US20170271581A1 - Semiconductor memory devices - Google Patents

Semiconductor memory devices Download PDF

Info

Publication number
US20170271581A1
US20170271581A1 US15/438,938 US201715438938A US2017271581A1 US 20170271581 A1 US20170271581 A1 US 20170271581A1 US 201715438938 A US201715438938 A US 201715438938A US 2017271581 A1 US2017271581 A1 US 2017271581A1
Authority
US
United States
Prior art keywords
line
electrode
cell
data storage
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/438,938
Other languages
English (en)
Inventor
Dong-Jun Seong
Sung-ho Eun
Soon-oh Park
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Assigned to SAMSUNG ELECTRONICS CO., LTD. reassignment SAMSUNG ELECTRONICS CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: EUN, SUNG-HO, PARK, SOON-OH, SEONG, DONG-JUN
Publication of US20170271581A1 publication Critical patent/US20170271581A1/en
Priority to US16/916,227 priority Critical patent/US11227991B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • H01L45/06
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/80Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays
    • H10B63/84Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays arranged in a direction perpendicular to the substrate, e.g. 3D cell arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L27/224
    • H01L27/2427
    • H01L43/02
    • H01L43/08
    • H01L43/12
    • H01L45/126
    • H01L45/1675
    • H01L45/1683
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/20Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having two electrodes, e.g. diodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/20Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having two electrodes, e.g. diodes
    • H10B63/24Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having two electrodes, e.g. diodes of the Ovonic threshold switching type
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/061Shaping switching materials
    • H10N70/063Shaping switching materials by etching of pre-deposited switching material layers, e.g. lithography
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/061Shaping switching materials
    • H10N70/066Shaping switching materials by filling of openings, e.g. damascene method
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/231Multistable switching devices, e.g. memristors based on solid-state phase change, e.g. between amorphous and crystalline phases, Ovshinsky effect
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/826Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/841Electrodes
    • H10N70/8413Electrodes adapted for resistive heating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • H10B61/10Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having two electrodes, e.g. diodes or MIM elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/24Multistable switching devices, e.g. memristors based on migration or redistribution of ionic species, e.g. anions, vacancies
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/882Compounds of sulfur, selenium or tellurium, e.g. chalcogenides
    • H10N70/8825Selenides, e.g. GeSe
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/882Compounds of sulfur, selenium or tellurium, e.g. chalcogenides
    • H10N70/8828Tellurides, e.g. GeSbTe
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/883Oxides or nitrides
    • H10N70/8833Binary metal oxides, e.g. TaOx

Definitions

  • Example embodiments relate to semiconductor devices and methods of manufacturing semiconductor devices, and more particularly, to non-volatile memory devices having a cross point cell array and methods of manufacturing the same.
  • a flash memory device has an advantage of low manufacturing cost in that the same silicon-based manufacturing processes for dynamic random-access memory (DRAM) devices may be applied to the flash memory manufacturing processes.
  • DRAM dynamic random-access memory
  • the flash memory device has disadvantages of a relatively lower integration degree and operation speed together with relatively higher power consumption for storing data in comparison with the DRAM devices.
  • next generation nonvolatile memory devices e.g., a PRAM (phase changeable RAM) device, a MRAM (magnetic RAM) device, and a RRAM (resistive RAM) device
  • PRAM phase changeable RAM
  • MRAM magnetic RAM
  • RRAM resistive RAM
  • a three-dimensional cross point array structure has been intensively studied in recent times for increasing the integration degree of the nonvolatile memory devices.
  • the cross point array structure a plurality of upper electrodes and a plurality of lower electrodes cross each other and a plurality of memory cells is arranged at every cross point of the upper and lower electrodes.
  • a unit cell is provided at a cross point of the upper and lower electrodes and a plurality of the unit cells is vertically stacked, thereby forming the three-dimensional cross point array structure of the next generation nonvolatile memory devices.
  • the three-dimensional cross point array structure can significantly increase the integration degree of the next generation nonvolatile memory device.
  • a semiconductor memory device including at least a first conductive line extending in a first direction on a substrate, at least a second conductive line extending in a second direction over the first conductive line such that the first and the second conductive lines may cross each other at each cross point, a plurality of cell structures positioned on each of the cross points of the first and the second conductive lines, each of the cell structures having a data storage element, a selection element that applies a cell selection signal to the data storage element and changes a data state of the data storage element and an electrode element having at least an electrode of which a contact area may be smaller than that of the selection element, and an insulation pattern insulating the first and the second conductive lines and the cell structures with one another.
  • a semiconductor memory device including a lower conductive line extending in a first direction on a substrate, a middle conductive line extending in a second direction over the lower conductive line such that the lower and the middle conductive lines cross each other at a plurality of first cross points, the middle conductive line having a first component line and a second component line having a width greater than that of the first component line, an upper conductive line extending in the first direction over the middle conductive line such that the middle and the upper conductive lines cross each other at a plurality of second cross points, a plurality of first cell structures positioned on each of the first cross points of the lower conductive line and the first component line, each of the first cell structures having a first data storage element, a first selection element that applies a cell selection signal to the first data storage element and changes a data state of the first data storage element and a lower electrode element having at least an electrode of which a contact area is smaller than that of the first selection element, and a plurality of second cell structures
  • a plurality of trapezoidal stack lines of lower conductive lines and first cell lines may be formed on a substrate.
  • the stack lines of the lower conductive lines and the first cell lines may extend in a first direction and separated from each other by a first lower insulation pattern.
  • a plurality of first component lines may extend in a second direction and is shaped into a trapezoid in such a way that the first component line may be alternately contact with the first cell line and the first lower insulation pattern and a pair of the first component lines may be spaced apart by a second line trench.
  • the first cell lines may be partially removed in the second trench, thereby forming a plurality of first node separation holes through which the lower conducive line may be exposed and forming a plurality of first cell structures at each cross point of the lower conductive line and the first component line.
  • a second lower insulation pattern may be formed in the first node separation hole and the second line trench, thereby separating the first cell structures and the first component lines from one another.
  • a plurality of trapezoidal stack lines of separation lines, second component lines and second cell lines may be formed on each of the first component lines.
  • the stack lines of the separation lines, the second component lines and the second cell lines may extend in the second direction and may be separated from each other by a second upper insulation pattern.
  • a plurality of upper conductive liens may formed into a trapezoidal shape of line extending in the first direction in such a way that the upper conductive line may be alternately contact with the second cell line and the first second upper insulation pattern and a pair of the upper conductive lines may be spaced apart by a first line trench.
  • the second cell lines exposed in the first trench may be partially removed, thereby forming a plurality of second node separation holes through which the second component line may be exposed and forming a plurality of second cell structures at each cross point of the second component line and the upper conductive line.
  • a first upper insulation pattern may be formed in the second node separation hole and the first line trench, thereby separating the second structures and the upper conductive lines from one another.
  • a semiconductor memory device including first conductive lines extending in a first direction on a substrate, second conductive lines extending in a second direction over the first conductive line, the first and the second conductive lines crossing each other at cross points, a cell structure positioned at each of the cross points, each of the cell structures having a data storage element, a selection element to apply a cell selection signal to the data storage element and to change a data state of the data storage element, and an electrode element having at least an electrode with a contact area smaller than that of the selection element, and an insulation pattern between adjacent cell structures along each of the first and second direction.
  • FIG. 1 illustrates a perspective view of a semiconductor memory device according to an embodiment
  • FIG. 2 illustrates a layout of a cell array of the semiconductor memory device in FIG. 1 ;
  • FIG. 3 illustrates an equivalent circuit diagram of the cell array of the semiconductor memory device shown in FIG. 2 ;
  • FIG. 4A illustrates a cross-sectional view along line I-I′ of FIG. 2 ;
  • FIG. 4B illustrates a cross-sectional view along line II-II′ of FIG. 2 ;
  • FIGS. 5A and 5B illustrate cross-sectional views of a first modification of the semiconductor memory device shown in FIGS. 4A and 4B ;
  • FIGS. 6A and 6B illustrate cross-sectional views of a second modification of the semiconductor memory device shown in FIGS. 4A and 4B ;
  • FIG. 7 illustrates a cross-sectional view of a semiconductor memory device in which peripheral circuit structures are provided under the cell structure in accordance with an embodiment
  • FIG. 8 illustrates a perspective view of a semiconductor memory device having a cell array shown in FIG. 2 in accordance with another example embodiment
  • FIG. 9A illustrates a cross-sectional view along line I-I′ of FIG. 2 in the device of FIG. 8 ;
  • FIG. 9B illustrates a cross-sectional view along line II-II′ of FIG. 2 in the device of FIG. 8 ;
  • FIG. 10 illustrates a cross-sectional view of a multi-stack memory device in which peripheral circuit structures are provided under the cell structure in accordance with an embodiment
  • FIGS. 11A to 26B illustrate cross-sectional views of stages in a method of manufacturing a semiconductor memory device in accordance with an embodiment.
  • FIG. 1 is a perspective view illustrating a semiconductor memory device in accordance with an example embodiment.
  • FIG. 2 is a layout illustrating a cell array of the semiconductor memory device in FIG. 1 .
  • FIG. 3 is an equivalent circuit diagram illustrating the cell array of the semiconductor memory device shown in FIG. 2 .
  • FIGS. 4A and 4B are cross-sectional along line I-I′ and line II-II′ of FIG. 2 , respectively. It is noted that for convenience, some layers illustrated in detail in FIGS. 4A-4B (e.g., elements IP 1 and IP 2 ) are omitted from FIG. 1 , for clarity.
  • a semiconductor memory device 1000 may include at least a first conductive line 200 extending in a first direction x on a substrate 100 , at least a second conductive line 400 extending in a second direction y over the first conductive line 200 such that the first and the second conductive lines 200 and 400 cross each other at each cross point C, a plurality of cell structures 300 at the cross points C of the first and the second conductive lines 200 and 400 , and an insulation pattern IP insulating the first and the second conductive lines 200 and 400 and the cell structures 300 from one another.
  • Each of the cell structures 300 may have a data storage element 340 , a selection element 320 that may apply a cell selection signal to the data storage element 340 and change a data state of the data storage element 340 , and an electrode element having at least an electrode of which a contact area is smaller than that of the selection element 340 .
  • the electrode element may include first to third electrodes 310 , 330 and 350 in the present example embodiment.
  • the first conductive line 200 may extend in the first direction x on the substrate 100 , and a plurality of protrusions P and line recesses LR may be alternately arranged on the first conductive line 200 .
  • a plurality of the first conductive lines 200 may be spaced apart from each other by a same gap distance in the second direction y.
  • a plurality of the second conductive lines 400 may be arranged over the first conductive lines 200 and may extend in the second direction y having a same gap distance along the first direction x.
  • the first and the second conductive lines 200 and 400 may be vertically spaced apart in the third direction z and may cross each other at cross points C.
  • the cross points C of the first and the second conductive lines 200 and 400 may be provided at corresponding protrusions P, e.g., each cross point C may be at a corresponding protrusion P.
  • a cell structure 300 may be provided at every cross point C, thus the semiconductor memory device 1000 may have a cross point cell array structure.
  • the first and the second conductive lines 200 and 400 may function as a word line or a bit line of the memory device 1000 and may cross each other in a perpendicular direction.
  • the first conductive line 200 may function as a word line of the memory device 1000
  • the second conductive line 400 may function as a bit line of the memory device 1000
  • the word line in the present example embodiment may be connected to a strapping word line over the bit line via a word line contact (WLC), thereby reducing electrical resistance of the word line.
  • WLC word line contact
  • the substrate 100 may include a semiconductor substrate, e.g., a silicon (Si) substrate, a gallium (Ga)-arsenic (As) substrate and a silicon (Si)-germanium (Ge) substrate and an insulating substrate, e.g., a silicon-on-insulator (SOI) substrate and a germanium-on-insulator (GOI) substrate in which a pair of silicon/germanium layers may be separated by an insulation layer.
  • the substrate 100 may include any other substrates as long as the substrate may include semiconductor characteristics.
  • a plurality of the first conductive lines 200 may extend in the first direction x and be separated from a neighboring line by a first insulation pattern IP 1 ( FIG. 4B ), which will be described in detail hereinafter, in the second direction y.
  • the first conductive line 200 may include a low-resistive metal that may be formed on an insulating buffer layer B on the substrate 100 .
  • Examples of the low-resistive metal may include tungsten (W), titanium (Ti), aluminum (Al), copper (Cu), carbon (C), carbon nitride (CN), titanium nitride (TiN), titanium aluminum nitride (TiAlN), titanium silicon nitride (TiSiN), titanium carbon nitride (TiCN), tungsten nitride (WN), cobalt silicon nitride (CoSiN), tungsten silicon nitride (WSiN), tantalum nitride (TaN), tantalum carbon nitride (TaCN), tantalum silicon nitride (TaSiN), etc. These may be used alone or in combinations thereof. Otherwise, a semiconductor layer may be formed on the insulating buffer layer B by an epitxial growth process and some dopants may be implanted onto the semiconductor layer, to thereby form the first conductive line 200 on the substrate 100 .
  • the first conductive line 200 may be recessed between the cross points C, thus the protrusions P and the recesses R may be alternately arranged on the first conductive line 200 .
  • the cell structure 300 may be staked on the protrusion P, and a second insulation pattern IP 2 may be positioned on the line recess LR ( FIG. 4A ) to thereby electrically and thermally separate the cell structures 300 adjacent to each other in the first direction x.
  • the cell structures 300 may be separated from each other in the first direction x by the second insulation pattern IP 2 of which the bottom may be lower than that of the cell structure 300 , thereby reducing or minimizing the thermal cross talk between the neighboring cell structures along the first conductive line 200 .
  • the first insulation pattern IP 1 may extend to the buffer layer B from the cell structure 300 , so that the first conductive line 200 and the cell structure 300 on the first conductive line 200 may be simultaneously separated from neighboring ones by the first insulation pattern IP 1 .
  • the first insulation pattern IP 1 may include a base separation line interposed between the neighboring first conductive lines 200 and a cell separation line interposed between the neighboring cell structures 300 .
  • the second conductive line 400 may make contact with a plurality of the cell structures 300 in the second direction y.
  • the first insulation pattern IP 1 may have an upper surface that may be coplanar with an upper surface of the cell structure 300 ( FIG. 4B ) and may extend in the first direction x, thus the second conductive line 400 may, e.g., make, alternate contact with the cell structures 300 and the first insulation pattern IP 1 in the second direction y.
  • the first conductive line 200 may make contact with a plurality of the cell structures 300 in the first direction x
  • the second conductive line 400 may make contact with a plurality of the cell structures 300 in the second direction y.
  • the second conductive line 400 may include the same low-resistive metal as the first conductive line 200 .
  • the second conductive line 400 may also include a dopant semiconductor layer into which some dopants may be implanted according to the characteristics of the semiconductor memory device 1000 .
  • the second insulation pattern IP 2 may include an insulation line IL that may be shaped into a line extending in the second direction y and may separate neighboring second conductive lines 400 along the first direction x, and an insulation column IC that may be shaped into a vertical column in the third direction and may separate neighboring cell structures 300 along the first conductive line 200 .
  • the insulation lines IL may be arranged in the second insulation pattern IP 2 in the second direction y, e.g., extend continuously along the second direction y to alternate with the second conductive lines 400 , thus the second conductive lines 400 adjacent to each other may be separated by the second insulation lines IL.
  • bottom surfaces of the insulation lines IL may be coplanar with bottom surfaces of the second conductive lines 400 .
  • the insulation column IC may protrude downward from a lower surface of the insulation line IL toward the first conductive line 200 , and may be interposed between neighboring cell structures 300 in the line recess LR. Therefore, the cell structures 300 may be separated by the insulation column IC in the first direction x, and simultaneously separated by the first insulation pattern IP 1 in the second direction y, so that each cell structure 300 may be isolated on the protrusion P at each cross point C.
  • an upper surface of the insulation column IC may be coplanar with an upper surface of the first insulation pattern IP 1 , so that the insulation line IL, e.g., in a region between adjacent second conductive lines 440 , may alternately contact the first insulation pattern IP 1 and the insulation column IC in the second direction y.
  • the insulation line IL and the insulation column IC may be integrally formed into a single insulator by a single process, e.g., in a region overlapping the line recess LR.
  • the first and the second insulation patterns IP 1 and IP 2 may include the same insulation materials, so the first and the second conductive lines 200 and 400 and the cell structures 300 therebetween may be node-separated from one another by a single insulator.
  • the first and the second insulation patterns IP 1 and IP 2 may include one of silicon oxide, silicon nitride, and silicon oxynitride.
  • the cell structure 300 may include a multilayer structure that may be stacked on the cross point C of a word line and a bit line of the memory device 1000 .
  • the cell structure 300 may include at least a variable resistor Rp for storing electric data between first and the second conductive lines 200 and 400 , a switching device D for applying a cell selection signal to the variable resistor Rp, and a plurality of electrodes electrically connected with the variable resistor Rp and the switching device D.
  • the electrical resistance or crystal state of the variable resistor Rp may be reversibly changed in response to an applied signal such as an electrical signal of a voltage or a current, an optical signal and an electromagnetic wave.
  • the reversible change of the variable resistor Rp may be used as bit information of a unit cell of the memory device 1000 .
  • the switching device D may selectively apply the cell selection signal to the variable resistor Rp in such a way that the electrical resistance or crystal state of each variable resistor Rp may be individually changed by the unit cell of the memory device 1000 .
  • the semiconductor memory device 1000 may include a next generation non-volatile memory device, e.g., a phase changeable random access memory (PRAM) device, a resistive random access memory (RRAM) device and a magnetic random access memory (MRAM) device.
  • a next generation non-volatile memory device e.g., a phase changeable random access memory (PRAM) device, a resistive random access memory (RRAM) device and a magnetic random access memory (MRAM) device.
  • PRAM phase changeable random access memory
  • RRAM resistive random access memory
  • MRAM magnetic random access memory
  • the cell structure 300 may include the unit cell of the PRAM device and may include the data storage element 340 for storing a bit data as a material phase, a selection element 320 for individually controlling the material phase of each data storage element 340 , and a plurality of electrodes 310 , 330 and 350 one of which may have a contact area smaller than that of the selection element 320 .
  • the electrode element may include a first electrode 310 for generating a heat as a heater, a second electrode 330 transferring the selection signal to the data storage element 340 from the selection element 320 , and a third electrode 350 functioning as a contact plug.
  • the second electrode 330 may be interposed between the selection element 320 and the data storage element 340 and may include a barrier metal layer for preventing the material diffusion therebetween.
  • Examples of the material for the first electrode 310 may include tungsten (W), titanium (Ti), aluminum (Al), copper (Cu), carbon (C), carbon nitride (CN), titanium nitride (TiN), titanium aluminum nitride (TiAlN), titanium silicon nitride (TiSiN), titanium carbon nitride (TiCN), tungsten nitride (WN), cobalt silicon nitride (CoSiN), tungsten silicon nitride (WSiN), tantalum nitride (TaN), tantalum carbon nitride (TaCN), tantalum silicon nitride (TaSiN), etc. These may be used alone or in combinations thereof.
  • the first electrode 310 may generate Joule's heat in response to an electrical current that may be applied to the cell structure 300 and the material state of the data storage element 340 may be changed by the Joule's heat.
  • the selection element 320 may control the electrical current passing to the data storage element 340 according to a voltage of the word line WL.
  • the selection element 320 may include one of a vertical PN junction diode, a shottky diode and an ovonic threshold switch (OTS).
  • OTS ovonic threshold switch
  • the selection element 340 may also include a selection transistor.
  • the materials for the OTS may include arsenic (As), germanium (Ge), selenium (Se), tellurium (Te), silicon (Si), bismuth (Bi), sodium (S), antimony (Sb), etc. These may be used alone or in combinations thereof.
  • the OTS may include a 6-element material in such a material that selenium (Se) and sodium (S) may be combined with a compound of germanium (Ge), silicon (Si), arsenic (As) and tellurium (Te).
  • the OTS may include AsTeGeSiIn, GeTe, SnTe, GeSe, SnSe, AsTeGeSiSbS, AsTeGeSiIP, AsTeGeSi, As2Te3Ge, As2Se3Ge, As25(Te90Ge10)75, Te40As35Si18Ge6.75In0.25, Te28As34.5Ge15.5S22, Te39As36Si17Ge7P, As10Te21S2Ge15Se50Sb2, Si5Te34As28Ge11S21Se1, AsTeGeSiSeNS, AsTeGeSiP, AsSe, AsGeSe, AsTeGeSe, ZnTe, GeTePb, GeSeTe, AlAsTe, SeAsGeC, SeTeGeSi, GeSbTeSe, GeBiTeSe,
  • the second electrode 330 may be interposed between the selection element 320 and the data storage element 340 , and may reduce the contact resistance at a boundary area between the selection element 320 and the data storage element 340 together with reducing or minimizing the metal diffusion therebetween.
  • the cell selection signal may be easily transferred to the data storage element 340 from the selection element 320 .
  • the second electrode 330 may include a silicide of the metal for the OTS or for the phase changeable material of the data storage element 340 .
  • the data storage element 340 may include a phase changeable material, e.g., chalcogenide and a super lattice.
