US20160319411A1 - System and method for heat treating aluminum alloy castings - Google Patents
System and method for heat treating aluminum alloy castings Download PDFInfo
- Publication number
- US20160319411A1 US20160319411A1 US15/140,533 US201615140533A US2016319411A1 US 20160319411 A1 US20160319411 A1 US 20160319411A1 US 201615140533 A US201615140533 A US 201615140533A US 2016319411 A1 US2016319411 A1 US 2016319411A1
- Authority
- US
- United States
- Prior art keywords
- casting
- temperature
- heating stage
- time
- castings
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
- C22F1/043—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D17/00—Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/62—Quenching devices
- C21D1/63—Quenching devices for bath quenching
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/62—Quenching devices
- C21D1/667—Quenching devices for spray quenching
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/0056—Furnaces through which the charge is moved in a horizontal straight path
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/0062—Heat-treating apparatus with a cooling or quenching zone
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/02—Alloys based on aluminium with silicon as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/002—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working by rapid cooling or quenching; cooling agents used therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D21/00—Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
- B22D21/002—Castings of light metals
- B22D21/007—Castings of light metals with low melting point, e.g. Al 659 degrees C, Mg 650 degrees C
Definitions
- the present invention generally relates to the heat treatment of cast aluminum alloy components, and more specifically to the solution heat treatment of aluminum alloy castings formed in a high pressure die cast manufacturing process.
- High Pressure Die Casting is one manufacturing process that can be used with aluminum alloys which holds great promise for producing quality cast parts or components at increased production rates for a substantially lower cost.
- This manufacturing technique also has its drawbacks, however, as aluminum alloy castings formed in an HPDC process often include a higher content of entrained or dissolved gases. It is generally recognized that the elevated gas content can lead to an increased number of internal and surface defects when the castings are subsequently heat treated to their solution temperatures (sometimes referred to as their solutionizing heat treatment temperatures) in a typical T4, T6 or T7 tempering process that will impart the cast components with their ultimate mechanical properties. The resulting high percentage of rejected scrap parts can substantially offset the other benefits of the HDPC process.
- one embodiment of the present disclosure comprises a method for heat treating a cast aluminum alloy component, or casting, having a silicon constituent and one or more metal alloying constituents.
- the silicon constituent has a predetermined silicon solution temperature, above which there is substantial or accelerated solutionizing of the silicon constituent (i.e. with the silicon rapidly entering into solid solution), and below which there is little or no substantial solutionizing of the silicon constituent.
- the one or more metal alloying constituents also have predetermined alloying metal solution temperatures above which the alloying metals rapidly enters into solid solution.
- the method includes heating the casting to a first casting temperature that is below, and preferably less than 10° C.
- the predetermined silicon solution temperature and then increasing the rate of heat input into the casting to heat the casting to a second casting temperature that is above, and preferably less than 10° C. above, the predetermined alloying metal solution temperature.
- the method further includes maintaining the casting at the second casting temperature for a period of time that is less than or about 20 minutes, and then quenching the casting to a temperature less than or about 250° C.
- the method also includes maintaining the casting at the second casting temperature for at least two minutes, or five minutes, or more, up to the 20 minutes disclosed above.
- the casting can be maintained at the second casting temperature until the casting achieves a time-in-treatment ratio greater than 50%, with the time-in-treatment ratio being generally defined by the duration of time the casting spent above the predetermined alloying metal solution temperature divided by a duration of time the casting spent above the predetermined silicon solution temperature.
- the casting can achieve a time-in-treatment ratio between 70% and 90%.
- the present disclosure also includes a system for heat treating aluminum alloy castings having a silicon constituent and one or more metal alloying constituents.
- the system includes a heat treatment furnace having a first heating stage maintained at a first stage temperature that is below, and preferably less than 10° C. below, a predetermined silicon solution temperature for the silicon constituent.
- the first heating stage is followed by a second heating stage that is configured to increase the rate of heat input into the casting to heat the casting to a second stage temperature that is above, and preferably less than 10° C. above, a predetermined alloying metal solution temperature for the at least one metal alloying constituent.
- the furnace also includes an intake door that defines the beginning of the first heating stage, an intermediate door separating the first heating stage and the second heating stage, a discharge door defining the end of the second heating stage, and a transport apparatus configured to convey a plurality of castings through the furnace enclosure from the intake door through to the discharge door.
- the transport apparatus may be configured to maintain each of the castings within the second heating stage for a period of time that is greater than 3 minutes and less than 30 minutes.
- the transport apparatus can be configured to convey the castings through the furnace at a substantially constant speed, and the location of the intermediate door along the length of the furnace is repositionable. In other aspects the transport apparatus can be configured to convey the castings through the first heating stage of the furnace at a first speed and through the second heating stage of the furnace at a second speed that is different from the first speed.
- the present disclosure also includes a method for heat treating aluminum alloy castings having a silicon constituent and one or more metal alloying constituents.
- the method includes the step of moving a casting into a first heating stage of a furnace maintained at a first stage temperature to heat the casting to a first casting temperature that is less than 10° C. below a predetermined silicon solution temperature for the silicon constituent.
- the method also includes the step of moving the casting from the first heating stage into a second heating stage of the furnace that is separate from the first heating stage and maintained at a second stage temperature that is greater than the first stage temperature, to increase the rate of heat input into the casting and heat the casting to a second casting temperature that is less than 10° C.
- the method further includes the steps of maintaining the casting at the second casting temperature for a period of time that is less than or about 20 minutes, removing the casting from the second heating stage of the furnace, and quenching the casting to a temperature less than or about 250° C.
- FIG. 1 is a graph of the temperature experienced by an cast aluminum alloy casting during a heat treatment process, in accordance with a representative embodiment of the present disclosure.
- FIG. 2 is another graph of the temperature experienced by an aluminum alloy casting during a heat treatment process, in accordance with another representative embodiment of the present disclosure.
- FIG. 3 is a schematic diagram of a system for implementing the heat treatment process of FIG. 2 , in accordance with yet another representative embodiment of the present disclosure.
- FIG. 4 is a schematic diagram of a system for implementing the heat treatment process of FIG. 2 , in accordance with another representative embodiment of the present disclosure.
- FIG. 5 is a another graph of the temperature experienced by an aluminum alloy casting during a heat treatment process, in accordance with yet another representative embodiment of the present disclosure.
- FIG. 6 is a schematic diagram of a system for implementing the heat treatment process of FIG. 5 , in accordance with another representative embodiment of the present disclosure.
- FIGS. 7A-7D are schematic diagrams of a system for transferring castings between two conveyor chains, in accordance with yet another representative embodiment of the present disclosure.
- the present disclosure relates to a system and method for heat treating cast aluminum alloy components, or castings, including but not limited to aluminum alloy components that are formed in a high pressure die cast manufacturing process.
- the system and method can provide several significant advantages and benefits over other systems and methods for heat treating similar cast aluminum alloy components.
- the recited advantages are not meant to be limiting in any way, as one skilled in the art will appreciate that other advantages may also be realized upon practicing the present disclosure.
- FIG. 1 is a temperature vs time graph of the temperature 12 experienced by an aluminum alloy casting during of a heat treatment process or method 10 , in accordance with one representative embodiment of the present disclosure.
- the casting is formed from an aluminum alloy that generally includes aluminum combined with a silicon constituent and one or more additional principal metal alloying constituents, such as copper, magnesium, manganese, nickel, iron, zinc, and the like, along with a variety of other metal alloying constituents in smaller proportions, including but not limited to lead, tin, chromium, and titanium.
- the silicon constituent can comprise between about 6 weight percent and about 20 weight percent of the aluminum alloy
- a copper constituent can comprise between about 0.5 weight percent and about 5 weight percent of the aluminum alloy
- a magnesium constituent comprising between about 0.4 weight percent and about 0.8 weight percent of the aluminum alloy.
- the alloying constituents can be divided into those having relatively low solution temperature ranges, such as silicon and copper, and those having relatively high solution temperatures, such as magnesium and manganese.
- the range of solution temperatures for the silicon constituent can be quite large and somewhat variable, depending on the alloy, with low levels of silicon solutionizing occurring at temperatures below 440° C. to 470° C. and accelerating rates of silicon solutionizing taking place at temperatures above 470° C. to 490° C.
- a copper constituent can have a range of solution temperatures (generally between 475° C. and 495° C.) that is near to or even overlapped by the range of silicon solution temperatures in some embodiments, while the magnesium constituent and manganese constituent can generally have ranges of solution temperatures extending from 490° C. to 540° C.
- the cast aluminum alloy components can be formed through a high pressure die casting (HPDC) process in which the molten metal is injected into a mold or die at high pressure and at high speed or gate velocity. While increasing production rates and lowering costs, the HPDC process typically results in the castings containing a higher content of dissolved or entrained gases than aluminum alloy components formed from low pressure die casting (LPDC), sand/SPM casting, or high vacuum die casting (HVDC) processes.
- LPDC low pressure die casting
- HVDC high vacuum die casting
- the internal “pore-making” process that leads to the formation and expansion of the internal pores or gas bubbles within the castings begins with the silicon constituent of the aluminum alloy being taken into solid solution as the casting reaches or exceeds the silicon solution temperature.
- the silicon is taken into solution, the size of the silicon particles appears to shrink as the overall number of silicon particles appears to grow, thereby allowing the entrained gases within the casting to migrate throughout the material.
- the trend reverses as the smaller silicon particles grow together into larger particles that hinder or dam the migration of the gas.
- the entrapped gas then combines together into bubbles or pores that will continue to grow for as long as the casting is maintained at an elevated temperature. If left unchecked, the enlarged bubbles or pores near the surface can break through the surface as blisters, while the enlarged bubbles or pores internal to the casting can cause dimensional distortions.
- the range of solution temperatures of the silicon constituent is substantially less than the range of the solution temperatures of at least one of the metal alloying constituents, such as magnesium and manganese, it is further theorized that the solutionizing heat treatment of the aluminum alloy that ultimately results in the desired improvements in mechanical properties may not begin until the castings are heated to the highest alloying metal solution temperature, well after the “pore-making” process has begun.
- the inventors have developed a method or process (and related systems) for heat treating cast aluminum alloy components that can be particularly advantageous over existing heat treatments for HPDC aluminum alloy parts that do not recognize this difference.
- the time spent by the castings above both the relatively low solution temperature of the silicon constituent and the relatively high solution temperature of the metal alloying constituent, prior to quenching, can be controlled to produce cast aluminum alloy components having superior mechanical properties at reduced scrap rates, and with the castings having a substantial reduction in dimensional distortions that would otherwise result from the formation of enlarged bubbles of entrapped gases.
- one embodiment of a method 10 for heat treating cast aluminum alloy components, or castings generally involves cast components formed from an aluminum alloy having a known solution temperature for the silicon constituent, or at least a good approximation of the silicon solution temperature above which there is accelerated solutionizing of the silicon constituent, as well as a known or good approximation for the solution temperatures of the metal alloying constituents.
- the solution temperatures can be identified as discrete solution temperature values or, in all likelihood, as ranges of solution temperature values, as indicated above.
- the identified or “predetermined” solution temperature can be the boundary value for that range that is of most interest to the potential user.
- the lower boundary for that range can be the value of greatest interest and may acceptably be identified as the predetermined silicon solution temperature 14 . This can ensure that the solutionizing of the silicon constituent is substantially suppressed until after the casting temperature is intentionally raised above the predetermined silicon solution temperature 14 .
- the upper boundary for the range of silicon solution temperatures in a particular aluminum alloy overlaps the range of a lower temperature metal alloying constituent, such as copper
- the upper boundary may acceptably be identified as the predetermined silicon solution temperature 14 . This can be advantageous by allowing at least a partial solutionizing of the copper constituent within a first heating stage while still restricting the accelerated solutionizing of the silicon constituent.
- the upper boundary for particular ranges of solution temperatures for the one for more metal alloying constituents will generally be the value of greatest interest, in which case the upper boundary for that range may acceptably be identified as the predetermined alloying metal solution temperature 18 .
- the range of solution temperatures for the copper alloying constituent of an exemplary aluminum alloy can range between about 485° C. to about 495° C.
- the range of solution temperatures for the magnesium alloying constituent of the same alloy can range between about 510° C. to about 530° C.
- the predetermined alloying metal solution temperature 18 may acceptably be identified as 530° C. to ensure that all of the metal alloying components reach their solution temperatures.
- the silicon constituent of some aluminum alloys may begin to slowly solutionize at about 420° C., but at a reduced rate that does not quickly lead to the enlarged silicon particles that impede the movement of the entrained gases within the casting.
- the solutionizing rate of the silicon constituent can then rapidly increase at casting temperatures higher than 440° C., such as between 470° C. and 490° C., so that a substantial portion of the silicon constituent will enter into solid solution within a short period of time, once the casting enters this range of casting temperatures, to fully initiate the process of silicon particle size reduction and subsequent enlargement described above.
- the predetermined silicon solution temperature 14 will generally be set at a casting temperature slightly below or within the range of temperatures associated with the accelerated solutionizing rates of the silicon constituent (for example, 440° C. to 470° C.), yet which may still be above the casting temperature associated with the onset of solutionizing of the silicon constituent at the reduced rate.
- the predetermined solution temperature can be an intermediate value, such as an average or a median value, for that range of solution temperature values.
- the predetermined solution temperatures 14 , 18 of a particular aluminum alloy may be identified, for example, in a laboratory, through previous experience, or through ongoing quality control and evaluation during a manufacturing cycle, with subsequent adjustments of the predetermined solution temperatures 14 , 18 to further refine the heat treatment method for a particular aluminum alloy, or for a particular type of casting, or both.
- the combination of metal alloying constituents can often result in a range of combined alloying metal solution temperatures that is different from the range of alloying metal solution temperatures for each metal alloying constituent when taken separately.
- the range of solution temperatures for the alloying constituents of an aluminum alloy with copper and magnesium alloying constituents can range between about 490° C. to about 515° C., and the predetermined alloying metal solution temperature 18 can be identified as 515° C.
- the single greatest value in the ranges of alloying metal solution temperatures can be identified as the predetermined alloying metal solution temperature 18 .
- an intermediate value in the ranges of alloying metal solution temperatures can also be used, as described above.
- the values or ranges for both the silicon solution temperature and the alloying metal solution temperature can vary depending on the composition of the aluminum alloy, including but not limited to the presence of the different varying metal constituents and their weight percentages. Accordingly, the heat treatment method 10 of the present disclosure can include a customized casting temperature profile 12 for each alloy that is based on the principle that the silicon constituent of the aluminum alloy will transition into solid solution at a lower temperature, and therefore sooner, than the metal alloying constituents.
- the heat treatment method 10 generally includes three separate heating segments or stages, namely a first heating stage 20 , a second heating stage 30 , and a quenching stage 40 .
- the first heating stage 20 comprises a first period of time (t 1 ) 24 from when the one or more castings enter the furnace and are heated from an initial casting temperature 21 to a first casting temperature 25 that is near to the predetermined silicon solution temperature 14 (above which there is substantial or accelerated solutionizing of the silicon constituent), yet without reaching or exceeding the predetermined silicon solution temperature 14 .
- the first casting temperature 25 can be between about 5° C. and about 10° C.
- the first casting temperature 25 can be between 2° C. and 5° C. below the predetermined silicon solution temperature 14 .
- the temperature differential between the first casting temperature 25 and the predetermined silicon solution temperature 14 can initially be about 10° C.
- other values for the temperature differential whether greater than or less than 10° C., are also possible and considered to fall within aspects of the scope of the present disclosure.
- both the time duration (t 1 ) 24 and the heating rate 22 (or alternative heating rate 23 ) of the castings in the first heating stage 20 can vary substantially between different embodiments of the heat treatment method 10 .
- the rise/run of the first heating rate 22 is defined as ° C./min, and can be applied as an instantaneous heating rate or as an average heating rate during a specified period of time, such as, for example, the entire first heating stage 20 or merely a portion of the first heating stage 20 .
- Factors that affect the duration (t 1 ) and/or the first heating rate 22 can include the type and configuration of the furnace, the initial temperature 21 of the castings when the castings first enter the furnace, the thickness and/or the surface area exposure of the castings, the number of castings in a tray of castings, and the like.
- the castings may be quite thick, such as the castings for an engine block, and it is generally preferable for all of the material of the thick castings to reach the first casting temperature 25 prior to entering the second heating stage 30 .
- a batch of castings may be loaded into a tray or rack of castings in a configuration that is dense enough to affect the flow of thermal fluids to the individual castings, and it is likewise preferable for all of the castings within the batch to reach the first casting temperature 25 prior to entering the second heating stage 30 .
- Greater uniformity in reaching the first casting temperature 25 for all portions of the castings, or for all of the castings loaded within a tray or rack, may be achieved by allowing the castings to soak at the first casting temperature 25 for a few minutes (e.g. 2-5 minutes or a more extended time period) toward the end of the first heating stage 20 to provide ample time for the heat to become evenly distributed throughout the castings. Moreover, by ensuring that the first casting temperature 25 is sufficiently below the predetermined silicon solution temperature 14 , this uniformity in treatment can be accomplished without concern for substantial solutionizing of the silicon constituent.
- the castings may be heated at a substantially constant first heating rate 22 throughout a majority portion of the first heating stage 20 , followed by a gradual tapering of the rate of heating toward the end of the first heating stage as the castings approach the intended first casting temperature 25 .
- This technique can provide better control of the heat treatment process and ensure that the temperature of the castings does not inadvertently overshoot the first casting temperature 25 and encroach or reach the predetermined silicon solution temperature 14 while the castings remain in the first heating stage 20 , and thereby prematurely trigger the pore-making process described above.
- first stage casting temperature line 13 in other aspects the first heating stage of the furnace can be maintained at a relatively constant first stage temperature that is equal to or above the first casting temperature 25 . In this way the flow of heat into the castings, and thus the first heating rate 23 , continuously decreases throughout the first heating stage 20 as the castings slowly approach a state of thermal equilibrium with the first stage temperature. In embodiments where first stage temperature is greater than the first casting temperature 25 , the movement of the castings through the furnace can be timed so that the castings reach the first casting temperature 25 and exit the first heating stage 20 prior to reaching thermal equilibrium with the first stage temperature.
- the time duration (t 1 ) 24 of the castings within the first heating stage 20 can be extended so that the castings can reach a thermal equilibrium at the first casting temperature 25 prior to exiting the first heating stage 20 .
- the castings may be thin-walled structures that are spaced apart with a greater proportion of exposed surface area that readily receives and distributes the applied heat, so that each casting reaches thermal equilibrium at the first casting temperature 25 in a much shorter period of time, in which case the thermal soaking period may be reduce or eliminated.
- the particular path for reaching the first casting temperature 25 can be less important than the value of the first casting temperature 25 relative to the predetermined silicon solution temperature 14 , or the amount of time that the castings have to soak within the first heating stage 20 in order to reach a uniform temperature.
- the first heating stage can be maintained at a first stage temperature that is less than 10° C. below the predetermined silicon solution temperature 14 .
- the first heating stage 10 can be maintained at a first stage temperature that is greater than the predetermined silicon solution temperature 14 , so as to provide an increase in the first heating rate 22 throughout the first heating stage 20 with a corresponding decrease in the time duration (t 1 ) 24 of the first heating stage, and which can further include accurate control of the movement of the castings through the first heating stage 20 to ensure that the castings exit the first heating stage 20 prior to reaching the predetermined silicon solution temperature 14 .
- the castings Upon reaching the first casting temperature 25 at the end of the first heating stage 20 , the castings can then transition or move into the second heating stage 30 of the heat treatment process 10 that generally comprises a second period of time (t 2 ) 34 extending from the entrance of the castings into the second heating stage 30 until their exit and movement into the quench stage 40 .
- the heat input into the castings can be immediately or sharply increased to quickly raise the temperature of the castings from the first casting temperature 25 to a second casting temperature 35 that is greater than or substantially equal to the predetermined alloying metal solution temperature 18 .
- the castings can then be maintained at the second casting temperature 35 for the remainder of the time period (t 2 ) 34 of the second heating stage 30 in a substantially isothermal (i.e. constant temperature) portion 37 of the process 10 .
- a substantially isothermal portion 37 of the heat treatment process 10 at the second casting temperature 35 can preferably range from about 10 minutes to about 20 minutes. Nevertheless, substantially isothermal portions 37 that are less than 10 minutes in duration, such as between 5 minutes and 2 minutes in duration, are also possible and considered to fall within the scope of the present disclosure.
- the castings may be quenched promptly after reaching the second casting temperature 35 .
- the only isothermal portion of the casting temperature may be the heat soak period at the first casting temperature 25 near the end of the first heating stage 20 and prior to entering the second heating stage 30 , so that all of the castings or portions of the castings reach the first casting temperature prior to being exposed to the increased heat input within the second heating stage.
- the second casting temperature 35 can be between about 5° C. and 10° C. above the predetermined solution temperature 18 of the metal alloying constituent, in order to ensure that the metal alloying constituent in all portions of the casting reaches or exceeds the alloying metal solution temperature and enters into solid solution, but without excessively exceeding the alloying metal solution temperature in ways that could lead to detrimental side effects.
- the second casting temperature 35 can be 5° C. or less above the predetermined solution temperature 18 of the metal alloying constituent.
- the heating of the castings in the second heating stage 30 can involve an initial second heating rate 32 , or rate of heat input, that is sharply increased over the heating rate that was applied to the castings in the first heating stage 20 immediately prior to entering second heating stage 30 .
- This can result in a step increase in the temperatures of the castings to the second casting temperature 35 within a shortened period of time, with the temperature 12 of the castings reaching the predetermined silicon solution temperature 14 within seconds of entering the second heating stage 30 .
- the temperature of the castings can nevertheless reach and exceed the predetermined silicon solution temperature 14 shortly after entering the second heating stage 30 .
- the temperature of the castings can reach and exceed the predetermined silicon solution temperature 14 within 60 seconds or less of entering the second heating stage 30 .
- the time that the castings spend above the predetermined silicon solution temperature 14 can be substantially equal to the time (t 2 ) spent within the second heating stage 30 , which feature can be used to simplify subsequent calculations.
- the second heating stage 30 of the furnace can be maintained at a substantially constant second stage temperature that is greater than the first stage temperature, thereby increasing the rate of heat input into the castings during at least the first portion of the second heating stage 30 .
- the additional heat input needed to quickly raise the temperature of the castings to the second casting temperature 35 can be provided by an additional heating apparatus, such as directed heaters or high flow hot air nozzles, that can direct additional heat onto the castings and provide a boost to the initial second heating rate 32 .
- the castings can be heated to within 5° C. of the second casting temperature within 5 minutes or less of entering the second stage.
- the additional heating apparatus can be configured to raise the temperature of the castings to the second casting temperature 35 in a shortened period of time without substantially raising the overall second stage temperature in the second heating stage portion of the furnace.
- the second stage temperature can prevent the flow of heat away from the castings for the remainder of the time period (t 2 ) 34 of the second heating stage 30 .
- the second stage temperature can be substantially equal to the second casting temperature 35 , while in other aspects the second stage temperature can be marginally higher than the second casting temperature 35 so that the temperature of the castings continues to rise slightly during the remainder of the second heater stage, but typically only a small amount as the time remaining in the second heating stage is relatively short.
- the second stage temperature can be less than or about 10° C. above the predetermined alloying metal solution temperature 18 at which the at least one metal alloying constituent rapidly enters into solid solution.
- the (t 3 )/(t 2 ) timing ratio of the castings at the alloying metal solution temperature 18 can be 50% or greater. This timing ratio can also be known as the time-in-treatment ratio.
- the time-in-treatment ratio can be a good approximation of the actual percentage of time that the castings spend in the solutionizing heat treatment at or above the alloying metal solution temperature at which the metal alloying constituent rapidly enters into solid solution, in addition to being at or above the silicon solution temperature at which the silicon constituent rapidly enters into solid solution. It will also be appreciated that the time-in-treatment ratio provided by the present disclosure can be substantially increased over solution heat treatment methods for HPDC castings currently known and practiced in the art.
- the (t 3 )/(t 2 ) time-in-treatment ratio of the castings at or above the predetermined alloying metal solution temperature 18 can be greater than 60%, greater than 70%, or even 80% or greater.
- a (t 3 )/(t 2 ) time-in-treatment ratio of 75% can ensure that the castings are maintained at or above the predetermined alloying metal solution temperature for about 13.5 minutes. In this way the castings can obtain a substantial increase in the beneficial affects of an alloying metal solutionizing heat treatment while avoiding the harmful effects of the pore-based defects by limiting the time spent at or above the silicon solution temperature.
- heating the castings in the first heating stage 20 to a first casting temperature 25 that is near to the predetermined silicon solution temperature 14 , yet without reaching or exceeding the predetermined silicon solution temperature 14 can be advantageous for both reducing the heating requirements in the second heating stage 30 , and for reducing the time needed to reach the predetermined alloying metal solution temperature 18 as the castings are heated to the second casting temperature 35 in the second heating stage 30 .
- maintaining the castings at the first casting temperature 25 for an extended period of time can advantageously ensure that all the castings or portions of the castings reach the first casting temperature 25 prior to being exposed to the increased heat input within the second heating stage 30 .
- a thermal equilibrium point can be established at a midpoint within the heat treatment process that can operate to improve the uniformity and consistency of the finished castings.
- the duration 24 of the first heating stage 20 can be extended as long as necessary (to 15 minutes to 20 minutes or more, for example) to establish substantial thermal equilibrium within the castings or a batch of castings.
- the castings can then transition or move into the quench stage 40 of the heat treatment process 10 in which the castings are quickly cooled from the second casting temperature 35 to a quenched temperature 45 that is generally less than 250° C. but still well above ambient temperature.
- the quench stage 40 generally comprises a liquid spray cooling system, a forced air or gas cooling system, a liquid immersion cooling system, or combinations of the above.
- the castings can be cooled at a cooling rate 42 for a time period (t 4 ) 44 that generally ranges from one to about five minutes.
- the castings can be removed to ambience and allowed to cool and naturally age for a T4 temper, or to a separate temperature controlled chamber (not shown but known to one of skill in the art) for artificial aging at an elevated temperature for a predetermined period of time to achieve a T6 temper.
- a separate temperature controlled chamber not shown but known to one of skill in the art
- other quenching and aging protocols are also possible and considered to fall within the scope of the present disclosure.
- the castings can pass through a first transition zone 29 when transitioning between the first heating stage 20 and the second heating stage 30 , and then again through a second transition zone 39 between the second heating stage 30 and the quench stage 40 .
- the second transition zone 39 will typically comprise the physical movement of the castings from within the furnace to a quench station that is located outside the furnace, such as through a discharge door at the outlet end of the furnace.
- the first transition zone 29 between the first heating stage 20 and the second heating stage 30 can comprise either movement through a physical barrier or an increase in the heating rate, typically depending on the type of furnace used to perform the heat treatment.
- a process furnace that continuously moves the castings through a heated interior volume on a conveyor system may include an interior door that defines the boundary between the two stages.
- a batch furnace that heats the castings in place can include additional heaters, high flow hot air nozzles, or similar heating apparatus that can become active to define the first transition zone to increase the rate of heating and quickly raise the temperature 12 of the castings from first casting temperature 25 to the second casting temperature 35 .
- FIG. 2 illustrates another representative embodiment of the heat treatment process 110 in which a plurality of HPDC aluminum alloy components are carried through a continuous process furnace on one or more conveyor systems, such as through one of the two continuous process furnaces 150 , 170 that are schematically illustrated in FIGS. 3 and 4 .
- one embodiment of a process furnace 150 can generally comprise an endless conveyor chain 152 (i.e. a parallel synchronized pair of chains) running through an insulated enclosure 154 , with an intake door 156 at an inlet end and a discharge door 158 at an outlet end.
- endless conveyor chain 152 i.e. a parallel synchronized pair of chains
- the furnace 150 can further include a number of heating cells 160 aligned in series along the length of the furnace 150 , with each heating cell 160 including a heater assembly 162 extending into the cell (for example, extending downward through the ceiling of the enclosure 154 ) and comprising, for instance, a heater unit and a motor driven blower that drives the heated air downward into the enclosure 154 to impinge on the castings 105 riding slowing through the furnace on trays that straddle the distance between the individual chains in the conveyor chain 152 .
- the process furnace 150 shows seven heating cells 160 arranged along the length of the furnace with each heating cell 160 having its own blower-based heater assembly 162 , it will be appreciated that FIG.
- FIG. 3 is a mere schematic representation of one possible configuration of a process furnace 150 or system for implementing the heat treatment method 110 of FIG. 2 , and that a wide variety of heating cell numbers and arrangements, as well as various different types of heater assemblies and technologies, are also possible and considered to fall within the scope of the present disclosure.
- the process furnace 150 can include an internal barrier with a gate or intermediate door 164 that divides the interior of the insulated enclosure 154 into a first heating stage 120 and a second heating stage 130 that coincide with the first heating stage 120 and second heating stage 130 depicted in FIG. 2 .
- the speed of the conveyor chain 152 , the total length of the furnace enclosure 154 , and the position of the intermediate door 164 along the length of the enclosure can determine the time duration (t 1 ) 124 of the first heating stage 120 and the time duration (t 2 ) 134 of the second heating stage 130 .
- the time duration (t 2 ) 134 of the second heating stage 130 is generally limited to 25 minutes to 30 minutes or less, and preferably 20 minutes or less, to ensure that the castings 105 exit the furnace 150 before the development of any pore-based defects.
- the heat output produced by the heating cells 160 in the first heating stage 120 can then be adjusted to continuously heat the castings 105 at a desired first heating rate 122 so that the temperature 112 of the castings 105 reaches the first casting temperature 125 prior to or substantially simultaneous with the castings 105 reaching the intermediate door 164 .
- the temperature of the first heating stage 120 can be maintained at the first casting temperature 125 and the time duration (t 1 ) 124 can be extended until thermal equilibrium is gradually established between castings 105 and the heated air in the first heating stage 120 .
- This can create an alternative casting temperature line 113 defined by an alternative heating rate 123 that continuously decreases throughout the first heating stage 120 as the castings slowly approach a state of thermal equilibrium with the first stage temperature, similar to that shown in FIG. 1 above.
- the temperature of the second heating stage 130 can likewise be maintained at the second casting temperature 135 , but with the additional heat input at the beginning of the second heating stage 130 to quickly bring the castings into thermal equilibrium between castings 105 and the heated air in the second heating stage 130 .
- the predetermined silicon solution temperature 114 for a particular aluminum alloy that forms the castings 105 can be about 445° C. and the predetermined alloying metal solution temperature 118 can be about 485° C.
- the first casting temperature 125 can be about 440° C.
- the second casting temperature 135 can be about 490° C.
- the initial temperature 121 of the castings 105 as the castings enter the furnace 150 through the intake door 156 can be about 20° C.
- the time duration (t 2 ) 134 of the second heating stage 130 can be set to 18 minutes.
- the representative process furnace 150 in FIG. 3 includes seven heating cells 160 , with the intermediate door 164 located between the forth and fifth heating cells.
- the time duration (t 1 ) 124 for the castings to transition the first heating stage 120 through the first four heating cells 160 becomes about 24 minutes, based on calculations understood by those of skill in the art.
- This can lead to an average first heating rate 122 of about 20° C./min during a majority portion of the first heating stage 120 , with the rate of heating then tapering off substantially as the castings 105 approach the first casting temperature 125 of 440° C., as indicated in FIG. 2 .
- an initial second stage heating rate 132 of about 25° C./min can be applied to the castings to quickly raise their temperatures to the second casting temperature 135 of 490° C. in about 3 minutes, with some tapering in the heating rate 132 as the castings approach the second casting temperature 135 .
- the castings can then be maintained at the second casting temperature 135 , in the substantially isothermal portion 137 of the process 110 , for the remaining 15 minutes in the second heating stage 30 until the castings reach the discharge door 158 and move through the second transition zone 139 to exit the furnace 150 and enter the quenching stage 140 (with the quenching station not being shown in FIG. 3 but known to one of skill in the art).
- the quenching station not being shown in FIG. 3 but known to one of skill in the art.
- the (t 3 )/(t 2 ) time-in-treatment ratio of the castings 105 at or above the predetermined alloying metal solution temperature 118 can be about (16 minutes/18 minutes), or about 89%, since the castings reach the predetermined alloying metal solution temperature 118 prior to the second casting temperature 135 .
- the castings 105 can be cooled from the second casting temperature 135 of 490° C. to a quench temperature 145 that is less than 250° C., in less than three minutes, and at a cooling rate that can be greater than 80° C/min.
- the position of the intermediate door 164 along the length of the furnace enclosure 154 can be changed to better accommodate the desired casting temperature profile for a particular aluminum alloy casting. If, for example, a blank space 166 is provided between each of the heating cells 160 in the center of furnace enclosure 154 and filled with an insulated spacer 167 when not in use, the intermediate door 164 can then be moved upstream or downstream as desired to reassign the adjacent heating cells into the second heating stage 130 or into the first heating stage 120 , respectively.
- This feature can be advantageous over furnaces having an intermediate door in a fixed position by providing the user with an additional variable beyond the speed of the conveyor chain 152 and the output of the heater assemblies 162 for optimizing the (t 3 )/(t 2 ) time ratio in the second heating stage.
- the output of the heater assembly in the first heating cell of the second heating stage 130 may not be sufficient to raise the initial or second heating rate 132 to the desired value.
- one or more additional heating apparatus 168 such as an additional heater or hot air nozzle, can be added to the affected heating cell to direct additional heat onto the castings 105 and provide a boost in the initial or second heating rate 132 that will raise the temperature of the castings to the second casting temperature 135 in a shortened period of time.
- empty supporting fixtures filled with insulating spacers 169 can also be provided at each additional optional location, so that the additional heating apparatus 168 can be repositionable along with the intermediate door 164 .
- the process furnace 170 schematically illustrated in FIG. 4 illustrates another option for accommodating a desired casting temperature profile for a particular HPDC aluminum alloy casting. Similar to the previous embodiment, the process furnace 170 generally includes an insulated enclosure 174 with an intake door 176 at an inlet end, an intermediate door 184 that separates the enclosure into a first heating stage 120 and a second heating stage 130 , and a discharge door 178 at an outlet end.
- the furnace 150 also includes a number of heating cells 180 aligned in series along the length of the furnace 170 , with each heating cell 180 comprising a heater assembly 182 extending downward through the ceiling to direct heated air downward into the enclosure 154 to impinge on the castings 105 below that are riding slowing through the furnace on a conveyor system.
- An additional heating apparatus 188 can also be added immediately downstream of the intermediate door 184 to provide a boost in the initial or second heating rate 132 of the second heating stage 130 .
- the position of the intermediate door 184 along the length of the enclosure 154 can be fixed and the conveyor system can comprise conveyor chains 172 , 173 (i.e. parallel synchronized pairs of chains) having independently controllable operating speeds.
- the two independently controllable conveyor chains 172 , 173 can provide the user with the capability of independently configuring the time duration (t 1 ) of the first heating stage and the time duration (t 2 ) of the second heating stage, which in turn can allow for optimization of both the first heating rate 122 and the (t 3 )/(t 2 ) time-in-treatment ratio in the second heating stage 130 .
- the two conveyor chains 172 , 173 can meet together at the first transition zone 129 (i.e. the intermediate door 184 ), as illustrated in FIG. 4 , while in other aspects the conveyor chains can meet together at another location within the furnace enclosure 174 , such as at a location within the second heating stage 130 and downstream of the intermediate door 184 (not shown).
- FIGS. 5 and 6 together illustrate additional representative embodiments of the solution heat treatment method 210 ( FIG. 5 ) and the solution heat treating system 250 ( FIG. 6 ) that have been adapted for a batch heat treatment process.
- the solution heat treatment method 210 can include a desired casting temperature profile for a plurality of HDPC cast aluminum alloy components 205 having a silicon solution temperature 214 of about 440° C. and a alloying metal solution temperature 218 of about 510° C.
- the first casting temperature 225 can be about 435° C.
- the second casting temperature 235 can be about 515° C.
- the initial temperature 221 of the castings 205 at the beginning of the solution heat treatment process can be about 20° C.
- the time duration (t 2 ) 234 of the second heating stage 230 can be set to 21 minutes.
- the solution heat treating system 250 illustrated in the plan view of FIG. 6 can comprise a plurality of batch-type heat treating furnaces 260 aligned side-by-side.
- Each furnace 260 can include an insulated enclosure 262 with an access door 264 on one side, and with all the access doors 264 facing the same direction.
- Each of the furnaces 260 can also include at least one primary heater assembly 266 extending downward through the ceiling of the enclosure 264 and comprising, for example, a heater unit and a motor driven blower that drives the heated air downward into the enclosure 262 that is typically sized to receive a plurality of castings 205 that have been loaded onto a tray or rack in spaced-apart and/or stacked relationships, so that the heated air can be substantially uniformly applied to each casting.
- the primary heater assembly 266 can be configured to provide a variable heat output, such as with a variable frequency motor drive 267 that can increase the flow of heated air into the enclosure 262 .
- the heat treating furnaces 260 can be provided with one or more additional secondary heaters 268 , such as an additional heater or high flow hot air nozzle, to provide a boost to the initial or second heating rate 232 that will raise the temperature of the castings 205 to the second casting temperature 235 in a shortened period of time.
- the solution heat treating system 250 can further include a movable quench station 270 that translates back and forth in front of the access doors 264 (i.e. the second transition zone 239 ) in each of the furnaces 260 to receive and immediately quench the rack of heated castings after the castings are withdrawn from the furnaces 260 .
- the quench station generally includes an enclosure 272 with at least one opening 274 directed toward the furnaces 260 for receiving the rack of castings, and which enclosure also supports a cooling system 276 , such as the liquid spray cooling system or forced air or gas cooling system discussed above.
- the movable quench station 270 can be supported on a wheeled carriage which can be moved between the various furnaces on rails 278 .
- the movement of the quenching station 270 can be synchronized with the heat treatment cycles taking place in each batch-type furnaces 260 so that the quench station is prepared to receive the treated castings as soon each batch of castings reaches the end of its second heating stage 230 .
- the first transition 229 between the first heating stage 220 and the second heating stage 230 can be a “virtual” transition comprising an increase in the rate of heating the castings from a first heating rate 222 in the first heating stage to an initial or second heating rate 232 in the second heating stage 230 .
- the increase in the rate of heating can be achieved through an increased heat output from the primary heater assembly 266 , such as with in increase in the speed of the variable frequency motor drive 267 , or by the temporary activation of the one or more additional secondary heaters 268 , as described above.
- the time duration (t 1 ) 224 of the first heating stage 220 can be defined by the first heating rate 222
- the time duration (t 2 ) 233 of the second heating stage 230 can be defined by the opening of the access door 264 and removal of the castings 205 from the furnace enclosure 262 .
- the time duration (t 1 ) 224 of the first heating stage 220 can be custom defined by the user to achieve the desired first heating stage temperature rise of about 415° C.
- the initial or second heating rate 232 in the second heating stage 230 may then be set to about 30° C./min to achieve the second heating stage temperature rise of 75° C. in less than three minutes. This can lead to a substantially isothermal portion 237 of the process 210 at the second casting temperature 235 of about 18 minutes, and a (t 3 )/(t 2 ) time-in-treatment ratio of the castings 205 at or above the predetermined alloying metal solution temperature 218 , as defined above, of about (19 minutes/21 minutes), or about 90%.
- FIGS. 7A-7D are schematic diagrams of a representative transfer apparatus 320 that may be used for moving a casting 305 between two primary conveyor chains 312 , 316 (i.e. two synchronized pairs of chains), similar to the two conveyor chains illustrated in FIG. 4 .
- the transfer apparatus 320 generally includes a third transfer conveyor chain (i.e. also a synchronized pair of chains) that is positioned in between the individual chains of the primary conveyor chains while extending across the gap between the adjacent ends of the first primary conveyor chain 312 and the second primary conveyor chain 316 .
- the adjacent ends of the primary conveyor chains 312 , 316 can be positioned on either side of a intermediate door 314 that divides the interior of a furnace enclosure into a first heating stage and a second heating stage (not shown). Furthermore, and as discussed above, the primary conveyor chains 312 , 316 can be independently controllable with individually configurable operating speeds.
- the top surfaces 324 of the transfer conveyor chain 322 can be positioned below the top surfaces of the primary conveyor chain 312 , so that a tray which spans the primary conveyor chain 312 and supports the casting 305 thereon is able to be carried over the first end 321 of the transfer apparatus 320 that is located within the first heating stage.
- the primary conveyor chain 312 can then be stopped and the transfer conveyor chain 322 raised by rotating the angled support links 331 , 335 at both ends 321 , 325 of the transfer conveyor chain 322 , as shown in FIG. 7B .
- the support links 331 , 335 can be rotated by about 18 degrees to that the entire transfer conveyor chain 322 is raised by about 3 ⁇ 4 inch in a substantially uniform manner. This allows the top surfaces 324 of the transfer conveyor chain 322 to engage the bottom of the tray and lift the casting 305 off the first primary conveyor chain 312 . Simultaneous with the raising of the transfer conveyor chain 322 , the intermediate door 314 that divides the interior of the furnace enclosure can also be raised in preparation for transferring the casting 305 between the heating stages.
- the transfer conveyor chain 322 can then be activated to move the casting 305 through the opening and into the second heating stage.
- the transfer conveyor chain 322 may be operated by an articulated linkage 337 located at one end of the transfer apparatus 320 that can serve to rotate the support links 331 , 335 to raise the transfer conveyor chain 322 and/or rotate the pair of conveyor chains on their respective sets of geared rollers.
- the transfer conveyor chain 322 can be stopped and lowered by rotating the angled support links 331 , 335 back to their inactive positions, which allows the tray that supports the castings 305 to become supported on the interior end of second primary conveyor chain 316 , as illustrated in FIG. 7D .
- the intermediate door 314 can descend to close the opening between the first and second heating stages to maintain the temperature differential between the two sections of the furnace.
- the two primary conveyor chains 312 , 316 can then be re-activated to move the transferred casting 305 forward through the second heating stage on the second primary conveyor chain 316 while another casting (not shown) is carried toward the intermediate door 314 by first primary conveyor chain 312 .
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Silicon Compounds (AREA)
- Tunnel Furnaces (AREA)
- Furnace Details (AREA)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/140,533 US20160319411A1 (en) | 2015-04-28 | 2016-04-28 | System and method for heat treating aluminum alloy castings |
US16/688,153 US11408062B2 (en) | 2015-04-28 | 2019-11-19 | System and method for heat treating aluminum alloy castings |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201562153724P | 2015-04-28 | 2015-04-28 | |
US15/140,533 US20160319411A1 (en) | 2015-04-28 | 2016-04-28 | System and method for heat treating aluminum alloy castings |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/688,153 Continuation US11408062B2 (en) | 2015-04-28 | 2019-11-19 | System and method for heat treating aluminum alloy castings |
Publications (1)
Publication Number | Publication Date |
---|---|
US20160319411A1 true US20160319411A1 (en) | 2016-11-03 |
Family
ID=57198789
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/140,533 Abandoned US20160319411A1 (en) | 2015-04-28 | 2016-04-28 | System and method for heat treating aluminum alloy castings |
US16/688,153 Active 2036-12-05 US11408062B2 (en) | 2015-04-28 | 2019-11-19 | System and method for heat treating aluminum alloy castings |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/688,153 Active 2036-12-05 US11408062B2 (en) | 2015-04-28 | 2019-11-19 | System and method for heat treating aluminum alloy castings |
Country Status (9)
Country | Link |
---|---|
US (2) | US20160319411A1 (ja) |
EP (1) | EP3289111B1 (ja) |
JP (1) | JP6743132B2 (ja) |
KR (1) | KR102076897B1 (ja) |
CN (1) | CN107532268B (ja) |
AU (1) | AU2016254028B2 (ja) |
CA (1) | CA2979612C (ja) |
MX (1) | MX2017013469A (ja) |
WO (1) | WO2016176382A1 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109680229B (zh) * | 2019-02-14 | 2020-05-26 | 佛山市八斗铝业有限公司 | 一种铝合金圆管用淬火装置 |
JP7231471B2 (ja) * | 2019-04-23 | 2023-03-01 | リョービ株式会社 | 焼入装置および焼入方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050269751A1 (en) * | 2001-02-02 | 2005-12-08 | Crafton Scott P | Integrated metal processing facility |
DE102008056511A1 (de) * | 2008-11-08 | 2010-05-20 | Audi Ag | Verfahren zur Herstellung dünnwandiger Metallbauteile aus einer AI-SiMg-Legierung, insbesondere von Bauteilen eines Kraftfahrzeugs |
US8409374B2 (en) * | 2004-12-23 | 2013-04-02 | Commonwealth Scientific And Industrial Research Organisation | Heat treatment of aluminium alloy high pressure die castings |
Family Cites Families (168)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2385962A (en) | 1941-08-23 | 1945-10-02 | Foundry Equipment Company | Method of and apparatus for conditioning molds and the like |
US2813318A (en) | 1954-06-29 | 1957-11-19 | Simpson Herbert Corp | Method and apparatus for treating granular material |
US2988351A (en) | 1958-06-17 | 1961-06-13 | Foundry Equipment Company | Mold drying and cooling oven |
US3194545A (en) | 1960-03-17 | 1965-07-13 | Kaiser Aluminium Chem Corp | Apparatus for continuously solution heat-treating aluminum and its alloys |
US3222227A (en) | 1964-03-13 | 1965-12-07 | Kaiser Aluminium Chem Corp | Heat treatment and extrusion of aluminum alloy |
US3432368A (en) | 1965-02-25 | 1969-03-11 | Ishikawajima Harima Heavy Ind | Method for manufacturing nitride-containing low-carbon structural steels |
US3534946A (en) | 1967-08-11 | 1970-10-20 | Volkswagenwerk Ag | Through-flow furnace |
US3604695A (en) | 1969-12-15 | 1971-09-14 | Gen Electric | Method and apparatus for controlling a slab reheat furnace |
US3675905A (en) | 1970-09-17 | 1972-07-11 | Dorn Co V | Method and apparatus for infrared heating |
US3794232A (en) | 1972-01-19 | 1974-02-26 | N Petri | Collator and web feed control means for the same |
US3856583A (en) | 1972-01-20 | 1974-12-24 | Ethyl Corp | Method of increasing hardness of aluminum-silicon composite |
NL7201998A (ja) | 1972-02-16 | 1973-08-20 | ||
FR2174657A1 (en) | 1972-03-06 | 1973-10-19 | Ferodo Sa | Chlutchplate heat treatment - accelerated by heating to alpha iron to austenite change point |
JPS4915492A (ja) | 1972-03-21 | 1974-02-09 | ||
US3737280A (en) | 1972-04-14 | 1973-06-05 | Hunter Eng Co | Emission-controlled paint line heat source |
FR2184539B1 (ja) | 1972-05-17 | 1978-06-30 | Stein Surface | |
US3760800A (en) | 1972-06-19 | 1973-09-25 | Procedyne Corp | Fluidotherapy apparatus utilizing gas-fluidized solids |
GB1467432A (en) | 1973-04-25 | 1977-03-16 | Mars Ltd | Semi-moist animal food |
JPS5653867B2 (ja) | 1974-03-14 | 1981-12-22 | ||
JPS5537570B2 (ja) | 1974-04-19 | 1980-09-29 | ||
JPS50151710A (ja) | 1974-05-29 | 1975-12-05 | ||
US3996412A (en) | 1975-01-17 | 1976-12-07 | Frank W. Schaefer, Inc. | Aluminum melting furnace |
US4140467A (en) | 1975-06-09 | 1979-02-20 | Kenneth Ellison | Convection oven and method of drying solvents |
US4027862A (en) | 1975-12-19 | 1977-06-07 | Frank W. Schaefer Inc. | Metal melting furnace with alternate heating systems |
US4068389A (en) | 1976-04-15 | 1978-01-17 | Procedyne Corporation | Gas-diffusion plate for fluidized bed apparatus |
US4177085A (en) | 1976-04-30 | 1979-12-04 | Southwire Company | Method for solution heat treatment of 6201 aluminum alloy |
GB1591302A (en) | 1976-09-16 | 1981-06-17 | Harding B | Fluidised bed |
GB1564151A (en) | 1976-11-19 | 1980-04-02 | Procedyne Corp | Cleaning of piece parts by the use of a fluidized-solids bed |
GB1569152A (en) | 1976-11-19 | 1980-06-11 | Procedyne Co | Use of neutralizing solids or gases in the fluidise bed cleaning of contaminated piece parts |
US4098624A (en) | 1976-12-28 | 1978-07-04 | Upton Industries, Inc. | Process for increasing the versatility of isothermal transformation |
US4620586A (en) | 1977-03-23 | 1986-11-04 | General Kinematics | Method and apparatus for reclaiming foundry sand |
YU89478A (en) | 1977-05-12 | 1983-01-21 | Przedsieb Projektowania Wyposa | Equipment for cooling and separating castings from casting sand |
US4161389A (en) | 1978-04-07 | 1979-07-17 | Procedyne, Inc. | Fluidized bed calcining system |
US4255133A (en) | 1978-04-10 | 1981-03-10 | Hitachi, Ltd. | Method for controlling furnace temperature of multi-zone heating furnace |
US4177952A (en) | 1978-04-24 | 1979-12-11 | National Engineering Company | Impact scrubber |
US4242077A (en) | 1978-11-06 | 1980-12-30 | Fennell Corporation | Fluid bed furnace and fuel supply system for use therein |
FR2448573A1 (fr) | 1979-02-06 | 1980-09-05 | Physique Appliquee Ind | Installation automatique de trempe isotherme en lit fluidise |
DE2914221A1 (de) | 1979-04-09 | 1980-10-30 | Kurt Ahrenberg | Verfahren zur behandlung von giessformen und vorrichtung zur durchfuehrung des verfahrens |
US4257767A (en) | 1979-04-30 | 1981-03-24 | General Electric Company | Furnace temperature control |
JPS55149772A (en) | 1979-05-11 | 1980-11-21 | Nikkei Giken:Kk | Production of aluminum alloy casting |
US4392814A (en) | 1979-06-08 | 1983-07-12 | Can-Eng Holdings Limited | Fluidized bed |
US4620884A (en) | 1979-07-24 | 1986-11-04 | Samuel Strapping Systems Ltd. | Heat treat process and furnace |
JPS5638419A (en) | 1979-09-05 | 1981-04-13 | Kanto Yakin Kogyo Kk | Metal heating furnace with protective atmosphere |
US4457789A (en) | 1979-11-09 | 1984-07-03 | Lasalle Steel Company | Process for annealing steels |
JPS5848009B2 (ja) | 1979-11-26 | 1983-10-26 | 日本鋼管株式会社 | 多帯式加熱炉の温度制御方法 |
US4457788A (en) | 1980-02-15 | 1984-07-03 | Procedyne Corp. | Particulate medium for fluidized bed operations |
US5108520A (en) | 1980-02-27 | 1992-04-28 | Aluminum Company Of America | Heat treatment of precipitation hardening alloys |
US4457352A (en) | 1980-03-14 | 1984-07-03 | Scheffer Karl D | System and process for the abatement of casting pollution, reclaiming resin bonded sand, and/or recovering a low BTU fuel from castings |
US4325424A (en) | 1980-03-14 | 1982-04-20 | Scheffer Karl D | System and process for abatement of casting pollution, reclaiming resin bonded sand, and/or recovering a low BTU fuel from castings |
JPS5825860B2 (ja) | 1980-06-25 | 1983-05-30 | 三菱重工業株式会社 | 内燃機関のシリンダヘツド |
JPS604262B2 (ja) | 1981-02-21 | 1985-02-02 | マツダ株式会社 | アルミニウム合金製鋳物の製造法 |
US4357135A (en) | 1981-06-05 | 1982-11-02 | North American Mfg. Company | Method and system for controlling multi-zone reheating furnaces |
US4415444A (en) | 1981-10-08 | 1983-11-15 | General Kinematics Corporation | Air cooling system for a vibratory sand reclaiming apparatus |
JPS5880245A (ja) | 1981-11-05 | 1983-05-14 | Toshiba Corp | マグネトロン装置 |
JPS5939464B2 (ja) | 1981-11-11 | 1984-09-22 | 大日精化工業株式会社 | ポリ塩化ビニル−ポリウレタン混合組成物 |
US4420345A (en) | 1981-11-16 | 1983-12-13 | Nippon Light Metal Company Limited | Method for manufacture of aluminum alloy casting |
US4419143A (en) | 1981-11-16 | 1983-12-06 | Nippon Light Metal Company Limited | Method for manufacture of aluminum alloy casting |
US4490107A (en) | 1981-12-18 | 1984-12-25 | Kurosaki Furnace Industries Company Limited | Method of processing charges in a continuous combustion furnace |
IT1155658B (it) | 1982-03-23 | 1987-01-28 | Fata Ind Spa | Sistema e metodo per il recupero delle sabbie contenute in forme ed anime di fonderia mediante calcinazione in un forno a letto fluidizzato |
SU1129012A1 (ru) | 1982-07-05 | 1984-12-15 | Ленинградское Отделение Всесоюзного Научно-Исследовательского И Проектного Института "Теплопроект" | Установка дл термической регенерации формовочной смеси в кип щем слое |
US4779163A (en) | 1982-07-23 | 1988-10-18 | Procedyne Corp. | Method and apparatus for controlling electrostatic charges in fluidized beds |
US4519718A (en) | 1982-07-23 | 1985-05-28 | Procedyne Corp. | Method and apparatus for thermal testing |
US4577671A (en) | 1982-08-09 | 1986-03-25 | Stephan Mark C | Casting decoring device |
US4613713A (en) | 1982-11-22 | 1986-09-23 | Procedyne Corp. | Method and apparatus for pyrolysis of atactic polypropylene |
US4512821A (en) | 1982-12-20 | 1985-04-23 | Procedyne Corp. | Method for metal treatment using a fluidized bed |
DE3307071C2 (de) | 1983-03-01 | 1986-05-22 | Joachim Dr.-Ing. 7250 Leonberg Wünning | Durchlaufofen für die Wärmbehandlung von metallischen Werkstücken |
DE3309379A1 (de) | 1983-03-16 | 1984-09-20 | Hubert Eirich | Verfahren zur regenerierung von giessereialtsand und vorrichtung zur durchfuehrung des verfahrens |
US4547228A (en) | 1983-05-26 | 1985-10-15 | Procedyne Corp. | Surface treatment of metals |
US4671496A (en) | 1983-05-26 | 1987-06-09 | Procedyne Corp. | Fluidized bed apparatus for treating metals |
JPS59219410A (ja) | 1983-05-27 | 1984-12-10 | Trinity Ind Corp | 砂型鋳造品の熱処理装置 |
JPS609550A (ja) | 1983-06-29 | 1985-01-18 | M C L:Kk | 鋳造用焼成・保持炉 |
US4499940A (en) | 1983-08-01 | 1985-02-19 | Williams International Corporation | Casting process including making and using an elastomeric pattern |
US4606529A (en) | 1983-09-20 | 1986-08-19 | Davy Mckee Equipment Corporation | Furnace controls |
US4544013A (en) | 1983-11-07 | 1985-10-01 | Ford Motor Company | Method of reclaiming sand used in evaporative casting process |
GB2187398B (en) | 1983-12-22 | 1988-06-08 | Tudor Roof Tile Co Limited | Method and apparatus for heat treatment |
DE3400648A1 (de) | 1984-01-11 | 1985-07-18 | Delta Engineering Beratung und Vermittlung Gesellschaft mbH, Irdning | Vorrichtung und verfahren zur regeneration von giesserei-schuttsand |
US4662839A (en) | 1984-04-12 | 1987-05-05 | Kashiwa Co., Ltd. | Combustion apparatus and method of forcibly circulating a heating medium in a combustion apparatus |
US4817920A (en) | 1984-11-21 | 1989-04-04 | Salem Furnace Co. | Apparatus for continuous heat treatment of metal strip in coil form |
US4623400A (en) | 1985-02-22 | 1986-11-18 | Procedyne Corp. | Hard surface coatings for metals in fluidized beds |
US4832764A (en) | 1985-03-27 | 1989-05-23 | Jenny Pressen Ac | Process for the low-distortion thermomechanical treatment of workpieces in mass production as well as application of the process |
US4604055A (en) | 1985-06-03 | 1986-08-05 | Can-Eng Holdings, Ltd. | Lip-hung retort furnace |
US5226983A (en) | 1985-07-08 | 1993-07-13 | Allied-Signal Inc. | High strength, ductile, low density aluminum alloys and process for making same |
ATE89397T1 (de) | 1985-08-07 | 1993-05-15 | Samuel Strapping Systems Ltd | Beheizung eines fliessbettofens. |
JPS62110248A (ja) | 1985-11-08 | 1987-05-21 | Toshiba Corp | 回転角度補正方法およびその装置 |
US4648836A (en) | 1985-11-26 | 1987-03-10 | Can-Eng Holdings, Ltd. | Rotary retort furnace |
JPS63108941A (ja) | 1986-10-28 | 1988-05-13 | Komatsu Ltd | 鋳物の中子砂除去方法 |
JPH0191957A (ja) | 1987-03-03 | 1989-04-11 | Mazda Motor Corp | 鋳物の熱処理方法 |
DE3731598C1 (de) | 1987-09-19 | 1988-06-16 | Mtu Muenchen Gmbh | Verfahren zur Waermebehandlung von Nickel-Gusslegierungen |
JPH0635047B2 (ja) | 1987-11-06 | 1994-05-11 | トヨタ自動車株式会社 | 中子の除去方法 |
US5108519A (en) | 1988-01-28 | 1992-04-28 | Aluminum Company Of America | Aluminum-lithium alloys suitable for forgings |
US4955425A (en) | 1988-09-19 | 1990-09-11 | Mckenna James F | Casting handling apparatus |
JPH02104164U (ja) | 1989-02-03 | 1990-08-20 | ||
US5018707A (en) | 1989-03-14 | 1991-05-28 | Gas Research Institute | Heating furnace |
GB2230720A (en) | 1989-04-29 | 1990-10-31 | Maverex International Limited | Removing moulding material particles from a casting |
AT392928B (de) | 1989-05-02 | 1991-07-10 | Oberleitner Rupert Dipl Ing | Verfahren und einrichtung zur thermischen regenerierung kunstharzgebundener giessereisande |
JPH03465A (ja) | 1989-05-26 | 1991-01-07 | Toyota Motor Corp | 中子除去方法 |
US5354038A (en) | 1989-09-29 | 1994-10-11 | Consolidated Engineering Company, Inc. | Heat treatment of metal castings and in-furnace sand reclamation |
US5350160A (en) | 1989-09-29 | 1994-09-27 | Consolidated Engineering Company | Method and apparatus for heat treating metal castings |
US5294094A (en) | 1989-09-29 | 1994-03-15 | Consolidated Engineering Company | Method and apparatus for heat treating metal castings |
FR2656553B1 (fr) | 1990-01-03 | 1994-12-30 | Stein Heurtey | Installation de traitement thermique avant laminage de brames minces produites par coulee continue. |
US5253698A (en) | 1990-01-23 | 1993-10-19 | Applied Process | Combination sand cleaning and heat treating apparatus for sand casted metallic parts and method |
US5178695A (en) | 1990-05-02 | 1993-01-12 | Allied-Signal Inc. | Strength enhancement of rapidly solidified aluminum-lithium through double aging |
US5340089A (en) | 1990-06-08 | 1994-08-23 | Bgk Finishing Systems, Inc. | Coolant controlled IR heat treat apparatus |
US5551670A (en) | 1990-10-16 | 1996-09-03 | Bgk Finishing Systems, Inc. | High intensity infrared heat treating apparatus |
US5115770A (en) | 1990-11-08 | 1992-05-26 | Ford Motor Company | Aluminum casting alloy for high strength/high temperature applications |
US5120372A (en) * | 1990-11-08 | 1992-06-09 | Ford Motor Company | Aluminum casting alloy for high strength/high temperature applications |
EP0488670B1 (en) * | 1990-11-30 | 1995-05-24 | Toyota Jidosha Kabushiki Kaisha | Aluminum alloy casting having high strength and high toughness and process for producing the same |
JPH04218637A (ja) | 1990-12-18 | 1992-08-10 | Honda Motor Co Ltd | 高強度高靱性アルミニウム合金の製造方法 |
US5251683A (en) | 1991-03-11 | 1993-10-12 | General Motors Corporation | Method of making a cylinder head or other article with cast in-situ ceramic tubes |
ES2107438T5 (es) | 1991-05-24 | 2004-04-01 | Consolidated Engineering Company, Inc. | Metodo y aparato para tratar termicamente piezas coladas metalicas. |
US5169913A (en) | 1991-05-31 | 1992-12-08 | Procedyne Corp. | Fluidized multistaged reaction system for polymerization |
CA2081055C (en) | 1991-11-05 | 1999-12-21 | John R. Eppeland | Method and apparatus for heat treatment of metal parts utilizing infrared radiation |
DE59208341D1 (de) * | 1992-01-15 | 1997-05-15 | Aichelin Gmbh | Vorrichtung zur wärmebehandlung metallischer werkstücke |
CZ207994A3 (en) * | 1992-02-27 | 1995-09-13 | Hayes Wheels International | Process for producing heat treated metallic parts, particularly vehicle wheels |
US5536337A (en) | 1992-02-27 | 1996-07-16 | Hayes Wheels International, Inc. | Method for heat treating a metal component |
US5514228A (en) | 1992-06-23 | 1996-05-07 | Kaiser Aluminum & Chemical Corporation | Method of manufacturing aluminum alloy sheet |
US5312498A (en) | 1992-08-13 | 1994-05-17 | Reynolds Metals Company | Method of producing an aluminum-zinc-magnesium-copper alloy having improved exfoliation resistance and fracture toughness |
TW245661B (ja) | 1993-01-29 | 1995-04-21 | Hitachi Seisakusyo Kk | |
FR2710657B1 (fr) | 1993-09-28 | 1995-11-10 | Pechiney Rhenalu | Procédé de désensibilisation à la corrosion intercristalline des alliages d'Al séries 2000 et 6000 et produits correspondants. |
US5439045A (en) | 1994-01-19 | 1995-08-08 | Consolidated Engineering Company, Inc. | Method of heat treating metal castings, removing cores, and incinerating waste gasses |
US5518557A (en) | 1994-02-02 | 1996-05-21 | Standard Car Truck Company | Process for making railroad car truck wear plates |
US5423370A (en) | 1994-03-04 | 1995-06-13 | Procedyne Corp. | Foundry sand core removal and recycle |
US5571347A (en) | 1994-04-07 | 1996-11-05 | Northwest Aluminum Company | High strength MG-SI type aluminum alloy |
US5593519A (en) | 1994-07-07 | 1997-01-14 | General Electric Company | Supersolvus forging of ni-base superalloys |
US5547523A (en) | 1995-01-03 | 1996-08-20 | General Electric Company | Retained strain forging of ni-base superalloys |
DE19530975B4 (de) | 1995-08-23 | 2004-04-15 | Consolidated Engineering Co. | Ofen zum Entfernen des Formsandes von Gußteilen |
AU2190497A (en) | 1996-02-23 | 1997-09-10 | Consolidated Engineering Company, Inc. | System and process for reclaiming sand |
DE19612500A1 (de) | 1996-03-29 | 1997-10-02 | Bleistahl Prod Gmbh & Co Kg | Verfahren zur Herstellung von Zylinderköpfen für Verbrennungsmotoren |
DE19628870A1 (de) | 1996-07-17 | 1998-01-22 | Alusuisse Bayrisches Druckgus | Vorrichtung und Verfahren zur Herstellung von Druckgußteilen |
US6253830B1 (en) | 1996-09-30 | 2001-07-03 | Procedyne Corp. | Apparatus and method for sand core debonding and heat treating metal castings |
US5738162A (en) | 1997-02-20 | 1998-04-14 | Consolidated Engineering Company, Inc. | Terraced fluidized bed |
JP2000512214A (ja) | 1997-05-26 | 2000-09-19 | ライコ ゲゼルシャフト ミット ベシュレンクテル ハフツゥング ウント コンパニー ベルクツーグマシュネンバウ | 単体自動車ホイール製造のための方法及び装置 |
JPH1129843A (ja) * | 1997-07-09 | 1999-02-02 | Hitachi Metals Ltd | アルミダイカスト品の熱処理方法 |
US20020170635A1 (en) | 1998-05-04 | 2002-11-21 | Diserio Emile-Thomas | Process for manufacturing aluminum alloys and aluminium castings |
US6217317B1 (en) | 1998-12-15 | 2001-04-17 | Consolidated Engineering Company, Inc. | Combination conduction/convection furnace |
US6074501A (en) | 1999-06-28 | 2000-06-13 | General Motors Corporation | Heat treatment for aluminum casting alloys to produce high strength at elevated temperatures |
US6910522B2 (en) | 1999-07-29 | 2005-06-28 | Consolidated Engineering Company, Inc. | Methods and apparatus for heat treatment and sand removal for castings |
US7275582B2 (en) | 1999-07-29 | 2007-10-02 | Consolidated Engineering Company, Inc. | Methods and apparatus for heat treatment and sand removal for castings |
US6672367B2 (en) | 1999-07-29 | 2004-01-06 | Consolidated Engineering Company, Inc. | Methods and apparatus for heat treatment and sand removal for castings |
AUPQ485399A0 (en) | 1999-12-23 | 2000-02-03 | Commonwealth Scientific And Industrial Research Organisation | Heat treatment of age-hardenable aluminium alloys |
CN1526027A (zh) | 2001-02-02 | 2004-09-01 | ̹�� | 综合性金属加工设备 |
AUPR360801A0 (en) | 2001-03-08 | 2001-04-05 | Commonwealth Scientific And Industrial Research Organisation | Heat treatment of age-hardenable aluminium alloys utilising secondary precipitation |
FR2837501B1 (fr) * | 2002-03-20 | 2005-01-28 | Montupet Sa | Procede de traitement thermique de pieces de fonderie en alliage a base d'aluminium, et pieces de fonderie presentant des proprietes mecaniques ameliorees |
EP1526938B1 (en) * | 2002-07-11 | 2012-02-29 | Consolidated Engineering Company, Inc. | Method for assisting removal of sand moldings from castings |
US6910990B2 (en) | 2003-09-09 | 2005-06-28 | Ford Global Technologies, Llc | Engine control to reduce impacts due to transmission gear lash while maintaining high responsiveness to the driver |
JP2005264301A (ja) * | 2004-03-22 | 2005-09-29 | Toyota Central Res & Dev Lab Inc | 鋳造アルミニウム合金とアルミニウム合金鋳物およびその製造方法 |
JP4341453B2 (ja) * | 2004-04-05 | 2009-10-07 | 日本軽金属株式会社 | 熱伝導性に優れたアルミニウム合金鋳物及びその製造方法 |
CN102000813B (zh) * | 2004-06-02 | 2012-07-25 | 联合工程公司 | 集成金属加工设备和方法 |
JP4635669B2 (ja) * | 2005-03-22 | 2011-02-23 | トヨタ自動車株式会社 | 合金の熱処理方法 |
DE102006049869A1 (de) | 2006-10-23 | 2008-04-24 | Bdw Technologies Gmbh & Co. Kg | Verfahren und Anlage zur Herstellung eines Gussbauteils |
DE102008024524A1 (de) | 2008-05-21 | 2009-11-26 | Bdw Technologies Gmbh | Verfahren und Anlage zur Herstellung eines Gussbauteils |
DE102008029864B4 (de) | 2008-06-24 | 2011-02-24 | Bdw Technologies Gmbh | Gussbauteil und Verfahren zu dessen Herstellung |
US8168015B2 (en) * | 2008-10-23 | 2012-05-01 | GM Global Technology Operations LLC | Direct quench heat treatment for aluminum alloy castings |
US9068252B2 (en) | 2009-03-05 | 2015-06-30 | GM Global Technology Operations LLC | Methods for strengthening slowly-quenched/cooled cast aluminum components |
US8636855B2 (en) * | 2009-03-05 | 2014-01-28 | GM Global Technology Operations LLC | Methods of enhancing mechanical properties of aluminum alloy high pressure die castings |
US8163113B2 (en) * | 2009-03-31 | 2012-04-24 | GM Global Technology Operations LLC | Thermomechanical processing of aluminum alloys |
DE102010061895A1 (de) | 2010-07-21 | 2012-01-26 | Bdw Technologies Gmbh | Verfahren zum Wärmebehandeln eines Gussbauteils |
PT2497840T (pt) * | 2011-03-10 | 2017-08-08 | Schwartz Gmbh | Sistema de forno para o aquecimento parcial de peças de chapa metálica |
JP5825860B2 (ja) | 2011-06-06 | 2015-12-02 | 旭化成イーマテリアルズ株式会社 | 感光性樹脂組成物 |
DE102011122764B9 (de) * | 2011-06-17 | 2021-06-10 | Newalu GmbH | Verfahren der Wärmebehandlung eines Gussteils und Verwendung einer Beschichtung beim chargenweisen Wärmebehandeln von Gussteilen |
DE102011105447B4 (de) | 2011-06-24 | 2019-08-22 | Audi Ag | Verfahren zur Herstellung von Aluminium-Druckgussteilen |
JP5653867B2 (ja) | 2011-08-30 | 2015-01-14 | 本田技研工業株式会社 | 燃料電池 |
KR101581607B1 (ko) * | 2011-12-02 | 2015-12-30 | 가부시키가이샤 유에이씨제이 | 알루미늄 합금재를 이용한 열교환기용 핀재와 이를 포함하는 알루미늄 합금 구조체 |
JP5939464B2 (ja) | 2012-04-05 | 2016-06-22 | Nok株式会社 | アブソーバ用シール |
MX364299B (es) | 2013-03-01 | 2019-04-22 | Ethicon Endo Surgery Inc | Efector de extremo enderezado por sensor durante la remoción mediante un trocar. |
JP6092040B2 (ja) | 2013-08-02 | 2017-03-08 | 東京エレクトロン株式会社 | シリコン膜の形成方法およびその形成装置 |
JP6274022B2 (ja) | 2014-06-11 | 2018-02-07 | 住友化学株式会社 | シクロアルカンジカルボン酸モノエステルの製造方法 |
JP5825417B2 (ja) | 2014-09-18 | 2015-12-02 | 株式会社日立製作所 | 業務向上支援システムおよび業務向上支援方法 |
-
2016
- 2016-04-28 JP JP2018508616A patent/JP6743132B2/ja active Active
- 2016-04-28 CA CA2979612A patent/CA2979612C/en active Active
- 2016-04-28 KR KR1020177033885A patent/KR102076897B1/ko active IP Right Grant
- 2016-04-28 CN CN201680022713.5A patent/CN107532268B/zh not_active Expired - Fee Related
- 2016-04-28 AU AU2016254028A patent/AU2016254028B2/en not_active Ceased
- 2016-04-28 US US15/140,533 patent/US20160319411A1/en not_active Abandoned
- 2016-04-28 EP EP16787101.1A patent/EP3289111B1/en active Active
- 2016-04-28 MX MX2017013469A patent/MX2017013469A/es unknown
- 2016-04-28 WO PCT/US2016/029654 patent/WO2016176382A1/en active Application Filing
-
2019
- 2019-11-19 US US16/688,153 patent/US11408062B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050269751A1 (en) * | 2001-02-02 | 2005-12-08 | Crafton Scott P | Integrated metal processing facility |
US8409374B2 (en) * | 2004-12-23 | 2013-04-02 | Commonwealth Scientific And Industrial Research Organisation | Heat treatment of aluminium alloy high pressure die castings |
DE102008056511A1 (de) * | 2008-11-08 | 2010-05-20 | Audi Ag | Verfahren zur Herstellung dünnwandiger Metallbauteile aus einer AI-SiMg-Legierung, insbesondere von Bauteilen eines Kraftfahrzeugs |
Also Published As
Publication number | Publication date |
---|---|
AU2016254028A1 (en) | 2017-09-28 |
MX2017013469A (es) | 2018-03-01 |
US11408062B2 (en) | 2022-08-09 |
CN107532268A (zh) | 2018-01-02 |
KR102076897B1 (ko) | 2020-02-12 |
KR20170139641A (ko) | 2017-12-19 |
CA2979612A1 (en) | 2016-11-03 |
JP2018520267A (ja) | 2018-07-26 |
EP3289111A4 (en) | 2018-11-14 |
CN107532268B (zh) | 2019-12-03 |
US20200190648A1 (en) | 2020-06-18 |
WO2016176382A1 (en) | 2016-11-03 |
AU2016254028B2 (en) | 2019-10-17 |
CA2979612C (en) | 2020-01-07 |
EP3289111A1 (en) | 2018-03-07 |
JP6743132B2 (ja) | 2020-08-19 |
EP3289111B1 (en) | 2021-06-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6602321B2 (ja) | シート金属合金から部品を成形する方法 | |
US11408062B2 (en) | System and method for heat treating aluminum alloy castings | |
MXPA97001354A (en) | Method for thermally treating a deme component | |
US20180237884A1 (en) | Methods for improving the thermal treatment of castings | |
CN106929659A (zh) | 热处理炉以及用于对预涂层的钢板坯进行热处理的方法和用于制造机动车构件的方法 | |
US20080086886A1 (en) | Cast aluminum wheel manufacturing and products | |
JP5825579B2 (ja) | 高強度焼結部品の製造方法と連続焼結炉 | |
JP2019143239A (ja) | アルミニウムストリップ用通過式炉 | |
JP2004345916A (ja) | ガラス物品の徐冷方法、ガラス物品の加熱方法、ガラス成形品の製造方法、及び熱処理装置 | |
JP2009091638A (ja) | 熱処理方法及び熱処理装置 | |
KR102512125B1 (ko) | 두 개의 연속된 노들 사이에 인장 블록을 포함하는 연속하는 어닐링 또는 갈바나이징 라인 | |
RU2496725C1 (ru) | Способ отжига стеклоизделий в печи | |
KR102470662B1 (ko) | 다단가압주조공법용 금형 온도 유지 시스템 | |
JP6167453B2 (ja) | シンターハードニング方法 | |
JP6351126B2 (ja) | 延伸製品を熱処理する方法及び装置 | |
JP6273519B2 (ja) | 粉末成形体の焼結方法 | |
KR20080057672A (ko) | 가열로의 각대 설정온도 결정방법 | |
JP2000008119A (ja) | 鉄鋼製品用加熱炉に対する改良 | |
CN117658433A (zh) | 一种玻璃软化方法、处理器及加热炉 | |
CN116329524A (zh) | 一种磁场调控分层浇铸提高铸锭均质化程度的方法 | |
KR20220096919A (ko) | 차량 바디 부품 제조방법 | |
CN115181919A (zh) | 一种模具铸造退火工艺 | |
NO20191003A1 (en) | Equipment and process for homogenization of cast products |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: CONSOLIDATED ENGINEERING COMPANY, INC., GEORGIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CRAFTON, SCOTT P.;SUBRAMANIAM, SHANKER;FAUTEUX, PAUL;SIGNING DATES FROM 20160502 TO 20160507;REEL/FRAME:038512/0813 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: ADVISORY ACTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |