GB1569152A - Use of neutralizing solids or gases in the fluidise bed cleaning of contaminated piece parts - Google Patents

Use of neutralizing solids or gases in the fluidise bed cleaning of contaminated piece parts Download PDF

Info

Publication number
GB1569152A
GB1569152A GB48294/76A GB4829476A GB1569152A GB 1569152 A GB1569152 A GB 1569152A GB 48294/76 A GB48294/76 A GB 48294/76A GB 4829476 A GB4829476 A GB 4829476A GB 1569152 A GB1569152 A GB 1569152A
Authority
GB
United Kingdom
Prior art keywords
bed
alkaline
gas
pyrolysis
acid gases
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
GB48294/76A
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Procedyne Corp
Original Assignee
Procedyne Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Procedyne Corp filed Critical Procedyne Corp
Priority to GB48294/76A priority Critical patent/GB1569152A/en
Publication of GB1569152A publication Critical patent/GB1569152A/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B49/00Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated
    • C10B49/16Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated with moving solid heat-carriers in divided form
    • C10B49/20Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated with moving solid heat-carriers in divided form in dispersed form
    • C10B49/22Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated with moving solid heat-carriers in divided form in dispersed form according to the "fluidised bed" technique
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/68Halogens or halogen compounds
    • B01D53/70Organic halogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1836Heating and cooling the reactor
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B49/00Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated
    • C10B49/02Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated with hot gases or vapours, e.g. hot gases obtained by partial combustion of the charge
    • C10B49/04Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated with hot gases or vapours, e.g. hot gases obtained by partial combustion of the charge while moving the solid material to be treated
    • C10B49/08Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated with hot gases or vapours, e.g. hot gases obtained by partial combustion of the charge while moving the solid material to be treated in dispersed form
    • C10B49/10Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated with hot gases or vapours, e.g. hot gases obtained by partial combustion of the charge while moving the solid material to be treated in dispersed form according to the "fluidised bed" technique
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • C10B53/07Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form of solid raw materials consisting of synthetic polymeric materials, e.g. tyres
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/30Incineration of waste; Incinerator constructions; Details, accessories or control therefor having a fluidised bed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/12Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of plastics, e.g. rubber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J7/00Arrangement of devices for supplying chemicals to fire
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B3/00Drying solid materials or objects by processes involving the application of heat
    • F26B3/18Drying solid materials or objects by processes involving the application of heat by conduction, i.e. the heat is conveyed from the heat source, e.g. gas flame, to the materials or objects to be dried by direct contact
    • F26B3/22Drying solid materials or objects by processes involving the application of heat by conduction, i.e. the heat is conveyed from the heat source, e.g. gas flame, to the materials or objects to be dried by direct contact the heat source and the materials or objects to be dried being in relative motion, e.g. of vibration
    • F26B3/225Drying solid materials or objects by processes involving the application of heat by conduction, i.e. the heat is conveyed from the heat source, e.g. gas flame, to the materials or objects to be dried by direct contact the heat source and the materials or objects to be dried being in relative motion, e.g. of vibration the materials or objects to be dried being immersed in a fluidised bed of heated particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00389Controlling the temperature using electric heating or cooling elements
    • B01J2208/00407Controlling the temperature using electric heating or cooling elements outside the reactor bed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00389Controlling the temperature using electric heating or cooling elements
    • B01J2208/00415Controlling the temperature using electric heating or cooling elements electric resistance heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2201/00Pretreatment
    • F23G2201/50Devolatilising; from soil, objects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/143Feedstock the feedstock being recycled material, e.g. plastics

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Microbiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Description