  • chalcogenide may include Ge—Sb—Te, Ge—Te—As, Sn—Te—Sn, Ge—Te, Sb—Te, Se—Te—Sn, Ge—Te—Se, Sb—Se—Bi, Ge—Bi—Te, Ge—Te—Ti, In—Se, Ga—Te—Se, In—Sb—Te, Bi—Sb—Te, etc. These may be used alone or in combinations thereof.
  • the super lattice may include, e.g., an alloy of Ge—Te and Sb—Te.
  • the data storage element 340 may include a perovskite-based material or a metal oxide of a transitional metal.
  • the cell structure 300 may be provided as a unit cell for a resistive random access memory (RRAM) device.
  • the perovskite-based material may include titanium oxide (TiO), zirconium oxide (ZrO), aluminum oxide (AlO), hafnium oxide (HfO), tantalum oxide (TaO), niobium oxide (NbO), cobalt oxide (CoO), tungsten oxide WOx, lanthanum oxide (LaO), zinc oxide (ZnO), etc. These may be used alone or in combinations thereof.
  • the data storage element 340 may include a material of which the resistance may be varied by a magnetic force or a spin transfer torque (SIT).
  • the cell structure 300 may be provided as a unit cell for a magnetic random access memory (MRAM) device.
  • the data storage element 340 may include ferromagnetic materials such as iron (Fe), nickel (Ni), cobalt (Co), dysprosium (Dy) and gadolinium (Gd).
  • the third electrode 350 may be selectively provided with the cell structure 300 and may function as a contact plug for connecting with the first or the second conductive line 200 or 400 .
  • the third electrode 350 may include a low-resistive metal or a metal silicide having a low specific resistance.
  • the third electrode 350 may be provided as a part of the cell structure 300 at every cross point C or may be provided as a part of the second conductive line 400 .
  • the cell structure 300 may be shaped into a trapezoid in which a width of the cell structure 300 may decrease upward from the first conductive line 200 to the second conductive line 400 .
  • the cell structure 300 may include a multilayer structure in which the first electrode 310 , the selection element 320 , the second electrode 330 , the data storage element 340 , and the third electrode 350 may be sequentially stacked on the first conductive line 200 in the trapezoidal shape.
  • the first electrode 310 may have a contact area smaller than the lower surface of the selection element 320 .
  • the first electrode 310 may have a width smaller than that of the selection element 320 along the first and the second directions x and y, thus the cell structure 300 may have first and second cell recesses CR 1 and CR 2 that may be defined by the side surface of the first electrode, the lower surface of the selection element 320 , and an upper surface of the first conductive line 200 .
  • a first width Wh 1 of the first electrode 310 along the first direction x may be smaller than a first width Ws 1 of the selection element 320 along the first direction x ( FIG. 4A ), so that the first cell recess CR 1 may be recessed along the first direction x.
  • the first recess CR 1 may be filled with the insulation column IC.
  • a second width Wh 2 of the first electrode 310 along the second direction y may be smaller than a second width Ws 2 of the selection element 320 along the second direction x ( FIG. 4B ), so that the second cell recess CR 2 may be recessed along the second direction x.
  • the second recess CR 2 may be filled with the first insulation column IP 1 .
  • the gap distances between neighboring cell structures 300 may be maximized and may enlarge an insulation space between the neighboring cell structures 300 , thereby improving the insulation characteristics of the semiconductor memory device 1000 .
  • the integration degree may increase and the line width may decrease in the semiconductor memory device 1000
  • the electrical interference between neighboring cell structures 300 may be sufficiently reduced due to the improvement of the insulation characteristics.
  • the width decrease of the first electrode 310 increases the contact resistance
  • the film characteristics of the selection element 320 may be deteriorated due to the increase of the contact resistance, thereby causing the selection element 320 to be poor at switching the data storage element 340 . That is, when the selection element 320 includes an OTS, an amorphous layer in the OTS may be easily deteriorated by the increase of the contact resistance.
  • the width of the first electrode 310 may be decreased under that condition that the film characteristics of the selection element 320 are not deteriorated.
  • the width of the first electrode 310 may be about 1 ⁇ 4 to about 1 ⁇ 2 times the width of the selection element 320 . Accordingly, the contact area of the first electrode 310 may be about 1/16 to about 1 ⁇ 4 times the lower surface of the selection element 320 . Particularly, the contact area of the first electrode 310 may be about 1/10 to about 1 ⁇ 4 times the lower surface of the selection element 320 .
  • the insulation space may be substantially enlarged between the neighboring cell structures 300 .
  • the width of the first electrode 310 is less than about 1 ⁇ 4 times the width of the selection element 320 , the selection element 320 may deteriorate due to the increase of the contact resistance.
  • the width of the first electrode 310 may be about 1 ⁇ 4 to about 1 ⁇ 2 times the width of the selection element 320 , thereby improving the insulation characteristics of the cell structure 300 without the deterioration of the selection element 320 .
  • the first conductive line 200 may further include the line recess LR that may be arranged on the upper surface alternately with the cell structure 300 .
  • the protrusion defined by the line recesses LR may be arranged on the upper surface of the first conductive line 200 and the cell structure 300 may be arranged on each protrusion P. Therefore, the first electrode 310 of the cell structure 300 may be arranged higher than a bottom of the line recess LR.
  • the line recess LR may be filled with the insulation column IC and the neighboring cell structures 300 on the same first conductive line 200 may be node-separated from each other by the insulation column IC.
  • the heat transfer between the selection cell and an adjacent cell neighboring the selection cell may be sufficiently prevented by the insulation column IC. Since the heat transfer path between the selection cell and the adjacent cell may increase in accordance with the depth of the line recess LR, the thermal cross talk between the selection cell and the adjacent cell may be sufficiently reduced due to the line recess LR, e.g., the thermal cross talk between the selection cell and the adjacent cell may be reduced as the depth of the line recess LR increases.
  • the configurations and structures of the selection element 320 , the data storage element 340 , and the electrode element may be varied according to the requirements and specifications of the semiconductor memory device 1000 .
  • FIGS. 5A and 5B are cross-sectional views illustrating a first modification of the semiconductor memory device shown in FIGS. 4A and 4B .
  • the cell structure 300 may have the same structures as the cell structure shown in FIGS. 4A and 4B , except that the first electrode 310 may be replaced, e.g., swapped, with the second electrode 330 .
  • the cell structure 300 of the first modified semiconductor memory device may include a multilayer structure in such a configuration that the second electrode 330 , the selection element 320 , the first electrode 310 , the data storage element 340 , and the third electrode 350 may be sequentially stacked on the first conductive line 200 in the trapezoidal shape.
  • the second electrode 330 may function as a contact plug between the selection element 320 and the first conductive line 200
  • the first electrode 310 may still have a contact area smaller than an upper surface of the selection element 320 and a lower surface of the data storage element 340 .
  • the first electrode 310 may have a width smaller than those of the selection element 320 and the data storage element 340 along the first and the second directions x and y, thus the cell structure 300 may have first and second cell recesses CR 1 and CR 2 that may be defined by the side surface of the first electrode 310 , the upper surface of the selection element 320 , and the lower surface of data storage element 340 .
  • the first recess CR 1 may be filled with the insulation column IC and the second recess CR 2 may be filled with the first insulation column IP 1 .
  • the depth of the line recess LR may be reduced or minimized, e.g., no line recess LR for reducing the thermal cross talk may be provided with the first conductive line 200 .
  • the selection element 320 may be replaced with the data storage element 340 , so the selection element 320 may be positioned on the first electrode 310 and the data storage element 340 may be positioned under the first electrode 310 .
  • FIGS. 6A and 6B are cross-sectional views illustrating a second modification of the semiconductor memory device shown in FIGS. 4A and 4B .
  • the first and the second conductive lines 200 and 400 may function as a bit line and a word line, respectively, while the first and the second conductive lines 200 and 400 may function as a word line and a bit line, respectively, in FIGS. 4A to 5B .
  • the cell structure 300 of the second modified semiconductor memory device may include a multilayer structure in such a configuration that the third electrode 350 , the data storage element 340 , the second electrode 330 , the selection element 320 , and the first electrode 310 may be sequentially stacked on the first conductive line 200 in the trapezoidal shape.
  • the first electrode 310 may be interposed between the second conductive line 400 and the selection element 320 and may have a contact area smaller than the upper surface of the selection element 320 .
  • the first electrode 310 may have a width smaller than those of the selection element 320 along the first and the second directions x and y, thus the cell structure 300 may have first and second cell recesses CR 1 and CR 2 that may be defined by the side surface of the first electrode 310 , the upper surface of the selection element 320 , and the second conductive line 400 .
  • the first recess CR 1 may be filled with the insulation column IC and the second recess CR 2 may be filled with the first insulation column IP 1 .
  • the depth of the line recess LR may be reduced, e.g., no line recess LR for reducing the thermal cross talk may be provided with the first conductive line 200 .
  • some peripheral structures including a peripheral circuit for applying driving signals to the cell structures 300 may be further provided under the buffer layer B, so that the semiconductor memory device 1000 may be provided as a cell over peripheral circuit (COP) structure in which the peripheral structure and the memory cell array may be sequentially stacked on the substrate 100 .
  • COP peripheral circuit
  • FIG. 7 is a cross-sectional view illustrating the semiconductor memory device in which peripheral circuit structures are provided under the cell structure in accordance with an example embodiment.
  • a peripheral structure PS may be arranged on the substrate 100 and the cell structure 300 may be arranged over the peripheral structure PS.
  • the peripheral structure PS may be provided on the substrate 100 under the buffer layer B and under the first conductive line 200
  • the cell structure 300 may be provided on the buffer layer B, so that the peripheral structure PS and the cell array may be vertically stacked on the substrate 100 .
  • the peripheral structure PS may control various signals, e.g., a data signal, a power signal, and a ground signal, that may be applied to the cell structures 300 .
  • the peripheral structure PS may include a peripheral gate structure 20 and a junction area 30 around the peripheral gate structure 20 , a contact plug 50 making contact with the junction area 30 , and a wiring structure 60 making contact with the contact plug 50 .
  • the peripheral gate structure 20 and the junction area 30 may be arranged on an active region of the substrate 100 that may be defined by a device isolation layer 10 .
  • the cell structure 300 may be arranged over the peripheral structure PS.
  • the peripheral gate structure 20 may include a gate insulation pattern 21 and a gate electrode on the gate insulation pattern 21 .
  • the gate insulation pattern 21 may include insulation materials such as silicon oxide and metal oxide
  • the gate electrode 22 may include conductive materials such as polysilicon doped with impurities and metal that may be partially cover with metal silicide and/or metal nitride.
  • a gate spacer may be further provided at sidewalls of the peripheral gate structure 20 .
  • a plurality of n-type dopants or p-type dopants may be implanted onto a junction area around the peripheral gate structure 20 and thus the junction area 30 may be provided around the peripheral gate structure 20 .
  • the peripheral gate structure 20 and the junction area 30 may constitute a NMOS or a PMOS transistor according to the polarity of the dopants in the junction area 30 .
  • An insulation interlayer 40 may be provided on the NMOS or PMOS transistor in such a way that the transistor may be protected and insulated from its surroundings.
  • the insulation interlayer 40 may include silicon oxide.
  • the contact plug 50 may penetrate through the insulation interlayer 40 and make contact with the junction area 30 , and the wiring structure 60 may make contact with an upper portion of the contact plug 50 .
  • the wiring structure 60 may include a plurality of wiring lines that may extend in first and/or second directions and be spaced apart by the same gap distance. In addition, the wiring lines may be vertically stacked on the insulation interlayer 40 in a medium of at least an additional insulation interlayer.
  • the contact plug 50 and the wiring structure 60 may include metal, metal nitride, metal silicide and polysilicon doped with impurities. Some of the wiring structures 60 may be connected to the first conductive line 200 and/or the second conductive line 400 directly or in a medium of a via structure.
  • a protection layer 70 may be provided on the wiring structure 60 and thus the wiring structure 60 may be separated and insulated from surroundings.
  • the protection layer 70 may include oxide such as silicon oxide.
  • the cross point cell array including the first and the second conductive lines 200 and 400 and the cell structures at the cross points of the first and the second conductive lines 200 and 400 may be arranged on the protection layer 70 .
  • the protection layer 70 may include the buffer layer B.
  • the peripheral structure PS may be arranged under the cross point cell array as the COP structure, the peripheral structure PS may also be arranged over the cross point cell array as a peripheral circuit over cell (POC) structure.
  • POC peripheral circuit over cell
  • the width of the first electrode 310 may be reduced to be smaller than that of the selection element 320 along the first and the second directions x and y, thereby increasing the gap distance between the neighboring cell structures 300 and enlarging the insulation space between the neighboring cell structures 300 .
  • the neighboring cell structures 300 may be insulated from each other by more insulation materials filling in the insulation space and the insulation characteristics of the cell structures 300 may be improved. Therefore, the electrical interference between the neighboring cell structures 300 may be sufficiently reduced due to the improvement of the insulation characteristics.
  • the reduction of the electrical interference may significantly improve the operation reliability of semiconductor memory device in case that the cross point cell array may be highly integrated with a low cell pitch.
  • FIG. 8 is a perspective view illustrating a semiconductor memory device having a cell array shown in FIG. 2 in accordance with another example embodiment.
  • FIG. 9A is a cross-sectional view of the semiconductor memory device in FIG. 8 along line I-I′ of FIG. 2
  • FIG. 9B is a cross-sectional view of the semiconductor memory device in FIG. 8 along line II-II′ of FIG. 2 .
  • the semiconductor memory device 2000 in FIG. 8 has the same structure as the semiconductor memory device 1000 , except for a 3-dimensional cross point cell array structure.
  • a plurality of the first and the second conductive lines may extend in the first and the second directions x and y and the cell structures may be arranged between the first and the second conductive lines in a multi-stack structures in the third direction z.
  • the semiconductor memory device 2000 in accordance with another example embodiment may include a lower conductive line 1200 extending in a first direction x on a substrate 1100 , a middle conductive line 1400 extending in a second direction y over the lower conductive line 1200 such that the lower and the middle conductive lines 1200 and 1400 may cross each other at a plurality of first cross points C 1 and the middle conductive line 1400 may have a first component line 1410 and a second component line 1430 having a width greater than that of the first component line 1410 , an upper conductive line 1600 extending in the first direction x over the middle conductive line 1400 such that the middle and the upper conductive lines 1400 and 1600 may cross each other at a plurality of second cross points C 2 , a plurality of first cell structures 1300 positioned on each of the first cross points C 1 of the lower conductive line 1200 and the first component line 1410 , and a plurality of second cell structures 1500 positioned on each of the second
  • Each of the first cell structures 1300 may include a first data storage element 1340 , a first selection element 1320 that may apply a cell selection signal to the first data storage element 1340 and changes a data state of the first data storage element 1340 and a lower electrode element having at least an electrode of which a contact area is smaller than that of the first selection element 1320 .
  • Each of the second cell structures 1500 may include a second data storage element 1540 , a second selection element 1520 that may apply a cell selection signal to the second data storage element 1540 and changes a data state of the second data storage element 1540 and an upper electrode element having at least an electrode of which a contact area is smaller than that of the second selection element 1540 .
  • the lower, the middle and the upper conductive lines 1200 , 1400 and 1600 may be stacked over the substrate 1100 and the first and the second cell structures 1300 and 1500 may be interposed therebetween in a two-storied memory stack.
  • any additional conductive lines may be further provided over the upper conductive line 1600 and other additional cell structures may be interposed therebetween in a three or more story memory stacks.
  • the lower conductive line 1200 on the buffer layer B and the first cell structure 1300 may have the same structures as the first conductive line 200 and the cell structure 300 of the semiconductor memory device 1000 in FIG. 1 .
  • the buffer layer B may be arranged on the substrate 1100 and the lower conductive line 1200 may extend in the first direction x on the buffer layer B and a plurality of the lower conductive lines 1200 may be spaced apart by the same gap distance in the second direction y.
  • First protrusions P 1 and first line recesses LR 1 may be alternately arranged on the lower conductive line 1200 and the first protrusion P 1 may correspond to the first cross point C 1 of the lower and the middle conductive lines 1200 and 1400 .
  • the first cell structure 1300 may be positioned on each of the first protrusions P 1 , so that the neighboring first cell structures 1300 adjacent to each other in the first direction x may be separated by a lower insulation column LIC in such a configuration that a bottom of the first cell structure 1300 may be higher than a bottom of the lower insulation column LIC, thereby reducing the thermal cross talk between the neighboring first cell structures 1300 along the lower conductive line 1200 .
  • the first line recess LR 1 may be selectively provided with the lower conductive line 1200 in accordance with the structures and configurations of the first cell structure 1300 .
  • the first cell structure 1300 may be individually positioned at every cross point of the lower conductive line 1200 and the middle conductive line 1400 and may be node-separated by a first lower insulation pattern LIP 1 extending in the first direction x and a second lower insulation pattern LIP 2 extending in the second direction y.
  • the second lower insulation pattern LIP 2 may include a lower insulation line LIL and the lower insulation column LIC.
  • the lower insulation column LIC may be positioned in the first line recess LR 1 and the neighboring first cell structures 1300 may be insulated by the lower insulation column LIC along the first direction x.
  • the first cell structure 1300 may include a multilayer structure that may be stacked on the first cross point C 1 of the lower conductive line 1200 and the middle conductive line 1400 in a trapezoidal shape.
  • the first cell structure 1300 may include the unit cell of a PRAM device and may include the first data storage element 1340 for storing a bit data as a material phase, the first selection element 1320 for individually controlling the material phase of the first data storage element 1340 and a plurality of lower electrodes 1310 , 1330 and 1350 one of which may have a contact area smaller than that of the first selection element 1320 .
  • the first cell structure 1300 may be shaped into a trapezoid in which a width of the first cell structure 1300 may decrease upwards from the lower conductive line 1200 to the middle conductive line 1400 .
  • the first cell structure 1300 may include a multilayer structure in which the first lower electrode 1310 for generating heat, the first selection element 1320 , the second lower electrode 1330 , the first data storage element 1340 and the third lower electrode 1350 may be sequentially stacked on the lower conductive line 1200 in the trapezoidal shape.
  • the first lower electrode 1310 may have a contact area smaller than the lower surface of the first selection element 1320 .
  • the third lower electrode 1350 may make contact with the middle conductive line 1400 .
  • the first lower electrode 1310 may have a width smaller than that of the first selection element 1320 along the first and the second directions x and y, thus the first cell structure 1300 may have first and second lower cell recesses LCR 1 and LCR 2 that may be defined by the side surface of the first lower electrode 1310 , the lower surface of the first selection element 1320 and an upper surface of the lower conductive line 1200 and may be filled with the first and the second lower insulation patterns LIP 1 and LIP 2 .
  • the first lower electrode 1310 may be replaced with one of the second lower electrode 1330 or the third lower electrode 1350 , as described in detail with reference to FIGS. 5A to 6B .
  • the first and the second lower cell recesses LCR 1 and LCR 2 may be replaced according to the position of the first lower electrode 1310 .
  • the width of the first lower electrode 1310 may be about 1 ⁇ 2 to about 1 ⁇ 4 times the width of the first selection element 1320 , thus the contact area of the first lower electrode 1310 may be about 1/16 to about 1 ⁇ 4 times the lower surface of the first selection element 1320 . Particularly, the contact area of the first lower electrode 1310 may be about 1/10 to about 1 ⁇ 4 times the lower surface of the first selection element 1320 .
  • the structures and compositions of the first cell structure 1300 may be substantially the same as the cell structure 300 of the semiconductor memory device 1000 shown in FIG. 1 , thus any further detailed descriptions on the first cell structure 1300 will be omitted. While the present example embodiment discloses that the first cell structure 1300 may include a unit cell of the PRAM device, the first cell structure 1300 may also be applied to a unit cell of any other non-volatile memory devices such as a resist RAM (RRAM) device and a magnetic RAM (MRAM) device.
  • RRAM resist RAM
  • MRAM magnetic RAM
  • the middle conductive line 1400 may be a line extending in the second direction y and may make contact with an upper portion of the first cell structure 1300 .
  • the first cell structure 1300 may be positioned between the lower and the middle conductive lines 1200 and 1400 and may constitute a first memory stack MS 1 of the semiconductor memory device 2000 .
  • the middle conductive line 1400 may include a first component line 1410 making contact with the first cell structure 1300 , a second component line 1430 having a width greater than that of the first component line 1410 along the first direction x and making contact with the second cell structure 1500 , and a separation line 1420 interposed between the first and the second component lines 1410 and 1430 .
  • the separation line 1420 may have a same width along the first direction x and may be co-extensive along the second direction y as the second component line 1430 .
  • the second component line 1430 may have a stepped structure in which portions to contact the second cell structure 1500 may extend further along the third direction z than between adjacent second cells structure 1500 .
  • the first component line 1410 , the separation line 1420 and the second component line 1430 may be sequentially on the first cell structure 1300 and the first lower insulation pattern LIP 1 in the named order.
  • the first and the second component lines 1410 and 1430 may include the same conductive materials and the separation line 1420 may include a nitride of a conductive metal.
  • Examples of the conductive materials for the first and the second component lines 1410 and 1430 may include tungsten (W), titanium (Ti), aluminum (Al), copper (Cu), carbon (C), carbon nitride (CN), titanium nitride (TiN), titanium aluminum nitride (TiAlN), titanium silicon nitride (TiSiN), titanium carbon nitride (TiCN), tungsten nitride (WN), cobalt silicon nitride (CoSiN), tungsten silicon nitride (WSiN), tantalum nitride (TaN), tantalum carbon nitride (TaCN), tantalum silicon nitride (TaSiN), etc. These may be used alone or in combinations thereof.
  • the first component line 1410 and the first cell structure 1300 may be shaped into a first single trapezoid, thus a side surface of the first component line 1410 may be coplanar with a side surface of the first cell structure at the same slant angle. That is, the first component line 1410 may be positioned at a top portion of the first trapezoid, thus the width of the first component line 1410 may be smaller than the first data storage element 1340 or the third lower electrode 1350 .
  • the separation line 1420 and the second component line 1430 and the second cell structure 1500 which may be positioned on the second component line 1430 , may also be shaped into a second single trapezoid, thus side surfaces of the separation line 1420 and the second component line 1413 may be coplanar with a side surface of the second cell structure 1500 at the same slant angle. That is, the second component line 1430 may be positioned at a bottom portion of the second trapezoid, thus the width of the second component line 1430 may be larger than the second selection element 1540 .
  • the second component line 1430 and the separation line 1420 may constitute a bottom portion of the second trapezoid together with the second cell structure 1500 and the first component line 1410 may constitute a top portion of the first trapezoid together with the first cell structure 1300 .
  • the side surface of the first component line 1410 may be discontinuous with the side surfaces of the separation line 1420 and the second component line 1430 .
  • the first component line 1410 contact with the first cell structure 1300 and the second component line 1430 contact with the second cell structure 1500 adjacent to the first cell structure 1300 may be much more spaced apart from each other due to the width difference between the first and the second component lines 1410 and 1430 . That is, a cross gap Gc of the middle conductive line 1400 between the neighboring first and second memory stacks MC 1 and MC 2 may increase, thus the insulation space between the neighboring middle conductive lines 1400 may be maximized due to the trapezoidal shape of the first and the second cell structures 1300 and 1500 .
  • the increase of the insulation space may result in the increase the widths of the second lower insulation pattern LIP 2 and a second upper insulation pattern UIP 2 , as will be described in detail hereinafter, thereby increasing the breakdown voltage margin between the first cell structure 1300 and the second cell structure 1500 adjacent to each other.
  • first and the second trapezoid may have the same shape and thus the side surfaces of the first and the second component lines 1410 and 1430 may have the same slant angle
  • first trapezoid of the first memory stack MS 1 would be different from the second trapezoid of the second memory stack MS 2 and thus the side surface of the first component line 1410 may have a slant angle different from that of the second component line 1430 .
  • the first component line 1410 may extend in the second direction y and may be alternately contact with the first cell structure 1300 and the first lower insulation pattern line LIP 1 and a plurality of the first cell structures 1300 at every cross point C 1 of the lower conductive line 1200 and the first component line 1410 may constitute the cross point cell array of the first story memory stack.
  • the neighboring first component lines 1410 may be separated from each other by the lower insulation line LIL that may extend in the second direction y.
  • the lower insulation line LIL may cross the first lower insulation pattern LIP 1 and have an upper surface that may be coplanar with an upper surface of the first component line 1410 .
  • the upper surface of the lower insulation column LIC may be lower than or equal to a lower surface of the lower insulation line LIL.
  • the lower insulation column LIC and the lower insulation line LIL may constitute the second lower insulation pattern LIP 2 that may be integrally formed in one body by a single process.
  • the first cell structures 1300 may be node-separated from one another by the first and the second lower insulation patterns LIP 1 and LIP 2 .
  • the trapezoidal stack line of the separation line 1420 and the second component line 1430 may extend in the second direction y and a plurality of the trapezoidal stack lines may be separated by a second upper insulation pattern UIP 2 that may be contact with the lower insulation line LIL and may be shaped into a line extending in the second direction y.
  • Second protrusions P 2 and second line recesses LR 2 may be alternately arranged on the second component line 1430 and the second protrusion P 2 may correspond to the second cross point C 2 of the second conductive line 1430 and the upper conductive line 1600 .
  • the second cell structure 1500 may be positioned on each of the second protrusions P 2 , so that the neighboring second cell structures 1500 adjacent to each other in the second direction y may be separated by an upper insulation column UIC in such a configuration that a bottom of the second cell structure 1500 may be higher than a bottom of the upper insulation column UIC, thereby reducing the thermal cross talk between the neighboring second cell structures 1500 along the second component line 1430 .
  • the second line recess LR 2 may be selectively provided with the second component 1430 in accordance with the structures and configurations of the second cell structure 1500 .
  • the second cell structure 1500 may be individually positioned at each of the second cross points C 2 of the middle and the upper conductive lines 1400 and 1600 , and may be node-separated by a second upper insulation pattern UIP 2 extending in the second direction y and a first upper insulation pattern UIP 1 extending in the first direction x.
  • the first upper insulation pattern UIP 1 may include an upper insulation line UIL and the upper insulation column UIC.
  • the upper insulation column UIC may be positioned in the second line recess LR 2 and the neighboring second cell structures 1500 may be insulated by the upper insulation column UIC along the second direction y.
  • the second cell structure 1500 may include a multilayer structure that may be stacked on the second cross point C 2 of the second component line 1430 and the upper conductive line 1600 in a trapezoidal shape.
  • the second cell structure 1500 may include a unit cell of a PRAM device and may include the second data storage element 1540 for storing a bit data as a material phase, the second selection element 1520 for individually controlling the material phase of the second data storage element 1540 and a plurality of upper electrodes 1510 , 1530 , and 1550 , one of which may have a contact area smaller than that of the second selection element 1520 .
  • the second cell structure 1500 may be shaped into a trapezoid in which a width of the second cell structure 1500 may decrease upwards from the separation line 1420 to the upper conductive line 1600 .
  • the second cell structure 1500 may include a multilayer structure in which the first upper electrode 1510 for generating heat, the second selection element 1520 , the second upper electrode 1530 , the second data storage element 1540 and the third upper electrode 1550 may be sequentially stacked on the second component line 1430 along the third direction z in the trapezoidal shape.
  • the first upper electrode 1510 may have a contact area smaller than the lower surface of the second selection element 1520 and an upper surface of the second component line 1430 .
  • the third upper electrode 1550 may make contact with the upper conductive line 1600 .
  • the first upper electrode 1510 may have a width smaller than that of the second selection element 1520 along the first and the second directions x and y, thus the second cell structure 1500 may have first and second upper cell recesses UCR and UCR 2 that may be defined by the side surface of the first upper electrode 1510 , the lower surface of the second selection element 1520 and the upper surface of the second component line 1430 , and may be filled with the first and the second upper insulation patterns UIP 1 and UIP 2 .
  • the first upper electrode 1510 may be replaced with one of the second upper electrode 1530 or the third upper electrode 1550 , as described in detail with reference to FIGS. 5A to 6B .
  • the first and the second upper cell recesses UCR 1 and UCR 2 may be replaced according to the position of the first upper electrode 1510 .
  • the first cell structure 1300 may be provided in such a configuration that the first lower electrode 1310 , the first selection element 1320 , the second lower electrode 1330 , the first data storage element 1340 and the third lower electrode 1350 may be sequentially stacked on the lower conductive line 1200 upwards, while the second cell structure may be provided in such a configuration that the third upper electrode 1550 , the second data storage element 1540 , the second upper electrode 1530 , the second selection element 1520 , and the first upper electrode 1510 may be sequentially stacked on the second component line 1430 upwards along the third direction z.
  • the first memory stack MS 1 may be symmetrical with the second memory stack MS 2 with respect to the middle conductive line 1400 in the semiconductor memory device 2000 .
  • the width of the first upper electrode 1510 may be about 1 ⁇ 2 to about 1 ⁇ 4 times the width of the second selection element 1520 , thus the contact area of the first upper electrode 1510 may be about 1/16 to about 1 ⁇ 4 times the lower surface of the second selection element 1520 .
  • the contact area of the first upper electrode 1510 may be about 1/10 to about 1 ⁇ 4 times the lower surface of the second selection element 1520 .
  • the structures and compositions of the second cell structure 1500 may be substantially the same as the cell structure 300 of the semiconductor memory device 1000 shown in FIG. 1 , thus any further detailed descriptions on the structures and compositions of the second cell structure 1300 will be omitted. While the present example embodiment discloses that the second cell structure 1500 may include a unit cell of the PRAM device, the second cell structure 1500 may also be applied to a unit cell of any other non-volatile memory devices such as a resist RAM (RRAM) device and a magnetic RAM (MRAM) device.
  • RRAM resist RAM
  • MRAM magnetic RAM
  • the upper conductive line 1600 may make contact with an upper portion of the second cell structure 1500 and may extend in the first direction x.
  • the second cell structure 1500 may be positioned between the middle and the upper conductive lines 1400 and 1600 and may constitute a second memory stack MS 2 of the semiconductor memory device 2000 .
  • the upper conductive line 1600 may include the same conductive materials as the lower conductive line 1200 and the middle conductive line 1400 , so that may include at least one of tungsten (W), titanium (Ti), aluminum (Al), copper (Cu), carbon (C), carbon nitride (CN), titanium nitride (TiN), titanium aluminum nitride (TiAlN), titanium silicon nitride (TiSiN), titanium carbon nitride (TiCN), tungsten nitride (WN), cobalt silicon nitride (CoSiN), tungsten silicon nitride (WSiN), tantalum nitride (TaN), tantalum carbon nitride (TaCN), tantalum silicon nitride (TaSiN) and combinations thereof.
  • W tungsten
  • Ti titanium
  • Al aluminum
  • Cu copper
  • CN carbon nitride
  • TiN titanium aluminum nitride
  • the upper conductive line 1600 and the second cell structure 1500 may be shaped into the second single trapezoid.
  • a side surface of the upper conductive 1600 may be coplanar with a side surface of the second cell structure 1600 at the same slant angle. That is, the upper conductive 1600 may be positioned at a top portion of the second trapezoid, thus the width of the upper conductive line 1600 may be smaller than the second data storage element 1540 or the third upper electrode 1550 .
  • the upper conductive line 1600 may be alternately contact with the second cell structure 1500 and the second upper insulation pattern line UIP 2 and a plurality of the second cell structures 1500 at every second cross point C 2 of the upper conductive line 1600 and the second component line 1440 may constitute the cross point cell array of the second story memory stack.
  • the neighboring upper conductive lines 1600 may be separated from each other by the upper insulation line UIL that may extend in the first direction x.
  • the upper insulation line UIL may cross the second upper insulation pattern UIP 2 and have an upper surface that may be coplanar with an upper surface of the upper conductive line 1600 .
  • the upper surface of the upper insulation column UIC may be lower than or equal to a lower surface of the upper insulation line UIL.
  • the upper insulation column UIC and the upper insulation line UIL may constitute the first upper insulation pattern UIP 1 that may be integrally formed in one body by a single process.
  • the second cell structures 1500 may be node-separated from one another by the first and the second upper insulation patterns UIP 1 and UIP 2 .
  • the cross gap Gc between the first and the second component lines 1410 and 1430 may increase across the neighboring first and the second memory stacks MC 1 and MC 2 , so the insulation space between the neighboring middle conductive lines 1400 may be maximized due to the trapezoidal shape of the first and the second memory stacks. Accordingly, the breakdown voltage margin may increase between the first cell structure 1300 and the second cell structure 1500 adjacent to each other, which may increase the operation reliability of the semiconductor device 2000 .
  • some peripheral structures including a peripheral circuit for applying driving signals to the first and the second cell structures 1300 and 1500 may be further provided between the first memory stack MS 1 and the substrate 1100 , so that the semiconductor memory device 2000 may be provided as a cell over peripheral circuit (COP) structure in which the peripheral structure and the memory cell array may be sequentially stacked on the substrate 1100 .
  • COP peripheral circuit
  • FIG. 10 is a cross-sectional view illustrating a multi-stack memory device in which peripheral circuit structures are provided under the cell structure in accordance with an example embodiment.
  • a peripheral structure PS may be arranged on the substrate 1100 and the first and the second memory stacks may be arranged over the peripheral structure PS.
  • the peripheral structure PS may be provided on the substrate 1100 under the first memory stack MS 1 and the lower conductive line 1200 and the first cell structure 1300 may be provided on the buffer layer B, so that the peripheral structure PS and the first and the second memory stacks may be vertically stacked on the substrate 1100 .
  • the peripheral structure PS may control various signals, such as a data signal, a power signal and a ground signal that may be applied to the first and the second cell structures 1300 and 1500 .
  • the peripheral structure PS may include a peripheral gate structure 20 and a junction area 30 around the peripheral gate structure 20 , a contact plug 50 making contact with the junction area 30 and a wiring structure 60 making contact with the contact plug 50 .
  • the peripheral gate structure 20 and a junction area 30 may be arranged on an active region of the substrate 1100 that may be defined by a device isolation layer 10 .
  • the first and the second memory stacks may be arranged over the peripheral structure PS.
  • peripheral structure PS may be substantially the same as the peripheral structure PS described in detail with reference to FIG. 7 , thus any further detailed descriptions on the peripheral structure PS will be omitted.
  • Some of the wiring structures 60 may be individually connected to the lower conductive line 1200 , the middle conductive line 1400 and the upper conductive line 1600 directly or in a medium of a via structure (not shown).
  • FIGS. 11A to 26B are cross-sectional views illustrating processing steps for a method of manufacturing the semiconductor memory device in accordance with an example embodiment.
  • the method of manufacturing the semiconductor memory device 2000 shown in FIG. 8 is exemplarily disclosed.
  • the present manufacturing method would be applied to the manufacturing method for three more stack memory devices.
  • the capital letter ‘A’ in figure numbers denotes a cross-sectional view cutting the semiconductor memory device shown in FIG. 8 in line I-I′ of the layout shown in FIG. 2
  • the capital letter ‘B’ in figure numbers denotes a cross-sectional view cutting the semiconductor memory device shown in FIG. 8 in line II-II′ of the layout shown in FIG. 2 .
  • an insulating buffer layer B may be formed on the substrate 1100 and a lower conductive layer 1200 a for the lower conductive line 1200 and a first multilayer 1300 a for the first cell structures 1300 may be formed on the buffer layer B.
  • a first mask pattern M 1 may be formed on the first multilayer 1300 a .
  • the first mask pattern M 1 may be formed into a line pattern extending in the first direction x and spaced apart by the same gap distance in the second direction y.
  • the substrate 1100 may include a semiconductor substrate such as a silicon wafer and an insulating semiconductor substrate such as a silicon-on-insulator (SOI) substrate.
  • a semiconductor substrate such as a silicon wafer
  • an insulating semiconductor substrate such as a silicon-on-insulator (SOI) substrate.
  • Low resistive metals may be deposited on the buffer layer B by a deposition process or may be implanted onto the buffer layer B by an ion implantation process.
  • the low resistive metals may include tungsten (W), titanium (Ti), aluminum (Al), copper (Cu), carbon (C), carbon nitride (CN), titanium nitride (TiN), titanium aluminum nitride (TiAlN), titanium silicon nitride (TiSiN), titanium carbon nitride (TiCN), tungsten nitride (WN), cobalt silicon nitride (CoSiN), tungsten silicon nitride (WSiN), tantalum nitride (TaN), tantalum carbon nitride (TaCN), tantalum silicon nitride (TaSiN), etc. These may be used alone or in combinations thereof.
  • the first multilayer 1300 a may be formed into the first cell structures 1300 in a subsequent process and may include a plurality of component layers of the first cell structure 1300 . That is, the component layers for the first cell structure 1300 may be sequentially stacked on the lower conductive layer 1200 a.
  • the first cell structure 1300 may include a unit cell of the phase changeable random access memory (PRAM) device in which the cell data may be stored through the phase change of the first cell structure 1300 between crystalline and amorphous structures.
  • a first lower electrode layer 1310 a which may be formed into a heater for generating Joule's heat, may be formed on the lower conductive layer 1200 a
  • a first selection layer 1320 a including a phase changeable material may be formed on the first lower electrode layer 1310 a .
  • an OTS may be used for the first selection element 1320
  • an amorphous layer for forming the OTS may be formed on the first lower electrode layer 1310 a .
  • the compositions and structures of the first selection layer 1320 a may be varied according to the selection element 1320 of the semiconductor device 2000 .
  • a second lower electrode layer 1330 a may be formed on the first selection layer 1320 a , and a data storage layer 1340 a may be formed on the second lower electrode layer 1330 a .
  • a third lower electrode layer 1350 a may be further formed on the data storage layer 13540 a .
  • the third lower electrode layer 1350 a may function as a contact plug between the first cell structure 1300 and the middle conductive line 1400 .
  • Metals that may be non-reactive to the first selection layer 1320 a may be deposited onto the lower conductive layer 1200 a by a CVD process, thereby forming the first lower electrode layer 1310 a .
  • the first lower electrode layer 1310 a may be formed into a single layer structure or a multilayer structure.
  • the single layer structure of the first lower electrode layer 1310 a may include tungsten (W), titanium (Ti), aluminum (Al), copper (Cu) and carbon (C).
  • the multilayer layer structure of the first lower electrode layer 1310 a may include carbon nitride (CN), titanium nitride (TiN), titanium aluminum nitride (TiAlN), titanium silicon nitride (TiSiN), titanium carbon nitride (TiCN), tungsten nitride (WN), cobalt silicon nitride (CoSiN), tungsten silicon nitride (WSiN), tantalum nitride (TaN), tantalum carbon nitride (TaCN), tantalum silicon nitride (TaSiN) and combinations thereof.
  • CN carbon nitride
  • TiN titanium nitride
  • TiAlN titanium aluminum nitride
  • TiSiN titanium silicon nitride
  • TiCN titanium carbon nitride
  • WN tungsten nitride
  • CoSiN cobalt silicon nitride
  • TaN tanta
  • the first switching layer 1320 a may be formed into the selection element 1320 for selecting an active/inactive mode of each cell of the semiconductor memory device 2000 by switching electrical currents on/off.
  • the first selection element 1320 may include one of a vertical PN junction diode, a shottky diode and an ovonic threshold switch (OTS).
  • OTS ovonic threshold switch
  • the first switching layer 1320 a may include a proper layer structure according to the structure of the first selection element 1320 .
  • the first switching layer 1320 a may be formed into a diode layer in which a pair of semiconductor layers having opposite polarity types may be alternately stacked on the first lower electrode layer 1310 a.
  • the first switching layer 1320 a may be formed into an amorphous semiconductor layer on the first lower electrode layer 1310 a .
  • the amorphous semiconductor layer may have discontinuous voltage-current characteristics and may include at least one of arsenic (As), germanium (Ge), selenium (Se), tellurium (Te), silicon (Si), bismuth (Bi), sodium (S), antimony (Sb) and in combinations thereof.
  • an amorphous semiconductor layer including arsenic (As), germanium (Ge), tellurium (Te), silicon (Si) may be formed on the first lower electrode layer 1310 a , and then selenium (Se) and sodium (S) may be implanted onto the amorphous semiconductor layer by an ion implantation process, thereby forming a 6-element amorphous semiconductor layer as the first switching layer 1320 a.
  • the second lower electrode layer 1330 a may function as an anti-diffusion layer between the first selection layer 1320 a and the first data storage layer 1340 a .
  • the second lower electrode layer 1330 a may prevent the material diffusion between the phase changeable materials of the first data storage layer 1340 a and the amorphous materials of the first selection layer 1320 a such as the OTS.
  • a metal layer which may be sufficiently inactive with the phase changeable materials of the first data storage layer 1340 a and the amorphous materials of the first selection layer 1320 a , may be formed on the first selection layer 1320 a and then a silicidation process may be conducted to the metal layer, thereby forming a metal silicide layer as the second lower electrode layer 1330 a .
  • the metal silicide for the second lower electrode layer 1330 a may include one of tungsten silicide, cobalt silicide, nickel silicide, titanium silicide and tantalum silicide.
  • the first data storage layer 1340 a may include phase changeable materials of which the phase may be changed between the amorphous phase having a relatively higher specific resistance and the crystalline phase having a relatively lower specific resistance according to heating temperature and time.
  • phase changeable materials may include tellurium (Te), selenium (Se), germanium (Ge), antimony (Sb), bismuth (Bi), lead (Pb), tin (Sn), arsenic (As), sodium (S), silicon (Si), phosphorus (P), oxygen (O), etc. These may be used alone or in combinations thereof.
  • the first data storage layer 1340 a may include a chalcogenide or a doped chalcogenide with impurities.
  • Examples of the chalcogenide may include Ge—Sb—Te, Ge—Te—As, Sn—Te—Sn, Ge—Te, Sb—Te, Se—Te—Sn, Ge—Te—Se, Sb—Se—Bi, Ge—Bi—Te, Ge—Te—Ti, In—Se, Ga—Te—Se, In—Sb—Te, Bi—Sb—Te, etc. These may be used alone or in combinations thereof.
  • the first data storage layer 1340 a may be formed into a super lattice structure in which two or more materials may be sequentially stacked over by a molecular beam epitaxial (MBE) process or an atomic layer deposition (ALD) process.
  • MBE molecular beam epitaxial
  • ALD atomic layer deposition
  • the super lattice may need significantly low heat for the phase change, thus the phase change of the first data storage element 1340 between the amorphous and crystalline phases may be conducted at a relatively low temperature.
  • the data storage layer 1340 a may include an alloy in which GeTe and SbTe may be alternately stacked by a unit of a molecule or an atom.
  • the third lower electrode layer 1350 a may be further formed on the first data storage layer 1340 a for a contact plug with the first component line 1410 of the middle conductive line 1400 .
  • the third lower electrode 1350 may be provided as a component of the first cell structure 1300 or as an additional interconnection structure between the first cell structure and the first component line 1410 .
  • the third lower electrode layer 1350 a may be formed on the first data storage layer 1340 a or may be formed in an additional via process before the formation of the middle conductive line 1400 .
  • the third lower electrode layer 1350 a may be formed on the first data storage layer 1340 a and the third lower electrode 1350 a may constitute the first cell structure 1300 .
  • the third lower electrode layer 1350 a may include a low-resistive metal or a metal silicide of the low-resistive metal.
  • the first lower electrode layer 1310 a , the first selection layer 1320 a , the second lower electrode layer 1330 a , the data storage layer 1340 a and the third lower electrode layer 1350 a may be sequentially formed on the lower conductive layer 1200 a , thereby forming the first multilayer 1300 a on the lower conductive layer 1200 a.
  • a mask layer (not shown) may be formed on the first multilayer 1300 a and may be patterned into a first mask pattern M 1 by a photolithography process.
  • the first mask pattern M 1 may be formed into a plurality of lines extending in the first direction x and spaced apart along the second direction y.
  • the first multilayer 1300 a and the lower conductive layer 1200 a may be partially removed from the buffer layer B on the substrate 1100 by an etching process using the first mask pattern M 1 as an etching mask, thereby forming a first lower line trench LLT 1 and a first cell trench CT 1 that may extend in the first direction x.
  • the third lower electrode layer 1350 a , the first data storage layer 1340 a , the second lower electrode layer 1330 a , the first selection layer 1320 a and the first lower electrode layer 1310 a may be sequentially etched off from the buffer layer B in a shape of line extending in the first direction x, thereby forming the first cell trench CT 1 . Then, the lower conductive layer 1200 a may be consecutively etched off from buffer layer B to thereby form the first lower line trench LLT 1 communicating with the first cell trench CT 1 and extending in the first direction x.
  • the first multilayer 1300 a may be formed into a plurality of first cell lines 1300 b that may be spaced apart by the first cell trench CT 1 and the lower conductive layer 1200 a may be formed into a plurality of the lower conductive lines 1200 that may be spaced apart by the first lower line trench LLT 1 .
  • the first cell lines 1300 b may include a first lower electrode line 1310 b , a first selection line 1320 b , a second lower electrode line 1330 b , a data storage line 1340 b and a third lower electrode line 1350 b.
  • the etching process may be consecutively performed to the first multilayer 1300 a and the lower conductive layer 1200 a , thus the first cell trench CT 1 and the first lower line trench LLT 1 may be consecutively formed in the same etching process.
  • the first multilayer 1300 a and the lower conductive layer 1200 a may be partially removed from the buffer layer B by an anisotropic etching process under etching conditions that the first cell trench CT 1 and the first lower line trench LLT 1 may be reduced downwards and side walls of the first cell trench CT 1 and the first lower line trench LLT 1 may be continuous and slanted at a first slant angle ⁇ 1 , e.g., relative to the second direction y.
  • the lower conductive line 1200 and the first cell line 1300 b may be formed into a single trapezoid on the buffer layer B in such a way that the side surface of the first cell line 1300 b and the lower conducive line 1200 may be coplanar with each other in the same trapezoid.
  • the first slant angle ⁇ 1 of the trapezoid may be in a range of about 70° to about 85° with respect to an upper surface of the first cell line 1300 b , so that the trapezoid of the first cell line 1300 b and the lower conductive line 1200 may have a base angle in a range of about 70° to about 85°.
  • the materials and compositions of the first multilayer 1300 a and the lower conductive layer 1200 a may be selected and adjusted in such a way that the first cell line 1300 b and the lower conductive line 1200 may be etched off in a single etching process in the same etching chamber just by controlling the etching conditions.
  • the first lower electrode line 1310 b may be further etched off along the second direction y by an isotropic etching process, thus the width of the first lower electrode line 1310 b along the second direction y may be reduced to a second reduced width W LH 2 that may be smaller than a second width W LS 2 of the first selection line 1320 b.
  • a second lower cell recess LCR 2 may be formed between the lower conductive line 1200 and the first selection line 1320 b in such a way that the second lower cell recess LCR 2 may be defined by the side surfaces of the first lower electrode line 1310 b , the upper surface of the lower conductive line 1200 and the lower surface of the first selection line 1320 b and may communicate with the first cell trench CT 1 . Therefore, the insulation space between the neighboring first cell lines may be enlarged as much as the size of the second lower cell recess LCR 2 .
  • the second reduced width W LH 2 of the first lower electrode line 1310 b may be about 1 ⁇ 4 to about 1 ⁇ 2 times the second width W LS 2 of the first selection line 1320 b.
  • the isotropic etching process for forming the second lower cell recess LCR 2 may be controlled in such a way that the first lower electrode line 1310 b may have a sufficient etching selectivity with respect to the first selection line 1320 b , the second lower electrode line 1330 b , the first data storage line 1320 b and the third lower electrode line 1350 b.
  • the first lower insulation pattern LIP 1 may be formed in the first cell trench CT 1 and the first lower line trench LLT 1 , thereby separating the neighboring first cell lines 1300 b and the neighboring lower conductive lines 1200 along the second direction y.
  • an insulation layer (not shown) may be formed on the buffer layer B to a sufficient thickness to fill up the first cell trench CT 1 and the first lower line trench LLT 1 , and then may be planarized until the upper surface of the first cell line 1300 b may be exposed.
  • the insulation layer may remain just in the first cell trench CT 1 and the first lower line trench LLT 1 , thereby forming the first lower insulation pattern LIP 1 .
  • the first cell lines 1300 b and the lower conductive lines 1200 may be separated from one another by a single insulation pattern of the first lower insulation pattern LIP 1 .
  • the first lower insulation pattern LIP 1 may include silicon oxide, silicon nitride and silicon oxynitride.
  • a first component line 1410 may be formed on the first cell line 1300 b and the first lower insulation pattern LIP 1 in such a way that the width of the first component line 1410 along the first direction x may be reduced upwards.
  • low-resistive metals may be deposited on the first cell line 1300 b and the first lower insulation pattern LIP 1 , thereby forming a first component layer (not shown) on the first cell line 1300 b and the first lower insulation pattern LIP 1 .
  • Examples of the low-resistive metals for the first component layer may include tungsten (W), titanium (Ti), aluminum (Al), copper (Cu), carbon (C), carbon nitride (CN), titanium nitride (TiN), titanium aluminum nitride (TiAlN), titanium silicon nitride (TiSiN), titanium carbon nitride (TiCN), tungsten nitride (WN), cobalt silicon nitride (CoSiN), tungsten silicon nitride (WSiN), tantalum nitride (TaN), tantalum carbon nitride (TaCN), tantalum silicon nitride (TaSiN), etc. These may be used alone or in combinations thereof. Particularly, the first component layer may include the same materials as the lower conductive line 1200 .
  • a second mask pattern M 2 may be formed on the first component layer.
  • the second mask pattern may include a plurality of lines extending in the second direction y and spaced apart along the first direction x.
  • the first component layer may be partially removed off by an anisotropic etching process using the second mask pattern M 2 as an etching mask until the first cell line 1300 b and the first lower insulation pattern LIP 1 may be exposed, thereby forming a second lower line trench LLT 2 extending in the second direction y.
  • the first component layer may be partially etched off under the etching conditions that the second lower line trench LLT 2 may be reduced downwards and side walls of the second lower line trench LLT 2 may be slanted at a second slant angle ⁇ 2 , e.g., relative to the first direction x.
  • the second slant angle ⁇ 2 may be different from or the same as the first slant angle ⁇ 1 .
  • the first component layer may be formed into the first component layer 1410 that may be shaped into a trapezoidal line extending in the second direction y.
  • the second lower line trench LLT 2 may be shaped into a trapezoidal line extending in the second direction y
  • the first cell line 1300 b and the first lower insulation pattern LIP 1 may be alternately exposed through the second lower line trench LLT 2 along the second direction y.
  • the first component line 1410 may be formed by a reactive ion etching (RIE) process.
  • RIE reactive ion etching
  • the first cell line 1300 b that may be exposed through the second lower line trench LLT 2 may be partially removed from the buffer layer B, to thereby form a first node separation hole NH 1 through which the lower conductive line 1200 may be exposed.
  • the first cell structures 1300 may be positioned at each of the first cross points C 1 of the lower conductive line 1200 and the first component line 1410 .
  • the first cell line 1300 b may include metal-based material similar to the first component line 1410 , the first cell line 1300 b may be consecutively etched off after formation of the second lower line trench LLT 2 and the first component line 1400 just by changing the process conditions such as etching gases and a process temperature and pressure.
  • the process conditions may be individually adjusted to each of the first to third lower electrode lines 1310 b , 1330 b and 1350 b , the first selection line 1320 b and the first data storage line 1320 b in such a way that the contact resistance therebetween may be reduced.
  • the first cell line 1300 b may be separated by the first node separation hole NH 1 in the first direction x as well as be separated by the first lower insulation pattern LIP 1 in the second direction y, so that the first cell line 1300 b may be node-separated into a plurality of the first cell structures 1300 .
  • the first cell line 1300 b may be formed into the first cell structure 1300 having a first lower electrode 1310 , a first selection element 1320 , a second lower electrode 1330 , a first data storage element 1340 and a third lower element 1350 by the etching process for forming the first node separation hole NH 1 .
  • an upper surface of the lower conductive line 1200 may be exposed through the first node separation hole NH 1 .
  • the first node separation hole NH 1 and the second lower line trench LIT 2 may be formed by a single etching process in the same etching chamber just by controlling the etching conditions.
  • the first component layer and the first cell line 1310 b may be partially etched off by an anisotropic etching process under the etching conditions that the second lower line trench LLT 2 and the first node separation hole NH 1 may be reduced downwards and side walls of the second lower line trench LLT 2 and the first node separation hole NH 1 may be continuous and slanted at the second slant angle ⁇ 2 .
  • the first component line 1410 and the first cell structure 1300 may be formed into a single trapezoid in such a way that the side surface of the first cell structure 1300 and the first component line 1410 may be coplanar with each other in the same trapezoid.
  • the second slant angle ⁇ 2 of the trapezoid may be in a range of about 70° to about 85° with respect to an upper surface of the first component line 1410 like the first slant angle ⁇ 1 , so that the trapezoid of the first cell structure 1300 and the first component line 1410 may have a base angle of about 70° to about 85°.
  • the lower conductive line 1210 exposed through the first node separation hole NH 1 may be partially recessed, thereby forming a plurality of the first line recess LR 1 on the lower conductive line 1200 .
  • the lower conductive line 1210 may be formed into an uneven structure in which the first line recesses LR 1 and first protrusions P 1 may be alternately arranged at an upper portion thereof.
  • the first protrusion P 1 may be defined by the first recesses LR 1 and the first cell structure 1300 may be arranged on the first protrusion P 1 .
  • the lower conductive line 1200 may be partially removed by a dry or a wet etching process having an etching selectivity with respect to the first cell structure 1300 and the first component line 1410 .
  • the thermal cross talk between the neighboring first cell structures 1300 on the lower conductive line 1200 may be sufficiently reduced due to the depth of the first line recess LR 1 , thereby improving the operation reliability and stability of the semiconductor memory device 2000 .
  • the first lower electrode 1310 may be further etched off along the first direction x by an isotropic etching process, thus the width of the first lower electrode 1310 along the first direction x may be reduced to a first reduced width W LH 1 that may be smaller than a first width W LS 1 of the first selection element 1320 .
  • a first lower cell recess LCR 1 may be formed between the lower conductive line 1200 and the first selection element 1320 in such a way that the first lower cell recess LCR 1 may be defined by the side surfaces of the first lower electrode 1310 , the upper surface of the lower conductive line 1200 and the lower surface of the first selection element 1320 and may communicate with the first node separation hole NH 1 . Therefore, the insulation space between the neighboring first cell structures 1300 may be enlarged as much as the size of the first lower cell recess LCR 1 .
  • the first reduced width W LH 1 of the first lower electrode 1310 may be about 1 ⁇ 4 to about 1 ⁇ 2 times the first width W LS 1 of the first selection element 1320 .
  • the isotropic etching process for forming the first lower cell recess LCR 1 may be controlled in such a way that the first lower electrode 1310 may have a sufficient etching selectivity with respect to the first selection element 1320 , the second lower electrode 1330 , the first data storage element 1340 and the third lower electrode 1350 .
  • the positions of the first and the second lower line recesses LCR 1 and LCR 2 may be varied according to the stack structure of the first cell structure 1300 , as described in detail with reference to FIGS. 5A to 6B .
  • the first multilayer 1300 a may be formed in such a way that the first lower electrode layer 1310 a may be interposed between the first selection layer 1320 a and the first data storage layer 1340 a
  • the first and second lower cell recesses LCR 1 and LCR 2 may be defined by the first selection element 1320 and the first data storage element 1340 .
  • the first multilayer 1300 a may be formed in such a way that the third lower electrode layer 1350 a , the first data storage layer 1340 a , the second lower electrode layer 1330 a , the first selection layer 1320 a and the first lower electrode layer 1310 a may be sequentially stacked on the lower conductive layer 1200 a and the first lower electrode layer 1310 a may be interposed between the first selection layer 1320 a and the first component layer, the first and second lower cell recesses LCR 1 and LCR 2 may be defined by the first selection element 1320 and the first component line 1410 .
  • a lower insulation column LIC for insulating the first cell structures 1300 may be formed in the first node separation hole NH 1 and a lower insulation line LIL for separating the first component lines 1410 may be formed in the second lower line trench LLT 2 , thereby forming a second lower insulation pattern LIP 2 .
  • an insulation layer (not shown) may be formed to a sufficient thickness to fill up the second lower line trench LLT 2 and the first node separation hole NH 1 by a deposition process. Then, the insulation layer may be planarized by a planarization process until an upper surface of the first component line 1410 may be exposed, thereby simultaneously forming the lower insulation column LIC and the lower insulation line LIL.
  • the second lower insulation pattern LIP 2 may include one of silicon oxide, silicon nitride and silicon oxynitride.
  • the lower insulation line LIL may include the same insulation materials as the lower insulation column LIC in the same process, the lower insulation column LIC and the lower insulation line LIL may be individually formed in different processes with different insulation materials.
  • the first cell structures 1300 on the first protrusion P 1 may be separated by the lower insulation column LIC of which the bottom may be lower than a bottom surface of the first cell structure 1300 .
  • the thermal cross talk between neighboring memory cells may be reduced, thereby increasing the operation reliability of the semiconductor memory device 2000 .
  • a separation layer 1420 a , a second component layer 1430 a and a second multilayer 1500 a may be formed on the first component line 1410 and the lower insulation line LIL.
  • the same metal as the first component line 1410 may be formed on a whole surface of the first component line 1410 and the lower insulation line LIL and a silicidation process may be conducted to the metal, thereby forming a metal silicide layer on the first component line 1410 and the lower insulation line LIL as the separation layer 1420 a .
  • the second component layer 1430 a may be formed on the metal silicide layer by a deposition process such as a chemical vapor deposition (CVD) process and a physical vapor deposition (PVD) process.
  • CVD chemical vapor deposition
  • PVD physical vapor deposition
  • the first upper electrode layer 1510 a , the second selection layer 1520 a , the second upper electrode layer 1530 a , the second data storage layer 1540 a and the third upper electrode layer 1550 a may be sequentially formed on the second component layer 1430 a , thereby forming the second multilayer 1500 a on the second component layer 1430 a.
  • the second multilayer 1500 a may include the same materials and structures as the first multilayer 1300 a and may be formed into the second cell structures 1500 in a subsequent process.
  • a third mask pattern M 3 may be formed on the second multilayer 1500 a .
  • the third mask pattern M 3 may be formed into a plurality of lines extending in the second direction y and spaced apart along the first direction x.
  • the second multilayer 1500 a may be formed by the same process as for the first multilayer 1300 a described in detail with reference to FIGS. 11A and 11B and the third mask pattern M 3 may be formed by the same process as for the second mask pattern M 2 described in detail with reference to FIGS. 13A and 13B .
  • the second multilayer 1500 a may be partially removed into a line shape by an etching process using the third mask pattern M 2 as an etching mask, thereby forming a second cell trench CT 2 and a second upper line trench ULT 2 that may extend in the second direction y.
  • the second multilayer 1500 a may be formed into a plurality of second cell lines 1500 b that may extend in the second direction y and spaced apart by the second cell trench CT 2 along the first direction x.
  • the separation layer 1420 a and the second component layer 1430 a may be formed into a separation line 1420 and the second component line 1430 , respectively.
  • the separation line 1420 , the second component line 1430 and the second cell line 1500 b may be formed into a single trapezoid.
  • the second multilayer 1500 a may be etched into the line shape, thereby forming the second cell trench CT 2 through which the second component layer 12430 a may be exposed and forming the second cell lines 1500 b in which a first upper electrode line 1510 b , a second selection line 1520 b , a second upper electrode line 1530 b , a second data storage line 1540 b and a third upper electrode line 1550 b may be stacked on the second component layer 1430 a just like the first cell lines 1300 b .
  • the second component layer 1430 a and the separation layer 1420 a may be consecutively etched into the line shape, thereby forming the second upper line trench ULT 2 that may communicate with the second cell trench CT 2 and forming the second component line 1430 and the separation line 1420 on the first component line 1410 .
  • the second cell trench CT 2 and the second upper line trench ULT 2 may be continuously formed by the consecutive etching processes, so the separation line 1420 , the second component line 1430 and the second cell line 1500 b may be shaped into a single shape.
  • the second multilayer 1500 a , the second component layer 1430 a and the separation layer 1420 a may be partially removed into the line shape by an anisotropic etching process under etching conditions that the second cell trench CT 2 and the second upper line trench ULT 2 may be reduced downwards and side walls of the second cell trench CT 2 and the second upper line trench ULT 2 may be continuous and slanted at the second slant angle ⁇ 2 .
  • the separation line 1420 , the second component line 1430 and the second cell line 1500 b may be formed into a single trapezoid on the first component line 1410 in such a way that the side surfaces of the second cell line 1500 b , the second component line 1430 and the separation line 1420 may be coplanar with one another in the same trapezoid.
  • the second upper line trench ULT 2 may constitute a lower portion of an upper reverse trapezoid and the second lower line trench LLT 2 may constitute an upper portion of a lower reverse trapezoid.
  • the width W ULT of the second upper line trench ULT 2 may be smaller than the width W ill of the second lower line trench LLT 2 and the width of the first component line 1410 may be greater than the width of the second component line 1430 .
  • the first component line 1410 may function as a bit line for the first memory stack MC 1 and the second component line 1430 may function as a bit line for the second memory stack MC 2 .
  • the stack structure of the first and the second component lines 1410 and 1430 in a medium of the separation line 1420 may be formed into the middle conductive line 1400 and be provided as a common bit line for the semiconductor memory device 2000 .
  • the cross gap Gc of the middle conductive line 1400 between the neighboring first and the second memory stacks MC 1 and MC 2 may increase by as much as the difference between the width W ULT of the second upper line trench ULT 2 and the width W LLT of the second lower line trench LLT 2 , and the insulation space between the neighboring middle conductive lines 1400 may be maximized due to the trapezoidal shape of the first and the second cell structures 1300 and 1500 .
  • the increase of the insulation space may result in the increase the widths of the second lower insulation pattern LIP 2 and a second upper insulation pattern UIP 2 , thereby increasing the breakdown voltage margin between the first and the second memory stacks MC 1 and MC 2 adjacent to each other.
  • the increase of the width W LLT of the second lower line trench LLT 2 may improve the aligning margin of a photolithography process for forming the third mask pattern M 3 , thereby reducing the misalignment between the second upper line trench ULT 2 and the second lower line trench LLT 2 .
  • the second slant angle ⁇ 2 of the second cell trench CT 2 and the second upper line trench ULT 2 may be in a range of about 70° to about 85° with respect to an upper surface of the second cell line 1500 b , so that the trapezoid of the second cell line 1500 b , the second component line 1430 and the separation line 1420 may have a base angle of about 70° to about 85°.
  • the first upper electrode line 1510 b may be further etched off along the first direction x by an isotropic etching process, thus the width of the first upper electrode line 1510 b along the first direction x may be reduced to a first reduced width W US 1 that may be smaller than a first width W US 1 of the second selection line 1520 b.
  • a first upper cell recess UCR 1 may be formed between the seconds component line 1430 and the second selection line 1520 b in such a way that the first upper cell recess UCR 1 may be defined by the side surfaces of the first upper electrode line 1510 b , the upper surface of the second component line 1430 and the lower surface of the second selection line 1520 b and may communicate with the second cell trench CT 2 . Therefore, the insulation space between the neighboring second cell lines 1500 b may be enlarged as much as the size of the first upper cell recess UCR 1 .
  • the first reduced width W UH 1 of the first upper electrode line 1510 b may be about 1 ⁇ 4 to about 1 ⁇ 2 times the first width W US 1 of the second selection line 1520 b.
  • the isotropic etching process for forming the first upper cell recess UCLR 1 may be controlled in such a way that the first upper electrode line 1510 b may have a sufficient etching selectivity with respect to the second selection line 1520 b , the second upper electrode line 1530 b , the second data storage line 1540 b and the third upper electrode line 1550 b.
  • the second upper insulation pattern UIP 2 may be formed in the second cell trench CT 2 and the second upper line trench ULT 2 , thereby separating the neighboring second cell lines 1500 b , the neighboring second component lines 1430 and the neighboring separation lines 1420 along the second direction y.
  • an insulation layer (not shown) may be formed to a sufficient thickness to fill up the second cell trench CT 2 and the second upper line trench ULT 2 , and then may be planarized until the upper surface of the second cell line 1500 b may be exposed.
  • the insulation layer may remain just in the second cell trench CT 2 and the second upper line trench ULT 2 , thereby forming the second upper insulation pattern UIP 2 .
  • the second upper line trench ULT 2 and the second cell trench CT 2 may be simultaneously with the same insulation materials
  • the second cell lines 1500 b , the second component lines 1430 and the separation lines 1420 may be separated from one another by a single insulation pattern of the second upper insulation pattern UIP 2 .
  • the second upper insulation pattern UIP 2 may include silicon oxide, silicon nitride and silicon oxynitride.
  • an upper conductive line 1600 may be formed on the second cell line 1500 b and the second upper insulation pattern UIP 2 in such a way that the width of the upper conductive line 1600 along the second direction y may be reduced upwards.
  • low-resistive metals may be deposited on the second cell line 1500 b and the second upper insulation pattern UIP 2 , thereby forming an upper conductive layer (not shown) on the second cell line 1500 b and the second upper insulation pattern UIP 2 .
  • Examples of the low-resistive metals for the upper conductive layer may include tungsten (W), titanium (Ti), aluminum (Al), copper (Cu), carbon (C), carbon nitride (CN), titanium nitride (TiN), titanium aluminum nitride (TiAlN), titanium silicon nitride (TiSiN), titanium carbon nitride (TiCN), tungsten nitride (WN), cobalt silicon nitride (CoSiN), tungsten silicon nitride (WSiN), tantalum nitride (TaN), tantalum carbon nitride (TaCN), tantalum silicon nitride (TaSiN), etc. These may be used alone or in combinations thereof.
  • the first component layer may include the same materials as the lower conductive line 1200 .
  • the fourth mask pattern M 4 may include a plurality of lines extending in the first direction x and spaced apart along the second direction y.
  • the upper conductive layer may be partially removed off by an anisotropic etching process using the fourth mask pattern M 4 as an etching mask until the second cell line 1500 b and the second upper insulation pattern UIP 2 may be exposed, thereby forming a first upper line trench ULT 1 extending in the first direction x.
  • the upper conductive layer may be partially etched off under the etching conditions that the first upper line trench ULT 1 may be reduced downwards and side walls of the first upper line trench ULT 1 may be slanted at a first slant angle ⁇ 1 .
  • the first slant angle ⁇ 1 may be different from or the same as the second slant angle ⁇ 2 .
  • the upper conductive layer may be formed into the upper conductive line 1600 that may be shaped into a trapezoidal line extending in the first direction x.
  • first upper line trench ULT 1 may be shaped into a trapezoidal line extending in the first direction x
  • the second cell line 1500 b and the second upper insulation pattern UIP 2 may be alternately exposed through the first upper line trench ULT 1 along the first direction x.
  • the upper conductive line 1600 may be formed by a reactive ion etching (RIE) process.
  • RIE reactive ion etching
  • the second cell line 1500 b that may be exposed through the first upper line trench ULT 1 may be partially removed, to thereby form a second node separation hole NH 2 through which the second component line 1430 may be partially exposed.
  • the second cell line 1500 b may be node-separated into the second cell structures 1500 that may be positioned at each of the second cross points C 2 of the upper conductive line 1600 and the second component line 1430 .
  • the second cell line 1500 b may include metal-based material similar to the upper conductive line 1600
  • the second cell line 1500 b may be consecutively etched off after formation of the first upper line trench ULT 1 and the upper conductive line 1600 just by changing the process conditions such as etching gases and a process temperature and pressure.
  • the process conditions may be individually adjusted to each of the first to third upper electrode lines 1510 b , 1530 b and 1550 b , the second selection line 1520 b and the second data storage line 1540 b in such a way that the contact resistance therebetween may be reduced or minimized.
  • the second cell line 1500 b may be separated by the second node separation hole NH 2 in the second direction y as well as be separated by the second upper insulation pattern UIP 2 in the first direction x, so that the second cell line 1500 b may be node-separated into a plurality of the second cell structures 1500 .
  • the second cell line 1500 b may be formed into the second cell structure 1500 having a first upper electrode 1510 , a second selection element 1520 , a second upper electrode 1530 , a second data storage element 1540 and a third upper element 1550 by the etching process for forming the second node separation hole NH 2 .
  • an upper surface of the second component line 1430 may be exposed through the second node separation hole NH 2 .
  • the second node separation hole NH 2 and the first upper line trench UIT 1 may be formed by a single etching process in the same etching chamber just by controlling the etching conditions.
  • the upper conductive layer and the second cell line 1500 b may be partially etched off by an anisotropic etching process under the etching conditions that the first upper line trench ULT 1 and the second node separation hole NH 2 may be reduced downwards and side walls of the first upper line trench ULT 1 and the second node separation hole NH 2 may be continuously coplanar and slanted at the first slant angle ⁇ 1 .
  • the upper conductive line 1600 and the second cell structure 1500 may be formed into a single trapezoid in such a way that the side surface of the second cell structure 1500 and the upper conductive line 1600 may be coplanar with each other in the same trapezoid.
  • the first slant angle ⁇ 1 of the trapezoid may be in a range of about 70° to about 85° with respect to an upper surface of the upper conductive line 1600 like the second slant angle ⁇ 2 , so that the trapezoid of the second cell structure 1500 and the upper conductive line 1600 may have a base angle of about 70° to about 85°.
  • the first slant angle ⁇ 1 of the second cell trench CT 2 may be substantially the same as the second slant angle ⁇ 2 of the second upper line trench ULT 2 and the second node separation hole NH 2 .
  • the first and the second slant angles ⁇ 1 and 02 may be different from each other according to the requirements of the cross point cell array of the semiconductor memory device 2000 .
  • the second component line 1430 exposed through the second node separation hole NH 2 may be partially recessed, thereby forming a plurality of the second line recesses LR 2 on the second component line 1430 .
  • the second component line 1430 may be formed into an uneven structure in which the second line recesses LR 2 and second protrusions P 2 may be alternately arranged at an upper portion thereof.
  • the second protrusion P 2 may be defined by the second recesses LR 2 and the second cell structure 1500 may be arranged on the second protrusion P 2 .
  • the second component line 1430 may be partially removed by a dry or a wet etching process having an etching selectivity with respect to the second cell structure 1500 .
  • the thermal cross talk between the neighboring second cell structures 1500 on the second component line 1430 may be sufficiently reduced due to the depth of the second line recess LR 2 , thereby improving the operation reliability and stability of the semiconductor memory device 2000 .
  • the first upper electrode 1510 may be further etched off along the second direction y by an isotropic etching process, thus the width of the first upper electrode 1510 along the second direction y may be reduced to a second reduced width W UH 2 that may be smaller than a second width W US 2 of the second selection element 1520 .
  • a second upper cell recess UCR 2 may be formed between the second component line 1430 and the second selection element 1520 in such a way that the second upper cell recess UCR 2 may be defined by the side surfaces of the first upper electrode 1510 , the upper surface of the second component line 1430 and the lower surface of the second selection element 1520 and may communicate with the second node separation hole NH 2 . Therefore, the insulation space between the neighboring second cell structures 1500 may be enlarged as much as the size of the second upper cell recess UCR 2 .
  • the second reduced width W u11 2 of the first upper electrode 1510 may be about 1 ⁇ 4 to about 1 ⁇ 2 times the second width W US 2 of the second selection element 1520 .
  • the isotropic etching process for forming the second upper cell recess UCR 2 may be controlled in such a way that the first upper electrode 1510 may have a sufficient etching selectivity with respect to the second selection element 1520 , the second upper electrode 1530 , the second data storage element 1540 , the third upper electrode 1550 and the second component line 1430 .
  • the positions of the first and the second upper line recesses UCR 1 and UCR 2 may be varied according to the stack structure of the second cell structure 1500 similar to the modifications of the cell structure 300 as described in detail with reference to FIGS. 5A to 6B .
  • the second multilayer 1500 a may be formed in such a way that the first upper electrode layer 1510 a may be interposed between the second selection layer 1520 a and the second data storage layer 1540 a
  • the first and second upper cell recesses UCR 1 and UCR 2 may be defined by the second selection element 1520 and the second data storage element 1540 .
  • the second multilayer 1500 a may be formed in such a way that the third upper electrode layer 1550 a , the second data storage layer 1540 a , the second upper electrode layer 1530 a , the second selection layer 1520 a and the first upper electrode layer 1510 a may be sequentially stacked on the second component layer 1430 and the first upper electrode layer 1510 a may be interposed between the second selection layer 1520 a and the upper conductive layer, the first and second upper cell recesses UCR 1 and UCR 2 may be defined by the second selection element 1520 and the upper conductive line 1600 .
  • an upper insulation column UIC for insulating the second cell structures 1500 may be formed in the second node separation hole NH 2 and an upper insulation line UIL for separating the upper conductive lines 1600 may be formed in the first upper line trench ULT 1 , thereby forming a first upper insulation pattern UIP 1 .
  • an insulation layer (not shown) may be formed to a sufficient thickness to fill up the first upper line trench ULT 1 and the second node separation hole NH 2 by a deposition process. Then, the insulation layer may be planarized by a planarization process until an upper surface of the upper conductive line 1600 may be exposed, thereby simultaneously forming the upper insulation column UIC and the upper insulation line UIL.
  • the first upper insulation pattern UIP 1 may include one of silicon oxide, silicon nitride and silicon oxynitride.
  • the upper insulation line UIL may include the same insulation materials as the upper insulation column UIC in the same process, the upper insulation column UIC and the upper insulation line UIL may be individually formed in different processes with different insulation materials.
  • the second cell structures 1500 on the second protrusions P 2 may be separated by the upper insulation column UIC of which the bottom may be lower than a bottom surface of the second cell structure 1500 .
  • the thermal cross talk between neighboring memory cells of the second memory stack MC 2 may be reduced, thereby increasing the operation reliability of the semiconductor memory device 2000 .
  • the cross point cell array may be provided with the semiconductor memory device and each cell may include a cell structure having a heater electrode, a selector, e.g., an OTS, and a data storage element.
  • the width of the heater may be decreased to be smaller than that of the selector, and the latitudinal cell recess may be provided in the cell structure, so the gap distances between neighboring cell structures may increase by as much as the cell recess and may enlarge an insulation space between the neighboring cell structures, thereby improving the insulation characteristics of the semiconductor memory device.
  • the electrical interference between the neighboring cells may be sufficiently reduced in the semiconductor memory device.
  • the breakdown voltage margin between a lower memory stack and an upper memory stack may be sufficiently reduced just by shaping the cell structures into a trapezoid.
  • the first bit line of the common bit line may be located at a top portion of the lower trapezoidal memory stack MC 1 and the second bit line of the common bit line may be located at a bottom portion of the upper trapezoidal memory stack MC 2 .
  • the width of the first bit line may be much smaller than that of the second bit line, and the cross gap Ge between the neighboring lower and upper memory stack MC 1 and MC 2 may increase as much as the width difference between the lower and upper bit lines, which may sufficiently improve the breakdown voltage margin between the neighboring lower and upper memory stacks.
  • the gap distance between upper portions of the neighboring lower cell structures may increase due to the trapezoidal shape, thereby increasing the process margin for forming the upper cell structures.
  • Example embodiments provide a semiconductor memory device having a cross point array structure in which gap distances increases between neighboring cell structures, thereby improving insulation characteristics and threshold margin of the semiconductor memory device and a method of manufacturing the same. Accordingly, the insulation space is increased and the breakdown voltage margin is improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Semiconductor Memories (AREA)
US15/438,938 2016-03-18 2017-02-22 Semiconductor memory devices Abandoned US20170271581A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/916,227 US11227991B2 (en) 2016-03-18 2020-06-30 Semiconductor devices

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160032749A KR102495000B1 (ko) 2016-03-18 2016-03-18 반도체 소자 및 이의 제조방법
KR10-2016-0032749 2016-03-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/916,227 Continuation US11227991B2 (en) 2016-03-18 2020-06-30 Semiconductor devices

Publications (1)

Publication Number Publication Date
US20170271581A1 true US20170271581A1 (en) 2017-09-21

Family

ID=59855961

Family Applications (2)

Application Number Title Priority Date Filing Date
US15/438,938 Abandoned US20170271581A1 (en) 2016-03-18 2017-02-22 Semiconductor memory devices
US16/916,227 Active US11227991B2 (en) 2016-03-18 2020-06-30 Semiconductor devices

Family Applications After (1)

Application Number Title Priority Date Filing Date
US16/916,227 Active US11227991B2 (en) 2016-03-18 2020-06-30 Semiconductor devices

Country Status (4)

Country Link
US (2) US20170271581A1 (zh)
KR (1) KR102495000B1 (zh)
CN (1) CN107204351B (zh)
TW (1) TWI718256B (zh)

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180033826A1 (en) * 2016-07-28 2018-02-01 Samsung Electronics Co., Ltd. Variable resistance memory device and method of manufacturing the same
US20180047899A1 (en) * 2016-08-11 2018-02-15 Samsung Electronics Co., Ltd. Variable resistance memory device and method of manufacturing the same
US20180277601A1 (en) * 2017-03-27 2018-09-27 Samsung Electronics Co., Ltd. Memory device including a variable resistance material layer
CN109659430A (zh) * 2017-10-11 2019-04-19 三星电子株式会社 包括数据存储图案的半导体装置
US10361367B1 (en) * 2018-07-17 2019-07-23 International Business Machines Corporation Resistive memory crossbar array with top electrode inner spacers
US10374009B1 (en) * 2018-07-17 2019-08-06 Macronix International Co., Ltd. Te-free AsSeGe chalcogenides for selector devices and memory devices using same
US10541271B2 (en) 2017-10-18 2020-01-21 Macronix International Co., Ltd. Superlattice-like switching devices
CN111414132A (zh) * 2019-01-07 2020-07-14 爱思开海力士有限公司 带异构存储器的主存储设备、计算机系统及数据管理方法
US10777745B2 (en) 2018-09-04 2020-09-15 Samsung Electronics Co., Ltd. Switching element, variable resistance memory device, and method of manufacturing the switching element
US10832742B2 (en) * 2019-02-15 2020-11-10 Toshiba Memory Corporation Semiconductor storage device
CN112582415A (zh) * 2019-09-27 2021-03-30 南亚科技股份有限公司 半导体元件及其制备方法
US10998301B2 (en) 2018-12-21 2021-05-04 Samsung Electronics Co., Ltd. Semiconductor device
US11121178B2 (en) * 2019-05-17 2021-09-14 SK Hynix Inc. Electronic device and method for fabricating electronic device
US20210288251A1 (en) * 2020-03-10 2021-09-16 International Business Machines Corporation Suppressing oxidation of silicon germanium selenium arsenide material
US11133463B2 (en) 2018-02-09 2021-09-28 Micron Technology, Inc. Memory cells with asymmetrical electrode interfaces
US11145810B2 (en) * 2019-03-20 2021-10-12 Toshiba Memory Corporation Memory device
US11158787B2 (en) 2019-12-17 2021-10-26 Macronix International Co., Ltd. C—As—Se—Ge ovonic materials for selector devices and memory devices using same
US20210351349A1 (en) * 2018-08-30 2021-11-11 Taiwan Semiconductor Manufacturing Company, Ltd. Top electrode last scheme for memory cell to prevent metal redeposit
US11189789B2 (en) * 2017-08-02 2021-11-30 Taiwan Semiconductor Manufacturing Company, Ltd. Resistive random-access memory (RRAM) cell with recessed bottom electrode sidewalls
US11200950B2 (en) 2017-04-28 2021-12-14 Micron Technology, Inc. Programming enhancement in self-selecting memory
US11217748B2 (en) * 2019-07-23 2022-01-04 Samsung Electronics Co., Ltd. Semiconductor device including a data storage material pattern
US11245073B2 (en) 2018-09-04 2022-02-08 Samsung Electronics Co., Ltd. Switching element, variable resistance memory device, and method of manufacturing the switching element
US20220052116A1 (en) * 2020-08-12 2022-02-17 Samsung Electronics Co., Ltd. Resistive memory devices
US11289540B2 (en) 2019-10-15 2022-03-29 Macronix International Co., Ltd. Semiconductor device and memory cell
US20220123209A1 (en) * 2020-10-16 2022-04-21 Macronix International Co., Ltd. SELECTOR DEVICES INCLUDING S-DOPED AsSeGeSi CHALCOGENIDES
US11362276B2 (en) 2020-03-27 2022-06-14 Macronix International Co., Ltd. High thermal stability SiOx doped GeSbTe materials suitable for embedded PCM application
US11362273B2 (en) * 2019-03-05 2022-06-14 SK Hynix Inc. Electronic device and method for fabricating the same
US11404637B2 (en) 2018-02-09 2022-08-02 Micron Technology, Inc. Tapered cell profile and fabrication
US11410709B2 (en) 2019-10-21 2022-08-09 Samsung Electronics Co., Ltd. Semiconductor device having upper and lower wiring with different grain sizes
US11545625B2 (en) 2018-02-09 2023-01-03 Micron Technology, Inc. Tapered memory cell profiles
EP4142460A1 (fr) * 2021-08-31 2023-03-01 Commissariat à l'énergie atomique et aux énergies alternatives Dispositif mémoire résistive et procédé de réalisation
US20230089578A1 (en) * 2021-09-20 2023-03-23 Sandisk Technologies Llc Semiconductor device containing bit lines separated by air gaps and methods for forming the same
WO2023145795A1 (ja) * 2022-01-28 2023-08-03 国立大学法人東北大学 抵抗変化材料、スイッチ素子用材料、スイッチ層、スイッチ素子及び記憶装置
US11763973B2 (en) * 2021-08-13 2023-09-19 Western Digital Technologies, Inc. Buffer layers and interlayers that promote BiSbx (012) alloy orientation for SOT and MRAM devices
US11776567B2 (en) 2020-07-09 2023-10-03 Western Digital Technologies, Inc. SOT film stack for differential reader
US11783853B1 (en) 2022-05-31 2023-10-10 Western Digital Technologies, Inc. Topological insulator based spin torque oscillator reader
US11800816B2 (en) 2018-02-09 2023-10-24 Micron Technology, Inc. Dopant-modulated etching for memory devices
US11875827B2 (en) 2022-03-25 2024-01-16 Western Digital Technologies, Inc. SOT reader using BiSb topological insulator
US11908496B2 (en) 2021-08-18 2024-02-20 Western Digital Technologies, Inc. BiSbX (012) layers having increased operating temperatures for SOT and MRAM devices
US11984395B2 (en) 2021-09-20 2024-05-14 Sandisk Technologies Llc Semiconductor device containing bit lines separated by air gaps and methods for forming the same

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102549543B1 (ko) * 2017-11-09 2023-06-29 삼성전자주식회사 메모리 소자
CN111952362B (zh) * 2017-11-17 2022-03-11 华中科技大学 磁性原子掺杂的超晶格材料[GeTe/Sb2Te3]n晶体结构模型的构建方法
JP2019161012A (ja) * 2018-03-13 2019-09-19 東芝メモリ株式会社 記憶装置
JP2019161059A (ja) * 2018-03-14 2019-09-19 東芝メモリ株式会社 半導体記憶装置
KR102618880B1 (ko) * 2018-09-13 2023-12-29 삼성전자주식회사 스위칭 소자, 가변 저항 메모리 장치 및 그의 제조방법
CN110335942A (zh) * 2019-07-08 2019-10-15 中国科学院上海微系统与信息技术研究所 一种相变存储器及其制作方法
US11121317B2 (en) * 2019-11-14 2021-09-14 Micron Technology, Inc. Low resistance crosspoint architecture
CN110828664B (zh) * 2019-11-19 2021-09-21 中国科学院上海微系统与信息技术研究所 一种相变材料、相变材料的制备方法和相变存储器
KR20210077319A (ko) * 2019-12-17 2021-06-25 에스케이하이닉스 주식회사 전자 장치 및 그 제조 방법
CN112054009A (zh) * 2020-09-16 2020-12-08 浙江驰拓科技有限公司 一种存储器以及一种存储器的制作方法
KR20220119821A (ko) * 2021-02-22 2022-08-30 삼성전자주식회사 반도체 장치
CN114512601A (zh) * 2022-01-28 2022-05-17 长江先进存储产业创新中心有限责任公司 相变存储器及其制作方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150214478A1 (en) * 2014-01-29 2015-07-30 Jung-Moo Lee Variable resistance memory devices
US20160181321A1 (en) * 2014-12-22 2016-06-23 Seung-jae Jung Variable resistance memory devices and methods of manufacturing the same
US20170207385A1 (en) * 2016-01-15 2017-07-20 Taiwan Semiconductor Manufacturing Company Ltd. Semiconductor structure, electrode structure and method of forming the same

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602005021382D1 (de) 2005-12-23 2010-07-01 St Microelectronics Srl Verfahren zur Herstellung eines Auswahl-Bauelements mit reduziertem Leckstrom, sowie ein Auswahl-Bauelement, insbesondere für Phasenwechsel-Speicher
KR20090081153A (ko) 2008-01-23 2009-07-28 삼성전자주식회사 저항성 메모리 소자 및 그 제조방법
JP2009252974A (ja) 2008-04-04 2009-10-29 Toshiba Corp 不揮発性半導体記憶装置とその製造方法
KR100971423B1 (ko) * 2008-04-04 2010-07-21 주식회사 하이닉스반도체 상변화 메모리 소자 및 그 제조방법
JP2010225741A (ja) * 2009-03-23 2010-10-07 Toshiba Corp 不揮発性半導体記憶装置
JP4881400B2 (ja) * 2009-03-23 2012-02-22 株式会社東芝 不揮発性半導体記憶装置、及びそのスクリーニング方法
US8278641B2 (en) 2009-12-23 2012-10-02 Intel Corporation Fabricating current-confining structures in phase change memory switch cells
JP5295465B2 (ja) 2011-02-23 2013-09-18 パナソニック株式会社 不揮発性記憶素子及びその製造方法
JP2012195357A (ja) 2011-03-15 2012-10-11 Toshiba Corp 不揮発性記憶装置
US8982603B2 (en) * 2011-05-11 2015-03-17 Panasonic Intellectual Property Management Co., Ltd. Cross point variable resistance nonvolatile memory device and method of reading thereby
JP5858350B2 (ja) 2011-09-14 2016-02-10 インテル・コーポレーション 装置、方法およびシステム
KR20130060065A (ko) 2011-11-29 2013-06-07 에스케이하이닉스 주식회사 비휘발성 메모리 장치 및 이의 제조 방법
US20150028280A1 (en) 2013-07-26 2015-01-29 Micron Technology, Inc. Memory cell with independently-sized elements
JP6151650B2 (ja) * 2014-01-17 2017-06-21 ソニーセミコンダクタソリューションズ株式会社 記憶装置
US9806129B2 (en) 2014-02-25 2017-10-31 Micron Technology, Inc. Cross-point memory and methods for fabrication of same
KR102225782B1 (ko) * 2014-07-28 2021-03-10 삼성전자주식회사 가변 저항 메모리 장치 및 그 제조 방법
KR102578481B1 (ko) * 2016-03-15 2023-09-14 삼성전자주식회사 반도체 메모리 소자 및 이의 제조방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150214478A1 (en) * 2014-01-29 2015-07-30 Jung-Moo Lee Variable resistance memory devices
US20160181321A1 (en) * 2014-12-22 2016-06-23 Seung-jae Jung Variable resistance memory devices and methods of manufacturing the same
US20170207385A1 (en) * 2016-01-15 2017-07-20 Taiwan Semiconductor Manufacturing Company Ltd. Semiconductor structure, electrode structure and method of forming the same

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102530067B1 (ko) 2016-07-28 2023-05-08 삼성전자주식회사 가변 저항 메모리 소자 및 그 제조 방법
US10186552B2 (en) * 2016-07-28 2019-01-22 Samsung Electronics Co., Ltd. Variable resistance memory device and method of manufacturing the same
US20180033826A1 (en) * 2016-07-28 2018-02-01 Samsung Electronics Co., Ltd. Variable resistance memory device and method of manufacturing the same
KR20180013035A (ko) * 2016-07-28 2018-02-07 삼성전자주식회사 가변 저항 메모리 소자 및 그 제조 방법
US10236444B2 (en) * 2016-08-11 2019-03-19 Samsung Electronics Co., Ltd. Variable resistance memory device and method of manufacturing the same
US20180047899A1 (en) * 2016-08-11 2018-02-15 Samsung Electronics Co., Ltd. Variable resistance memory device and method of manufacturing the same
US10636968B2 (en) 2016-08-11 2020-04-28 Samsung Electronics Co., Ltd. Variable resistance memory device and method of manufacturing the same
US10403681B2 (en) * 2017-03-27 2019-09-03 Samsung Electronics Co., Ltd. Memory device including a variable resistance material layer
US20180277601A1 (en) * 2017-03-27 2018-09-27 Samsung Electronics Co., Ltd. Memory device including a variable resistance material layer
US11735261B2 (en) 2017-04-28 2023-08-22 Micron Technology, Inc. Programming enhancement in self-selecting memory
US11200950B2 (en) 2017-04-28 2021-12-14 Micron Technology, Inc. Programming enhancement in self-selecting memory
US11189789B2 (en) * 2017-08-02 2021-11-30 Taiwan Semiconductor Manufacturing Company, Ltd. Resistive random-access memory (RRAM) cell with recessed bottom electrode sidewalls
CN109659430A (zh) * 2017-10-11 2019-04-19 三星电子株式会社 包括数据存储图案的半导体装置
US10541271B2 (en) 2017-10-18 2020-01-21 Macronix International Co., Ltd. Superlattice-like switching devices
US11404637B2 (en) 2018-02-09 2022-08-02 Micron Technology, Inc. Tapered cell profile and fabrication
US11133463B2 (en) 2018-02-09 2021-09-28 Micron Technology, Inc. Memory cells with asymmetrical electrode interfaces
US11800816B2 (en) 2018-02-09 2023-10-24 Micron Technology, Inc. Dopant-modulated etching for memory devices
US11545625B2 (en) 2018-02-09 2023-01-03 Micron Technology, Inc. Tapered memory cell profiles
US10374009B1 (en) * 2018-07-17 2019-08-06 Macronix International Co., Ltd. Te-free AsSeGe chalcogenides for selector devices and memory devices using same
US10361367B1 (en) * 2018-07-17 2019-07-23 International Business Machines Corporation Resistive memory crossbar array with top electrode inner spacers
US20210351349A1 (en) * 2018-08-30 2021-11-11 Taiwan Semiconductor Manufacturing Company, Ltd. Top electrode last scheme for memory cell to prevent metal redeposit
US11800818B2 (en) * 2018-08-30 2023-10-24 Taiwan Semiconductor Manufacturing Company, Ltd. Top electrode last scheme for memory cell to prevent metal redeposit
US10777745B2 (en) 2018-09-04 2020-09-15 Samsung Electronics Co., Ltd. Switching element, variable resistance memory device, and method of manufacturing the switching element
US11245073B2 (en) 2018-09-04 2022-02-08 Samsung Electronics Co., Ltd. Switching element, variable resistance memory device, and method of manufacturing the switching element
US10998301B2 (en) 2018-12-21 2021-05-04 Samsung Electronics Co., Ltd. Semiconductor device
US11721684B2 (en) 2018-12-21 2023-08-08 Samsung Electronics Co., Ltd. Semiconductor device
CN111414132A (zh) * 2019-01-07 2020-07-14 爱思开海力士有限公司 带异构存储器的主存储设备、计算机系统及数据管理方法
US11379381B2 (en) * 2019-01-07 2022-07-05 SK Hynix Inc. Main memory device having heterogeneous memories, computer system including the same, and data management method thereof
US10832742B2 (en) * 2019-02-15 2020-11-10 Toshiba Memory Corporation Semiconductor storage device
US11362273B2 (en) * 2019-03-05 2022-06-14 SK Hynix Inc. Electronic device and method for fabricating the same
US11145810B2 (en) * 2019-03-20 2021-10-12 Toshiba Memory Corporation Memory device
US11121178B2 (en) * 2019-05-17 2021-09-14 SK Hynix Inc. Electronic device and method for fabricating electronic device
US11217748B2 (en) * 2019-07-23 2022-01-04 Samsung Electronics Co., Ltd. Semiconductor device including a data storage material pattern
CN112582415A (zh) * 2019-09-27 2021-03-30 南亚科技股份有限公司 半导体元件及其制备方法
US11289540B2 (en) 2019-10-15 2022-03-29 Macronix International Co., Ltd. Semiconductor device and memory cell
US11410709B2 (en) 2019-10-21 2022-08-09 Samsung Electronics Co., Ltd. Semiconductor device having upper and lower wiring with different grain sizes
US11158787B2 (en) 2019-12-17 2021-10-26 Macronix International Co., Ltd. C—As—Se—Ge ovonic materials for selector devices and memory devices using same
US20210288251A1 (en) * 2020-03-10 2021-09-16 International Business Machines Corporation Suppressing oxidation of silicon germanium selenium arsenide material
US11271155B2 (en) * 2020-03-10 2022-03-08 International Business Machines Corporation Suppressing oxidation of silicon germanium selenium arsenide material
US11362276B2 (en) 2020-03-27 2022-06-14 Macronix International Co., Ltd. High thermal stability SiOx doped GeSbTe materials suitable for embedded PCM application
US11776567B2 (en) 2020-07-09 2023-10-03 Western Digital Technologies, Inc. SOT film stack for differential reader
US11812619B2 (en) * 2020-08-12 2023-11-07 Samsung Electronics Co., Ltd. Resistive memory devices
US20220052116A1 (en) * 2020-08-12 2022-02-17 Samsung Electronics Co., Ltd. Resistive memory devices
US20220123209A1 (en) * 2020-10-16 2022-04-21 Macronix International Co., Ltd. SELECTOR DEVICES INCLUDING S-DOPED AsSeGeSi CHALCOGENIDES
US11763973B2 (en) * 2021-08-13 2023-09-19 Western Digital Technologies, Inc. Buffer layers and interlayers that promote BiSbx (012) alloy orientation for SOT and MRAM devices
US11908496B2 (en) 2021-08-18 2024-02-20 Western Digital Technologies, Inc. BiSbX (012) layers having increased operating temperatures for SOT and MRAM devices
FR3126544A1 (fr) * 2021-08-31 2023-03-03 Commissariat A L'energie Atomique Et Aux Energies Alternatives Dispositif mémoire résistive et procédé de réalisation
EP4142460A1 (fr) * 2021-08-31 2023-03-01 Commissariat à l'énergie atomique et aux énergies alternatives Dispositif mémoire résistive et procédé de réalisation
US20230089578A1 (en) * 2021-09-20 2023-03-23 Sandisk Technologies Llc Semiconductor device containing bit lines separated by air gaps and methods for forming the same
US11984395B2 (en) 2021-09-20 2024-05-14 Sandisk Technologies Llc Semiconductor device containing bit lines separated by air gaps and methods for forming the same
WO2023145795A1 (ja) * 2022-01-28 2023-08-03 国立大学法人東北大学 抵抗変化材料、スイッチ素子用材料、スイッチ層、スイッチ素子及び記憶装置
US11875827B2 (en) 2022-03-25 2024-01-16 Western Digital Technologies, Inc. SOT reader using BiSb topological insulator
US11783853B1 (en) 2022-05-31 2023-10-10 Western Digital Technologies, Inc. Topological insulator based spin torque oscillator reader

Also Published As

Publication number Publication date
TW201801364A (zh) 2018-01-01
TWI718256B (zh) 2021-02-11
KR102495000B1 (ko) 2023-02-02
KR20170108599A (ko) 2017-09-27
CN107204351B (zh) 2023-09-26
US11227991B2 (en) 2022-01-18
CN107204351A (zh) 2017-09-26
US20200335692A1 (en) 2020-10-22

Similar Documents

Publication Publication Date Title
US11227991B2 (en) Semiconductor devices
US10141502B2 (en) Semiconductor memory devices
US10388867B2 (en) Variable resistance memory devices
US10424619B2 (en) Variable resistance memory devices and methods of manufacturing the same
US8871559B2 (en) Methods for fabricating phase change memory devices
KR100971423B1 (ko) 상변화 메모리 소자 및 그 제조방법
US9018610B2 (en) Resistive memory device and method of manufacturing the same
US8810003B2 (en) Semiconductor device and method of fabricating the same
US11037992B2 (en) Variable resistance memory device
US20140131655A1 (en) Semiconductor memory devices and methods of fabricating the same
US20180019281A1 (en) Variable resistance memory devices and methods of fabricating the same
US11723221B2 (en) Three-dimensional semiconductor memory devices
US10971548B2 (en) Variable resistance memory device including symmetrical memory cell arrangements and method of forming the same
KR101802436B1 (ko) 반도체 장치 및 그 제조 방법
US10714686B2 (en) Variable resistance memory devices and methods of forming the same
US11177320B2 (en) Variable resistance memory device and method of fabricating the same
US20230309425A1 (en) Lateral phase change memory cell
KR20130142522A (ko) 수직형 메모리 소자 및 그 제조 방법
KR20100076631A (ko) 상변화 메모리 소자 및 그 제조방법

Legal Events

Date Code Title Description
AS Assignment

Owner name: SAMSUNG ELECTRONICS CO., LTD., KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SEONG, DONG-JUN;EUN, SUNG-HO;PARK, SOON-OH;REEL/FRAME:041332/0843

Effective date: 20170201

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION