US20080113028A1 - Novel Block Copolymer, Micelle Preparation, And Anticancer Agent Containing The Same As Active Ingredient - Google Patents

Novel Block Copolymer, Micelle Preparation, And Anticancer Agent Containing The Same As Active Ingredient Download PDF

Info

Publication number
US20080113028A1
US20080113028A1 US11/662,834 US66283405A US2008113028A1 US 20080113028 A1 US20080113028 A1 US 20080113028A1 US 66283405 A US66283405 A US 66283405A US 2008113028 A1 US2008113028 A1 US 2008113028A1
Authority
US
United States
Prior art keywords
group
block copolymer
relative
optionally substituted
anticancer agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/662,834
Other languages
English (en)
Inventor
Kazuhisa Shimizu
Keizou Ishikawa
Takeshi Nakanishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kayaku Co Ltd
Original Assignee
Nippon Kayaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Co Ltd filed Critical Nippon Kayaku Co Ltd
Publication of US20080113028A1 publication Critical patent/US20080113028A1/en
Assigned to NIPPON KAYAKU KABUSHIKI KAISHA reassignment NIPPON KAYAKU KABUSHIKI KAISHA ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ISHIKAWA, KEIZOU, NAKANISHI, TAKESHI, SHIMIZU, KAZUHISA
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G81/00Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/337Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having four-membered rings, e.g. taxol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/34Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyesters, polyamino acids, polysiloxanes, polyphosphazines, copolymers of polyalkylene glycol or poloxamers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/107Emulsions ; Emulsion preconcentrates; Micelles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/107Emulsions ; Emulsion preconcentrates; Micelles
    • A61K9/1075Microemulsions or submicron emulsions; Preconcentrates or solids thereof; Micelles, e.g. made of phospholipids or block copolymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the present invention relates to a novel block copolymer, a micelle preparation using the same, and an anticancer agent containing the micelle preparation as an active ingredient.
  • drugs are sparingly water-soluble hydrophobic compounds. When such drug is used to attain a desired therapeutic effect, the drug is usually solubilized and administered to a patient. Accordingly, solubilization of sparingly water-soluble drugs, particularly sparingly water-soluble anticancer agents, is important for oral or parenteral pharmaceutical preparations, particularly those for intravenous administration.
  • solubilizing a sparingly water-soluble anticancer agent there is a method which comprises adding a surfactant, and it is known to use, for example, a polyoxyethylene castor oil derivative (Cremophor) in order to solubilize paclitaxel.
  • a method of using a micelle-forming block copolymer as a drug carrier is described in, for example, JP-A-6-107565 (Patent Document 1), JP-A-6-206815 (Patent Document 2) or JP-A-11-335267 (Patent Document 3), and paclitaxel-encapsulated micelles are described in JP-A-2001-226294 (Patent Document 4).
  • a pharmaceutical preparation comprising a sparingly water-soluble anticancer agent such as a taxane anticancer agent with a block copolymer as a drug carrier, when intravenously administered, has never achieved retention of a higher concentration of the drug in blood, accumulation of the drug at a higher concentration in a tumor tissue, a higher pharmacological effect and lower side effects than when the drug is administered alone.
  • a sparingly water-soluble anticancer agent such as a taxane anticancer agent with a block copolymer as a drug carrier
  • a medicinal preparation which has no harmful side effects such as hypersensitive reaction, increases the water solubility of a sparingly water-soluble anticancer agent, maintains a high drug concentration in blood, accumulates a drug at a high concentration in a tumor tissue, enhances the pharmacological effect of the sparingly water-soluble anticancer agent, and reduces the side effects of the anticancer agent.
  • the present inventors made extensive study to solve the problem described above, and as a result, they found a novel block copolymer, a micelle preparation using the copolymer, and an anticancer agent comprising the same as an active ingredient, and the present invention was thereby completed.
  • the present invention relates to:
  • R1 represents a hydrogen atom or a (C1 to C5) alkyl group
  • R2 represents a (C1 to C5) alkylene group
  • R3 represents a methylene group or an ethylene group
  • R4 represents a hydrogen atom or a (C1 to C4) acyl group
  • R5 represents a hydroxyl group, an optionally substituted aryl (C1 to C8) alkoxy group or —N(R6)-CO—NHR7
  • R6 and R7 may be the same or different and each represents a (C3 to C6) cyclic alkyl group, or a (C1 to C5) alkyl group optionally substituted with a tertiary amino group
  • n represents 5 to 1000
  • m represents 2 to 300
  • x represents 0 to 300
  • y represents 0 to 300, provided that the sum of x and y is 1 or more to m or less
  • R5 is a hydroxyl group at a ratio of 1-99% relative to
  • R1 represents a hydrogen atom or a (C1 to C5) alkyl group
  • R2 represents a (C1 to C5) alkylene group
  • R3 represents a methylene group or an ethylene group
  • R4 represents a hydrogen atom or a (C1 to C4) acyl group
  • n represents 5 to 1000
  • x represents 0 to 300
  • y represents 0 to 300, provided that the sum of x and y is 2 to 300
  • an optionally substituted aryl (C1 to C8) alkyl alcohol or an optionally substituted aryl (C1 to C8) alkyl halide to give a product which is partially esterified in the carboxylic acid side chains, followed by reacting the product with a carbodiimide compound in an amount of (x+y) to 5(x+y) equivalents relative to the compound represented by the general formula (2) in a solvent at 30 to 60° C.
  • R1 represents a hydrogen atom or a (C1 to C5) alkyl group
  • R2 represents a (C1 to C5) alkylene group
  • R3 represents a methylene group or an ethylene group
  • R4 represents a hydrogen atom or a (C1 to C4) acyl group
  • R5 represents a hydroxyl group, an optionally substituted aryl (C1 to C8) alkoxy group or —N(R6)-CO—NHR7
  • R6 and R7 may be the same or different and each represents a (C3 to C6) cyclic alkyl group or a (C1 to C5) alkyl group optionally substituted with a tertiary amino group
  • n represents 5 to 1000
  • m represents 2 to 300
  • x′ represents 0 to 300
  • y′ represents 0 to 300, provided that the sum of x′ and y′ is 1 or more to m or less
  • R5 is a hydroxyl group at a ratio of 0
  • the novel block copolymer of the present invention can be a drug carrier of less toxicity without showing harmful side effects such as hypersensitive reaction.
  • the block copolymer can form micelles in an aqueous medium and incorporate a sparingly water-soluble anticancer agent, especially paclitaxel, into the micelles in an amount necessary for disease treatment without bonding it to the block copolymer, thereby increasing the water solubility of the drug.
  • the micelle preparation containing the sparingly water-soluble anticancer agent is stable in an aqueous medium without observing aggregation of the micelles or release of the drug from the micelles for at least several hours.
  • the micelle preparation can be clinically useful anticancer agent because it maintains a higher concentration in blood and exhibit more potent drug activity with reduced side effects than by administering the anticancer agent alone or by administering the anticancer agent solubilized with a conventional surfactant.
  • the block copolymer of the present invention is obtained by reacting a compound having a polyethylene glycol (PEG) structural moiety and a polyamino acid structural moiety represented by the general formula (1) wherein R1 represents a hydrogen atom or a (C1 to C5) alkyl group, R2 represents a (C1 to C5) alkylene group, R3 represents a methylene group or an ethylene group, R4 represents a hydrogen atom or a (C1 to C4) acyl group, R5 represents a hydroxyl group, an optionally substituted aryl (C1 to C8) alkoxy group or —N(R6)-CO—NHR7, R6 and R7 may be the same or different and each represents a (C3 to C6) cyclic alkyl group, or a (C1 to C5) alkyl group optionally substituted with a tertiary amino group; n represents 5 to 1000, m represents 2 to 300, x represents 0 to 300 and y represents 0 to
  • R1 in the compound represented by the general formula (1) used in the present invention represents a hydrogen atom or a (C1 to C5) alkyl group among which the (C1 to C5) alkyl group is preferable.
  • Specific examples of the (C1 to C5) alkyl group include a methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, s-butyl group, t-butyl group and n-pentyl group, etc., among which a methyl group is particularly preferable.
  • the (C1 to C5) alkylene group represented by R2 includes a methylene group, ethylene group, trimethylene group and tetramethylene group, etc., and is preferably an ethylene group or a trimethylene group.
  • R3 represents a methylene group or an ethylene group, preferably a methylene group.
  • R4 represents a hydrogen atom or a (C1 to C4) acyl group, preferably a (C1 to C4) acyl group, and specific examples include a formyl group, acetyl group, propionyl group, butyroyl group etc., particularly preferably an acetyl group.
  • the aryl (C1 to C8) alkoxy group represented by R5 includes a linear or branched (C1 to C8) alkoxy group to which an aromatic hydrocarbon group such as a phenyl group or a naphthyl group was bonded, and specific examples include a benzyloxy group, phenethyloxy group, phenylpropoxy group, phenylbutoxy group, phenylpentyloxy group, phenylhexyloxy group, phenylheptyloxy group, phenyloctyloxy group, naphthylethoxy group, naphthylpropoxy group, naphthylbutoxy group and naphthylpentyloxy group, etc.
  • the substituent on the optionally substituted aryl (C1 to C8) alkoxy group includes a lower alkoxy group such as a methoxy group, ethoxy group, isopropoxy group, n-butoxy group and t-butoxy group, a halogen atom such as a fluorine atom, chlorine atom and bromine atom, a nitro group, a cyano group, etc.
  • a halogen atom such as a fluorine atom, chlorine atom and bromine atom
  • a nitro group a cyano group
  • the optionally substituted aryl (C1 to C8) alkoxy group is preferably an unsubstituted phenyl (C1 to C6) alkoxy group, and examples thereof include an unsubstituted benzyloxy group, an unsubstituted phenethyloxy group, an unsubstituted phenylpropoxy group, an unsubstituted phenylbutoxy group, an unsubstituted phenylpentyloxy group, an unsubstituted phenylhexyloxy group, etc., among which an unsubstituted benzyloxy group and an unsubstituted phenylbutoxy group are particularly preferable.
  • Specific examples of the (C3 to C6) cyclic alkyl group, or (C1 to C5) alkyl group which may be substituted with a tertiary amino group, represented by R6 or R7, include a cyclopropyl group, cyclopentyl group, cyclohexyl group, methyl group, ethyl group, isopropyl group, n-butyl group, 3-dimethylaminopropyl group and 5-dimethylaminopentyl group, etc., preferably an ethyl group, isopropyl group, cyclohexyl group and 3-dimethylaminopropyl group, particularly preferably an isopropyl group.
  • m means the number of polymerized amino acid structural units in the polyamino acid structural moiety.
  • the polyamino acid structural moiety contains each structural unit wherein R5 in the general formula (1) is a hydroxyl group, an optionally substituted aryl (C1 to C8) alkoxy group or —N(R6)-CO—NHR7 and a structural unit having a cyclic imide structure.
  • the ratio at which R5 in the general formula (1) is a hydroxyl group is 1 to 99%, preferably 10 to 90%, more preferably 20 to 80%, relative to m, the ratio at which R5 is an optionally substituted aryl (C1 to C8) alkoxy group is 1 to 99%, preferably 10 to 90%, more preferably 20 to 80%, relative to m, and the ratio at which R5 is —N(R6)-CO—NHR7 is 0 to 10% relative to m.
  • n is 5 to 1000, preferably 20 to 500, more preferably 80 to 400, m is 2 to 300, preferably 10 to 100, more preferably 15 to 60, x is 0 to 300, preferably 0 to 100, more preferably 5 to 60, y is 0 to 300, preferably 0 to 100, more preferably 5 to 60, and the sum of x and y is 1 or more to m or less.
  • the respective amino acid structural units may be bound at random or in a block form.
  • This reaction is carried out in a solvent
  • the solvent used include, but are not limited to, polar solvents such as dimethylformamide (DMF), dimethylsulfoxide (DMSO), acetonitrile, tetrahydrofuran and dioxane, nonpolar solvents such as benzene, n-hexane and diethyl ether, and water and mixed solvents thereof.
  • the amount of the solvent used is usually 1 to 500 parts by weight per part of the starting compounds.
  • the carbodiimide compound used in the reaction described above includes carbodiimide compounds having a (C3 to C6) cyclic alkyl group or a (C1 to C5) alkyl group which may be substituted with a tertiary amino group, and specific examples include diethyl carbodiimide, 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC), 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC.HCl), dicyclohexyl carbodiimide (DCC), diisopropyl carbodiimide (DIPCI) etc., preferably DCC or DIPCI, particularly preferably DIPCI.
  • the amount of the carbodiimide compound used in the reaction in terms of the number (m) of amino acid structural units polymerized, is m to 5 m equivalents, preferably m to 3 m equivalents, relative to the compound represented by the general formula (1). That is, the carbodiimide compound may be used in m- to 5 m-fold mol, preferably in m- to 3 m-fold mol, relative to the compound represented by the general formula (1).
  • a reaction assistant such as N-hydroxysuccinimide, 1-hydroxybenzotriazole (HOBt), N-hydroxy-5-norbornene-2,3-dicarboxylic acid imide (HOBN), 4-dimethylaminopyridine (DMAP), N,N-diisopropylethylamine or triethylamine may be allowed to be coexistent in the reaction, among which DMAP is preferable.
  • the amount thereof is about 0.1 m to 5 m equivalents, preferably about 0.2 m to 2 m equivalents, based on the compound represented by the general formula (1).
  • the reaction temperature is preferably 30 to 60° C., particularly preferably 30 to 40° C.
  • the reaction time is 2 to 48 hours, preferably 6 to 36 hours.
  • the method for preparing the compound represented by the general formula (1) is not particularly limited; for example, there is a method in which the compound wherein R5 is an optionally substituted aryl (C1 to C8) alkoxy group is partially hydrolyzed with an acid or an alkali according to a method described in JP-A-11-335267 (Patent Document 3) or JP-A-2001-226294 (Patent Document 4) supra.
  • the compound represented by the general formula (1) can also be obtained by reacting the compound represented by the general formula (2) wherein R1 represents a hydrogen atom or a (C1 to C5) alkyl group, R2 represents a (C1 to C5) alkylene group, R3 represents a methylene group or an ethylene group, R4 represents a hydrogen atom or a (C1 to C4) acyl group, n represents 5 to 1000, x represents 0 to 360 and y represents 0 to 300, provided that the sum of x and y is 2 to 300, with an optionally substituted aryl (C1 to C8) alky alcohol or an optionally substituted aryl (C1 to C8) alkyl halide.
  • R1 represents a hydrogen atom or a (C1 to C5) alkyl group
  • R2 represents a (C1 to C5) alkylene group
  • R3 represents a methylene group or an ethylene group
  • R4 represents a hydrogen atom or a (C1 to C4)
  • R1, R2, R3 and R4 each represent the same group as in the general formula (1), and the preferable group is also the same as in the general formula (1).
  • n, x and y are also preferably the same as in the general formula (1).
  • reaction of the compound represented by the general formula (2) with the optionally substituted aryl (C1 to C8) alkyl alcohol is specifically a dehydration condensation reaction in the presence of a carbodiimide compound in a solvent.
  • the optionally substituted aryl (C1 to C8) alkyl alcohol is an alcohol corresponding to the optionally substituted aryl (C1 to C8) alkoxy group.
  • the amount of the aryl (C1 to C8) alkyl alcohol used in this reaction is 0.01 to 5 equivalents, preferably 0.1 to 3 equivalents, more preferably 0.15 to 2 equivalents, based on the amount of carboxyl groups (that is, the sum of x and y) in the general formula (2).
  • the solvent used in this reaction is the same as used in the reaction of the compound represented by the general formula (1) with the carbodiimide compound, and the amount of the solvent used is also the same as defined therein.
  • the carbodiimide compound used in this reaction can also be the same as defined therein, and the amount of the carbodiimide compound used may be the same as defined therein.
  • the reaction assistant used may be the same as defined above, and the amount of the reaction assistant used may be the same as defined above.
  • the reaction temperature is preferably 5 to 35° C., more preferably 15 to 30° C.
  • the reaction time is 2 to 48 hours, preferably 6 to 36 hours.
  • the reaction of the compound represented by the general formula (2) with the optionally substituted aryl (C1 to C8) alkyl halide includes alkylation reaction by nucleophilic substitution in the presence of a base in a solvent.
  • the optionally substituted aryl (C1 to C8) alkyl halide is the same compound as the optionally substituted aryl (C1 to C8) alkyl alcohol described above except that a halogen atom is present in place of the hydroxyl group of the latter compound.
  • the halogen atom in the optionally substituted aryl (C1 to C8) alkyl halide includes a fluorine atom, chlorine atom, bromine atom and iodine atom, preferably a bromine atom or iodine atom.
  • the amount of the aryl (C1 to C8) alkyl halide used in this reaction is 0.01 to 5 equivalents, preferably 0.1 to 3 equivalents, more preferably 0.15 to 2 equivalents, relative to the amount (the sum of x and y) of carboxyl groups in the general formula (2).
  • the solvent used in this reaction is the same as in the reaction of the compound represented by the general formula (1) with the carbodiimide compound, and the amount of the solvent used is also the same as defined therein.
  • the base used in this reaction includes, for example, tertiary amines such as triethylamine, N,N-diisopropylethylamine, 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), among which N,N-diisopropylethylamine and DBU are particularly preferable.
  • tertiary amines such as triethylamine, N,N-diisopropylethylamine, 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), among which N,N-diisopropylethylamine and DBU are particularly preferable.
  • the amount of the base used is about 0.1 to 5 equivalents, more preferably 0.2 to 2 equivalents, relative to the amount (the sum of x and y) of carboxyl groups in the compound represented by the general formula (2).
  • This reaction is carried out preferably at 5 to 60° C., more preferably 15 to 40° C.
  • the reaction time is 2 to 48 hours, preferably 6 to 36 hours.
  • the optionally substituted aryl (C1 to C8) alkyl alcohol or the optionally substituted aryl (C1 to C8) alkyl halide may be a commercially available compound or a compound prepared by a known organic synthesis method or a compound prepared by using a known organic reaction.
  • the optionally substituted aryl (C1 to C8) alkyl alcohol or the optionally substituted aryl (C1 to C8) alkyl halide include those compounds which correspond to the optionally substituted aryl (C1 to C8) alkoxy group described above, and preferable compounds thereof are also the same as defined therein.
  • the optionally substituted aryl (C1 to C8) alkyl alcohol or the optionally substituted aryl (C1 to C8) alkyl halide include unsubstituted benzyl alcohol, unsubstituted phenethyl alcohol, unsubstituted phenyl propanol, unsubstituted phenyl butanol, unsubstituted phenyl pentanol, unsubstituted phenyl hexanol, unsubstituted benzyl bromide, unsubstituted phenethyl bromide, unsubstituted phenyl propyl bromide, unsubstituted phenyl butyl bromide, unsubstituted phenyl pentyl bromide etc., and particularly preferable examples include unsubstituted benzyl alcohol, unsubstituted phenyl butanol and unsubstituted benz
  • the reaction may be carried out in the same solvent under the same reaction conditions as in the reaction of the compound represented by the general formula (1) with the carbodiimide compound, and the preferable reaction conditions are also the same as defined therein. That is, the amount of the carbodiimide compound is (x+y) to 5(x+y) equivalents, preferably (x+y) to 3(x+y) equivalents, based on the compound represented by the general formula (2).
  • the method for preparing the compound of the general formula (2) includes, for example, a method described in JP-A-6-206815 (Patent Document 2) supra.
  • the present invention also encompasses a block copolymer represented by the general formula (3) wherein R1 represents a hydrogen atom or a (C1 to C5) alkyl group, R2 represents a (C1 to C5) alkylene group, R3 represents a methylene group or an ethylene group, R4 represents a hydrogen atom or a (C1 to C4) acyl group, R5 represents a hydroxyl group, an optionally substituted aryl (C1 to C8) alkoxy group or —N(R6)-CO—NHR7, R6 and R7 may be the same or different and each represents a (C3 to C6) cyclic alkyl group, or a (C1 to C5) alkyl group optionally substituted with a tertiary amino group; n represents 5 to 1000, m represents 2 to 300, x′ represents 0 to 300 and y′ represents 0 to 300, provided that the sum of x′ and y′ is 1 or more to m or less; and R5
  • R1, R2, R3, R4, R5, R6 and R7 in the compound of the general formula (3) are the same as in the general formula (1), and preferable groups are also the same as defined therein. That is, the compound of the general formula (3) is preferably a block copolymer wherein R1 is a methyl group, R2 is a trimethylene group, R3 is a methylene group, R4 is an acetyl group, the optionally substituted aryl (C1 to C8) alkoxy group represented by R5 is a benzyloxy group or a 4-phenyl-1-butoxy group, and R6 and R7 each represent an isopropyl group.
  • n and m has the same meaning as defined in the general formula (1), each of n and m is preferably in the same range as defined in the general formula (1), x′ represents 0 to 300, preferably 0 to 100, particularly preferably 5 to 40, y′ represents 0 to 300, preferably 0 to 100, particularly preferably 5 to 40, provided that the sum of x′ and y′ is 1 or more to m or less.
  • the ratio at which R5 is a hydroxyl group is 0 to 88%, preferably 0 to 75%, more preferably 0 to 50%, relative to m, the ratio at which R5 is an aryl (C1 to C8) alkoxy group is 1 to 89%, preferably 10 to 80%, more preferably 20 to 70%, relative to m, and the ratio at which R5 is —N(R6)-CO—NHR7 is 11 to 30% relative to m.
  • the ratio at which R5 is a hydroxyl group is particularly preferably 0% relative to m.
  • the fact that the ratio at which R5 is a hydroxyl group is 0% relative to m means that the compound of the general formula (3) does not have properties of carboxylic acid, and specifically this is revealed by the fact that in an analysis with high performance liquid chromatography on an anion exchange column, the compound is not retained on the column.
  • the present invention also encompasses a micelle preparation formed from the block copolymer and a sparingly water-soluble anticancer agent.
  • the block copolymer contained in the micelle preparation may be in the form of a salt formed by ionic dissociation of a part or all of the carboxyl groups.
  • the salt includes an alkali metal salt, an alkaline earth metal salt, an ammonium salt and an organic ammonium salt, etc., and specific examples include a sodium salt, a potassium salt, a calcium salt, an ammonium salt and a triethylammonium salt, etc.
  • the sparingly water-soluble anticancer agent refers to an anticancer agent which is substantially not dissolved in an equal amount of water in an environment at room temperature, at ordinary pressure etc. or is partitioned preferentially into a chloroform phase in a solvent system consisting of water and chloroform in equal amounts.
  • anticancer agent can include, for example, anthracycline-based anticancer agents such as adriamycin, taxane-based anticancer agents such as paclitaxel and docetaxel, vinca alkaloid-based anticancer agents such as vincristine, methotrexate or derivatives thereof; particularly taxane-based anticancer agents, especially paclitaxel, can be mentioned.
  • the water solubility of paclitaxel is not higher than 1 ⁇ g/mL.
  • the block copolymer: sparingly water-soluble anticancer agent ratio by weight is 1000:1 to 1:1, preferably 100:1 to 1.5:1, more preferably 20:1 to 2:1.
  • the sparingly water-soluble anticancer agent may be contained in an amount as large as possible.
  • the micelle preparation can be prepared for example by any of the following methods.
  • the sparingly water-soluble anticancer agent is dissolved if necessary in a water-miscible organic solvent and then mixed under stirring with an aqueous dispersion of the block copolymer.
  • the mixture when mixed under stirring may be heated.
  • a solution of the sparingly water-soluble anticancer agent in a water-immiscible organic solvent is mixed with an aqueous dispersion of the block copolymer, followed by volatilization of the organic solvent under stirring.
  • the sparingly water-soluble anticancer agent and the block copolymer are dissolved in a water-miscible organic solvent and the resulting solution in a dialysis membrane is dialyzed against a buffer solution and/or water.
  • the sparingly water-soluble anticancer agent and the block copolymer are dissolved in a water-immiscible organic solvent, and the resulting solution is mixed with water and stirred to form an oil-in-water (O/W) emulsion followed by volatilizing the organic solvent.
  • O/W oil-in-water
  • the water-immiscible organic solvent refers to a solvent with a concept opposed to DMF, DMSO, acetonitrile etc. which are substantially freely miscible with water used in formation of polymer micelles in JP-A-11-335267 (Patent Document 3) supra, and non-limiting examples of the water-immiscible organic solvent can include chloroform, methylene chloride, toluene, xylene and n-hexane, etc., or mixed solvents thereof.
  • the water-immiscible organic solvent is mixed with an aqueous medium, that is, water (including purified water or deionized water) or an isotonic or buffered aqueous solution containing sugars, a stabilizer, common salt, a buffer etc.
  • a water-miscible organic solvent and other inorganic salts for example, sodium sulfate etc. may be contained unless they adversely influence formation of O/W emulsion.
  • the water-immiscible organic solvent and the aqueous medium are mixed at a volume ratio of 1:100, preferably 1:10.
  • This mixing means can be any means used customarily in forming various emulsions, such as a mechanical stirrer, a shaking apparatus and an ultrasonic irradiator.
  • the operation temperature is not limited, but in consideration of the temperature stability of the drug, the boiling point of the solvent, etc., the temperature is preferably set in the range of about ⁇ 5° C. to about 40° C.
  • the mixing operation is continued in an open system or the organic solvent is removed by evaporation (or removed by volatilization) under stirring under reduced pressure.
  • the aqueous solution of the micelle preparation may be used as it is or when the micelle preparation may have been associated or aggregated, the preparation may be subjected to ultrasonication and then filtered to remove insolubles or precipitates.
  • the filter membrane used is not particularly limited, and is preferably a membrane having a pore diameter of about 0.1 to 1 ⁇ m.
  • the micelle preparation of the present invention is stable in an aqueous medium, and the drug concentration of the anticancer agent in an aqueous medium can be increased by the present invention.
  • the preparation can be concentrated under reduced pressure or subjected to ultrafiltration or lyophilization.
  • the concentration of the sparingly water-soluble anticancer agent in the micelle preparation is 0.1 to 50 wt %, preferably 1 to 40 wt %, more preferably 5 to 35 wt %, based on the total weight of the sparingly water-soluble anticancer agent and the block copolymer, and the amount of the drug can be about 0.01 mg or more, preferably about 0.1 mg or more, more preferably about 1 mg or more, per mL of the aqueous solution of the micelle preparation.
  • the micelle preparation of the present invention is micelles having polyethylene glycol structural moieties directed outside in an aqueous medium and including the sparingly water-soluble anticancer agent in hydrophobic moieties inside the micelles.
  • the particle diameter of the micelles can be measured with a commercial light scattering particle size measuring device, and the average particle diameter is preferably 10 to 200 nm, particularly preferably 20 to 120 nm.
  • the present invention also encompasses an anticancer agent comprising the micelle preparation containing the sparingly water-soluble anticancer agent as an active ingredient.
  • an anticancer agent comprising the micelle preparation containing the sparingly water-soluble anticancer agent as an active ingredient.
  • the dose varies depending on the age, weight, medical condition, therapeutic purpose etc. of patients, and is roughly 10 to 500 mg/body/day.
  • the pharmaceutical preparation to be administered may contain a pharmacologically acceptable additive, and may be dissolved in a pharmaceutically acceptable solvent prior to administration.
  • the present invention also encompasses a lyophilized product of the micelle preparation.
  • HPLC means high performance liquid chromatography
  • NMR means hydrogen nuclear magnetic resonance spectrum
  • NMR was measured with sodium 2,2,3,3-deuterated-3-(trimethylsilyl)propionate as an internal standard in a solvent shown below with an apparatus (400 MHz) manufactured by BRUKER.
  • DMF (630 mL) was added to 42.00 g of PEG (average molecular weight 12000)-pAsp (polyaspartic acid; average polymerization degree 40)-Ac (represented by the general formula (2) wherein R1 is a methyl group, R2 is a trimethylene group, R3 is a methylene group, R4 is an acetyl group, n is about 272, x is about 10, y is about 30; abbreviated hereinafter as PEG-pAsp-Ac) produced by a method described in JP-A-6-206815 (Patent Document 2) supra, and PEG-pAsp-Ac was dissolved at 25° C., and DMAP (9.90 g), 4-phenyl-1-butanol (10.93 mL) and DIPCI (15.86 mL) were added thereto and reacted at the same temperature for 24 hours.
  • PEG average molecular weight 12000
  • PEG average molecular weight 12000
  • the block copolymer 1 (19.5 mg) was dissolved in 2 mL of acetonitrile, and 2 mL of 0.5 N aqueous sodium hydroxide solution was added thereto, and the solution was stirred at room temperature for 20 minutes to hydrolyze its ester linkages, then neutralized with 0.5 mL of acetic acid, and prepared to a volume of 25 mL with 50% hydrous acetonitrile.
  • the prepared solution was quantified for free 4-phenyl-1-butanol by reverse HPLC.
  • the block copolymer 1 was dissolved in a mixed solution of deuterated sodium hydroxide (NaOD)-heavy water (D 2 O)-deuterated acetonitrile (CD 3 CN), and measured by NMR, indicating that the partial structure of —N(i-Pr)—CO—NH(i-Pr) (that is, a structure of the —N(R6)-CO—NHR7 in the general formula (1) wherein each of R6 and R7 is an isopropyl group) was 6% relative to m.
  • NaOD deuterated sodium hydroxide
  • D 2 O deuterated acetonitrile
  • the block copolymer 2 (27.6 mg) was hydrolyzed by the same method as described above and measured by reverse phase HPLC, indicating that 4-phenyl-1-butanol bound via an ester linkage was 49% relative to m.
  • the block copolymer 2 was measured by NMR under the same conditions as described above, indicating that the partial structure of —N(i-Pr)—CO—NH(i-Pr) was 14% relative to m.
  • the block copolymer 3 (29.7 mg) was hydrolyzed by the same method as described in Example 1 and measured by reverse phase HPLC, indicating that 4-phenyl-1-butanol bound via an ester linkage was 49% relative to m.
  • PEG-pAsp-Ac (3.0 g) produced by a method described in JP-A-6-206815 (Patent Document 2) was dissolved in DMF (120 mL), and benzyl bromide (0.60 mL) and 1,8-diazabicyclo[5.4.0]undec-7-ene (0.75 mL) were added thereto and reacted at 35° C. for 17 hours.
  • This reaction liquid was added dropwise to a mixed solvent (1.2 L) consisting of diisopropyl ether:ethanol (4:1), and precipitates were recovered by filtration and dried under reduced pressure to give 3.17 g of crude crystals.
  • the block copolymer 4 (19.5 mg) was hydrolyzed by the same method as in Example 1 and measured by reverse phase HPLC, indicating that benzyl alcohol bound via an ester linkage was 32% relative to m.
  • the block copolymer 5 (19.8 mg) was hydrolyzed by the same method as in Example 1 and measured by reverse phase HPLC, indicating that benzyl alcohol bound via an ester linkage was 21% relative to m.
  • the block copolymer 6 (35.5 mg) was hydrolyzed by the same method as in Example 1 and measured by reverse phase HPLC, indicating that benzyl alcohol bound via an ester linkage was 60% relative to m.
  • the block copolymer 6 (300 mg) produced above was dissolved in DMF (6 mL), and DMAP (60.9 mg) and DIPCI (97.6 ⁇ L) were added thereto at 35° C. and reacted for 18 hours. 30 mL of ethyl acetate and then 90 mL of hexane were added to the reaction liquid, and precipitates were collected by filtration and dried under reduced pressure to give 290 mg of crude crystals. The crude crystals were dissolved in 50% hydrous acetonitrile, then passed through cation-exchange resin Dowex 50w8 (5 mL) and washed with 50% hydrous acetonitrile. The eluent was concentrated under reduced pressure and lyophilized to give 282.5 mg of block copolymer 7 of the present invention.
  • the block copolymer 7 (36.1 mg) was hydrolyzed by the same method as in Example 1 and measured by reverse phase HPLC, indicating that benzyl alcohol bound via an ester linkage was 37% relative to m.
  • the percentage of ester linkages of the block copolymers 2, 5 and 7 is lower than in the block copolymers 1, 4 and 6, and in measurement by anion exchange HPLC, these copolymers were not retained on the column.
  • the block copolymer 3 (Comparative Example 1), on the other hand, showed a peak retained on the column in measurement by anion exchange HPLC. No retention of the block copolymers 2, 5 and 7 in anion exchange HPLC indicates that these block copolymers are substantially free of a carboxylic acid structure.
  • the result in NMR measurement indicates that the percentage of the partial structure —N(i-Pr)—CO—NH(i-Pr) in the block copolymers 2, 5 and 7 is higher than in the block copolymers 1, 4 and 6, and the percentage of the partial structure —N(i-Pr)CO—NH(i-Pr) in the block copolymer 2 in Example 1 is higher by 7% than in Comparative Example 1.
  • Example 1 300 mg of the block copolymer 2 in Example 1 was weighed out and placed in a screw tube, and 30 mL of 40 mg/mL aqueous maltose solution was added to it to form a dispersion under stirring which was then cooled to 4° C. under stirring. 3 mL of the solution of 30 mg/mL paclitaxel in dichloromethane was added to the tube and stirred for 16 hours in a refrigerator without capping the tube and then sonicated (130 W, 10 minutes) to give a micelle preparation.
  • the paclitaxel concentration was 2.2 mg/mL.
  • the average particle diameter thereof determined by a light scattering particle measuring device manufactured by Particle Sizing System) was 57.8 nm.
  • the block copolymer 1 or block copolymer 2 was dissolved in 5% glucose injection and administered via a mouse caudal vein to female CDF1 mice in a dose of 333 mg/kg, and a fluctuation in the body weight was measured on Day 1 after administration.
  • As the control group the same amount of physiological saline was administered. The results are shown in Table 2.
  • the body weight of the group which was given the block copolymer 1 was decreased by 5% or more on Day 1 after administration, while the group which was given the block copolymer 2 showed an increase in body weight, similar to the group which was given physiological saline. From this result, it was revealed that the block copolymer of the present invention had reduced toxicity in the mice.
  • Mouse colon cancer Colon 26 cells were transplanted subcutaneously in the back of female CDF1 mouse, and after the volume of the tumor reached about 100 mm, the micelle preparation of Example 4, or paclitaxel alone as the control drug, was administered via a mouse caudal vein into the mouse 3 times at 4-day intervals, to examine the effect thereof on advanced cancer.
  • the micelle preparation had been diluted with 5% glucose solution to form a solution containing paclitaxel at a concentration of 3 mg/mL.
  • Paclitaxel for use as the sole regimen was dissolved in ethanol and mixed with an equal volume of Cremophor (manufactured by Sigma) to prepare a solution containing paclitaxel at a concentration of 30 mg/mL, and the resulting preparation was diluted with physiological saline to 3 mg/mL just before administration.
  • the antitumor effect of each drug was judged in percentage (T/C %) of the average tumor volume of the group which was given the drug on Day 11 after administration, relative to the average tumor volume of the group which was not given the drug. A lower numerical value is indicative of higher effect.
  • T/C percentage
  • T/C % Micelle preparation 100 8.4 (the invention) 75 22.1 50 30.7 Paclitaxel alone 100 52.6 (control drug) 50 81.6
  • the groups which were given paclitaxel alone in daily doses of 100 and 50 mg/kg showed tumor volumes of 52.6 and 81.6% on Day 11 after administration respectively based on the group which was not given the drug, while the groups which were given the micelle preparation of the present invention in daily doses of 100, 75 and 50 mg/kg showed tumor volumes of 8.4, 22.1 and 30.7% respectively, indicating that the micelle preparation of the present invention had high antitumor effect.
  • Each drug was prepared according to the same method as in Test Example 2 (in vivo antitumor effect on Colon 26).
  • the organic layer was recovered, evaporated into dryness, dissolved in 0.4 mL of dissolving liquid for HPLC, and measured for its paclitaxel concentration by HPLC. Separately, the tumor was homogenized with 0.5% acetic acid to prepare 1% tumor homogenate, and 0.1 mL of 1% tumor homogenate was deproteinized (3 times) with 0.1 mL of water and 1 mL of acetonitrile and subjected to liquid/liquid extraction by adding 2 mL of t-butyl methyl ether. The organic layer was concentrated and dissolved in 0.4 mL of dissolving liquid for HPLC and measured for its paclitaxel concentration by HPLC. The results are shown in Tables 4 and 5.
  • the micelle preparation of the present invention was recognized to maintain a higher concentration in plasma for a long time than when paclitaxel was administered alone.
  • the concentration of paclitaxel in the tumor was kept higher for a long time by administering the micelle preparation of the invention than by administering paclitaxel alone, indicating that paclitaxel was accumulated in the tumor by the micelle preparation of the present invention.
  • the micelle preparation of the present invention was administered via a mouse caudal vein to female CDF1 mice for 5 consecutive days, and the stretch reflex of the mouse hind limb was observed as an indicator of the peripheral nerve damage caused by paclitaxel.
  • Each drug was prepared in the same manner as in Test Example 2 (in vivo antitumor effect on Colon 26). The dose was 30 mg/kg in terms of paclitaxel. The results are shown in Table 6.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)
  • Polyamides (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Epoxy Compounds (AREA)
US11/662,834 2004-09-22 2005-09-16 Novel Block Copolymer, Micelle Preparation, And Anticancer Agent Containing The Same As Active Ingredient Abandoned US20080113028A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004275625 2004-09-22
JP2004-275625 2004-09-22
PCT/JP2005/017127 WO2006033296A1 (ja) 2004-09-22 2005-09-16 新規ブロック共重合体、ミセル調製物及びそれを有効成分とする抗癌剤

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/017127 A-371-Of-International WO2006033296A1 (ja) 2004-09-22 2005-09-16 新規ブロック共重合体、ミセル調製物及びそれを有効成分とする抗癌剤

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/971,036 Division US9434822B2 (en) 2004-09-22 2013-08-20 Block copolymer, micelle preparation, and anticancer agent containing the same as active ingredient
US14/727,912 Division US20150259479A1 (en) 2004-09-22 2015-06-02 Novel Block Copolymer, Micelle Preparation, And Anticancer Agent Containing The Same As Active Ingredient

Publications (1)

Publication Number Publication Date
US20080113028A1 true US20080113028A1 (en) 2008-05-15

Family

ID=36090056

Family Applications (3)

Application Number Title Priority Date Filing Date
US11/662,834 Abandoned US20080113028A1 (en) 2004-09-22 2005-09-16 Novel Block Copolymer, Micelle Preparation, And Anticancer Agent Containing The Same As Active Ingredient
US13/971,036 Active US9434822B2 (en) 2004-09-22 2013-08-20 Block copolymer, micelle preparation, and anticancer agent containing the same as active ingredient
US14/727,912 Abandoned US20150259479A1 (en) 2004-09-22 2015-06-02 Novel Block Copolymer, Micelle Preparation, And Anticancer Agent Containing The Same As Active Ingredient

Family Applications After (2)

Application Number Title Priority Date Filing Date
US13/971,036 Active US9434822B2 (en) 2004-09-22 2013-08-20 Block copolymer, micelle preparation, and anticancer agent containing the same as active ingredient
US14/727,912 Abandoned US20150259479A1 (en) 2004-09-22 2015-06-02 Novel Block Copolymer, Micelle Preparation, And Anticancer Agent Containing The Same As Active Ingredient

Country Status (15)

Country Link
US (3) US20080113028A1 (zh)
EP (1) EP1792927B1 (zh)
JP (2) JP4820758B2 (zh)
KR (1) KR101203475B1 (zh)
CN (1) CN101023119B (zh)
AU (1) AU2005285953B2 (zh)
BR (1) BRPI0515573A (zh)
CA (1) CA2581125C (zh)
DK (1) DK1792927T3 (zh)
ES (1) ES2410591T3 (zh)
PL (1) PL1792927T3 (zh)
PT (1) PT1792927E (zh)
RU (1) RU2375384C2 (zh)
TW (2) TWI394773B (zh)
WO (1) WO2006033296A1 (zh)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060099265A1 (en) * 2003-03-20 2006-05-11 Kazuhisa Shimizu Micellar preparation containing sparingly water-soluble anticancer agent and novel block copolymer
US20090162313A1 (en) * 2006-05-18 2009-06-25 Masayuki Kitagawa High-Molecular Weight Conjugate of Podophyllotoxins
US20090239782A1 (en) * 2006-10-03 2009-09-24 Masaharu Nakamura High-molecular weight conjugate of resorcinol derivatives
US20090281300A1 (en) * 2006-11-06 2009-11-12 Keiichiro Yamamoto High-molecular weight derivative of nucleic acid antimetabolite
US20100029849A1 (en) * 2006-11-08 2010-02-04 Keiichiro Yamamoto High molecular weight derivative of nucleic acid antimetabolite
US20100234537A1 (en) * 2006-03-28 2010-09-16 Masayuki Kitagawa Polymer conjugate of taxane
US20100292414A1 (en) * 2007-09-28 2010-11-18 Nippon Kayaku Kabushiki Kaisha High-Molecular Weight Conjugate Of Steroids
US20110201754A1 (en) * 2008-03-18 2011-08-18 Nippon Kayaku Kabushiki Kaisha High-Molecular Weight Conjugate Of Physiologically Active Substances
US20130209390A1 (en) * 2010-09-02 2013-08-15 Nippon Kayaku Kabushiki Kaisha Process For Producing Drug-Block Copolymer Composite And Pharmaceutical Preparation Containing Same
US8808749B2 (en) 2009-05-15 2014-08-19 Nippon Kayaku Kabushiki Kaisha Polymer conjugate of bioactive substance having hydroxy group
US9018323B2 (en) 2010-11-17 2015-04-28 Nippon Kayaku Kabushiki Kaisha Polymer derivative of cytidine metabolic antagonist
US9149540B2 (en) 2008-05-08 2015-10-06 Nippon Kayaku Kabushiki Kaisha Polymer conjugate of folic acid or folic acid derivative
US9346923B2 (en) 2011-09-11 2016-05-24 Nippon Kayaku Kabushiki Kaisha Method for manufacturing block copolymer
US9434822B2 (en) 2004-09-22 2016-09-06 Nippon Kayaku Kabushiki Kaisha Block copolymer, micelle preparation, and anticancer agent containing the same as active ingredient
US10869937B2 (en) 2016-07-30 2020-12-22 Nippon Kayaku Kabushiki Kaisha Polymer derivatives, and novel polymer derivative imaging probe using same
US10946028B2 (en) 2015-12-22 2021-03-16 Nippon Kayaku Kabushiki Kaisha Polymer conjugate of sulfoxide derivative-coordinated platinum(II) complex
US10973762B2 (en) 2016-08-02 2021-04-13 Nippon Kayaku Kabushiki Kaisha Active-targeting-type polymer derivative, composition containing said polymer derivative, and uses of said polymer derivative and said composition

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090258079A1 (en) * 2005-05-10 2009-10-15 Ryoichi Katakai Biocompatible Block Copolymer, Use Thereof and Manufacturing Method Thereof
US20120231053A1 (en) 2009-10-21 2012-09-13 Nippon Kayaku Kabushiki Kaisha Block Copolymer For Intraperitoneal Administration Containing Anti-Cancer Agent, Micelle Preparation Thereof, And Cancer Therapeutic Agent Comprising The Micelle Preparation As Active Ingredient
CN102440961B (zh) * 2011-12-08 2013-10-09 中山大学 一种具有酸敏亚表层的靶向聚合物胶束及其制备方法
CN102875789B (zh) * 2012-09-26 2015-10-07 中国科学院长春应用化学研究所 一种聚醚嵌段共聚物及其制备方法
CN102875790B (zh) * 2012-09-26 2016-03-23 中国科学院长春应用化学研究所 一种聚醚无规共聚物及其制备方法
WO2015002078A1 (ja) 2013-07-03 2015-01-08 日本化薬株式会社 ボロン酸化合物の新規製剤
EP2942348B1 (en) 2014-05-07 2017-10-25 Johannes Gutenberg-Universität Mainz Thiol-protected amino acid derivatives and uses thereof
CN104086769A (zh) * 2014-07-13 2014-10-08 成都市绿科华通科技有限公司 新型医用功能性聚乙二醇材料
CN104109255A (zh) * 2014-07-13 2014-10-22 成都市绿科华通科技有限公司 新型医药用聚乙二醇功能材料
CN104072758A (zh) * 2014-07-13 2014-10-01 成都市绿科华通科技有限公司 一种医药用功能性聚乙二醇
US10226193B2 (en) 2015-03-31 2019-03-12 Medtronic Ps Medical, Inc. Wireless pressure measurement and monitoring for shunts
EP3378495B1 (en) 2015-11-18 2020-08-05 Nippon Kayaku Kabushiki Kaisha Composition comprising novel glutamic acid derivative and block copolymer, and use thereof
JP6848743B2 (ja) * 2017-07-24 2021-03-24 信越化学工業株式会社 ポリアルキレングリコール誘導体の製造方法及び精製方法
CN111253345B (zh) * 2020-03-02 2021-11-23 东北林业大学 一种红豆杉枝叶中紫杉醇的提取方法
US20230293432A1 (en) 2020-07-06 2023-09-21 Rheinisch-Westfälische Technische Hochschule (Rwth) Polymeric micelles comprising glucuronide-prodrugs
CN112691081B (zh) * 2021-01-18 2022-04-22 首都医科大学 一种基于(s)-2-癸酰氨基-3-(1-萘基)丙酰基-亮氨酰-缬氨酸的紫杉醇胶束

Citations (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3979449A (en) * 1974-07-11 1976-09-07 Societe D'assistance Technique Pour Produits Nestle S.A. Preparation of an asparagine or a glutamine
US4734512A (en) * 1985-12-05 1988-03-29 Bristol-Myers Company Intermediates for the production of podophyllotoxin and related compounds and processes for the preparation and use thereof
US4892733A (en) * 1985-12-19 1990-01-09 Imperial Chemical Industries Plc Biodegradable synthesis polypeptide and its therapeutic use
US5037883A (en) * 1985-01-04 1991-08-06 Ceskoslovenska Akademie Ved Synthetic polymeric drugs
US5182203A (en) * 1989-03-29 1993-01-26 E. I. Du Pont De Nemours And Company Bifunctional compounds useful in catalyzed reporter deposition
US5412072A (en) * 1989-05-11 1995-05-02 Research Development Corp. Of Japan Water soluble high molecular weight polymerized drug preparation
US5438072A (en) * 1992-12-02 1995-08-01 Rhone-Poulenc Rorer S.A. Taxoid-based compositions
US5510103A (en) * 1992-08-14 1996-04-23 Research Development Corporation Of Japan Physical trapping type polymeric micelle drug preparation
US5552517A (en) * 1995-03-03 1996-09-03 Monsanto Company Production of polysuccinimide in an organic medium
US5571889A (en) * 1994-05-30 1996-11-05 Mitsui Toatsu Chemicals, Inc. Polymer containing monomer units of chemically modified polyaspartic acids or their salts and process for preparing the same
US5614549A (en) * 1992-08-21 1997-03-25 Enzon, Inc. High molecular weight polymer-based prodrugs
US5639832A (en) * 1993-03-06 1997-06-17 Basf Aktiengesellschaft Preparation of products of the reaction of polyaspartimide and amino acids and the use thereof
US5877205A (en) * 1996-06-28 1999-03-02 Board Of Regents, The University Of Texas System Parenteral paclitaxel in a stable non-toxic formulation
US5985548A (en) * 1993-02-04 1999-11-16 E. I. Du Pont De Nemours And Company Amplification of assay reporters by nucleic acid replication
US6025385A (en) * 1996-07-15 2000-02-15 Kabushiki Kaisha Yakult Honsha Taxane derivatives and drugs containing the same
US6153655A (en) * 1998-04-17 2000-11-28 Enzon, Inc. Terminally-branched polymeric linkers and polymeric conjugates containing the same
US20010003779A1 (en) * 1999-04-09 2001-06-14 Curran Dennis P. Camptothecin analogs and methods of preparation thereof
US6262107B1 (en) * 1996-03-12 2001-07-17 Pg-Txl Company L.P. Water soluble paclitaxel prodrugs
US20010014354A1 (en) * 2000-02-09 2001-08-16 Nanocarrier Co., Ltd. Production process for polymeric micelle charged therein with drug and polymeric micelle composition
US20010041189A1 (en) * 1999-04-13 2001-11-15 Jingya Xu Poly(dipeptide) as a drug carrier
US6322817B1 (en) * 1999-02-17 2001-11-27 Dabur Research Foundation Formulations of paclitaxel, its derivatives or its analogs entrapped into nanoparticles of polymeric micelles, process for preparing same and the use thereof
US20020009426A1 (en) * 1998-04-17 2002-01-24 Greenwald Richard B. Biodegradable high molecular weight polymeric linkers and their conjugates
US20020016285A1 (en) * 2000-03-17 2002-02-07 Rama Bhatt Polyglutamic acid-camptothecin conjugates and methods of preparation
US6376470B1 (en) * 1999-09-23 2002-04-23 Enzon, Inc. Polymer conjugates of ara-C and ara-C derivatives
US20020099013A1 (en) * 2000-11-14 2002-07-25 Thomas Piccariello Active agent delivery systems and methods for protecting and administering active agents
US20020119951A1 (en) * 2000-07-17 2002-08-29 Faye Seyedi Efficient method of synthesizing combretastatin A-4 prodrugs
US6458347B1 (en) * 1996-04-15 2002-10-01 Asahi Kasei Kabushiki Kaisha Drug complex
US20020161062A1 (en) * 2001-11-06 2002-10-31 Biermann Paul J. Structure including a plurality of cells of cured resinous material, method of forming the structure and apparatus for forming the structure
US20020183259A1 (en) * 2001-02-20 2002-12-05 Choe Yun Hwang Terminally-branched polymeric linkers and polymeric conjugates containing the same
US20030032593A1 (en) * 2001-02-16 2003-02-13 Cellgate, Inc. Transporters comprising spaced arginine moieties
US20030054977A1 (en) * 1999-10-12 2003-03-20 Cell Therapeutics, Inc. Manufacture of polyglutamate-therapeutic agent conjugates
US6573284B1 (en) * 1996-12-13 2003-06-03 Phairson Medical Ltd Method of treating melanoma
US6596757B1 (en) * 2002-05-14 2003-07-22 Immunogen Inc. Cytotoxic agents comprising polyethylene glycol-containing taxanes and their therapeutic use
US20030149003A1 (en) * 2001-10-26 2003-08-07 Chaplin David J. Functionalized stilbene derivatives as improved vascular targeting agents
US6713454B1 (en) * 1999-09-13 2004-03-30 Nobex Corporation Prodrugs of etoposide and etoposide analogs
US6720306B2 (en) * 1997-12-17 2004-04-13 Enzon Pharmaceuticals, Inc. Tetrapartate prodrugs
US6720304B1 (en) * 1997-05-09 2004-04-13 Deutsches Krebsforschungszentrum Stiftung Des Offentlichen Rechts Conjugate comprising a folic acid antagonist and a carrier
US6858582B2 (en) * 1990-11-01 2005-02-22 Oregon Health And Sciences University Composition containing porous microparticle impregnated with biologically-active compound for treatment of infection
US20050054026A1 (en) * 2003-01-10 2005-03-10 Yamanouchi Pharmaceutical Co., Ltd. Lipid-peptide-polymer conjugates for long blood circulation and tumor specific drug delivery systems
US20050119193A1 (en) * 2002-06-03 2005-06-02 Jun Motoyama Novel solid preparation containing block copolymer and anthracycline anticancer agent and process for producing the same
US20050147617A1 (en) * 2002-03-05 2005-07-07 Shishan Ji Compounds of hydrophilic polymer-polycarboxyl oligopeptide and medicines, medical composite comprising above compound and use of above compound in medicimes
US20050171036A1 (en) * 2002-03-26 2005-08-04 Banyu Pharmaceutical Co., Ltd. Use of antitumor indolopyrrolocarbazole derivative and other anticancer agent in combination
US20060009622A1 (en) * 2002-03-01 2006-01-12 Fuselier Joseph A Conjugates of therapeutic or cytotoxic agents and biologically active peptides
US20060057219A1 (en) * 2002-05-24 2006-03-16 Nanocarrier Co., Ltd. Method for preparing a polymer micelle pharmaceutical preparation containing drug for injection
US20060067910A1 (en) * 2002-10-31 2006-03-30 Masayuki Kitagawa High-molecular weight derivatives of camptothecins
US20060099265A1 (en) * 2003-03-20 2006-05-11 Kazuhisa Shimizu Micellar preparation containing sparingly water-soluble anticancer agent and novel block copolymer
US20060233883A1 (en) * 2003-03-26 2006-10-19 Tsutomu Ishihara Intravenous nanoparticles for targeting drug delivery and sustained drug release
US20060258569A1 (en) * 2003-10-21 2006-11-16 Mctavish Hugh Compounds and methods for treating cancer
US7138490B2 (en) * 2001-06-20 2006-11-21 Nippon Kayaku Kabushiki Kaisha Block copolymer reduced in impurity content, polymeric carrier, pharmaceutical preparations in polymeric form and process for the preparation of the same
US20070004674A1 (en) * 2003-08-22 2007-01-04 Kyowa Hakko Kogyo Co. Ltd. Remedy for diseases associated with immunoglobulin gene translocation
US7176185B2 (en) * 2003-11-25 2007-02-13 Tsrl, Inc. Short peptide carrier system for cellular delivery of agent
US20070196497A1 (en) * 2003-11-21 2007-08-23 Flamel Technologies, Inc. Pharmaceutical formulations for the prolonged release of active principle(s) and their applications
US20080145432A1 (en) * 2005-03-09 2008-06-19 Yoshinori Kakizawa Fine Particle and Pharmaceutical Preparation
US20080221062A1 (en) * 2004-01-07 2008-09-11 Kenji Miyamoto Hyaluronic Acid Derivative and Drug Containing the Same
US20080269218A1 (en) * 2005-03-09 2008-10-30 Hiroshi Kuramochi Novel Hsp90 Inhibitor
US20080280937A1 (en) * 2005-08-19 2008-11-13 Christopher Paul Leamon Ligand Conjugates of Vinca Alkaloids, Analogs, and Derivatives
US20090012252A1 (en) * 2005-05-11 2009-01-08 Akira Masuda Polymeric Derivative of Cytidine Metabolic Antagonist
US20090162313A1 (en) * 2006-05-18 2009-06-25 Masayuki Kitagawa High-Molecular Weight Conjugate of Podophyllotoxins
US20090239782A1 (en) * 2006-10-03 2009-09-24 Masaharu Nakamura High-molecular weight conjugate of resorcinol derivatives
US20090275732A1 (en) * 2005-05-12 2009-11-05 Ichiro Hirotsu Agent for improving circulatory disorder
US20090281300A1 (en) * 2006-11-06 2009-11-12 Keiichiro Yamamoto High-molecular weight derivative of nucleic acid antimetabolite
US20100004403A1 (en) * 2006-07-19 2010-01-07 Masayuki Kitagawa High-Molecular Weight Conjugate of Combretastatins
US20100029849A1 (en) * 2006-11-08 2010-02-04 Keiichiro Yamamoto High molecular weight derivative of nucleic acid antimetabolite
US20100234537A1 (en) * 2006-03-28 2010-09-16 Masayuki Kitagawa Polymer conjugate of taxane
US20100292414A1 (en) * 2007-09-28 2010-11-18 Nippon Kayaku Kabushiki Kaisha High-Molecular Weight Conjugate Of Steroids
US20110136990A1 (en) * 2008-05-23 2011-06-09 Mitsunori Harada Polymer derivative of docetaxel, method of preparing the same and uses thereof
US20110201754A1 (en) * 2008-03-18 2011-08-18 Nippon Kayaku Kabushiki Kaisha High-Molecular Weight Conjugate Of Physiologically Active Substances
US20110294980A1 (en) * 2008-05-08 2011-12-01 Nippon Kayaku Kabushiki Kaisha Polymer Conjugate Of Folic Acid Or Folic Acid Derivative
US20120116051A1 (en) * 2009-05-15 2012-05-10 Nippon Kayaku Kabushiki Kaisha Polymer Conjugate Of Bioactive Substance Having Hydroxy Group
US20130331517A1 (en) * 2010-11-17 2013-12-12 Nippon Kayaku Kabushiki Kaisha Novel Polymer Derivative Of Cytidine Metabolic Antagonist
US20140024703A1 (en) * 2004-09-22 2014-01-23 Nippon Kayaku Kabushiki Kaisha Novel Block Copolymer, Micelle Preparation, And Anticancer Agent Containing The Same As Active Ingredient
US20140288244A1 (en) * 2011-09-11 2014-09-25 Nippon Kayaku Kabushiki Kaisha Method For Manufacturing Block Copolymer

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6296088A (ja) 1985-10-22 1987-05-02 Kanebo Ltd 抗腫瘍性物質の製法
JPS6310789A (ja) 1986-07-01 1988-01-18 Nippon Kayaku Co Ltd 新規ポドフイロトキシン誘導体
JPS6323884A (ja) 1986-07-17 1988-02-01 Nippon Kayaku Co Ltd 新規ポドフイロトキシン誘導体
JPS6461423A (en) 1987-09-02 1989-03-08 Nippon Kayaku Kk Water-soluble polymeric carcinostatic agent
JPS6461422A (en) 1987-09-02 1989-03-08 Nippon Kayaku Kk Water-soluble polymeric carcinostatic agent
JP3310000B2 (ja) 1990-11-07 2002-07-29 靖久 桜井 水溶性高分子抗癌剤及び薬物担持用担体
JPH05117385A (ja) 1991-10-31 1993-05-14 Res Dev Corp Of Japan ブロツク共重合体の製造法、ブロツク共重合体及び水溶性高分子抗癌剤
AU4406793A (en) 1992-06-04 1993-12-30 Clover Consolidated, Limited Water-soluble polymeric carriers for drug delivery
JP3270592B2 (ja) * 1992-10-26 2002-04-02 日本化薬株式会社 ブロック共重合体−抗癌剤複合体医薬製剤
JPH06206830A (ja) 1992-10-27 1994-07-26 Nippon Kayaku Co Ltd ブロック共重合体−薬剤複合体及び高分子ブロック共重合体
JP3268913B2 (ja) * 1992-10-27 2002-03-25 日本化薬株式会社 高分子担体
JP2894923B2 (ja) 1993-05-27 1999-05-24 日立造船株式会社 ウォータージェット式双胴船のジェット水吸込口部構造
US5840900A (en) 1993-10-20 1998-11-24 Enzon, Inc. High molecular weight polymer-based prodrugs
US5880131A (en) 1993-10-20 1999-03-09 Enzon, Inc. High molecular weight polymer-based prodrugs
JPH0848766A (ja) 1994-05-30 1996-02-20 Mitsui Toatsu Chem Inc 重合体及びその製造方法
SG50747A1 (en) 1995-08-02 1998-07-20 Tanabe Seiyaku Co Comptothecin derivatives
JP2694923B2 (ja) 1995-08-21 1997-12-24 科学技術振興事業団 水溶性高分子化医薬製剤
WO1998008489A1 (en) 1996-08-26 1998-03-05 Transgene S.A. Cationic lipid-nucleic acid complexes
JPH11335267A (ja) 1998-05-27 1999-12-07 Nano Career Kk 水難溶性薬物を含有するポリマーミセル系
US6380405B1 (en) 1999-09-13 2002-04-30 Nobex Corporation Taxane prodrugs
JP4723143B2 (ja) 1999-09-14 2011-07-13 テファ, インコーポレイテッド γ−ヒドロキシブチレートを含むポリマーおよびオリゴマーの治療的用途
HUP0203123A3 (en) 1999-10-12 2004-12-28 Cell Therapeutics Inc Seattle Process for preparation of polyglutamate-therapeutic agent conjugates
EP1267871A2 (en) 2000-02-29 2003-01-02 Janssen Pharmaceutica N.V. Farnesyl protein transferase inhibitor combinations with anti-tumor podophyllotoxin derivatives
EP1292709B1 (en) 2000-06-02 2012-01-18 Eidgenössische Technische Hochschule Zürich Conjugate addition reactions for the controlled delivery of pharmaceutically active compounds
JP2002069184A (ja) 2000-06-12 2002-03-08 Mitsui Chemicals Inc 重合体及びその製造方法
EP1361895B1 (en) 2001-02-20 2007-11-14 Enzon, Inc. Terminally-branched polymeric linkers and polymeric conjugates containing the same
DE60222804T2 (de) 2001-12-21 2008-07-03 Vernalis (Cambridge) Ltd., Abington 3-(2,4)dihydroxyphenyl-4-phenylpyrazole und deren medizinische verwendung
JP2003342167A (ja) 2002-05-24 2003-12-03 Nano Career Kk カンプトテシン誘導体の製剤およびその調製方法
JP4270485B2 (ja) 2002-05-28 2009-06-03 第一三共株式会社 タキサン類の還元方法
GB0228417D0 (en) 2002-12-05 2003-01-08 Cancer Rec Tech Ltd Pyrazole compounds
GB0229618D0 (en) 2002-12-19 2003-01-22 Cancer Rec Tech Ltd Pyrazole compounds
NZ541479A (en) 2003-02-11 2008-11-28 Vernalis Cambridge Liimited Isoxazole compounds as inhibitors of heat shock proteins
GB0309637D0 (en) 2003-04-28 2003-06-04 Cancer Rec Tech Ltd Pyrazole compounds
EP1857446B1 (en) 2005-03-09 2013-05-01 Nippon Kayaku Kabushiki Kaisha Derivatives of 3-(2,4-dihydroxyphenyl)-1,2,4-triazole useful in the treatment of cancer
JP2008137894A (ja) 2005-03-22 2008-06-19 Nippon Kayaku Co Ltd 新規なアセチレン誘導体
WO2006115293A1 (ja) 2005-04-22 2006-11-02 The University Of Tokyo pH応答性高分子ミセルの調製に用いる新規ブロック共重合体及びその製造法
CN1800238A (zh) 2005-12-05 2006-07-12 中国科学院长春应用化学研究所 有生物功能的脂肪族聚酯—聚氨基酸共聚物及合成方法
JP2007182407A (ja) 2006-01-10 2007-07-19 Medgel Corp 徐放性ハイドロゲル製剤
JP2007191643A (ja) 2006-01-20 2007-08-02 Mitsui Chemicals Inc 生体への定着性が付与されたポリアミノ酸誘導体

Patent Citations (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3979449A (en) * 1974-07-11 1976-09-07 Societe D'assistance Technique Pour Produits Nestle S.A. Preparation of an asparagine or a glutamine
US5037883A (en) * 1985-01-04 1991-08-06 Ceskoslovenska Akademie Ved Synthetic polymeric drugs
US4734512A (en) * 1985-12-05 1988-03-29 Bristol-Myers Company Intermediates for the production of podophyllotoxin and related compounds and processes for the preparation and use thereof
US4892733A (en) * 1985-12-19 1990-01-09 Imperial Chemical Industries Plc Biodegradable synthesis polypeptide and its therapeutic use
US5182203A (en) * 1989-03-29 1993-01-26 E. I. Du Pont De Nemours And Company Bifunctional compounds useful in catalyzed reporter deposition
US5412072A (en) * 1989-05-11 1995-05-02 Research Development Corp. Of Japan Water soluble high molecular weight polymerized drug preparation
US5693751A (en) * 1989-05-11 1997-12-02 Research Development Corporation Of Japan Water soluble high molecular weight polymerized drug preparation
US6858582B2 (en) * 1990-11-01 2005-02-22 Oregon Health And Sciences University Composition containing porous microparticle impregnated with biologically-active compound for treatment of infection
US5510103A (en) * 1992-08-14 1996-04-23 Research Development Corporation Of Japan Physical trapping type polymeric micelle drug preparation
US5614549A (en) * 1992-08-21 1997-03-25 Enzon, Inc. High molecular weight polymer-based prodrugs
US5438072A (en) * 1992-12-02 1995-08-01 Rhone-Poulenc Rorer S.A. Taxoid-based compositions
US5985548A (en) * 1993-02-04 1999-11-16 E. I. Du Pont De Nemours And Company Amplification of assay reporters by nucleic acid replication
US5639832A (en) * 1993-03-06 1997-06-17 Basf Aktiengesellschaft Preparation of products of the reaction of polyaspartimide and amino acids and the use thereof
US5571889A (en) * 1994-05-30 1996-11-05 Mitsui Toatsu Chemicals, Inc. Polymer containing monomer units of chemically modified polyaspartic acids or their salts and process for preparing the same
US5552517A (en) * 1995-03-03 1996-09-03 Monsanto Company Production of polysuccinimide in an organic medium
US6262107B1 (en) * 1996-03-12 2001-07-17 Pg-Txl Company L.P. Water soluble paclitaxel prodrugs
US6458347B1 (en) * 1996-04-15 2002-10-01 Asahi Kasei Kabushiki Kaisha Drug complex
US5877205A (en) * 1996-06-28 1999-03-02 Board Of Regents, The University Of Texas System Parenteral paclitaxel in a stable non-toxic formulation
US6025385A (en) * 1996-07-15 2000-02-15 Kabushiki Kaisha Yakult Honsha Taxane derivatives and drugs containing the same
US6573284B1 (en) * 1996-12-13 2003-06-03 Phairson Medical Ltd Method of treating melanoma
US6720304B1 (en) * 1997-05-09 2004-04-13 Deutsches Krebsforschungszentrum Stiftung Des Offentlichen Rechts Conjugate comprising a folic acid antagonist and a carrier
US6720306B2 (en) * 1997-12-17 2004-04-13 Enzon Pharmaceuticals, Inc. Tetrapartate prodrugs
US6153655A (en) * 1998-04-17 2000-11-28 Enzon, Inc. Terminally-branched polymeric linkers and polymeric conjugates containing the same
US20020009426A1 (en) * 1998-04-17 2002-01-24 Greenwald Richard B. Biodegradable high molecular weight polymeric linkers and their conjugates
US6322817B1 (en) * 1999-02-17 2001-11-27 Dabur Research Foundation Formulations of paclitaxel, its derivatives or its analogs entrapped into nanoparticles of polymeric micelles, process for preparing same and the use thereof
US20010003779A1 (en) * 1999-04-09 2001-06-14 Curran Dennis P. Camptothecin analogs and methods of preparation thereof
US6410731B2 (en) * 1999-04-09 2002-06-25 University Of Pittsburgh Camptothecin analogs and methods of preparation thereof
US20010041189A1 (en) * 1999-04-13 2001-11-15 Jingya Xu Poly(dipeptide) as a drug carrier
US6713454B1 (en) * 1999-09-13 2004-03-30 Nobex Corporation Prodrugs of etoposide and etoposide analogs
US6376470B1 (en) * 1999-09-23 2002-04-23 Enzon, Inc. Polymer conjugates of ara-C and ara-C derivatives
US20030054977A1 (en) * 1999-10-12 2003-03-20 Cell Therapeutics, Inc. Manufacture of polyglutamate-therapeutic agent conjugates
US20010014354A1 (en) * 2000-02-09 2001-08-16 Nanocarrier Co., Ltd. Production process for polymeric micelle charged therein with drug and polymeric micelle composition
US20020016285A1 (en) * 2000-03-17 2002-02-07 Rama Bhatt Polyglutamic acid-camptothecin conjugates and methods of preparation
US20020119951A1 (en) * 2000-07-17 2002-08-29 Faye Seyedi Efficient method of synthesizing combretastatin A-4 prodrugs
US20020099013A1 (en) * 2000-11-14 2002-07-25 Thomas Piccariello Active agent delivery systems and methods for protecting and administering active agents
US20030032593A1 (en) * 2001-02-16 2003-02-13 Cellgate, Inc. Transporters comprising spaced arginine moieties
US20020183259A1 (en) * 2001-02-20 2002-12-05 Choe Yun Hwang Terminally-branched polymeric linkers and polymeric conjugates containing the same
US7138490B2 (en) * 2001-06-20 2006-11-21 Nippon Kayaku Kabushiki Kaisha Block copolymer reduced in impurity content, polymeric carrier, pharmaceutical preparations in polymeric form and process for the preparation of the same
US20030149003A1 (en) * 2001-10-26 2003-08-07 Chaplin David J. Functionalized stilbene derivatives as improved vascular targeting agents
US20020161062A1 (en) * 2001-11-06 2002-10-31 Biermann Paul J. Structure including a plurality of cells of cured resinous material, method of forming the structure and apparatus for forming the structure
US20060009622A1 (en) * 2002-03-01 2006-01-12 Fuselier Joseph A Conjugates of therapeutic or cytotoxic agents and biologically active peptides
US20050147617A1 (en) * 2002-03-05 2005-07-07 Shishan Ji Compounds of hydrophilic polymer-polycarboxyl oligopeptide and medicines, medical composite comprising above compound and use of above compound in medicimes
US20050171036A1 (en) * 2002-03-26 2005-08-04 Banyu Pharmaceutical Co., Ltd. Use of antitumor indolopyrrolocarbazole derivative and other anticancer agent in combination
US6596757B1 (en) * 2002-05-14 2003-07-22 Immunogen Inc. Cytotoxic agents comprising polyethylene glycol-containing taxanes and their therapeutic use
US20060057219A1 (en) * 2002-05-24 2006-03-16 Nanocarrier Co., Ltd. Method for preparing a polymer micelle pharmaceutical preparation containing drug for injection
US20050119193A1 (en) * 2002-06-03 2005-06-02 Jun Motoyama Novel solid preparation containing block copolymer and anthracycline anticancer agent and process for producing the same
US20060067910A1 (en) * 2002-10-31 2006-03-30 Masayuki Kitagawa High-molecular weight derivatives of camptothecins
US7495099B2 (en) * 2002-10-31 2009-02-24 Nippon Kayaku Kabushiki Kaisha High-molecular weight derivatives of camptothecins
US20050054026A1 (en) * 2003-01-10 2005-03-10 Yamanouchi Pharmaceutical Co., Ltd. Lipid-peptide-polymer conjugates for long blood circulation and tumor specific drug delivery systems
US20060099265A1 (en) * 2003-03-20 2006-05-11 Kazuhisa Shimizu Micellar preparation containing sparingly water-soluble anticancer agent and novel block copolymer
US20140142167A1 (en) * 2003-03-20 2014-05-22 Nanocarrier Kabushiki Kaisha Micellar Preparation Containing Sparingly Water-Soluble Anticancer Agent And Novel Block Copolymer
US7820759B2 (en) * 2003-03-20 2010-10-26 Nippon Kayaku Kabushiki Kaisha Micellar preparation containing sparingly water-soluble anticancer agent and novel block copolymer
US20090156742A1 (en) * 2003-03-20 2009-06-18 Kazuhisa Shimizu Micellar preparation containing sparingly water-soluble anticancer agent and novel block copolymer
US20060233883A1 (en) * 2003-03-26 2006-10-19 Tsutomu Ishihara Intravenous nanoparticles for targeting drug delivery and sustained drug release
US20070004674A1 (en) * 2003-08-22 2007-01-04 Kyowa Hakko Kogyo Co. Ltd. Remedy for diseases associated with immunoglobulin gene translocation
US20060258569A1 (en) * 2003-10-21 2006-11-16 Mctavish Hugh Compounds and methods for treating cancer
US20070196497A1 (en) * 2003-11-21 2007-08-23 Flamel Technologies, Inc. Pharmaceutical formulations for the prolonged release of active principle(s) and their applications
US7176185B2 (en) * 2003-11-25 2007-02-13 Tsrl, Inc. Short peptide carrier system for cellular delivery of agent
US20080221062A1 (en) * 2004-01-07 2008-09-11 Kenji Miyamoto Hyaluronic Acid Derivative and Drug Containing the Same
US20140024703A1 (en) * 2004-09-22 2014-01-23 Nippon Kayaku Kabushiki Kaisha Novel Block Copolymer, Micelle Preparation, And Anticancer Agent Containing The Same As Active Ingredient
US20080269218A1 (en) * 2005-03-09 2008-10-30 Hiroshi Kuramochi Novel Hsp90 Inhibitor
US20080145432A1 (en) * 2005-03-09 2008-06-19 Yoshinori Kakizawa Fine Particle and Pharmaceutical Preparation
US20090012252A1 (en) * 2005-05-11 2009-01-08 Akira Masuda Polymeric Derivative of Cytidine Metabolic Antagonist
US7700709B2 (en) * 2005-05-11 2010-04-20 Nippon Kayaku Kabushiki Kaisha Polymeric derivative of cytidine metabolic antagonist
US20090275732A1 (en) * 2005-05-12 2009-11-05 Ichiro Hirotsu Agent for improving circulatory disorder
US20080280937A1 (en) * 2005-08-19 2008-11-13 Christopher Paul Leamon Ligand Conjugates of Vinca Alkaloids, Analogs, and Derivatives
US8323669B2 (en) * 2006-03-28 2012-12-04 Nippon Kayaku Kabushiki Kaisha Polymer conjugate of taxane
US20100234537A1 (en) * 2006-03-28 2010-09-16 Masayuki Kitagawa Polymer conjugate of taxane
US20090162313A1 (en) * 2006-05-18 2009-06-25 Masayuki Kitagawa High-Molecular Weight Conjugate of Podophyllotoxins
US20100004403A1 (en) * 2006-07-19 2010-01-07 Masayuki Kitagawa High-Molecular Weight Conjugate of Combretastatins
US20090239782A1 (en) * 2006-10-03 2009-09-24 Masaharu Nakamura High-molecular weight conjugate of resorcinol derivatives
US8334364B2 (en) * 2006-11-06 2012-12-18 Nipon Kayaku Kabushiki Kaisha High-molecular weight derivative of nucleic acid antimetabolite
US20090281300A1 (en) * 2006-11-06 2009-11-12 Keiichiro Yamamoto High-molecular weight derivative of nucleic acid antimetabolite
US8188222B2 (en) * 2006-11-08 2012-05-29 Nippon Kayaku Kabushiki Kaisha High molecular weight derivative of nucleic acid antimetabolite
US20100029849A1 (en) * 2006-11-08 2010-02-04 Keiichiro Yamamoto High molecular weight derivative of nucleic acid antimetabolite
US20100292414A1 (en) * 2007-09-28 2010-11-18 Nippon Kayaku Kabushiki Kaisha High-Molecular Weight Conjugate Of Steroids
US8703878B2 (en) * 2007-09-28 2014-04-22 Nippon Kayaku Kabushiki Kaisha High-molecular weight conjugate of steroids
US20110201754A1 (en) * 2008-03-18 2011-08-18 Nippon Kayaku Kabushiki Kaisha High-Molecular Weight Conjugate Of Physiologically Active Substances
US20110294980A1 (en) * 2008-05-08 2011-12-01 Nippon Kayaku Kabushiki Kaisha Polymer Conjugate Of Folic Acid Or Folic Acid Derivative
US20110136990A1 (en) * 2008-05-23 2011-06-09 Mitsunori Harada Polymer derivative of docetaxel, method of preparing the same and uses thereof
US20120116051A1 (en) * 2009-05-15 2012-05-10 Nippon Kayaku Kabushiki Kaisha Polymer Conjugate Of Bioactive Substance Having Hydroxy Group
US8808749B2 (en) * 2009-05-15 2014-08-19 Nippon Kayaku Kabushiki Kaisha Polymer conjugate of bioactive substance having hydroxy group
US20130331517A1 (en) * 2010-11-17 2013-12-12 Nippon Kayaku Kabushiki Kaisha Novel Polymer Derivative Of Cytidine Metabolic Antagonist
US20140288244A1 (en) * 2011-09-11 2014-09-25 Nippon Kayaku Kabushiki Kaisha Method For Manufacturing Block Copolymer

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060099265A1 (en) * 2003-03-20 2006-05-11 Kazuhisa Shimizu Micellar preparation containing sparingly water-soluble anticancer agent and novel block copolymer
US9434822B2 (en) 2004-09-22 2016-09-06 Nippon Kayaku Kabushiki Kaisha Block copolymer, micelle preparation, and anticancer agent containing the same as active ingredient
US20100234537A1 (en) * 2006-03-28 2010-09-16 Masayuki Kitagawa Polymer conjugate of taxane
US8323669B2 (en) 2006-03-28 2012-12-04 Nippon Kayaku Kabushiki Kaisha Polymer conjugate of taxane
US20090162313A1 (en) * 2006-05-18 2009-06-25 Masayuki Kitagawa High-Molecular Weight Conjugate of Podophyllotoxins
US8940332B2 (en) 2006-05-18 2015-01-27 Nippon Kayaku Kabushiki Kaisha High-molecular weight conjugate of podophyllotoxins
US20090239782A1 (en) * 2006-10-03 2009-09-24 Masaharu Nakamura High-molecular weight conjugate of resorcinol derivatives
US20090281300A1 (en) * 2006-11-06 2009-11-12 Keiichiro Yamamoto High-molecular weight derivative of nucleic acid antimetabolite
US8334364B2 (en) 2006-11-06 2012-12-18 Nipon Kayaku Kabushiki Kaisha High-molecular weight derivative of nucleic acid antimetabolite
US20100029849A1 (en) * 2006-11-08 2010-02-04 Keiichiro Yamamoto High molecular weight derivative of nucleic acid antimetabolite
US8188222B2 (en) 2006-11-08 2012-05-29 Nippon Kayaku Kabushiki Kaisha High molecular weight derivative of nucleic acid antimetabolite
US8703878B2 (en) 2007-09-28 2014-04-22 Nippon Kayaku Kabushiki Kaisha High-molecular weight conjugate of steroids
US20100292414A1 (en) * 2007-09-28 2010-11-18 Nippon Kayaku Kabushiki Kaisha High-Molecular Weight Conjugate Of Steroids
USRE46190E1 (en) 2007-09-28 2016-11-01 Nippon Kayaku Kabushiki Kaisha High-molecular weight conjugate of steroids
US8920788B2 (en) 2008-03-18 2014-12-30 Nippon Kayaku Kabushiki Kaisha High-molecular weight conjugate of physiologically active substances
US20110201754A1 (en) * 2008-03-18 2011-08-18 Nippon Kayaku Kabushiki Kaisha High-Molecular Weight Conjugate Of Physiologically Active Substances
US9149540B2 (en) 2008-05-08 2015-10-06 Nippon Kayaku Kabushiki Kaisha Polymer conjugate of folic acid or folic acid derivative
US8808749B2 (en) 2009-05-15 2014-08-19 Nippon Kayaku Kabushiki Kaisha Polymer conjugate of bioactive substance having hydroxy group
US9675521B2 (en) * 2010-09-02 2017-06-13 Nippon Kayaku Kabushiki Kaisha Process for producing drug-block copolymer composite and pharmaceutical preparation containing same
US20130209390A1 (en) * 2010-09-02 2013-08-15 Nippon Kayaku Kabushiki Kaisha Process For Producing Drug-Block Copolymer Composite And Pharmaceutical Preparation Containing Same
US9018323B2 (en) 2010-11-17 2015-04-28 Nippon Kayaku Kabushiki Kaisha Polymer derivative of cytidine metabolic antagonist
US9346923B2 (en) 2011-09-11 2016-05-24 Nippon Kayaku Kabushiki Kaisha Method for manufacturing block copolymer
US10946028B2 (en) 2015-12-22 2021-03-16 Nippon Kayaku Kabushiki Kaisha Polymer conjugate of sulfoxide derivative-coordinated platinum(II) complex
US10869937B2 (en) 2016-07-30 2020-12-22 Nippon Kayaku Kabushiki Kaisha Polymer derivatives, and novel polymer derivative imaging probe using same
US10973762B2 (en) 2016-08-02 2021-04-13 Nippon Kayaku Kabushiki Kaisha Active-targeting-type polymer derivative, composition containing said polymer derivative, and uses of said polymer derivative and said composition

Also Published As

Publication number Publication date
CN101023119A (zh) 2007-08-22
US20150259479A1 (en) 2015-09-17
KR101203475B1 (ko) 2012-11-21
DK1792927T3 (da) 2013-06-10
TW201302850A (zh) 2013-01-16
AU2005285953A1 (en) 2006-03-30
JPWO2006033296A1 (ja) 2008-05-15
CA2581125A1 (en) 2006-03-30
BRPI0515573A (pt) 2008-07-29
CN101023119B (zh) 2010-05-05
TW200616663A (en) 2006-06-01
RU2375384C2 (ru) 2009-12-10
ES2410591T3 (es) 2013-07-02
JP5369137B2 (ja) 2013-12-18
CA2581125C (en) 2013-04-23
US9434822B2 (en) 2016-09-06
KR20070056113A (ko) 2007-05-31
EP1792927A4 (en) 2011-11-30
AU2005285953B2 (en) 2011-01-20
PL1792927T3 (pl) 2013-09-30
US20140024703A1 (en) 2014-01-23
WO2006033296A1 (ja) 2006-03-30
RU2007115075A (ru) 2008-10-27
EP1792927A1 (en) 2007-06-06
JP4820758B2 (ja) 2011-11-24
EP1792927B1 (en) 2013-03-06
PT1792927E (pt) 2013-05-15
TWI394774B (zh) 2013-05-01
JP2011173908A (ja) 2011-09-08
TWI394773B (zh) 2013-05-01

Similar Documents

Publication Publication Date Title
US9434822B2 (en) Block copolymer, micelle preparation, and anticancer agent containing the same as active ingredient
US7820759B2 (en) Micellar preparation containing sparingly water-soluble anticancer agent and novel block copolymer
EP2287230A1 (en) Docetaxel polymer derivative, method for producing same and use of same
CN108863992B (zh) 多氨基多羧酸修饰卡巴他赛化合物的制备方法及用途
KR100773029B1 (ko) 수용성 미셀을 형성하는 생분해성 고리형 삼합체 포스파젠-탁솔 컨쥬게이트 항암제 및 이의 제조방법
JP7100457B2 (ja) ブロックコポリマー、ミセル組成物、及び医薬組成物
US20220133895A1 (en) Camptothecin-based dimer compound, anticancer drug and method of eliminating cancer stem cell
JP6797182B2 (ja) カンプトテシン類高分子誘導体を含有する医薬製剤
TW201505636A (zh) 硼酸化合物之新穎製劑

Legal Events

Date Code Title Description
AS Assignment

Owner name: NIPPON KAYAKU KABUSHIKI KAISHA, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SHIMIZU, KAZUHISA;ISHIKAWA, KEIZOU;NAKANISHI, TAKESHI;REEL/FRAME:027689/0360

Effective date: 20070418

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION