US20150346616A1 - Electrophotographic photosensitive member, manufacturing method of electrophotographic photosensitive member, process cartridge and electrophotographic apparatus, and phthalocyanine crystal and manufacturing method of phthalocyanine crystal - Google Patents
Electrophotographic photosensitive member, manufacturing method of electrophotographic photosensitive member, process cartridge and electrophotographic apparatus, and phthalocyanine crystal and manufacturing method of phthalocyanine crystal Download PDFInfo
- Publication number
- US20150346616A1 US20150346616A1 US14/721,307 US201514721307A US2015346616A1 US 20150346616 A1 US20150346616 A1 US 20150346616A1 US 201514721307 A US201514721307 A US 201514721307A US 2015346616 A1 US2015346616 A1 US 2015346616A1
- Authority
- US
- United States
- Prior art keywords
- phthalocyanine
- crystal
- phthalocyanine crystal
- dimethylformamide
- photosensitive member
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 title claims abstract description 143
- 239000013078 crystal Substances 0.000 title claims abstract description 133
- 238000000034 method Methods 0.000 title claims description 22
- 230000008569 process Effects 0.000 title claims description 17
- 238000004519 manufacturing process Methods 0.000 title description 9
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims abstract description 168
- 238000003801 milling Methods 0.000 claims description 23
- 230000009466 transformation Effects 0.000 claims description 13
- 238000004140 cleaning Methods 0.000 claims description 5
- 238000002441 X-ray diffraction Methods 0.000 claims description 4
- 239000002253 acid Substances 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 4
- 230000007547 defect Effects 0.000 abstract description 4
- 239000010410 layer Substances 0.000 description 70
- 239000011248 coating agent Substances 0.000 description 43
- 238000000576 coating method Methods 0.000 description 43
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 29
- 239000007788 liquid Substances 0.000 description 22
- 239000000126 substance Substances 0.000 description 21
- 238000005481 NMR spectroscopy Methods 0.000 description 14
- 239000002245 particle Substances 0.000 description 14
- 238000000634 powder X-ray diffraction Methods 0.000 description 14
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 12
- 229910052733 gallium Inorganic materials 0.000 description 12
- 229920005989 resin Polymers 0.000 description 12
- 239000011347 resin Substances 0.000 description 12
- 239000002904 solvent Substances 0.000 description 12
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 9
- 239000011230 binding agent Substances 0.000 description 9
- 238000012360 testing method Methods 0.000 description 9
- 150000001875 compounds Chemical class 0.000 description 8
- 238000011156 evaluation Methods 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 230000035945 sensitivity Effects 0.000 description 7
- 238000012546 transfer Methods 0.000 description 7
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 6
- 239000011241 protective layer Substances 0.000 description 6
- 239000002356 single layer Substances 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- NIPNSKYNPDTRPC-UHFFFAOYSA-N N-[2-oxo-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 NIPNSKYNPDTRPC-UHFFFAOYSA-N 0.000 description 5
- 239000004677 Nylon Substances 0.000 description 5
- 239000011324 bead Substances 0.000 description 5
- 238000011161 development Methods 0.000 description 5
- 239000006185 dispersion Substances 0.000 description 5
- 238000001035 drying Methods 0.000 description 5
- 239000003446 ligand Substances 0.000 description 5
- 229920001778 nylon Polymers 0.000 description 5
- 239000000049 pigment Substances 0.000 description 5
- 229920000515 polycarbonate Polymers 0.000 description 5
- 239000004417 polycarbonate Substances 0.000 description 5
- 238000007639 printing Methods 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 229920001577 copolymer Polymers 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000007654 immersion Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 229920003023 plastic Polymers 0.000 description 4
- 239000004033 plastic Substances 0.000 description 4
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 4
- 229910001887 tin oxide Inorganic materials 0.000 description 4
- YIWGJFPJRAEKMK-UHFFFAOYSA-N 1-(2H-benzotriazol-5-yl)-3-methyl-8-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carbonyl]-1,3,8-triazaspiro[4.5]decane-2,4-dione Chemical compound CN1C(=O)N(c2ccc3n[nH]nc3c2)C2(CCN(CC2)C(=O)c2cnc(NCc3cccc(OC(F)(F)F)c3)nc2)C1=O YIWGJFPJRAEKMK-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 3
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 3
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- YLZOPXRUQYQQID-UHFFFAOYSA-N 3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-1-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]propan-1-one Chemical compound N1N=NC=2CN(CCC=21)CCC(=O)N1CCN(CC1)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F YLZOPXRUQYQQID-UHFFFAOYSA-N 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical compound [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- MKYBYDHXWVHEJW-UHFFFAOYSA-N N-[1-oxo-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propan-2-yl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(C(C)NC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 MKYBYDHXWVHEJW-UHFFFAOYSA-N 0.000 description 2
- ATHHXGZTWNVVOU-UHFFFAOYSA-N N-methylformamide Chemical compound CNC=O ATHHXGZTWNVVOU-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- JAWMENYCRQKKJY-UHFFFAOYSA-N [3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-ylmethyl)-1-oxa-2,8-diazaspiro[4.5]dec-2-en-8-yl]-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]methanone Chemical compound N1N=NC=2CN(CCC=21)CC1=NOC2(C1)CCN(CC2)C(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F JAWMENYCRQKKJY-UHFFFAOYSA-N 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- -1 benzal Chemical class 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- BSRKDCUDYOFITA-UHFFFAOYSA-M bromogallium Chemical compound Br[Ga] BSRKDCUDYOFITA-UHFFFAOYSA-M 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- 229910052805 deuterium Inorganic materials 0.000 description 2
- 125000005843 halogen group Chemical group 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- LRPWSMQGXLANTG-UHFFFAOYSA-M iodogallium Chemical compound I[Ga] LRPWSMQGXLANTG-UHFFFAOYSA-M 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- PRMHOXAMWFXGCO-UHFFFAOYSA-M molport-000-691-708 Chemical compound N1=C(C2=CC=CC=C2C2=NC=3C4=CC=CC=C4C(=N4)N=3)N2[Ga](Cl)N2C4=C(C=CC=C3)C3=C2N=C2C3=CC=CC=C3C1=N2 PRMHOXAMWFXGCO-UHFFFAOYSA-M 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- 239000003973 paint Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920002635 polyurethane Polymers 0.000 description 2
- 239000004814 polyurethane Substances 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 125000001424 substituent group Chemical group 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- LNAZSHAWQACDHT-XIYTZBAFSA-N (2r,3r,4s,5r,6s)-4,5-dimethoxy-2-(methoxymethyl)-3-[(2s,3r,4s,5r,6r)-3,4,5-trimethoxy-6-(methoxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6r)-4,5,6-trimethoxy-2-(methoxymethyl)oxan-3-yl]oxyoxane Chemical compound CO[C@@H]1[C@@H](OC)[C@H](OC)[C@@H](COC)O[C@H]1O[C@H]1[C@H](OC)[C@@H](OC)[C@H](O[C@H]2[C@@H]([C@@H](OC)[C@H](OC)O[C@@H]2COC)OC)O[C@@H]1COC LNAZSHAWQACDHT-XIYTZBAFSA-N 0.000 description 1
- JTPNRXUCIXHOKM-UHFFFAOYSA-N 1-chloronaphthalene Chemical compound C1=CC=C2C(Cl)=CC=CC2=C1 JTPNRXUCIXHOKM-UHFFFAOYSA-N 0.000 description 1
- 238000005160 1H NMR spectroscopy Methods 0.000 description 1
- OEPOKWHJYJXUGD-UHFFFAOYSA-N 2-(3-phenylmethoxyphenyl)-1,3-thiazole-4-carbaldehyde Chemical compound O=CC1=CSC(C=2C=C(OCC=3C=CC=CC=3)C=CC=2)=N1 OEPOKWHJYJXUGD-UHFFFAOYSA-N 0.000 description 1
- YTTFFPATQICAQN-UHFFFAOYSA-N 2-methoxypropan-1-ol Chemical compound COC(C)CO YTTFFPATQICAQN-UHFFFAOYSA-N 0.000 description 1
- XURABDHWIADCPO-UHFFFAOYSA-N 4-prop-2-enylhepta-1,6-diene Chemical compound C=CCC(CC=C)CC=C XURABDHWIADCPO-UHFFFAOYSA-N 0.000 description 1
- DEXFNLNNUZKHNO-UHFFFAOYSA-N 6-[3-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperidin-1-yl]-3-oxopropyl]-3H-1,3-benzoxazol-2-one Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C1CCN(CC1)C(CCC1=CC2=C(NC(O2)=O)C=C1)=O DEXFNLNNUZKHNO-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical group [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical group [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- DFQSBKNRMOWBLN-UHFFFAOYSA-N CC1=CC=C(N(C2=CC=C(C)C=C2)C2=CC=C3C4=CC=CC=C4C(C)(C)C3=C2)C=C1 Chemical compound CC1=CC=C(N(C2=CC=C(C)C=C2)C2=CC=C3C4=CC=CC=C4C(C)(C)C3=C2)C=C1 DFQSBKNRMOWBLN-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- 239000004420 Iupilon Substances 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- OHLUUHNLEMFGTQ-UHFFFAOYSA-N N-methylacetamide Chemical compound CNC(C)=O OHLUUHNLEMFGTQ-UHFFFAOYSA-N 0.000 description 1
- 229920002292 Nylon 6 Polymers 0.000 description 1
- 229920000305 Nylon 6,10 Polymers 0.000 description 1
- 229920002302 Nylon 6,6 Polymers 0.000 description 1
- ZCQWOFVYLHDMMC-UHFFFAOYSA-N Oxazole Chemical compound C1=COC=N1 ZCQWOFVYLHDMMC-UHFFFAOYSA-N 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229910001260 Pt alloy Inorganic materials 0.000 description 1
- 102100040160 Rabankyrin-5 Human genes 0.000 description 1
- 101710086049 Rabankyrin-5 Proteins 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- PJANXHGTPQOBST-VAWYXSNFSA-N Stilbene Natural products C=1C=CC=CC=1/C=C/C1=CC=CC=C1 PJANXHGTPQOBST-VAWYXSNFSA-N 0.000 description 1
- QAOWNCQODCNURD-ZSJDYOACSA-N Sulfuric acid-d2 Chemical compound [2H]OS(=O)(=O)O[2H] QAOWNCQODCNURD-ZSJDYOACSA-N 0.000 description 1
- FZWLAAWBMGSTSO-UHFFFAOYSA-N Thiazole Chemical compound C1=CSC=N1 FZWLAAWBMGSTSO-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- FHKPLLOSJHHKNU-INIZCTEOSA-N [(3S)-3-[8-(1-ethyl-5-methylpyrazol-4-yl)-9-methylpurin-6-yl]oxypyrrolidin-1-yl]-(oxan-4-yl)methanone Chemical compound C(C)N1N=CC(=C1C)C=1N(C2=NC=NC(=C2N=1)O[C@@H]1CN(CC1)C(=O)C1CCOCC1)C FHKPLLOSJHHKNU-INIZCTEOSA-N 0.000 description 1
- AZWHFTKIBIQKCA-UHFFFAOYSA-N [Sn+2]=O.[O-2].[In+3] Chemical compound [Sn+2]=O.[O-2].[In+3] AZWHFTKIBIQKCA-UHFFFAOYSA-N 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000005018 casein Substances 0.000 description 1
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 1
- 235000021240 caseins Nutrition 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 229920006351 engineering plastic Polymers 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- UPWPDUACHOATKO-UHFFFAOYSA-K gallium trichloride Chemical compound Cl[Ga](Cl)Cl UPWPDUACHOATKO-UHFFFAOYSA-K 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 238000010147 laser engraving Methods 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- QJQAMHYHNCADNR-UHFFFAOYSA-N n-methylpropanamide Chemical compound CCC(=O)NC QJQAMHYHNCADNR-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000013500 performance material Substances 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 239000013034 phenoxy resin Substances 0.000 description 1
- 229920006287 phenoxy resin Polymers 0.000 description 1
- XQZYPMVTSDWCCE-UHFFFAOYSA-N phthalonitrile Chemical compound N#CC1=CC=CC=C1C#N XQZYPMVTSDWCCE-UHFFFAOYSA-N 0.000 description 1
- 229920006391 phthalonitrile polymer Polymers 0.000 description 1
- 239000003495 polar organic solvent Substances 0.000 description 1
- 229920003227 poly(N-vinyl carbazole) Polymers 0.000 description 1
- 229920002285 poly(styrene-co-acrylonitrile) Polymers 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- DNXIASIHZYFFRO-UHFFFAOYSA-N pyrazoline Chemical compound C1CN=NC1 DNXIASIHZYFFRO-UHFFFAOYSA-N 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000001226 reprecipitation Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000001235 sensitizing effect Effects 0.000 description 1
- 229920002545 silicone oil Polymers 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- PJANXHGTPQOBST-UHFFFAOYSA-N stilbene Chemical compound C=1C=CC=CC=1C=CC1=CC=CC=C1 PJANXHGTPQOBST-UHFFFAOYSA-N 0.000 description 1
- 235000021286 stilbenes Nutrition 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 150000003462 sulfoxides Chemical class 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid Substances OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 125000005259 triarylamine group Chemical group 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B1/00—Single-crystal growth directly from the solid state
- C30B1/12—Single-crystal growth directly from the solid state by pressure treatment during the growth
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09B—ORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
- C09B47/00—Porphines; Azaporphines
- C09B47/04—Phthalocyanines abbreviation: Pc
- C09B47/045—Special non-pigmentary uses, e.g. catalyst, photosensitisers of phthalocyanine dyes or pigments
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09B—ORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
- C09B67/00—Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
- C09B67/0001—Post-treatment of organic pigments or dyes
- C09B67/0017—Influencing the physical properties by treatment with an acid, H2SO4
- C09B67/0019—Influencing the physical properties by treatment with an acid, H2SO4 of phthalocyanines
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09B—ORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
- C09B67/00—Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
- C09B67/0025—Crystal modifications; Special X-ray patterns
- C09B67/0026—Crystal modifications; Special X-ray patterns of phthalocyanine pigments
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/54—Organic compounds
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B7/00—Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
- C30B7/14—Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions the crystallising materials being formed by chemical reactions in the solution
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G5/00—Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
- G03G5/02—Charge-receiving layers
- G03G5/04—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
- G03G5/06—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
- G03G5/0664—Dyes
- G03G5/0696—Phthalocyanines
Definitions
- the present invention relates to an electrophotographic photosensitive member, a manufacturing method of an electrophotographic photosensitive member, a process cartridge and an electrophotographic apparatus, and a phthalocyanine crystal and a manufacturing method of a phthalocyanine crystal.
- the oscillation wavelength of a semiconductor laser commonly used as an image exposing unit in the field of electrophotography is in the long wavelength range of 650 to 820 nm, electrophotographic photosensitive members having high sensitivity to the light in the long wavelength range are currently under development.
- Phthalocyanine pigments are effective as charge generating substances having high sensitivity to the light ranging to such a long wavelength region.
- Oxytitanium phthalocyanine and gallium phthalocyanine in particular have excellent sensitivity properties, and various crystal forms have been reported until now.
- an electrophotographic photosensitive member using a phthalocyanine pigment has excellent sensitivity properties, a problem is that the generated photo carriers tend to remain in a photosensitive layer so as to act as a memory, easily causing potential variation such as ghosting.
- Japanese Patent Application Laid-Open No. 2001-40237 discloses that the addition of a specific organic electron acceptor to a phthalocyanine pigment during acid pasting has a sensitizing effect. This method has, however, problems that an additive (organic electron acceptor) may be subject to a chemical change and that the conversion to a desired crystalline form may be difficult in some cases.
- Japanese Patent Application Laid-Open No. H07-331107 discloses a hydroxygallium phthalocyanine crystal which contains a polar organic solvent. According to the description, with use of a transformation solvent such as N,N-dimethylformamide, the molecule of the transformation solvent is incorporated in the crystal, so that a crystal having excellent sensitivity properties is produced.
- a transformation solvent such as N,N-dimethylformamide
- Japanese Patent Application Laid-Open No. H07-331107 discloses a phthalocyanine crystal which contains 2.1% by weight N,N-dimethylformamide.
- N,N-dimethylformamide a phthalocyanine crystal which contains 2.1% by weight N,N-dimethylformamide.
- One embodiment of the present invention is directed to providing an electrophotographic photosensitive member which reduces image defects due to ghosting not only under a normal temperature and normal humidity environment but also even under a low temperature and low humidity environment as especially severe conditions, and a manufacturing method thereof; and a process cartridge and an electrophotographic apparatus.
- another embodiment of the present invention is directed to providing a phthalocyanine crystal which contains a specific amount of N,N-dimethylformamide in the crystal, and a manufacturing method thereof.
- an electrophotographic photosensitive member comprising a support and a photosensitive layer on the support, wherein the photosensitive layer comprises a phthalocyanine crystal in which a N,N-dimethylformamide is contained, and wherein the content of the N,N-dimethylformamide is 0.1% by mass or more and 1.5% by mass or less based on a phthalocyanine in the phthalocyanine crystal.
- a process cartridge which integrally supports the electrophotographic photosensitive member and at least one unit selected from the group consisting of a charging unit, a developing unit, and a cleaning unit, the cartridge being detachably mountable to a main body of an electrophotographic apparatus.
- an electrophotographic apparatus having the electrophotographic photosensitive member, with a charging unit, an exposing unit, a developing unit and a transferring unit.
- a phthalocyanine crystal in which a N,N-dimethylformamide is contained, wherein the content of the N,N-dimethylformamide is 0.1% by mass or more and 1.5% by mass or less based on a phthalocyanine in the phthalocyanine crystal.
- a phthalocyanine crystal which is obtained by performing a crystal transformation by milling a mixture of the phthalocyanine and the N,N-dimethylformamide, wherein a time period for the milling is 250 hours or more.
- a phthalocyanine which is obtained by an acid pasting method prior to the step of performing the crystal transformation.
- an electrophotographic photosensitive member which reduces image defects due to ghosting not only under a normal temperature and normal humidity environment but also even under a low temperature and low humidity environment as especially severe conditions, and a manufacturing method thereof; and a process cartridge and an electrophotographic apparatus can be obtained.
- a phthalocyanine crystal having excellent properties as charge generating substance, and a manufacturing method thereof can be obtained.
- FIG. 1 is a schematic view of an electrophotographic apparatus provided with a process cartridge having an electrophotographic photosensitive member of the present invention.
- FIG. 2 is a powder X-ray diffraction chart of a hydroxygallium phthalocyanine crystal obtained in Example 1-1.
- FIG. 3 is a powder X-ray diffraction chart of a hydroxygallium phthalocyanine crystal obtained in Example 1-5.
- FIG. 4 is a powder X-ray diffraction chart of a hydroxygallium phthalocyanine crystal obtained in Example 1-9.
- an electrophotographic photosensitive member includes a support and a photosensitive layer formed on the support.
- the photosensitive layer contains a phthalocyanine crystal including N,N-dimethylformamide in the crystal, and the content of N,N-dimethylformamide is 0.1% by mass or more and 1.5% by mass or less relative to phthalocyanine in the phthalocyanine crystal.
- examples of the phthalocyanine which constitutes the phthalocyanine crystal which contains N,N-dimethylformamide in the crystal include a metal-free phthalocyanine and a metal phthalocyanine which may have an axial ligand, and the phthalocyanine may have a substituent.
- An oxytitanium phthalocyanine crystal and a gallium phthalocyanine crystal are preferred in particular, with excellent sensitivity, while easily causing ghosting.
- examples of the gallium phthalocyanine to constitute the gallium phthalocyanine crystal which contains N,N-dimethylformamide in the crystal include a gallium phthalocyanine molecule of which gallium atom has an axial ligand of a halogen atom, a hydroxy group or an alkoxy group.
- the phthalocyanine ring may include a substituent such as a halogen atom.
- gallium phthalocyanine crystals a hydroxygallium phthalocyanine crystal, a bromo-gallium phthalocyanine crystal and an iodo-gallium phthalocyanine crystal, having excellent sensitivity, are preferred, having sufficient effect of the present invention.
- a hydroxygallium phthalocyanine crystal is preferred in particular.
- the hydroxygallium phthalocyanine crystal includes a gallium atom having an axial ligand of hydroxy group.
- the bromo-gallium phthalocyanine crystal includes a gallium atom having an axial ligand of bromine atom.
- the iodo-gallium phthalocyanine crystal includes a gallium atom having an axial ligand of iodine atom.
- a hydroxygallium phthalocyanine crystal having peaks at Bragg angles 2 ⁇ of 7.5° ⁇ 0.2 °, 9.9° ⁇ 0.2°, 25.2° ⁇ 0.2° and 28.3° ⁇ 0.2° in CuK ⁇ characteristic X-ray diffraction, and the intensity of a peak emerging at 9.9° ⁇ 0.2° being two or more times the intensity at a side 2.8° wider from the angle of the peak emerging at 9.9° ⁇ 0.2° in particular is preferred.
- the hydroxygallium phthalocyanine crystal is more preferred in terms of the effect of reducing image defects due to ghosting.
- the content of N,N-dimethylformamide is 0.1% by mass or more and 1.5% by mass or less relative to phthalocyanine in the phthalocyanine crystal. With a content of N,N-dimethylformamide more than 1.5% by mass, inhibition of ghosting under a normal temperature and normal humidity environment and under a low temperature and low humidity environment may not be sufficient in some cases.
- the content of N,N-dimethylformamide is more preferably 0.8% by mass or more and 1.3% by mass or less.
- a manufacturing method of a phthalocyanine crystal which contains N,N-dimethylformamide in the crystal is described below.
- the phthalocyanine crystal which contains N,N-dimethylformamide in the crystal is obtained by performing crystal transformation by adding phthalocyanine to N,N-dimethylformamide and milling the mixture.
- the phthalocyanine for use in the milling treatment can be a phthalocyanine obtained by acid pasting.
- the milling treatment is a treatment in a milling device such as a sand mill and a ball mill, using dispersion material such as glass beads, steel beads and alumina balls.
- the amount of dispersion material in milling treatment can be 10 to 50 times the amount of gallium phthalocyanine by mass.
- the transformation solvent other than N,N-dimethylformamide include an amide solvent such as N,N-dimethylacetoamide, N-methylformamide, N-methylacetoamide, N-methylpropionamide and N-methyl-2-pyrrolidone, a halogen solvent such as chloroform, an ether solvent such as tetrahydrofuran, and a sulfoxide solvent such as dimethyl sulfoxide which may be used in combination.
- the amount of solvent used can be 5 to 30 times the amount of phthalocyanine by mass.
- the phthalocyanine crystal including 0.1% by mass or more and 1.5% by mass or less of N,N-dimethylformamide relative to phthalocyanine crystal is obtained by performing crystal transformation with a milling treatment for longer hours than in a conventional method. More specifically the length of time for the milling treatment is 250 hours or more.
- a hydroxygallium phthalocyanine crystal having an intensity of the peak emerging at 9.9° ⁇ 0.2° 2.0 or more times the intensity on a side 2.8° wider from the angle of the peak emerging at 9.9° ⁇ 0.2° is more easily obtained by performing crystal transformation with a milling method having a low shear strength.
- a desired crystal can be obtained by performing the transformation with a ball mill for 250 hours or more. More preferably, the transformation is performed for 400 hours or more.
- the present inventors newly found that the amount of N,N-dimethylformamide incorporated into the phthalocyanine crystal decreases as the length of time for crystal transformation is extended. As a result of examination by the present inventors, it was found that the phthalocyanine crystal which contains a specific amount of N,N-dimethylformamide in the crystal has excellent effect of inhibiting ghosting.
- the phthalocyanine crystal which contains N,N-dimethylformamide in the crystal means allowing the N,N-dimethylformamide to be incorporated into the crystal.
- the NMR measurement data of the obtained phthalocyanine crystal is analyzed to determine whether the phthalocyanine crystal contains N,N-dimethylformamide in the crystal, and to further determine the content of N,N-dimethylformamide.
- the X-ray diffraction analysis and the NMR measurement of the phthalocyanine crystal of the present invention were performed under the following conditions.
- Measurement instrument X-ray diffraction analyzer RINT-TTRII made by Rigaku Corporation
- X-ray tube Cu X-ray tube voltage: 50 KV X-ray tube current; 300 mA Scanning method: 2 ⁇ / ⁇ scan Scanning rate: 4.0°/min Sampling interval: 0.02° Starting angle (2 ⁇ ): 5.0° Stopping angle (2 ⁇ ): 40.0° Attachment: Standard sample holder Filter: non-use Incident monochrome: in-use Counter monochrometer: non-use Divergence slit: open Vertical divergence limiting slit: 10.00 mm Scattering slit: open Light receiving slit: open Flat plate monochrometer: in use Counter: scintillation counter
- Measurement instrument Trade name: AVANCE III 500 made by Bruker Solvent: deuterium sulfate (D 2 SO 4 ) Cumulative number: 2000
- the phthalocyanine crystal which contains N,N-dimethylformamide in the crystal has an excellent function as a photoconductive material, and is applicable to a solar cell, a sensor, a switching device and the like, in addition to an electrophotographic photosensitive member.
- the electrophotographic photosensitive member of the present invention has a support and a photosensitive layer formed on the support.
- a photosensitive layer includes: a single-layer type photosensitive layer having a single layer which contains a charge generating substance and a charge transporting substance; and a laminate type photosensitive layer having a lamination structure of a charge generation layer which contains a charge generating substance and a charge transport layer which contains a charge transporting substance.
- a laminate type photosensitive layer having a charge generation layer, and a charge transport layer formed on the charge generation layer can be used.
- a support having electrical conductivity is suitable.
- the support may be made of, for example, metal such as aluminum, aluminum alloy, copper, zinc, stainless steel, vanadium, molybdenum, chromium, titanium, nickel, indium, gold and platinum, and metal alloy.
- a support may be made of a plastic coated with a vacuum deposited layer of aluminum, aluminum alloy, indium oxide, tin oxide or indium oxide-tin oxide alloy.
- a support may be made of a plastic or the support coated with conductive particles and a binder resin; a plastic or paper support impregnated with conductive particles; a plastic including a conductive polymer or the like.
- the conductive particles include aluminum particles, titanium oxide particles, tin oxide particles, zinc oxide particles, carbon black, and silver particles.
- an undercoat layer (also referred to as a barrier layer or an intermediate layer) having a barrier function and an adhesive function may be disposed between the support and the photosensitive layer.
- An undercoat layer can be formed by forming a coating film made from a coating liquid for forming an undercoat layer obtained by mixing a binder resin and a solvent, and drying the coating film.
- the binder resin can be made from a raw material such as polyvinyl alcohol, polyethylene oxide, ethyl cellulose, methyl cellulose, casein, polyamide (e.g. nylon 6, nylon 66, nylon 610, a copolymer nylon, N-alkoxymethylated nylon) and polyurethane.
- the undercoat layer has a film thickness of 0.1 to 10 ⁇ m, preferably 0.5 to 5 ⁇ m.
- the phthalocyanine crystal of the present invention is used as the charge generating substance, and along with the charge transporting substance is mixed into a binder resin solution so as to prepare a coating liquid for forming a photosensitive layer.
- the coating liquid for forming a photosensitive layer is applied onto a support so as to form a coating film, and drying the produced coating film to form a photosensitive layer.
- the charge generation layer can be formed by dispersing phthalocyanine crystals of the present invention in a binder resin solution so as to prepare the coating liquid for forming a charge generation layer, applying the coating liquid to form a coating film, and drying the produced coating film.
- the charge generation layer may be formed by vapor deposition.
- the charge transport layer can be formed by dissolving a charge transporting substance and a binder resin in a solvent so as to prepare the coating liquid for forming a charge transport layer, and applying the coating liquid on the charge generation layer so as to form a coating film, and drying the produced coating film.
- Examples of the charge transporting substance include a triarylamine-based compound, a hydrazine-based compound, a stilbene-based compound, a pyrazoline-based compound, an oxazole-based compound, a thiazole-based compound and a triallylmethane-based compound.
- a resin such as polyester, an acrylic resin, polyvinylcarbazole, a phenoxy resin, polycarbonate, polyvinylbutyral, polystyrene, polyvinyl acetate, polysulfone, polyalylate, vinylidene chloride, acrylonitrile copolymer and polyvinyl benzal is used.
- Examples of the application method to form a photosensitive layer include dip coating, spray coating, spinner coating, bead coating, blade coating and beam coating.
- a single-layer type photosensitive layer can have a film thickness of 5 to 40 ⁇ m, more preferably 10 to 30 ⁇ m.
- the charge generation layer of a laminate type photosensitive layer can have a film thickness of 0.01 to 10 ⁇ m, more preferably 0.1 to 3 ⁇ m.
- the charge transport layer can have a film thickness of 5 to 40 ⁇ m, more preferably 10 to 30 ⁇ m.
- the content of the charge generating substance in the charge generation layer of a laminate type photosensitive layer can be 20 to 90% by mass relative to the total mass of the charge generation layer, more preferably 50 to 80% by mass.
- the content of the charge transporting substance in the charge transport layer can be 20 to 80% by mass relative to the total mass of the charge transport layer, more preferably 30 to 70% by mass.
- the content of the charge generating substance of a single-layer type photosensitive layer can be 3 to 30% by mass relative to the total mass of the photosensitive layer.
- the content of the charge transporting substance can be 30 to 70% by mass relative to the total mass of the photosensitive layer.
- the phthalocyanine crystal of the present invention may be mixed with another charge generating substance for use as charge generating substance.
- the content of the phthalocyanine crystal of the present invention can be 50% by mass or more relative to the total charge generating substance.
- a protective layer may be provided on the photosensitive layer on an as needed basis.
- the protective layer can be formed by dissolving a binder resin in a solvent so as to prepare the coating liquid for forming a protective layer, forming a coating film from the coating liquid, and drying the produced coating film.
- the binder resin for use in the protective layer include for example, polyvinylbutyral, polyester, polycarbonate (e.g., polycarbonate Z and modified polycarbonate), nylon, polyimide, polyallylate, polyurethane, a styrene-butadiene copolymer, a styrene-acrylic acid co-polymer and a styrene-acrylonitrile co-polymer.
- the protective layer can have a film thickness of 0.05 to 20 ⁇ m.
- the protective layer may contain conductive particles or an ultraviolet absorbing agent.
- the conductive particles include metal oxide particles such as tin oxide particles.
- FIG. 1 is a schematic view of an electrophotographic apparatus provided with a process cartridge having an electrophotographic photosensitive member of the present invention.
- the surface of the electrophotographic photosensitive member 1 is electrostatically charged to a positive or negative predetermined potential with a charging unit 3 during in a rotation process. Subsequently the charged surface of the electrophotographic photosensitive member 1 is irradiated with image exposing light 4 from an image exposing unit (not drawn in figure) so as to form an electrostatic latent image corresponding to objective image information.
- the image exposing light 4 are intensity-modulated in response to the time-series electric digital image signals of objective image information, outputted from, for example, an image exposing unit for slit exposing or exposing with scanning laser beams.
- the electrostatic latent image formed on the surface of the electrophotographic photosensitive member 1 is developed (normal development or reversal development) with toner stored in a developing unit 5 so as to form a toner image on the surface of the electrophotographic photosensitive member 1 .
- the toner image formed on the surface of the electrophotographic photosensitive member 1 is transferred to a transfer material 7 with a transferring unit 6 .
- a bias voltage having a polarity reversal of the charge retained on the toner is applied to the transferring unit 6 from a bias power supply (not drawn in figure).
- a transfer material 7 of paper is taken out from a paper feeding part (not drawn in figure) so as to be fed between the electrophotographic photosensitive member 1 and the transferring unit 6 in synchronization with the rotation of the electrophotographic photosensitive member 1 .
- the transfer material 7 having a toner image transferred from the electrophotographic photosensitive member 1 is separated from the surface of the electrophotographic photosensitive member 1 and transported to an image fixation unit 8 for the fixation of the toner image.
- An image formed object (print or copy) is thus printed out from an electrophotographic apparatus.
- the surface of the electrophotographic photosensitive member 1 is cleaned with a cleaning unit 9 to remove attached material such as toner (remaining toner after transfer).
- toner may be directly removed after transfer with a development apparatus or the like.
- the surface of the electrophotographic photosensitive member 1 is neutralized with pre-exposing light 10 from a pre-exposing unit (not drawn in figure) and then repeatedly used for image formation.
- the pre-exposing unit is not necessarily required for a contact charging unit 3 having a charging roller.
- a plurality of components selected from the group consisting of the electrophotographic photosensitive member 1 , the charging unit 3 , the developing unit 5 , and the cleaning unit 9 may be contained in a container and integrally supported to form a process cartridge.
- the process cartridge can be configured to be detachable to an electrophotographic apparatus body.
- a charging unit 3 , a developing unit 5 and a cleaning unit 9 are integrally supported together with the electrophotographic photosensitive member 1 so as to form a cartridge.
- the cartridge constitutes a process cartridge 11 detachable to an electrophotographic apparatus body with a guiding unit 12 such as a rail of the electrophotographic apparatus body.
- Image exposing light 4 may be reflected beams from or transmitted beams through a sheet of manuscript for an electrophotographic apparatus such as a copy machine and a printer.
- image exposing light 4 may be radiated beams produced by scanning of laser beams, driving of an LED array or driving of a liquid crystal shutter array in response to signals from a manuscript reading sensor.
- the electrophotographic photosensitive member 1 of the present invention can be widely used in an electrophotography application field such as a laser beam printer, a CRT printer, an LED printer, a FAX, a liquid crystal printer and a laser engraving.
- hydroxygallium phthalocyanine was produced by the same as in Synthesis Example 1 and Example 1-1 described in Japanese Patent Application Laid-Open No. 2011-94101.
- Under nitrogen flow atmosphere 5.46 parts of phthalonitrile and 45 parts of ⁇ -chloronaphthalene were fed into a reaction tank, then heated up to a temperature of 30° C., and maintained at the temperature. Subsequently, 3.75 parts of gallium trichloride was fed thereto at the temperature (30° C.). At the feeding time, the mixture liquid had a water content of 150 ppm. The temperature was then increased to 200° C. Under the nitrogen flow atmosphere, a reaction was caused at a temperature of 200° C.
- hydroxygallium phthalocyanine (hydrous hydroxygallium phthalocyanine) in an amount of 6.6 kg was irradiated by microwave with a hyper dryer (trade name: HD-06R, frequency (oscillation frequency): 2,455 MHz ⁇ 15 MHz, made by Biocon Japan Ltd.) so as to be dried.
- a hyper dryer (trade name: HD-06R, frequency (oscillation frequency): 2,455 MHz ⁇ 15 MHz, made by Biocon Japan Ltd.) so as to be dried.
- the crystal was dissolved in deuterium sulfate for the H-NMR measurement. As a result, a peak derived from N,N-dimethylformamide was observed other than the peak derived from a phthalocyanine molecule. Since N,N-dimethylformamide is a liquid having compatibility with tetrahydrofuran, it was found that N,N-dimethylformamide is contained in the phthalocyanine crystal. The content of N,N-dimethylformamide in the phthalocyanine crystal was 1.03% by mass relative to phthalocyanine in the phthalocyanine crystal, in terms of the proton ratio.
- a hydroxygallium phthalocyanine crystal in an amount of 0.42 parts was obtained by the same treatment as in Example 1-1, except that the milling treatment time was changed from 1000 hours to 2000 hours in Example 1-1.
- the powder X-ray diffraction pattern of the produced crystal was the same as in Example 1-1.
- the angle and the intensity of the peak emerging at Bragg angle 2 ⁇ of 9.9° ⁇ 0.2°, the intensity on a side 2.8° wider from the peak angle, and the ratio of the intensity are described in Table 1.
- a hydroxygallium phthalocyanine crystal in an amount of 0.44 parts was obtained by the same treatment as in Example 1-1, except that the milling treatment time was changed from 1000 hours to 500 hours in Example 1-1.
- the powder X-ray diffraction pattern of the produced crystal was the same as in Example 1-1.
- the angle and the intensity of the peak emerging at Bragg angle 2 ⁇ of 9.9° ⁇ 0.2°, the intensity on a side 2.8° wider from the peak angle, and the ratio of the intensity are described in Table 1.
- a hydroxygallium phthalocyanine crystal in an amount of 0.44 parts was obtained by the same treatment as in Example 1-1, except that the milling treatment time was changed from 1000 hours to 400 hours in Example 1-1.
- the powder X-ray diffraction pattern of the produced crystal was the same as in Example 1-1.
- the angle and the intensity of the peak emerging at Bragg angle 2 ⁇ of 9.9° ⁇ 0.2°, the intensity on a side 2.8° wider from the peak angle, and the ratio of the intensity are described in Table 1.
- a hydroxygallium phthalocyanine crystal in an amount of 0.44 parts was obtained by the same treatment as in Example 1-1, except that the milling treatment time was changed from 1000 hours to 300 hours in Example 1-1.
- the powder X-ray diffraction chart of the produced crystal is illustrated in FIG. 3 .
- the angle and the intensity of the peak emerging at Bragg angle 2 ⁇ of 9.9° ⁇ 0.2°, the intensity on a side 2.8° wider from the peak angle, and the ratio of the intensity are described in Table 1.
- a hydroxygallium phthalocyanine crystal in an amount of 0.44 parts was obtained by the same treatment as in Example 1-1, except that the milling treatment time was changed from 1000 hours to 250 hours in Example 1-1.
- the powder X-ray diffraction pattern of the produced crystal was the same as in Example 1-5.
- the angle and the intensity of the peak emerging at Bragg angle 2 ⁇ of 9.9° ⁇ 0.2°, the intensity on a side 2.8° wider from the peak angle, and the ratio of the intensity are described in Table 1.
- a hydroxygallium phthalocyanine crystal in an amount of 0.22 parts was obtained by the same treatment as in Example 1-3, except that the addition amount of hydroxygallium phthalocyanine for use in the milling treatment was changed from 0.5 parts to 0.25 parts in Example 1-3.
- the powder X-ray diffraction pattern of the produced crystal was the same as in Example 1-1.
- the angle and the intensity of the peak emerging at Bragg angle 2 ⁇ of 9.9° ⁇ 0.2°, the intensity on a side 2.8° wider from the peak angle, and the ratio of the intensity are described in Table 1.
- a hydroxygallium phthalocyanine crystal in an amount of 0.22 parts was obtained by the same treatment as in Example 1-5, except that the addition amount of N,N-dimethylformamide for use in milling treatment was changed from 9.5 parts to 3 parts and added 6.5 parts of N-methylpyrrolidone in Example 1-5.
- the powder X-ray diffraction pattern of the produced crystal was the same as in Example 1-5.
- the angle and the intensity of the peak emerging at Bragg angle 2 ⁇ of 9.9° ⁇ 0.2°, the intensity on a side 2.8° wider from the peak angle, and the ratio of the intensity are described in Table 1.
- a hydroxygallium phthalocyanine crystal in an amount of 0.45 parts was obtained by the same treatment as in Example 1-1, except that the milling device was replaced from a ball mill to a paint shaker and the treatment time was changed to 24 hours in Example 1-1.
- the powder X-ray diffraction pattern of the produced crystal was broader than the pattern obtained in Example 1-1.
- the powder X-ray diffraction chart of the produced crystal is illustrated in FIG. 4 .
- the angle and the intensity of the peak emerging at Bragg angle 2 ⁇ of 9.9° ⁇ 0.2°, the intensity on a side 2.8° wider from the peak angle, and the ratio of the intensity are described in Table 1.
- N,N-dimethylformamide is contained relative to the phthalocyanine in the phthalocyanine crystal by the NMR measurement.
- Example 1-1 9.96 11215 4683 2.39
- Example 1-2 9.96 10823 5298 2.04
- Example 1-3 9.96 11055 4505 2.45
- Example 1-4 9.96 10976 4428 2.48
- Example 1-5 9.96 11090 4401 2.52
- Example 1-6 9.94 11443 4509 2.54
- Example 1-7 9.96 11147 4544 2.45
- Example 1-8 9.94 10989 4607 2.39
- Example 1-9 9.92 7823 4338 1.80
- a hydroxygallium phthalocyanine crystal in an amount of 0.44 parts was obtained by the same treatment as in Example 1-1, except that the milling treatment time was changed from 1000 hours to 48 hours in Example 1-1.
- a hydroxygallium phthalocyanine crystal in an amount of 0.44 parts was obtained by the same treatment as in Example 1-1, except that the milling treatment time was changed from 1000 hours to 24 hours in Example 1-1.
- a hydroxygallium phthalocyanine crystal in an amount of 0.44 parts was obtained by the same treatment as in Example 1-1, except that the milling device was replaced from a ball mill to a paint shaker and the treatment time was changed to 4 hours in Example 1-1.
- the coating liquid for forming a conductive layer was applied on aluminum cylinder (diameter: 24 mm) as a support with immersion coating so as to form a coating film, and the produced coating film was dried at 140° C. for 30 minutes so that a conductive layer having a film thickness of 15 ⁇ m was formed.
- the coating liquid for forming an undercoat layer was applied to the conductive layer with immersion coating, and the produced coating film was dried so that an undercoat layer having a film thickness of 0.5 ⁇ m was formed.
- the coating liquid for forming a charge generation layer was applied to the undercoat layer with immersion coating so as to form a coating film.
- the produced coating film was dried at 100° C. for 10 minutes to form the charge generation layer having a film thickness of 0.16 ⁇ m.
- the coating liquid for forming a charge transport layer was applied to the charge generation layer by immersion coating so as to form a coating film.
- the produced coating film was dried at 110° C. for 1 hour to form a charge transport layer having a film thickness of 23 ⁇ m.
- the electrophotographic photosensitive member of Example 2-1 in a cylindrical shape (drum shape) was thus manufactured.
- Example 2-1 Except that the hydroxygallium phthalocyanine crystal in preparing the coating liquid for forming a charge generation layer in Example 2-1 was replaced with the hydroxygallium phthalocyanine crystals produced in Examples 1-2 to 1-9, the electrophotographic photosensitive members in Examples 2-2 to 2-9 were made in the same way as in Example 2-1.
- Example 2-1 Except that the hydroxygallium phthalocyanine crystal in preparing the coating liquid for forming a charge generation layer in Example 2-1 was replaced with the hydroxygallium phthalocyanine crystals produced in Comparative Examples 1-1 to 1-3, the electrophotographic photosensitive members in Comparative Examples 2-1 to 2-3 were made in the same way as in Example 2-1.
- a laser beam printer made by Hewlett Packard Japan, Ltd (trade name: Color Laser Jet CP3525dn) was modified to use as an electrophotographic apparatus for evaluation. As a result of modification, a pre-exposing light was unlit and charging conditions and the amount of image exposure were variably controlled. In addition, a manufactured electrophotographic photosensitive member was mounted in a process cartridge for cyan color and attached to the station of the process cartridge for cyan, allowing for operation without mounting of process cartridges for other colors to the laser beam printer main body.
- the process cartridge for cyan color alone was attached to the main body so that a single color image was outputted using cyan toner alone.
- the charging conditions and the amount of image exposure were adjusted such that the initial potential was set at ⁇ 500V for a dark part and ⁇ 100V for a bright part under a normal temperature and normal humidity environment of temperature 23° C./humidity 55% RH.
- the cartridge was firstly modified and a potential probe (trade name: model 6000B-8, made by Trek Japan Co., Ltd.) was mounted at the development position.
- the potential at the center of an electrophotographic photosensitive member in a cylindrical shape was measured with a surface potential meter (trade name: model 344, made by Trek Japan Co., Ltd).
- the electrophotographic photosensitive member was left to stand under a low temperature and low humidity environment of temperature 15° C./humidity 10% RH together with the electrophotographic apparatus for evaluation for 3 days so as to evaluate ghost images (initial stage).
- a repeated paper feed test was performed with 1,000 sheets of paper fed through under the same conditions, and ghost images were evaluated immediately after and 15 hours after the repeated paper feed test. Evaluation results under the low temperature and low humidity environment are also described in Table 2.
- the ghost chart includes 4 solid black square images of 25 mm side arranged in parallel at equal intervals in the 30 mm-width region from the starting position of output images (10 mm from the top edge of paper) as a solid white background. In the region below the 30 mm-width region from the starting position of output images, 4 types of halftone printing patterns were printed. Ranks were classified based on 4 types of ghost charts.
- the 4 types of ghost charts are charts arranged in the region below the 30-mm width region from the starting position of output images, with only difference in halftone pattern.
- the halftone patterns include the following 4 types:
- a printing pattern with 1 dot and 1 space in lateral* direction
- a printing pattern with 2 dots and 2 spaces in lateral* direction
- a printing pattern with 2 dots and 3 spaces in lateral* direction
- a knight jump printing pattern (laser exposing) (a pattern with 2 dots printed in 6 squares in the knight jump direction).
- lateral means the scanning direction of a laser beam directed at the surface of the electrophotographic photosensitive member from a laser scanner (the direction orthogonal to the outputting direction of the sheet outputted from the laser beam printer).
- the ghost images were classified into ranks as follows. It was determined that the effect of the present invention was insufficient in the ranks 4, 5 and 6.
- Rank 1 No ghosting was visible in any of the ghost charts.
- Rank 2 ghosting was vaguely visible in a specific ghost chart.
- Rank 3 ghosting was vaguely visible in any of the ghost charts.
- Rank 4 ghosting was visible in a specific ghost chart.
- Rank 5 ghosting was visible in any of the ghost charts.
- Rank 6 ghosting was sharply visible in a specific ghost chart.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- General Chemical & Material Sciences (AREA)
- Photoreceptors In Electrophotography (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/361,636 US9869032B2 (en) | 2014-06-03 | 2016-11-28 | Manufacturing method of phthalocyanine crystal by milling crystal transformation for at least 1,000 hours |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-114918 | 2014-06-03 | ||
JP2014114918 | 2014-06-03 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/361,636 Division US9869032B2 (en) | 2014-06-03 | 2016-11-28 | Manufacturing method of phthalocyanine crystal by milling crystal transformation for at least 1,000 hours |
Publications (1)
Publication Number | Publication Date |
---|---|
US20150346616A1 true US20150346616A1 (en) | 2015-12-03 |
Family
ID=54701563
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/721,307 Abandoned US20150346616A1 (en) | 2014-06-03 | 2015-05-26 | Electrophotographic photosensitive member, manufacturing method of electrophotographic photosensitive member, process cartridge and electrophotographic apparatus, and phthalocyanine crystal and manufacturing method of phthalocyanine crystal |
US15/361,636 Active US9869032B2 (en) | 2014-06-03 | 2016-11-28 | Manufacturing method of phthalocyanine crystal by milling crystal transformation for at least 1,000 hours |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/361,636 Active US9869032B2 (en) | 2014-06-03 | 2016-11-28 | Manufacturing method of phthalocyanine crystal by milling crystal transformation for at least 1,000 hours |
Country Status (2)
Country | Link |
---|---|
US (2) | US20150346616A1 (enrdf_load_stackoverflow) |
JP (1) | JP6611472B2 (enrdf_load_stackoverflow) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160252832A1 (en) * | 2015-02-27 | 2016-09-01 | Canon Kabushiki Kaisha | Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus, and mixed crystal of hydroxygallium phthalocyanine and chlorogallium phthalocyanine and method of producing the crystalline complex |
US9563139B2 (en) | 2014-11-05 | 2017-02-07 | Canon Kabushiki Kaisha | Electrophotographic photosensitive member, process cartridge and electrophotographic apparatus |
US9645516B2 (en) | 2014-11-19 | 2017-05-09 | Canon Kabushiki Kaisha | Electrophotographic photosensitive member, process cartridge and electrophotographic apparatus |
US9857705B2 (en) | 2015-10-23 | 2018-01-02 | Canon Kabushiki Kaisha | Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus |
US10162278B2 (en) | 2017-02-28 | 2018-12-25 | Canon Kabushiki Kaisha | Electrophotographic photosensitive member, process cartridge and electrophotographic apparatus |
US10416581B2 (en) | 2016-08-26 | 2019-09-17 | Canon Kabushiki Kaisha | Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus |
US10642177B2 (en) | 2018-02-28 | 2020-05-05 | Canon Kabushiki Kaisha | Process cartridge and image-forming apparatus |
US10691033B2 (en) | 2018-02-28 | 2020-06-23 | Canon Kabushiki Kaisha | Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus |
US10747131B2 (en) | 2018-05-31 | 2020-08-18 | Canon Kabushiki Kaisha | Electrophotographic photosensitive member and method for manufacturing the same as well as process cartridge and electrophotographic image-forming apparatus |
US10747130B2 (en) | 2018-05-31 | 2020-08-18 | Canon Kabushiki Kaisha | Process cartridge and electrophotographic apparatus |
US10838315B2 (en) | 2018-02-28 | 2020-11-17 | Canon Kabushiki Kaisha | Electrophotographic photosensitive member, process cartridge and electrophotographic apparatus |
US11003102B2 (en) | 2019-03-15 | 2021-05-11 | Canon Kabushiki Kaisha | Electrophotographic image forming apparatus and process cartridge |
US11137716B2 (en) | 2019-10-18 | 2021-10-05 | Canon Kabushiki Kaisha | Process cartridge and electrophotographic apparatus |
US11150566B2 (en) | 2019-06-14 | 2021-10-19 | Canon Kabushiki Kaisha | Electrophotographic photosensitive member, process cartridge and electrophotographic apparatus |
US11256186B2 (en) | 2019-02-14 | 2022-02-22 | Canon Kabushiki Kaisha | Electrophotographic photosensitive member, process cartridge and electrophotographic apparatus |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10203617B2 (en) | 2017-02-28 | 2019-02-12 | Canon Kabushiki Kaisha | Electrophotographic photosensitive member, process cartridge and electrophotographic apparatus |
JP6850205B2 (ja) | 2017-06-06 | 2021-03-31 | キヤノン株式会社 | 電子写真感光体、プロセスカートリッジおよび電子写真装置 |
JP7054366B2 (ja) | 2018-05-31 | 2022-04-13 | キヤノン株式会社 | 電子写真感光体、プロセスカートリッジおよび電子写真装置 |
JP7059112B2 (ja) | 2018-05-31 | 2022-04-25 | キヤノン株式会社 | 電子写真感光体、プロセスカートリッジおよび電子写真画像形成装置 |
JP7129225B2 (ja) | 2018-05-31 | 2022-09-01 | キヤノン株式会社 | 電子写真感光体および電子写真感光体の製造方法 |
JP7150485B2 (ja) | 2018-05-31 | 2022-10-11 | キヤノン株式会社 | 電子写真感光体、プロセスカートリッジ及び電子写真装置 |
JP2020086308A (ja) | 2018-11-29 | 2020-06-04 | キヤノン株式会社 | 電子写真感光体、電子写真装置、およびプロセスカートリッジ |
JP7353824B2 (ja) | 2019-06-25 | 2023-10-02 | キヤノン株式会社 | 電子写真感光体、プロセスカートリッジおよび電子写真装置 |
JP7269111B2 (ja) | 2019-06-25 | 2023-05-08 | キヤノン株式会社 | 電子写真感光体、プロセスカートリッジおよび電子写真装置 |
US11126097B2 (en) | 2019-06-25 | 2021-09-21 | Canon Kabushiki Kaisha | Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus |
JP7305458B2 (ja) | 2019-06-25 | 2023-07-10 | キヤノン株式会社 | 電子写真感光体、プロセスカートリッジ及び電子写真装置 |
JP7337649B2 (ja) | 2019-10-18 | 2023-09-04 | キヤノン株式会社 | プロセスカートリッジ及び電子写真装置 |
US11112719B2 (en) | 2019-10-18 | 2021-09-07 | Canon Kabushiki Kaisha | Process cartridge and electrophotographic apparatus capable of suppressing lateral running while maintaining satisfactory potential function |
JP7337651B2 (ja) | 2019-10-18 | 2023-09-04 | キヤノン株式会社 | プロセスカートリッジ及び電子写真装置 |
JP7337652B2 (ja) | 2019-10-18 | 2023-09-04 | キヤノン株式会社 | プロセスカートリッジ及びそれを用いた電子写真装置 |
JP7691305B2 (ja) | 2021-08-06 | 2025-06-11 | キヤノン株式会社 | 電子写真感光体、プロセスカートリッジ及び電子写真装置 |
JP2023024120A (ja) | 2021-08-06 | 2023-02-16 | キヤノン株式会社 | 電子写真装置 |
JP2023024119A (ja) | 2021-08-06 | 2023-02-16 | キヤノン株式会社 | 電子写真装置 |
JP2023131675A (ja) | 2022-03-09 | 2023-09-22 | キヤノン株式会社 | 電子写真装置 |
WO2025004763A1 (ja) * | 2023-06-29 | 2025-01-02 | キヤノン株式会社 | 電子写真感光体、プロセスカートリッジ及び電子写真装置、並びにヒドロキシガリウムフタロシアニン結晶の製造方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05279591A (ja) * | 1992-03-31 | 1993-10-26 | Fuji Xerox Co Ltd | ヒドロキシガリウムフタロシアニンの新規な結晶の製造方法とその方法で製造された結晶を用いる電子写真感光体 |
JPH07331107A (ja) * | 1994-06-06 | 1995-12-19 | Fuji Xerox Co Ltd | ヒドロキシガリウムフタロシアニン結晶及びそれを用いた電子写真感光体 |
US20060234146A1 (en) * | 2005-04-12 | 2006-10-19 | Canon Kabushiki Kaisha | Electrophotographic photosensitive member, process cartridge and electrophotographic apparatus |
US20090297967A1 (en) * | 2008-05-30 | 2009-12-03 | Xerox Corporation | Phosphonate hole blocking layer photoconductors |
US20090325090A1 (en) * | 2008-06-30 | 2009-12-31 | Xerox Corporation | Phenolic resin hole blocking layer photoconductors |
US20150362847A1 (en) * | 2014-06-13 | 2015-12-17 | Canon Kabushiki Kaisha | Electrophotographic photosensitive member, process cartridge and electrophotographic apparatus |
US20150362850A1 (en) * | 2014-06-13 | 2015-12-17 | Canon Kabushiki Kaisha | Hydroxygallium phthalocyanine crystal, electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus |
Family Cites Families (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS644747A (en) * | 1987-06-26 | 1989-01-09 | Minolta Camera Kk | Photosensitive body |
US5106533A (en) * | 1988-05-27 | 1992-04-21 | Minnesota Mining And Manufacturing Company | Pigment dispersions |
US6245472B1 (en) | 1997-09-12 | 2001-06-12 | Canon Kabushiki Kaisha | Phthalocyanine compounds, process for production thereof and electrophotographic photosensitive member using the compounds |
JP3369515B2 (ja) | 1999-07-28 | 2003-01-20 | 京セラミタ株式会社 | フタロシアニン結晶及びその製造方法と、これを含有した電子写真感光体 |
US6284420B1 (en) * | 2000-01-26 | 2001-09-04 | Industrial Technology Research Institute | Titanyl phthalocyanine, method for production thereof and electrophotographic photoreceptor containing the same |
JP2002265810A (ja) * | 2001-03-14 | 2002-09-18 | Dainippon Ink & Chem Inc | チタニウムフタロシアニン化合物及びその製造方法 |
US6492080B1 (en) * | 2001-03-23 | 2002-12-10 | Xerox Corporation | Process for tuning photoreceptor sensitivity |
US6837918B2 (en) * | 2001-12-20 | 2005-01-04 | Aveka, Inc. | Process for the manufacture of nanoparticle organic pigments |
JP4635461B2 (ja) * | 2003-11-06 | 2011-02-23 | 富士ゼロックス株式会社 | ヒドロキシガリウムフタロシアニン顔料及びその製造方法、感光層形成用塗布液の製造方法、電子写真感光体、プロセスカートリッジ、電子写真装置、並びに、画像形成方法 |
JP4470456B2 (ja) * | 2003-11-06 | 2010-06-02 | 富士ゼロックス株式会社 | 画像形成装置及び画像形成ユニット |
JP2008216812A (ja) * | 2007-03-06 | 2008-09-18 | Fuji Xerox Co Ltd | 電子写真感光体、プロセスカートリッジ及び画像形成装置 |
US7670733B2 (en) * | 2007-04-27 | 2010-03-02 | Xerox Corporation | Silanol containing photoconductors |
US20090185821A1 (en) * | 2008-01-10 | 2009-07-23 | Ricoh Company, Ltd | Electrophotographic photoreceptor, and image formihg appratus and process cartridge using same |
JP5713596B2 (ja) | 2009-09-29 | 2015-05-07 | キヤノン株式会社 | 電子写真感光体の製造方法 |
JP5827612B2 (ja) | 2011-11-30 | 2015-12-02 | キヤノン株式会社 | ガリウムフタロシアニン結晶の製造方法、及び該ガリウムフタロシアニン結晶の製造方法を用いた電子写真感光体の製造方法 |
JP6071439B2 (ja) | 2011-11-30 | 2017-02-01 | キヤノン株式会社 | フタロシアニン結晶の製造方法、および電子写真感光体の製造方法 |
JP6039368B2 (ja) | 2011-11-30 | 2016-12-07 | キヤノン株式会社 | 電子写真感光体、プロセスカートリッジおよび電子写真装置、ならびに、ガリウムフタロシアニン結晶 |
JP2014134773A (ja) | 2012-12-14 | 2014-07-24 | Canon Inc | 電子写真感光体、プロセスカートリッジおよび電子写真装置、ならびに、フタロシアニン結晶 |
JP2014134772A (ja) | 2012-12-14 | 2014-07-24 | Canon Inc | 電子写真感光体、プロセスカートリッジおよび電子写真装置、ならびにフタロシアニン結晶 |
JP2014134774A (ja) | 2012-12-14 | 2014-07-24 | Canon Inc | 電子写真感光体、プロセスカートリッジおよび電子写真装置、ならびに、ガリウムフタロシアニン結晶 |
JP6059025B2 (ja) | 2013-01-18 | 2017-01-11 | キヤノン株式会社 | 電子写真感光体の製造方法、プロセスカートリッジおよび電子写真装置 |
JP6478769B2 (ja) * | 2014-04-30 | 2019-03-06 | キヤノン株式会社 | 電子写真感光体、その製造方法、プロセスカートリッジおよび電子写真装置、ならびに、フタロシアニン結晶およびその製造方法 |
JP2015210498A (ja) | 2014-04-30 | 2015-11-24 | キヤノン株式会社 | 電子写真感光体、プロセスカートリッジおよび電子写真装置、ならびに、ガリウムフタロシアニン結晶 |
JP6478750B2 (ja) | 2014-04-30 | 2019-03-06 | キヤノン株式会社 | 電子写真感光体、プロセスカートリッジおよび電子写真装置、ならびに、フタロシアニン結晶およびその製造方法 |
US20150346617A1 (en) | 2014-06-03 | 2015-12-03 | Canon Kabushiki Kaisha | Electrophotographic photosensitive member, manufacturing method of electrophotographic photosensitive member, process cartridge and electrophotographic apparatus, and phthalocyanine crystal and manufacturing method of phthalocyanine crystal |
JP6005216B2 (ja) | 2014-06-23 | 2016-10-12 | キヤノン株式会社 | 電子写真感光体、電子写真感光体の製造方法、プロセスカートリッジおよび電子写真装置、ならびに、固溶体および固溶体の製造方法 |
US9563139B2 (en) * | 2014-11-05 | 2017-02-07 | Canon Kabushiki Kaisha | Electrophotographic photosensitive member, process cartridge and electrophotographic apparatus |
US20160131985A1 (en) * | 2014-11-11 | 2016-05-12 | Canon Kabushiki Kaisha | Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus |
JP2016102933A (ja) * | 2014-11-28 | 2016-06-02 | キヤノン株式会社 | 電子写真感光体、電子写真感光体の製造方法、プロセスカートリッジおよび電子写真装置 |
US20160154328A1 (en) * | 2014-11-28 | 2016-06-02 | Canon Kabushiki Kaisha | Electrophotographic photosensitive member, process cartridge and electrophotographic apparatus |
JP2016164658A (ja) * | 2015-02-27 | 2016-09-08 | キヤノン株式会社 | 電子写真感光体、プロセスカートリッジおよび電子写真装置 |
-
2015
- 2015-05-26 US US14/721,307 patent/US20150346616A1/en not_active Abandoned
- 2015-05-28 JP JP2015108668A patent/JP6611472B2/ja active Active
-
2016
- 2016-11-28 US US15/361,636 patent/US9869032B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05279591A (ja) * | 1992-03-31 | 1993-10-26 | Fuji Xerox Co Ltd | ヒドロキシガリウムフタロシアニンの新規な結晶の製造方法とその方法で製造された結晶を用いる電子写真感光体 |
JPH07331107A (ja) * | 1994-06-06 | 1995-12-19 | Fuji Xerox Co Ltd | ヒドロキシガリウムフタロシアニン結晶及びそれを用いた電子写真感光体 |
US20060234146A1 (en) * | 2005-04-12 | 2006-10-19 | Canon Kabushiki Kaisha | Electrophotographic photosensitive member, process cartridge and electrophotographic apparatus |
US20090297967A1 (en) * | 2008-05-30 | 2009-12-03 | Xerox Corporation | Phosphonate hole blocking layer photoconductors |
US20090325090A1 (en) * | 2008-06-30 | 2009-12-31 | Xerox Corporation | Phenolic resin hole blocking layer photoconductors |
US20150362847A1 (en) * | 2014-06-13 | 2015-12-17 | Canon Kabushiki Kaisha | Electrophotographic photosensitive member, process cartridge and electrophotographic apparatus |
US20150362850A1 (en) * | 2014-06-13 | 2015-12-17 | Canon Kabushiki Kaisha | Hydroxygallium phthalocyanine crystal, electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus |
Non-Patent Citations (3)
Title |
---|
Diamond, Arthur S (editor) Handbook of Imaging Materials. New York: Marcel-Dekker, Inc. (2002) pp. 145-164. * |
English language machine translation of JP 05-279591 (10/1993). * |
English language machine translation of JP 07-331107 (12/1995). * |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9563139B2 (en) | 2014-11-05 | 2017-02-07 | Canon Kabushiki Kaisha | Electrophotographic photosensitive member, process cartridge and electrophotographic apparatus |
US9645516B2 (en) | 2014-11-19 | 2017-05-09 | Canon Kabushiki Kaisha | Electrophotographic photosensitive member, process cartridge and electrophotographic apparatus |
US20160252832A1 (en) * | 2015-02-27 | 2016-09-01 | Canon Kabushiki Kaisha | Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus, and mixed crystal of hydroxygallium phthalocyanine and chlorogallium phthalocyanine and method of producing the crystalline complex |
US9857705B2 (en) | 2015-10-23 | 2018-01-02 | Canon Kabushiki Kaisha | Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus |
US10416581B2 (en) | 2016-08-26 | 2019-09-17 | Canon Kabushiki Kaisha | Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus |
US10162278B2 (en) | 2017-02-28 | 2018-12-25 | Canon Kabushiki Kaisha | Electrophotographic photosensitive member, process cartridge and electrophotographic apparatus |
US10642177B2 (en) | 2018-02-28 | 2020-05-05 | Canon Kabushiki Kaisha | Process cartridge and image-forming apparatus |
US10691033B2 (en) | 2018-02-28 | 2020-06-23 | Canon Kabushiki Kaisha | Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus |
US10838315B2 (en) | 2018-02-28 | 2020-11-17 | Canon Kabushiki Kaisha | Electrophotographic photosensitive member, process cartridge and electrophotographic apparatus |
US10747131B2 (en) | 2018-05-31 | 2020-08-18 | Canon Kabushiki Kaisha | Electrophotographic photosensitive member and method for manufacturing the same as well as process cartridge and electrophotographic image-forming apparatus |
US10747130B2 (en) | 2018-05-31 | 2020-08-18 | Canon Kabushiki Kaisha | Process cartridge and electrophotographic apparatus |
US11256186B2 (en) | 2019-02-14 | 2022-02-22 | Canon Kabushiki Kaisha | Electrophotographic photosensitive member, process cartridge and electrophotographic apparatus |
US11003102B2 (en) | 2019-03-15 | 2021-05-11 | Canon Kabushiki Kaisha | Electrophotographic image forming apparatus and process cartridge |
US11150566B2 (en) | 2019-06-14 | 2021-10-19 | Canon Kabushiki Kaisha | Electrophotographic photosensitive member, process cartridge and electrophotographic apparatus |
US11137716B2 (en) | 2019-10-18 | 2021-10-05 | Canon Kabushiki Kaisha | Process cartridge and electrophotographic apparatus |
Also Published As
Publication number | Publication date |
---|---|
US20170073835A1 (en) | 2017-03-16 |
US9869032B2 (en) | 2018-01-16 |
JP2016012126A (ja) | 2016-01-21 |
JP6611472B2 (ja) | 2019-11-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9869032B2 (en) | Manufacturing method of phthalocyanine crystal by milling crystal transformation for at least 1,000 hours | |
US20150346617A1 (en) | Electrophotographic photosensitive member, manufacturing method of electrophotographic photosensitive member, process cartridge and electrophotographic apparatus, and phthalocyanine crystal and manufacturing method of phthalocyanine crystal | |
US9645515B2 (en) | Electrophotographic photosensitive member and manufacturing method thereof, process cartridge and electrophotographic apparatus, and phthalocyanine crystal and manufacturing method thereof | |
US9459545B2 (en) | Electrophotographic photosensitive member, manufacturing method of electrophotographic photosensitive member, process cartridge and electrophotographic apparatus, and a solid solution and manufacturing method of a solid solution | |
US20160091807A1 (en) | Electrophotographic photosensitive member, process cartridge, electrophotographic apparatus and phthalocyanine crystal | |
US9436106B2 (en) | Electrophotographic photosensitive member and manufacturing method therefor, process cartridge and electrophotographic apparatus including the electrophotographic photosensitive member, and phthalocyanine crystal and method producing therefor | |
US20150316863A1 (en) | Electrophotographic photosensitive member, process cartridge and electrophotographic apparatus, and gallium phthalocyanine crystal | |
US9442399B2 (en) | Electrophotographic photosensitive member, process cartridge, electrophotographic apparatus and phthalocyanine crystal | |
US9223233B2 (en) | Electrophotographic photosensitive member, process cartridge and electrophotographic apparatus | |
US9217938B2 (en) | Electrophotographic photosensitive member, process cartridge, electrophotographic apparatus and phthalocyanine crystal | |
US20150301461A1 (en) | Electrophotographic photosensitive member, process cartridge, electrophotographic apparatus and phthalocyanine crystal | |
CN104854512A (zh) | 电子照相感光构件、处理盒及电子照相设备和镓酞菁晶体 | |
JP6562810B2 (ja) | ヒドロキシガリウムフタロシアニン結晶の製造方法、及び該ヒドロキシガリウムフタロシアニン結晶を用いた電子写真感光体の製造方法 | |
JP6541447B2 (ja) | ヒドロキシガリウムフタロシアニン結晶、電子写真感光体、プロセスカートリッジ及び電子写真装置 | |
US9746790B2 (en) | Electrophotographic photosensitive member, process cartridge and electrophotographic apparatus, and chlorogallium phthalocyanine crystal and method for producing the same | |
US20150362849A1 (en) | Electrophotographic photosensitive member, method for producing the same, electrophotographic apparatus and process cartridge, and chlorogallium phthalocyanine crystal | |
US9857705B2 (en) | Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus | |
JP6512866B2 (ja) | 電子写真感光体、プロセスカートリッジおよび電子写真装置 | |
US20160252832A1 (en) | Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus, and mixed crystal of hydroxygallium phthalocyanine and chlorogallium phthalocyanine and method of producing the crystalline complex | |
JP2016161711A (ja) | 電子写真感光体、プロセスカートリッジおよび電子写真装置、ならびに、ガリウムフタロシアニン結晶 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: CANON KABUSHIKI KAISHA, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KAWAHARA, MASATAKA;TANAKA, MASATO;KUNO, JUMPEI;AND OTHERS;SIGNING DATES FROM 20150522 TO 20150526;REEL/FRAME:036443/0941 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |