US7636184B2 - Method and device for computing computer-generated video holograms - Google Patents
Method and device for computing computer-generated video holograms Download PDFInfo
- Publication number
- US7636184B2 US7636184B2 US11/313,977 US31397705A US7636184B2 US 7636184 B2 US7636184 B2 US 7636184B2 US 31397705 A US31397705 A US 31397705A US 7636184 B2 US7636184 B2 US 7636184B2
- Authority
- US
- United States
- Prior art keywords
- layer
- hologram
- data set
- transformation
- reference layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
- 238000000034 method Methods 0.000 title claims description 50
- 238000009826 distribution Methods 0.000 claims abstract description 23
- 230000009466 transformation Effects 0.000 claims description 57
- 239000011159 matrix material Substances 0.000 claims description 44
- 238000012545 processing Methods 0.000 claims description 17
- 230000001131 transforming effect Effects 0.000 claims description 7
- 238000009795 derivation Methods 0.000 claims 2
- 230000008569 process Effects 0.000 description 15
- 238000000844 transformation Methods 0.000 description 11
- 230000008901 benefit Effects 0.000 description 8
- 230000003287 optical effect Effects 0.000 description 7
- 239000003086 colorant Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 230000014509 gene expression Effects 0.000 description 3
- 210000001747 pupil Anatomy 0.000 description 3
- 238000005070 sampling Methods 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 210000000887 face Anatomy 0.000 description 2
- 238000001093 holography Methods 0.000 description 2
- 238000009877 rendering Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000004075 alteration Effects 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H1/00—Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
- G03H1/22—Processes or apparatus for obtaining an optical image from holograms
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H1/00—Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
- G03H1/04—Processes or apparatus for producing holograms
- G03H1/08—Synthesising holograms, i.e. holograms synthesized from objects or objects from holograms
- G03H1/0808—Methods of numerical synthesis, e.g. coherent ray tracing [CRT], diffraction specific
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H1/00—Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
- G03H1/0005—Adaptation of holography to specific applications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H1/00—Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
- G03H1/04—Processes or apparatus for producing holograms
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H1/00—Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
- G03H1/22—Processes or apparatus for obtaining an optical image from holograms
- G03H1/2294—Addressing the hologram to an active spatial light modulator
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H1/00—Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
- G03H1/26—Processes or apparatus specially adapted to produce multiple sub- holograms or to obtain images from them, e.g. multicolour technique
- G03H1/268—Holographic stereogram
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H1/00—Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
- G03H1/32—Systems for obtaining speckle elimination
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H1/00—Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
- G03H1/0005—Adaptation of holography to specific applications
- G03H2001/0088—Adaptation of holography to specific applications for video-holography, i.e. integrating hologram acquisition, transmission and display
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H1/00—Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
- G03H1/04—Processes or apparatus for producing holograms
- G03H1/08—Synthesising holograms, i.e. holograms synthesized from objects or objects from holograms
- G03H1/0808—Methods of numerical synthesis, e.g. coherent ray tracing [CRT], diffraction specific
- G03H2001/0816—Iterative algorithms
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H1/00—Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
- G03H1/04—Processes or apparatus for producing holograms
- G03H1/08—Synthesising holograms, i.e. holograms synthesized from objects or objects from holograms
- G03H1/0841—Encoding method mapping the synthesized field into a restricted set of values representative of the modulator parameters, e.g. detour phase coding
- G03H2001/0858—Cell encoding wherein each computed values is represented by at least two pixels of the modulator, e.g. detour phase coding
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H1/00—Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
- G03H1/22—Processes or apparatus for obtaining an optical image from holograms
- G03H1/2202—Reconstruction geometries or arrangements
- G03H2001/2236—Details of the viewing window
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H1/00—Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
- G03H1/22—Processes or apparatus for obtaining an optical image from holograms
- G03H1/2202—Reconstruction geometries or arrangements
- G03H2001/2236—Details of the viewing window
- G03H2001/2242—Multiple viewing windows
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H1/00—Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
- G03H1/22—Processes or apparatus for obtaining an optical image from holograms
- G03H1/2249—Holobject properties
- G03H2001/2263—Multicoloured holobject
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H1/00—Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
- G03H1/22—Processes or apparatus for obtaining an optical image from holograms
- G03H1/2249—Holobject properties
- G03H2001/2263—Multicoloured holobject
- G03H2001/2271—RGB holobject
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H1/00—Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
- G03H1/26—Processes or apparatus specially adapted to produce multiple sub- holograms or to obtain images from them, e.g. multicolour technique
- G03H1/268—Holographic stereogram
- G03H2001/269—Two and more than two steps recording process
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H1/00—Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
- G03H1/26—Processes or apparatus specially adapted to produce multiple sub- holograms or to obtain images from them, e.g. multicolour technique
- G03H1/30—Processes or apparatus specially adapted to produce multiple sub- holograms or to obtain images from them, e.g. multicolour technique discrete holograms only
- G03H2001/303—Interleaved sub-holograms, e.g. three RGB sub-holograms having interleaved pixels for reconstructing coloured holobject
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H2210/00—Object characteristics
- G03H2210/30—3D object
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H2210/00—Object characteristics
- G03H2210/30—3D object
- G03H2210/33—3D/2D, i.e. the object is formed of stratified 2D planes, e.g. tomographic data
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H2210/00—Object characteristics
- G03H2210/40—Synthetic representation, i.e. digital or optical object decomposition
- G03H2210/45—Representation of the decomposed object
- G03H2210/454—Representation of the decomposed object into planes
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H2222/00—Light sources or light beam properties
- G03H2222/34—Multiple light sources
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H2223/00—Optical components
- G03H2223/16—Optical waveguide, e.g. optical fibre, rod
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H2225/00—Active addressable light modulator
- G03H2225/30—Modulation
- G03H2225/35—Colour modulation
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H2226/00—Electro-optic or electronic components relating to digital holography
- G03H2226/02—Computing or processing means, e.g. digital signal processor [DSP]
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H2226/00—Electro-optic or electronic components relating to digital holography
- G03H2226/05—Means for tracking the observer
Definitions
- the present invention relates to a method and device for computing computer-generated holograms (CGH), especially real-time or near real-time holograms, e.g. video holograms, which are made up of individually controllable hologram cells; each cell displays complex-valued data.
- CGH computer-generated holograms
- video holograms which are made up of individually controllable hologram cells; each cell displays complex-valued data.
- real-time video holograms are of particular interest.
- Electro-holography aims at a realization of CGH in real-time.
- the electro-hologram display is effectively a Spatial Light Modulator (SLM) with controllable pixels reconstructing object points by spatial modulating an illuminating light.
- SLM Spatial Light Modulator
- real-time holograms as video holograms.
- video holograms also cover Optically Addressable SLMs, Acousto-Optic light Modulators (AOM) or the like which do not
- video holograms exist as a result of a computation of discrete hologram data from sequences of a three-dimensional scene.
- the intermediate data is stored, for example, by electronic means, such as an electronic storage medium of a computer, graphics processor, graphics adapter or other hardware component.
- the 3D scene data can be generated in any way, e.g. by interference patterns or 3D conversion of 2D data.
- Spatial Light Modulators are devices for spatially controlling the complex-valued data, i.e. the magnitude and phase of the amplitude of each color component of light.
- the color can be encoded by being spatially or temporally multiplexed.
- the SLM may contain controllable hologram cells, each being separately addressed and controlled by a discrete value set of a hologram data.
- SLMs can also be continuous and not contain discrete cells.
- each pixel in a cell may comprise color sub-pixels, each sub-pixel displaying one of three or more primary colors.
- a detour phase encoding like the known Burckhardt encoding, needs an arrangement of three sub-pixels for each color component. Taking into account three color components, the number of sub pixels totals to nine for a hologram cell (i.e. there are three primary colors; there are three sub-pixels for each of these three primary colours, making nine sub-pixels in total.
- the also known Lee encoding requires four sub pixels; and a two-phase encoding requires two sub pixels for each color in a hologram cell.
- Each hologram cell is encoded by one discrete set of hologram data containing at least amplitude and phase information of a given color component; said data may be zero or have a standard value or may be arbitrarily chosen.
- the hologram data of a video hologram is continuously updated according to the scheme driving the SLM.—Since the entire hologram is made up of thousands of cells, there are thousands of discrete sets of hologram data.
- a hologram data set contains all the information necessary to encode one single video hologram cell as part of a time sequence to reconstruct a three-dimensional scene.
- a dedicated driver uses the discrete hologram data sets to provide the specific control signals for controlling the corresponding sub-pixels of the SLM.
- the driver and the provision of control signals are specific to the type of the SLM used and is not the subject of this invention.
- Many kinds of SLMs like transmissive or reflective liquid crystal displays, micro optical and electro mechanical micro systems or continuously optically addressed SLMs and acousto optic modulators can be used in combination with this invention.
- the modulated light emerges from the hologram with the amplitude and phase appropriately controlled and propagates through the free space-towards the observer in the form of a light wave front, to reconstruct a three-dimensional scene.
- Encoding the SLM with the hologram data set causes the wave field emitted from the display to reconstruct the three-dimensional scene as desired by creating interferences in the viewing space.
- the present invention provides real-time or near real-time control data for each hologram cell for the required wave modulation by computing amplitude and/or phase for a given wavelength.
- a common problem in reconstructing three-dimensional scenes is the low pixel resolution and low pixel count currently feasible with conventional SLMs.
- a pixel pitch about 1 ⁇ m- would be required check meaning.
- three sub pixels for encoding each of the three primary color components in a hologram cell -more than 10 9 pixels would be necessary. This requires costly hardware and high computational speed for calculating the video hologram. Affordable real-time displays and devices with fast enough computational speed which meet these demands are currently not commercially available.
- Computer-generated video holograms can, for example, be reconstructed using a holographic display as described by the applicant in document WO 2004/044659, the contents of which are incorporated by reference.
- the viewer looks towards the display screen through at least one virtual observer window, which is greater than an eye pupil.
- the observer windows are located near the viewer's eyes and can be tracked to follow the viewer's position with the help of known position detection and tracking devices.
- the image plane of the light sources is the Fourier plane of the hologram. As the observer window is part of the Fourier plane of the hologram, it is on the image plane of the light source.
- the observer windows can therefore preferably be limited to a size just a little larger than the size of the eye pupils. This greatly reduces the requirements on the pixel resolution and pixel count of the SLM and reduces the computational load. Consequently, the data transfer rate and the required computing power can be reduced and a light modulator matrix with low resolution can be used.
- One disadvantage of the encoding technique described in this application is that it is based on a computationally intensive operations performed on every single point in the object to be reconstructed.
- Video holograms which are computed according to this invention can be reconstructed for example using pixel arrays of about 3 million pixels.
- WO 03/025680 discloses a method for computing a video hologram with a restricted grayscale range for representation.
- a target hologram is divided into partial holograms and their individual reconstructions are used for iteratively computing optimized sub-holograms, thus reducing the required computing power.
- the iteration process is repeated until the sub-holograms with a small grayscale range can be composed to form a total hologram with an accordingly small grayscale range.
- separate reconstructions of each sub-hologram are optimized independently of each other until the desired result is achieved for the total hologram.
- the sub-holograms are composed.
- parallel processing when computing the optimized sub-holograms increases the processing speed, the required computing power is not reduced.
- WO 00/34834 discloses a method for calculating three-dimensional scenes and for their real-time reconstruction from digital image data using LCDs.
- the image data describe a real or virtual three-dimensional scene by their intensity distribution in space.
- the main steps are: dividing a 3D scene into several parallel section layers (slicing) with respective section boundaries of the scene, computing a section hologram for each section layer, and sequentially reconstructing the computed section holograms using a light modulator matrix.
- the given two-dimensional image defined by an intensity distribution is transformed into a two-dimensional intermediate image defined by a complex function.
- the resolution of the three-dimensional reconstruction is increased by way of over sampling over sampling the images.
- a fictive diffraction image is computed for each scene section in a reference layer situated at a distance to the section layers, and the diffraction image is superimposed by a complex reference wave.
- the light modulator matrix is situated in the reference layer with this prior art solution.
- the diffraction images of the section layers are computed by multiplying the complex pixel amplitude values and the mathematical expression of a spherical wave according to the distance between this section layer and reference layer, and integration over all pixels of the scene section (slice). This integral is interpreted as a convolution integral and evaluated by computing the product of the Fourier transform of the factors and subsequent back-transformation.
- a disadvantage is that real-time sequential reconstruction of each section layer requires extremely fast computing means and a light modulator matrix which is capable of reconstructing several hundreds of section holograms per second. Moreover, the three-dimensional scene is reconstructed behind the reference layer. This means that a viewer sees the 3D scene behind the light modulator matrix, or inside the hologram display.
- the object of this invention is to provide a method for speeding up computation of computer-generated video holograms, said video holograms allowing simultaneous reconstruction of a three-dimensional scene while maintaining the spatial resolution and reconstruction quality.
- This invention enables interactive real-time or near real-time reconstructions of given video holograms and transfer means.
- Another object is to provide a method that allows large computer generated holographic reconstructions to be generated; these can be as large as, and also larger than, the hologram itself.
- This object is achieved by a method for computing a computer-generated video hologram, where object data defining objects in a three dimensional scene is arranged into a number of virtual section layers, each layer defining a two-dimensional object data set, such that a video hologram data set can be calculated from some or all of these two-dimensional object data sets; comprising the following steps:
- the object data defining a three dimensional scene can be data defining a two dimensional scene, but including additional depth information for converting two dimensional image or video data to three dimensional data.
- the term ‘three dimensional’ includes within its scope ‘two dimensional’.
- the depth information may be the same for all object data sets.
- the device that generates the hologram can switch from a three dimensional mode to a two dimensional mode, depending on the inputs and also what the user wishes to display.
- layers should be expansively construed to cover any kind of virtual definable structure that can describe the points that constitute the scene that is reconstructed. It therefore includes any set of virtual parallel surfaces, and any algorithm that can spatially define these points. However, virtual planar sections are computationally the most efficient form of layer to handle.
- the term ‘plane’ should be expansively construed to include a non-planar surface.
- the reference plane may co-incide with the Fourier plane of the hologram (which is the same as the image plane of the illuminating light source); however, there is a degree of tolerance and an observer's eyes placed sufficiently close to the Fourier plane will see a properly reconstructed scene. The degree of tolerance increases as the pixel count increases.
- the first transformation is a Fresnel transform and the second transformation is a Fourier transform.
- transformation should be expansively construed to include any mathematical or computational technique that is equivalent or approximates to a transformation. Transformations used in the normal, mathematical sense are merely approximations to physical processes more accurately described by Maxwellian wave propagation equations; transforms such as Fresnel transforms (or the special class of Fresnel transforms known as Fourier transforms) are second order approximations, but have considerable advantage: because they are algebraic as opposed to differential, they can be handled in a computationally efficient manner.
- an iteration process may take place between the distribution in the observer window and the hologram layer.
- the object data sets may exhibit an appropriate phase distribution, e.g. a pseudo-random phase distribution.
- the hologram of a single aggregated wave field is calculated using a diffraction formulae. Because of the superposition of all individual wave fields, this aggregated wave field contains the entire optical information about the three-dimensional scene within the achieved accuracy.
- all object data sets for the section layers are assigned the same total number of discrete matrix points. If the number of matrix points is identical to the number of scanning points in the hologram, fast algorithms can preferably be used for the entire computing process, and processing steps to adapt the resolution to the respective layer, such as interpolation or over sampling, become superfluous.
- the number of matrix points for all layers results from the number of encoded pixels of the SLM in the hologram display.
- a major advantage of the invention in combination with the video hologram display known from WO 2004/044659 is that before transforming the reference data set for the aggregated wave field in the hologram layer, the area of the observer window(s) in the reference layer can be restricted so that it is considerably smaller than the area of the SLM light modulator matrix.
- the extent of the observer window maximally corresponds with the periodicity interval in the layer which contains the image of the light source used for reconstruction, when reconstructing the hologram in the reference layer.
- WO 2004/044659 requires computationally intensive operations performed on every single point in the scene to be reconstructed.
- the first transformation from each section layer to the virtual observer window in the reference plane—where the observer's eyes will be
- the second transformation going back from the virtual observer window to the hologram layer is even more efficient since it is just a single operation, yet encodes information for all object points.
- each object data set of the section layers is based on a virtual area size which depends on its distance to the reference layer.
- the section layer areas result from imaginary faces running from the edges of the respective observer window to the edges of the SLM of the video hologram. Because of the same number of matrix point values in each data set, the area assigned to the individual matrix points changes in proportion to the distance to the reference layer. Assigning the original object data to the object data sets of the section layers that is also known as slicing, leads to assigning the discrete object point values of the scene to a respective matrix point of a two-dimensional coordinate system that describes the matrix points on the respective section layer.
- the original object information is thereby assigned to the matrix points of the coordinate system which is closest to their spatial position.
- the distance-dependent areas of the section layers thus lead to the effect that the area-dependent object point resolution to describe a section layer of a scene is larger the closer the section layer is situated to the reference layer.
- the more distant virtual section layers can reconstruct a much larger viewing area for the background of the scene.
- This kind of reconstruction of a scene provides a very natural representation of foreground and background elements of a scene on the one hand and helps minimizing the required computing power on the other.
- the value for the distance of each object data set of the virtual section layers can be chosen or changed before transformation so that the entire reconstruction or parts of it appear in front of or behind the hologram layer. This way, both a natural position of the reconstruction in the depth of the space in front of the viewer's eyes and a deliberate amplification or reduction of the depth effect of a synthetic video hologram can be realized through software settings alone.
- the reconstructed three-dimensional scene appears in the free space in front of the viewer's eyes in the form of a wave field controlled by the light modulator matrix.
- the imaginary section layers used for computing also define the position of the reconstruction in the space in front of the observer windows and are situated at a finite distance to the reference layer. According to the conditions prevailing in an optical near field, this causes the light contribution of each light point, of the holographically reconstructed scene to the aggregated wave field, to propagate as a spherical wave to provide a contribution to the target wave front in the observer window in the reference layer.
- each object data set in the reference layer can thus be expressed with adequate approximation by a Fresnel transform.
- the amplitude values of all object points of all object data sets are multiplied with a Fresnel phase factor, which depends on the distance of the respective section layer to the reference layer.
- the Fresnel phase factor has an exponent which depends on the squared difference of the coordinates between each original section layer and reference layer and other factors. Much processing time and computing power are thus required to perform the many Fresnel transformations. According to a preferred embodiment of this invention, this disadvantage is compensated by dividing the difficult Fresnel transformations into individual steps so that these steps can be performed with the help of fast Fourier transformations (FFT) in conjunction with further processing steps in the form of multiplications with spherical wave factors.
- FFT fast Fourier transformations
- Such hardware includes at least one dedicated graphics processor with known modules for slicing and other video processing steps, such as image rendering, and at least one specific processor module for performing the Fresnel transformations with the help of fast Fourier transformation routines.
- processors in the form of digital signal processors (DSP) with the required FFT routines can be made inexpensively using known methods.
- DSP digital signal processors
- Recent advantages in common graphics processors enable operations such as Fourier transforming the data of the section layers into the reference layer using so called shading algorithms.
- the transformation which describes the propagation of light between the original section layer and the reference layer is modified such that it comprises a Fast Fourier Transformation (FFT) and two multiplications with phase factors describing spherical waves.
- the first phase factor depends on the coordinates in the original section layer and on the distance between original section layer and reference layer.
- the second phase factor depends on the coordinates in the reference layer and on the distance between the original section layer and the reference layer.
- one or both of these phase factors may be set to a constant value.
- the transform of the reference data set into the hologram layer in order to generate a hologram data set for the aggregated video hologram of the scene, can also be expressed by a transformation describing the light wave propagation by a Fresnel transform.
- the transformation is carried out according to the steps described above, but before this transformation, the reference data for all section layers in the reference layer are superimposed by way of a complex addition.
- one or both of the phase factors may be set to a constant value, depending on the collimation of light in the optical system.
- a particular advantage of this invention is that a reference data set for an aggregated wave field is generated by adding the computed reference data sets of all section layers. After the transformation in the hologram layer, this aggregated wave field serves as a basis for the video hologram as it contains the entire three-dimensional scene information. This allows simultaneous reconstruction of the two-dimensional images of all section layers and thus the entire 3D scene.
- an iteration process may be used for reducing the reconstruction errors of the video hologram.
- the object data of a reconstructed three-dimensional scene has to be compared with the original three-dimensional object scene.
- a complicated iteration process comprising many transformations between the reconstructed three-dimensional object scene and the hologram layer takes place until a desired reconstruction quality is reached.
- Our approach advantageously allows a much simpler iteration process.
- the iteration process comprises transformations between the hologram layer and the reference layer which is only two-dimensional.
- the video holograms are preferably computed with the help of a digital signal processing device with slicer means, which assigns the object information, including discrete object values for spatial distribution of the light amplitudes of a real or virtual three-dimensional scene, with matrix points of parallel virtual section layers, so that for each section layer, a separate object data set with object points in discrete matrix points of the tomographic scene section layer is defined.
- a hologram data set of a video hologram is computed from these object data sets.
- the signal processing device further comprises:
- the digital signal processing device comprises at least one independently acting transformation means for performing the Fresnel transformations, said transformation means containing:
- phase factors may be set to a constant value.
- the digital signal processing device can be a multi-processor which has several independently working sub-processors which simultaneously execute transformation routines (TR 1 , TR 2 ).
- TR 1 , TR 2 transformation routines
- a resource manager is required which dynamically assigns the transformations required for computation to the available transformation routines depending on the content of the three-dimensional scene.
- the data sets transformed in the reference layer are buffered in buffer memory means.
- the data sets can be activated at various points of time and even used several times if no changes occur during scene motion in certain section layers.
- the object data sets of the virtual section layers are assigned a number N of discrete object point values, said number N being an nth power of 2.
- FIG. 1 shows (not to scale) the arrangement for reconstructing the three-dimensional scene and the reference layers required for the computation of video holograms.
- FIG. 2 is a schematic diagram showing the signal processing device for computing video holograms according to this invention.
- FIG. 3 is similar to FIG. 1 and illustrates the main steps of the computation according to this invention.
- FIG. 4 illustrates the functional principle of the transformation means.
- FIG. 5 illustrates the sub-steps executed to correct the matrix point values of the computer-generated hologram.
- the computation of video holograms with a hologram processor is based on original object information of a real or virtual three-dimensional scene, including values for spatial distribution of the light amplitudes in an RGB or RGB-compatible format. These values are available in a known file format and can be called up from a data memory by a hologram processor.
- This object information contains for example, in the case of an object point file format BMP for each discrete object point of the three-dimensional scene, a set of complex color object point data R o , G o , B o for the respective two-dimensional coordinates.
- the data memory MEM also provides depth information z o of the three-dimensional scene. It is irrelevant for the depth information z o for each point whether it is already provided in the first video image file or whether it is computed by the processor from at least one second file containing additional information.
- FIG. 1 shows a preferred embodiment and illustrates how the scene is divided into a number M of virtual section layers L 1 . . . L M for computation by a slicer shown in FIG. 2 .
- the slicer analyses in a known manner the depth information z of the original object information stored in the data memory MEM, assigns each object point of the scene with a matrix point P mn , and enters according matrix point values in an object data set OS m corresponding with the section layer L m .
- the indices 0 ⁇ m ⁇ M, and 1 ⁇ n ⁇ N, where N is the number of matrix points P in each layer and the number of matrix point values in a data set.
- each section layer L m is situated at a distance D m to a reference layer RL which has a observer window OW near which there are the viewer's eye(s) E L /E R .
- the video hologram is disposed in a hologram layer HL which is situated at a distance D H to the reference layer.
- the computation of the hologram matrix is continued by performing the following steps:
- the N pixel values for the video hologram are derived from the typically complex values of the hologram data set. In the video hologram, these values represent amplitude values and wave phases for modulating the light during scene reconstruction.
- the hologram matrix for the second observer window is computed in the same way, but with accordingly altered matrix point values.
- the alterations result from the different positions of both viewer's eyes with respect to the scene 3D-S.
- the two hologram matrices can be computed at the same time and absolutely independently of each other in accordingly equipped multi-channel digital signal processors with simultaneously working FFT routines.
- computation results of object data sets which show only little or no difference in content may be jointly used. This may apply to section layers which show a picture background. Both eyes will then see the same scene, but from slightly offset directions.
- the digital signal processing device contains an object data set manager which compares the contents of corresponding object data sets sto alternately assign only one of the two identical object data sets to one of the two signal processor channels for transformation and thus avoid superfluous processing.
- the reconstructions are viewed through the virtual observer windows in frustum-shaped spaces which are defined by imaginary connection faces A 1 and A 2 stretching from the observer windows OW to the light modulator matrix LM.
- the 3D-S reconstructions may appear in front of, on or behind the video hologram layer HL or intersect this layer.
- the observer window size is sufficient if it covers the lateral size of an eye, in special cases even it may be reduced to pupil size. Assuming a observer window of 1 ⁇ 1 cm 2 disposed at a distance of 1 m to the hologram layer, the number of pixels required for the computer-generated video hologram is reduced by a factor of 2,500 . . . 10,000 compared with a light modulator matrix with classic encoding methods.
- FIG. 3 shows the position of selected layers for the execution of the transformations required for the computation. Only the first virtual section layer L 1 and one further layer L m are shown. However, the contribution of all wave fields is always required to compute the wave field of the section layers L 1 . . . L M in the reference layer RL.
- individual transformed data sets DS 1 . . . DS M can be buffered and re-used for several subsequent video holograms until there occurs a change in content.
- FIG. 4 shows in detail how the amplitude values A m1 . . . A mn . . . A mN of an object data set OS m of a section layer L m at a distance of D m to the reference layer RL are transformed.
- Equation (1) shows the core of a Fresnel transformation.
- quadratic phase factors may be 1.
- a mn ⁇ A mn * F ⁇ ⁇ 1 mn A mn ⁇ e j ⁇ k 2 ⁇ Dm ⁇ x mn 2 ( 2 ) defines the amplitude A mn of a matrix point value multiplied with the corresponding phase factor F 1 mn in the layer L m .
- equation (3) shows the result of the Fourier transform of (2) and the multiplication with a phase factor which solely depends on the coordinates x 0 of the observer window OW in the reference layer and the distance of the respective section layer to the reference layer. It defines the complex amplitude in a matrix point of the observer window in the reference layer.
- a ⁇ mn A ⁇ mn ′ ⁇ e j ⁇ k 2 ⁇ D m ⁇ x 0 2 ( 3 )
- the described solution allows accelerating the computing process so that a dedicated digital signal processor circuit can perform the computation of a sequence of video holograms of a moving scene for both eyes in the form of a real-time non-flickering reconstruction.
- a dedicated digital signal processor circuit can perform the computation of a sequence of video holograms of a moving scene for both eyes in the form of a real-time non-flickering reconstruction.
- an iteration process shown in FIG. 5 can applied for the calculation between the distribution in the observer window OW and the hologram layer HL.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Holo Graphy (AREA)
- Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
- Stereoscopic And Panoramic Photography (AREA)
- Liquid Crystal (AREA)
- Digital Computer Display Output (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Compression Or Coding Systems Of Tv Signals (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/534,317 US7969633B2 (en) | 2004-12-23 | 2009-08-03 | Method and device for computing computer-generated video holograms |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102004063838 | 2004-12-23 | ||
DE200410063838 DE102004063838A1 (de) | 2004-12-23 | 2004-12-23 | Verfahren und Einrichtung zum Berechnen computer generierter Videohologramme |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/534,317 Division US7969633B2 (en) | 2004-12-23 | 2009-08-03 | Method and device for computing computer-generated video holograms |
Publications (2)
Publication Number | Publication Date |
---|---|
US20060139710A1 US20060139710A1 (en) | 2006-06-29 |
US7636184B2 true US7636184B2 (en) | 2009-12-22 |
Family
ID=36190537
Family Applications (7)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/313,989 Active 2026-12-26 US8804220B2 (en) | 2004-12-23 | 2005-12-21 | Method of computing a hologram |
US11/313,977 Active 2026-10-08 US7636184B2 (en) | 2004-12-23 | 2005-12-21 | Method and device for computing computer-generated video holograms |
US12/534,317 Active US7969633B2 (en) | 2004-12-23 | 2009-08-03 | Method and device for computing computer-generated video holograms |
US14/330,793 Active 2026-11-26 US9740167B2 (en) | 2004-12-23 | 2014-07-14 | Method of generating a holographic reconstruction of an object using observer tracking |
US15/679,228 Active 2026-01-19 US10401794B2 (en) | 2004-12-23 | 2017-08-17 | Method and a display device for generating a holographic reconstruction of an object |
US16/545,330 Active 2026-08-16 US11392085B2 (en) | 2004-12-23 | 2019-08-20 | Devices and methods for generating a holographic reconstruction of an object |
US17/813,176 Abandoned US20220357702A1 (en) | 2004-12-23 | 2022-07-18 | Method of computing a hologram |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/313,989 Active 2026-12-26 US8804220B2 (en) | 2004-12-23 | 2005-12-21 | Method of computing a hologram |
Family Applications After (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/534,317 Active US7969633B2 (en) | 2004-12-23 | 2009-08-03 | Method and device for computing computer-generated video holograms |
US14/330,793 Active 2026-11-26 US9740167B2 (en) | 2004-12-23 | 2014-07-14 | Method of generating a holographic reconstruction of an object using observer tracking |
US15/679,228 Active 2026-01-19 US10401794B2 (en) | 2004-12-23 | 2017-08-17 | Method and a display device for generating a holographic reconstruction of an object |
US16/545,330 Active 2026-08-16 US11392085B2 (en) | 2004-12-23 | 2019-08-20 | Devices and methods for generating a holographic reconstruction of an object |
US17/813,176 Abandoned US20220357702A1 (en) | 2004-12-23 | 2022-07-18 | Method of computing a hologram |
Country Status (14)
Country | Link |
---|---|
US (7) | US8804220B2 (ja) |
EP (3) | EP1828853B1 (ja) |
JP (6) | JP5165382B2 (ja) |
KR (7) | KR101207105B1 (ja) |
CN (3) | CN101088053B (ja) |
AT (1) | ATE439619T1 (ja) |
BR (2) | BRPI0517158A (ja) |
CA (2) | CA2588738A1 (ja) |
DE (2) | DE102004063838A1 (ja) |
IL (3) | IL183454A (ja) |
MX (2) | MX2007006219A (ja) |
RU (2) | RU2434258C9 (ja) |
TW (4) | TWI409719B (ja) |
WO (2) | WO2006066906A1 (ja) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100033781A1 (en) * | 2006-09-09 | 2010-02-11 | Seereal Technologies S.A. | Method and Apparatus for Encoding Computer-Generated Holograms in Pixelated Light Modulators |
US20100149314A1 (en) * | 2007-05-16 | 2010-06-17 | Seereal Technologies S.A. | Method for Rendering and Generating Color Video Holograms in Real Time |
US20100149312A1 (en) * | 2007-05-16 | 2010-06-17 | Seereal Technologies Syrdall | Analytical Method for Computing Video Holograms in Real Time |
US20100149313A1 (en) * | 2007-05-21 | 2010-06-17 | Bo Kroll | Holographic Reconstruction system with a Tracking Device for the Reconstruction |
US20100188719A1 (en) * | 2007-07-27 | 2010-07-29 | Norbert Leister | Holographic Reconstruction Device |
US9081363B2 (en) | 2012-01-25 | 2015-07-14 | Samsung Electronics Co., Ltd. | Apparatus and method for fast generation of three-dimensional (3D) hologram |
US9134700B2 (en) | 2011-04-27 | 2015-09-15 | Panasonic Intellectual Property Management Co., Ltd. | Display device |
US9581965B2 (en) | 2007-05-16 | 2017-02-28 | Seereal Technologies S.A. | Analytic method for computing video holograms in real time |
US20170060089A1 (en) * | 2015-08-31 | 2017-03-02 | City University Of Hong Kong | Fast generation of digital holograms |
US9869969B2 (en) | 2014-04-09 | 2018-01-16 | Samsung Electronics Co., Ltd. | Holographic display |
US10001748B2 (en) | 2014-07-29 | 2018-06-19 | Samsung Electronics Co., Ltd. | Holography reproducing apparatus and holography reproducing method |
US10054793B2 (en) | 2014-10-10 | 2018-08-21 | Samsung Electronics Co., Ltd. | Holographic display apparatus and holographic display method |
US10146181B2 (en) | 2014-09-23 | 2018-12-04 | Samsung Electronics Co., Ltd. | Apparatus and method for displaying holographic three-dimensional image |
US10571862B1 (en) * | 2015-05-21 | 2020-02-25 | Real View Imaging Ltd. | Producing a computer generated holographic image |
US10775540B2 (en) | 2015-02-26 | 2020-09-15 | Samsung Electronics Co., Ltd. | Method of forming light modulating signal for displaying 3D image, and apparatus and method for displaying 3D image |
US12092994B2 (en) | 2021-03-19 | 2024-09-17 | Samsung Electronics Co., Ltd. | Complex light modulator, holographic display apparatus, and method of generating hologram pattern |
Families Citing this family (228)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101349889B (zh) * | 2002-11-13 | 2012-04-25 | 希瑞尔技术有限公司 | 视频全息图和用于重构大物体的视频全息图的装置 |
DE102004063838A1 (de) * | 2004-12-23 | 2006-07-06 | Seereal Technologies Gmbh | Verfahren und Einrichtung zum Berechnen computer generierter Videohologramme |
DE102005021155B3 (de) * | 2005-04-29 | 2006-11-23 | Seereal Technologies Gmbh | Steuerbare Beleuchtungseinrichtung |
DE102006003741B4 (de) * | 2006-01-18 | 2009-08-27 | Seereal Technologies S.A. | Verfahren zum Kodieren eines computergenerierten Hologramms |
DE102006004301A1 (de) * | 2006-01-20 | 2007-08-02 | Seereal Technologies S.A. | Holographische Projektionsvorrichtung zur Vergrößerung eines Rekonstruktionsbereichs |
DE102006004299A1 (de) * | 2006-01-24 | 2007-07-26 | Seereal Technologies S.A. | Verfahren zur Datenkompression computergenerierter Videohologramme |
DE102006018689A1 (de) * | 2006-04-13 | 2007-10-25 | Seereal Technologies S.A. | Verfahren zum Rendern und Generieren computergenerierter Videohologramme in Echtzeit |
DE102006025096B4 (de) * | 2006-05-23 | 2012-03-29 | Seereal Technologies S.A. | Verfahren und Einrichtung zum Rendern und Generieren computer-generierter Videohologramme |
JP2010501904A (ja) * | 2006-09-01 | 2010-01-21 | シーリアル テクノロジーズ ソシエテ アノニム | ホログラフィック符号化ユニット又はホログラフィック表示装置のためのインタフェース及び回路 |
JP5266223B2 (ja) * | 2006-09-01 | 2013-08-21 | シーリアル テクノロジーズ ソシエテ アノニム | 伝播を使用して計算機ビデオホログラムをリアルタイムに生成する方法 |
DE102006042324B4 (de) * | 2006-09-01 | 2014-06-18 | Seereal Technologies S.A. | Verfahren zum Generieren computer-generierter Videohologramme in Echtzeit mittels Teilhologrammen |
WO2008025841A1 (de) * | 2006-09-01 | 2008-03-06 | Seereal Technologies S.A. | Holografische kodiereinheit zum generieren von videohologrammen |
DE102006042323B4 (de) * | 2006-09-01 | 2014-09-04 | Seereal Technologies S.A. | Verfahren zum Generieren computer-generierter Videohologramme in Echtzeit mittels Propagation |
US20100073744A1 (en) * | 2006-09-01 | 2010-03-25 | Seereal Technologies S.A. | Method for Generating Video Holograms in Real Time by Means of Subholograms |
WO2008045681A1 (en) * | 2006-10-06 | 2008-04-17 | 3M Innovative Properties Company | Backlight modules for autostereoscopic 3d display devices and scanning backlights for lcd devices |
GB0709379D0 (en) * | 2007-05-16 | 2007-06-27 | Seereal Technologies Sa | Smart display extended |
JP2010507824A (ja) * | 2006-10-26 | 2010-03-11 | シーリアル テクノロジーズ ソシエテ アノニム | ホログラフィック・ディスプレイ装置 |
WO2008049910A1 (en) * | 2006-10-26 | 2008-05-02 | Seereal Technologies S.A. | Compact holograhic display device |
CN101568888B (zh) * | 2006-10-26 | 2013-01-30 | 视瑞尔技术公司 | 包含全息显示装置的移动电话系统 |
DE102007024236A1 (de) * | 2007-05-21 | 2008-11-27 | Seereal Technologies S.A. | Holographisches Rekonstruktionssystem mit einer Anordnung von steuerbaren Mikroprismen |
WO2008049914A1 (en) * | 2006-10-26 | 2008-05-02 | Seereal Technologies S.A. | Compact holographic display device |
WO2008049917A1 (en) * | 2006-10-26 | 2008-05-02 | Seereal Technologies S.A. | Holographic display device comprising magneto-optical spatial light modulator |
US20110149018A1 (en) * | 2006-10-26 | 2011-06-23 | Seereal Technologies S.A. | Holographic display device comprising magneto-optical spatial light modulator |
JP2010507823A (ja) * | 2006-10-26 | 2010-03-11 | シーリアル テクノロジーズ ソシエテ アノニム | 小型のホログラフィック・ディスプレイ装置 |
JP5222300B2 (ja) * | 2006-10-26 | 2013-06-26 | シーリアル テクノロジーズ ソシエテ アノニム | 小型ホログラフィック・ディスプレイ装置 |
TWI422999B (zh) * | 2006-10-26 | 2014-01-11 | Seereal Technologies Sa | 全像顯示裝置、其製造方法及產生全像重建的方法 |
US20100118117A1 (en) * | 2006-10-26 | 2010-05-13 | Seereal Technologies S.A. | 3d content generation system |
TWI454742B (zh) * | 2006-10-26 | 2014-10-01 | Seereal Technologies Sa | 全像顯示裝置(四) |
US8139103B2 (en) * | 2006-11-11 | 2012-03-20 | Vuzix Corporation | Traveling lens for video display |
US8542421B2 (en) | 2006-11-17 | 2013-09-24 | Celloptic, Inc. | System, apparatus and method for extracting three-dimensional information of an object from received electromagnetic radiation |
US7782510B2 (en) | 2006-12-01 | 2010-08-24 | Christopher Paul Wilson | Computer generated hologram |
DE102006059400B4 (de) * | 2006-12-12 | 2019-12-24 | Seereal Technologies S.A. | Display-Einrichtung zur Erzeugung von Rekonstruktionen dreidimensionaler Darstellungen |
DE102006062376B4 (de) * | 2006-12-19 | 2018-03-22 | Seereal Technologies S.A. | Verfahren und Wiedergabeeinrichtung zum Reduzieren von Speckle |
DE102006062413A1 (de) * | 2006-12-21 | 2008-06-26 | Seereal Technologies S.A. | Holographische Projektionsvorrichtung zur Vergrößerung eines Sichtbarkeitsbereichs |
US7936489B2 (en) * | 2007-02-09 | 2011-05-03 | GM Global Technology Operations LLC | Holographic information display |
GB2446617A (en) * | 2007-02-16 | 2008-08-20 | Indepth Optics Ltd | 3D holographic display |
DE102007012865B4 (de) * | 2007-03-09 | 2016-09-29 | Seereal Technologies S.A. | Holographisches Projektionsdisplay mit korrigierter Phasenkodierung und Verfahren zum Rekonstruieren einer dreidimensionalen Szene in einem holographischen Projektionsdisplay |
DE102007013431B4 (de) | 2007-03-15 | 2018-07-05 | Seereal Technologies S.A. | Verfahren und Einrichtung zum Rekonstruieren einer dreidimensionalen Szene mit korrigierter Sichtbarkeit |
DE102007018266A1 (de) * | 2007-04-10 | 2008-10-16 | Seereal Technologies S.A. | Holographisches Projektionssystem mit einer optischen Wellennachführung und Mitteln zum Korrigieren der holographischen Rekonstruktion |
DE102007019277A1 (de) * | 2007-04-18 | 2008-10-30 | Seereal Technologies S.A. | Einrichtung zur Erzeugung von holografischen Rekonstruktionen mit Lichtmodulatoren |
EP2168015B1 (en) * | 2007-05-16 | 2018-12-26 | SeeReal Technologies S.A. | Holographic display |
DE102007023737B4 (de) * | 2007-05-16 | 2009-01-02 | Seereal Technologies S.A. | Verfahren zum Generieren von Videohologrammen in Echtzeit zur Erweiterung einer 3D-Rendering-Graphikpipeline |
DE102007023740B4 (de) | 2007-05-16 | 2009-04-09 | Seereal Technologies S.A. | Verfahren zur Generierung von Videohologrammen für eine holographische Wiedergabeeinrichtung mit wahlfreier Adressierung |
US8218211B2 (en) | 2007-05-16 | 2012-07-10 | Seereal Technologies S.A. | Holographic display with a variable beam deflection |
GB0718633D0 (en) * | 2007-05-16 | 2007-11-07 | Seereal Technologies Sa | Holograms |
DE102007023738A1 (de) | 2007-05-16 | 2009-01-08 | Seereal Technologies S.A. | Verfahren und Einrichtung zum Rekonstruieren einer dreidimensionalen Szene in einem holographischen Display |
DE102007028371B4 (de) | 2007-06-13 | 2012-05-16 | Seereal Technologies S.A. | Einrichtung zur Lichtmodulation |
US20090015922A1 (en) * | 2007-06-29 | 2009-01-15 | Allview Research Llc | Writing a diffractive structure |
GB0716829D0 (en) * | 2007-08-31 | 2007-10-10 | Seereal Technologies Sa | Holographic display |
DE102007045332B4 (de) * | 2007-09-17 | 2019-01-17 | Seereal Technologies S.A. | Holographisches Display zum Rekonstruieren einer Szene |
US8491121B2 (en) * | 2007-10-09 | 2013-07-23 | Elbit Systems Of America, Llc | Pupil scan apparatus |
TW200928624A (en) * | 2007-10-19 | 2009-07-01 | Seereal Technologies Sa | Light modulating device |
GB0720484D0 (en) * | 2007-10-19 | 2007-11-28 | Seereal Technologies Sa | Cells |
DE102007052951B4 (de) * | 2007-10-31 | 2021-11-18 | Bundesdruckerei Gmbh | Verifizierungsvorrichtung für ein Hologramm |
US20090174919A1 (en) * | 2007-12-28 | 2009-07-09 | Gaylord Moss | Directed illumination diffraction optics auto-stereo display |
TWI454655B (zh) * | 2007-12-31 | 2014-10-01 | Ind Tech Res Inst | 光譜影像處理方法 |
JP5141277B2 (ja) | 2008-02-08 | 2013-02-13 | ソニー株式会社 | 点灯期間設定方法、表示パネルの駆動方法、バックライトの駆動方法、点灯期間設定装置、半導体デバイス、表示パネル及び電子機器 |
DE102008000438A1 (de) * | 2008-02-28 | 2009-09-10 | Seereal Technologies S.A. | Steuerbare Ablenkeinrichtung |
DE102008000468A1 (de) * | 2008-02-29 | 2009-09-10 | Seereal Technologies S.A. | Vorrichtung zum Aufzeichnen von Hologrammen |
DE102008000467A1 (de) * | 2008-02-29 | 2009-09-10 | Seereal Technologies S.A. | Vorrichtung zum Auslesen von Hologrammen |
DE102008000589B4 (de) * | 2008-03-11 | 2018-02-01 | Seereal Technologies S.A. | Verfahren zur Kodierung von computergenerierten Hologrammen in pixelierten Lichtmodulatoren |
DE102008015312A1 (de) * | 2008-03-20 | 2009-10-01 | Siemens Aktiengesellschaft | Displaysystem zur Wiedergabe medizinischer Hologramme |
GB2461294B (en) * | 2008-06-26 | 2011-04-06 | Light Blue Optics Ltd | Holographic image display systems |
KR101908033B1 (ko) | 2008-07-10 | 2018-12-10 | 리얼 뷰 이미징 리미티드 | 광시야각 디스플레이들 및 사용자 인터페이스들 |
TW201007393A (en) * | 2008-07-21 | 2010-02-16 | Seereal Technologies Sa | Light modulating device |
WO2011114143A1 (en) * | 2010-03-15 | 2011-09-22 | Durham University | Improvements in or relating to holography |
JP5072763B2 (ja) * | 2008-08-01 | 2012-11-14 | 浜松ホトニクス株式会社 | ホログラム作成方法 |
USD624952S1 (en) | 2008-10-20 | 2010-10-05 | X6D Ltd. | 3D glasses |
USRE45394E1 (en) | 2008-10-20 | 2015-03-03 | X6D Limited | 3D glasses |
USD603445S1 (en) | 2009-03-13 | 2009-11-03 | X6D Limited | 3D glasses |
USD666663S1 (en) | 2008-10-20 | 2012-09-04 | X6D Limited | 3D glasses |
US8542326B2 (en) | 2008-11-17 | 2013-09-24 | X6D Limited | 3D shutter glasses for use with LCD displays |
CA2684513A1 (en) | 2008-11-17 | 2010-05-17 | X6D Limited | Improved performance 3d glasses |
DE102008054438A1 (de) | 2008-12-09 | 2010-06-24 | Seereal Technologies S.A. | Optisches Bauteil zum Ablenken von das optische Bauteil durchlaufende Lichtstrahlen |
USD646451S1 (en) | 2009-03-30 | 2011-10-04 | X6D Limited | Cart for 3D glasses |
USD650956S1 (en) | 2009-05-13 | 2011-12-20 | X6D Limited | Cart for 3D glasses |
USD672804S1 (en) | 2009-05-13 | 2012-12-18 | X6D Limited | 3D glasses |
KR101774483B1 (ko) | 2009-06-23 | 2017-09-05 | 시리얼 테크놀로지즈 에스.에이. | 직시형 디스플레이용 조명 유닛 |
DE102009028626A1 (de) | 2009-06-23 | 2011-01-05 | Seereal Technologies S.A. | Lichtmodulationvorrichtung für ein Display zur Darstellung zwei- und/oder dreidimensionaler Bildinhalte |
JP5852956B2 (ja) | 2009-06-23 | 2016-02-03 | シーリアル テクノロジーズ ソシエテ アノニムSeereal Technologies S.A. | 2次元及び3次元の少なくともいずれかの画像コンテンツ提示用ディスプレイに用いられる光変調デバイス |
USD671590S1 (en) | 2010-09-10 | 2012-11-27 | X6D Limited | 3D glasses |
USD669522S1 (en) | 2010-08-27 | 2012-10-23 | X6D Limited | 3D glasses |
USD692941S1 (en) | 2009-11-16 | 2013-11-05 | X6D Limited | 3D glasses |
CN102725683B (zh) | 2009-12-01 | 2016-02-24 | 视瑞尔技术公司 | 用于调制与相位调制器相互作用的光的相位调制器 |
USD662965S1 (en) | 2010-02-04 | 2012-07-03 | X6D Limited | 3D glasses |
KR101819073B1 (ko) | 2010-03-15 | 2018-01-16 | 시리얼 테크놀로지즈 에스.에이. | 공간 광 변조기를 위한 백플레인 디바이스 및 백플레인 디바이스를 동작시키는 방법 |
WO2011121130A2 (en) * | 2010-04-01 | 2011-10-06 | Seereal Technologies S.A. | Method and device for encoding three-dimensional scenes which include transparent objects in a holographic system |
US9395690B2 (en) | 2010-07-06 | 2016-07-19 | Seereal Technologies S.A. | Beam divergence and various collimators for holographic or stereoscopic displays |
USD664183S1 (en) | 2010-08-27 | 2012-07-24 | X6D Limited | 3D glasses |
WO2012028678A2 (en) | 2010-09-01 | 2012-03-08 | Seereal Technologies S.A. | Backplane device |
KR101670927B1 (ko) | 2010-11-05 | 2016-11-01 | 삼성전자주식회사 | 디스플레이 장치 및 방법 |
DE102010064383B4 (de) | 2010-12-22 | 2015-10-29 | Seereal Technologies S.A. | Lichtmodulationseinrichtung |
JP5831930B2 (ja) * | 2011-08-31 | 2015-12-09 | 国立研究開発法人情報通信研究機構 | ホログラム生成装置およびホログラム生成方法 |
KR101926547B1 (ko) | 2011-10-28 | 2018-12-10 | 삼성전자주식회사 | 고속으로 3d 홀로그램을 생성하는 방법 및 장치 |
DE102011056006B4 (de) | 2011-12-01 | 2016-03-10 | Seereal Technologies S.A. | Verfahren zur Kodierung eines Hologramms in einer Lichtmodulationseinrichtung |
DE102011055967B4 (de) * | 2011-12-02 | 2016-03-10 | Seereal Technologies S.A. | Messverfahren und Vorrichtung zur Durchführung des Messverfahrens |
KR102273746B1 (ko) | 2012-01-11 | 2021-07-06 | 시리얼 테크놀로지즈 에스.에이. | 화소 매트릭스 및/또는 디스플레이를 위한 제어 가능한 공간 광 변조기를 조명하기 위한 광학 장치 |
KR101379327B1 (ko) * | 2012-02-28 | 2014-04-14 | 주식회사 울프슨랩 | 디지털 홀로그램 생성방법 및 생성장치, 저작방법, 저작장치, 그 기록매체 |
KR101898490B1 (ko) * | 2012-02-29 | 2018-09-13 | 엘지전자 주식회사 | 홀로그래픽 디스플레이 장치 및 3차원 동영상의 중복성을 이용한 홀로그램 생성 방법 |
GB2501112B (en) * | 2012-04-12 | 2014-04-16 | Two Trees Photonics Ltd | Phase retrieval |
US9678267B2 (en) | 2012-05-18 | 2017-06-13 | Reald Spark, Llc | Wide angle imaging directional backlights |
EP2850488A4 (en) | 2012-05-18 | 2016-03-02 | Reald Inc | DIRECTIONAL BACK LIGHTING |
US9188731B2 (en) | 2012-05-18 | 2015-11-17 | Reald Inc. | Directional backlight |
JP6508832B2 (ja) | 2012-05-18 | 2019-05-08 | リアルディー スパーク エルエルシー | 指向性バックライトの複数の光源の制御 |
US9235057B2 (en) | 2012-05-18 | 2016-01-12 | Reald Inc. | Polarization recovery in a directional display device |
US9934614B2 (en) | 2012-05-31 | 2018-04-03 | Microsoft Technology Licensing, Llc | Fixed size augmented reality objects |
CN104685867B (zh) * | 2012-07-23 | 2017-03-08 | 瑞尔D斯帕克有限责任公司 | 观察者跟踪自动立体显示器 |
USD711959S1 (en) | 2012-08-10 | 2014-08-26 | X6D Limited | Glasses for amblyopia treatment |
US10080049B2 (en) | 2012-09-07 | 2018-09-18 | At&T Intellectual Property I, L.P. | Apparatus and method for presentation of holographic content |
KR102077812B1 (ko) * | 2012-10-01 | 2020-02-17 | 시리얼 테크놀로지즈 에스.에이. | 코히어런트 광의 위상 변조를 위한 제어 가능한 디바이스 |
US9674510B2 (en) * | 2012-11-21 | 2017-06-06 | Elwha Llc | Pulsed projection system for 3D video |
KR101960838B1 (ko) * | 2012-11-26 | 2019-03-21 | 삼성전자주식회사 | 홀로그램 패턴 생성 장치 및 방법 |
US9265458B2 (en) | 2012-12-04 | 2016-02-23 | Sync-Think, Inc. | Application of smooth pursuit cognitive testing paradigms to clinical drug development |
WO2014105385A1 (en) * | 2012-12-27 | 2014-07-03 | The Regents Of The University Of California | Anamorphic stretch image compression |
CN103092049A (zh) * | 2013-01-16 | 2013-05-08 | 北京工业大学 | 降低散斑噪声的全固态数字全息成像系统 |
KR102041425B1 (ko) * | 2013-02-05 | 2019-11-06 | 엘지전자 주식회사 | 디스플레이 장치 및 그 동작 방법 |
CN105324605B (zh) | 2013-02-22 | 2020-04-28 | 瑞尔D斯帕克有限责任公司 | 定向背光源 |
US9380976B2 (en) | 2013-03-11 | 2016-07-05 | Sync-Think, Inc. | Optical neuroinformatics |
KR102046104B1 (ko) * | 2013-03-19 | 2019-11-18 | 삼성전자주식회사 | 홀로그래픽 3차원 영상 디스플레이 장치 및 상기 홀로그래픽 3차원 영상 디스플레이 장치용 조광 유닛 |
KR102028987B1 (ko) * | 2013-03-29 | 2019-10-07 | 엘지디스플레이 주식회사 | 홀로그램 영상 표시 장치 |
KR20140121107A (ko) * | 2013-04-05 | 2014-10-15 | 한국전자통신연구원 | 다시점 기반의 홀로그램 생성 방법 및 장치 |
KR101970577B1 (ko) * | 2013-04-09 | 2019-04-19 | 엘지디스플레이 주식회사 | 입체 영상 표시 장치 및 그의 아이-트랙킹 방법 |
KR101489823B1 (ko) * | 2013-04-18 | 2015-02-06 | 광운대학교 산학협력단 | 컴퓨터 생성 홀로그램의 고속 생성 장치 |
KR101968332B1 (ko) * | 2013-05-27 | 2019-04-12 | 한국전자통신연구원 | 광시야각 홀로그래픽 이미지 디스플레이 방법 및 장치 |
DE112014002704A5 (de) | 2013-06-06 | 2016-03-03 | Seereal Technologies S.A. | Vorrichtung und Verfahren zur Berechnung von Hologrammdaten |
EP3007045B1 (en) * | 2013-06-07 | 2021-11-24 | Asukanet Company, Ltd. | Method and device for non-contact sensing of reproduced image pointing location |
EP3011734A4 (en) | 2013-06-17 | 2017-02-22 | RealD Inc. | Controlling light sources of a directional backlight |
US20150085331A1 (en) * | 2013-09-23 | 2015-03-26 | Electronics And Telecommunications Research Institute | Wide-viewing angle holographic display apparatus |
EP3058562A4 (en) | 2013-10-14 | 2017-07-26 | RealD Spark, LLC | Control of directional display |
WO2015057588A1 (en) | 2013-10-14 | 2015-04-23 | Reald Inc. | Light input for directional backlight |
KR102188636B1 (ko) | 2013-11-28 | 2020-12-08 | 삼성전자주식회사 | 홀로그램 디스플레이를 위한 서브-홀로그램 생성 방법 및 장치 |
US9979952B2 (en) | 2013-12-13 | 2018-05-22 | Htc Corporation | Method of creating a parallax video from a still image |
US10048647B2 (en) | 2014-03-27 | 2018-08-14 | Microsoft Technology Licensing, Llc | Optical waveguide including spatially-varying volume hologram |
CN103997636B (zh) * | 2014-05-16 | 2016-02-10 | 北京理工大学 | 一种计算全息三维显示物体间遮挡关系的方法 |
CN106662773B (zh) | 2014-06-26 | 2021-08-06 | 瑞尔D 斯帕克有限责任公司 | 定向防窥显示器 |
KR101549178B1 (ko) * | 2014-07-31 | 2015-09-02 | 고려대학교 산학협력단 | 홀로그램 생성 장치 및 방법 |
KR102224718B1 (ko) * | 2014-08-06 | 2021-03-08 | 삼성전자주식회사 | 홀로그램 생성 방법 및 장치 |
EP3204686B1 (en) | 2014-10-08 | 2019-07-17 | RealD Spark, LLC | Connection unit for a directional backlight |
KR102429874B1 (ko) * | 2014-10-10 | 2022-08-05 | 삼성전자주식회사 | 홀로그래픽 디스플레이 장치 및 홀로그래픽 디스플레이 방법 |
CN104360590B (zh) * | 2014-11-18 | 2017-05-03 | 浙江师范大学 | 一种计算周视全息图编码方法 |
WO2016105541A1 (en) | 2014-12-24 | 2016-06-30 | Reald Inc. | Adjustment of perceived roundness in stereoscopic image of a head |
KR101803139B1 (ko) | 2015-01-27 | 2017-11-29 | 한국전자통신연구원 | 3d 홀로그램 왜곡 보정 방법 및 장치 |
RU2596062C1 (ru) | 2015-03-20 | 2016-08-27 | Автономная Некоммерческая Образовательная Организация Высшего Профессионального Образования "Сколковский Институт Науки И Технологий" | Способ коррекции изображения глаз с использованием машинного обучения и способ машинного обучения |
DE102015205873A1 (de) | 2015-04-01 | 2016-10-06 | Seereal Technologies S.A. | Verfahren zur Berechnung von Hologrammen zur holographischen Rekonstruktion von zweidimensionalen und/oder dreidimensionalen Szenen |
WO2016168345A1 (en) | 2015-04-13 | 2016-10-20 | Reald Inc. | Wide angle imaging directional backlights |
KR102421736B1 (ko) * | 2015-05-01 | 2022-07-15 | 삼성전자주식회사 | 향상된 화질을 제공하는 홀로그래픽 디스플레이 장치 및 홀로그래픽 디스플레이 방법 |
CN107850804B (zh) | 2015-05-27 | 2021-06-11 | 瑞尔D斯帕克有限责任公司 | 广角成像定向背光源 |
US10210844B2 (en) | 2015-06-29 | 2019-02-19 | Microsoft Technology Licensing, Llc | Holographic near-eye display |
TWI556623B (zh) * | 2015-07-03 | 2016-11-01 | 友達光電股份有限公司 | 三維影像控制方法 |
CN105223796B (zh) * | 2015-09-08 | 2018-09-11 | 北京邮电大学 | 基于近眼显示设备的全息图计算方法及装置 |
KR102464363B1 (ko) * | 2015-09-30 | 2022-11-07 | 삼성전자주식회사 | 푸리에 변환을 수행하는 방법 및 장치 |
WO2017074951A1 (en) | 2015-10-26 | 2017-05-04 | Reald Inc. | Intelligent privacy system, apparatus, and method thereof |
US10459321B2 (en) | 2015-11-10 | 2019-10-29 | Reald Inc. | Distortion matching polarization conversion systems and methods thereof |
US10330843B2 (en) | 2015-11-13 | 2019-06-25 | Reald Spark, Llc | Wide angle imaging directional backlights |
EP3374822B1 (en) | 2015-11-13 | 2023-12-27 | RealD Spark, LLC | Surface features for imaging directional backlights |
KR101909137B1 (ko) * | 2015-12-16 | 2018-10-17 | 한국전자통신연구원 | 홀로그램 정보 보정 장치 및 방법 |
KR20180098395A (ko) * | 2015-12-28 | 2018-09-03 | 시리얼 테크놀로지즈 에스.에이. | 이미지 품질을 최적화하는 디스플레이 디바이스 및 방법 |
CN114143495A (zh) | 2016-01-05 | 2022-03-04 | 瑞尔D斯帕克有限责任公司 | 多视角图像的注视校正 |
US10877438B2 (en) * | 2016-01-07 | 2020-12-29 | Magic Leap, Inc. | Dynamic fresnel projector |
KR102571080B1 (ko) | 2016-02-12 | 2023-08-25 | 삼성전자주식회사 | 홀로그래픽 이미지를 처리하는 방법 및 장치 |
KR20170096420A (ko) | 2016-02-16 | 2017-08-24 | 삼성전자주식회사 | 대화형 3차원 디스플레이 장치 및 방법 |
US10310335B2 (en) | 2016-02-29 | 2019-06-04 | Microsoft Technology Licensing, Llc | Reducing orders of diffraction patterns |
CN109564403B (zh) * | 2016-05-18 | 2021-05-28 | 视瑞尔技术公司 | 用于生成全息图的方法 |
CN114554177A (zh) | 2016-05-19 | 2022-05-27 | 瑞尔D斯帕克有限责任公司 | 广角成像定向背光源 |
EP3464996B1 (en) | 2016-05-23 | 2022-09-14 | RealD Spark, LLC | Wide angle imaging directional backlights |
KR102629583B1 (ko) * | 2016-07-13 | 2024-01-25 | 삼성전자주식회사 | 3차원 이미지를 처리하는 방법 및 장치 |
US10242643B2 (en) | 2016-07-18 | 2019-03-26 | Microsoft Technology Licensing, Llc | Constrained head-mounted display communication |
DE112017004898A5 (de) | 2016-09-29 | 2019-06-13 | Seereal Technologies S.A. | Einrichtung zum Vereinigen von Lichtstrahlen, die mit benachbart angeordneten Pixeln eines Lichtmodulators wechselwirken |
US10254542B2 (en) | 2016-11-01 | 2019-04-09 | Microsoft Technology Licensing, Llc | Holographic projector for a waveguide display |
CN106444333A (zh) * | 2016-11-11 | 2017-02-22 | 网易(杭州)网络有限公司 | 图像处理方法和装置 |
KR102669967B1 (ko) * | 2016-11-24 | 2024-05-29 | 삼성전자주식회사 | 홀로그램 생성 방법 및 홀로그램 생성 장치 |
KR102664383B1 (ko) * | 2016-11-30 | 2024-05-08 | 삼성전자주식회사 | 영상 데이터 처리 방법 및 장치 |
CN107071392A (zh) * | 2016-12-23 | 2017-08-18 | 网易(杭州)网络有限公司 | 图像处理方法和装置 |
US11022939B2 (en) | 2017-01-03 | 2021-06-01 | Microsoft Technology Licensing, Llc | Reduced bandwidth holographic near-eye display |
EP3566094B1 (en) | 2017-01-04 | 2023-12-06 | RealD Spark, LLC | Optical stack for imaging directional backlights |
CN106547190A (zh) * | 2017-02-09 | 2017-03-29 | 厦门大学 | 一种三维效果的全息实时显示方法 |
US10408992B2 (en) | 2017-04-03 | 2019-09-10 | Reald Spark, Llc | Segmented imaging directional backlights |
JP6960144B2 (ja) * | 2017-04-11 | 2021-11-05 | 国立研究開発法人情報通信研究機構 | ホログラム製造方法及びホログラム記録装置 |
CN107121917B (zh) * | 2017-05-09 | 2019-05-31 | 四川大学 | 一种抑制计算全息斑点噪声的方法 |
KR102395288B1 (ko) * | 2017-05-18 | 2022-05-09 | 현대자동차주식회사 | 홀로그램 표시 제어 장치 및 방법, 그리고 차량 시스템 |
DE112018002581A5 (de) * | 2017-05-19 | 2020-03-19 | Seereal Technologies S.A. | Anzeigevorrichtung mit einem lichtleiter |
JP6988177B2 (ja) * | 2017-06-13 | 2022-01-05 | 凸版印刷株式会社 | ホログラムのための計算方法、光学フィルム、および光学フィルムの製造方法 |
US10712567B2 (en) | 2017-06-15 | 2020-07-14 | Microsoft Technology Licensing, Llc | Holographic display system |
US10969740B2 (en) | 2017-06-27 | 2021-04-06 | Nvidia Corporation | System and method for near-eye light field rendering for wide field of view interactive three-dimensional computer graphics |
WO2019032604A1 (en) | 2017-08-08 | 2019-02-14 | Reald Spark, Llc | ADJUSTING A DIGITAL REPRESENTATION OF A HEADQUARTERS |
KR101990009B1 (ko) | 2017-08-25 | 2019-09-30 | 주식회사 내일해 | 개선된 홀로그래픽 복원 장치 및 방법 |
US11644791B2 (en) * | 2017-08-30 | 2023-05-09 | University Of Hyogo | Holographic imaging device and data processing method therefor |
KR102650507B1 (ko) * | 2017-09-27 | 2024-03-21 | 매직 립, 인코포레이티드 | 별개의 위상 및 진폭 변조기들을 갖는 근안 3d 디스플레이 |
CN109581850B (zh) * | 2017-09-29 | 2021-03-05 | 京东方科技集团股份有限公司 | 全息显示方法和全息显示装置 |
KR102496376B1 (ko) * | 2017-10-13 | 2023-02-06 | 삼성전자주식회사 | 영상 데이터 처리 방법 및 장치 |
DE112018004515A5 (de) * | 2017-10-18 | 2020-06-18 | Seereal Technologies S.A. | Anzeigevorrichtung und Verfahren zur Erzeugung eines großen Sichtfeldes |
US11070791B2 (en) | 2017-11-06 | 2021-07-20 | Reald Spark, Llc | Privacy display apparatus |
RU2686576C1 (ru) | 2017-11-30 | 2019-04-29 | Самсунг Электроникс Ко., Лтд. | Компактное устройство голографического дисплея |
KR102454859B1 (ko) | 2017-11-30 | 2022-10-14 | 한국전자통신연구원 | 인간 시각 시스템 모델링에 기반한 홀로그램 생성 장치 및 그 방법 |
WO2019122295A2 (de) | 2017-12-21 | 2019-06-27 | Seereal Technologies S.A. | Anzeigevorrichtung und verfahren zur nachführung eines virtuellen sichtbarkeitsbereichs |
KR102497832B1 (ko) | 2017-12-26 | 2023-02-08 | 한국전자통신연구원 | 홀로그램 생성 장치 및 그 방법 |
EP3740735A4 (en) | 2018-01-16 | 2021-11-24 | Pacific Light&Hologram, Inc. | THREE DIMENSIONAL DISPLAYS USING ELECTROMAGNETIC FIELDS CALCULATIONS |
EP3743766A4 (en) | 2018-01-25 | 2021-12-22 | RealD Spark, LLC | TOUCH SCREEN FOR CONFIDENTIALITY DISPLAY |
WO2019225779A1 (ko) * | 2018-05-23 | 2019-11-28 | 광운대학교 산학협력단 | 곡면 홀로그램의 회전 불변성의 개념에 기초한 곡선 홀로그램 기반 회전 - 운동 보상 방법에 의한 자유 운동 상태의 3 차원 물체의 홀로그램 비디오의 고속 생성방법 |
DE102018209400A1 (de) * | 2018-06-13 | 2019-12-19 | Audi Ag | Verfahren zum Betreiben einer Anzeige- und Bedienvorrichtung, Anzeige- und Bedienvorrichtung, und Kraftfahrzeug |
DE112019004123A5 (de) | 2018-08-16 | 2021-09-09 | Seereal Technologies S.A. | Lichtmodulationsvorrichtung |
KR102129382B1 (ko) * | 2018-12-17 | 2020-07-02 | 주식회사 토모큐브 | 간섭 패턴에서 파동의 위상 정보 추출 방법 및 장치 |
US11747767B2 (en) | 2019-03-19 | 2023-09-05 | Samsung Electronics Co., Ltd. | Method and apparatus for processing three-dimensional holographic image |
KR20220045166A (ko) * | 2019-08-09 | 2022-04-12 | 라이트 필드 랩 인코포레이티드 | 라이트필드 디스플레이 시스템 기반 디지털 사이니지 시스템 |
US11754905B2 (en) * | 2019-09-27 | 2023-09-12 | Texas Instruments Incorporated | Phased spatial light modulator for imaging |
US11782385B2 (en) * | 2019-12-17 | 2023-10-10 | Fei Company | Reconstruction algorithms of electron-based holograms |
CN111240148B (zh) * | 2019-12-27 | 2021-08-10 | 北京航空航天大学 | 一种基于自适应变焦相机的全息实时获取与投影系统 |
CN111443583B (zh) * | 2020-04-14 | 2021-03-09 | 北京航空航天大学 | 一种基于全息图优化分割计算的快速全息图计算方法 |
US20230350344A1 (en) * | 2020-06-02 | 2023-11-02 | Sony Group Corporation | Information processing device, information processing method, program, and hologram display system |
CN113973198B (zh) * | 2020-07-22 | 2024-04-09 | 中移(苏州)软件技术有限公司 | 全息影像生成方法、装置、设备及计算机可读存储介质 |
WO2022033996A2 (de) | 2020-08-10 | 2022-02-17 | Seereal Technologies S.A. | Vorrichtung und verfahren zur berechnung von hologrammdaten |
JP7486381B2 (ja) | 2020-08-28 | 2024-05-17 | 日本放送協会 | ホログラムデータ生成装置およびそのプログラム |
EP4214441A4 (en) | 2020-09-16 | 2024-08-28 | Reald Spark Llc | VEHICLE EXTERIOR LIGHTING DEVICE |
US11360429B2 (en) | 2020-09-17 | 2022-06-14 | Pacific Light & Hologram, Inc. | Reconstructing objects with display zero order light suppression |
EP4237912A1 (en) * | 2020-10-28 | 2023-09-06 | InterDigital CE Patent Holdings, SAS | System and method for computer-generated holography synthesis |
KR102612045B1 (ko) * | 2020-11-02 | 2023-12-12 | 한국전자통신연구원 | 디지털 홀로그램 구현 장치의 동작 방법 |
CN112596262B (zh) * | 2020-12-14 | 2021-10-22 | 北京航空航天大学 | 一种基于可调液晶光栅的全息真3d显示系统及方法 |
US11880164B2 (en) | 2021-01-04 | 2024-01-23 | Electronics And Telecommunications Research Institute | Module controlling viewing window, device for hologram display and method for displaying hologram |
KR20220135506A (ko) | 2021-03-30 | 2022-10-07 | 삼성전자주식회사 | 홀로그램을 생성하는 방법 및 홀로그래픽 디스플레이 시스템 |
CN113589671B (zh) * | 2021-07-01 | 2022-08-12 | 四川大学 | 扩大垂直视场角的锥面全息显示方法 |
CN114895542B (zh) * | 2022-04-27 | 2023-11-21 | 安徽大学 | 一种三维计算全息图非迭代快速生成方法 |
FR3137980A1 (fr) * | 2022-07-12 | 2024-01-19 | Psa Automobiles Sa | Hologramme physique fabriqué à partir d’un hologramme numérique et dispositif holographique associé |
FR3137979A1 (fr) * | 2022-07-12 | 2024-01-19 | Psa Automobiles Sa | Hologramme intégrant les sources lumineuses d’un dispositif holographique multi-sources |
FR3137978A1 (fr) * | 2022-07-12 | 2024-01-19 | Psa Automobiles Sa | Hologramme adapté à un dispositif holographique multi-sources |
WO2024030274A1 (en) | 2022-08-02 | 2024-02-08 | Reald Spark, Llc | Pupil tracking near-eye display |
CN115616884B (zh) * | 2022-09-26 | 2024-10-01 | 中国工程物理研究院激光聚变研究中心 | 一种基于物体轴向移动的全场复振幅无透镜成像方法 |
ES2940858B2 (es) * | 2022-11-14 | 2023-12-27 | Univ Madrid Complutense | Sistema para generación de hologramas digitales vía simulación |
US11900842B1 (en) | 2023-05-12 | 2024-02-13 | Pacific Light & Hologram, Inc. | Irregular devices |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0593300A1 (en) | 1992-10-14 | 1994-04-20 | Fujitsu Limited | Hologram information forming method |
US5974178A (en) * | 1996-10-07 | 1999-10-26 | Advantest Corporation | Wavesource image visualization method using a partial division fast fourier transform |
WO2000034834A1 (fr) | 1998-12-09 | 2000-06-15 | Communaute Europeenne (Ce) | Procede et dispositif holographiques assistes par ordinateur pour restituer des images tridimensionelles |
US20020008887A1 (en) | 1997-05-22 | 2002-01-24 | Nippon Telegraph | Method and apparatus for displaying computer generated holograms |
US20020122254A1 (en) * | 2000-12-22 | 2002-09-05 | Jesper Gluckstad | Method and an apparatus for generating a phase-modulated wave front of electromagnetic radiation |
WO2003021363A1 (en) | 2001-09-04 | 2003-03-13 | Holographic Imaging Llc | Method and apparatus for illuminating a computer generated hologram |
WO2003025680A1 (en) | 2001-09-14 | 2003-03-27 | Holographic Imaging Llc | Computation of computer generated holograms |
US6545790B2 (en) * | 1999-11-08 | 2003-04-08 | Ralph W. Gerchberg | System and method for recovering phase information of a wave front |
US20030151784A1 (en) * | 2001-12-17 | 2003-08-14 | Dai Nippon Printing Co., Ltd. | Computer-generated hologram fabrication process, and hologram-recorded medium |
US20040021768A1 (en) | 2000-06-09 | 2004-02-05 | Payne Douglas A | Computation time reduction for the three-dimensional displays |
WO2004044659A2 (de) | 2002-11-13 | 2004-05-27 | Seereal Technologies Gmbh | Videohologramm und einrichtung zur rekonstruktion von videohologrammen |
US6791570B1 (en) | 1996-12-18 | 2004-09-14 | Seereal Technologies Gmbh | Method and device for the three-dimensional representation of information with viewer movement compensation |
US7400431B2 (en) | 2004-09-08 | 2008-07-15 | Seereal Technologies Gmbh | Method for encoding video holograms for holographically reconstructing a scene |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN85109697A (zh) * | 1985-12-20 | 1987-06-24 | 林文渊 | 波的全息成象法 |
JPH0635391A (ja) * | 1992-07-20 | 1994-02-10 | Fujitsu Ltd | 立体表示装置 |
JP3238755B2 (ja) * | 1992-08-21 | 2001-12-17 | 富士通株式会社 | ホログラムの作成および立体表示方法並びに立体表示装置 |
JPH06186901A (ja) * | 1992-12-18 | 1994-07-08 | Komatsu Ltd | 3次元画像表示装置 |
JP2989115B2 (ja) * | 1995-03-27 | 1999-12-13 | 浜松ホトニクス株式会社 | 立体表示方法および立体表示装置 |
JP3999294B2 (ja) * | 1996-10-07 | 2007-10-31 | 株式会社アドバンテスト | 部分分割的fftを用いた計算ホログラフィの高速化の方法 |
JPH11164291A (ja) * | 1997-09-26 | 1999-06-18 | Denso Corp | 映像情報表示システム |
JPH11234705A (ja) * | 1998-02-17 | 1999-08-27 | Matsushita Electric Ind Co Ltd | 立体表示装置 |
JP4108823B2 (ja) * | 1998-04-14 | 2008-06-25 | 浜松ホトニクス株式会社 | ホログラム作成装置 |
JP2000092519A (ja) * | 1998-09-10 | 2000-03-31 | Toshiba Corp | 立体画像受信装置及び立体画像表示システム |
US6616279B1 (en) * | 2000-10-02 | 2003-09-09 | Johnson & Johnson Vision Care, Inc. | Method and apparatus for measuring wavefront aberrations |
US7023466B2 (en) * | 2000-11-03 | 2006-04-04 | Actuality Systems, Inc. | Three-dimensional display systems |
WO2003014837A1 (de) * | 2001-07-26 | 2003-02-20 | Tesa Scribos Gmbh | Verfahren zum berechnen von mehrschichthologrammen, verfahren zum herstellen von mehrschichthologrammen und speichermedium mit einem mehrschichthologramm |
JP2003167500A (ja) * | 2001-11-30 | 2003-06-13 | Art Nau:Kk | ホログラム作成方法 |
US6999091B2 (en) * | 2001-12-28 | 2006-02-14 | Intel Corporation | Dual memory channel interleaving for graphics and video |
TW563335B (en) * | 2002-05-10 | 2003-11-21 | Veutron Corp | Focus searching method of image scanning device |
JP4153242B2 (ja) * | 2002-05-27 | 2008-09-24 | 浜松ホトニクス株式会社 | 画像表示装置、画像表示システムおよび画像表示方法 |
US6927886B2 (en) | 2002-08-02 | 2005-08-09 | Massachusetts Institute Of Technology | Reconfigurable image surface holograms |
JP4367750B2 (ja) * | 2002-08-02 | 2009-11-18 | 大日本印刷株式会社 | ホログラム観察具とそのための計算機ホログラム |
US20040103038A1 (en) * | 2002-11-26 | 2004-05-27 | Power Mark J. | Virtual reality enabled transaction processing system |
DE102004063838A1 (de) * | 2004-12-23 | 2006-07-06 | Seereal Technologies Gmbh | Verfahren und Einrichtung zum Berechnen computer generierter Videohologramme |
KR102571080B1 (ko) * | 2016-02-12 | 2023-08-25 | 삼성전자주식회사 | 홀로그래픽 이미지를 처리하는 방법 및 장치 |
-
2004
- 2004-12-23 DE DE200410063838 patent/DE102004063838A1/de not_active Ceased
-
2005
- 2005-12-21 US US11/313,989 patent/US8804220B2/en active Active
- 2005-12-21 US US11/313,977 patent/US7636184B2/en active Active
- 2005-12-21 TW TW99116907A patent/TWI409719B/zh active
- 2005-12-21 TW TW094145745A patent/TWI346845B/zh active
- 2005-12-21 TW TW099123046A patent/TWI346846B/zh active
- 2005-12-21 TW TW094145744A patent/TWI349239B/zh active
- 2005-12-22 EP EP05819194.1A patent/EP1828853B1/en active Active
- 2005-12-22 MX MX2007006219A patent/MX2007006219A/es active IP Right Grant
- 2005-12-22 KR KR1020077015364A patent/KR101207105B1/ko active IP Right Grant
- 2005-12-22 BR BRPI0517158-0A patent/BRPI0517158A/pt not_active IP Right Cessation
- 2005-12-22 EP EP10185013.9A patent/EP2290473B1/en active Active
- 2005-12-22 BR BRPI0517159-8A patent/BRPI0517159A/pt not_active IP Right Cessation
- 2005-12-22 WO PCT/EP2005/013836 patent/WO2006066906A1/en active Application Filing
- 2005-12-22 CA CA002588738A patent/CA2588738A1/en not_active Abandoned
- 2005-12-22 KR KR1020147025662A patent/KR101713392B1/ko active IP Right Grant
- 2005-12-22 DE DE602005015996T patent/DE602005015996D1/de active Active
- 2005-12-22 MX MX2007006340A patent/MX2007006340A/es unknown
- 2005-12-22 KR KR1020157016254A patent/KR101722143B1/ko active IP Right Grant
- 2005-12-22 CN CN2005800447118A patent/CN101088053B/zh active Active
- 2005-12-22 KR KR1020077014858A patent/KR101518049B1/ko active IP Right Grant
- 2005-12-22 EP EP05819368A patent/EP1800192B1/en active Active
- 2005-12-22 KR KR1020177008363A patent/KR101835289B1/ko active IP Right Grant
- 2005-12-22 JP JP2007547360A patent/JP5165382B2/ja active Active
- 2005-12-22 WO PCT/EP2005/013879 patent/WO2006066919A1/en active Application Filing
- 2005-12-22 KR KR1020107028853A patent/KR101391889B1/ko active IP Right Grant
- 2005-12-22 KR KR1020137012955A patent/KR101427057B1/ko active IP Right Grant
- 2005-12-22 AT AT05819368T patent/ATE439619T1/de not_active IP Right Cessation
- 2005-12-22 CN CN201010565793.3A patent/CN102063046B/zh active Active
- 2005-12-22 CA CA002588742A patent/CA2588742A1/en not_active Abandoned
- 2005-12-22 RU RU2007127915A patent/RU2434258C9/ru not_active IP Right Cessation
- 2005-12-22 CN CNB2005800447122A patent/CN100530001C/zh active Active
- 2005-12-22 RU RU2007127922A patent/RU2393518C2/ru not_active IP Right Cessation
- 2005-12-22 JP JP2007547353A patent/JP4971182B2/ja active Active
-
2007
- 2007-05-28 IL IL183454A patent/IL183454A/en unknown
- 2007-05-28 IL IL183455A patent/IL183455A/en active IP Right Grant
-
2009
- 2009-08-03 US US12/534,317 patent/US7969633B2/en active Active
-
2011
- 2011-05-30 JP JP2011120996A patent/JP5787622B2/ja active Active
-
2012
- 2012-01-16 JP JP2012006540A patent/JP5502113B2/ja active Active
-
2014
- 2014-07-14 US US14/330,793 patent/US9740167B2/en active Active
-
2015
- 2015-04-28 JP JP2015092344A patent/JP6349282B2/ja active Active
- 2015-09-16 IL IL241655A patent/IL241655A/en active IP Right Grant
-
2017
- 2017-05-08 JP JP2017092498A patent/JP6797746B2/ja active Active
- 2017-08-17 US US15/679,228 patent/US10401794B2/en active Active
-
2019
- 2019-08-20 US US16/545,330 patent/US11392085B2/en active Active
-
2022
- 2022-07-18 US US17/813,176 patent/US20220357702A1/en not_active Abandoned
Patent Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0593300A1 (en) | 1992-10-14 | 1994-04-20 | Fujitsu Limited | Hologram information forming method |
US5400155A (en) * | 1992-10-14 | 1995-03-21 | Fujitsu Limited | Hologram information forming method |
US5974178A (en) * | 1996-10-07 | 1999-10-26 | Advantest Corporation | Wavesource image visualization method using a partial division fast fourier transform |
US6791570B1 (en) | 1996-12-18 | 2004-09-14 | Seereal Technologies Gmbh | Method and device for the three-dimensional representation of information with viewer movement compensation |
US20020008887A1 (en) | 1997-05-22 | 2002-01-24 | Nippon Telegraph | Method and apparatus for displaying computer generated holograms |
WO2000034834A1 (fr) | 1998-12-09 | 2000-06-15 | Communaute Europeenne (Ce) | Procede et dispositif holographiques assistes par ordinateur pour restituer des images tridimensionelles |
US6621605B1 (en) * | 1998-12-09 | 2003-09-16 | European Community (Ec) | Computer-assisted method and device for restoring three-dimensional images |
US6545790B2 (en) * | 1999-11-08 | 2003-04-08 | Ralph W. Gerchberg | System and method for recovering phase information of a wave front |
US20040021768A1 (en) | 2000-06-09 | 2004-02-05 | Payne Douglas A | Computation time reduction for the three-dimensional displays |
US20020122254A1 (en) * | 2000-12-22 | 2002-09-05 | Jesper Gluckstad | Method and an apparatus for generating a phase-modulated wave front of electromagnetic radiation |
WO2003021363A1 (en) | 2001-09-04 | 2003-03-13 | Holographic Imaging Llc | Method and apparatus for illuminating a computer generated hologram |
WO2003025680A1 (en) | 2001-09-14 | 2003-03-27 | Holographic Imaging Llc | Computation of computer generated holograms |
US20030151784A1 (en) * | 2001-12-17 | 2003-08-14 | Dai Nippon Printing Co., Ltd. | Computer-generated hologram fabrication process, and hologram-recorded medium |
WO2004044659A2 (de) | 2002-11-13 | 2004-05-27 | Seereal Technologies Gmbh | Videohologramm und einrichtung zur rekonstruktion von videohologrammen |
US7315408B2 (en) | 2002-11-13 | 2008-01-01 | Seereal Technologies Gmbh | Video hologram and device for reconstructing video holograms for large objects |
US7400431B2 (en) | 2004-09-08 | 2008-07-15 | Seereal Technologies Gmbh | Method for encoding video holograms for holographically reconstructing a scene |
Non-Patent Citations (3)
Title |
---|
Ferri L. C. "Visualization of 3D information with digital holography using laser printers" Computer and Graphics, Pergamon Press Ltd., Ocford, GB, vol. 25, No. 2, pp. 309-321 (Apr. 2001). |
Haist T et al. "Computer-generated holograms from 3D-objects written on twisted-nematic liquid crystal displays" Optics Communications, North-Holland, Publishing Co. Amsterdam, NL, vol. 140, No. 4-6, pp. 299-308 (Aug. 1, 1997). |
Ichioka Y et al. "Scanning Halftone Plotter and Computer-Generated Continuous-Tone Hologram" Applied Optics, OSA, Optical Society of America, Washington, DC, US, vol. 10 No. 2, pp. 403-411(Feb. 1, 1971). |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100033781A1 (en) * | 2006-09-09 | 2010-02-11 | Seereal Technologies S.A. | Method and Apparatus for Encoding Computer-Generated Holograms in Pixelated Light Modulators |
US9581965B2 (en) | 2007-05-16 | 2017-02-28 | Seereal Technologies S.A. | Analytic method for computing video holograms in real time |
US20100149314A1 (en) * | 2007-05-16 | 2010-06-17 | Seereal Technologies S.A. | Method for Rendering and Generating Color Video Holograms in Real Time |
US9829860B2 (en) | 2007-05-16 | 2017-11-28 | Seereal Technologies S.A. | Analytic method for computing video holograms in real time |
US8437057B2 (en) * | 2007-05-16 | 2013-05-07 | Seereal Technologies S.A. | Method for rendering and generating color video holograms in real time |
US8437056B2 (en) * | 2007-05-16 | 2013-05-07 | Seereal Technologies S.A. | Analytical method for computing video holograms in real time |
US20100149312A1 (en) * | 2007-05-16 | 2010-06-17 | Seereal Technologies Syrdall | Analytical Method for Computing Video Holograms in Real Time |
US20100149313A1 (en) * | 2007-05-21 | 2010-06-17 | Bo Kroll | Holographic Reconstruction system with a Tracking Device for the Reconstruction |
US8379079B2 (en) * | 2007-05-21 | 2013-02-19 | Seereal Technologies S.A. | Holographic reconstruction system with a tracking device for the reconstruction |
US8441703B2 (en) | 2007-07-27 | 2013-05-14 | Seereal Technologies S.A. | Method and device for holographically reconstructing a scene |
US20100188719A1 (en) * | 2007-07-27 | 2010-07-29 | Norbert Leister | Holographic Reconstruction Device |
US9134700B2 (en) | 2011-04-27 | 2015-09-15 | Panasonic Intellectual Property Management Co., Ltd. | Display device |
US9575463B2 (en) | 2012-01-25 | 2017-02-21 | Samsung Electronics Co., Ltd. | Apparatus and method for fast generation of three-dimensional (3D) hologram |
US9081363B2 (en) | 2012-01-25 | 2015-07-14 | Samsung Electronics Co., Ltd. | Apparatus and method for fast generation of three-dimensional (3D) hologram |
US9869969B2 (en) | 2014-04-09 | 2018-01-16 | Samsung Electronics Co., Ltd. | Holographic display |
US10001748B2 (en) | 2014-07-29 | 2018-06-19 | Samsung Electronics Co., Ltd. | Holography reproducing apparatus and holography reproducing method |
US10146181B2 (en) | 2014-09-23 | 2018-12-04 | Samsung Electronics Co., Ltd. | Apparatus and method for displaying holographic three-dimensional image |
US10054793B2 (en) | 2014-10-10 | 2018-08-21 | Samsung Electronics Co., Ltd. | Holographic display apparatus and holographic display method |
US10520727B2 (en) | 2014-10-10 | 2019-12-31 | Samsung Electronics Co., Ltd. | Holographic display apparatus and holographic display method |
US10775540B2 (en) | 2015-02-26 | 2020-09-15 | Samsung Electronics Co., Ltd. | Method of forming light modulating signal for displaying 3D image, and apparatus and method for displaying 3D image |
US10571862B1 (en) * | 2015-05-21 | 2020-02-25 | Real View Imaging Ltd. | Producing a computer generated holographic image |
US11520288B2 (en) * | 2015-05-21 | 2022-12-06 | Real View Imaging Ltd. | Producing a computer generated holographic image |
US20170060089A1 (en) * | 2015-08-31 | 2017-03-02 | City University Of Hong Kong | Fast generation of digital holograms |
US10168667B2 (en) * | 2015-08-31 | 2019-01-01 | City University Of Hong Kong | Fast generation of digital holograms |
US12092994B2 (en) | 2021-03-19 | 2024-09-17 | Samsung Electronics Co., Ltd. | Complex light modulator, holographic display apparatus, and method of generating hologram pattern |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7636184B2 (en) | Method and device for computing computer-generated video holograms | |
US8437057B2 (en) | Method for rendering and generating color video holograms in real time | |
JP5266223B2 (ja) | 伝播を使用して計算機ビデオホログラムをリアルタイムに生成する方法 | |
JP2010511899A (ja) | コンピュータ合成ホログラム | |
CA2687364A1 (en) | Method for generating video holograms in real time for extending a 3d rendering graphics pipeline | |
CA2687369A1 (en) | Analytic method for computing video holograms in real time | |
Shiomi et al. | Fast hologram calculation method using wavelet transform: WASABI-2 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SEEREAL TECHOLOGIES GMBH, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SCHWERDTNER, ARMIN;REEL/FRAME:017599/0919 Effective date: 20051222 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
CC | Certificate of correction | ||
AS | Assignment |
Owner name: SEEREAL TECHNOLOGIES GMBH, GERMANY Free format text: CHANGE OF ADDRESS;ASSIGNOR:SEEREAL TECHNOLOGIES GMBH;REEL/FRAME:026618/0688 Effective date: 20101213 |
|
FEPP | Fee payment procedure |
Free format text: PAT HOLDER CLAIMS SMALL ENTITY STATUS, ENTITY STATUS SET TO SMALL (ORIGINAL EVENT CODE: LTOS); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
REFU | Refund |
Free format text: REFUND - PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: R1551); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
SULP | Surcharge for late payment | ||
FPAY | Fee payment |
Year of fee payment: 8 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2553); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY Year of fee payment: 12 |