Example 1, 2-(dimethylamino)ethanol (50 ⁇ L, 0.50 mmol) and dry DMF were combined and 60% NaH in oil (80 mg, 2.0 mmol) was added. The mixture was stirred at room temperature overnight.
  • N-(3-(3,5-dimethoxyphenylamino)quinoxalin-2-yl)pyridine-3-sulfonamide (220 mg, 0.47 mmol), prepared using procedures similar to those described above in Example 8, DMSO (5 mL), and 3N NaOH (5 mL) are combined and heated to 100° C. overnight with stirring. Upon cooling to room temperature, the reaction mixture was diluted with H 2 O and the pH was adjusted to 7.0 with 1N HCl. The resulting solid was filtered, washed with H 2 O, and air-dried.
  • N-(3-(3,5-dimethoxyphenylamino)quinoxalin-2-yl)-3-nitrobenzenesulfonamide A flask was charged with N-(3-chloroquinoxalin-2-yl)-3-nitrobenzenesulfonamide (5 g, 13.7 mmol), prepared using procedures similar to those in Example 1, 3,5-dimethoxyaniline (4.2 g, 27.4 mmol), and 80 mL of xylene. The reaction mixture was stirred under an N 2 atmosphere at 150° C. for 3 hours, after which time, solvent was removed on a rotary evaporator, and 10 mL of Dichloromethane and 50 mL of methanol were added.
  • N-(3- ⁇ [2-chloro-5-(methoxy)-phenyl]amino ⁇ quinoxalin-2-yl)-3-cyanobenzenesulfonamide (6.02 g, 12.95 mmol), prepared using procedures similar to those in Example 115 or Example 423, in methanol (20 mL) and 1,4-dioxane (20 mL) was added 6.0 N aqueous sodium hydroxide (40 mL) at room temperature. The solution was stirred at 90° C. for 3.5 h. The reaction was cooled to room temperature and neutralized slowly by adding 2.0 N hydrochloric acid until the pH of the solution became in the 2-3 range at 0° C.
  • the reaction was stirred for 15 min before N,N-dimethylethane-1,2-diamine (73 mg, 0.83 mmol) was added. The reaction mixture was allowed to stir overnight. The reaction was diluted with ethyl acetate (200 mL) and washed with water (50 mL), saturated aqueous sodium bicarbonate (40 mL), 1.0 N aqueous hydrochloric acid (30 mL), and saturated aqueous sodium chloride (25 mL).
  • N-(3-(3-methoxy-5-nitrophenylamino)quinoxalin-2-yl)-3-nitro-benzenesulfonamide N-(3-chloroquinoxalin-2-yl)-3-nitrobenzenesulfonamide (700 mg, 1.92 mmol), 3-methoxy-5-nitroaniline (645 mg, 3.84 mmol) and p-xylene (7 mL) were combined and heated to 140° C., then stirred for 16 hours at 130° C. The reaction was allowed to cool, placed in a sep. funnel, diluted with DCM, and washed with 2M HCl and brine and concentrated in vacuo.
  • Preparative reverse-phase HPLC was used to isolate the desired product directly from the crude reaction mixture.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Epidemiology (AREA)
  • Endocrinology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Diabetes (AREA)
  • Hematology (AREA)
  • Pulmonology (AREA)
  • Reproductive Health (AREA)
  • Urology & Nephrology (AREA)
  • Dermatology (AREA)
  • Oncology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
US11/988,862 2005-10-07 2006-10-09 Phosphatidylinositol 3-kinase inhibitors and methods of their use Active 2027-10-12 US7989622B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/988,862 US7989622B2 (en) 2005-10-07 2006-10-09 Phosphatidylinositol 3-kinase inhibitors and methods of their use

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US72457005P 2005-10-07 2005-10-07
US81269006P 2006-06-08 2006-06-08
PCT/US2006/039574 WO2007044729A2 (en) 2005-10-07 2006-10-09 N- (3-amino-quinoxalin-2-yl) -sulfonamide derivatives and their use as phosphatidylinositol 3-kinase inhibitors
US11/988,862 US7989622B2 (en) 2005-10-07 2006-10-09 Phosphatidylinositol 3-kinase inhibitors and methods of their use

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2006/039574 A-371-Of-International WO2007044729A2 (en) 2005-10-07 2006-10-09 N- (3-amino-quinoxalin-2-yl) -sulfonamide derivatives and their use as phosphatidylinositol 3-kinase inhibitors

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/096,942 Division US8889664B2 (en) 2005-10-07 2011-04-28 Phosphatidylinositol 3-kinase inhibitors and methods of their use

Publications (2)

Publication Number Publication Date
US20100087440A1 US20100087440A1 (en) 2010-04-08
US7989622B2 true US7989622B2 (en) 2011-08-02

Family

ID=37847021

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/988,862 Active 2027-10-12 US7989622B2 (en) 2005-10-07 2006-10-09 Phosphatidylinositol 3-kinase inhibitors and methods of their use
US13/096,942 Active US8889664B2 (en) 2005-10-07 2011-04-28 Phosphatidylinositol 3-kinase inhibitors and methods of their use

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13/096,942 Active US8889664B2 (en) 2005-10-07 2011-04-28 Phosphatidylinositol 3-kinase inhibitors and methods of their use

Country Status (24)

Country Link
US (2) US7989622B2 (sl)
EP (2) EP2364974A1 (sl)
JP (3) JP5270353B2 (sl)
KR (3) KR101396783B1 (sl)
CN (2) CN103819416A (sl)
AU (1) AU2006302179C1 (sl)
BR (1) BRPI0617162B8 (sl)
CA (1) CA2623768C (sl)
DK (1) DK1931645T3 (sl)
EA (2) EA019255B1 (sl)
ES (1) ES2513165T3 (sl)
GE (1) GEP20115199B (sl)
HK (1) HK1119697A1 (sl)
HR (1) HRP20140975T1 (sl)
IL (2) IL190198A (sl)
NO (1) NO341737B1 (sl)
NZ (3) NZ608667A (sl)
PL (1) PL1931645T3 (sl)
PT (1) PT1931645E (sl)
RS (1) RS53627B1 (sl)
SI (1) SI1931645T1 (sl)
UA (1) UA116188C2 (sl)
WO (1) WO2007044729A2 (sl)
ZA (1) ZA200802485B (sl)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100075947A1 (en) * 2006-08-16 2010-03-25 Exelixis, Inc. Methods of Using PI3K and MEK Modulators
US20100130557A1 (en) * 2007-03-16 2010-05-27 Boehringer Ingelheim International Gmbh Substituted arylsulphonylglycines, the preparation thereof and the use thereof as pharmaceutical compositions
US20100210595A1 (en) * 2007-07-27 2010-08-19 Boehringer Ingelheim International Gmbh Substituted arylsulfonylaminomethylphosphonic acid derivatives, their preparation and their use in the treatment of type i and ii diabetes mellitus
US20100209420A1 (en) * 2007-04-10 2010-08-19 Exelixis, Inc. Methods of treating cancer using pyridopyrimidinone inhibitors of p13k alpha
US20100210594A1 (en) * 2007-07-27 2010-08-19 Boehringer Ingelheim International Gmbh Substituted arylsulfonylaminomethylphosphonic acid derivatives, their preparation and their use in the treatment of type i and ii diabetes mellitus
US20100261677A1 (en) * 2007-09-05 2010-10-14 Boehringer Ingelheim International Gmbh Arylsulfonylaminomethylphosphonic acid derivatives, the preparation thereof and the use thereof as pharmaceutical compositions
US20110123434A1 (en) * 2007-04-11 2011-05-26 Exelixis, Inc Combination therapies comprising quinoxaline inhibitors of p13k-alpha for use in the treatment of cancer
US20110207712A1 (en) * 2005-10-07 2011-08-25 Exelixis, Inc. Phosphatidylinositol 3-Kinase Inhibitors And Methods Of Their Use
US20110237608A1 (en) * 2005-10-07 2011-09-29 Exelixis, Inc. Pyridopyrimidinone Inhibitors of PI3Kalpha
US8901137B2 (en) 2010-02-09 2014-12-02 Exelixis, Inc. Methods of treating cancer using pyridopyrimidinone inhibitors of PI3K and mTOR in combination with autophagy inhibitors
US10053470B2 (en) 2010-09-14 2018-08-21 Exelixis, Inc. Inhibitors of PI3K-delta and methods of their use and manufacture
US10328069B2 (en) 2011-11-01 2019-06-25 Exelixis, Inc. Phosphatidylinositol 3-kinase inhibitors for the treatment of lymphoproliferative malignancies
WO2020010177A1 (en) 2018-07-06 2020-01-09 Kymera Therapeutics, Inc. Tricyclic crbn ligands and uses thereof
US10874743B2 (en) 2017-12-26 2020-12-29 Kymera Therapeutics, Inc. IRAK degraders and uses thereof
US11117889B1 (en) 2018-11-30 2021-09-14 Kymera Therapeutics, Inc. IRAK degraders and uses thereof
US11358948B2 (en) 2017-09-22 2022-06-14 Kymera Therapeutics, Inc. CRBN ligands and uses thereof
US11485743B2 (en) 2018-01-12 2022-11-01 Kymera Therapeutics, Inc. Protein degraders and uses thereof
US11485750B1 (en) 2019-04-05 2022-11-01 Kymera Therapeutics, Inc. STAT degraders and uses thereof
US11512080B2 (en) 2018-01-12 2022-11-29 Kymera Therapeutics, Inc. CRBN ligands and uses thereof
US11591332B2 (en) 2019-12-17 2023-02-28 Kymera Therapeutics, Inc. IRAK degraders and uses thereof
US11623932B2 (en) 2017-09-22 2023-04-11 Kymera Therapeutics, Inc. Protein degraders and uses thereof
US11679109B2 (en) 2019-12-23 2023-06-20 Kymera Therapeutics, Inc. SMARCA degraders and uses thereof
US11685750B2 (en) 2020-06-03 2023-06-27 Kymera Therapeutics, Inc. Crystalline forms of IRAK degraders
US11707457B2 (en) 2019-12-17 2023-07-25 Kymera Therapeutics, Inc. IRAK degraders and uses thereof
US11932624B2 (en) 2020-03-19 2024-03-19 Kymera Therapeutics, Inc. MDM2 degraders and uses thereof
US12006329B2 (en) 2022-08-18 2024-06-11 Kymera Therapeutics, Inc. Protein degraders and uses thereof

Families Citing this family (182)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1790342A1 (de) 2005-11-11 2007-05-30 Zentaris GmbH Pyridopyrazin-Derivate und deren Verwendung als Modulatoren der Signaltransduktionswege
US8217042B2 (en) 2005-11-11 2012-07-10 Zentaris Gmbh Pyridopyrazines and their use as modulators of kinases
CN101663283B (zh) * 2007-02-22 2014-04-09 默克雪兰诺有限公司 喹喔啉化合物及其用途
EP2154965A4 (en) * 2007-05-29 2011-08-17 Glaxosmithkline Llc NAPHTHYRIDINE DERIVATIVES AS P13 KINASE INHIBITORS
AR066879A1 (es) * 2007-06-08 2009-09-16 Novartis Ag Derivados de quinoxalina como inhibidores de la actividad de cinasa de tirosina de las cinasas janus
WO2009017838A2 (en) * 2007-08-01 2009-02-05 Exelixis, Inc. Combinations of jak-2 inhibitors and other agents
WO2009021083A1 (en) * 2007-08-09 2009-02-12 Smithkline Beecham Corporation Quinoxaline derivatives as pi3 kinase inhibitors
WO2009139886A2 (en) * 2008-05-14 2009-11-19 University Of Pittsburgh-Of The Commonwealth System Of Higher Education Targeting an hiv-1 nef-host cell kinase complex
TW201010984A (en) * 2008-07-29 2010-03-16 Boehringer Ingelheim Int 5-alkynyl-pyrimidines
WO2010053182A1 (ja) 2008-11-10 2010-05-14 協和発酵キリン株式会社 キヌレニン産生抑制剤
CN102574782B (zh) * 2009-10-21 2014-10-08 拜耳知识产权有限责任公司 取代的卤代苯氧基苯甲酰胺衍生物
KR20130028058A (ko) * 2010-02-03 2013-03-18 엠이에이치 어소시에이츠, 인코포레이티드 선택적 및 생활성 동배체로서의 다수 치환된 플루오로메탄류
EP2531194B1 (en) 2010-02-03 2018-04-18 Signal Pharmaceuticals, LLC Identification of lkb1 mutation as a predictive biomarker for sensitivity to tor kinase inhibitors
TWI535442B (zh) 2010-05-10 2016-06-01 Kyowa Hakko Kirin Co Ltd A nitrogen-containing heterocyclic compound having an action of inhibiting the production of canine erythritine
US9011863B2 (en) * 2010-07-09 2015-04-21 Exelixis, Inc. Combinations of kinase inhibitors for the treatment of cancer
BR112013009643A2 (pt) 2010-10-20 2016-07-19 Merck Serono S A Geneva método para preparar n-(3-amino-quinoxalin-2-il)-sulfonamidas substituídas e seus intermediários n-(3-cloo-quinoxalin-2-il)-sulfonamidas
DE102010048800A1 (de) 2010-10-20 2012-05-10 Merck Patent Gmbh Chinoxalinderivate
WO2012065057A2 (en) 2010-11-12 2012-05-18 Exelixis, Inc. Phosphatidylinositol 3-kinase inhibitors and methods of their use
US20140066431A1 (en) * 2010-11-15 2014-03-06 Exelixis, Inc. Benzoxazepines as Inhibitors of PI3K/mTOR and Methods of Their Use and Manufacture
EP2640366A2 (en) * 2010-11-15 2013-09-25 Exelixis, Inc. Benzoxazepines as inhibitors of pi3k/mtor and methods of their use and manufacture
US8754114B2 (en) 2010-12-22 2014-06-17 Incyte Corporation Substituted imidazopyridazines and benzimidazoles as inhibitors of FGFR3
CN102250022B (zh) * 2011-05-26 2013-10-16 浙江大学 取代喹喔啉胺类化合物及其制备方法和用途
WO2013019927A1 (en) 2011-08-03 2013-02-07 Signal Pharmaceuticals, Llc Identification of gene expression profile as a predictive biomarker for lkb1 status
WO2013032951A1 (en) * 2011-08-26 2013-03-07 Neupharma, Inc. Certain chemical entities, compositions, and methods
EP2755657B1 (en) 2011-09-14 2017-11-29 Neupharma, Inc. Certain chemical entities, compositions, and methods
UY34339A (es) * 2011-09-14 2013-04-30 Exelixis Inc Inhibidores de la fosfatidilinositol 3-quinasa para el tratamiento del cancer
US9249110B2 (en) 2011-09-21 2016-02-02 Neupharma, Inc. Substituted quinoxalines as B-raf kinase inhibitors
US9249111B2 (en) 2011-09-30 2016-02-02 Neupharma, Inc. Substituted quinoxalines as B-RAF kinase inhibitors
WO2013056067A1 (en) 2011-10-13 2013-04-18 Exelixis, Inc. Compounds for use in the treatment of basal cell carcinoma
EP3312173B1 (en) 2011-11-09 2021-12-22 Kyowa Kirin Co., Ltd. Nitrogen-containing heterocyclic compounds
US9670180B2 (en) 2012-01-25 2017-06-06 Neupharma, Inc. Certain chemical entities, compositions, and methods
KR20150003786A (ko) 2012-04-06 2015-01-09 사노피 Pi3k 저해제 및 mek 저해제를 이용한 암 치료 방법
WO2013152717A1 (zh) 2012-04-10 2013-10-17 上海昀怡健康管理咨询有限公司 稠合嘧啶类化合物,其制备方法,中间体,组合物和应用
PT3176170T (pt) 2012-06-13 2019-02-05 Incyte Holdings Corp Compostos tricíclicos substituídos como inibidores de fgfr
WO2014026125A1 (en) 2012-08-10 2014-02-13 Incyte Corporation Pyrazine derivatives as fgfr inhibitors
AR092501A1 (es) * 2012-09-13 2015-04-22 Sanofi Sa Compuestos cristalinos
EP2897618B1 (en) 2012-09-24 2021-11-17 Neupharma, Inc. Certain chemical entities, compositions, and methods
AU2013203714B2 (en) 2012-10-18 2015-12-03 Signal Pharmaceuticals, Llc Inhibition of phosphorylation of PRAS40, GSK3-beta or P70S6K1 as a marker for TOR kinase inhibitory activity
WO2014075077A1 (en) 2012-11-12 2014-05-15 Neupharma, Inc. Certain chemical entities, compositions, and methods
US9266892B2 (en) 2012-12-19 2016-02-23 Incyte Holdings Corporation Fused pyrazoles as FGFR inhibitors
BR112015023203A8 (pt) 2013-03-15 2018-01-23 Constellation Pharmaceuticals Inc métodos para tratamento de câncer, método para aumentar a eficiência de um tratamento de câncer, método para retardar e/ou prevenir o desenvolvimento de câncer, método para tratar um indivíduo com câncer, método para aumentar a sensibilidade para um agente de terapia para câncer, método para estender um período de sensibilidade e método para estender a duração da resposta para uma terapia para câncer.
JP6382948B2 (ja) 2013-04-17 2018-08-29 シグナル ファーマシューティカルズ,エルエルシー 癌を治療するためのtorキナーゼ阻害剤及びシチジン類似体を含む組合せ療法
AU2014254053B2 (en) 2013-04-17 2019-06-06 Signal Pharmaceuticals, Llc Treatment of cancer with Dihydropyrazino-Pyrazines
KR102240356B1 (ko) 2013-04-17 2021-04-14 시그날 파마소티칼 엘엘씨 Tor 키나제 억제제와 5-치환된 퀴나졸리논 화합물을 포함하는 암 치료용 조합 요법
KR102271344B1 (ko) 2013-04-17 2021-07-01 시그날 파마소티칼 엘엘씨 디하이드로피라지노-피라진을 사용한 암의 치료
KR102221005B1 (ko) 2013-04-17 2021-02-26 시그날 파마소티칼 엘엘씨 전립선암 치료를 위한 디하이드로피라지노-피라진 화합물 및 안드로겐 수용체 길항제를 포함하는 조합 요법
NZ730189A (en) 2013-04-17 2018-09-28 Signal Pharm Llc Pharmaceutical formulations, processes, solid forms and methods of use relating to 1-ethyl-7-(2-methyl-6-(1h-1,2,4-triazol-3-yl)pyridin-3-yl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1h)-one
BR112015026021A2 (pt) 2013-04-17 2017-07-25 Signal Pharm Llc terapia de combinação compreendendo um inibidor de tor quinase e n-(3-(5-flúor-2-(4-(2-met-oxietoxi)fenilamino)pirimidin-4-ilamino)fenil)acrilamida para o tratamento de câncer
SG10201708520YA (en) 2013-04-19 2017-12-28 Incyte Corp Bicyclic heterocycles as fgfr inhibitors
WO2014193912A1 (en) 2013-05-29 2014-12-04 Signal Pharmaceuticals, Llc Pharmaceutical compositions of 7-(6-(2-hydroxypropan-2-yl)pyridin-3-yl)-1-((trans)-4-methoxycyclohexyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1h)-one, a solid form thereof and methods of their use
CN104418858B (zh) 2013-08-30 2018-12-11 浙江医药股份有限公司新昌制药厂 2,6-二含氮取代的嘌呤衍生物及其制备方法和其药物组合物与应用
JP6441910B2 (ja) 2013-09-30 2018-12-19 シャンハイ インリ ファーマシューティカル カンパニー リミティド 縮合ピリミジン化合物、中間体、その調製方法、組成物及び使用
RU2663999C2 (ru) 2013-10-16 2018-08-14 Шанхай Инли Фармасьютикал Ко., Лтд Конденсированное гетероциклическое соединение, способ его получения, его фармацевтическая композиция и применения
EP3068435A1 (en) 2013-11-13 2016-09-21 Novartis AG Mtor inhibitors for enhancing the immune response
RU2714902C2 (ru) 2013-12-19 2020-02-20 Новартис Аг Химерные рецепторы антигена против мезотелина человека и их применение
JP6793902B2 (ja) 2013-12-20 2020-12-02 ノバルティス アーゲー 調節可能キメラ抗原受容体
ES2921874T3 (es) 2014-02-28 2022-09-01 Nimbus Lakshmi Inc Inhibidores de TYK2 y usos de los mismos
EP3593812A3 (en) 2014-03-15 2020-05-27 Novartis AG Treatment of cancer using chimeric antigen receptor
KR102479693B1 (ko) 2014-03-26 2022-12-22 아스텍스 테라퓨틱스 리미티드 조합물
KR20240042250A (ko) 2014-04-07 2024-04-01 노파르티스 아게 항-cd19 키메라 항원 수용체를 사용한 암의 치료
US9512129B2 (en) 2014-04-16 2016-12-06 Signal Pharmaceuticals, Llc Solid forms comprising 1-ethyl-7-(2-methyl-6-(1H-1,2,4-triazol-3-yl)pyridin-3-yl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one and a coformer
NZ714742A (en) 2014-04-16 2017-04-28 Signal Pharm Llc Solid forms of 1-ethyl-7-(2-methyl-6-(1h-1,2,4-triazol-3-yl)pyridin-3-yl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1h)-one, compositions thereof and methods of their use
JP2017528433A (ja) 2014-07-21 2017-09-28 ノバルティス アーゲー 低い免疫増強用量のmTOR阻害剤とCARの組み合わせ
US11542488B2 (en) 2014-07-21 2023-01-03 Novartis Ag Sortase synthesized chimeric antigen receptors
CN107109419B (zh) 2014-07-21 2020-12-22 诺华股份有限公司 使用cd33嵌合抗原受体治疗癌症
US20170209492A1 (en) 2014-07-31 2017-07-27 Novartis Ag Subset-optimized chimeric antigen receptor-containing t-cells
CN117088931A (zh) 2014-08-12 2023-11-21 莫纳什大学 定向淋巴的前药
WO2016025880A1 (en) 2014-08-14 2016-02-18 Novartis Ag Treatment of cancer using gfr alpha-4 chimeric antigen receptor
SG11201700770PA (en) 2014-08-19 2017-03-30 Novartis Ag Anti-cd123 chimeric antigen receptor (car) for use in cancer treatment
US10577417B2 (en) 2014-09-17 2020-03-03 Novartis Ag Targeting cytotoxic cells with chimeric receptors for adoptive immunotherapy
JP6815992B2 (ja) 2014-10-08 2021-01-20 ノバルティス アーゲー キメラ抗原受容体療法に対する治療応答性を予測するバイオマーカーおよびその使用
US10851105B2 (en) 2014-10-22 2020-12-01 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
JOP20200201A1 (ar) 2015-02-10 2017-06-16 Astex Therapeutics Ltd تركيبات صيدلانية تشتمل على n-(3.5- ثنائي ميثوكسي فينيل)-n'-(1-ميثيل إيثيل)-n-[3-(ميثيل-1h-بيرازول-4-يل) كينوكسالين-6-يل]إيثان-1.2-ثنائي الأمين
TWI712601B (zh) 2015-02-20 2020-12-11 美商英塞特公司 作為fgfr抑制劑之雙環雜環
MA41551A (fr) 2015-02-20 2017-12-26 Incyte Corp Hétérocycles bicycliques utilisés en tant qu'inhibiteurs de fgfr4
WO2016134294A1 (en) 2015-02-20 2016-08-25 Incyte Corporation Bicyclic heterocycles as fgfr4 inhibitors
US20160251376A1 (en) 2015-02-27 2016-09-01 Nimbus Lakshmi, Inc. Tyk2 inhibitors and uses thereof
EP3280795B1 (en) 2015-04-07 2021-03-24 Novartis AG Combination of chimeric antigen receptor therapy and amino pyrimidine derivatives
US11896614B2 (en) 2015-04-17 2024-02-13 Novartis Ag Methods for improving the efficacy and expansion of chimeric antigen receptor-expressing cells
EP3286211A1 (en) 2015-04-23 2018-02-28 Novartis AG Treatment of cancer using chimeric antigen receptor and protein kinase a blocker
WO2017004134A1 (en) 2015-06-29 2017-01-05 Nimbus Iris, Inc. Irak inhibitors and uses thereof
AU2016293841B2 (en) 2015-07-11 2020-10-08 Advenchen Pharmaceuticals, LLC Fused quinoline compunds as pi3k/mTor inhibitors
WO2017040757A1 (en) 2015-09-02 2017-03-09 Nimbus Lakshmi, Inc. Tyk2 inhibitors and uses thereof
WO2017041139A1 (en) 2015-09-08 2017-03-16 Monash University Lymph directing prodrugs
WO2017044720A1 (en) 2015-09-11 2017-03-16 Navitor Pharmaceuticals, Inc. Rapamycin analogs and uses thereof
RU2606230C1 (ru) * 2015-10-20 2017-01-10 Федеральное государственное бюджетное образовательное учреждение высшего образования "Пермский государственный национальный исследовательский университет" (Z)-Этил 2-(4-(4-хлорфенил)-2,4-диоксо-3-(3-оксо-3,4-дигидрохиноксалин-2(1Н)-илиден)бутанамидо)-4-метил-5-фенилтиофен-3-карбоксилат, обладающий противодиабетической активностью, и способ его получения
PT3364958T (pt) 2015-10-23 2023-04-10 Navitor Pharm Inc Moduladores de interação sestrina-gator2 e utilizações dos mesmos
WO2017106352A1 (en) 2015-12-14 2017-06-22 Raze Therapeutics, Inc. Caffeine inhibitors of mthfd2 and uses thereof
PL3426244T3 (pl) 2016-03-09 2023-09-25 Raze Therapeutics, Inc. Inhibitory dehydrogenazy 3-fosfoglicerynianowej i ich zastosowania
US10954220B2 (en) 2016-03-09 2021-03-23 Raze Therapeutics, Inc. 3-phosphoglycerate dehydrogenase inhibitors and uses thereof
JP2019510785A (ja) 2016-04-08 2019-04-18 エックス4 ファーマシューティカルズ, インコーポレイテッド 癌を処置する方法
CA3027500A1 (en) 2016-06-21 2017-12-28 X4 Pharmaceuticals, Inc. Cxcr4 inhibitors and uses thereof
CA3027495A1 (en) 2016-06-21 2017-12-28 X4 Pharmaceuticals, Inc. Cxcr4 inhibitors and uses thereof
JP7054529B2 (ja) 2016-06-21 2022-04-14 エックス4 ファーマシューティカルズ, インコーポレイテッド Cxcr4阻害剤およびその使用
CA3031542A1 (en) 2016-07-20 2018-01-25 University Of Utah Research Foundation Cd229 car t cells and methods of use thereof
CN117866991A (zh) 2016-10-07 2024-04-12 诺华股份有限公司 用于治疗癌症的嵌合抗原受体
CA3039202A1 (en) 2016-10-14 2018-04-19 Nimbus Lakshmi, Inc. Tyk2 inhibitors and uses thereof
WO2018075937A1 (en) 2016-10-21 2018-04-26 Nimbus Lakshmi, Inc. Tyk2 inhibitors and uses thereof
US10414727B2 (en) 2016-11-08 2019-09-17 Navitor Pharmaceuticals, Inc. Phenyl amino piperidine mTORC inhibitors and uses thereof
JP2019535839A (ja) 2016-11-29 2019-12-12 ピュアテック ヘルス エルエルシー 治療剤の送達のためのエクソソーム
US11091451B2 (en) 2016-12-05 2021-08-17 Raze Therapeutics, Inc. SHMT inhibitors and uses thereof
CN110603261A (zh) 2016-12-23 2019-12-20 拜斯科阿迪有限公司 具有新型键结构的肽衍生物
US10624968B2 (en) 2017-01-06 2020-04-21 Bicyclerd Limited Compounds for treating cancer
AR111233A1 (es) 2017-03-08 2019-06-19 Nimbus Lakshmi Inc Inhibidores de tyk2, usos y métodos para la producción de los mismos
EP3375784A1 (en) 2017-03-14 2018-09-19 Artax Biopharma Inc. Aza-dihydro-acridone derivatives
EP3375778A1 (en) 2017-03-14 2018-09-19 Artax Biopharma Inc. Aryl-piperidine derivatives
WO2018191146A1 (en) 2017-04-10 2018-10-18 Navitor Pharmaceuticals, Inc. Heteroaryl rheb inhibitors and uses thereof
CN116370448A (zh) 2017-04-26 2023-07-04 纳维托制药有限公司 Sestrin-gator2相互作用的调节剂及其用途
US10857196B2 (en) 2017-04-27 2020-12-08 Bicycletx Limited Bicyclic peptide ligands and uses thereof
EP3615055A1 (en) 2017-04-28 2020-03-04 Novartis AG Cells expressing a bcma-targeting chimeric antigen receptor, and combination therapy with a gamma secretase inhibitor
AR111960A1 (es) 2017-05-26 2019-09-04 Incyte Corp Formas cristalinas de un inhibidor de fgfr y procesos para su preparación
SG11201912403SA (en) 2017-06-22 2020-01-30 Celgene Corp Treatment of hepatocellular carcinoma characterized by hepatitis b virus infection
CN111032678A (zh) 2017-06-26 2020-04-17 拜西克尔德有限公司 具有可检测部分的双环肽配体和其用途
CN117946115A (zh) 2017-07-28 2024-04-30 武田药品工业株式会社 Tyk2抑制剂与其用途
US20200291096A1 (en) 2017-08-14 2020-09-17 Bicyclerd Limited Bicyclic peptide ligand sting conjugates and uses thereof
EP3668550A1 (en) 2017-08-14 2020-06-24 Bicyclerd Limited Bicyclic peptide ligand prr-a conjugates and uses thereof
WO2019046491A1 (en) 2017-08-29 2019-03-07 Ariya Therapeutics, Inc. LIPIDIC PRODRUGS DIRECTING TO THE LYMPHATIC SYSTEM
US11883497B2 (en) 2017-08-29 2024-01-30 Puretech Lyt, Inc. Lymphatic system-directing lipid prodrugs
EP3727362A4 (en) 2017-12-19 2021-10-06 PureTech LYT, Inc. MYCOPHENOLIC ACID LIPID MEDICINAL PRODUCTS AND THEIR USES
US11608345B1 (en) 2017-12-19 2023-03-21 Puretech Lyt, Inc. Lipid prodrugs of rapamycin and its analogs and uses thereof
TWI825046B (zh) 2017-12-19 2023-12-11 英商拜西可泰克斯有限公司 Epha2特用之雙環胜肽配位基
US11304954B2 (en) 2017-12-19 2022-04-19 Puretech Lyt, Inc. Lipid prodrugs of mycophenolic acid and uses thereof
GB201721265D0 (en) 2017-12-19 2018-01-31 Bicyclerd Ltd Bicyclic peptide ligands specific for EphA2
BR112020015328A2 (pt) 2018-01-29 2020-12-08 Merck Patent Gmbh Inibidores de gcn2 e usos dos mesmos
CA3089769A1 (en) 2018-01-29 2019-08-01 Merck Patent Gmbh Gcn2 inhibitors and uses thereof
KR20200140262A (ko) 2018-02-27 2020-12-15 아텍스 바이오파마 인코포레이티드 Tcr-nck 상호 작용의 억제제로서의 크로멘 유도체
CN108467392B (zh) * 2018-03-30 2022-01-21 广西师范大学 2-(ω-二烷基氨)胺烷基-3-芳基并唑类喹喔啉化合物及其制备方法和应用
ES2969982T3 (es) 2018-04-24 2024-05-23 Vertex Pharma Compuestos de pteridinona y usos de los mismos
IL278142B2 (en) 2018-04-24 2023-11-01 Merck Patent Gmbh Antiproliferative compounds and their uses
US20210047405A1 (en) 2018-04-27 2021-02-18 Novartis Ag Car t cell therapies with enhanced efficacy
WO2019213282A1 (en) 2018-05-01 2019-11-07 Novartis Ag Biomarkers for evaluating car-t cells to predict clinical outcome
MA52493A (fr) 2018-05-04 2021-03-10 Incyte Corp Sels d'un inhibiteur de fgfr
US11466004B2 (en) 2018-05-04 2022-10-11 Incyte Corporation Solid forms of an FGFR inhibitor and processes for preparing the same
WO2019241789A1 (en) 2018-06-15 2019-12-19 Navitor Pharmaceuticals, Inc. Rapamycin analogs and uses thereof
US11180531B2 (en) 2018-06-22 2021-11-23 Bicycletx Limited Bicyclic peptide ligands specific for Nectin-4
GB201810316D0 (en) 2018-06-22 2018-08-08 Bicyclerd Ltd Peptide ligands for binding to EphA2
US10548889B1 (en) 2018-08-31 2020-02-04 X4 Pharmaceuticals, Inc. Compositions of CXCR4 inhibitors and methods of preparation and use
EP3846793B1 (en) 2018-09-07 2024-01-24 PIC Therapeutics, Inc. Eif4e inhibitors and uses thereof
AU2019360941A1 (en) 2018-10-15 2021-04-29 Takeda Pharmaceutical Company Limited TYK2 inhibitors and uses thereof
WO2020084305A1 (en) 2018-10-23 2020-04-30 Bicycletx Limited Bicyclic peptide ligands and uses thereof
CN113164414A (zh) 2018-10-24 2021-07-23 纳维托制药有限公司 多晶型化合物和其用途
WO2020112937A1 (en) 2018-11-30 2020-06-04 Nimbus Lakshmi, Inc. Tyk2 inhibitors and uses thereof
EP3670659A1 (en) 2018-12-20 2020-06-24 Abivax Biomarkers, and uses in treatment of viral infections, inflammations, or cancer
US20220040324A1 (en) 2018-12-21 2022-02-10 Daiichi Sankyo Company, Limited Combination of antibody-drug conjugate and kinase inhibitor
JP2022518505A (ja) 2019-01-23 2022-03-15 ニンバス ラクシュミ, インコーポレイテッド Tyk2阻害剤およびその使用
WO2020165600A1 (en) 2019-02-14 2020-08-20 Bicycletx Limited Bicyclic peptide ligand sting conjugates and uses thereof
US11628162B2 (en) 2019-03-08 2023-04-18 Incyte Corporation Methods of treating cancer with an FGFR inhibitor
WO2020201753A1 (en) 2019-04-02 2020-10-08 Bicycletx Limited Bicycle toxin conjugates and uses thereof
MX2021014441A (es) 2019-05-31 2022-01-06 Ikena Oncology Inc Inhibidores del dominio asociado mejorador de la transcripcion (tead) y usos de los mismos.
US11591329B2 (en) 2019-07-09 2023-02-28 Incyte Corporation Bicyclic heterocycles as FGFR inhibitors
TW202110485A (zh) 2019-07-30 2021-03-16 英商拜西可泰克斯有限公司 異質雙環肽複合物
EP4028385A4 (en) 2019-09-11 2023-11-08 Vincere Biosciences, Inc. USP30 INHIBITORS AND USES THEREOF
CA3150108A1 (en) 2019-09-13 2021-03-18 Neelu Kaila HPK1 ANTAGONISTS AND THEIR USES
CA3157361A1 (en) 2019-10-14 2021-04-22 Incyte Corporation Bicyclic heterocycles as fgfr inhibitors
US11566028B2 (en) 2019-10-16 2023-01-31 Incyte Corporation Bicyclic heterocycles as FGFR inhibitors
US11723890B2 (en) 2019-11-01 2023-08-15 Navitor Pharmaceuticals, Inc. Methods of treatment using an mTORC1 modulator
JP2023505258A (ja) 2019-12-04 2023-02-08 インサイト・コーポレイション Fgfr阻害剤としての三環式複素環
BR112022010664A2 (pt) 2019-12-04 2022-08-16 Incyte Corp Derivados de um inibidor de fgfr
TW202134234A (zh) 2019-12-05 2021-09-16 美商奈維特製藥公司 雷帕黴素類似物及其用途
CA3166908A1 (en) 2020-02-05 2021-08-12 Daniel Kenneth BONNER Lipid prodrugs of neurosteroids
CA3170411A1 (en) 2020-03-03 2021-09-10 Christopher L. Vandeusen Eif4e inhibitors and uses thereof
EP4157277A4 (en) * 2020-05-29 2024-05-22 Univ Connecticut PORCINE REPRODUCTIVE AND RESPIRATORY SYNDROME VIRUS INHIBITORS
KR20230074721A (ko) 2020-08-17 2023-05-31 바이사이클티엑스 리미티드 Nectin-4에 특이적인 이환 콘쥬게이트 및 이의 용도
KR20230131189A (ko) 2020-12-02 2023-09-12 이케나 온콜로지, 인코포레이티드 Tead 억제제 및 이의 용도
WO2022120353A1 (en) 2020-12-02 2022-06-09 Ikena Oncology, Inc. Tead inhibitors and uses thereof
JP2024505571A (ja) 2021-02-02 2024-02-06 リミナル・バイオサイエンシーズ・リミテッド Gpr84アンタゴニストおよびその使用
WO2022167445A1 (en) 2021-02-02 2022-08-11 Liminal Biosciences Limited Gpr84 antagonists and uses thereof
IL304905A (en) 2021-02-15 2023-10-01 Kymera Therapeutics Inc IRAK4 joints and their uses
JP2024509192A (ja) 2021-03-05 2024-02-29 ニンバス サターン, インコーポレイテッド Hpk1アンタゴニスト及びその使用
KR20230172548A (ko) 2021-04-16 2023-12-22 이케나 온콜로지, 인코포레이티드 Mek 억제제 및 이의 용도
EP4352059A1 (en) 2021-06-09 2024-04-17 Incyte Corporation Tricyclic heterocycles as fgfr inhibitors
AU2022334296A1 (en) 2021-08-25 2024-03-07 PIC Therapeutics, Inc. Eif4e inhibitors and uses thereof
US20230134932A1 (en) 2021-08-25 2023-05-04 PIC Therapeutics, Inc. Eif4e inhibitors and uses thereof
WO2023114984A1 (en) 2021-12-17 2023-06-22 Ikena Oncology, Inc. Tead inhibitors and uses thereof
WO2023173057A1 (en) 2022-03-10 2023-09-14 Ikena Oncology, Inc. Mek inhibitors and uses thereof
WO2023173053A1 (en) 2022-03-10 2023-09-14 Ikena Oncology, Inc. Mek inhibitors and uses thereof
WO2023211889A1 (en) 2022-04-25 2023-11-02 Ikena Oncology, Inc. Polymorphic compounds and uses thereof
TW202404581A (zh) 2022-05-25 2024-02-01 美商醫肯納腫瘤學公司 Mek抑制劑及其用途
WO2024028363A1 (en) 2022-08-02 2024-02-08 Liminal Biosciences Limited Heteroaryl carboxamide and related gpr84 antagonists and uses thereof
WO2024028364A1 (en) 2022-08-02 2024-02-08 Liminal Biosciences Limited Aryl-triazolyl and related gpr84 antagonists and uses thereof
WO2024028365A1 (en) 2022-08-02 2024-02-08 Liminal Biosciences Limited Substituted pyridone gpr84 antagonists and uses thereof
CN115381828B (zh) * 2022-08-04 2023-04-28 武汉市金银潭医院(武汉市传染病医院) Pilaralisib在制备抗肠道病毒71型药物中的应用

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CS156880B1 (sl) 1972-02-09 1974-08-23
WO1995026957A1 (en) 1994-03-31 1995-10-12 Zeneca Limited N-heterocyclyl sulphonamide derivatives and their use as endothelin antagonists
EP1243583A1 (en) 1999-12-28 2002-09-25 Eisai Co., Ltd. Heterocyclic compounds having sulfonamide groups
WO2004000828A1 (en) 2002-06-20 2003-12-31 Biovitrum Ab New compounds useful for the treatment of obesity, type ii diabetes and cns disorders
WO2004007472A1 (ja) 2002-07-10 2004-01-22 Ono Pharmaceutical Co., Ltd. Ccr4アンタゴニストおよびその医薬用途
WO2005014533A2 (en) 2003-08-08 2005-02-17 Transtech Pharma, Inc. Aryl and heteroaryl compounds, compositions, and methods of use
WO2005021513A1 (en) 2003-08-27 2005-03-10 Astrazeneca Ab Novel condensed n-pyrazinyl-sulphonamides and their use in the treatment of chemokine mediated diseases
WO2005023771A1 (ja) 2003-09-05 2005-03-17 Ono Pharmaceutical Co., Ltd. ケモカインレセプターアンタゴニストおよびその医薬用途
JP2005126549A (ja) 2003-10-23 2005-05-19 Konica Minolta Medical & Graphic Inc 開始剤、組成物、ラジカル発生方法、平版印刷版作製用感光材料および平版印刷版の作製方法
WO2007023186A1 (en) 2005-08-26 2007-03-01 Laboratoires Serono S.A. Pyrazine derivatives and use as pi3k inhibitors

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4107258A (en) 1977-11-10 1978-08-15 Union Carbide Corporation Injection molding reduced combustibility high impact strength polyethylene articles
US5145684A (en) 1991-01-25 1992-09-08 Sterling Drug Inc. Surface modified drug nanoparticles
AU2006302148B2 (en) 2005-10-07 2012-12-06 Exelixis, Inc. Pyridopyrimidinone inhibitors of PI3Kalpha
KR101538412B1 (ko) 2005-10-07 2015-07-22 엑셀리시스, 인코포레이티드 PI3Kα의 피리도피리미디논 억제제
CN103819416A (zh) 2005-10-07 2014-05-28 埃克塞里艾克西斯公司 N-(3-氨基-喹喔啉-2-基)-磺酰胺衍生物及其作为磷脂酰肌醇3-激酶抑制剂的用途
JP2010500994A (ja) * 2006-08-16 2010-01-14 エグゼリクシス, インコーポレイテッド Pi3kおよびmekモジュレーターを使用する方法
PL2139484T3 (pl) 2007-04-10 2013-12-31 Exelixis Inc Sposoby leczenia raka z zastosowaniem pirydopirymidynonów jako inhibitorów PI3K alfa
CA2684056A1 (en) * 2007-04-11 2008-10-23 Exelixis, Inc. Combination therapies comprising quinoxaline inhibitors of pi3k-alpha for use in the treatment of cancer
US20100209340A1 (en) 2007-04-11 2010-08-19 Buhr Chris A Pyrido [2, 3-d] pyrimidin-7-one compounds as inhibitors of p13k-alpha for the treatment of cancer
AU2008239655B2 (en) 2007-04-11 2013-06-20 Exelixis, Inc. Pyrido (2, 3-d) pyrimidin-7-one compounds as inhibitors of PI3k-alpha for the treatment of cancer
TW201018685A (en) 2008-09-30 2010-05-16 Exelixis Inc Pyridopyrimidinone inhibitors of PI3Kα and mTOR
US8901137B2 (en) 2010-02-09 2014-12-02 Exelixis, Inc. Methods of treating cancer using pyridopyrimidinone inhibitors of PI3K and mTOR in combination with autophagy inhibitors

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CS156880B1 (sl) 1972-02-09 1974-08-23
WO1995026957A1 (en) 1994-03-31 1995-10-12 Zeneca Limited N-heterocyclyl sulphonamide derivatives and their use as endothelin antagonists
EP1243583A1 (en) 1999-12-28 2002-09-25 Eisai Co., Ltd. Heterocyclic compounds having sulfonamide groups
WO2004000828A1 (en) 2002-06-20 2003-12-31 Biovitrum Ab New compounds useful for the treatment of obesity, type ii diabetes and cns disorders
WO2004007472A1 (ja) 2002-07-10 2004-01-22 Ono Pharmaceutical Co., Ltd. Ccr4アンタゴニストおよびその医薬用途
US20060004010A1 (en) 2002-07-10 2006-01-05 Hiromu Habashita Ccr4 antagonist and medical use thereof
WO2005014533A2 (en) 2003-08-08 2005-02-17 Transtech Pharma, Inc. Aryl and heteroaryl compounds, compositions, and methods of use
WO2005021513A1 (en) 2003-08-27 2005-03-10 Astrazeneca Ab Novel condensed n-pyrazinyl-sulphonamides and their use in the treatment of chemokine mediated diseases
WO2005023771A1 (ja) 2003-09-05 2005-03-17 Ono Pharmaceutical Co., Ltd. ケモカインレセプターアンタゴニストおよびその医薬用途
EP1661889A1 (en) 2003-09-05 2006-05-31 Ono Pharmaceutical Co., Ltd. Chemokine receptor antagonist and medical use thereof
JP2005126549A (ja) 2003-10-23 2005-05-19 Konica Minolta Medical & Graphic Inc 開始剤、組成物、ラジカル発生方法、平版印刷版作製用感光材料および平版印刷版の作製方法
WO2007023186A1 (en) 2005-08-26 2007-03-01 Laboratoires Serono S.A. Pyrazine derivatives and use as pi3k inhibitors

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
Budesinsky Z, et al, "Sulfanilamidoquinoxalines," Collection of Czechoslovak Chemical Communications, 1972, pp. 887-895, vol. 37, Institute of Organic and Biochemistry, Prague, CZ.
CAS Registry Nos. 325765-56-8 and 325765-07-9, Database Registry, date entered STN is Mar. 5, 2001 Chemical Abstracts Service, STN North America, Columbus, Ohio, www.cas.org/stn.html.
CAS Registry Nos. 560996-02-3 and 560995-76-8; Database Registry, date entered STN is Aug. 5, 2003 Chemical Abstracts Service, STN North America, Columbus, Ohio, www.cas.org/stn.html.
CAS Registry Nos. 565199-13-5, Database Registry, date entered STN is Aug. 12, 2003 Chemical Abstracts Service, STN North America, Columbus, Ohio, www.cas.org/stn.html.
CAS Registry Nos. 568570-58-1, Database Registry, date entered STN is Aug. 18, 2003. Chemical Abstracts Service, STN North America, Columbus, Ohio, www.cas.org/stn.html.
CAS Registry Nos. 840497-84-9, 714932-70-4, and 573932-22-6, Database Registry, publication date Jan. 18, 2005, Chemical Abstracts Service, STN North America, Columbus, Ohio, www.cas.org/stn.html.
Dandegaonker and Mesta, "Quinoxaline Sulfonamides," Journal of Medicinal Chemistry, 1965, pp. 884-886, vol. 8(6), American Chemical Society, US.
Litvinenko S.V., et al, "Synthesis, Structure, and Chemical Properties of Some N-(3-Chloro-2-quinoxalyl)arylsulfonamides," Chemistry of Heterocyclic Compounds, 1994, pp. 340-344, vol. 30(3), Plenum Publishing Corporation, New York, US.
Loriga M, et al, "Quinoxaline Chemistry. Part 4," Il Farmaco, 1995, pp. 289-301, vol. 50, Societa Chimica Italiana, Pavia, IT.
Published Catalog Compounds, Database Registry, Chemical Abstracts Service, STN North America, Columbus, Ohio, www.cas.org/stn.html, Jan. 22, 2009 pp. 1-109.

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8889664B2 (en) 2005-10-07 2014-11-18 Exelixis, Inc. Phosphatidylinositol 3-kinase inhibitors and methods of their use
US20110207712A1 (en) * 2005-10-07 2011-08-25 Exelixis, Inc. Phosphatidylinositol 3-Kinase Inhibitors And Methods Of Their Use
US20110237608A1 (en) * 2005-10-07 2011-09-29 Exelixis, Inc. Pyridopyrimidinone Inhibitors of PI3Kalpha
US20120302545A1 (en) * 2006-08-16 2012-11-29 Exelixis, Inc. Method of Using PI3K and MEK Modulators
US20100075947A1 (en) * 2006-08-16 2010-03-25 Exelixis, Inc. Methods of Using PI3K and MEK Modulators
US8642584B2 (en) * 2006-08-16 2014-02-04 Exelixis, Inc. Method of using PI3K and MEK modulators
US20100130557A1 (en) * 2007-03-16 2010-05-27 Boehringer Ingelheim International Gmbh Substituted arylsulphonylglycines, the preparation thereof and the use thereof as pharmaceutical compositions
US8232312B2 (en) 2007-03-16 2012-07-31 Boehringer Ingelheim International Gmbh Substituted arylsulphonylglycines, the preparation thereof and the use thereof as pharmaceutical compositions
US20100209420A1 (en) * 2007-04-10 2010-08-19 Exelixis, Inc. Methods of treating cancer using pyridopyrimidinone inhibitors of p13k alpha
US8513266B2 (en) 2007-04-10 2013-08-20 Exelixis, Inc. Methods of treating cancer using pyridopyrimidinone inhibitors of PI3K alpha
US20110123434A1 (en) * 2007-04-11 2011-05-26 Exelixis, Inc Combination therapies comprising quinoxaline inhibitors of p13k-alpha for use in the treatment of cancer
US8481001B2 (en) 2007-04-11 2013-07-09 Exelixis, Inc. Combination therapies comprising quinoxaline inhibitors of P13K-alpha for use in the treatment of cancer
US8211923B2 (en) 2007-07-27 2012-07-03 Boehringer Ingelheim International Gmbh Substituted arylsulfonylaminomethylphosphonic acid derivatives, their preparation and their use in the treatment of type I and II diabetes mellitus
US8357689B2 (en) 2007-07-27 2013-01-22 Boehringer Ingelheim International Gmbh Substituted arylsulfonylaminomethylphosphonic acid derivatives, their preparation and their use in the treatment of type I and II diabetes mellitus
US20100210594A1 (en) * 2007-07-27 2010-08-19 Boehringer Ingelheim International Gmbh Substituted arylsulfonylaminomethylphosphonic acid derivatives, their preparation and their use in the treatment of type i and ii diabetes mellitus
US20100210595A1 (en) * 2007-07-27 2010-08-19 Boehringer Ingelheim International Gmbh Substituted arylsulfonylaminomethylphosphonic acid derivatives, their preparation and their use in the treatment of type i and ii diabetes mellitus
US8163911B2 (en) 2007-09-05 2012-04-24 Boehringer Ingelheim International Gmbh Arylsulfonylaminomethylphosphonic acid derivatives, the preparation thereof and the use thereof as pharmaceutical compositions
US20100261677A1 (en) * 2007-09-05 2010-10-14 Boehringer Ingelheim International Gmbh Arylsulfonylaminomethylphosphonic acid derivatives, the preparation thereof and the use thereof as pharmaceutical compositions
US8901137B2 (en) 2010-02-09 2014-12-02 Exelixis, Inc. Methods of treating cancer using pyridopyrimidinone inhibitors of PI3K and mTOR in combination with autophagy inhibitors
US10053470B2 (en) 2010-09-14 2018-08-21 Exelixis, Inc. Inhibitors of PI3K-delta and methods of their use and manufacture
US10328069B2 (en) 2011-11-01 2019-06-25 Exelixis, Inc. Phosphatidylinositol 3-kinase inhibitors for the treatment of lymphoproliferative malignancies
US11358948B2 (en) 2017-09-22 2022-06-14 Kymera Therapeutics, Inc. CRBN ligands and uses thereof
US11623932B2 (en) 2017-09-22 2023-04-11 Kymera Therapeutics, Inc. Protein degraders and uses thereof
US10874743B2 (en) 2017-12-26 2020-12-29 Kymera Therapeutics, Inc. IRAK degraders and uses thereof
US11723980B2 (en) 2017-12-26 2023-08-15 Kymera Therapeutics, Inc. IRAK degraders and uses thereof
US11318205B1 (en) 2017-12-26 2022-05-03 Kymera Therapeutics, Inc. IRAK degraders and uses thereof
US11485743B2 (en) 2018-01-12 2022-11-01 Kymera Therapeutics, Inc. Protein degraders and uses thereof
US11512080B2 (en) 2018-01-12 2022-11-29 Kymera Therapeutics, Inc. CRBN ligands and uses thereof
US11932635B2 (en) 2018-01-12 2024-03-19 Kymera Therapeutics, Inc. CRBN ligands and uses thereof
US11292792B2 (en) 2018-07-06 2022-04-05 Kymera Therapeutics, Inc. Tricyclic CRBN ligands and uses thereof
WO2020010177A1 (en) 2018-07-06 2020-01-09 Kymera Therapeutics, Inc. Tricyclic crbn ligands and uses thereof
US11897882B2 (en) 2018-07-06 2024-02-13 Kymera Therapeutics, Inc. Tricyclic crbn ligands and uses thereof
US11352350B2 (en) 2018-11-30 2022-06-07 Kymera Therapeutics, Inc. IRAK degraders and uses thereof
US11117889B1 (en) 2018-11-30 2021-09-14 Kymera Therapeutics, Inc. IRAK degraders and uses thereof
US11807636B2 (en) 2018-11-30 2023-11-07 Kymera Therapeutics, Inc. IRAK degraders and uses thereof
US11485750B1 (en) 2019-04-05 2022-11-01 Kymera Therapeutics, Inc. STAT degraders and uses thereof
US11746120B2 (en) 2019-04-05 2023-09-05 Kymera Therapeutics, Inc. Stat degraders and uses thereof
US11707457B2 (en) 2019-12-17 2023-07-25 Kymera Therapeutics, Inc. IRAK degraders and uses thereof
US11779578B2 (en) 2019-12-17 2023-10-10 Kymera Therapeutics, Inc. IRAK degraders and uses thereof
US11591332B2 (en) 2019-12-17 2023-02-28 Kymera Therapeutics, Inc. IRAK degraders and uses thereof
US11679109B2 (en) 2019-12-23 2023-06-20 Kymera Therapeutics, Inc. SMARCA degraders and uses thereof
US11932624B2 (en) 2020-03-19 2024-03-19 Kymera Therapeutics, Inc. MDM2 degraders and uses thereof
US11685750B2 (en) 2020-06-03 2023-06-27 Kymera Therapeutics, Inc. Crystalline forms of IRAK degraders
US12006329B2 (en) 2022-08-18 2024-06-11 Kymera Therapeutics, Inc. Protein degraders and uses thereof

Also Published As

Publication number Publication date
CA2623768A1 (en) 2007-04-19
DK1931645T3 (da) 2014-09-29
EA019255B1 (ru) 2014-02-28
PT1931645E (pt) 2014-09-24
CN103819416A (zh) 2014-05-28
EA201201154A1 (ru) 2013-12-30
BRPI0617162B1 (pt) 2021-04-20
JP2013056913A (ja) 2013-03-28
EP1931645A2 (en) 2008-06-18
WO2007044729A2 (en) 2007-04-19
AU2006302179C1 (en) 2013-06-20
EA024305B1 (ru) 2016-09-30
CN101282948A (zh) 2008-10-08
NZ566837A (en) 2011-09-30
ZA200802485B (en) 2009-02-25
US8889664B2 (en) 2014-11-18
JP5709821B2 (ja) 2015-04-30
IL224038A (en) 2017-05-29
KR101396783B1 (ko) 2014-05-21
WO2007044729A3 (en) 2007-08-09
HK1119697A1 (en) 2009-03-13
PL1931645T3 (pl) 2014-12-31
SI1931645T1 (sl) 2014-09-30
US20110207712A1 (en) 2011-08-25
GEP20115199B (en) 2011-04-11
CA2623768C (en) 2016-04-12
AU2006302179B2 (en) 2012-11-22
ES2513165T3 (es) 2014-10-24
HRP20140975T1 (hr) 2014-11-21
KR20080068651A (ko) 2008-07-23
EP1931645B1 (en) 2014-07-16
BRPI0617162A2 (pt) 2015-01-06
AU2006302179A1 (en) 2007-04-19
BRPI0617162B8 (pt) 2021-05-25
NZ594630A (en) 2013-04-26
NO20082089L (no) 2008-06-27
UA116188C2 (uk) 2018-02-26
JP2009511501A (ja) 2009-03-19
JP2015091860A (ja) 2015-05-14
KR20130099258A (ko) 2013-09-05
RS53627B1 (en) 2015-04-30
KR20140033237A (ko) 2014-03-17
EA200801037A1 (ru) 2009-02-27
EP2364974A1 (en) 2011-09-14
US20100087440A1 (en) 2010-04-08
IL190198A0 (en) 2008-11-03
KR101504994B1 (ko) 2015-03-23
IL190198A (en) 2013-10-31
NZ608667A (en) 2014-08-29
JP5270353B2 (ja) 2013-08-21
NO341737B1 (no) 2018-01-15

Similar Documents

Publication Publication Date Title
US7989622B2 (en) Phosphatidylinositol 3-kinase inhibitors and methods of their use
US8642584B2 (en) Method of using PI3K and MEK modulators
WO2012065057A2 (en) Phosphatidylinositol 3-kinase inhibitors and methods of their use
AU2013201011B2 (en) N- (3-amino-quinoxalin-2-yl) -sulfonamide derivatives and their use as phosphatidylinositol 3-kinase inhibitors

Legal Events

Date Code Title Description
AS Assignment

Owner name: EXELIXIS, INC.,CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BAJJALIEH, WILLIAM;BROWN, S. DAVID;BANNEN, LYNNE CANNE;AND OTHERS;SIGNING DATES FROM 20080201 TO 20080208;REEL/FRAME:020485/0024

Owner name: EXELIXIS, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BAJJALIEH, WILLIAM;BROWN, S. DAVID;BANNEN, LYNNE CANNE;AND OTHERS;SIGNING DATES FROM 20080201 TO 20080208;REEL/FRAME:020485/0024

STCV Information on status: appeal procedure

Free format text: COURT PROCEEDINGS TERMINATED

FPAY Fee payment

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: PETITION RELATED TO MAINTENANCE FEES GRANTED (ORIGINAL EVENT CODE: PTGR); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 12