US20150104952A1 - Method and composition for selectively removing metal hardmask and other residues from semiconductor device substrates comprising low-k dielectric material and copper - Google Patents
Method and composition for selectively removing metal hardmask and other residues from semiconductor device substrates comprising low-k dielectric material and copper Download PDFInfo
- Publication number
- US20150104952A1 US20150104952A1 US14/103,303 US201314103303A US2015104952A1 US 20150104952 A1 US20150104952 A1 US 20150104952A1 US 201314103303 A US201314103303 A US 201314103303A US 2015104952 A1 US2015104952 A1 US 2015104952A1
- Authority
- US
- United States
- Prior art keywords
- ammonium
- acid
- tin
- removal composition
- composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 212
- 238000000034 method Methods 0.000 title claims abstract description 38
- 239000004065 semiconductor Substances 0.000 title claims abstract description 22
- 239000000758 substrate Substances 0.000 title claims abstract description 21
- 239000010949 copper Substances 0.000 title claims description 83
- 229910052802 copper Inorganic materials 0.000 title claims description 39
- 229910052751 metal Inorganic materials 0.000 title claims description 31
- 239000002184 metal Substances 0.000 title claims description 31
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 title claims description 20
- 239000003989 dielectric material Substances 0.000 title claims description 19
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims abstract description 97
- -1 carboxylate compound Chemical class 0.000 claims abstract description 63
- 238000005530 etching Methods 0.000 claims abstract description 37
- 239000000956 alloy Substances 0.000 claims abstract description 30
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 30
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 30
- 239000007800 oxidant agent Substances 0.000 claims abstract description 26
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 24
- 239000000463 material Substances 0.000 claims abstract description 22
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims description 73
- 239000002253 acid Substances 0.000 claims description 33
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 33
- 239000008367 deionised water Substances 0.000 claims description 29
- 229910021641 deionized water Inorganic materials 0.000 claims description 29
- 238000005260 corrosion Methods 0.000 claims description 27
- 230000007797 corrosion Effects 0.000 claims description 27
- 239000003112 inhibitor Substances 0.000 claims description 25
- NGPGDYLVALNKEG-UHFFFAOYSA-N azanium;azane;2,3,4-trihydroxy-4-oxobutanoate Chemical compound [NH4+].[NH4+].[O-]C(=O)C(O)C(O)C([O-])=O NGPGDYLVALNKEG-UHFFFAOYSA-N 0.000 claims description 17
- FCKYPQBAHLOOJQ-UHFFFAOYSA-N Cyclohexane-1,2-diaminetetraacetic acid Chemical compound OC(=O)CN(CC(O)=O)C1CCCCC1N(CC(O)=O)CC(O)=O FCKYPQBAHLOOJQ-UHFFFAOYSA-N 0.000 claims description 15
- KFSLWBXXFJQRDL-UHFFFAOYSA-N Peracetic acid Chemical compound CC(=O)OO KFSLWBXXFJQRDL-UHFFFAOYSA-N 0.000 claims description 14
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium persulfate Chemical compound [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 claims description 14
- LESFYQKBUCDEQP-UHFFFAOYSA-N tetraazanium;2-[2-[bis(carboxylatomethyl)amino]ethyl-(carboxylatomethyl)amino]acetate Chemical compound N.N.N.N.OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O LESFYQKBUCDEQP-UHFFFAOYSA-N 0.000 claims description 13
- 239000004251 Ammonium lactate Substances 0.000 claims description 12
- LFTLOKWAGJYHHR-UHFFFAOYSA-N N-methylmorpholine N-oxide Chemical compound CN1(=O)CCOCC1 LFTLOKWAGJYHHR-UHFFFAOYSA-N 0.000 claims description 12
- 229940059265 ammonium lactate Drugs 0.000 claims description 12
- 235000019286 ammonium lactate Nutrition 0.000 claims description 12
- USFZMSVCRYTOJT-UHFFFAOYSA-N Ammonium acetate Chemical compound N.CC(O)=O USFZMSVCRYTOJT-UHFFFAOYSA-N 0.000 claims description 11
- 239000005695 Ammonium acetate Substances 0.000 claims description 11
- 229940043376 ammonium acetate Drugs 0.000 claims description 11
- 235000019257 ammonium acetate Nutrition 0.000 claims description 11
- 239000001099 ammonium carbonate Substances 0.000 claims description 11
- 235000012501 ammonium carbonate Nutrition 0.000 claims description 11
- RZOBLYBZQXQGFY-HSHFZTNMSA-N azanium;(2r)-2-hydroxypropanoate Chemical compound [NH4+].C[C@@H](O)C([O-])=O RZOBLYBZQXQGFY-HSHFZTNMSA-N 0.000 claims description 11
- URDCARMUOSMFFI-UHFFFAOYSA-N 2-[2-[bis(carboxymethyl)amino]ethyl-(2-hydroxyethyl)amino]acetic acid Chemical compound OCCN(CC(O)=O)CCN(CC(O)=O)CC(O)=O URDCARMUOSMFFI-UHFFFAOYSA-N 0.000 claims description 10
- 150000001413 amino acids Chemical class 0.000 claims description 10
- VBIXEXWLHSRNKB-UHFFFAOYSA-N ammonium oxalate Chemical compound [NH4+].[NH4+].[O-]C(=O)C([O-])=O VBIXEXWLHSRNKB-UHFFFAOYSA-N 0.000 claims description 10
- 229910001870 ammonium persulfate Inorganic materials 0.000 claims description 10
- PZZHMLOHNYWKIK-UHFFFAOYSA-N eddha Chemical compound C=1C=CC=C(O)C=1C(C(=O)O)NCCNC(C(O)=O)C1=CC=CC=C1O PZZHMLOHNYWKIK-UHFFFAOYSA-N 0.000 claims description 10
- DEFVIWRASFVYLL-UHFFFAOYSA-N ethylene glycol bis(2-aminoethyl)tetraacetic acid Chemical compound OC(=O)CN(CC(O)=O)CCOCCOCCN(CC(O)=O)CC(O)=O DEFVIWRASFVYLL-UHFFFAOYSA-N 0.000 claims description 10
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 claims description 9
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 claims description 9
- 150000001732 carboxylic acid derivatives Chemical class 0.000 claims description 9
- YWYZEGXAUVWDED-UHFFFAOYSA-N triammonium citrate Chemical compound [NH4+].[NH4+].[NH4+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O YWYZEGXAUVWDED-UHFFFAOYSA-N 0.000 claims description 9
- KWIPUXXIFQQMKN-UHFFFAOYSA-N 2-azaniumyl-3-(4-cyanophenyl)propanoate Chemical compound OC(=O)C(N)CC1=CC=C(C#N)C=C1 KWIPUXXIFQQMKN-UHFFFAOYSA-N 0.000 claims description 8
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 8
- 229940090948 ammonium benzoate Drugs 0.000 claims description 8
- BVCZEBOGSOYJJT-UHFFFAOYSA-N ammonium carbamate Chemical compound [NH4+].NC([O-])=O BVCZEBOGSOYJJT-UHFFFAOYSA-N 0.000 claims description 8
- VZTDIZULWFCMLS-UHFFFAOYSA-N ammonium formate Chemical compound [NH4+].[O-]C=O VZTDIZULWFCMLS-UHFFFAOYSA-N 0.000 claims description 8
- NHJPVZLSLOHJDM-UHFFFAOYSA-N azane;butanedioic acid Chemical compound [NH4+].[NH4+].[O-]C(=O)CCC([O-])=O NHJPVZLSLOHJDM-UHFFFAOYSA-N 0.000 claims description 8
- KXDHJXZQYSOELW-UHFFFAOYSA-N carbonic acid monoamide Natural products NC(O)=O KXDHJXZQYSOELW-UHFFFAOYSA-N 0.000 claims description 8
- KYQODXQIAJFKPH-UHFFFAOYSA-N diazanium;2-[2-[bis(carboxymethyl)amino]ethyl-(carboxylatomethyl)amino]acetate Chemical compound [NH4+].[NH4+].OC(=O)CN(CC([O-])=O)CCN(CC(O)=O)CC([O-])=O KYQODXQIAJFKPH-UHFFFAOYSA-N 0.000 claims description 8
- 229910017604 nitric acid Inorganic materials 0.000 claims description 8
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 claims description 7
- VLTRZXGMWDSKGL-UHFFFAOYSA-M perchlorate Inorganic materials [O-]Cl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-M 0.000 claims description 7
- JRKICGRDRMAZLK-UHFFFAOYSA-L peroxydisulfate Chemical compound [O-]S(=O)(=O)OOS([O-])(=O)=O JRKICGRDRMAZLK-UHFFFAOYSA-L 0.000 claims description 7
- XTEGARKTQYYJKE-UHFFFAOYSA-M Chlorate Chemical compound [O-]Cl(=O)=O XTEGARKTQYYJKE-UHFFFAOYSA-M 0.000 claims description 6
- 229910001914 chlorine tetroxide Inorganic materials 0.000 claims description 6
- QEMXHQIAXOOASZ-UHFFFAOYSA-N tetramethylammonium Chemical compound C[N+](C)(C)C QEMXHQIAXOOASZ-UHFFFAOYSA-N 0.000 claims description 6
- FTEDXVNDVHYDQW-UHFFFAOYSA-N BAPTA Chemical compound OC(=O)CN(CC(O)=O)C1=CC=CC=C1OCCOC1=CC=CC=C1N(CC(O)=O)CC(O)=O FTEDXVNDVHYDQW-UHFFFAOYSA-N 0.000 claims description 5
- QPCDCPDFJACHGM-UHFFFAOYSA-N N,N-bis{2-[bis(carboxymethyl)amino]ethyl}glycine Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(=O)O)CCN(CC(O)=O)CC(O)=O QPCDCPDFJACHGM-UHFFFAOYSA-N 0.000 claims description 5
- WDLRUFUQRNWCPK-UHFFFAOYSA-N Tetraxetan Chemical compound OC(=O)CN1CCN(CC(O)=O)CCN(CC(O)=O)CCN(CC(O)=O)CC1 WDLRUFUQRNWCPK-UHFFFAOYSA-N 0.000 claims description 5
- 239000006184 cosolvent Substances 0.000 claims description 5
- MGFYIUFZLHCRTH-UHFFFAOYSA-N nitrilotriacetic acid Chemical compound OC(=O)CN(CC(O)=O)CC(O)=O MGFYIUFZLHCRTH-UHFFFAOYSA-N 0.000 claims description 5
- 229960003330 pentetic acid Drugs 0.000 claims description 5
- 239000004342 Benzoyl peroxide Substances 0.000 claims description 4
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 claims description 4
- 229910021578 Iron(III) chloride Inorganic materials 0.000 claims description 4
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 claims description 4
- 235000019395 ammonium persulphate Nutrition 0.000 claims description 4
- 235000019400 benzoyl peroxide Nutrition 0.000 claims description 4
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 claims description 4
- AENSXLNDMRQIEX-UHFFFAOYSA-L oxido sulfate;tetrabutylazanium Chemical compound [O-]OS([O-])(=O)=O.CCCC[N+](CCCC)(CCCC)CCCC.CCCC[N+](CCCC)(CCCC)CCCC AENSXLNDMRQIEX-UHFFFAOYSA-L 0.000 claims description 4
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 claims description 4
- AQLJVWUFPCUVLO-UHFFFAOYSA-N urea hydrogen peroxide Chemical compound OO.NC(N)=O AQLJVWUFPCUVLO-UHFFFAOYSA-N 0.000 claims description 4
- GDDNTTHUKVNJRA-UHFFFAOYSA-N 3-bromo-3,3-difluoroprop-1-ene Chemical compound FC(F)(Br)C=C GDDNTTHUKVNJRA-UHFFFAOYSA-N 0.000 claims description 3
- KHPLPBHMTCTCHA-UHFFFAOYSA-N ammonium chlorate Chemical compound N.OCl(=O)=O KHPLPBHMTCTCHA-UHFFFAOYSA-N 0.000 claims description 3
- ZRDJERPXCFOFCP-UHFFFAOYSA-N azane;iodic acid Chemical compound [NH4+].[O-]I(=O)=O ZRDJERPXCFOFCP-UHFFFAOYSA-N 0.000 claims description 3
- YUUVAZCKXDQEIS-UHFFFAOYSA-N azanium;chlorite Chemical compound [NH4+].[O-]Cl=O YUUVAZCKXDQEIS-UHFFFAOYSA-N 0.000 claims description 3
- URGYLQKORWLZAQ-UHFFFAOYSA-N azanium;periodate Chemical compound [NH4+].[O-]I(=O)(=O)=O URGYLQKORWLZAQ-UHFFFAOYSA-N 0.000 claims description 3
- OSVXSBDYLRYLIG-UHFFFAOYSA-N chlorine dioxide Inorganic materials O=Cl=O OSVXSBDYLRYLIG-UHFFFAOYSA-N 0.000 claims description 3
- TVWHTOUAJSGEKT-UHFFFAOYSA-N chlorine trioxide Chemical compound [O]Cl(=O)=O TVWHTOUAJSGEKT-UHFFFAOYSA-N 0.000 claims description 3
- QBWCMBCROVPCKQ-UHFFFAOYSA-N chlorous acid Chemical compound OCl=O QBWCMBCROVPCKQ-UHFFFAOYSA-N 0.000 claims description 3
- FDXKBUSUNHRUIZ-UHFFFAOYSA-M tetramethylazanium;chlorite Chemical compound [O-]Cl=O.C[N+](C)(C)C FDXKBUSUNHRUIZ-UHFFFAOYSA-M 0.000 claims description 3
- ZRVXFJFFJZFRLQ-UHFFFAOYSA-M tetramethylazanium;iodate Chemical compound [O-]I(=O)=O.C[N+](C)(C)C ZRVXFJFFJZFRLQ-UHFFFAOYSA-M 0.000 claims description 3
- ZCWKIFAQRXNZCH-UHFFFAOYSA-M tetramethylazanium;perchlorate Chemical compound C[N+](C)(C)C.[O-]Cl(=O)(=O)=O ZCWKIFAQRXNZCH-UHFFFAOYSA-M 0.000 claims description 3
- HLQAWDQQEJSALG-UHFFFAOYSA-M tetramethylazanium;periodate Chemical compound C[N+](C)(C)C.[O-]I(=O)(=O)=O HLQAWDQQEJSALG-UHFFFAOYSA-M 0.000 claims description 3
- 239000012964 benzotriazole Substances 0.000 description 33
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical compound C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 description 32
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 description 32
- 238000012360 testing method Methods 0.000 description 23
- 238000009472 formulation Methods 0.000 description 21
- 235000012431 wafers Nutrition 0.000 description 20
- GIAFURWZWWWBQT-UHFFFAOYSA-N 2-(2-aminoethoxy)ethanol Chemical compound NCCOCCO GIAFURWZWWWBQT-UHFFFAOYSA-N 0.000 description 17
- 230000008569 process Effects 0.000 description 17
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 14
- 238000004140 cleaning Methods 0.000 description 13
- 238000004519 manufacturing process Methods 0.000 description 11
- 238000012545 processing Methods 0.000 description 11
- 239000002738 chelating agent Substances 0.000 description 10
- 230000009977 dual effect Effects 0.000 description 10
- 238000011156 evaluation Methods 0.000 description 10
- WTKZEGDFNFYCGP-UHFFFAOYSA-N Pyrazole Chemical compound C=1C=NNC=1 WTKZEGDFNFYCGP-UHFFFAOYSA-N 0.000 description 9
- 239000002585 base Substances 0.000 description 9
- 239000000126 substance Substances 0.000 description 9
- 229940073455 tetraethylammonium hydroxide Drugs 0.000 description 9
- LRGJRHZIDJQFCL-UHFFFAOYSA-M tetraethylazanium;hydroxide Chemical compound [OH-].CC[N+](CC)(CC)CC LRGJRHZIDJQFCL-UHFFFAOYSA-M 0.000 description 9
- NDKBVBUGCNGSJJ-UHFFFAOYSA-M benzyltrimethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)CC1=CC=CC=C1 NDKBVBUGCNGSJJ-UHFFFAOYSA-M 0.000 description 8
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 6
- 150000001412 amines Chemical class 0.000 description 6
- 150000007942 carboxylates Chemical class 0.000 description 6
- XKLFHZFNQJSXBJ-UHFFFAOYSA-N CC(O)=O.OC(O)=O.OC(=O)C(O)=O Chemical compound CC(O)=O.OC(O)=O.OC(=O)C(O)=O XKLFHZFNQJSXBJ-UHFFFAOYSA-N 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 5
- 239000010410 layer Substances 0.000 description 5
- 238000001878 scanning electron micrograph Methods 0.000 description 5
- 229910052814 silicon oxide Inorganic materials 0.000 description 5
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 4
- 239000004135 Bone phosphate Substances 0.000 description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 4
- 150000007513 acids Chemical class 0.000 description 4
- 229910017052 cobalt Inorganic materials 0.000 description 4
- 239000010941 cobalt Substances 0.000 description 4
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 4
- 230000000875 corresponding effect Effects 0.000 description 4
- YHMYGUUIMTVXNW-UHFFFAOYSA-N 1,3-dihydrobenzimidazole-2-thione Chemical compound C1=CC=C2NC(S)=NC2=C1 YHMYGUUIMTVXNW-UHFFFAOYSA-N 0.000 description 3
- KAESVJOAVNADME-UHFFFAOYSA-N 1H-pyrrole Natural products C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 3
- CMGDVUCDZOBDNL-UHFFFAOYSA-N 4-methyl-2h-benzotriazole Chemical compound CC1=CC=CC2=NNN=C12 CMGDVUCDZOBDNL-UHFFFAOYSA-N 0.000 description 3
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 3
- 239000004020 conductor Substances 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 238000001465 metallisation Methods 0.000 description 3
- 238000010979 pH adjustment Methods 0.000 description 3
- 229920002120 photoresistant polymer Polymers 0.000 description 3
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- YXIWHUQXZSMYRE-UHFFFAOYSA-N 1,3-benzothiazole-2-thiol Chemical compound C1=CC=C2SC(S)=NC2=C1 YXIWHUQXZSMYRE-UHFFFAOYSA-N 0.000 description 2
- BMYNFMYTOJXKLE-UHFFFAOYSA-N 3-azaniumyl-2-hydroxypropanoate Chemical compound NCC(O)C(O)=O BMYNFMYTOJXKLE-UHFFFAOYSA-N 0.000 description 2
- GDGIVSREGUOIJZ-UHFFFAOYSA-N 5-amino-3h-1,3,4-thiadiazole-2-thione Chemical compound NC1=NN=C(S)S1 GDGIVSREGUOIJZ-UHFFFAOYSA-N 0.000 description 2
- KLSJWNVTNUYHDU-UHFFFAOYSA-N Amitrole Chemical compound NC1=NC=NN1 KLSJWNVTNUYHDU-UHFFFAOYSA-N 0.000 description 2
- 239000005751 Copper oxide Substances 0.000 description 2
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- SIKJAQJRHWYJAI-UHFFFAOYSA-N Indole Chemical compound C1=CC=C2NC=CC2=C1 SIKJAQJRHWYJAI-UHFFFAOYSA-N 0.000 description 2
- PMTGXDAKINWIEX-UHFFFAOYSA-N N.N.N.N Chemical class N.N.N.N PMTGXDAKINWIEX-UHFFFAOYSA-N 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- IOJUPLGTWVMSFF-UHFFFAOYSA-N benzothiazole Chemical compound C1=CC=C2SC=NC2=C1 IOJUPLGTWVMSFF-UHFFFAOYSA-N 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 229910000431 copper oxide Inorganic materials 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 238000001312 dry etching Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 239000011229 interlayer Substances 0.000 description 2
- 239000000543 intermediate Substances 0.000 description 2
- 150000007522 mineralic acids Chemical class 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- QPJSUIGXIBEQAC-UHFFFAOYSA-N n-(2,4-dichloro-5-propan-2-yloxyphenyl)acetamide Chemical compound CC(C)OC1=CC(NC(C)=O)=C(Cl)C=C1Cl QPJSUIGXIBEQAC-UHFFFAOYSA-N 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000011550 stock solution Substances 0.000 description 2
- 229940095064 tartrate Drugs 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- JYEUMXHLPRZUAT-UHFFFAOYSA-N 1,2,3-triazine Chemical compound C1=CN=NN=C1 JYEUMXHLPRZUAT-UHFFFAOYSA-N 0.000 description 1
- NHAZGSRLKBTDBF-UHFFFAOYSA-N 1,2,4-triazol-1-amine Chemical compound NN1C=NC=N1 NHAZGSRLKBTDBF-UHFFFAOYSA-N 0.000 description 1
- CYSGHNMQYZDMIA-UHFFFAOYSA-N 1,3-Dimethyl-2-imidazolidinon Chemical compound CN1CCN(C)C1=O CYSGHNMQYZDMIA-UHFFFAOYSA-N 0.000 description 1
- WGJCBBASTRWVJL-UHFFFAOYSA-N 1,3-thiazolidine-2-thione Chemical compound SC1=NCCS1 WGJCBBASTRWVJL-UHFFFAOYSA-N 0.000 description 1
- NXRIDTLKJCKPOG-UHFFFAOYSA-N 1,4-dihydroimidazole-5-thione Chemical compound S=C1CN=CN1 NXRIDTLKJCKPOG-UHFFFAOYSA-N 0.000 description 1
- GGZHVNZHFYCSEV-UHFFFAOYSA-N 1-Phenyl-5-mercaptotetrazole Chemical compound SC1=NN=NN1C1=CC=CC=C1 GGZHVNZHFYCSEV-UHFFFAOYSA-N 0.000 description 1
- BAXOFTOLAUCFNW-UHFFFAOYSA-N 1H-indazole Chemical compound C1=CC=C2C=NNC2=C1 BAXOFTOLAUCFNW-UHFFFAOYSA-N 0.000 description 1
- AFBBKYQYNPNMAT-UHFFFAOYSA-N 1h-1,2,4-triazol-1-ium-3-thiolate Chemical compound SC=1N=CNN=1 AFBBKYQYNPNMAT-UHFFFAOYSA-N 0.000 description 1
- FVVDPJOHERATAO-UHFFFAOYSA-N 2,3-dihydroxybutanedioic acid;2-hydroxypropanoic acid Chemical compound CC(O)C(O)=O.OC(=O)C(O)C(O)C(O)=O FVVDPJOHERATAO-UHFFFAOYSA-N 0.000 description 1
- JMTMSDXUXJISAY-UHFFFAOYSA-N 2H-benzotriazol-4-ol Chemical compound OC1=CC=CC2=C1N=NN2 JMTMSDXUXJISAY-UHFFFAOYSA-N 0.000 description 1
- YTZPUTADNGREHA-UHFFFAOYSA-N 2h-benzo[e]benzotriazole Chemical compound C1=CC2=CC=CC=C2C2=NNN=C21 YTZPUTADNGREHA-UHFFFAOYSA-N 0.000 description 1
- ULRPISSMEBPJLN-UHFFFAOYSA-N 2h-tetrazol-5-amine Chemical compound NC1=NN=NN1 ULRPISSMEBPJLN-UHFFFAOYSA-N 0.000 description 1
- JVSMPWHQUPKRNV-UHFFFAOYSA-N 2h-tetrazol-5-amine;hydrate Chemical compound O.NC=1N=NNN=1 JVSMPWHQUPKRNV-UHFFFAOYSA-N 0.000 description 1
- AGWWTUWTOBEQFE-UHFFFAOYSA-N 4-methyl-1h-1,2,4-triazole-5-thione Chemical compound CN1C=NN=C1S AGWWTUWTOBEQFE-UHFFFAOYSA-N 0.000 description 1
- YZTYEGCWRPJWEE-UHFFFAOYSA-N 5-(benzotriazol-2-yl)pentan-1-amine Chemical compound C1=CC=CC2=NN(CCCCCN)N=C21 YZTYEGCWRPJWEE-UHFFFAOYSA-N 0.000 description 1
- WZUUZPAYWFIBDF-UHFFFAOYSA-N 5-amino-1,2-dihydro-1,2,4-triazole-3-thione Chemical compound NC1=NNC(S)=N1 WZUUZPAYWFIBDF-UHFFFAOYSA-N 0.000 description 1
- TYOXIFXYEIILLY-UHFFFAOYSA-N 5-methyl-2-phenyl-1h-imidazole Chemical compound N1C(C)=CN=C1C1=CC=CC=C1 TYOXIFXYEIILLY-UHFFFAOYSA-N 0.000 description 1
- XZGLNCKSNVGDNX-UHFFFAOYSA-N 5-methyl-2h-tetrazole Chemical compound CC=1N=NNN=1 XZGLNCKSNVGDNX-UHFFFAOYSA-N 0.000 description 1
- HCEKEODXLSQFDV-UHFFFAOYSA-N 5-methyltriazol-1-amine Chemical compound CC1=CN=NN1N HCEKEODXLSQFDV-UHFFFAOYSA-N 0.000 description 1
- AOCDQWRMYHJTMY-UHFFFAOYSA-N 5-nitro-2h-benzotriazole Chemical compound C1=C([N+](=O)[O-])C=CC2=NNN=C21 AOCDQWRMYHJTMY-UHFFFAOYSA-N 0.000 description 1
- WXSBVEKBZGNSDY-UHFFFAOYSA-N 5-phenyl-2h-benzotriazole Chemical compound C1=CC=CC=C1C1=CC2=NNN=C2C=C1 WXSBVEKBZGNSDY-UHFFFAOYSA-N 0.000 description 1
- AJNQPSCMOSUVKK-UHFFFAOYSA-N 5-propan-2-yl-1h-1,2,4-triazole Chemical compound CC(C)C=1N=CNN=1 AJNQPSCMOSUVKK-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 1
- IGIDNBCNNCQSOH-UHFFFAOYSA-N N.N.[Sn+4] Chemical compound N.N.[Sn+4] IGIDNBCNNCQSOH-UHFFFAOYSA-N 0.000 description 1
- CXWDLVFMICKAJK-UHFFFAOYSA-N N.[NH4+].[NH4+].[NH4+].OC(CC([O-])=O)(CC([O-])=O)C([O-])=O Chemical compound N.[NH4+].[NH4+].[NH4+].OC(CC([O-])=O)(CC([O-])=O)C([O-])=O CXWDLVFMICKAJK-UHFFFAOYSA-N 0.000 description 1
- XADDXAZRRQSLJH-UHFFFAOYSA-N N.[Sn+4] Chemical compound N.[Sn+4] XADDXAZRRQSLJH-UHFFFAOYSA-N 0.000 description 1
- CWRVKFFCRWGWCS-UHFFFAOYSA-N Pentrazole Chemical compound C1CCCCC2=NN=NN21 CWRVKFFCRWGWCS-UHFFFAOYSA-N 0.000 description 1
- 244000208734 Pisonia aculeata Species 0.000 description 1
- 239000002262 Schiff base Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- FZWLAAWBMGSTSO-UHFFFAOYSA-N Thiazole Chemical compound C1=CSC=N1 FZWLAAWBMGSTSO-UHFFFAOYSA-N 0.000 description 1
- NJYZCEFQAIUHSD-UHFFFAOYSA-N acetoguanamine Chemical compound CC1=NC(N)=NC(N)=N1 NJYZCEFQAIUHSD-UHFFFAOYSA-N 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 238000004380 ashing Methods 0.000 description 1
- KGMUITSJGKYWKJ-UHFFFAOYSA-N azane;tetrabutylazanium Chemical class N.CCCC[N+](CCCC)(CCCC)CCCC KGMUITSJGKYWKJ-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- YOUGRGFIHBUKRS-UHFFFAOYSA-N benzyl(trimethyl)azanium Chemical compound C[N+](C)(C)CC1=CC=CC=C1 YOUGRGFIHBUKRS-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 238000011143 downstream manufacturing Methods 0.000 description 1
- 238000005441 electronic device fabrication Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 229940083124 ganglion-blocking antiadrenergic secondary and tertiary amines Drugs 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 150000002391 heterocyclic compounds Chemical class 0.000 description 1
- 229940042795 hydrazides for tuberculosis treatment Drugs 0.000 description 1
- NPZTUJOABDZTLV-UHFFFAOYSA-N hydroxybenzotriazole Substances O=C1C=CC=C2NNN=C12 NPZTUJOABDZTLV-UHFFFAOYSA-N 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- PZOUSPYUWWUPPK-UHFFFAOYSA-N indole Natural products CC1=CC=CC2=C1C=CN2 PZOUSPYUWWUPPK-UHFFFAOYSA-N 0.000 description 1
- RKJUIXBNRJVNHR-UHFFFAOYSA-N indolenine Natural products C1=CC=C2CC=NC2=C1 RKJUIXBNRJVNHR-UHFFFAOYSA-N 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 150000002894 organic compounds Chemical group 0.000 description 1
- 125000000962 organic group Chemical group 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229960005152 pentetrazol Drugs 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- ZDHURYWHEBEGHO-UHFFFAOYSA-N potassiopotassium Chemical compound [K].[K] ZDHURYWHEBEGHO-UHFFFAOYSA-N 0.000 description 1
- 239000001508 potassium citrate Substances 0.000 description 1
- 229960002635 potassium citrate Drugs 0.000 description 1
- PJAHUDTUZRZBKM-UHFFFAOYSA-K potassium citrate monohydrate Chemical compound O.[K+].[K+].[K+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O PJAHUDTUZRZBKM-UHFFFAOYSA-K 0.000 description 1
- 235000011082 potassium citrates Nutrition 0.000 description 1
- PHZLMBHDXVLRIX-DKWTVANSSA-M potassium;(2s)-2-hydroxypropanoate Chemical compound [K+].C[C@H](O)C([O-])=O PHZLMBHDXVLRIX-DKWTVANSSA-M 0.000 description 1
- VZOPRCCTKLAGPN-ZFJVMAEJSA-L potassium;sodium;(2r,3r)-2,3-dihydroxybutanedioate;tetrahydrate Chemical compound O.O.O.O.[Na+].[K+].[O-]C(=O)[C@H](O)[C@@H](O)C([O-])=O VZOPRCCTKLAGPN-ZFJVMAEJSA-L 0.000 description 1
- 150000003141 primary amines Chemical class 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 150000003335 secondary amines Chemical class 0.000 description 1
- MWNQXXOSWHCCOZ-UHFFFAOYSA-L sodium;oxido carbonate Chemical compound [Na+].[O-]OC([O-])=O MWNQXXOSWHCCOZ-UHFFFAOYSA-L 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- 150000003573 thiols Chemical class 0.000 description 1
- LDGFRUUNCRYSQK-UHFFFAOYSA-N triazin-4-ylmethanediamine Chemical compound NC(N)C1=CC=NN=N1 LDGFRUUNCRYSQK-UHFFFAOYSA-N 0.000 description 1
- MPSUGQWRVNRJEE-UHFFFAOYSA-N triazol-1-amine Chemical compound NN1C=CN=N1 MPSUGQWRVNRJEE-UHFFFAOYSA-N 0.000 description 1
- 150000003852 triazoles Chemical class 0.000 description 1
- HRXKRNGNAMMEHJ-UHFFFAOYSA-K trisodium citrate Chemical compound [Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O HRXKRNGNAMMEHJ-UHFFFAOYSA-K 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/26—Processing photosensitive materials; Apparatus therefor
- G03F7/42—Stripping or agents therefor
- G03F7/422—Stripping or agents therefor using liquids only
- G03F7/423—Stripping or agents therefor using liquids only containing mineral acids or salts thereof, containing mineral oxidizing substances, e.g. peroxy compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3105—After-treatment
- H01L21/311—Etching the insulating layers by chemical or physical means
- H01L21/31105—Etching inorganic layers
- H01L21/31111—Etching inorganic layers by chemical means
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/39—Organic or inorganic per-compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B08—CLEANING
- B08B—CLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
- B08B3/00—Cleaning by methods involving the use or presence of liquid or steam
- B08B3/04—Cleaning involving contact with liquid
- B08B3/08—Cleaning involving contact with liquid the liquid having chemical or dissolving effect
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B08—CLEANING
- B08B—CLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
- B08B3/00—Cleaning by methods involving the use or presence of liquid or steam
- B08B3/04—Cleaning involving contact with liquid
- B08B3/10—Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/20—Organic compounds containing oxygen
- C11D3/2075—Carboxylic acids-salts thereof
- C11D3/2082—Polycarboxylic acids-salts thereof
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/39—Organic or inorganic per-compounds
- C11D3/3942—Inorganic per-compounds
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/39—Organic or inorganic per-compounds
- C11D3/3947—Liquid compositions
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/395—Bleaching agents
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D7/00—Compositions of detergents based essentially on non-surface-active compounds
- C11D7/02—Inorganic compounds
- C11D7/04—Water-soluble compounds
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D7/00—Compositions of detergents based essentially on non-surface-active compounds
- C11D7/22—Organic compounds
- C11D7/26—Organic compounds containing oxygen
- C11D7/265—Carboxylic acids or salts thereof
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D7/00—Compositions of detergents based essentially on non-surface-active compounds
- C11D7/22—Organic compounds
- C11D7/32—Organic compounds containing nitrogen
- C11D7/3209—Amines or imines with one to four nitrogen atoms; Quaternized amines
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D7/00—Compositions of detergents based essentially on non-surface-active compounds
- C11D7/22—Organic compounds
- C11D7/32—Organic compounds containing nitrogen
- C11D7/3218—Alkanolamines or alkanolimines
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D7/00—Compositions of detergents based essentially on non-surface-active compounds
- C11D7/22—Organic compounds
- C11D7/32—Organic compounds containing nitrogen
- C11D7/3245—Aminoacids
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D7/00—Compositions of detergents based essentially on non-surface-active compounds
- C11D7/22—Organic compounds
- C11D7/32—Organic compounds containing nitrogen
- C11D7/3281—Heterocyclic compounds
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23F—NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
- C23F1/00—Etching metallic material by chemical means
- C23F1/10—Etching compositions
- C23F1/14—Aqueous compositions
- C23F1/16—Acidic compositions
- C23F1/18—Acidic compositions for etching copper or alloys thereof
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23F—NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
- C23F1/00—Etching metallic material by chemical means
- C23F1/10—Etching compositions
- C23F1/14—Aqueous compositions
- C23F1/16—Acidic compositions
- C23F1/26—Acidic compositions for etching refractory metals
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23F—NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
- C23F1/00—Etching metallic material by chemical means
- C23F1/10—Etching compositions
- C23F1/14—Aqueous compositions
- C23F1/16—Acidic compositions
- C23F1/28—Acidic compositions for etching iron group metals
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23F—NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
- C23F1/00—Etching metallic material by chemical means
- C23F1/10—Etching compositions
- C23F1/14—Aqueous compositions
- C23F1/32—Alkaline compositions
- C23F1/34—Alkaline compositions for etching copper or alloys thereof
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23F—NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
- C23F1/00—Etching metallic material by chemical means
- C23F1/10—Etching compositions
- C23F1/14—Aqueous compositions
- C23F1/32—Alkaline compositions
- C23F1/38—Alkaline compositions for etching refractory metals
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23F—NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
- C23F1/00—Etching metallic material by chemical means
- C23F1/10—Etching compositions
- C23F1/14—Aqueous compositions
- C23F1/32—Alkaline compositions
- C23F1/40—Alkaline compositions for etching other metallic material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23F—NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
- C23F11/00—Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
- C23F11/08—Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
- C23F11/10—Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
- C23F11/14—Nitrogen-containing compounds
- C23F11/149—Heterocyclic compounds containing nitrogen as hetero atom
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/26—Processing photosensitive materials; Apparatus therefor
- G03F7/42—Stripping or agents therefor
- G03F7/422—Stripping or agents therefor using liquids only
- G03F7/425—Stripping or agents therefor using liquids only containing mineral alkaline compounds; containing organic basic compounds, e.g. quaternary ammonium compounds; containing heterocyclic basic compounds containing nitrogen
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/26—Processing photosensitive materials; Apparatus therefor
- G03F7/42—Stripping or agents therefor
- G03F7/422—Stripping or agents therefor using liquids only
- G03F7/426—Stripping or agents therefor using liquids only containing organic halogen compounds; containing organic sulfonic acids or salts thereof; containing sulfoxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02041—Cleaning
- H01L21/02057—Cleaning during device manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02041—Cleaning
- H01L21/02057—Cleaning during device manufacture
- H01L21/0206—Cleaning during device manufacture during, before or after processing of insulating layers
- H01L21/02063—Cleaning during device manufacture during, before or after processing of insulating layers the processing being the formation of vias or contact holes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/027—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
- H01L21/033—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
- H01L21/0334—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
- H01L21/0337—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by the process involved to create the mask, e.g. lift-off masks, sidewalls, or to modify the mask, e.g. pre-treatment, post-treatment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3205—Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
- H01L21/321—After treatment
- H01L21/3213—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
- H01L21/32133—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
- H01L21/32134—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by liquid etching only
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76801—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
- H01L21/76802—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
- H01L21/76807—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics for dual damascene structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76801—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
- H01L21/76802—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
- H01L21/76814—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics post-treatment or after-treatment, e.g. cleaning or removal of oxides on underlying conductors
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D2111/00—Cleaning compositions characterised by the objects to be cleaned; Cleaning compositions characterised by non-standard cleaning or washing processes
- C11D2111/10—Objects to be cleaned
- C11D2111/14—Hard surfaces
- C11D2111/22—Electronic devices, e.g. PCBs or semiconductors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3105—After-treatment
- H01L21/311—Etching the insulating layers by chemical or physical means
- H01L21/31144—Etching the insulating layers by chemical or physical means using masks
Definitions
- compositions and methods for selectively removing metal hardmask and other residues from integrated circuit (IC) device substrates relate to compositions and methods for selectively removing metal hardmask and other residues from integrated circuit (IC) device substrates, and, more particularly, to compositions and methods useful for selectively removing TiN, TaN, TiNxOy, TiW, and W metal hardmask, and metal hardmasks comprising alloys of the foregoing, as well as other residues from such substrates comprising low-k dielectric materials, TEOS, copper, cobalt and other low-k dielectric materials, using carboxylate compounds.
- IC integrated circuit
- Plasma dry etching is commonly used to fabricate vertical sidewall trenches and anisotropic interconnecting vias in copper (Cu)/low-k dual damascene fabrication processes.
- Cu copper
- Low-k dual damascene fabrication processes As the technology nodes advance to 45 nm and smaller, the decreasing size of the semiconductor devices makes achieving critical profile control of vias and trenches more challenging.
- Integrated circuit device companies are investigating the use of a variety of metal hardmasks to improve etch selectivity to low-k materials and thereby gain better profile control.
- the cleaning solution can also effectively etch the metal hardmask to form an intermediate morphology, e.g., a pulled-back/rounded morphology, or completely remove the metal hardmask.
- a pulled-back/rounded morphology could prevent undercutting the hardmask, which, in turn, could enable reliable deposition of barrier metal, Cu seed layer and Cu filling.
- fully removing the metal hardmask using the same composition could offer numerous benefits to downstream process steps, particularly chemical mechanical polishing (CMP), by eliminating a need for barrier CMP.
- cleaning processes are required to remove residues of the plasma etch, photoresist, oxidizer, abrasive, metal and/or other liquids or particles that remain and which can contaminate the surface of the device if they are not effectively removed.
- Fabrication of advanced generation devices that require copper conductors and low-k dielectric materials typically carbon-doped silicon oxide (SiOCH), or porous low-k materials) give rise to the problem that both materials can react with and be damaged by various classes of prior art cleaners.
- Low-k dielectrics in particular, may be damaged in the cleaning process as evidenced by etching, changes in porosity/size, and ultimately changes in dielectric properties. Time required to remove residues depends on the nature of the residue, the process (heating, crosslinking, etching, baking, and/or ashing) by which it was created, and whether batch or single wafer cleaning processes can be used. Some residues may be cleaned in a very short period of time, while some residues require much longer cleaning procedures. Compatibility with both the low-k dielectric and with the copper conductor over the duration of contact with the cleaner is a desired characteristic.
- TiN, TaN, TiNxOy, TiW, and/or W are used as an etching hard mask in the formation of vias and trenches to gain high selectivity to low-k dielectric materials during dry etching steps.
- Effective cleaning compositions are required that can selectively remove the TiN, TaN, TiNxOy, TiW or W, be compatible with low-k materials, copper, cobalt and other dielectric materials, and also simultaneously remove unwanted etching residues and Cu oxide from the resulting dual damascene structure. Beyond selective cleaning, it is also highly desirable that the achievable removal rate ( ⁇ /min) for the cleaning composition be maintained substantially constant for an extended period of time.
- the presently disclosed and claimed inventive concept(s) relate to an improved semiconductor processing composition, i.e., a wet cleaning chemistry or removal composition, with one or more carboxylate compounds which provides highly selective removal of metal hardmask from a dual damascene structure without damaging wiring metallurgy and dielectric materials.
- Semiconductor substrates of the type fabricated in dual damascene back end metallization consist of multiple layers or levels of metal interconnects that are isolated by interlayer dielectrics.
- the described composition can remove metal hardmask etch residues, photoresist, polymeric materials, and copper oxide from via and trench surfaces without damaging underlying layers that form the structure.
- the substrates typically comprise copper, cobalt, a low-k dielectric material(s), SiON, SiCN, TEOS and metal hard mask selected from TiN, TaN, TiNxOy, TiW and W, including alloys of Ti and W.
- the removal composition comprises from 0.1 wt % to 90 wt % at least one oxidizing agent, from 0.0001 wt % to 50 wt % of a carboxylate compound, with the balance up to 100 wt % of the removal composition comprising water, e.g., deionized water.
- ammonium carboxylates are ammonium carboxylates.
- ammonium carboxylates are ammonium oxalate, ammonium lactate, ammonium tartrate, ammonium citrate tribasic, ammonium acetate, ammonium carbamate, ammonium carbonate, ammonium benzoate, tetraammonium EDTA, ethylenediaminetetraacetic acid diammonium salt, ammonium succinate, ammonium formate, ammonium 1-H-pyrazole-3-carboxylate, and mixtures thereof.
- At least one corrosion inhibitor may also be present in the composition, for example, where the composition is to be deployed in semiconductor processing at BEOL applications and other applications where corrosion of Cu or other metal components is a concern.
- the composition may also include a base, for example, selected from the group consisting of quaternary ammonium salts, such as tetramethylammonium hydroxide (TMAH), tetraethylammonium hydroxide (TEAH) and benzyltrimethylammonium hydroxide (BTAH), and mixtures thereof.
- TMAH tetramethylammonium hydroxide
- TEAH tetraethylammonium hydroxide
- BTAH benzyltrimethylammonium hydroxide
- the base can also be selected from a primary, secondary or tertiary amine, such as, for example, monoethanol amine (MEA), diglycol amine (DGA), triethanolamine (TEA); and tetrabutyphosphonium hydroxide (TBPH) and mixtures thereof.
- MEA monoethanol amine
- DGA diglycol amine
- TEA triethanolamine
- TBPH tetrabutyphosphonium hydrox
- the composition may include one or more acids, for example, an inorganic acid, such as sulfuric acid, nitric acid, phosphoric acid, hydrofluoric acid (HF), or hydrobromic acid, or an organic acid, such as a carboxylic acid, hydroxy carboxylic acid, polycarboxylic acid, amino acid, or a mixture of such acids, as appropriate to adjust the pH of the working composition to a value of from 2 to 14, but preferably in the range of from 3 to 13.
- the pH of the removal composition is preferably in the range of from 7 to 12.
- the composition may also include from 0.001 wt % to 20 wt % of an amino acid, amine polycarboxylic acid (i.e., aminopolycarboxylic acid), and/or carboxylic acid, polycarboxylic acid chelating agent, or a mixture thereof, which, along with the carboxylate compound, has been observed to stabilize the composition.
- stabilize is used herein to mean that the achievable etch rate for a hard mask (e.g., a removal rate for TiN of 148 ⁇ /min) remains substantially constant over an extended period of time, e.g., a time period of from twenty two (22) hours and up to thirty five (35) hours or longer at the selected operating temperature, for example, at an operating temperature of 50° C.
- Oxidizing agents suitable for carrying out the inventive concepts can be selected from the group consisting of hydrogen peroxide (H 2 O 2 ), benzoyl peroxide, tetrabutylammonium peroxymonosulfate, ozone, n-methylmorpholine oxide (NMMO, NMO), ferric chloride, permanganate, peroxoborate, perchlorate, persulfate, ammonium peroxydisulfate, per acetic acid, urea hydroperoxide, percarbonate, perborate, and mixtures thereof. Best results have been observed when the oxidizing agent is hydrogen peroxide (H 2 O 2 ).
- the invention comprises a method for selectively removing an etching mask consisting essentially of TiN, TaN, TiNxOy, TiW or W, including alloys of Ti or W, relative to underlying low-k, Cu, Co, SiON, SICN, and TEOS materials from a semiconductor substrate having a TiN, TaN, TiNxOy, TiW or W, etching mask thereon, including an etching mask comprising alloys of Ti or W, wherein the method comprises contacting the substrate with a removal composition comprising:
- ammonium carboxylate selected from the group comprising one or more of ammonium oxalate, ammonium lactate, ammonium tartrate, ammonium citrate tribasic, ammonium acetate, ammonium carbamate, ammonium carbonate, ammonium Benzoate, tetraammonium EDTA, ethylenediaminetetraacetic acid diammonium salt, ammonium succinate, ammonium formate, and ammonium 1-H-pyrazole-3-carboxylate; and
- the invention comprises a method for selectively removing an etching mask consisting essentially of TiN, TaN, TiNxOy, TiW or W, including alloys of Ti and/or W, relative to underlying low-k, Cu, Co, SiON, SICN, and TEOS materials from a semiconductor substrate having a TiN, TaN, TiNxOy, TiW or W, etching mask thereon, including an etching mask comprising alloys of Ti and/or W, wherein the method comprises contacting the substrate with a removal composition comprising:
- ammonium carboxylate selected from the group comprising one or more of ammonium oxalate, ammonium lactate, ammonium tartrate, ammonium citrate tribasic, ammonium acetate, ammonium carbamate, ammonium carbonate, ammonium Benzoate, tetraammonium EDTA, ethylenediaminetetraacetic acid diammonium salt, ammonium succinate, ammonium formate, and ammonium 1-H-pyrazole-3-carboxylate;
- the described and claimed inventive concept(s) embraces an improvement to a composition and method for selectively removing an etching mask consisting essentially of TiN, TaN, TiNxOy, TiW or W, including alloys of Ti or W, relative to underlying low-k, Cu, Co, SiON, SICN, and TEOS materials from a semiconductor substrate having a TiN, TaN, TiNxOy, TiW or W, etching mask thereon, including an etching mask comprising alloys of Ti or W, wherein the improvement comprises incorporating into said removal composition from 0.0001 wt % to 50 wt % of an ammonium carboxylate selected from the group comprising ammonium oxalate, ammonium lactate, ammonium tartrate.
- ammonium citrate tribasic, ammonium acetate, ammonium carbamate, ammonium carbonate, ammonium benzoate, tetraammonium EDTA, ethylenediaminetetraacetic acid diammonium salt, ammonium succinate, ammonium formate, ammonium 1-H-pyrazole-3-carboxylate whereby said removal composition selectively removes said TiN, TaN, TiNxOy, TiW, W, or alloy of Ti or W etching mask relative to said low-k materials.
- the amount and type of undesirable residue to be removed in any given processing step will influence the selection of operating pH for the composition.
- compositions and method according to the inventive concepts described herein are uniquely capable of selectively etching TiN, TaN, TiNxOy, TiW and W, including alloys of Ti and W, are compatible with Cu, Co, low-k and TEOS dielectric materials, and can also simultaneously remove copper oxides, polymeric materials and etch residues from the substrate, i.e., the dual damascene structure, being treated.
- a composition formulated according to the invention and exhibiting an inherently high etch rate for TiN, TaN, TiNxOy, TiW and W, including alloys of Ti and W, enables processing at relatively low temperature, e.g., temperatures less than 65° C.
- a relatively low temperature process exhibits a reduced oxidizer decomposition rate, which, in turn, extends the useful composition bath life and pot life.
- compositions according to the invention which exhibit high and selective etch rates for TiN, TaN, TiNxOy, TiW and W, including alloys of Ti and W are desirable because they can reduce device processing time and thereby increase throughput.
- compositions according to the invention can effectively deliver high etch rates for TiN, TaN, TiNxOy, TiW and W, including alloys of Ti and W, with single wafer tool applications at a temperature range of from 20° C. to 60° C., and the TiN, TaN, TiNxOy, TiW and W, including alloys of Ti and W, metal hardmask can be fully removed with single wafer application process equipment if so desired.
- FIGS. 1A and 1B are cross-sectional SEM images of semiconductor wafer segments which show trenches and vias, respectively, during dual damascene device fabrication, but prior to contact with the removal composition of the invention.
- FIGS. 2A and 2B are cross-sectional SEM images of semiconductor wafer segments of the type shown in FIGS. 1A and 1B after contact with removal composition 1 from Table 1 at 50° C. for 90 sec.
- FIGS. 3A and 3B are cross-sectional SEM images of semiconductor wafer segments of the type shown in FIGS. 1A and 1B after contact with removal composition 2 from Table 1 at 50° C. for 90 sec.
- FIGS. 4A and 4B are cross-sectional SEM images of semiconductor wafer segments of the type shown in FIGS. 1A and 1B after contact with removal composition 3 from Table 1 at 53° C. for 90 sec.
- any composition is expressed as the amount of various components which, when added together, form the composition. Unless specifically stated otherwise, any composition given in percent is percent by weight (wt %) of that component that has been added to the composition.
- wt % percent by weight
- the dual damascene process is used to form metal interconnects in the backend metallization, which are then used to electrically interconnect various electrical components in a semiconductor substrate into functional circuits.
- backend metallization which comprises fabrication of multiple levels, or layers, of metal interconnects isolated by an interlayer dielectric layer(s) and/or barrier layer(s) can be found, for example, in U.S. Pat. No. 8,080,475, the teachings of which are incorporated herein in their entirety by reference.
- the integration of new materials, such as ultra low-k dielectrics, into microelectronic devices places new demands on cleaning performance. Concurrently, shinking device dimensions reduces the tolerances for changes in critical dimensions for vias and trenches.
- the present invention is a semiconductor processing composition
- a semiconductor processing composition comprising water, at least one oxidizing agent, optionally at least one base or acid, depending on the desired pH for the working composition, and from 0.0001 wt % up to 50 wt % of an ammonium carboxylate.
- the ammonium carboxylate can be selected from the group comprising ammonium oxalate, ammonium lactate, ammonium tartrate.
- ammonium citrate tribasic, ammonium acetate, ammonium carbamate, ammonium carbonate, ammonium benzoate, tetraammonium EDTA, ethylenediaminetetraacetic acid diammonium salt, ammonium succinate, ammonium formate, ammonium 1-H-pyrazole-3-carboxylate and mixtures thereof.
- the concentration of ammonium carboxylate is from 0.001 wt % up to 50 wt %.
- at least one corrosion inhibitor may also be present in the composition where the composition is to be deployed in BEOL semiconductor processing applications and other applications where corrosion of metal components, e.g., Cu and Cu-alloy components, is a concern.
- the formulations preferably have a pH of from 3 to 13.
- compositions of the invention are effective in selectively removing an etching mask consisting essentially of TiN, TaN, TiNxOy, TiW or W, including alloys of Ti and/or W, relative to low-k materials from a semiconductor substrate comprising said low-k dielectric material and having a TiN, TaN, TiNxOy, TiW and W, including alloys of Ti and/or W, etching mask thereon.
- the composition is also functional in simultaneously removing photoresist, polymeric materials, etching residues and copper oxide from the substrate.
- compositions of the invention may also include from 0.001 wt % to 20 wt % of an amino acid, amine polycarboxylic acid (i.e., aminopolycarboxylic acid), and/or carboxylic acid, polycarboxylic acid chelating agent, or a mixture thereof, preferably from 0.001 wt % to 10 wt %, and more preferably from 0.001 wt % to 5 wt %.
- the presence of an amino acid, amine polycarboxylic acid (i.e., aminopolycarboxylic acid), and/or carboxylic acid, polycarboxylic acid chelating agent, or a mixture thereof, according to the described and claimed inventive concepts has been observed to stabilize the composition.
- chelating agents include, but are not limited to, 1,2-cyclohexanediamine-N,N,N′,N′-tetraacetic acid; ethylenediaminetetraacetic acid; nitrilotriacetic acid; diethylene triamine pentaacetic acid; 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid; ethylene glycol tetraacetic acid (EGTA); 1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid; N- ⁇ 2-[bis(carboxymethyl)amino]ethyl ⁇ -N-(2-hydroxyethyl)glycine (HEDTA); and ethylenediamine-N,N′-
- compositions and method according to the inventive concepts described herein are particularly applicable for processing single wafers in single wafer equipment.
- a common approach is to process wafers a high process temperatures.
- higher temperatures are known to contribute to degradation of the oxidizing agent which shortens bath life and pot life. It has been observed according to the inventive concepts described herein that satisfactory results can be achieved at substantially lower temperatures in the range of from 20° C. to 60° C. to generate a pullback scheme or to completely remove the metal hardmask when the hardmask comprises TiN.
- the composition can contain one or more cosolvents that are miscible with water. These cosolvents enhance residue removal. Suitable cosolvents include, but are not limited to, sulfolane, N-methylpyrrolidone, and dimethylsulfoxide.
- Oxidizing agents useful according to the inventive concept(s) are selected from any substance which has the capability to chemically react with the metal hardmask and effect its removal.
- Such oxidizing agents include, but are not limited to, the group consisting essentially of hydrogen peroxide (H 2 O 2 ), n-methylmorpholine oxide (NMMO or NMO), benzoyl peroxide, tetrabutylammonium peroxymonosulfate, ozone, ferric chloride, permanganate peroxoborate, perchlorate, persulfate, ammonium peroxydisulfate, per acetic acid, urea hydroperoxide, nitric acid (HNO 3 ), ammonium chlorite (NH 4 ClO 2 ), ammonium chlorate (NH 4 ClO 3 ), ammonium iodate (NH 4 IO 3 ), ammonium perborate (NH 4 BO 3 ), ammonium perchlorate (NH 4 ClO 4 ), ammonium periodate
- the oxidizing agent or mixture thereof may be present in the composition at from about 0.1 wt % to about 90 wt %, preferably at from about 5 wt % to 90 wt %, and, for best results, preferably 10 wt % to 90 wt %.
- the composition may also include a base or an acid, as appropriate, to adjust the pH of the working composition.
- the base can, for example, be selected from quaternary ammonium salts, such as tetramethylammonium hydroxide (TMAH), tetraethylammonium hydroxide (TEAH), benzyltrimethylammonium hydroxide (BTAH) and mixtures thereof.
- the base can also be selected from primary, secondary and tertiary amines, such as, for example, monoethanol amine (MEA), diglycol amine (DGA), triethanolamine (TEA), tetrabutyphosphonium hydroxide (TBPH), and mixtures thereof.
- the base can be a combination of quaternary ammonium salts and amines.
- Suitable acids include, for example, inorganic acids, such as sulfuric acid, nitric acid, phosphoric acid, hydrofluoric acid (HF), or hydrobromic acid, or an organic acid, such as a carboxylic acid, an amino acid, a hydroxy carboxylic acid, a polycarboxylic acid, or a mixture of such acids.
- the pH of the working composition should be maintained at a value of from 2 to 14, but preferably in the range of from 3 to 12. As noted above, when used in BEOL Cu interconnect fabrication applications, the preferred pH of the working composition is in the range of from 7 to 12 when hydrogen peroxide is used as oxidizer in order to achieve high TiN etch rates.
- a Cu or Co corrosion inhibitor, or a mixture thereof, is an optional component in the composition of this invention.
- a Cu or Co corrosion inhibitor(s) will usually be present in the inventive composition and associated process when used for BEOL applications, where the presence of a corrosion inhibitor is needed to protect metal surfaces from being etched or otherwise degraded.
- a corrosion inhibitor(s) is not generally needed, i.e., Cu or Co, is not exposed to the cleaning chemistry, Cu or Co is absent from the wafer substrate, or slight etching/degradation of copper or cobalt surfaces is not usually a concern.
- the metal (Cu or Co) corrosion inhibitor is an organic compound, such as an azole, thiol, and/or indole preferably selected from the group consisting of a heterocyclic compound containing at least one nitrogen atom, such as, for example, a pyrrole and derivatives thereof, pyrazole and derivatives thereof, imidazole and derivatives thereof, triazole and derivatives thereof, indazole and derivatives thereof, and thiol-triazole and derivatives thereof, benzotriazole (BTA), tolyltriazole, 5-phenyl-benzotriazole, 5-nitro-benzotriazole, 3-amino-5-mercapto-1,2,4-triazole, 1-amino-1,2,4-triazole, hydroxybenzotriazole, 2-(5-amino-pentyl)-benzotriazole, 1-amino-1,2,3-triazole, 1-amino-5-methyl-1,2,3-triazole, 3-amino-1,2,
- BTA, pyrazole, or a mixture of BTA and pyrazole, or a mixture of BTA and tolyltriazole are preferred Cu corrosion inhibitors for better cleaning performance.
- the Cu or Co corrosion inhibitor or mixture thereof may be present in the composition at from about 0.0001 wt % to about 50 wt %, and preferably, for best results, at from about 0.0001 wt % to about 20 wt %.
- Cu or Co corrosion inhibitors include, but are not limited to aromatic hydrazides and Schiff base compounds.
- the described and claimed inventive concept(s) reside in the discovery that complete removal of metal hard mask from semiconductor devices wherein said metal hardmask is in overlapping relationship with a low-k dielectric material can be accomplished by incorporating into the removal composition an effective amount of from 0.0001 wt % up to 50 wt % of a carboxylate compound, but particularly an ammonium carboxylate.
- the concentration of ammonium carboxylate is from 0.001 wt % up to 10 wt %.
- carboxylate is used herein to mean the general formula M(RCOO) n , where M is a metal and n is 1, 2, . . . is the number of carboxylate esters within the compound having the general formula RCOOR′, wherein R and R′ are organic groups with the proviso that R′ ⁇ H.
- RCOOR′ organic groups with the proviso that R′ ⁇ H.
- M is replaced with NH4 + .
- Ammonium carboxylates are preferred chemicals for use in the removal formulation(s), and they can be added directly to the composition, or they can be generated as byproducts or intermediates by chemical reaction during processing.
- compositions of the invention may be embodied in a wide variety of specific formulations, as hereinafter more fully described.
- specific components of the composition are discussed in reference to weight percentage ranges including a zero lower limit, it will be understood that such components may be present or absent in various specific embodiments of the composition, and that in instances where such components are present, they may be present at concentrations as low as 0.0001 wt %, based on the total weight of the composition in which such components are employed.
- 100 g. samples of removal compositions were prepared according to the inventive concept(s) described herein. Each sample composition comprised each of the components listed in the various tables which follow at the weights shown in the corresponding formulation row.
- a 100 g. quantity of sample composition designated “1” shown in Table 1 contained 2 g. of 10% aqueous ammonium tartrate, 7.21 g. of 10% aqueous DGA, 12.43 g. of 1.5% aqueous BTA, 60 g. H 2 O 2 (30% aqueous), and 18.36 g. deionized water (DIW).
- the removal compositions can be formulated at the point of use, or they can be conveniently formulated beforehand without an oxidizer and then taken to the point of use where the oxidizer is added. There is also no particular sequence for mixing or blending the various ingredients.
- Etch rate evaluations were carried out after 1 and 2 minutes of chemical treatment at 60° C. and 50° C., respectively, for TiN and 10 minutes for Cu, Co, W, and TEOS.
- TiN, Cu, Co, and W thicknesses were measured using a Four Dimensions Four Point Probe Meter 333A, whereby the resistivity of the film was correlated to the thickness of the film remaining after contact with the composition of the invention.
- the TEOS thickness was measured with Auto SE Spectroscopic Ellipsometer by HORIBA JOBIN YVON.
- the etch rate was calculated as the thickness change (before and after chemical treatment) divided by the chemical treatment time.
- Chemical solution pH was measured with a Beckman 260 pH/Temp/mV meter.
- the H 2 O 2 used in the experiments was sourced from J. T. Baker. Residue removal efficiency and TiN hardmask etch were evaluated from SEM results (Hitachi S-5500).
- compositions shown in Table 1 were prepared using deionized water as the solvent, BTA or a mixture of BTA and pyrazole as Cu corrosion inhibitor, H 2 O 2 as the oxidizing agent, and diglycolamine (DGA) or benzyltrimethylammonium hydroxide (BTAH) as the base to adjust pH.
- DGA diglycolamine
- BTAH benzyltrimethylammonium hydroxide
- Compositions 1, 2 and 3 demonstrated a removal rate for TiN in the range of from 178 ⁇ /min up to 340 ⁇ /min at a relatively low temperature in the range of from 50° C. to 53° C.
- a copper etch rate of 2.5 ⁇ /min or less is considered good for commercial wafer processing.
- FIGS. 1A and 1B are SEM images of semiconductor wafer segments which show trenches and vias, respectively, as received following a dual damascene fabrication step, but before treatment with a removal composition.
- FIGS. 2A and 2B are views of the wafer segments, similar to the wafer segments shown in FIGS. 1A and 1B , after contact with removal composition 1 for 90 sec. at a temperature of 50° C. Residue was removed, but some TiN hardmask remained as noted in FIG. 2A .
- FIGS. 3A and 3B are views of wafer segments, similar to the wafer segments shown in FIGS. 1A and 1B , after contact with removal composition 2 for 90 sec. at a temperature of 50° C.
- FIGS. 4 a and 4 B are views of wafer segments, similar to the wafer segments shown in FIGS. 1A and 1B , after contact with removal composition 3 for 90 sec. at a temperature of 53° C. TiN hardmask and residue have been completely removed.
- compositions shown in Table 2 were prepared using deionized water as the solvent, BTA as Cu corrosion inhibitor, H 2 O 2 as the oxidizing agent, and tetramethylammonium hydroxide (TMAH) as the base to adjust pH.
- TMAH tetramethylammonium hydroxide
- Each of the removal compositions which contain, respectively, the compounds ammonium lactate, ammonium tartrate, ammonium carbonate, and ammonium citrate tribasic at the amounts indicated, demonstrated a higher TiN etch rate compared with the corresponding control, composition 4, that did not contain an ammonium carboxylate.
- the formulations shown in Table 4 were prepared using DGA to adjust the pH, and BTA was used as the copper corrosion inhibitor.
- TiN and Cu etch rate evaluations were carried out as described above at a temperature of 50° C. and pH of 8. The removal compositions demonstrated a higher TiN etch rate and a similar Cu etch rate when compared to the control, composition 13, that did not contain an ammonium carboxylate.
- the formulations shown in Table 5 were prepared using TMAH to adjust the pH, and BTA was used as the copper corrosion inhibitor.
- TiN and Cu etch rate evaluations were carried out as described above at a temperature of 50° C. and pH of 8. The removal compositions demonstrated a higher TiN etch rate and a similar Cu etch rate when compared to the control, composition 17, that did not contain an ammonium carboxylate.
- the formulations shown in Table 6 were prepared using benzyltrimethylammonium hydroxide (BTAH) to adjust the pH, and BTA was used as the copper corrosion inhibitor.
- BTAH benzyltrimethylammonium hydroxide
- TiN and Cu etch rate evaluations were carried out as described above at a temperature of 50° C. and pH of about 8. The removal compositions demonstrated a higher TiN etch rate and a similar Cu etch rate when compared to the control, composition 21, that did not contain an ammonium carboxylate.
- the formulations shown in Table 7 were prepared using tetraethylammonium hydroxide (TEAH) to adjust the pH, and BTA was used as the copper corrosion inhibitor.
- TEAH tetraethylammonium hydroxide
- TiN and Cu etch rate evaluations were carried out as described above at a temperature of 50° C. and pH of 8. The removal compositions demonstrated a higher TiN etch rate and a similar Cu etch rate when compared to the control, composition 25, that did not contain an ammonium carboxylate.
- the formulations shown in Table 8 were prepared using DGA to adjust the pH, but no copper corrosion inhibitor was used.
- TiN and TEOS removal rate evaluations were carried out as described above at a temperature of 50° C. and pH of about 8.
- the removal compositions demonstrated a high TiN etch rate in the range of from a low of 144 ⁇ /min to a high of 179 ⁇ /min when compared to the control, composition 31, which had a TiN etch rate of 87 ⁇ /min.
- the presence of the compounds ammonium carbonate, ammonium acetate, ammonium oxalate, ammonium lactate and ammonium tartrate at concentrations of from 1.46 wt % to less than 3 wt % operate to provide the removal compositions of the invention with the capability to deliver very high TiN etch rates at relatively low temperature, e.g., 50° C. It is noteworthy according to the described and claimed inventive concepts that none of the compounds ammonium carbonate, ammonium acetate, ammonium oxalate, ammonium lactate or ammonium tartrate had significant effect on TEOS removal rate when compared to the control, composition 31.
- the formulations shown in Table 9 were prepared without the use of a pH adjustment agent.
- the Cu corrosion inhibitor used was Wintrol A-90, a commercial mixture of BTA and tolyltriazole.
- the desired TiN and Cu etch rates and pH were obtained by varying hydrogen peroxide and ammonium carboxylate concentrations. In these examples, several carboxylates in various concentrations were used. Hydrogen peroxide concentration was either 20 wt % or 80 wt %.
- the formulation pH's ranged from a low of pH 5 up to pH 8.4, and the TiN etch rate, i.e., the removal rate, ranged from a low of 18 ⁇ /min up to 170 ⁇ /min.
- the formulations shown in Table 10 were prepared with tartaric acid, or TMAH, or without any pH adjustment agent.
- Wintrol A-90 was used as a Co corrosion inhibitor.
- several carboxylates in various concentrations were used.
- Hydrogen peroxide concentration ranged from 20 wt % to 80 wt %.
- the formulation pH ranged from a low of pH 5 up to pH 11.
- the Co etch rate was insignificant in all cases (i.e., the highest Co etch rate was 1.17 ⁇ /min).
- compositions shown in Table 12 were prepared using TMAH to adjust the pH, and BTA was used as copper corrosion inhibitor.
- Carboxylates used were potassium citrate tribasic monohydrate, potassium sodium tartrate tetrahydrate, and potassium L-lactate in compositions 56, 57 and 58, respectively. Each of these compositions demonstrated a higher TiN etch rate and a similar Cu etch rate when compared to the control, composition 55, that did not contain a carboxylate.
- ammonium carboxylate at a concentration of 1.46 wt % to 3 wt % and at a pH ranging from about 4 to slightly higher than 11 was shown to significantly increase the W removal rate when compared to the corresponding ammonium carboxylate-free control compositions 66, 70 and 72 at the same pH.
- compositions of the invention were observed to unexpectedly stabilize the compositions of the invention.
- stabilize is used herein to mean that the achievable etch rate for a hard mask, i.e., the rate at which hardmask is removed, remains substantially constant over an extended period of time, e.g., a time period of from twenty two (22) hours up to at least thirty five (35) hours at the selected operating temperature.
- chelating agents which are operable according to the described and claimed inventive concepts include, but are not limited to, 1,2-cyclohexanediamine-N,N,N′,N′-tetraacetic acid (CDTA); ethylenediaminetetraacetic acid; nitrilotriacetic acid; diethylene triamine pentaacetic acid; 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid; ethylene glycol tetraacetic acid (EGTA); 1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid; N- ⁇ 2-[bis(carboxymethyl)amino]ethyl ⁇ -N-(2-hydroxyethyl)glycine
- Pot life is a measure of the ability of the removal composition formula to perform optimally over time and without significant variation in functionality over time. Pot life is a strong function of temperature. After many hours of treatment at high temperature, the chemicals in the mixture can decompose and the formula will lose functionality.
- the data presented in Table 17 demonstrates that with CDTA in removal compositions 74 and 75, the TiN etch rate remained stable, i.e., substantially constant, over a period of 22 hours.
- the initial TiN etch rate was 157 ⁇ /min, and it remained at 156 ⁇ /min for composition 75 over a 22 hour period.
- the initial TiN etch rate was 168 ⁇ /min and remained at 157 ⁇ /min over a 22 hour period.
- the TiN etch rate declined from an initial etch rate of 219 ⁇ /min to an etch rate of 99 ⁇ /min after 22 hours.
- the data presented in Table 19 demonstrate that with 0.001% and 0.005% of CDTA in removal compositions 77 and 78, respectively, the TiN etch rate remained stable, i.e., substantially constant, over a period of 24 hours.
- the initial TiN etch rate was 27.33 ⁇ /min, and it remained at 24.41 ⁇ /min for composition 77 over a 24 hour period.
- the initial TiN etch rate was 26.91 ⁇ /min and remained at 26.24 ⁇ /min over a 24 hour period.
- Table 20 The formulations shown in Table 20 were prepared using DGA to adjust the pH, and BTA was used as copper corrosion inhibitor. Tetraammonium EDTA was used to stabilize the TiN etch rate.
- Table 22 The formulations in Table 22 were prepared using DGA to adjust pH. BTA was used as copper corrosion inhibitor. The ammonium carboxylate selected was tetraammonium EDTA. The results shown in Table 22 indicate that tetraammonium EDTA in removal composition 81 exhibited a higher TiN etch rate when compared to the control, composition 82, which contained no ammonium carboxylate.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Metallurgy (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Computer Hardware Design (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Inorganic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Emergency Medicine (AREA)
- Cleaning Or Drying Semiconductors (AREA)
- Detergent Compositions (AREA)
- Weting (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
- ing And Chemical Polishing (AREA)
Priority Applications (13)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/103,303 US20150104952A1 (en) | 2013-10-11 | 2013-12-11 | Method and composition for selectively removing metal hardmask and other residues from semiconductor device substrates comprising low-k dielectric material and copper |
JP2016521931A JP2016535819A (ja) | 2013-10-11 | 2014-10-09 | ハードマスクを選択的に除去するための除去組成物及びその方法 |
US15/028,573 US10005991B2 (en) | 2013-10-11 | 2014-10-09 | Removal composition for selectively removing hard mask and methods thereof |
US15/028,501 US10155921B2 (en) | 2013-10-11 | 2014-10-09 | Removal composition for selectively removing hard mask and methods thereof |
KR1020167012243A KR102334603B1 (ko) | 2013-10-11 | 2014-10-09 | 경질 마스크를 선별적으로 제거하기 위한 제거 조성물 및 이의 방법 |
JP2016522060A JP6523269B2 (ja) | 2013-10-11 | 2014-10-09 | ハードマスクを選択的に除去するための除去組成物 |
PCT/US2014/059848 WO2015054464A1 (en) | 2013-10-11 | 2014-10-09 | Removal composition for selectively removing hard mask and methods thereof |
CN201480055151.5A CN105612599B (zh) | 2013-10-11 | 2014-10-09 | 用于选择性移除硬遮罩的移除组合物 |
TW103135158A TWI650414B (zh) | 2013-10-11 | 2014-10-09 | 用於選擇性清除硬遮罩之清除組成物及其方法 |
KR1020167012242A KR102327432B1 (ko) | 2013-10-11 | 2014-10-09 | 경질 마스크를 선별적으로 제거하기 위한 제거 조성물 |
TW103135159A TWI650415B (zh) | 2013-10-11 | 2014-10-09 | 用於選擇性清除硬遮罩之清除組成物及其方法 |
PCT/US2014/059840 WO2015054460A1 (en) | 2013-10-11 | 2014-10-09 | Removal composition for selectively removing hard mask |
CN201480055153.4A CN105874562B (zh) | 2013-10-11 | 2014-10-09 | 用于选择性移除硬遮罩的移除组合物及其方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201361889968P | 2013-10-11 | 2013-10-11 | |
US14/103,303 US20150104952A1 (en) | 2013-10-11 | 2013-12-11 | Method and composition for selectively removing metal hardmask and other residues from semiconductor device substrates comprising low-k dielectric material and copper |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/028,573 Continuation US10005991B2 (en) | 2013-10-11 | 2014-10-09 | Removal composition for selectively removing hard mask and methods thereof |
PCT/US2013/074356 Continuation WO2015053800A2 (en) | 2013-10-11 | 2014-11-14 | Method and composition for selectively removing metal hardmask and other residues from semiconductor device substrates comprising low-k dielectric material and copper |
Publications (1)
Publication Number | Publication Date |
---|---|
US20150104952A1 true US20150104952A1 (en) | 2015-04-16 |
Family
ID=52810036
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/103,303 Abandoned US20150104952A1 (en) | 2013-10-11 | 2013-12-11 | Method and composition for selectively removing metal hardmask and other residues from semiconductor device substrates comprising low-k dielectric material and copper |
US15/028,501 Active US10155921B2 (en) | 2013-10-11 | 2014-10-09 | Removal composition for selectively removing hard mask and methods thereof |
US15/028,573 Active US10005991B2 (en) | 2013-10-11 | 2014-10-09 | Removal composition for selectively removing hard mask and methods thereof |
US15/028,491 Abandoned US20160240368A1 (en) | 2013-10-11 | 2014-11-14 | Method and composition for selectively removing metal hardmask and other residues from semiconductor device substrates comprising low-k dielectric material and copper |
Family Applications After (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/028,501 Active US10155921B2 (en) | 2013-10-11 | 2014-10-09 | Removal composition for selectively removing hard mask and methods thereof |
US15/028,573 Active US10005991B2 (en) | 2013-10-11 | 2014-10-09 | Removal composition for selectively removing hard mask and methods thereof |
US15/028,491 Abandoned US20160240368A1 (en) | 2013-10-11 | 2014-11-14 | Method and composition for selectively removing metal hardmask and other residues from semiconductor device substrates comprising low-k dielectric material and copper |
Country Status (6)
Country | Link |
---|---|
US (4) | US20150104952A1 (zh) |
JP (3) | JP2016535819A (zh) |
KR (3) | KR102334603B1 (zh) |
CN (3) | CN105612599B (zh) |
TW (3) | TW201522574A (zh) |
WO (1) | WO2015053800A2 (zh) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170158913A1 (en) * | 2014-07-15 | 2017-06-08 | Basf Se | Chemical mechanical polishing (cmp) composition |
US20170167032A1 (en) * | 2015-12-11 | 2017-06-15 | Dongwoo Fine-Chem Co., Ltd. | Etching solution composition for tungsten layer, method for preparing electronic device using the same and electronic device |
US20170229308A1 (en) * | 2014-10-31 | 2017-08-10 | Fujifilm Corporation | Mram dry etching residue removal composition, method of producing magnetoresistive random access memory, and cobalt removal composition |
EP3351658A1 (en) * | 2017-01-23 | 2018-07-25 | Versum Materials US, LLC | Etching solution for tungsten and gst films |
US20190127858A1 (en) * | 2016-03-29 | 2019-05-02 | Technic France | Solution and method for etching titanium based materials |
CN110462799A (zh) * | 2017-03-31 | 2019-11-15 | 关东化学株式会社 | 钛层或含钛层的蚀刻液组合物及蚀刻方法 |
EP3599634A1 (en) * | 2018-07-26 | 2020-01-29 | Versum Materials US, LLC | Composition for titanium nitride hard mask removal and etch residue cleaning |
CN110911278A (zh) * | 2018-09-18 | 2020-03-24 | 三星电子株式会社 | 蚀刻金属阻挡层和金属层的方法和制造半导体器件的方法 |
WO2020251800A1 (en) * | 2019-06-13 | 2020-12-17 | Fujifilm Electronic Materials U.S.A., Inc. | Etching compositions |
CN112323136A (zh) * | 2020-10-26 | 2021-02-05 | 深圳市裕展精密科技有限公司 | 退镀液以及退镀方法 |
CN113130292A (zh) * | 2019-12-31 | 2021-07-16 | 安集微电子科技(上海)股份有限公司 | 一种等离子体刻蚀残留物清洗液 |
CN113430072A (zh) * | 2020-03-23 | 2021-09-24 | 上海新阳半导体材料股份有限公司 | 移除硬遮罩的钴兼容性半水基清洗液、其制备方法及应用 |
US11268024B2 (en) | 2019-05-01 | 2022-03-08 | Fujifilm Electronic Materials U.S.A., Inc. | Etching compositions |
US11345852B2 (en) | 2018-08-16 | 2022-05-31 | Lam Research Corporation | Etchant composition |
US11390805B2 (en) * | 2020-02-05 | 2022-07-19 | Samsung Electronics Co., Ltd. | Etching composition and method for manufacturing semiconductor device using the same |
CN115141629A (zh) * | 2022-06-15 | 2022-10-04 | 湖北兴福电子材料有限公司 | TiN去除液 |
US11499099B2 (en) * | 2019-09-10 | 2022-11-15 | Fujifilm Electronic Materials U.S.A., Inc. | Etching composition |
WO2023232322A1 (de) * | 2022-06-02 | 2023-12-07 | Betek Gmbh & Co. Kg | Entschichtungslösung, verfahren und vorrichtung zum nasschemischen entfernen einer pvd- oder cvd-titannitrid-schicht von einem hartmetall-trägerelement |
Families Citing this family (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160340620A1 (en) * | 2014-01-29 | 2016-11-24 | Advanced Technology Materials, Inc. | Post chemical mechanical polishing formulations and method of use |
US9976111B2 (en) * | 2015-05-01 | 2018-05-22 | Versum Materials Us, Llc | TiN hard mask and etch residual removal |
JP6626748B2 (ja) * | 2016-03-09 | 2019-12-25 | 株式会社Adeka | タンタル含有層用エッチング液組成物及びエッチング方法 |
US10577571B2 (en) * | 2016-11-08 | 2020-03-03 | Ecolab Usa Inc. | Non-aqueous cleaner for vegetable oil soils |
CN107148156B (zh) * | 2017-05-08 | 2019-06-28 | 广东光华科技股份有限公司 | 3,6-二氧杂-1,8-辛二胺四乙酸衍生物的应用及osp处理液 |
CN107229193B (zh) * | 2017-07-25 | 2019-04-23 | 上海新阳半导体材料股份有限公司 | 一种清洗剂、其制备方法和应用 |
CN107357143B (zh) | 2017-07-25 | 2018-06-19 | 上海新阳半导体材料股份有限公司 | 一种清洗剂、其制备方法和应用 |
US10870799B2 (en) * | 2017-08-25 | 2020-12-22 | Versum Materials Us, Llc | Etching solution for selectively removing tantalum nitride over titanium nitride during manufacture of a semiconductor device |
EP3728692A4 (en) | 2017-12-18 | 2021-09-15 | Entegris, Inc. | CHEMICAL-RESISTANT MULTI-LAYER PAINTING APPLIED BY ATOMIC DEPOSITION |
US11499236B2 (en) * | 2018-03-16 | 2022-11-15 | Versum Materials Us, Llc | Etching solution for tungsten word line recess |
US11085011B2 (en) | 2018-08-28 | 2021-08-10 | Entegris, Inc. | Post CMP cleaning compositions for ceria particles |
KR102668574B1 (ko) * | 2019-03-06 | 2024-05-24 | 동우 화인켐 주식회사 | 식각 조성물 |
JP2022535440A (ja) * | 2019-06-03 | 2022-08-08 | フジフイルム エレクトロニック マテリアルズ ユー.エス.エー., インコーポレイテッド | エッチング組成物 |
CN110459468A (zh) * | 2019-08-29 | 2019-11-15 | 上海华力集成电路制造有限公司 | TiN薄膜的刻蚀方法 |
EP3825441A1 (en) * | 2019-11-21 | 2021-05-26 | COVENTYA S.p.A. | An electrolytic treatment device for preparing plastic parts to be metallized and a method for etching plastic parts |
CN113430063B (zh) * | 2020-03-23 | 2024-02-23 | 上海新阳半导体材料股份有限公司 | 用于选择性移除硬遮罩的清洗液、其制备方法及应用 |
CN113430066B (zh) * | 2020-03-23 | 2024-04-19 | 上海新阳半导体材料股份有限公司 | 用于选择性移除硬遮罩的清洗组合物、其制备方法及应用 |
CN113430060B (zh) * | 2020-03-23 | 2024-04-19 | 上海新阳半导体材料股份有限公司 | 用于移除硬遮罩的钨相容性清洗液、其制备方法及应用 |
CN113528255A (zh) * | 2020-04-15 | 2021-10-22 | 安集微电子科技(上海)股份有限公司 | 一种化学清洗液及其使用方法 |
TWI824299B (zh) | 2020-09-22 | 2023-12-01 | 美商恩特葛瑞斯股份有限公司 | 蝕刻劑組合物 |
CN113161234B (zh) * | 2021-04-27 | 2023-02-17 | 上海新阳半导体材料股份有限公司 | 一种含氟清洗液组合物的应用 |
CN113150884B (zh) * | 2021-04-27 | 2022-12-30 | 上海新阳半导体材料股份有限公司 | 一种含氟清洗液组合物的制备方法 |
JP2022184639A (ja) * | 2021-06-01 | 2022-12-13 | 上村工業株式会社 | 銅エッチング液 |
US11550229B1 (en) | 2021-06-18 | 2023-01-10 | Taiwan Semiconductor Manufacturing Company, Ltd. | Enhancing lithography operation for manufacturing semiconductor devices |
TW202407150A (zh) | 2022-05-10 | 2024-02-16 | 日商東京應化工業股份有限公司 | 蝕刻液 |
CN115725369B (zh) * | 2022-11-03 | 2024-03-08 | 上海新阳半导体材料股份有限公司 | 一种清洗液组合物的应用 |
Family Cites Families (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL8701184A (nl) | 1987-05-18 | 1988-12-16 | Philips Nv | Werkwijze voor het vervaardigen van een halfgeleiderinrichting. |
JPH10209604A (ja) * | 1997-01-17 | 1998-08-07 | Hitachi Ltd | プリント配線基板の製造方法並びにそれに用いる粗化液及び粗化液の調製方法 |
CN1169196C (zh) | 1997-04-03 | 2004-09-29 | 日本电气株式会社 | 制造半导体器件的方法 |
JP3039493B2 (ja) | 1997-11-28 | 2000-05-08 | 日本電気株式会社 | 基板の洗浄方法及び洗浄溶液 |
US7579308B2 (en) * | 1998-07-06 | 2009-08-25 | Ekc/Dupont Electronics Technologies | Compositions and processes for photoresist stripping and residue removal in wafer level packaging |
US6358788B1 (en) | 1999-08-30 | 2002-03-19 | Micron Technology, Inc. | Method of fabricating a wordline in a memory array of a semiconductor device |
US6413923B2 (en) * | 1999-11-15 | 2002-07-02 | Arch Specialty Chemicals, Inc. | Non-corrosive cleaning composition for removing plasma etching residues |
US6599370B2 (en) * | 2000-10-16 | 2003-07-29 | Mallinckrodt Inc. | Stabilized alkaline compositions for cleaning microelectronic substrates |
US7543592B2 (en) * | 2001-12-04 | 2009-06-09 | Ekc Technology, Inc. | Compositions and processes for photoresist stripping and residue removal in wafer level packaging |
JP2003339509A (ja) | 2002-05-28 | 2003-12-02 | Koji Okuda | 縦型ハンガー掛け具 |
TW200505975A (en) | 2003-04-18 | 2005-02-16 | Ekc Technology Inc | Aqueous fluoride compositions for cleaning semiconductor devices |
ES2293340T3 (es) | 2003-08-19 | 2008-03-16 | Mallinckrodt Baker, Inc. | Composiciones decapantes y de limpieza para microelectronica. |
BRPI0416067A (pt) * | 2003-10-29 | 2007-01-02 | Mallinckrodt Baker Inc | removedores alcalinos de resìduo de cinza/gravação pós-plasma e composições de descascamento de fotorresistes contendo inibidores de corrosão de haleto de metal |
JP4474914B2 (ja) * | 2003-12-17 | 2010-06-09 | 東ソー株式会社 | レジスト残渣剥離用組成物及びそれを用いた洗浄方法 |
MY139624A (en) | 2004-03-01 | 2009-10-30 | Avantor Performance Mat Inc | Stripping and cleaning compositions for microelectronics |
US20060094613A1 (en) * | 2004-10-29 | 2006-05-04 | Lee Wai M | Compositions and processes for photoresist stripping and residue removal in wafer level packaging |
JP4577095B2 (ja) | 2005-06-03 | 2010-11-10 | 東ソー株式会社 | 金属チタンのエッチング用組成物及びそれを用いたエッチング方法 |
WO2007044446A1 (en) | 2005-10-05 | 2007-04-19 | Advanced Technology Materials, Inc. | Oxidizing aqueous cleaner for the removal of post-etch residues |
WO2007111694A2 (en) * | 2005-11-09 | 2007-10-04 | Advanced Technology Materials, Inc. | Composition and method for recycling semiconductor wafers having low-k dielectric materials thereon |
US7947637B2 (en) * | 2006-06-30 | 2011-05-24 | Fujifilm Electronic Materials, U.S.A., Inc. | Cleaning formulation for removing residues on surfaces |
US20080139436A1 (en) * | 2006-09-18 | 2008-06-12 | Chris Reid | Two step cleaning process to remove resist, etch residue, and copper oxide from substrates having copper and low-K dielectric material |
US8685909B2 (en) * | 2006-09-21 | 2014-04-01 | Advanced Technology Materials, Inc. | Antioxidants for post-CMP cleaning formulations |
JP5237300B2 (ja) * | 2006-12-21 | 2013-07-17 | アドバンスド テクノロジー マテリアルズ,インコーポレイテッド | エッチング後残留物を除去するための液体洗浄剤 |
US20100112728A1 (en) * | 2007-03-31 | 2010-05-06 | Advanced Technology Materials, Inc. | Methods for stripping material for wafer reclamation |
CN101785087A (zh) * | 2007-08-22 | 2010-07-21 | 大金工业株式会社 | 半导体干式工艺后的残渣除去液和使用该残渣除去液的残渣除去方法 |
WO2009064336A1 (en) * | 2007-11-16 | 2009-05-22 | Ekc Technology, Inc. | Compositions for removal of metal hard mask etching residues from a semiconductor substrate |
EP2540870A1 (en) * | 2007-12-21 | 2013-01-02 | Wako Pure Chemical Industries, Ltd. | Etching agent, etching method and liquid for preparing etching agent |
JP5813280B2 (ja) * | 2008-03-19 | 2015-11-17 | 富士フイルム株式会社 | 半導体デバイス用洗浄液、および洗浄方法 |
US7825079B2 (en) * | 2008-05-12 | 2010-11-02 | Ekc Technology, Inc. | Cleaning composition comprising a chelant and quaternary ammonium hydroxide mixture |
WO2010029867A1 (ja) * | 2008-09-09 | 2010-03-18 | 昭和電工株式会社 | チタン系金属、タングステン系金属、チタンタングステン系金属またはそれらの窒化物のエッチング液 |
US8080475B2 (en) | 2009-01-23 | 2011-12-20 | Intel Corporation | Removal chemistry for selectively etching metal hard mask |
SG187551A1 (en) | 2010-07-16 | 2013-03-28 | Advanced Tech Materials | Aqueous cleaner for the removal of post-etch residues |
KR101270560B1 (ko) | 2010-11-12 | 2013-06-03 | 오씨아이 주식회사 | 금속막 식각용 조성물 |
KR20120066950A (ko) | 2010-12-15 | 2012-06-25 | 삼성전자주식회사 | 식각액, 이를 이용한 표시 장치 및 그 제조 방법 |
US9257270B2 (en) | 2011-08-15 | 2016-02-09 | Ekc Technology | Method and composition for removing resist, etch residue, and copper oxide from substrates having copper, metal hardmask and low-k dielectric material |
US9546321B2 (en) * | 2011-12-28 | 2017-01-17 | Advanced Technology Materials, Inc. | Compositions and methods for selectively etching titanium nitride |
US9070625B2 (en) | 2012-01-04 | 2015-06-30 | International Business Machines Corporation | Selective etch chemistry for gate electrode materials |
US20130200040A1 (en) * | 2012-01-04 | 2013-08-08 | International Business Machines Corporation | Titanium nitride removal |
US8835326B2 (en) | 2012-01-04 | 2014-09-16 | International Business Machines Corporation | Titanium-nitride removal |
JP5692108B2 (ja) * | 2012-02-03 | 2015-04-01 | 日立化成株式会社 | 半導体実装用導電基材の表面処理方法、ならびにこの処理方法を用いてなる導電基材および半導体パッケージ |
US9058976B2 (en) * | 2012-11-06 | 2015-06-16 | International Business Machines Corporation | Cleaning composition and process for cleaning semiconductor devices and/or tooling during manufacturing thereof |
-
2013
- 2013-12-11 US US14/103,303 patent/US20150104952A1/en not_active Abandoned
-
2014
- 2014-01-03 TW TW103100235A patent/TW201522574A/zh unknown
- 2014-10-09 US US15/028,501 patent/US10155921B2/en active Active
- 2014-10-09 TW TW103135159A patent/TWI650415B/zh active
- 2014-10-09 CN CN201480055151.5A patent/CN105612599B/zh active Active
- 2014-10-09 KR KR1020167012243A patent/KR102334603B1/ko active IP Right Grant
- 2014-10-09 JP JP2016521931A patent/JP2016535819A/ja active Pending
- 2014-10-09 US US15/028,573 patent/US10005991B2/en active Active
- 2014-10-09 CN CN201480055153.4A patent/CN105874562B/zh active Active
- 2014-10-09 JP JP2016522060A patent/JP6523269B2/ja active Active
- 2014-10-09 KR KR1020167012242A patent/KR102327432B1/ko active IP Right Grant
- 2014-10-09 TW TW103135158A patent/TWI650414B/zh active
- 2014-11-14 US US15/028,491 patent/US20160240368A1/en not_active Abandoned
- 2014-11-14 JP JP2016521999A patent/JP2017502491A/ja active Pending
- 2014-11-14 CN CN201480055154.9A patent/CN105874568A/zh active Pending
- 2014-11-14 KR KR1020167012240A patent/KR20170076616A/ko not_active Application Discontinuation
- 2014-11-14 WO PCT/US2013/074356 patent/WO2015053800A2/en active Application Filing
Cited By (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170158913A1 (en) * | 2014-07-15 | 2017-06-08 | Basf Se | Chemical mechanical polishing (cmp) composition |
US10570316B2 (en) * | 2014-07-15 | 2020-02-25 | Basf Se | Chemical mechanical polishing (CMP) composition |
US20170229308A1 (en) * | 2014-10-31 | 2017-08-10 | Fujifilm Corporation | Mram dry etching residue removal composition, method of producing magnetoresistive random access memory, and cobalt removal composition |
US10049883B2 (en) * | 2014-10-31 | 2018-08-14 | Fujifilm Corporation | MRAM dry etching residue removal composition, method of producing magnetoresistive random access memory, and cobalt removal composition |
US10538846B2 (en) * | 2015-12-11 | 2020-01-21 | Dongwoo Fine-Chem Co., Ltd. | Etching solution composition for tungsten layer, method for preparing electronic device using the same and electronic device |
US20170167032A1 (en) * | 2015-12-11 | 2017-06-15 | Dongwoo Fine-Chem Co., Ltd. | Etching solution composition for tungsten layer, method for preparing electronic device using the same and electronic device |
JP2017108104A (ja) * | 2015-12-11 | 2017-06-15 | 東友ファインケム株式会社Dongwoo Fine−Chem Co., Ltd. | タングステン膜エッチング液組成物、これを用いた電子デバイスの製造方法および電子デバイス |
CN106868511A (zh) * | 2015-12-11 | 2017-06-20 | 东友精细化工有限公司 | 用于钨层的蚀刻溶液组合物、用其制作电子器件的方法及电子器件 |
US10865484B2 (en) * | 2016-03-29 | 2020-12-15 | Technic France | Solution and method for etching titanium based materials |
US20190127858A1 (en) * | 2016-03-29 | 2019-05-02 | Technic France | Solution and method for etching titanium based materials |
EP3351658A1 (en) * | 2017-01-23 | 2018-07-25 | Versum Materials US, LLC | Etching solution for tungsten and gst films |
US11035044B2 (en) * | 2017-01-23 | 2021-06-15 | Versum Materials Us, Llc | Etching solution for tungsten and GST films |
US20180209049A1 (en) * | 2017-01-23 | 2018-07-26 | Versum Materials Us, Llc | Etching Solution For Tungsten And GST Films |
CN110462799A (zh) * | 2017-03-31 | 2019-11-15 | 关东化学株式会社 | 钛层或含钛层的蚀刻液组合物及蚀刻方法 |
KR20200013225A (ko) * | 2018-07-26 | 2020-02-06 | 버슘머트리얼즈 유에스, 엘엘씨 | TiN 하드 마스크 제거 및 에칭 잔류물 세정용 조성물 |
IL268256B2 (en) * | 2018-07-26 | 2024-02-01 | Versum Mat Us Llc | A preparation for removing a hard titanium nitride mask and cleaning burn residue |
US11017995B2 (en) | 2018-07-26 | 2021-05-25 | Versum Materials Us, Llc | Composition for TiN hard mask removal and etch residue cleaning |
EP3599634A1 (en) * | 2018-07-26 | 2020-01-29 | Versum Materials US, LLC | Composition for titanium nitride hard mask removal and etch residue cleaning |
IL268256B1 (en) * | 2018-07-26 | 2023-10-01 | Versum Mat Us Llc | A preparation for removing a hard titanium nitride mask and cleaning burn residue |
KR102285003B1 (ko) * | 2018-07-26 | 2021-08-05 | 버슘머트리얼즈 유에스, 엘엘씨 | TiN 하드 마스크 제거 및 에칭 잔류물 세정용 조성물 |
US11345852B2 (en) | 2018-08-16 | 2022-05-31 | Lam Research Corporation | Etchant composition |
CN110911278A (zh) * | 2018-09-18 | 2020-03-24 | 三星电子株式会社 | 蚀刻金属阻挡层和金属层的方法和制造半导体器件的方法 |
US11795550B2 (en) | 2018-09-18 | 2023-10-24 | Samsung Electronics Co., Ltd. | Etching composition, a method of etching a metal barrier layer and a metal layer using the same, and method of manufacturing semiconductor device using the same |
US11268024B2 (en) | 2019-05-01 | 2022-03-08 | Fujifilm Electronic Materials U.S.A., Inc. | Etching compositions |
US11268025B2 (en) | 2019-06-13 | 2022-03-08 | Fujifilm Electronic Materials U.S.A., Inc. | Etching compositions |
WO2020251800A1 (en) * | 2019-06-13 | 2020-12-17 | Fujifilm Electronic Materials U.S.A., Inc. | Etching compositions |
US11499099B2 (en) * | 2019-09-10 | 2022-11-15 | Fujifilm Electronic Materials U.S.A., Inc. | Etching composition |
CN113130292A (zh) * | 2019-12-31 | 2021-07-16 | 安集微电子科技(上海)股份有限公司 | 一种等离子体刻蚀残留物清洗液 |
US11390805B2 (en) * | 2020-02-05 | 2022-07-19 | Samsung Electronics Co., Ltd. | Etching composition and method for manufacturing semiconductor device using the same |
CN113430072A (zh) * | 2020-03-23 | 2021-09-24 | 上海新阳半导体材料股份有限公司 | 移除硬遮罩的钴兼容性半水基清洗液、其制备方法及应用 |
CN112323136A (zh) * | 2020-10-26 | 2021-02-05 | 深圳市裕展精密科技有限公司 | 退镀液以及退镀方法 |
WO2023232322A1 (de) * | 2022-06-02 | 2023-12-07 | Betek Gmbh & Co. Kg | Entschichtungslösung, verfahren und vorrichtung zum nasschemischen entfernen einer pvd- oder cvd-titannitrid-schicht von einem hartmetall-trägerelement |
CN115141629A (zh) * | 2022-06-15 | 2022-10-04 | 湖北兴福电子材料有限公司 | TiN去除液 |
Also Published As
Publication number | Publication date |
---|---|
KR102327432B1 (ko) | 2021-11-17 |
US10155921B2 (en) | 2018-12-18 |
TWI650414B (zh) | 2019-02-11 |
US10005991B2 (en) | 2018-06-26 |
KR102334603B1 (ko) | 2021-12-06 |
JP2016535819A (ja) | 2016-11-17 |
WO2015053800A3 (en) | 2015-06-18 |
US20160240368A1 (en) | 2016-08-18 |
KR20160068903A (ko) | 2016-06-15 |
TW201527518A (zh) | 2015-07-16 |
WO2015053800A2 (en) | 2015-04-16 |
TW201527519A (zh) | 2015-07-16 |
TW201522574A (zh) | 2015-06-16 |
JP2016536785A (ja) | 2016-11-24 |
KR20170076616A (ko) | 2017-07-04 |
KR20160068902A (ko) | 2016-06-15 |
CN105612599B (zh) | 2019-05-14 |
CN105612599A (zh) | 2016-05-25 |
TWI650415B (zh) | 2019-02-11 |
CN105874562B (zh) | 2019-05-14 |
CN105874562A (zh) | 2016-08-17 |
US20160254182A1 (en) | 2016-09-01 |
JP6523269B2 (ja) | 2019-05-29 |
CN105874568A (zh) | 2016-08-17 |
JP2017502491A (ja) | 2017-01-19 |
US20160312162A1 (en) | 2016-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10155921B2 (en) | Removal composition for selectively removing hard mask and methods thereof | |
US9972485B2 (en) | Method and composition for removing resist, etch residue, and copper oxide from substrates having copper, metal hardmask and low-k dielectric material | |
US20130045908A1 (en) | Method and composition for removing resist, etch residue, and copper oxide from substrates having copper, metal hardmask and low-k dielectric material | |
KR101444468B1 (ko) | 에칭후 잔류물을 제거하기 위한 산화성 수성 세정제 | |
EP3004287B1 (en) | Compositions and methods for selectively etching titanium nitride | |
WO2015054460A1 (en) | Removal composition for selectively removing hard mask | |
US10790187B2 (en) | Post-etch residue removal for advanced node beol processing | |
CN110997643B (zh) | 清洁组合物 | |
KR20220016913A (ko) | 에칭 조성물 | |
CN109642159B (zh) | 非水性钨相容性金属氮化物选择性蚀刻剂和清洁剂 | |
TW202424158A (zh) | 用於相對於鎢選擇性移除TiN層的組合物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: EKC TECHNOLOGY, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CUI, HUA;REEL/FRAME:031774/0196 Effective date: 20131023 |
|
AS | Assignment |
Owner name: EKC TECHNOLOGY INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CUI, HUA;REEL/FRAME:032386/0591 Effective date: 20140225 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |