US20020150502A1 - Surface tension reduction channel - Google Patents
Surface tension reduction channel Download PDFInfo
- Publication number
- US20020150502A1 US20020150502A1 US10/114,864 US11486402A US2002150502A1 US 20020150502 A1 US20020150502 A1 US 20020150502A1 US 11486402 A US11486402 A US 11486402A US 2002150502 A1 US2002150502 A1 US 2002150502A1
- Authority
- US
- United States
- Prior art keywords
- channel
- reservoir
- fluid
- stream
- microfluidic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000012530 fluid Substances 0.000 claims abstract description 29
- 230000000694 effects Effects 0.000 abstract description 7
- 239000002245 particle Substances 0.000 description 14
- 238000000605 extraction Methods 0.000 description 9
- 238000009792 diffusion process Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 3
- 239000012491 analyte Substances 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 210000004027 cell Anatomy 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 102000009027 Albumins Human genes 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- 238000004847 absorption spectroscopy Methods 0.000 description 1
- 210000000601 blood cell Anatomy 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000002648 laminated material Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/04—Investigating sedimentation of particle suspensions
- G01N15/05—Investigating sedimentation of particle suspensions in blood
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/14—Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D21/00—Separation of suspended solid particles from liquids by sedimentation
- B01D21/0012—Settling tanks making use of filters, e.g. by floating layers of particulate material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D21/00—Separation of suspended solid particles from liquids by sedimentation
- B01D21/28—Mechanical auxiliary equipment for acceleration of sedimentation, e.g. by vibrators or the like
- B01D21/283—Settling tanks provided with vibrators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5027—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5027—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
- B01L3/50273—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means or forces applied to move the fluids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5027—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
- B01L3/502738—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by integrated valves
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5027—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
- B01L3/502746—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means for controlling flow resistance, e.g. flow controllers, baffles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5027—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
- B01L3/502753—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by bulk separation arrangements on lab-on-a-chip devices, e.g. for filtration or centrifugation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5027—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
- B01L3/502761—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip specially adapted for handling suspended solids or molecules independently from the bulk fluid flow, e.g. for trapping or sorting beads, for physically stretching molecules
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5027—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
- B01L3/502769—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements
- B01L3/502776—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements specially adapted for focusing or laminating flows
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K7/00—Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves
- F16K7/12—Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves with flat, dished, or bowl-shaped diaphragm
- F16K7/14—Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves with flat, dished, or bowl-shaped diaphragm arranged to be deformed against a flat seat
- F16K7/17—Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves with flat, dished, or bowl-shaped diaphragm arranged to be deformed against a flat seat the diaphragm being actuated by fluid pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K99/00—Subject matter not provided for in other groups of this subclass
- F16K99/0001—Microvalves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K99/00—Subject matter not provided for in other groups of this subclass
- F16K99/0001—Microvalves
- F16K99/0003—Constructional types of microvalves; Details of the cutting-off member
- F16K99/0015—Diaphragm or membrane valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K99/00—Subject matter not provided for in other groups of this subclass
- F16K99/0001—Microvalves
- F16K99/0003—Constructional types of microvalves; Details of the cutting-off member
- F16K99/0025—Valves using microporous membranes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K99/00—Subject matter not provided for in other groups of this subclass
- F16K99/0001—Microvalves
- F16K99/0034—Operating means specially adapted for microvalves
- F16K99/0055—Operating means specially adapted for microvalves actuated by fluids
- F16K99/0059—Operating means specially adapted for microvalves actuated by fluids actuated by a pilot fluid
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/02—Investigating particle size or size distribution
- G01N15/0255—Investigating particle size or size distribution with mechanical, e.g. inertial, classification, and investigation of sorted collections
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N15/14—Optical investigation techniques, e.g. flow cytometry
- G01N15/1456—Optical investigation techniques, e.g. flow cytometry without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2206/00—Characteristics of a physical parameter; associated device therefor
- A61M2206/10—Flow characteristics
- A61M2206/11—Laminar flow
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2200/00—Solutions for specific problems relating to chemical or physical laboratory apparatus
- B01L2200/02—Adapting objects or devices to another
- B01L2200/026—Fluid interfacing between devices or objects, e.g. connectors, inlet details
- B01L2200/027—Fluid interfacing between devices or objects, e.g. connectors, inlet details for microfluidic devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2200/00—Solutions for specific problems relating to chemical or physical laboratory apparatus
- B01L2200/02—Adapting objects or devices to another
- B01L2200/028—Modular arrangements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2200/00—Solutions for specific problems relating to chemical or physical laboratory apparatus
- B01L2200/06—Fluid handling related problems
- B01L2200/0636—Focussing flows, e.g. to laminate flows
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2200/00—Solutions for specific problems relating to chemical or physical laboratory apparatus
- B01L2200/06—Fluid handling related problems
- B01L2200/0647—Handling flowable solids, e.g. microscopic beads, cells, particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2200/00—Solutions for specific problems relating to chemical or physical laboratory apparatus
- B01L2200/06—Fluid handling related problems
- B01L2200/0647—Handling flowable solids, e.g. microscopic beads, cells, particles
- B01L2200/0668—Trapping microscopic beads
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/08—Geometry, shape and general structure
- B01L2300/0809—Geometry, shape and general structure rectangular shaped
- B01L2300/0829—Multi-well plates; Microtitration plates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/08—Geometry, shape and general structure
- B01L2300/0861—Configuration of multiple channels and/or chambers in a single devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/08—Geometry, shape and general structure
- B01L2300/0861—Configuration of multiple channels and/or chambers in a single devices
- B01L2300/0874—Three dimensional network
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/08—Geometry, shape and general structure
- B01L2300/0861—Configuration of multiple channels and/or chambers in a single devices
- B01L2300/0883—Serpentine channels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2400/00—Moving or stopping fluids
- B01L2400/04—Moving fluids with specific forces or mechanical means
- B01L2400/0403—Moving fluids with specific forces or mechanical means specific forces
- B01L2400/0406—Moving fluids with specific forces or mechanical means specific forces capillary forces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2400/00—Moving or stopping fluids
- B01L2400/04—Moving fluids with specific forces or mechanical means
- B01L2400/0403—Moving fluids with specific forces or mechanical means specific forces
- B01L2400/0433—Moving fluids with specific forces or mechanical means specific forces vibrational forces
- B01L2400/0436—Moving fluids with specific forces or mechanical means specific forces vibrational forces acoustic forces, e.g. surface acoustic waves [SAW]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2400/00—Moving or stopping fluids
- B01L2400/04—Moving fluids with specific forces or mechanical means
- B01L2400/0403—Moving fluids with specific forces or mechanical means specific forces
- B01L2400/0457—Moving fluids with specific forces or mechanical means specific forces passive flow or gravitation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2400/00—Moving or stopping fluids
- B01L2400/04—Moving fluids with specific forces or mechanical means
- B01L2400/0475—Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure
- B01L2400/0487—Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure fluid pressure, pneumatics
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2400/00—Moving or stopping fluids
- B01L2400/08—Regulating or influencing the flow resistance
- B01L2400/084—Passive control of flow resistance
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5027—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
- B01L3/502707—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K99/00—Subject matter not provided for in other groups of this subclass
- F16K2099/0073—Fabrication methods specifically adapted for microvalves
- F16K2099/008—Multi-layer fabrications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K99/00—Subject matter not provided for in other groups of this subclass
- F16K2099/0082—Microvalves adapted for a particular use
- F16K2099/0084—Chemistry or biology, e.g. "lab-on-a-chip" technology
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/28—Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
- G01N1/40—Concentrating samples
- G01N1/4005—Concentrating samples by transferring a selected component through a membrane
- G01N2001/4016—Concentrating samples by transferring a selected component through a membrane being a selective membrane, e.g. dialysis or osmosis
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/28—Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
- G01N1/40—Concentrating samples
- G01N1/4055—Concentrating samples by solubility techniques
- G01N2001/4061—Solvent extraction
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/28—Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
- G01N1/40—Concentrating samples
- G01N1/4077—Concentrating samples by other techniques involving separation of suspended solids
- G01N2001/4094—Concentrating samples by other techniques involving separation of suspended solids using ultrasound
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/02—Investigating particle size or size distribution
- G01N2015/0288—Sorting the particles
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N15/14—Optical investigation techniques, e.g. flow cytometry
- G01N15/1404—Handling flow, e.g. hydrodynamic focusing
- G01N15/1409—Handling samples, e.g. injecting samples
- G01N2015/1411—Features of sheath fluids
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N15/14—Optical investigation techniques, e.g. flow cytometry
- G01N15/1404—Handling flow, e.g. hydrodynamic focusing
- G01N2015/1413—Hydrodynamic focussing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N15/14—Optical investigation techniques, e.g. flow cytometry
- G01N15/1434—Optical arrangements
- G01N2015/144—Imaging characterised by its optical setup
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N15/14—Optical investigation techniques, e.g. flow cytometry
- G01N2015/1486—Counting the particles
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N2035/00178—Special arrangements of analysers
- G01N2035/00237—Handling microquantities of analyte, e.g. microvalves, capillary networks
- G01N2035/00247—Microvalves
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T436/00—Chemistry: analytical and immunological testing
- Y10T436/25—Chemistry: analytical and immunological testing including sample preparation
- Y10T436/25375—Liberation or purification of sample or separation of material from a sample [e.g., filtering, centrifuging, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T436/00—Chemistry: analytical and immunological testing
- Y10T436/25—Chemistry: analytical and immunological testing including sample preparation
- Y10T436/2575—Volumetric liquid transfer
Definitions
- This invention relates generally to microfluidic devices for performing analytic testing, and, in particular, to a device for reducing the effect of surface tension on fluids flowing in microfluidic channels.
- Microfluidic devices have recently become popular for performing analytic testing. Using tools developed by the semiconductor industry to miniaturize electronics, it has become possible to fabricate intricate fluid systems which can be inexpensively means produced. Systems have been developed to perform a variety of analytical techniques for the acquisition of information for the medical field.
- Microfluidic devices may be constructed in a multi-layer laminated structure where each layer has channels and structures fabricated from a laminate material to form microscale voids or channels where fluid flow.
- a microscale channel is generally defined as a fluid passage which has at least one internal cross-sectional dimension that is less than 500 ⁇ m and typically between about 0.1 ⁇ m and about 500 ⁇ m. The control and pumping of fluids through these channels is affected by either external pressurized fluid forced into the laminate, or by structures located within the laminate.
- U.S. Pat. No. 5,716,852 teaches a method for analyzing the presence and concentration of small particles in a flow cell using diffusion principles.
- This patent discloses a channel cell system for detecting the presence of analyte particles in a sample stream using a laminar flow channel having at least two inlet means which provide an indicator stream and a sample stream, where the laminar flow channel has a depth sufficiently small to allow laminar flow of the streams and length sufficient to allow diffusion of particles of the analyte into the indicator stream to form a detection area, and having an outlet out of the channel to form a single mixed stream.
- This device which is known at a T-Sensor, may contain an external detecting means for detecting changes in the indicator stream.
- This detecting means may be provided by any means known in the art, including optical means such as optical spectroscopy, or absorption spectroscopy of fluorescence.
- U.S. Pat. No. 5,932,100 which patent is also incorporated herein by reference, teaches another method for analyzing particles within microfluidic channels using diffusion principles.
- a mixture of particles suspended in a sample stream enters an extraction channel from one upper arm of a structure, which comprises microchannels in the shape of an “H”.
- An extraction stream (a dilution stream) enters from the lower arm on the same side of the extraction channel and due to the size of the microfluidic extraction channel, the flow is laminar and the streams do not mix.
- the sample stream exits as a by-product stream at the upper arm at the end of the extraction channel, while the extraction stream exits as a product stream at the lower arm.
- particles having a greater diffusion coefficient small particles such as albumin, sugars, and small ions
- the larger particles blood cells
- Particles in the exiting extraction stream may be analyzed without interference from the larger particles.
- This microfluidic structure commonly known as an “H-Filter,” can be used for extracting desired particles from a sample stream containing those particles.
- This invention deals with the passive control of fluids within a microfluidic circuit.
- the passive control is generated by using the natural forces that exist on a microscale, specifically capillarity, which is caused by the attraction or repulsion of a fluid toward certain materials.
- FIG. 1 is a plan view of a microfluidic structure including an H-Filter using the principles of the present invention.
- FIG. 2 is a fragmentary, cross-sectional side view of the microfluidic structure shown in FIG. 1.
- FIG. 1 shows a microfluidic analysis card 10 which contains an H-Filter 12 , which structure is described in detail in U.S. Pat. No. 5,932,100, incorporating the present invention.
- H-Filter 12 includes a first reservoir 14 and a second reservoir 16 .
- An outlet channel 18 of reservoir 14 and an outlet channel 20 of reservoir 16 are both connected to a flow channel 24 at a first end 26 .
- a second end 28 of flow channel 24 is coupled to an exit channel 30 , which is connected to a reservoir 32 and also to an exit channel 34 , which is coupled to a reservoir 36 .
- Reservoir 36 is also coupled to a bellows 38 via a channel 40 . It should be understood that H-Filter 12 will also operate using gravity as a driving force.
- Reservoir 14 contains a vent hole 42 and an inlet port 44 , while reservoir 16 contains an inlet port 46 .
- Reservoir 14 also contains a narrowed lower section 50 , which extends across the lower length of reservoir 14 , while reservoir 16 also contains a similarly narrowed lower section 52 across the lower length of reservoir 16 .
- H-Filter 12 Operation of H-Filter 12 is as follows: a sample fluid is placed into inlet port 46 of reservoir 16 while an extractor solution is placed into port 44 of reservoir 14 .
- the fluids form a stream and flow through channels 20 , 18 respectively to end 26 of channel 24 .
- the fluids form a stream and flow laminarly within channel 24 while particles from the sample fluid diffuse across the laminar junction into the extractor fluid.
- the extractor fluid containing particles flow through channel 30 into reservoir 32 , while the sample fluid flows through channel 34 into reservoir 36 .
- Narrowed section 50 of reservoir 14 fills with sample fluid when the sample is loaded into inlet port 44 . Since the structure of reservoir 14 is not microscale, and outlet channel 18 is of a microscale dimension, the effect of surface tension would generally prevent the fluid from flowing smoothly from reservoir 14 to channel 18 . However, as can be clearly seen in FIGS. 1 and 2, the narrow lower section 50 , which runs the entire length of reservoir 14 , is of essentially the same microdimensions of channel 18 ; thus, fluid moves smoothly and consistently from reservoir 14 into channel 18 and through the rest of the H-Filter structure. This is also true for fluids flowing from reservoir 16 into channel 20 , as the narrow lower section 52 of reservoir 16 fills with fluid and flows smoothly into channel 20 with little or no surface tension effect.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Dispersion Chemistry (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Engineering & Computer Science (AREA)
- Hematology (AREA)
- Clinical Laboratory Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Pathology (AREA)
- Immunology (AREA)
- General Physics & Mathematics (AREA)
- Biochemistry (AREA)
- Fluid Mechanics (AREA)
- Heart & Thoracic Surgery (AREA)
- Molecular Biology (AREA)
- Urology & Nephrology (AREA)
- Emergency Medicine (AREA)
- Vascular Medicine (AREA)
- Anesthesiology (AREA)
- Biomedical Technology (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Automatic Analysis And Handling Materials Therefor (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Sampling And Sample Adjustment (AREA)
- Multiple-Way Valves (AREA)
- Check Valves (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- External Artificial Organs (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US10/114,864 US20020150502A1 (en) | 2001-04-03 | 2002-04-03 | Surface tension reduction channel |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US28111401P | 2001-04-03 | 2001-04-03 | |
| US10/114,864 US20020150502A1 (en) | 2001-04-03 | 2002-04-03 | Surface tension reduction channel |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20020150502A1 true US20020150502A1 (en) | 2002-10-17 |
Family
ID=23076003
Family Applications (8)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/114,864 Abandoned US20020150502A1 (en) | 2001-04-03 | 2002-04-03 | Surface tension reduction channel |
| US10/114,790 Expired - Lifetime US6674525B2 (en) | 2001-04-03 | 2002-04-03 | Split focusing cytometer |
| US10/115,320 Abandoned US20020160518A1 (en) | 2001-04-03 | 2002-04-03 | Microfluidic sedimentation |
| US10/114,765 Abandoned US20020172622A1 (en) | 2001-04-03 | 2002-04-03 | Microfluidic device for concentrating particles in a concentrating solution |
| US10/115,374 Abandoned US20020159920A1 (en) | 2001-04-03 | 2002-04-03 | Multiple redundant microfluidic structures cross reference to related applications |
| US10/114,890 Abandoned US20020148992A1 (en) | 2001-04-03 | 2002-04-03 | Pneumatic valve interface for use in microfluidic structures |
| US10/960,890 Abandoned US20050205816A1 (en) | 2001-04-03 | 2004-10-06 | Pneumatic valve interface for use in microfluidic structures |
| US11/122,139 Abandoned US20050201903A1 (en) | 2001-04-03 | 2005-05-04 | Microfluidic device for concentrating particles in a concentrating solution |
Family Applications After (7)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/114,790 Expired - Lifetime US6674525B2 (en) | 2001-04-03 | 2002-04-03 | Split focusing cytometer |
| US10/115,320 Abandoned US20020160518A1 (en) | 2001-04-03 | 2002-04-03 | Microfluidic sedimentation |
| US10/114,765 Abandoned US20020172622A1 (en) | 2001-04-03 | 2002-04-03 | Microfluidic device for concentrating particles in a concentrating solution |
| US10/115,374 Abandoned US20020159920A1 (en) | 2001-04-03 | 2002-04-03 | Multiple redundant microfluidic structures cross reference to related applications |
| US10/114,890 Abandoned US20020148992A1 (en) | 2001-04-03 | 2002-04-03 | Pneumatic valve interface for use in microfluidic structures |
| US10/960,890 Abandoned US20050205816A1 (en) | 2001-04-03 | 2004-10-06 | Pneumatic valve interface for use in microfluidic structures |
| US11/122,139 Abandoned US20050201903A1 (en) | 2001-04-03 | 2005-05-04 | Microfluidic device for concentrating particles in a concentrating solution |
Country Status (6)
| Country | Link |
|---|---|
| US (8) | US20020150502A1 (enExample) |
| EP (2) | EP1377821A2 (enExample) |
| JP (2) | JP2005509113A (enExample) |
| AT (1) | ATE401566T1 (enExample) |
| DE (1) | DE60227649D1 (enExample) |
| WO (2) | WO2002081934A2 (enExample) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20040109793A1 (en) * | 2002-02-07 | 2004-06-10 | Mcneely Michael R | Three-dimensional microfluidics incorporating passive fluid control structures |
| US20080025873A1 (en) * | 2006-07-28 | 2008-01-31 | Philip Harding | Prevention of fluid delivered to reservoir from wicking into channels within microfluidic device |
| US20190302008A1 (en) * | 2018-03-30 | 2019-10-03 | International Business Machines Corporation | Mobile chemical analysis |
Families Citing this family (299)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP4323571B2 (ja) | 1997-01-31 | 2009-09-02 | エックスワイ, インコーポレイテッド | 光学装置 |
| US6036924A (en) | 1997-12-04 | 2000-03-14 | Hewlett-Packard Company | Cassette of lancet cartridges for sampling blood |
| US6071689A (en) * | 1997-12-31 | 2000-06-06 | Xy, Inc. | System for improving yield of sexed embryos in mammals |
| US6149867A (en) * | 1997-12-31 | 2000-11-21 | Xy, Inc. | Sheath fluids and collection systems for sex-specific cytometer sorting of sperm |
| US6391005B1 (en) | 1998-03-30 | 2002-05-21 | Agilent Technologies, Inc. | Apparatus and method for penetration with shaft having a sensor for sensing penetration depth |
| US6692952B1 (en) * | 1999-11-10 | 2004-02-17 | Massachusetts Institute Of Technology | Cell analysis and sorting apparatus for manipulation of cells |
| US7208265B1 (en) * | 1999-11-24 | 2007-04-24 | Xy, Inc. | Method of cryopreserving selected sperm cells |
| US8329118B2 (en) * | 2004-09-02 | 2012-12-11 | Honeywell International Inc. | Method and apparatus for determining one or more operating parameters for a microfluidic circuit |
| US8071051B2 (en) * | 2004-05-14 | 2011-12-06 | Honeywell International Inc. | Portable sample analyzer cartridge |
| US7641856B2 (en) | 2004-05-14 | 2010-01-05 | Honeywell International Inc. | Portable sample analyzer with removable cartridge |
| US8518328B2 (en) * | 2005-12-27 | 2013-08-27 | Honeywell International Inc. | Fluid sensing and control in a fluidic analyzer |
| US6627159B1 (en) | 2000-06-28 | 2003-09-30 | 3M Innovative Properties Company | Centrifugal filling of sample processing devices |
| US20020052571A1 (en) * | 2000-09-13 | 2002-05-02 | Fazio Frank A. | Artificial kidney and methods of using same |
| US20040031071A1 (en) * | 2000-10-05 | 2004-02-12 | Xy, Inc. | System of hysteroscopic insemination of mares |
| US8097471B2 (en) | 2000-11-10 | 2012-01-17 | 3M Innovative Properties Company | Sample processing devices |
| US8641644B2 (en) | 2000-11-21 | 2014-02-04 | Sanofi-Aventis Deutschland Gmbh | Blood testing apparatus having a rotatable cartridge with multiple lancing elements and testing means |
| DE10057832C1 (de) | 2000-11-21 | 2002-02-21 | Hartmann Paul Ag | Blutanalysegerät |
| US7713687B2 (en) | 2000-11-29 | 2010-05-11 | Xy, Inc. | System to separate frozen-thawed spermatozoa into x-chromosome bearing and y-chromosome bearing populations |
| WO2002043574A2 (en) | 2000-11-29 | 2002-06-06 | Xy, Inc. | System to separate frozen-thawed spermatozoa into x-chromosome bearing and y-chromosome bearing populations |
| US7537571B2 (en) | 2001-06-12 | 2009-05-26 | Pelikan Technologies, Inc. | Integrated blood sampling analysis system with multi-use sampling module |
| CA2448790C (en) | 2001-06-12 | 2010-09-07 | Pelikan Technologies, Inc. | Electric lancet actuator |
| US7981056B2 (en) | 2002-04-19 | 2011-07-19 | Pelikan Technologies, Inc. | Methods and apparatus for lancet actuation |
| CA2448905C (en) | 2001-06-12 | 2010-09-07 | Pelikan Technologies, Inc. | Blood sampling apparatus and method |
| US7344507B2 (en) | 2002-04-19 | 2008-03-18 | Pelikan Technologies, Inc. | Method and apparatus for lancet actuation |
| EP1404233B1 (en) | 2001-06-12 | 2009-12-02 | Pelikan Technologies Inc. | Self optimizing lancing device with adaptation means to temporal variations in cutaneous properties |
| US9795747B2 (en) | 2010-06-02 | 2017-10-24 | Sanofi-Aventis Deutschland Gmbh | Methods and apparatus for lancet actuation |
| US7041068B2 (en) | 2001-06-12 | 2006-05-09 | Pelikan Technologies, Inc. | Sampling module device and method |
| US9427532B2 (en) | 2001-06-12 | 2016-08-30 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
| WO2002100461A2 (en) | 2001-06-12 | 2002-12-19 | Pelikan Technologies, Inc. | Method and apparatus for improving success rate of blood yield from a fingerstick |
| US9226699B2 (en) | 2002-04-19 | 2016-01-05 | Sanofi-Aventis Deutschland Gmbh | Body fluid sampling module with a continuous compression tissue interface surface |
| AU2002348683A1 (en) | 2001-06-12 | 2002-12-23 | Pelikan Technologies, Inc. | Method and apparatus for lancet launching device integrated onto a blood-sampling cartridge |
| US8337419B2 (en) | 2002-04-19 | 2012-12-25 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
| US7141429B2 (en) * | 2001-10-09 | 2006-11-28 | University Of Washington | Use of liquid junction potentials for electrophoresis without applied voltage in a microfluidic channel |
| US7344894B2 (en) | 2001-10-16 | 2008-03-18 | Agilent Technologies, Inc. | Thermal regulation of fluidic samples within a diagnostic cartridge |
| GB0128350D0 (en) | 2001-11-27 | 2002-01-16 | Lab901 Ltd | Non-rigid apparatus for microfluidic applications |
| US7691333B2 (en) | 2001-11-30 | 2010-04-06 | Fluidigm Corporation | Microfluidic device and methods of using same |
| US20030175980A1 (en) * | 2002-03-14 | 2003-09-18 | Hayenga Jon W. | Ribbon flow cytometry and cell sorting |
| US9943847B2 (en) | 2002-04-17 | 2018-04-17 | Cytonome/St, Llc | Microfluidic system including a bubble valve for regulating fluid flow through a microchannel |
| US7374544B2 (en) | 2002-04-19 | 2008-05-20 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
| US7481776B2 (en) | 2002-04-19 | 2009-01-27 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
| US9314194B2 (en) | 2002-04-19 | 2016-04-19 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
| US7674232B2 (en) | 2002-04-19 | 2010-03-09 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
| US7229458B2 (en) | 2002-04-19 | 2007-06-12 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
| US7909778B2 (en) | 2002-04-19 | 2011-03-22 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
| US7892183B2 (en) | 2002-04-19 | 2011-02-22 | Pelikan Technologies, Inc. | Method and apparatus for body fluid sampling and analyte sensing |
| US9795334B2 (en) | 2002-04-19 | 2017-10-24 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
| US8702624B2 (en) | 2006-09-29 | 2014-04-22 | Sanofi-Aventis Deutschland Gmbh | Analyte measurement device with a single shot actuator |
| US7524293B2 (en) | 2002-04-19 | 2009-04-28 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
| US7582099B2 (en) | 2002-04-19 | 2009-09-01 | Pelikan Technologies, Inc | Method and apparatus for penetrating tissue |
| US8221334B2 (en) | 2002-04-19 | 2012-07-17 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
| US7226461B2 (en) | 2002-04-19 | 2007-06-05 | Pelikan Technologies, Inc. | Method and apparatus for a multi-use body fluid sampling device with sterility barrier release |
| US7297122B2 (en) | 2002-04-19 | 2007-11-20 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
| US7547287B2 (en) | 2002-04-19 | 2009-06-16 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
| US7648468B2 (en) | 2002-04-19 | 2010-01-19 | Pelikon Technologies, Inc. | Method and apparatus for penetrating tissue |
| US7717863B2 (en) | 2002-04-19 | 2010-05-18 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
| US7901362B2 (en) | 2002-04-19 | 2011-03-08 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
| US9248267B2 (en) | 2002-04-19 | 2016-02-02 | Sanofi-Aventis Deustchland Gmbh | Tissue penetration device |
| US7491178B2 (en) | 2002-04-19 | 2009-02-17 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
| US7232451B2 (en) | 2002-04-19 | 2007-06-19 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
| US7291117B2 (en) | 2002-04-19 | 2007-11-06 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
| US8267870B2 (en) | 2002-04-19 | 2012-09-18 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for body fluid sampling with hybrid actuation |
| US8784335B2 (en) | 2002-04-19 | 2014-07-22 | Sanofi-Aventis Deutschland Gmbh | Body fluid sampling device with a capacitive sensor |
| US8579831B2 (en) | 2002-04-19 | 2013-11-12 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
| US7331931B2 (en) | 2002-04-19 | 2008-02-19 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
| US7563232B2 (en) | 2002-04-19 | 2009-07-21 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
| US7141058B2 (en) | 2002-04-19 | 2006-11-28 | Pelikan Technologies, Inc. | Method and apparatus for a body fluid sampling device using illumination |
| US7410468B2 (en) | 2002-04-19 | 2008-08-12 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
| US7371247B2 (en) | 2002-04-19 | 2008-05-13 | Pelikan Technologies, Inc | Method and apparatus for penetrating tissue |
| US7976476B2 (en) | 2002-04-19 | 2011-07-12 | Pelikan Technologies, Inc. | Device and method for variable speed lancet |
| EP2278337B1 (en) * | 2002-05-09 | 2019-06-26 | The University of Chicago | Device and method for pressure-driven plug transport and reaction |
| US7901939B2 (en) * | 2002-05-09 | 2011-03-08 | University Of Chicago | Method for performing crystallization and reactions in pressure-driven fluid plugs |
| CA2531176C (en) * | 2002-07-22 | 2018-04-24 | Xy, Inc. | Sperm cell process system |
| US7452509B2 (en) * | 2002-07-26 | 2008-11-18 | Applied Biosystems Inc. | Microfluidic device including displaceable material trap, and system |
| US7135147B2 (en) | 2002-07-26 | 2006-11-14 | Applera Corporation | Closing blade for deformable valve in a microfluidic device and method |
| US7198759B2 (en) * | 2002-07-26 | 2007-04-03 | Applera Corporation | Microfluidic devices, methods, and systems |
| US7201881B2 (en) * | 2002-07-26 | 2007-04-10 | Applera Corporation | Actuator for deformable valves in a microfluidic device, and method |
| US8211629B2 (en) * | 2002-08-01 | 2012-07-03 | Xy, Llc | Low pressure sperm cell separation system |
| US8486618B2 (en) | 2002-08-01 | 2013-07-16 | Xy, Llc | Heterogeneous inseminate system |
| CA2534394C (en) * | 2002-08-15 | 2013-01-08 | Xy, Inc. | High resolution flow cytometer |
| US7169548B2 (en) | 2002-09-13 | 2007-01-30 | Xy, Inc. | Sperm cell processing and preservation systems |
| US20040115830A1 (en) * | 2002-09-25 | 2004-06-17 | Igor Touzov | Components for nano-scale Reactor |
| EP2359689B1 (en) | 2002-09-27 | 2015-08-26 | The General Hospital Corporation | Microfluidic device for cell separation and use thereof |
| KR101216828B1 (ko) | 2002-12-30 | 2013-01-04 | 더 리전트 오브 더 유니버시티 오브 캘리포니아 | 병원균 검출과 분석을 위한 방법과 기구 |
| US8574895B2 (en) | 2002-12-30 | 2013-11-05 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus using optical techniques to measure analyte levels |
| US7419638B2 (en) | 2003-01-14 | 2008-09-02 | Micronics, Inc. | Microfluidic devices for fluid manipulation and analysis |
| CA2513880A1 (en) * | 2003-01-21 | 2004-08-05 | Micronics Inc. | Method and system for microfluidic manipulation, amplification and analysis of fluids, for example, bacteria assays and antiglobulin testing |
| WO2004077021A2 (en) * | 2003-02-27 | 2004-09-10 | Lesko Stephen A | Standardized evaluation of therapeutic efficacy based on cellular biomarkers |
| CA2518667C (en) | 2003-03-14 | 2011-07-19 | The Trustees Of Columbia University In The City Of New York | Systems and methods of blood-based therapies having a microfluidic membraneless exchange device |
| US20060076295A1 (en) | 2004-03-15 | 2006-04-13 | The Trustees Of Columbia University In The City Of New York | Systems and methods of blood-based therapies having a microfluidic membraneless exchange device |
| DK2308419T3 (da) | 2003-03-28 | 2016-06-06 | Inguran Llc | Fremgangsmåde til bedømmelse af farvningstilstandene for dyresperm, som skal sorteres. |
| US8828663B2 (en) | 2005-03-18 | 2014-09-09 | Fluidigm Corporation | Thermal reaction device and method for using the same |
| US7476363B2 (en) | 2003-04-03 | 2009-01-13 | Fluidigm Corporation | Microfluidic devices and methods of using same |
| US7604965B2 (en) | 2003-04-03 | 2009-10-20 | Fluidigm Corporation | Thermal reaction device and method for using the same |
| US20050145496A1 (en) | 2003-04-03 | 2005-07-07 | Federico Goodsaid | Thermal reaction device and method for using the same |
| AU2004228678A1 (en) * | 2003-04-03 | 2004-10-21 | Fluidigm Corp. | Microfluidic devices and methods of using same |
| DE10320870A1 (de) * | 2003-05-09 | 2004-12-09 | Evotec Technologies Gmbh | Partikelinjektor für einen Zellsortierer |
| EP1625203B1 (en) * | 2003-05-15 | 2015-04-08 | Xy, Llc | Efficient haploid cell sorting for flow cytometer systems |
| WO2004107964A2 (en) | 2003-06-06 | 2004-12-16 | Pelikan Technologies, Inc. | Blood harvesting device with electronic control |
| WO2006001797A1 (en) | 2004-06-14 | 2006-01-05 | Pelikan Technologies, Inc. | Low pain penetrating |
| WO2004113877A1 (en) * | 2003-06-13 | 2004-12-29 | The General Hospital Corporation | Microfluidic systems for size based removal of red blood cells and platelets from blood |
| EP1635700B1 (en) | 2003-06-13 | 2016-03-09 | Sanofi-Aventis Deutschland GmbH | Apparatus for a point of care device |
| US7298478B2 (en) * | 2003-08-14 | 2007-11-20 | Cytonome, Inc. | Optical detector for a particle sorting system |
| US8282576B2 (en) | 2003-09-29 | 2012-10-09 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for an improved sample capture device |
| WO2005037095A1 (en) | 2003-10-14 | 2005-04-28 | Pelikan Technologies, Inc. | Method and apparatus for a variable user interface |
| JP5138223B2 (ja) * | 2003-10-30 | 2013-02-06 | サイトノーム エスティー リミテッド ライアビリティー カンパニー | 流体力学的多層シースフロー構造 |
| GB0329220D0 (en) * | 2003-12-17 | 2004-01-21 | Inverness Medical Switzerland | System |
| WO2005058500A1 (en) * | 2003-12-17 | 2005-06-30 | Inverness Medical Switzerland Gmbh | System |
| WO2005065414A2 (en) | 2003-12-31 | 2005-07-21 | Pelikan Technologies, Inc. | Method and apparatus for improving fluidic flow and sample capture |
| US7822454B1 (en) | 2005-01-03 | 2010-10-26 | Pelikan Technologies, Inc. | Fluid sampling device with improved analyte detecting member configuration |
| US8592219B2 (en) * | 2005-01-17 | 2013-11-26 | Gyros Patent Ab | Protecting agent |
| EP1776449A4 (en) * | 2004-03-03 | 2009-08-12 | Gen Hospital Corp | MAGNETIC DEVICE FOR ISOLATING CELLS AND BIOMOLECULES IN A MICROFLUIDIC ENVIRONMENT |
| WO2005095590A2 (en) | 2004-03-29 | 2005-10-13 | Monsanto Technology Llc | Sperm suspensions for sorting into x or y chromosome-bearing enriched populations |
| US7295306B2 (en) * | 2004-04-22 | 2007-11-13 | Kowa Company, Ltd. | Microchip and fluorescent particle counter with microchip |
| WO2006011062A2 (en) | 2004-05-20 | 2006-02-02 | Albatros Technologies Gmbh & Co. Kg | Printable hydrogel for biosensors |
| US7799553B2 (en) | 2004-06-01 | 2010-09-21 | The Regents Of The University Of California | Microfabricated integrated DNA analysis system |
| WO2005120365A1 (en) | 2004-06-03 | 2005-12-22 | Pelikan Technologies, Inc. | Method and apparatus for a fluid sampling device |
| AR049732A1 (es) | 2004-07-22 | 2006-08-30 | Monsanto Co | Proceso para enriquecer una poblacion de celulas de esperma |
| US7032608B2 (en) * | 2004-09-01 | 2006-04-25 | Harris Corporation | Microfluidic check-valve embedded in LCP |
| EP1794581A2 (en) | 2004-09-15 | 2007-06-13 | Microchip Biotechnologies, Inc. | Microfluidic devices |
| CN101099082B (zh) | 2004-12-03 | 2013-03-27 | 塞通诺米/St有限责任公司 | 用于粒子处理的整体式盒 |
| US9260693B2 (en) | 2004-12-03 | 2016-02-16 | Cytonome/St, Llc | Actuation of parallel microfluidic arrays |
| US8652831B2 (en) | 2004-12-30 | 2014-02-18 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for analyte measurement test time |
| WO2006076567A2 (en) * | 2005-01-13 | 2006-07-20 | Micronics, Inc. | Microfluidic rare cell detection device |
| WO2006075965A1 (en) * | 2005-01-17 | 2006-07-20 | Gyros Patent Ab | A method for detecting an at least bivalent analyte using two affinity reactants |
| FR2882939B1 (fr) | 2005-03-11 | 2007-06-08 | Centre Nat Rech Scient | Dispositif de separation fluidique |
| EP1874920A4 (en) * | 2005-04-05 | 2009-11-04 | Cellpoint Diagnostics | DEVICES AND METHOD FOR ENRICHING AND CHANGING CIRCULATING TUMOR CELLS AND OTHER PARTICLES |
| US20070026413A1 (en) * | 2005-07-29 | 2007-02-01 | Mehmet Toner | Devices and methods for enrichment and alteration of circulating tumor cells and other particles |
| US20070026414A1 (en) * | 2005-07-29 | 2007-02-01 | Martin Fuchs | Devices and methods for enrichment and alteration of circulating tumor cells and other particles |
| US20070196820A1 (en) | 2005-04-05 | 2007-08-23 | Ravi Kapur | Devices and methods for enrichment and alteration of cells and other particles |
| US20070026415A1 (en) * | 2005-07-29 | 2007-02-01 | Martin Fuchs | Devices and methods for enrichment and alteration of circulating tumor cells and other particles |
| US20070026417A1 (en) * | 2005-07-29 | 2007-02-01 | Martin Fuchs | Devices and methods for enrichment and alteration of circulating tumor cells and other particles |
| US20070042427A1 (en) * | 2005-05-03 | 2007-02-22 | Micronics, Inc. | Microfluidic laminar flow detection strip |
| WO2007005973A2 (en) * | 2005-07-01 | 2007-01-11 | Honeywell International, Inc. | A microfluidic card for rbc analysis |
| US20090181421A1 (en) * | 2005-07-29 | 2009-07-16 | Ravi Kapur | Diagnosis of fetal abnormalities using nucleated red blood cells |
| US8921102B2 (en) * | 2005-07-29 | 2014-12-30 | Gpb Scientific, Llc | Devices and methods for enrichment and alteration of circulating tumor cells and other particles |
| US20070059680A1 (en) * | 2005-09-15 | 2007-03-15 | Ravi Kapur | System for cell enrichment |
| US20070026416A1 (en) * | 2005-07-29 | 2007-02-01 | Martin Fuchs | Devices and methods for enrichment and alteration of circulating tumor cells and other particles |
| WO2007021816A2 (en) * | 2005-08-11 | 2007-02-22 | Eksigent Technologies, Llc | Methods and apparatuses for reducing effects of molecule adsorption within microfluidic channels |
| US20070059683A1 (en) * | 2005-09-15 | 2007-03-15 | Tom Barber | Veterinary diagnostic system |
| US20070059774A1 (en) * | 2005-09-15 | 2007-03-15 | Michael Grisham | Kits for Prenatal Testing |
| US20070059781A1 (en) * | 2005-09-15 | 2007-03-15 | Ravi Kapur | System for size based separation and analysis |
| US20070059719A1 (en) * | 2005-09-15 | 2007-03-15 | Michael Grisham | Business methods for prenatal Diagnosis |
| US20070059718A1 (en) * | 2005-09-15 | 2007-03-15 | Mehmet Toner | Systems and methods for enrichment of analytes |
| US7763453B2 (en) * | 2005-11-30 | 2010-07-27 | Micronics, Inc. | Microfluidic mixing and analytic apparatus |
| US9056291B2 (en) | 2005-11-30 | 2015-06-16 | Micronics, Inc. | Microfluidic reactor system |
| US7485153B2 (en) * | 2005-12-27 | 2009-02-03 | Honeywell International Inc. | Fluid free interface for a fluidic analyzer |
| US8182767B2 (en) * | 2005-12-27 | 2012-05-22 | Honeywell International Inc. | Needle-septum interface for a fluidic analyzer |
| WO2007084392A2 (en) * | 2006-01-13 | 2007-07-26 | Micronics, Inc. | Electromagnetically actuated valves for use in microfluidic structures |
| US7520164B1 (en) * | 2006-05-05 | 2009-04-21 | E.I. Spectra, Llc | Thin film particle sensor |
| US8616048B2 (en) * | 2006-02-02 | 2013-12-31 | E I Spectra, LLC | Reusable thin film particle sensor |
| US8171778B2 (en) * | 2006-05-05 | 2012-05-08 | E I Spectra, LLC | Thin film particle sensor |
| US9452429B2 (en) | 2006-02-02 | 2016-09-27 | E. I. Spectra, Llc | Method for mutiplexed microfluidic bead-based immunoassay |
| US20110189714A1 (en) * | 2010-02-03 | 2011-08-04 | Ayliffe Harold E | Microfluidic cell sorter and method |
| US9293311B1 (en) | 2006-02-02 | 2016-03-22 | E. I. Spectra, Llc | Microfluidic interrogation device |
| EP1979079A4 (en) | 2006-02-03 | 2012-11-28 | Integenx Inc | MICROFLUIDIC DEVICES |
| WO2007106580A2 (en) | 2006-03-15 | 2007-09-20 | Micronics, Inc. | Rapid magnetic flow assays |
| US7569789B2 (en) * | 2006-03-16 | 2009-08-04 | Visiongate, Inc. | Cantilevered coaxial flow injector apparatus and method for sorting particles |
| US7766033B2 (en) | 2006-03-22 | 2010-08-03 | The Regents Of The University Of California | Multiplexed latching valves for microfluidic devices and processors |
| BRPI0711896A2 (pt) | 2006-05-22 | 2012-07-17 | Univ Columbia | sistemas e métodos de troca sem membrana microfluida usando filtração da extração de correntes de saìda de fluido. |
| US20080050739A1 (en) | 2006-06-14 | 2008-02-28 | Roland Stoughton | Diagnosis of fetal abnormalities using polymorphisms including short tandem repeats |
| EP2029779A4 (en) | 2006-06-14 | 2010-01-20 | Living Microsystems Inc | HIGHLY PARALLEL SNP GENOTYPING UTILIZATION FOR FETAL DIAGNOSIS |
| US8372584B2 (en) | 2006-06-14 | 2013-02-12 | The General Hospital Corporation | Rare cell analysis using sample splitting and DNA tags |
| US8137912B2 (en) | 2006-06-14 | 2012-03-20 | The General Hospital Corporation | Methods for the diagnosis of fetal abnormalities |
| EP2041573B1 (en) * | 2006-06-23 | 2019-09-04 | PerkinElmer Health Sciences, Inc. | Methods and devices for microfluidic point-of-care immunoassays |
| WO2008147382A1 (en) * | 2006-09-27 | 2008-12-04 | Micronics, Inc. | Integrated microfluidic assay devices and methods |
| US8841116B2 (en) | 2006-10-25 | 2014-09-23 | The Regents Of The University Of California | Inline-injection microdevice and microfabricated integrated DNA analysis system using same |
| US20100171054A1 (en) * | 2006-11-28 | 2010-07-08 | Astc Aerospace Ab | Micromechanical slow acting valve system |
| GB2445739A (en) | 2007-01-16 | 2008-07-23 | Lab901 Ltd | Polymeric laminates containing heat seals |
| GB2445738A (en) * | 2007-01-16 | 2008-07-23 | Lab901 Ltd | Microfluidic device |
| CN101715483A (zh) | 2007-02-05 | 2010-05-26 | 微芯片生物工艺学股份有限公司 | 微流体和纳米流体装置、系统和应用 |
| CN103977848B (zh) | 2007-04-06 | 2016-08-24 | 加利福尼亚技术学院 | 微流体装置 |
| US8186913B2 (en) | 2007-04-16 | 2012-05-29 | The General Hospital Corporation | Systems and methods for particle focusing in microchannels |
| US8016260B2 (en) * | 2007-07-19 | 2011-09-13 | Formulatrix, Inc. | Metering assembly and method of dispensing fluid |
| WO2009015296A1 (en) | 2007-07-24 | 2009-01-29 | The Regents Of The University Of California | Microfabricated dropley generator |
| WO2009048673A2 (en) * | 2007-07-26 | 2009-04-16 | University Of Chicago | Stochastic confinement to detect, manipulate, and utilize molecules and organisms |
| EP2171420A1 (en) * | 2007-07-31 | 2010-04-07 | Micronics, Inc. | Sanitary swab collection system, microfluidic assay device, and methods for diagnostic assays |
| US20100264099A1 (en) * | 2007-11-26 | 2010-10-21 | Atonomics A/S | Separation device comprising a physical barrier |
| WO2009108260A2 (en) | 2008-01-22 | 2009-09-03 | Microchip Biotechnologies, Inc. | Universal sample preparation system and use in an integrated analysis system |
| BRPI0907473A2 (pt) | 2008-02-04 | 2019-09-24 | Univ Columbia | métodos, sistemas e dispositivos de separação de fluidos |
| KR100931302B1 (ko) | 2008-02-05 | 2009-12-11 | 한국과학기술원 | 서로 다른 임계압력을 가지는 밸브를 이용한 마이크로유체분배기 |
| WO2009126900A1 (en) | 2008-04-11 | 2009-10-15 | Pelikan Technologies, Inc. | Method and apparatus for analyte detecting device |
| US8961902B2 (en) * | 2008-04-23 | 2015-02-24 | Bioscale, Inc. | Method and apparatus for analyte processing |
| DK2138233T3 (da) | 2008-06-02 | 2011-01-31 | Boehringer Ingelheim Micropart | Mikrofluid foliestruktur til dosering af væsker |
| HUE031848T2 (en) | 2008-09-20 | 2017-08-28 | Univ Leland Stanford Junior | Non-invasive diagnosis of fetal aneuploidy by sequencing |
| WO2010040103A1 (en) | 2008-10-03 | 2010-04-08 | Micronics, Inc. | Microfluidic apparatus and methods for performing blood typing and crossmatching |
| GB2464300A (en) * | 2008-10-10 | 2010-04-14 | Univ Dublin City | Microfluidic multiplexed cellular and molecular analysis device and method |
| KR101676053B1 (ko) * | 2008-10-10 | 2016-11-14 | 사이틱 코포레이션 | 세포학적 시료들을 준비하는 마이크로유체 기구 및 방법 |
| CN102150048B (zh) * | 2008-10-28 | 2013-07-10 | 藤仓化成株式会社 | 液体流道装置及其制作方法 |
| US8435465B2 (en) * | 2008-11-03 | 2013-05-07 | Cfd Research Corporation | Microfluidic biological extraction chip |
| US8672532B2 (en) | 2008-12-31 | 2014-03-18 | Integenx Inc. | Microfluidic methods |
| US8100293B2 (en) * | 2009-01-23 | 2012-01-24 | Formulatrix, Inc. | Microfluidic dispensing assembly |
| EP2216095A1 (en) * | 2009-01-27 | 2010-08-11 | Koninklijke Philips Electronics N.V. | Microfluidic device for full blood count |
| US9375169B2 (en) | 2009-01-30 | 2016-06-28 | Sanofi-Aventis Deutschland Gmbh | Cam drive for managing disposable penetrating member actions with a single motor and motor and control system |
| WO2010097740A1 (en) * | 2009-02-24 | 2010-09-02 | Services Petroliers Schlumberger | Micro-valve and micro-fluidic device using such |
| DE102009015395B4 (de) | 2009-03-23 | 2022-11-24 | Thinxxs Microtechnology Gmbh | Flusszelle zur Behandlung und/oder Untersuchung eines Fluids |
| WO2010116341A1 (en) * | 2009-04-09 | 2010-10-14 | Koninklijke Philips Electronics N.V. | Preparation of thin layers of a fluid containing cells for analysis |
| FR2944529B1 (fr) * | 2009-04-20 | 2013-09-06 | Commissariat Energie Atomique | Methode de dosage d'enzymes plasmatiques dans le sang total |
| US20100282766A1 (en) * | 2009-05-06 | 2010-11-11 | Heiko Arndt | Low-Dead Volume Microfluidic Component and Method |
| US8230744B2 (en) | 2009-05-06 | 2012-07-31 | Cequr Sa | Low-dead volume microfluidic circuit and methods |
| CN102459565A (zh) | 2009-06-02 | 2012-05-16 | 尹特根埃克斯有限公司 | 具有隔膜阀的流控设备 |
| GB2474888A (en) * | 2009-10-30 | 2011-05-04 | Univ Dublin City | Microfluidic devices with degassing driven fluid flow |
| US8584703B2 (en) * | 2009-12-01 | 2013-11-19 | Integenx Inc. | Device with diaphragm valve |
| US8187979B2 (en) * | 2009-12-23 | 2012-05-29 | Varian Semiconductor Equipment Associates, Inc. | Workpiece patterning with plasma sheath modulation |
| CN102740976B (zh) | 2010-01-29 | 2016-04-20 | 精密公司 | 取样-应答微流体盒 |
| US8965476B2 (en) | 2010-04-16 | 2015-02-24 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
| US8512538B2 (en) | 2010-05-28 | 2013-08-20 | Integenx Inc. | Capillary electrophoresis device |
| DE102011015184B4 (de) * | 2010-06-02 | 2013-11-21 | Thinxxs Microtechnology Ag | Vorrichtung für den Transport kleiner Volumina eines Fluids, insbesondere Mikropumpe oder Mikroventil |
| EP2588235A2 (en) * | 2010-06-29 | 2013-05-08 | Analogic Corporation | Sample carrier |
| EP2606242A4 (en) | 2010-08-20 | 2016-07-20 | Integenx Inc | MICROFLUIDIC DEVICES WITH MECHANICALLY SEALED MEMBRANE VALVES |
| WO2012024658A2 (en) | 2010-08-20 | 2012-02-23 | IntegenX, Inc. | Integrated analysis system |
| CN102465110B (zh) | 2010-10-29 | 2015-08-19 | 三星电子株式会社 | 细胞裂解装置和使细胞或病毒裂解的方法 |
| KR101776215B1 (ko) * | 2010-10-29 | 2017-09-08 | 삼성전자 주식회사 | 세포 파쇄용 마이크로 디바이스 및 이를 이용한 세포 파쇄 방법 |
| US10908066B2 (en) | 2010-11-16 | 2021-02-02 | 1087 Systems, Inc. | Use of vibrational spectroscopy for microfluidic liquid measurement |
| DE102011078770B4 (de) | 2011-07-07 | 2016-04-28 | Robert Bosch Gmbh | Mikrofluidische Vorrichtung, mikrofluidisches System und Verfahren zum Transport von Fluiden |
| CN103157523A (zh) * | 2011-12-15 | 2013-06-19 | 三星电子株式会社 | 微流器件及其制造方法 |
| EP2802417B1 (en) | 2012-01-09 | 2019-05-15 | Micronics, Inc. | Microfluidic reactor system |
| US11485968B2 (en) | 2012-02-13 | 2022-11-01 | Neumodx Molecular, Inc. | Microfluidic cartridge for processing and detecting nucleic acids |
| US9101930B2 (en) | 2012-02-13 | 2015-08-11 | Neumodx Molecular, Inc. | Microfluidic cartridge for processing and detecting nucleic acids |
| US9637775B2 (en) | 2012-02-13 | 2017-05-02 | Neumodx Molecular, Inc. | System and method for processing biological samples |
| US9604213B2 (en) | 2012-02-13 | 2017-03-28 | Neumodx Molecular, Inc. | System and method for processing and detecting nucleic acids |
| US11931740B2 (en) | 2012-02-13 | 2024-03-19 | Neumodx Molecular, Inc. | System and method for processing and detecting nucleic acids |
| EP2834425A4 (en) * | 2012-02-21 | 2016-05-11 | Fluidigm Corp | METHOD AND SYSTEMS FOR MICROFLUIDIC LOGIC ELEMENTS |
| US8804105B2 (en) | 2012-03-27 | 2014-08-12 | E. I. Spectra, Llc | Combined optical imaging and electrical detection to characterize particles carried in a fluid |
| US11591637B2 (en) | 2012-08-14 | 2023-02-28 | 10X Genomics, Inc. | Compositions and methods for sample processing |
| US9701998B2 (en) | 2012-12-14 | 2017-07-11 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
| US10323279B2 (en) | 2012-08-14 | 2019-06-18 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
| US10752949B2 (en) | 2012-08-14 | 2020-08-25 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
| US10584381B2 (en) | 2012-08-14 | 2020-03-10 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
| AU2013302756C1 (en) | 2012-08-14 | 2018-05-17 | 10X Genomics, Inc. | Microcapsule compositions and methods |
| US10221442B2 (en) | 2012-08-14 | 2019-03-05 | 10X Genomics, Inc. | Compositions and methods for sample processing |
| US9951386B2 (en) | 2014-06-26 | 2018-04-24 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
| US10273541B2 (en) | 2012-08-14 | 2019-04-30 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
| US20140322706A1 (en) | 2012-10-24 | 2014-10-30 | Jon Faiz Kayyem | Integrated multipelx target analysis |
| JP1628116S (enExample) | 2012-10-24 | 2019-04-01 | ||
| EP2912174B1 (en) | 2012-10-25 | 2019-06-19 | Neumodx Molecular, Inc. | Method and materials for isolation of nucleic acid materials |
| US20150283324A1 (en) * | 2012-11-14 | 2015-10-08 | Ams Research Corporation | Cell delivery device and system with anti-clumping feature and methods for pelvic tissue treatment |
| US10533221B2 (en) | 2012-12-14 | 2020-01-14 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
| EP3567116A1 (en) | 2012-12-14 | 2019-11-13 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
| EP2932266A4 (en) | 2012-12-17 | 2016-11-30 | Leukodx Ltd | SYSTEMS AND METHOD FOR DETERMINING A CHEMICAL CONDITION |
| US20140170678A1 (en) | 2012-12-17 | 2014-06-19 | Leukodx Ltd. | Kits, compositions and methods for detecting a biological condition |
| US10610861B2 (en) | 2012-12-17 | 2020-04-07 | Accellix Ltd. | Systems, compositions and methods for detecting a biological condition |
| EP2934751B1 (en) | 2012-12-21 | 2019-05-29 | Micronics, Inc. | Low elasticity films for microfluidic use |
| KR102102123B1 (ko) | 2012-12-21 | 2020-04-20 | 퍼킨엘머 헬스 사이언시즈, 아이엔씨. | 유체 공학 회로 및 관련 제조 방법 |
| EP2935559B1 (en) | 2012-12-21 | 2020-09-16 | PerkinElmer Health Sciences, Inc. | Fluorescence detection system |
| US9207166B2 (en) * | 2013-01-31 | 2015-12-08 | Honeywell International Inc. | Micro-molded cytometer cartridge with integrated optics |
| BR112015019159A2 (pt) | 2013-02-08 | 2017-07-18 | 10X Genomics Inc | geração de código de barras de polinucleotídeos |
| EP4220124A1 (en) | 2013-03-14 | 2023-08-02 | Cytonome/ST, LLC | Hydrodynamic focusing apparatus and methods |
| WO2014150905A2 (en) | 2013-03-15 | 2014-09-25 | Genmark Diagnostics, Inc. | Systems, methods, and apparatus for manipulating deformable fluid vessels |
| US9506934B2 (en) * | 2013-04-29 | 2016-11-29 | Honeywell International Inc. | Polymer test cartridge mixer for cell lysis |
| EP2994750B1 (en) | 2013-05-07 | 2020-08-12 | PerkinElmer Health Sciences, Inc. | Microfluidic devices and methods for performing serum separation and blood cross-matching |
| JP6484222B2 (ja) | 2013-05-07 | 2019-03-13 | マイクロニクス, インコーポレイテッド | 核酸の調製および分析のためのデバイス |
| CN105189750B (zh) | 2013-05-07 | 2020-07-28 | 珀金埃尔默健康科学有限公司 | 使用粘土矿物和碱性溶液制备含核酸样品的方法 |
| GB2516675A (en) * | 2013-07-29 | 2015-02-04 | Atlas Genetics Ltd | A valve which depressurises, and a valve system |
| US9498778B2 (en) | 2014-11-11 | 2016-11-22 | Genmark Diagnostics, Inc. | Instrument for processing cartridge for performing assays in a closed sample preparation and reaction system |
| USD881409S1 (en) | 2013-10-24 | 2020-04-14 | Genmark Diagnostics, Inc. | Biochip cartridge |
| US11796449B2 (en) | 2013-10-30 | 2023-10-24 | Abs Global, Inc. | Microfluidic system and method with focused energy apparatus |
| CN106413896B (zh) | 2014-04-10 | 2019-07-05 | 10X基因组学有限公司 | 用于封装和分割试剂的流体装置、系统和方法及其应用 |
| KR101670826B1 (ko) | 2014-05-30 | 2016-11-10 | 한국과학기술원 | 미세유체 유동블럭과 이의 제조방법 |
| US20170113221A1 (en) | 2014-06-11 | 2017-04-27 | Micronics, Inc. | Microfluidic cartridges and apparatus with integrated assay controls for analysis of nucleic acids |
| CN113249435B (zh) | 2014-06-26 | 2024-09-03 | 10X基因组学有限公司 | 分析来自单个细胞或细胞群体的核酸的方法 |
| US12312640B2 (en) | 2014-06-26 | 2025-05-27 | 10X Genomics, Inc. | Analysis of nucleic acid sequences |
| JP2017522866A (ja) | 2014-06-26 | 2017-08-17 | 10エックス ジェノミクス, インコーポレイテッド | 核酸配列の分析 |
| US10413901B2 (en) | 2014-08-29 | 2019-09-17 | Arizona Board Of Regents On Behalf Of The University Of Arizona | Methods, devices, and systems for microfluidic stress emulation |
| CN105467111A (zh) * | 2014-09-05 | 2016-04-06 | 宏达国际电子股份有限公司 | 微流道模块 |
| US20160122817A1 (en) | 2014-10-29 | 2016-05-05 | 10X Genomics, Inc. | Methods and compositions for targeted nucleic acid sequencing |
| US9975122B2 (en) | 2014-11-05 | 2018-05-22 | 10X Genomics, Inc. | Instrument systems for integrated sample processing |
| US10005080B2 (en) | 2014-11-11 | 2018-06-26 | Genmark Diagnostics, Inc. | Instrument and cartridge for performing assays in a closed sample preparation and reaction system employing electrowetting fluid manipulation |
| US9598722B2 (en) | 2014-11-11 | 2017-03-21 | Genmark Diagnostics, Inc. | Cartridge for performing assays in a closed sample preparation and reaction system |
| SG11201705615UA (en) | 2015-01-12 | 2017-08-30 | 10X Genomics Inc | Processes and systems for preparing nucleic acid sequencing libraries and libraries prepared using same |
| EP3259579B1 (en) | 2015-02-19 | 2022-09-14 | 1087 Systems, Inc. | Scanning infrared measurement system |
| CN115651972A (zh) | 2015-02-24 | 2023-01-31 | 10X 基因组学有限公司 | 用于靶向核酸序列覆盖的方法 |
| US10697000B2 (en) | 2015-02-24 | 2020-06-30 | 10X Genomics, Inc. | Partition processing methods and systems |
| US20170059590A1 (en) | 2015-08-27 | 2017-03-02 | Ativa Medical Corporation | Fluid holding and dispensing micro-feature |
| US20170059459A1 (en) * | 2015-08-27 | 2017-03-02 | Ativa Medical Corporation | Fluid processing micro-feature devices and methods |
| US9366606B1 (en) | 2015-08-27 | 2016-06-14 | Ativa Medical Corporation | Fluid processing micro-feature devices and methods |
| US11071982B2 (en) | 2015-08-27 | 2021-07-27 | Ativa Medical Corporation | Fluid holding and dispensing micro-feature |
| CN115369161A (zh) | 2015-12-04 | 2022-11-22 | 10X 基因组学有限公司 | 用于核酸分析的方法和组合物 |
| US10088468B2 (en) * | 2016-02-04 | 2018-10-02 | Nova Biomedical Corporation | Analyte system and method for determining hemoglobin parameters in whole blood |
| WO2017197343A2 (en) | 2016-05-12 | 2017-11-16 | 10X Genomics, Inc. | Microfluidic on-chip filters |
| WO2017197338A1 (en) | 2016-05-13 | 2017-11-16 | 10X Genomics, Inc. | Microfluidic systems and methods of use |
| US10550429B2 (en) | 2016-12-22 | 2020-02-04 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
| US10011872B1 (en) | 2016-12-22 | 2018-07-03 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
| US10815525B2 (en) | 2016-12-22 | 2020-10-27 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
| US12264411B2 (en) | 2017-01-30 | 2025-04-01 | 10X Genomics, Inc. | Methods and systems for analysis |
| EP4029939B1 (en) | 2017-01-30 | 2023-06-28 | 10X Genomics, Inc. | Methods and systems for droplet-based single cell barcoding |
| US10844372B2 (en) | 2017-05-26 | 2020-11-24 | 10X Genomics, Inc. | Single cell analysis of transposase accessible chromatin |
| SG11201901822QA (en) | 2017-05-26 | 2019-03-28 | 10X Genomics Inc | Single cell analysis of transposase accessible chromatin |
| US10648573B2 (en) | 2017-08-23 | 2020-05-12 | Facebook Technologies, Llc | Fluidic switching devices |
| EP3954782A1 (en) | 2017-11-15 | 2022-02-16 | 10X Genomics, Inc. | Functionalized gel beads |
| US10829815B2 (en) | 2017-11-17 | 2020-11-10 | 10X Genomics, Inc. | Methods and systems for associating physical and genetic properties of biological particles |
| EP3775271B1 (en) | 2018-04-06 | 2025-03-12 | 10X Genomics, Inc. | Systems and methods for quality control in single cell processing |
| US11523939B2 (en) * | 2018-05-22 | 2022-12-13 | California Institute Of Technology | Miniature fixed and adjustable flow restrictor for the body |
| BR112020023607A2 (pt) | 2018-05-23 | 2021-02-17 | Abs Global, Inc. | sistemas e métodos para focalização de partículas em microcanais |
| KR102100197B1 (ko) * | 2018-08-17 | 2020-04-14 | (주)엠큐빅 | 플로우 셀을 이용한 미세조류 연속 모니터링 장치 |
| EP4245140A3 (en) | 2019-04-18 | 2024-01-17 | ABS Global, Inc. | System and process for continuous addition of cryoprotectant |
| CN110586211A (zh) * | 2019-09-20 | 2019-12-20 | 济南大学 | 一种基于数控气阀调节通道压力的微流控芯片制备及控制方法 |
| US11628439B2 (en) | 2020-01-13 | 2023-04-18 | Abs Global, Inc. | Single-sheath microfluidic chip |
| US20210252507A1 (en) * | 2020-02-16 | 2021-08-19 | University Of Maryland, Baltimore County | Apparatus for separating the cellular and liquid portions of a whole blood sample |
| JP7633402B2 (ja) | 2020-11-23 | 2025-02-19 | エイビーエス グローバル、インコーポレイテッド | モジュール式フロー・サイトメトリ・システム及びサンプル処理方法 |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5716852A (en) * | 1996-03-29 | 1998-02-10 | University Of Washington | Microfabricated diffusion-based chemical sensor |
| US5932100A (en) * | 1995-06-16 | 1999-08-03 | University Of Washington | Microfabricated differential extraction device and method |
| US6440725B1 (en) * | 1997-12-24 | 2002-08-27 | Cepheid | Integrated fluid manipulation cartridge |
| US20030026740A1 (en) * | 2001-08-06 | 2003-02-06 | Staats Sau Lan Tang | Microfluidic devices |
| US6712925B1 (en) * | 1998-05-18 | 2004-03-30 | University Of Washington | Method of making a liquid analysis cartridge |
Family Cites Families (33)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE2943116C2 (de) * | 1979-10-25 | 1986-06-19 | Gesellschaft für Strahlen- und Umweltforschung mbH, 8000 München | Einrichtung zur durchflußcytometrischen Reaktions- und/oder Diffusionsmessung |
| US4663058A (en) * | 1983-10-11 | 1987-05-05 | E. I. Du Pont De Nemours And Company | Process for continuous separation of leukocyte/platelet-enriched fraction from whole blood |
| JPS6453965U (enExample) * | 1987-09-30 | 1989-04-03 | ||
| US4858883A (en) * | 1987-12-11 | 1989-08-22 | Integrated Fluidics, Inc. | Valve with flexible sheet member |
| JPH01170853A (ja) * | 1987-12-25 | 1989-07-05 | Hitachi Ltd | 細胞選別装置 |
| US4869282A (en) * | 1988-12-09 | 1989-09-26 | Rosemount Inc. | Micromachined valve with polyimide film diaphragm |
| US5032381A (en) * | 1988-12-20 | 1991-07-16 | Tropix, Inc. | Chemiluminescence-based static and flow cytometry |
| US5197192A (en) * | 1990-08-01 | 1993-03-30 | Photovac Incorporated | Method of making a fluid control valve |
| US5176359A (en) * | 1991-05-20 | 1993-01-05 | Photovac International, Inc. | Fluid control valve arrangement |
| JP2832117B2 (ja) * | 1991-11-29 | 1998-12-02 | キヤノン株式会社 | サンプル測定デバイス及びサンプル測定システム |
| SE501713C2 (sv) * | 1993-09-06 | 1995-05-02 | Pharmacia Biosensor Ab | Ventil av membrantyp, speciellt för vätskehanteringsblock med mikroflödeskanaler |
| CA2169826A1 (en) * | 1993-09-24 | 1995-03-30 | Cynthia R. Nelson | Micromachined valve apparatus |
| US5652398A (en) * | 1995-03-03 | 1997-07-29 | Microsensor Technology, Inc. | Fixed-volume injector with backflush capability |
| JPH08320285A (ja) * | 1995-05-25 | 1996-12-03 | Hitachi Ltd | 粒子分析装置 |
| US5726751A (en) * | 1995-09-27 | 1998-03-10 | University Of Washington | Silicon microchannel optical flow cytometer |
| US5948684A (en) * | 1997-03-31 | 1999-09-07 | University Of Washington | Simultaneous analyte determination and reference balancing in reference T-sensor devices |
| US6184978B1 (en) * | 1996-05-15 | 2001-02-06 | International Remote Imaging Systems, Inc. | Method and apparatus for verifying uniform flow of a fluid sample through a flow cell and distribution on a slide |
| EP0910474B1 (en) * | 1996-06-14 | 2004-03-24 | University of Washington | Absorption-enhanced differential extraction method |
| US5858187A (en) * | 1996-09-26 | 1999-01-12 | Lockheed Martin Energy Systems, Inc. | Apparatus and method for performing electrodynamic focusing on a microchip |
| US6120666A (en) * | 1996-09-26 | 2000-09-19 | Ut-Battelle, Llc | Microfabricated device and method for multiplexed electrokinetic focusing of fluid streams and a transport cytometry method using same |
| AU734957B2 (en) * | 1997-05-16 | 2001-06-28 | Alberta Research Council Inc. | Microfluidic system and methods of use |
| US5932799A (en) * | 1997-07-21 | 1999-08-03 | Ysi Incorporated | Microfluidic analyzer module |
| US6685809B1 (en) * | 1999-02-04 | 2004-02-03 | Ut-Battelle, Llc | Methods for forming small-volume electrical contacts and material manipulations with fluidic microchannels |
| US6067157A (en) * | 1998-10-09 | 2000-05-23 | University Of Washington | Dual large angle light scattering detection |
| US6416642B1 (en) * | 1999-01-21 | 2002-07-09 | Caliper Technologies Corp. | Method and apparatus for continuous liquid flow in microscale channels using pressure injection, wicking, and electrokinetic injection |
| US6632655B1 (en) * | 1999-02-23 | 2003-10-14 | Caliper Technologies Corp. | Manipulation of microparticles in microfluidic systems |
| US6379973B1 (en) * | 1999-03-05 | 2002-04-30 | The United States Of America As Represented By The Department Of Health And Human Services | Chromatographic separation apparatus and method |
| US6533938B1 (en) * | 1999-05-27 | 2003-03-18 | Worcester Polytechnic Institue | Polymer enhanced diafiltration: filtration using PGA |
| JP4733331B2 (ja) * | 2000-03-14 | 2011-07-27 | マイクロニックス、インコーポレーテッド | マイクロ流動体分析用デバイス |
| EP1285106A2 (en) * | 2000-03-31 | 2003-02-26 | Micronics, Inc. | Protein crystallization in microfluidic structures |
| WO2001089696A2 (en) * | 2000-05-24 | 2001-11-29 | Micronics, Inc. | Microfluidic concentration gradient loop |
| US6431212B1 (en) * | 2000-05-24 | 2002-08-13 | Jon W. Hayenga | Valve for use in microfluidic structures |
| US20030196695A1 (en) * | 2000-11-06 | 2003-10-23 | Nanostream, Inc. | Microfluidic flow control devices |
-
2002
- 2002-04-03 WO PCT/US2002/010509 patent/WO2002081934A2/en not_active Ceased
- 2002-04-03 US US10/114,864 patent/US20020150502A1/en not_active Abandoned
- 2002-04-03 US US10/114,790 patent/US6674525B2/en not_active Expired - Lifetime
- 2002-04-03 US US10/115,320 patent/US20020160518A1/en not_active Abandoned
- 2002-04-03 JP JP2002579674A patent/JP2005509113A/ja active Pending
- 2002-04-03 AT AT02719428T patent/ATE401566T1/de not_active IP Right Cessation
- 2002-04-03 US US10/114,765 patent/US20020172622A1/en not_active Abandoned
- 2002-04-03 EP EP02763925A patent/EP1377821A2/en not_active Withdrawn
- 2002-04-03 US US10/115,374 patent/US20020159920A1/en not_active Abandoned
- 2002-04-03 EP EP02719428A patent/EP1377811B1/en not_active Expired - Lifetime
- 2002-04-03 US US10/114,890 patent/US20020148992A1/en not_active Abandoned
- 2002-04-03 WO PCT/US2002/010508 patent/WO2002082057A2/en not_active Ceased
- 2002-04-03 DE DE60227649T patent/DE60227649D1/de not_active Expired - Lifetime
- 2002-04-03 JP JP2002579778A patent/JP3949056B2/ja not_active Expired - Lifetime
-
2004
- 2004-10-06 US US10/960,890 patent/US20050205816A1/en not_active Abandoned
-
2005
- 2005-05-04 US US11/122,139 patent/US20050201903A1/en not_active Abandoned
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5932100A (en) * | 1995-06-16 | 1999-08-03 | University Of Washington | Microfabricated differential extraction device and method |
| US5716852A (en) * | 1996-03-29 | 1998-02-10 | University Of Washington | Microfabricated diffusion-based chemical sensor |
| US6440725B1 (en) * | 1997-12-24 | 2002-08-27 | Cepheid | Integrated fluid manipulation cartridge |
| US6712925B1 (en) * | 1998-05-18 | 2004-03-30 | University Of Washington | Method of making a liquid analysis cartridge |
| US20030026740A1 (en) * | 2001-08-06 | 2003-02-06 | Staats Sau Lan Tang | Microfluidic devices |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20040109793A1 (en) * | 2002-02-07 | 2004-06-10 | Mcneely Michael R | Three-dimensional microfluidics incorporating passive fluid control structures |
| US20080025873A1 (en) * | 2006-07-28 | 2008-01-31 | Philip Harding | Prevention of fluid delivered to reservoir from wicking into channels within microfluidic device |
| US8252160B2 (en) | 2006-07-28 | 2012-08-28 | Hewlett-Packard Development Company, L.P. | Prevention of fluid delivered to reservoir from wicking into channels within microfluidic device |
| US20190302008A1 (en) * | 2018-03-30 | 2019-10-03 | International Business Machines Corporation | Mobile chemical analysis |
| US11060968B2 (en) * | 2018-03-30 | 2021-07-13 | International Business Machines Corporation | Mobile chemical analysis |
Also Published As
| Publication number | Publication date |
|---|---|
| US20020159920A1 (en) | 2002-10-31 |
| WO2002081934A3 (en) | 2003-01-16 |
| ATE401566T1 (de) | 2008-08-15 |
| WO2002082057A2 (en) | 2002-10-17 |
| JP2004528556A (ja) | 2004-09-16 |
| EP1377811B1 (en) | 2008-07-16 |
| US6674525B2 (en) | 2004-01-06 |
| US20020148992A1 (en) | 2002-10-17 |
| WO2002082057A3 (en) | 2003-02-13 |
| US20020160518A1 (en) | 2002-10-31 |
| JP2005509113A (ja) | 2005-04-07 |
| US20020172622A1 (en) | 2002-11-21 |
| EP1377811A2 (en) | 2004-01-07 |
| US20050201903A1 (en) | 2005-09-15 |
| WO2002081934A2 (en) | 2002-10-17 |
| US20020149766A1 (en) | 2002-10-17 |
| WO2002081934A9 (en) | 2002-11-28 |
| DE60227649D1 (de) | 2008-08-28 |
| EP1377821A2 (en) | 2004-01-07 |
| JP3949056B2 (ja) | 2007-07-25 |
| US20050205816A1 (en) | 2005-09-22 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20020150502A1 (en) | Surface tension reduction channel | |
| Weigl et al. | Design and rapid prototyping of thin-film laminate-based microfluidic devices | |
| Lee et al. | The hydrodynamic focusing effect inside rectangular microchannels | |
| US6557427B2 (en) | Capillaries for fluid movement within microfluidic channels | |
| EP1487581B1 (en) | Microfluidic channel network device | |
| US6743399B1 (en) | Pumpless microfluidics | |
| EP1263533B1 (en) | Microfluidic analysis cartridge | |
| Steigert et al. | Integrated siphon-based metering and sedimentation of whole blood on a hydrophilic lab-on-a-disk | |
| Suk et al. | Capillary flow control using hydrophobic patterns | |
| US6454945B1 (en) | Microfabricated devices and methods | |
| US8075778B2 (en) | Fluid separation | |
| US20040043506A1 (en) | Cascaded hydrodynamic focusing in microfluidic channels | |
| KR20010089295A (ko) | 수동 유체 동역학에 의한 유체회로 및 유체회로내에서의방법 | |
| Blattert et al. | Separation of blood in microchannel bends | |
| US20090282978A1 (en) | Microfluidic Separators for Multiphase Fluid-Flow Based On Membranes | |
| KR20050104348A (ko) | 유체 촉진 및 분석을 위한 마이크로유체식 장치 | |
| Zhai et al. | A robust, portable and backflow-free micromixing device based on both capillary-and vacuum-driven flows | |
| US6780320B2 (en) | Magnetohydrodynamic fluidic system | |
| Weigl et al. | Whole blood diagnostics in standard gravity and microgravity by use of microfluidic structures (T-sensors) | |
| US7731910B2 (en) | Microfluidic mixing assembly | |
| Puttaraksa et al. | Development of a microfluidic design for an automatic lab-on-chip operation | |
| Munson et al. | A novel microfluidic mixer based on successive lamination | |
| JP2006017562A (ja) | マイクロ流体素子、マイクロ流体素子を用いた分析方法及びマイクロ流体素子の製造方法 | |
| CN113893892B (zh) | 一种基于微流控芯片的纳米孔及其制备方法 | |
| Weigl et al. | Simultaneous Self-Referencing Analyte Determination in Complex Sample Solutions Using Microfabricated Flow Structures (T-Sensors™) |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: MICRONICS, INC., WASHINGTON Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:WEIGL, BERNHARD H.;REEL/FRAME:014339/0027 Effective date: 20030711 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
| AS | Assignment |
Owner name: PERKINELMER HEALTH SCIENCES, INC., MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MICRONICS, INC.;REEL/FRAME:050702/0305 Effective date: 20180928 |