(54) USE OF NEUTRALIZING SOLIDS OR GASES IN THE FLUIDIZED BED CLEANING OF CONTAMINATED PIECE PARTS (71) We, PROCEDYNE CORPORATION of 221 Somerset Street, New Brunswick, New Jersey 08903, United States of America; a corporation organized and existing under the laws of the state of New York, United States of America, do hereby declare the invention, for which we pray that a patent may be granted to us, and the method by which it is to be performed, to be particularly described in and by the following statement: The present invention relates to a method of clearing a halogen containing plastics coating from a metallic article and to a process of reclaiming piece parts coated or contaminated with halogen containing polymeric materials the processes including the use of a fluidized bed.
So called fluidized solids beds are well known, one field of application being the calibration of thermometers, thermocouples, and other temperature sensing devices, another field of application being the decoating of films on metal substrates by incinerating in a fluidized bed as in U. S. Patent No. 3,250,643. Of more recent interest is the use of a fluidized bed to reclaim useful substrates, usually metallic, contaminated with a substantial quantity of polymer. These situations are accomplished through thermal decomposition of the polymer via pyrolysis and combustion (or incineration) reactions with a predominance of the former to avoid damaging the useful substrate due to over-temperature. This reclamation process is usually referred to as "cleaning of parts" by thermal decomposition.
The phenomenon of fluidized solids is briefly described as follows: If a vessel containing finely divided inert particles, such as sand, aluminum oxide, and similar refractory materials, is constructed so that a gas (e.g. air, steam, nitrogen) can be passed through the "bed" of particles, a state can be achieved, called "fluidization", in which the individual particles become microscopically separated from eadh other by the moving gas. This "fluidized bed" of particles has unusual properties which differ markedly from those of either the gas or the particles. Instead, the fluidized bed behaves remarkably like a liquid, exhibiting characteristics which are generally attributable to a liquid state. For example, the fluidized bed can be agitated and bubbled and it always seeks a common level. Moreover, various items and parts can be submerged in a fluidized bed in an analogous manner to submerging the item or part in a liquid material. More importantly, if there is a temperature difference between the submerged part and the bed itself, the rate of heat exchange therebetween is relatively rapid.
The most commonly used fluidizing gas is ordinary compressed air obtained from a blower or compressor. For situations where a non-oxidizing atmosphere is required, nitrogen can be utilized and, if a reducing atmosphere is required, steam or cracked gas can be employed with a silicon carbide bed.
The unique characteristic of gas-fluidized solids is the relatively high rate of heat transfer within the phase which yields highly isothermal conditions, as well as excellent heat transfer to solid surfaces submerged in the phase. This characteristic is due to the turbulent motion and rapid circulation rate of the solid particles in conjunction with the extremely high, solid-gas interfacial area. Therefore, despite the fact that gas-solid interfaces normally used have low thermal conductivities, the overall heat transfer characteristics of a fluidized solids phase approach those of a liquid.
This combination of excellent heat transfer characteristic and high heat capacity make fluidized solids an excellent medium for providing an isothermal environment for performing chemical reactions such as pyrolysis, defined as the thermal decomposition of organic materials in the absence of oxygen (typically endothermic), or combustion defined as the oxidation of materials (typically exothermic) in the presence of oxygen. These reactions are typified by:
pyrolysis H -C- > C + CH4 + etc.
Hx j; (endothermic - - heat uptake) and combustion 1 + 3/202 ----C02 + H20 Hx (exothermic - - heat release) Of particular interest in this invention is the use of the fluidized bed and the above two reaction mechanisms for the decoating of substrates coated with a polymeric material, as in said Patent No. 3,250,643, or the reclamation of useful substrates contaminated or composited with relatively large quantities of polymeric material such as the reclamation of automobile headrest parts when an imperfect polyurethane cushion has been applied, or the reclamation of the brass in tire valves by decomposition of the rubber composite, i.e. part cleaning by thermal decomposition.
In decoating applications, the predominant reaction is combustion while in reclamation (cleaning) of substrates which are contaminated or part of a composite, the predominant reaction is pyrolysis in order to avoid a high heat release from the high polymer content present, which would otherwise cause damage to the substrate.
In either of these cases, the fluidizing gas is typically air. In many important situations, the polymer being incinerated contains chemical groups which form one or more acidic gases when the polymer is decomposed by incineration and/or pyrolysis. For example, in the reclamation of paint racks or plating racks coated with polyvinylchloride (PVC), typically at 850"F, one of the decomposition products of combustion and/or pyrolysis is gaseous hydrogen chloride. If the reclamation involves some other plastics material containing a halogen (bromine, fluorine, iodine) other than chlorine, the by-product gas will be hydrogen, bromide, hydrogen fluoride, or hydrogen iodide (HBr, HF or HI). These and other acid gases or liquids cause the surfaces of the machinery or metal parts being reclaimed to be damaged through corrosion. This, despite the fact that the reclamation operation is carried out at sufficiently low temperatures with predominance of pyrolysis to avoid high temperature regions on the substrate being reclaimed. Thus, the item is rendered useless through corrosion rather than thermal damage.
This situation is typified by the following reactions involving the decomposition of polyvinylchloride type polymers: incineration
[CH2 - CH-j + 02 + CO2 + HCl + H20 Cl pyrolysis [-CH2 - CH-j > C + CH4 + HCI + H2 + C2H6 Cl The hydrochloric acid gas leaving the vicinity of the item being reclaimed usually passes the surface of the part, thereby causing corrosive damage. In the case of other types of polymers, the gas may be hydrochloric acid or one or more of the other acid gases.
;YlplcJ applications for recovering useful substrates with large organic contamination include the recovery of machine parts such as moulds used in the fabrication of plastic compositions, drawing and extruding dies, metal parts having molded plastic portions such as the recovery of the metal portion of automobile, headrests, dashboards, and bumpers from imperfect or damaged plastic sections and, in general, parts where preservation of dimensions is a primary desideratum. Many of these situations involve polymeric contamination by polymers containing halogens which form acid gases when thermally decomposed.
Accordingly, the present invention seeks to provide a method of cleaning a halogen containing plastics coating from a metallic article and a process of reclaiming piece parts coated or contaminated with halogen containing polymeric materials in which the corrosive gases emitted during the reclamation operation using thermal decomposition are neutralized to prevent damage to the parts being cleaned. More specifically, the present invention seeks to accomplish such neutralization by introducing an alkali metal or alkaline earth metal solid or alkaline gas into the fluidized bed in a form that permits rapid neutralization in the vicinity of the surface of the part being reclaimed.
According to the present invention there is provided a method of cleaning a halogen containing plastics coating from a metallic article by thermally decomposing the plastics coating in such a manner as to prevent the escape into the ambient atmosphere of the halogen gas formed during the decomposition of the coating, said method comprising the steps of: (a) fluidizing a bed of granular material wherein part or all of the bed comprises at least one reactive carbonate composition selected from the class consisting of alkaline earth metal carbonates, alkali metal carbonates, and combinations thereof; (b) heating the fluidized bed to a temperature sufficient for complete thermal decomposition of the plastics coating but below the melting point of the metallic article; (c) full immersing the plastics coated metallic article within the heated fluidized bed for a time sufficient to complete the thermal decomposition of the plastics coating and allow any halogen gas released by the decomposition to react with the reactive carbonate material of the bed, thereby preventing any halogen containing gas from escaping into the ambient atmosphere; and (d) removing the cleaned metallic article from the bed.
Also according to the present invention there is provided a process of reclaiming piece parts coated or contaminated with halogen-containing polymeric materials, the reclamation being effected by thermal degradation involving pyrolysis and/or combustion giving rise to the formation of acid gases of the halogen, the piece parts being liable to damage or corrosion if contacted with the acid gases, comprising: a placing the parts in a fluidized bed; (b) heating or maintaining the bed at a temperature at which the polymeric substances are thermally decomposed by pyrolysis and/or combustion, and (c) introducing into the bed an alkaline solid material capable of neutralizing the acid gases formed and maintaining a particulate form at the operating temperature of the bed, whereby to prevent the acid gases from damaging or corroding the parts or substrates being cleaned.
In an alternative embodiment, an alkaline gas is introduced into the bed so that the combustion or pyrolysis takes place in the presence of the alkaline gas and the acid gases react with the alkaline gas. The alkaline gas is, in such embodiment, used in place of the alkaline solid material.
The contaminating polymer or other organic material is heated to, or maintained at a temperature sufficient to thermally decompose it by pyrolysis and/or combustion. The presence of the alkali neutralizes the acids almost immediately upon their formation whereby acid corrosion of the metal part is prevented. Limestone may be used as the alkaline solid and, if so, it combines with the acid gas, such as hydrochloric acid gas, according to the following reactions:
If If an alkaline gas is used, such as ammonia, the neutralization of the acid gas, such as ;4 hydrochloric acid gas, is typified by the following reaction:
If a neutralizing solids is used, it should be introduced into the fluidized bed in a sufficiently finely divided form to permit suitable distribution throughout the fluidized bed and with sufficient surface area to maintain a neutralization rate equal to the rate of formation of acid gases. In a typical reclamation operation at 8500F, it has been found that the neutralizing solids should be subdivided finer than 200 mesh to maintain a sufficiently high neutralization rate.
In the case where an alkaline gas such as ammonia, (NH3) is used, it is desirable, that the gas be introduced in such manner as to prevent its being heated to a sufficiently high temperature to cause decomposition. Since most decoating or reclamation processes take place between 600 - 900"F, there is little decomposition of ammonia to nitrogen and hydrogen as long as the gas is not exposed to any parts of the apparatus which are at a temperature above this.
The invention will be further described, by way of example, with reference to the accompanying drawing, the single Figure of which shows, schematically, an apparatus suitable for carrying out the process of the present invention.
In the drawing, there is shown a vessel 10 having a funnel-shaped bottom 11 defining in part a chamber 10a in communication with a pipe 12. Supported in any suitable manner above the chamber 10a is a gas-permeable disc 15 which may be porous ceramic material, perforated plate, or other member capable of passing the gas, while supporting the particulate material constituting a fluidized bed 16. The disc must be resistant to breakdown at the operating temperature of the bed.
The bed 16 comprises refractory particles, e.g. sand or aluminium oxide, sized to allow the particles to make intimate contact with the piece part undergoing treatment.
The vessel 10 has a cover 19 which is suitably secured and, together with the bed 16, defines an upper space 21. The bed 16 is heated by any suitable expedient, e.g. a sheathed type of electrical heating element 22 coiled intimately around the vessel 10 and suitably insulated by lagging (not shown). The bed may also be heated radiantly from the outside (not shown).
In order to render the apparatus more versatile, means are provided to feed either air and an alkaline gas, e.g. ammonia, or a gas other than air, e.g. nitrogen, alternatively to the bed.
Thus, inlet pipes 12a, 12b and 12c merge into the pipe 12. Each of pipes 12a, 12b and 12c has a conventional flow control valve 25a, 25b, 25c and on-off valves 26a, 26b and 26c. These latter are used to isolate the selected line 12a, 12b or 12c from the unused lines.
Means are provided for supplying steam, water or inert gas to the space 21 to smother the potentially ignitable substances, typically the products of the pyrolysis reactions. This means comprises a supply pipe 41 equipped with a flow meter 42 and a throttling valve 43. The pipe 41 terminates within the space 21 and is capped by a spray nozzle 54 (or other suitable distributor such as multi-point introduction) designed to distribute the smothering medium.
When water is fed through the pipe 41, it is converted into steam in the space 21. When steam or inert gas is fed through pipe 41, less power is required to maintain the fluidized bed at the operating temperature. In either case, water or inert gas is present in the off-gas and dilutes the same to a non-flammable level. The flow of off-gas from the surface of the bed prevents steam or inert gas from entering the bed and contacting the parts being cleaned.
When alkaline solids are used for the neutralization, they comprise part or all of the fluidized solids 16. Since some of the solids are consumed in reaction, it is necessary to periodically add makeup solids to the bed.
When alkaline gas is used, it is continuously added to the fluidizing gas, usually air, through one of the feed lines 12a or 12b.
As is apparent from the drawing, the piece parts to be cleaned or reclaimed, one of which is shown atP, are supported in the bed by any convenient means, e.g. a wire W. The part P will be intimately subjected to the heated particles of the bed which provide the temperature levels required for the thermal decomposition of the coating or contaminant. When recIaiming substrates from substantial polymer deposits, pyrolysis temperatures typically from 600 900"F are employed.
As mentioned, neutralization of acid or acid gas is accomplished by adding an alkaline solid or alkaline gas to the fluidized bed. The solids must be capable of retaining particulate form at the operating temperatures of the fluid bed. In addition, it has been found necessary to use sufficiently finely divided solids to present enough surface area to react with the acid gases formed during thermal decomposition. If the particles are too coarse, the reaction rate of acid formation causes an acid environment in the vicinity of the part being cleaned.
In a typical operation where plating racks coated with polyvinylchloride (PVC) were being reclaimed by this process at a rate of 100 libs per hour of PVC on approximately 500 Ibs. of metal rack, it was found that a particle size of CaCO3 of less than 200 mesh was required to maintain a neutral environment in the vicinity of the racks.
When using alkaline gas, it must be capable of reacting with the acid formed during thermal decomposition of the polymer and must be stable at bed operating conditions. Ammonia has 0lbeen used in a cleaning process involving polyvinylchloride (PVC). It is necessary to ensure Vthat the ammonia is not itself decomposed (cracked) to nitrogen and hydrogen before it is able to react with the acid gases formed. At the temperature involved in cleaning or reclaiming by thermal decomposition where the predominant reaction is pyrolysis, typically 600 - 900"F, the decomposition rate of ammonia is sufficiently low to render it suitable for, this neutralization application.
Other potential solids may include hydroxides, oxides, carbonates, and phosphates of alkali metals and alkaline-earth metals. Examples of such solids are calcium oxide (CaO), calcium carbonate (CaCO3 , magnesium oxide (MgO), sodium carbonate (Na2CO3), and potassium hydroxide (KOH , and of alkaline gas, ammonia (NH3) and amines. If desired, the entire bed may consist of particles of an alkali metal or alkaline solid.
In the case of alkaline solids, e.g. calcium carbonate, in the cleaning of polyvinyl chloride, the neutralization reaction is:
In the case of an alkaline gas, such as ammonia, introduced into the fluidizing gas stream, the neutralization reaction is:
Where R is hydrogen in ammonia, but may be other alkyl radicals such as methyl (-CH3), ethyl (-C2H5), methanol (-CH2OH), or ethanol (-C2H4OH). AsR becomes a large molecule, these compounds are liquid, but at the elevated temperatures encountered in the fluidized bed cleaning, the amines will be gases. It is important to choose a compound which has a low decomposition reaction rate at the temperature involved.
WHAT WE CLAIM IS: 1. A method of cleaning a halogen containing plastics coating from a metallic article by thermally decomposing the plastics coating in such a manner as to prevent the escape into the ambient atmosphere of the halogen gas formed during the decomposition of the coating, said method comprising the steps of: (a) fluidizing a bed of granular material wherein part or all of the bed comprises at least one reactive carbonate composition selected from the class consisting of alkaline earth metal carbonates, alkali metal carbonates, and combinations thereof; (b) heating the fluidized bed to a temperature sufficient for complete thermal decomposition of the plastics coating but below the melting point of the metallic article; (c) full immersing the plastics coated metallic article within the heated fluidized bed for a time sufficient to complete the thermal decomposition of the plastics coating and allow any halogen gas released by the decomposition to react with the reactive carbonate material of the bed, thereby preventing any halogen containing gas from escaping into the ambient atmosphere; and (d) removing the cleaned metallic article from the bed.
2. A process of reclaiming piece parts coated or contaminated with halogen-containing polymeric materials, the reclamation being effected by thermal degradation involving pyrolysis and/or combustion giving rise to the formation of acid gases of the halogen, the piece parts being liable to damage or corrosion if contacted with the acid gases, comprising: (a) placing the parts in a fluidized bed, (b) heating or maintaining the bed at a temperature at which the polymeric substances are thermally decomposed by pyrolysis and/or combustion, and (c) introducing into the bed an alkaline solid material capable of neutralizing the acid gases formed and maintaining a particulate form at the operating temperature of the bed, whereby to prevent the acid gases from damaging or corroding the parts or substrates being cleaned.
3. A process as claimed in Claim 2 wherein the alkaline solid material is selected from the group consisting of alkali metal oxides, alkali metal hydroxides, alkali metal phosphates, alkali metal carbonates, alkaline-earth-metal oxides, alkaline-earth-metal hydroxides, alkaline-earth-metal phosphates and alkaline-earth-metal carbonates.
4. A process as claimed in claim 3 wherein the alkaline solid material is powdered limestone.
5. A process of cleaning or reclaiming piece parts coated or contaminated with halogen
**WARNING** end of DESC field may overlap start of CLMS **.

Claims (10)

  1. **WARNING** start of CLMS field may overlap end of DESC **.
    0lbeen used in a cleaning process involving polyvinylchloride (PVC). It is necessary to ensure Vthat the ammonia is not itself decomposed (cracked) to nitrogen and hydrogen before it is able to react with the acid gases formed. At the temperature involved in cleaning or reclaiming by thermal decomposition where the predominant reaction is pyrolysis, typically
    600 - 900"F, the decomposition rate of ammonia is sufficiently low to render it suitable for, this neutralization application.
    Other potential solids may include hydroxides, oxides, carbonates, and phosphates of alkali metals and alkaline-earth metals. Examples of such solids are calcium oxide (CaO), calcium carbonate (CaCO3 , magnesium oxide (MgO), sodium carbonate (Na2CO3), and potassium hydroxide (KOH , and of alkaline gas, ammonia (NH3) and amines. If desired, the entire bed may consist of particles of an alkali metal or alkaline solid.
    In the case of alkaline solids, e.g. calcium carbonate, in the cleaning of polyvinyl chloride, the neutralization reaction is:
    In the case of an alkaline gas, such as ammonia, introduced into the fluidizing gas stream, the neutralization reaction is:
    Where R is hydrogen in ammonia, but may be other alkyl radicals such as methyl (-CH3), ethyl (-C2H5), methanol (-CH2OH), or ethanol (-C2H4OH). AsR becomes a large molecule, these compounds are liquid, but at the elevated temperatures encountered in the fluidized bed cleaning, the amines will be gases. It is important to choose a compound which has a low decomposition reaction rate at the temperature involved.
    WHAT WE CLAIM IS: 1. A method of cleaning a halogen containing plastics coating from a metallic article by thermally decomposing the plastics coating in such a manner as to prevent the escape into the ambient atmosphere of the halogen gas formed during the decomposition of the coating, said method comprising the steps of: (a) fluidizing a bed of granular material wherein part or all of the bed comprises at least one reactive carbonate composition selected from the class consisting of alkaline earth metal carbonates, alkali metal carbonates, and combinations thereof; (b) heating the fluidized bed to a temperature sufficient for complete thermal decomposition of the plastics coating but below the melting point of the metallic article; (c) full immersing the plastics coated metallic article within the heated fluidized bed for a time sufficient to complete the thermal decomposition of the plastics coating and allow any halogen gas released by the decomposition to react with the reactive carbonate material of the bed, thereby preventing any halogen containing gas from escaping into the ambient atmosphere; and (d) removing the cleaned metallic article from the bed.
  2. 2. A process of reclaiming piece parts coated or contaminated with halogen-containing polymeric materials, the reclamation being effected by thermal degradation involving pyrolysis and/or combustion giving rise to the formation of acid gases of the halogen, the piece parts being liable to damage or corrosion if contacted with the acid gases, comprising: (a) placing the parts in a fluidized bed, (b) heating or maintaining the bed at a temperature at which the polymeric substances are thermally decomposed by pyrolysis and/or combustion, and (c) introducing into the bed an alkaline solid material capable of neutralizing the acid gases formed and maintaining a particulate form at the operating temperature of the bed, whereby to prevent the acid gases from damaging or corroding the parts or substrates being cleaned.
  3. 3. A process as claimed in Claim 2 wherein the alkaline solid material is selected from the group consisting of alkali metal oxides, alkali metal hydroxides, alkali metal phosphates, alkali metal carbonates, alkaline-earth-metal oxides, alkaline-earth-metal hydroxides, alkaline-earth-metal phosphates and alkaline-earth-metal carbonates.
  4. 4. A process as claimed in claim 3 wherein the alkaline solid material is powdered limestone.
  5. 5. A process of cleaning or reclaiming piece parts coated or contaminated with halogen
    containing polymeric materials, the reclamation being effected by thermal degradation involving pyrolysis and/or combustion giving rise to the formation of acid gases of the halogen, the piece parts being liable to damage or corrosion if contacted with the acid gases, comprising: (a) placing the parts in a fluidized bed, (b) heating or maintaining the bed at a temperature at which the polymeric substances are thermally decomposed by pyrolysis and/or combustion, and (c) introducing into the bed an alkaline gaseous material capable of neutralizing the acid gases formed, thereby preventing the acid gases from damaging or corroding the parts or substrate being cleaned.
  6. 6. A process as claimed in claim 5 wherein the alkaline gas material is ammonia or an amine of the formula RNH2 wherein R is -CH3, -C2H5, -CH2OH or -C2H4OH.
  7. 7. A process as claimed in any one of claims 2 to 6 comprising the additional step of introducing water vapor into a space above the fluidized bed to smother ignitable substances resulting from pyrolysis of the contaminating polymer.
  8. 8. A process as claimed in any one of claims 2 to 6 comprising the additional step of introducing an inert gas into a space above the fluidized bed to smother ignitable substances resulting from pyrolysis of the contaminating polymer.
  9. 9. A method of cleaning a halogen containing plastics coating from a metallic article substantially as hereinbefore described.
  10. 10. A process for reclaiming piece parts coated or contaminated with halogen containing polymeric materials substantially as hereinbefore described.
GB48294/76A 1976-11-19 1976-11-19 Use of neutralizing solids or gases in the fluidise bed cleaning of contaminated piece parts Expired GB1569152A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB48294/76A GB1569152A (en) 1976-11-19 1976-11-19 Use of neutralizing solids or gases in the fluidise bed cleaning of contaminated piece parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB48294/76A GB1569152A (en) 1976-11-19 1976-11-19 Use of neutralizing solids or gases in the fluidise bed cleaning of contaminated piece parts

Publications (1)

Publication Number Publication Date
GB1569152A true GB1569152A (en) 1980-06-11

Family

ID=10448107

Family Applications (1)

Application Number Title Priority Date Filing Date
GB48294/76A Expired GB1569152A (en) 1976-11-19 1976-11-19 Use of neutralizing solids or gases in the fluidise bed cleaning of contaminated piece parts

Country Status (1)

Country Link
GB (1) GB1569152A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0043471A1 (en) * 1980-07-03 1982-01-13 Deutsche Kommunal-Anlagen Miete GmbH Process for the fixation in the residue of acid-forming substances developed from organic material containing wastes during pyrolysis
FR2511078A1 (en) * 1981-08-04 1983-02-11 Pechenart Marc Drying feed for animal waste - has heating coils and shaft mounted agitators in housing
GB2131044A (en) * 1982-11-22 1984-06-13 Procedyne Corp Method and apparatus for pyrolysis of atactic polypropylene
DE4101957A1 (en) * 1991-01-24 1992-07-30 Iteh Gmbh Treatment of surfaces e.g. metal surfaces - using vortex-bed reactor in which filling is mixt. of inorganic and organic granulated substance and is environmentally friendly
EP0597458A1 (en) * 1992-11-11 1994-05-18 Kawasaki Jukogyo Kabushiki Kaisha Fluidized-bed incinerator
FR2725387A1 (en) * 1994-10-06 1996-04-12 Inst Francais Du Petrole PROCESS AND DEVICE FOR NEUTRALIZATION OF ACID GASES AND FOR WASTE DISPOSAL
US5738162A (en) * 1997-02-20 1998-04-14 Consolidated Engineering Company, Inc. Terraced fluidized bed
US5901775A (en) * 1996-12-20 1999-05-11 General Kinematics Corporation Two-stage heat treating decoring and sand reclamation system
US5924473A (en) * 1996-12-20 1999-07-20 General Kinematics Corporation Vibratory sand reclamation system
US5957188A (en) * 1996-02-23 1999-09-28 Consolidated Engineering Company, Inc. Integrated system and process for heat treating castings and reclaiming sand
US6217317B1 (en) 1998-12-15 2001-04-17 Consolidated Engineering Company, Inc. Combination conduction/convection furnace
US6336809B1 (en) 1998-12-15 2002-01-08 Consolidated Engineering Company, Inc. Combination conduction/convection furnace
US6453982B1 (en) 1996-12-20 2002-09-24 General Kinematics Corporation Sand cleaning apparatus
US6622775B2 (en) 2000-05-10 2003-09-23 Consolidated Engineering Company, Inc. Method and apparatus for assisting removal of sand moldings from castings
US6672367B2 (en) 1999-07-29 2004-01-06 Consolidated Engineering Company, Inc. Methods and apparatus for heat treatment and sand removal for castings
US6910522B2 (en) 1999-07-29 2005-06-28 Consolidated Engineering Company, Inc. Methods and apparatus for heat treatment and sand removal for castings
US8663547B2 (en) 2004-10-29 2014-03-04 Consolidated Engineering Company, Inc. High pressure heat treatment system
US11408062B2 (en) 2015-04-28 2022-08-09 Consolidated Engineering Company, Inc. System and method for heat treating aluminum alloy castings

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0043471A1 (en) * 1980-07-03 1982-01-13 Deutsche Kommunal-Anlagen Miete GmbH Process for the fixation in the residue of acid-forming substances developed from organic material containing wastes during pyrolysis
FR2511078A1 (en) * 1981-08-04 1983-02-11 Pechenart Marc Drying feed for animal waste - has heating coils and shaft mounted agitators in housing
GB2131044A (en) * 1982-11-22 1984-06-13 Procedyne Corp Method and apparatus for pyrolysis of atactic polypropylene
DE4101957A1 (en) * 1991-01-24 1992-07-30 Iteh Gmbh Treatment of surfaces e.g. metal surfaces - using vortex-bed reactor in which filling is mixt. of inorganic and organic granulated substance and is environmentally friendly
EP0597458A1 (en) * 1992-11-11 1994-05-18 Kawasaki Jukogyo Kabushiki Kaisha Fluidized-bed incinerator
FR2725387A1 (en) * 1994-10-06 1996-04-12 Inst Francais Du Petrole PROCESS AND DEVICE FOR NEUTRALIZATION OF ACID GASES AND FOR WASTE DISPOSAL
EP0708166A1 (en) * 1994-10-06 1996-04-24 Institut Français du Pétrole Process and plant for the neutralisation of acid gases and the disposal of waste
US5957188A (en) * 1996-02-23 1999-09-28 Consolidated Engineering Company, Inc. Integrated system and process for heat treating castings and reclaiming sand
US6453982B1 (en) 1996-12-20 2002-09-24 General Kinematics Corporation Sand cleaning apparatus
US5924473A (en) * 1996-12-20 1999-07-20 General Kinematics Corporation Vibratory sand reclamation system
US5967222A (en) * 1996-12-20 1999-10-19 General Kinematics Corporation Vibratory sand reclamation system
US5901775A (en) * 1996-12-20 1999-05-11 General Kinematics Corporation Two-stage heat treating decoring and sand reclamation system
US5738162A (en) * 1997-02-20 1998-04-14 Consolidated Engineering Company, Inc. Terraced fluidized bed
US6217317B1 (en) 1998-12-15 2001-04-17 Consolidated Engineering Company, Inc. Combination conduction/convection furnace
US6336809B1 (en) 1998-12-15 2002-01-08 Consolidated Engineering Company, Inc. Combination conduction/convection furnace
US6547556B2 (en) 1998-12-15 2003-04-15 Consolidated Engineering Company, Inc. Combination conduction/convection furnace
US6910522B2 (en) 1999-07-29 2005-06-28 Consolidated Engineering Company, Inc. Methods and apparatus for heat treatment and sand removal for castings
US6672367B2 (en) 1999-07-29 2004-01-06 Consolidated Engineering Company, Inc. Methods and apparatus for heat treatment and sand removal for castings
US7290583B2 (en) 1999-07-29 2007-11-06 Consolidated Engineering Company, Inc. Methods and apparatus for heat treatment and sand removal for castings
US6622775B2 (en) 2000-05-10 2003-09-23 Consolidated Engineering Company, Inc. Method and apparatus for assisting removal of sand moldings from castings
US8663547B2 (en) 2004-10-29 2014-03-04 Consolidated Engineering Company, Inc. High pressure heat treatment system
US11408062B2 (en) 2015-04-28 2022-08-09 Consolidated Engineering Company, Inc. System and method for heat treating aluminum alloy castings

Similar Documents

Publication Publication Date Title
GB1569152A (en) Use of neutralizing solids or gases in the fluidise bed cleaning of contaminated piece parts
US3657367A (en) Oxychlorination of saturated and unsaturated hydrocarbons in the presence of a fluidized catalyst containing lanthanum and didymium
GB1564151A (en) Cleaning of piece parts by the use of a fluidized-solids bed
US3879480A (en) Vinyl chloride process
US3941066A (en) Method for disposal of waste synthetic high polymer
JPH0576313B2 (en)
JP2002191937A (en) Method for removing fluorine from waste gas
RU2127719C1 (en) Method of producing fluorinated monomers
JP2941079B2 (en) Film forming apparatus with sediment recovery device
Shin et al. Dehydrochlorination behavior of flexible PVC pellets in NaOH solutions at elevated temperature
US3933989A (en) Method for disposal of waste synthetic high polymer
US5149744A (en) Process for the direct fluorination of polymeric resins
JP4023832B2 (en) Process for treating hydrocarbon-containing and / or halogenated waste
USRE42832E1 (en) Method for reforming organics into shorter-chain unsaturated organic compounds
JP3190225B2 (en) CFC decomposition method
JP3639172B2 (en) Method for destroying fluorine species using small particle fluidized bed
EP0946407B1 (en) Device and method for the storage, transportation and production of active fluorine
US3800740A (en) Apparatus for decomposition of metal carbonyls
WO1994029015A1 (en) Apparatus for direct fluorination of polymeric resins
EP0898999A2 (en) Abatement of NF3 using small particle fluidized bed
EP0666101B1 (en) Exhaust gas treating agent and a method of treating exhaust gas using the agent
US5936137A (en) Process for destroying halogenated compounds
US3449450A (en) Production of perchloroethylene from 1,2-dichloroethane by a first step chlorination followed by an oxychlorination step
GB1104396A (en) Chlorohydrocarbons
US3217064A (en) Method of producing ethylene

Legal Events

Date Code Title Description
PS Patent sealed
PCNP Patent ceased through non-payment of renewal fee