New! View global litigation for patent families

US20050205816A1 - Pneumatic valve interface for use in microfluidic structures - Google Patents

Pneumatic valve interface for use in microfluidic structures Download PDF

Info

Publication number
US20050205816A1
US20050205816A1 US10960890 US96089004A US2005205816A1 US 20050205816 A1 US20050205816 A1 US 20050205816A1 US 10960890 US10960890 US 10960890 US 96089004 A US96089004 A US 96089004A US 2005205816 A1 US2005205816 A1 US 2005205816A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
valve
microfluidic
channel
flow
structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10960890
Inventor
Jon Hayenga
Patrick Saltsman
Bernhard Weigl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Micronics
Original Assignee
Micronics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/04Investigating sedimentation of particle suspensions
    • G01N15/05Investigating sedimentation of particle suspensions in blood
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators; Reciprocating systems for treatment of body fluids, e.g. single needle systems for haemofiltration, pheris
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/0012Settling tanks making use of filters, e.g. by floating layers of particulate material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/28Mechanical auxiliary equipment for acceleration of sedimentation, e.g. by vibrators or the like
    • B01D21/283Settling tanks provided with vibrators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/50273Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means or forces applied to move the fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502738Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by integrated valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502746Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means for controlling flow resistance, e.g. flow controllers, baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502753Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by bulk separation arrangements on lab-on-a-chip devices, e.g. for filtration or centrifugation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502761Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip specially adapted for handling suspended solids or molecules independently from the bulk fluid flow, e.g. for trapping or sorting beads, for physically stretching molecules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502769Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements
    • B01L3/502776Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements specially adapted for focusing or laminating flows
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K7/00Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage Pinch valves
    • F16K7/12Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage Pinch valves with flat, dished, or bowl-shaped diaphragm
    • F16K7/14Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage Pinch valves with flat, dished, or bowl-shaped diaphragm arranged to be deformed against a flat seat
    • F16K7/17Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage Pinch valves with flat, dished, or bowl-shaped diaphragm arranged to be deformed against a flat seat the diaphragm being actuated by fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K99/00Subject matter not provided for in other groups of this subclass
    • F16K99/0001Microvalves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K99/00Subject matter not provided for in other groups of this subclass
    • F16K99/0001Microvalves
    • F16K99/0003Constructional types of microvalves; Details of the cutting-off member
    • F16K99/0015Diaphragm or membrane valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K99/00Subject matter not provided for in other groups of this subclass
    • F16K99/0001Microvalves
    • F16K99/0003Constructional types of microvalves; Details of the cutting-off member
    • F16K99/0025Valves using microporous membranes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K99/00Subject matter not provided for in other groups of this subclass
    • F16K99/0001Microvalves
    • F16K99/0034Operating means specially adapted for microvalves
    • F16K99/0055Operating means specially adapted for microvalves actuated by fluids
    • F16K99/0059Operating means specially adapted for microvalves actuated by fluids actuated by a pilot fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0255Investigating particle size or size distribution with mechanical, e.g. inertial, classification, and investigation of sorted collections
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N15/1456Electro-optical investigation, e.g. flow cytometers without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2206/00Characteristics of a physical parameter; associated device therefor
    • A61M2206/10Flow characteristics
    • A61M2206/11Laminar flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/02Adapting objects or devices to another
    • B01L2200/026Fluid interfacing between devices or objects, e.g. connectors, inlet details
    • B01L2200/027Fluid interfacing between devices or objects, e.g. connectors, inlet details for microfluidic devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/02Adapting objects or devices to another
    • B01L2200/028Modular arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0636Focussing flows, e.g. to laminate flows
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0647Handling flowable solids, e.g. microscopic beads, cells, particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0647Handling flowable solids, e.g. microscopic beads, cells, particles
    • B01L2200/0668Trapping microscopic beads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0829Multi-well plates; Microtitration plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0874Three dimensional network
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0883Serpentine channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0406Moving fluids with specific forces or mechanical means specific forces capillary forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0433Moving fluids with specific forces or mechanical means specific forces vibrational forces
    • B01L2400/0436Moving fluids with specific forces or mechanical means specific forces vibrational forces acoustic forces, e.g. surface acoustic waves [SAW]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0457Moving fluids with specific forces or mechanical means specific forces passive flow or gravitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0475Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure
    • B01L2400/0487Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure fluid pressure, pneumatics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/08Regulating or influencing the flow resistance
    • B01L2400/084Passive control of flow resistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502707Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K99/00Subject matter not provided for in other groups of this subclass
    • F16K2099/0073Fabrication methods specifically adapted for microvalves
    • F16K2099/008Multi-layer fabrications
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K99/00Subject matter not provided for in other groups of this subclass
    • F16K2099/0082Microvalves adapted for a particular use
    • F16K2099/0084Chemistry or biology, e.g. "lab-on-a-chip" technology
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/4005Concentrating samples by transferring a selected component through a membrane
    • G01N2001/4016Concentrating samples by transferring a selected component through a membrane being a selective membrane, e.g. dialysis or osmosis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/4055Concentrating samples by solubility techniques
    • G01N2001/4061Solvent extraction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/4077Concentrating samples by other techniques involving separation of suspended solids
    • G01N2001/4094Concentrating samples by other techniques involving separation of suspended solids using ultrasound
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N2015/0288Sorting the particles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N15/1404Fluid conditioning in flow cytometers, e.g. flow cells; Supply; Control of flow
    • G01N2015/1409Control of supply of sheaths fluid, e.g. sample injection control
    • G01N2015/1411Features of sheats fluids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N15/1404Fluid conditioning in flow cytometers, e.g. flow cells; Supply; Control of flow
    • G01N2015/1413Hydrodynamic focussing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N15/1434Electro-optical investigation, e.g. flow cytometers using an analyser being characterised by its optical arrangement
    • G01N2015/144Imaging characterised by its optical setup
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N2015/1486Counting the particles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00178Special arrangements of analysers
    • G01N2035/00237Handling microquantities of analyte, e.g. microvalves, capillary networks
    • G01N2035/00247Microvalves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/25Chemistry: analytical and immunological testing including sample preparation
    • Y10T436/25375Liberation or purification of sample or separation of material from a sample [e.g., filtering, centrifuging, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/25Chemistry: analytical and immunological testing including sample preparation
    • Y10T436/2575Volumetric liquid transfer

Abstract

A pneumatic valve for use in laminated plastic microfluidic structures. This zero or low dead volume valve allows flow through microfluidic channels for use in mixing, dilution, particulate suspension and other techniques necessary for flow control in analytical devices.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • [0001]
    This patent application claims benefit from U.S. provisional Patent Application Ser. No. 60/281,114, filed Apr. 3, 2001, which application is incorporated herein by reference.
  • BACKGROUND OF THE INVENTION
  • [0002]
    1. Field of the Invention
  • [0003]
    This invention relates generally to microscale devices for performing analytical testing and, in particular, to a valve interface for use in laminated microfluidic structures.
  • [0004]
    2. Description of the Prior Art
  • [0005]
    Microfluidic devices have recently become popular for performing analytical testing. Using tools developed by the semiconductor industry to miniaturize electronics, it has become possible to fabricate intricate fluid systems which can be inexpensively mass produced. Systems have been developed to perform a variety of analytical techniques for the acquisition of information for the medical field.
  • [0006]
    Microfluidic devices may be constructed in a multi-layer laminated structure where each layer has channels and structures fabricated from a laminate material to form microscale voids or channels where fluids flow. A microscale channel is generally defined as a fluid passage which has at least one internal cross-sectional dimension that is less than 500 μm and typically between about 0.1 μm and about 500 μm. The control and pumping of fluids through these channels is affected by either external pressurized fluid forced into the laminate, or by structures located within the laminate.
  • [0007]
    U.S. Pat. No. 5,716,852 teaches a method for analyzing the presence and concentration of small particles in a flow cell using diffusion principles. This patent, the disclosure of which is incorporated herein by reference, discloses a channel cell system for detecting the presence of analyte particles in a sample stream using a laminar flow channel having at least two inlet means which provide an indicator stream and a sample stream, where the laminar flow channel has a depth sufficiently small to allow laminar flow of the streams and length sufficient to allow diffusion of particles of the analyte into the indicator stream to form a detection area, and having an outlet out of the channel to form a single mixed stream. This device, which is known at a T-Sensor, may contain an external detecting means for detecting changes in the indicator stream. This detecting means may be provided by any means known in the art, including optical means such as optical spectroscopy, or absorption spectroscopy of fluorescence.
  • [0008]
    U.S. Pat. No. 5,932,100, which patent is also incorporated herein by reference, teaches another method for analyzing particles within microfluidic channels using diffusion principles. A mixture of particles suspended in a sample stream enters an extraction channel from one upper arm of a structure, which comprises microchannels in the shape of an “H”. An extraction stream (a dilution stream) enters from the lower arm on the same side of the extraction channel and due to the size of the microfluidic extraction channel, the flow is laminar and the streams do not mix. The sample stream exits as a by-product stream at the upper arm at the end of the extraction channel, while the extraction stream exits as a product stream at the lower arm. While the streams are in parallel laminar flow in the extraction channel, particles having a greater diffusion coefficient (smaller particles such as albumin, sugars, and small ions) have time to diffuse into the extraction stream, while the larger particles (blood cells) remain in the sample stream. Particles in the exiting extraction stream (now called the product stream) may be analyzed without interference from the larger particles. This microfluidic structure, commonly known as an “H-Filter,” can be used for extracting desired particles from a sample stream containing those particles.
  • [0009]
    Several types of valves are commonly used for fluid management in flow systems. Flap valves, ball-in-socket valves, and tapered wedge valves are a few of the valve types existing in the macroscale domain of fluid control. However, in the microscale field, where flow channels are often the size of a human hair (approximately 100 microns in diameter), there are special needs and uses for valves which are unique to microscale systems, especially microfluidic devices incorporating fluids with various concentrations of particulates in suspension. Special challenges involve mixing, dilution, fluidic circuit isolation, and anti-sediment techniques when employing microscale channels within a device. The incorporation of a simple compact microfluidic valve within microscale devices addresses these potential problems while maintaining high density of fluidic structure within the device, and eliminating the need for active valve actuation in many cases.
  • [0010]
    Many different types of valves for use in controlling fluids in microscale devices have been developed. U.S. Pat. No. 4,895,500, which issued on Jan. 23, 1990, describes a silicon micromechanical non-reverse valve which consists of a cantilever beam extending over a cavity and integrally formed with the silicon wafer such that the beam can be shifted to control flow within channels of the microfluidic structure.
  • [0011]
    U.S. Pat. No. 5,443,890, which issued Aug. 22, 1995 to Pharmacia Biosensor AB, describes a sealing device in a microfluidic channel assembly having first and second flat surface members which when pressed against each other define at least part of a microfluidic channel system between them.
  • [0012]
    U.S. Pat. No. 5,593,130, which issued on Jan. 14, 1997 to Pharmacia Biosensor AB, describes a valve for use in microfluidic structures in which the material fatigue of the flexible valve membrane and the valve seat is minimized by a two-step seat construction and the fact that both the membrane and the seat are constructed from elastic material.
  • [0013]
    U.S. Pat. No. 5,932,799, which issued Aug. 3, 1999 to YSI Incorporated, teaches a microfluidic analyzer module having a plurality of channel forming laminate layers which are directly bonded together without adhesives, with a valve containing layer directly adhesivelessly bonded over the channel containing layers and a flexible valve member integral with the valve layer to open and close communication between feed and sensor channels of the network.
  • [0014]
    U.S. Pat. No. 5,962,081, which issued Oct. 5, 1999 to Pharmacia Biotech AB, describes a method for the manufacturer of polymer membrane-containing microstructures such as valves by combining polymer spin deposition methods with semiconductor manufacturing techniques.
  • [0015]
    U.S. Pat. No. 5,977,355, which issued on Oct. 26, 1999 to Xerox Corporation, describes a valve array system for microdevices based on microelectro-mechanical systems (MEMS) technology consisting of a dielectric material forming a laminate which is embedded within multiple laminate layers.
  • [0016]
    U.S. Pat. No. 6,068,751, which issued on May 30, 2000, describes a microfluidic delivery system using elongated capillaries that are enclosed along one surface by a layer of malleable material which is shifted by a valve having a electrically-powered actuator.
  • SUMMARY OF THE INVENTION
  • [0017]
    It is therefore an object of the present invention to provide an efficient valve suitable for use in a microfluidic system.
  • [0018]
    It is a further object of the present invention is to provide a microfluidic valve which can be integrated into a cartridge constructed of multi-layer laminates.
  • [0019]
    It is a further object of the present invention is to provide an array of microfluidic valves which can be integrated into a cartridge constructed of multi-layer laminates.
  • [0020]
    These and other objects of the present invention will be more readily apparent in the description and drawings which follow.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0021]
    FIG. 1 is a perspective view of a microfluidic valve according to the present invention;
  • [0022]
    FIG. 2 is a fragmentary cross-sectional view of an alternative valve according to the present invention;
  • [0023]
    FIG. 3 is a fragmentary cross-sectional view of the valve of FIG. 2 shown in its activated position;
  • [0024]
    FIG. 4 is a fragmentary top view, partly in phantom, of the valve of FIG. 2;
  • [0025]
    FIG. 5 is a fragmentary cross-sectional view of another alternative valve according to the present invention;
  • [0026]
    FIG. 6 is a fragmentary cross-sectional view of the valve of FIG. 5 shown in its activated position;
  • [0027]
    and FIG. 7 is a perspective view of an array which uses valves according to the present invention.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • [0028]
    A basic zero dead volume valve according to the present invention is shown in FIG. 1. Referring now to FIG. 1, a valve generally indicated at 10 consists of a membrane layer 12 which covers a flat surface 13 coupled to an input channel 14, which is connected to a flow channel 16 and also an output channel 18 connected to a flow channel 20. Above layer 12 is an air chamber 22 which is coupled to a pneumatic source 24 by a short air channel 26. In operation, zero dead volume valve 10 works as follows: a liquid 30 enters channel 16 and travels into channel 14 where it contacts membrane layer 12. Under atmospheric conditions within air chamber 22, membrane lines flat against surface or seat 13, causing liquid 30 to stop in channel 14. However, if the fluid pressure within channel 14 exceeds the elastic force contained in membrane 13, membrane 13 will bulge out into chamber 22, allowing liquid 30 to pass under membrane 13 and flow out through channel 18 and into channel 20, as shown by the arrows in FIG. 1. Valve 10 shown in FIG. 1 may operate as a zero volume valve, as it is a normally closed valve in which sufficient fluid pressure moves the membrane away from its sealing position to open with only atmospheric pressure within chamber 22.
  • [0029]
    When in operation within a microfluidic circuit, pneumatic pressure within channel 24 is used to open and close valve 10. If it is desirable to keep valve 10 in its closed position, positive air pressure is applied through source 24 into channel 26, when it fills air chamber 22, which forces membrane 12 against seat 13. It has been found that applying +1.0 psi air pressure within source 24 will adequately keep valve 10 closed. It is desirable to open valve 10, a negative pressure of −55 mm Hg creates a vacuum within chamber 22 to completely lift membrane 12 away from seat 13 to allow liquid 30 to travel from channel 14 across surface 13 out of channel 18. Pressure from source 24 can also be varied to vary the flow through valve 10.
  • [0030]
    FIGS. 2-4 show an alternate embodiment in which a valve 40 is constructed as a normally open valve. Referring now to FIG. 2, a latex rubber diaphragm membrane 50 is held between two spacing layers 54 of a laminated microfluidic structure. Valve 40 is fabricated from a series of laminar sheets 60 which are preferably MYLAR® or a similar plastic sheet. Channels are constructed within valve 40 by cutout spaces within spacing layers 54 between sheets 60. In FIG. 2 is in its relaxed state, which allows liquid to enter a flow inlet 62, and pass through a channel 64 into a lower chamber 66 below membrane 50. The liquid can flow out of valve 40 from chamber 66 through a channel 68 and out through a flow outlet 70. Flow through valve 40 is controlled by pneumatic pressure which is supplied by a valve air supply channel 72 through a channel 74 into an upper chamber 76.
  • [0031]
    Operation of valve 40 is clearly shown in FIG. 3. Referring now to FIG. 3, sufficient air pressure is supplied via channel 72 through channel 74 and into upper chamber 76. This pressure forces membrane 50 to flex downwardly into lower chamber 66, blocking channels 64 and 68, preventing fluid flow between inlet 62 and outlet 70.
  • [0032]
    FIGS. 5 and 6 show another embodiment of the valve of the present invention. Referring now to FIG. 5, which shows the normal “on” state of the valve, a valve 80 is constructed from a pair of laminar MYLAR® sheets 82 which are separated by a series of spacing layers 84. Channels are formed in spacing layers 84 by cutout sections which form a flow structure. A flexible membrane 86 is held between two spacing layers 84 in its relaxed state. A fluid input channel 90 is connected to channel 92 and to an upper chamber 94. A fluid output chamber 96 is also coupled to upper chamber 94. A pneumatic supply channel 98 is connected to a lower chamber 100. In its normal inactivated state, valve 80 is “on,” allowing liquid to flow from inlet 90 to outlet 96. When it is desirable to turn valve 80 “off,” sufficient air pressure is supplied to supply channel 98, filling lower chamber 100 with pressurized air and forcing membrane 86 upwardly into upper chamber 94, sealing scaling channel 92 such that the flow passage from inlet 90 to outlet 96 is blocked, closing valve 80, as can be seen in FIG. 6.
  • [0033]
    FIG. 7 shows an array 110 in which a plurality of valves 80 can be constructed. Array 110 includes a plurality of input air ports 112 along with a plurality of input fluid ports 114. Each of valves 80 can be selectively operated to control fluid flow through a microfluidic device. Such an array of microfluidic valves can be integrated into a cartridge constructed of multi-layer laminates, and can be used to control multiple parallel fluidic processes, or a single process at multiple locations in a microfluidic circuit. Such a system may have applications in drug discovery processes, or in the analysis of multiple samples.
  • [0034]
    While the present invention has been shown and described in terms of preferred embodiments thereof, it will be understood that this invention is not limited to any particular embodiment and that changes and modifications may be made without departing from the true spirit and scope of the invention as defined in the appended claims.

Claims (3)

  1. 1. A device for controlling flow in microfluidic devices comprising:
    a first substrate having at least one microfluidic structure manufactured therein;
    a first flexible sheet placed on top of at least a portion of said microfluidic structure; and
    means for creating a pressure differential onto said first flexible sheet such that a portion of said sheet moves in relationship to said microfluidic structure wherein the cross-section of said microfluidic structure is altered at least in one dimension such that the fluid resistance in said microfluidic structure is altered.
  2. 2. The device of claim 1 further comprising a second microfluidic structure on the opposite side of said first flexible sheet for transmitting pressure through air or fluid flow onto a specific location of said first flexible sheet such that a portion of said sheet moves in relationship to said microfluidic structure such that the cross-section of said microfluidic structure is altered at least in one dimension such that the fluid resistance in said microfluidic structure is altered.
  3. 3. A device for controlling flow in microfluidic devices, comprising:
    a first substrate having at least one microfluidic structure manufactured therein;
    a first flexible sheet placed on top of a at least a portion of said microfluidic structure; and
    means for creating pressure onto multiple, individually addressable locations on said first flexible sheet such that one or more potions of said sheet move in relationship to said microfluidic structure such that the cross-section of said microfluidic structure is altered at least in one dimension in one or more locations such that the fluid resistance in said microfluidic structure is altered in one or more locations such that fluid flow through said microfluidic structure can be directed or altered.
US10960890 2001-04-03 2004-10-06 Pneumatic valve interface for use in microfluidic structures Abandoned US20050205816A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US28111401 true 2001-04-03 2001-04-03
US10114890 US20020148992A1 (en) 2001-04-03 2002-04-03 Pneumatic valve interface for use in microfluidic structures
US10960890 US20050205816A1 (en) 2001-04-03 2004-10-06 Pneumatic valve interface for use in microfluidic structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10960890 US20050205816A1 (en) 2001-04-03 2004-10-06 Pneumatic valve interface for use in microfluidic structures

Publications (1)

Publication Number Publication Date
US20050205816A1 true true US20050205816A1 (en) 2005-09-22

Family

ID=23076003

Family Applications (8)

Application Number Title Priority Date Filing Date
US10114864 Abandoned US20020150502A1 (en) 2001-04-03 2002-04-03 Surface tension reduction channel
US10114790 Active US6674525B2 (en) 2001-04-03 2002-04-03 Split focusing cytometer
US10115320 Abandoned US20020160518A1 (en) 2001-04-03 2002-04-03 Microfluidic sedimentation
US10114890 Abandoned US20020148992A1 (en) 2001-04-03 2002-04-03 Pneumatic valve interface for use in microfluidic structures
US10115374 Abandoned US20020159920A1 (en) 2001-04-03 2002-04-03 Multiple redundant microfluidic structures cross reference to related applications
US10114765 Abandoned US20020172622A1 (en) 2001-04-03 2002-04-03 Microfluidic device for concentrating particles in a concentrating solution
US10960890 Abandoned US20050205816A1 (en) 2001-04-03 2004-10-06 Pneumatic valve interface for use in microfluidic structures
US11122139 Abandoned US20050201903A1 (en) 2001-04-03 2005-05-04 Microfluidic device for concentrating particles in a concentrating solution

Family Applications Before (6)

Application Number Title Priority Date Filing Date
US10114864 Abandoned US20020150502A1 (en) 2001-04-03 2002-04-03 Surface tension reduction channel
US10114790 Active US6674525B2 (en) 2001-04-03 2002-04-03 Split focusing cytometer
US10115320 Abandoned US20020160518A1 (en) 2001-04-03 2002-04-03 Microfluidic sedimentation
US10114890 Abandoned US20020148992A1 (en) 2001-04-03 2002-04-03 Pneumatic valve interface for use in microfluidic structures
US10115374 Abandoned US20020159920A1 (en) 2001-04-03 2002-04-03 Multiple redundant microfluidic structures cross reference to related applications
US10114765 Abandoned US20020172622A1 (en) 2001-04-03 2002-04-03 Microfluidic device for concentrating particles in a concentrating solution

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11122139 Abandoned US20050201903A1 (en) 2001-04-03 2005-05-04 Microfluidic device for concentrating particles in a concentrating solution

Country Status (5)

Country Link
US (8) US20020150502A1 (en)
EP (2) EP1377821A2 (en)
JP (2) JP2005509113A (en)
DE (1) DE60227649D1 (en)
WO (2) WO2002081934A3 (en)

Cited By (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060246575A1 (en) * 2005-01-13 2006-11-02 Micronics, Inc. Microfluidic rare cell detection device
US20070144277A1 (en) * 2005-12-27 2007-06-28 Honeywell International Inc. Fluid free interface for a fluidic analyzer
US20070148039A1 (en) * 2005-12-27 2007-06-28 Honeywell International Inc. Fluid sensing and control in a fluidic analyzer
US20070149863A1 (en) * 2005-12-27 2007-06-28 Honeywell International Inc. Needle-septum interface for a fluidic analyzer
US20070215528A1 (en) * 2006-03-16 2007-09-20 Hayenga Jon W Cantilevered coaxial flow injector apparatus and method for sorting particles
US20090148847A1 (en) * 2006-03-15 2009-06-11 Micronics, Inc. Rapid magnetic flow assays
KR100931302B1 (en) 2008-02-05 2009-12-11 한국과학기술원 Micro fluid distributor valve with each other, having different critical pressure
EP2138233A1 (en) 2008-06-02 2009-12-30 Boehringer Ingelheim microParts GmbH Microfluid film structure for metering liquids
US20090325276A1 (en) * 2006-09-27 2009-12-31 Micronics, Inc. Integrated microfluidic assay devices and methods
US7648468B2 (en) 2002-04-19 2010-01-19 Pelikon Technologies, Inc. Method and apparatus for penetrating tissue
US7666149B2 (en) 1997-12-04 2010-02-23 Peliken Technologies, Inc. Cassette of lancet cartridges for sampling blood
US7674232B2 (en) 2002-04-19 2010-03-09 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7682318B2 (en) 2001-06-12 2010-03-23 Pelikan Technologies, Inc. Blood sampling apparatus and method
US7699791B2 (en) 2001-06-12 2010-04-20 Pelikan Technologies, Inc. Method and apparatus for improving success rate of blood yield from a fingerstick
US7713214B2 (en) 2002-04-19 2010-05-11 Pelikan Technologies, Inc. Method and apparatus for a multi-use body fluid sampling device with optical analyte sensing
US7717863B2 (en) 2002-04-19 2010-05-18 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7731729B2 (en) 2002-04-19 2010-06-08 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7822454B1 (en) 2005-01-03 2010-10-26 Pelikan Technologies, Inc. Fluid sampling device with improved analyte detecting member configuration
US20100282766A1 (en) * 2009-05-06 2010-11-11 Heiko Arndt Low-Dead Volume Microfluidic Component and Method
US7833171B2 (en) 2002-04-19 2010-11-16 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7841992B2 (en) 2001-06-12 2010-11-30 Pelikan Technologies, Inc. Tissue penetration device
US7850621B2 (en) 2003-06-06 2010-12-14 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
US7862520B2 (en) 2002-04-19 2011-01-04 Pelikan Technologies, Inc. Body fluid sampling module with a continuous compression tissue interface surface
US7874994B2 (en) 2002-04-19 2011-01-25 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7892183B2 (en) 2002-04-19 2011-02-22 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
US7901362B2 (en) 2002-04-19 2011-03-08 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7909775B2 (en) 2001-06-12 2011-03-22 Pelikan Technologies, Inc. Method and apparatus for lancet launching device integrated onto a blood-sampling cartridge
US7909778B2 (en) 2002-04-19 2011-03-22 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7909777B2 (en) 2002-04-19 2011-03-22 Pelikan Technologies, Inc Method and apparatus for penetrating tissue
US7914465B2 (en) 2002-04-19 2011-03-29 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7959582B2 (en) 2002-04-19 2011-06-14 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7976476B2 (en) 2002-04-19 2011-07-12 Pelikan Technologies, Inc. Device and method for variable speed lancet
US7988645B2 (en) 2001-06-12 2011-08-02 Pelikan Technologies, Inc. Self optimizing lancing device with adaptation means to temporal variations in cutaneous properties
US8007446B2 (en) 2002-04-19 2011-08-30 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8079960B2 (en) 2002-04-19 2011-12-20 Pelikan Technologies, Inc. Methods and apparatus for lancet actuation
US8197421B2 (en) 2002-04-19 2012-06-12 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8221334B2 (en) 2002-04-19 2012-07-17 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8230744B2 (en) 2009-05-06 2012-07-31 Cequr Sa Low-dead volume microfluidic circuit and methods
US8267870B2 (en) 2002-04-19 2012-09-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for body fluid sampling with hybrid actuation
US8282576B2 (en) 2003-09-29 2012-10-09 Sanofi-Aventis Deutschland Gmbh Method and apparatus for an improved sample capture device
US8333710B2 (en) 2002-04-19 2012-12-18 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
DE102011078770A1 (en) 2011-07-07 2013-01-10 Robert Bosch Gmbh The microfluidic device, a microfluidic system and method for conveyance of fluids
US8435190B2 (en) 2002-04-19 2013-05-07 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8439872B2 (en) 1998-03-30 2013-05-14 Sanofi-Aventis Deutschland Gmbh Apparatus and method for penetration with shaft having a sensor for sensing penetration depth
US8652831B2 (en) 2004-12-30 2014-02-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for analyte measurement test time
US8668656B2 (en) 2003-12-31 2014-03-11 Sanofi-Aventis Deutschland Gmbh Method and apparatus for improving fluidic flow and sample capture
US8702624B2 (en) 2006-09-29 2014-04-22 Sanofi-Aventis Deutschland Gmbh Analyte measurement device with a single shot actuator
US8721671B2 (en) 2001-06-12 2014-05-13 Sanofi-Aventis Deutschland Gmbh Electric lancet actuator
US8828203B2 (en) 2004-05-20 2014-09-09 Sanofi-Aventis Deutschland Gmbh Printable hydrogels for biosensors
US8965476B2 (en) 2010-04-16 2015-02-24 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US9034639B2 (en) 2002-12-30 2015-05-19 Sanofi-Aventis Deutschland Gmbh Method and apparatus using optical techniques to measure analyte levels
US9072842B2 (en) 2002-04-19 2015-07-07 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US9144401B2 (en) 2003-06-11 2015-09-29 Sanofi-Aventis Deutschland Gmbh Low pain penetrating member
WO2015191916A1 (en) 2014-06-11 2015-12-17 Micronics, Inc. Microfluidic cartridges and apparatus with integrated assay controls for analysis of nucleic acids
US9222623B2 (en) 2013-03-15 2015-12-29 Genmark Diagnostics, Inc. Devices and methods for manipulating deformable fluid vessels
US9226699B2 (en) 2002-04-19 2016-01-05 Sanofi-Aventis Deutschland Gmbh Body fluid sampling module with a continuous compression tissue interface surface
US9248267B2 (en) 2002-04-19 2016-02-02 Sanofi-Aventis Deustchland Gmbh Tissue penetration device
US9314194B2 (en) 2002-04-19 2016-04-19 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US9351680B2 (en) 2003-10-14 2016-05-31 Sanofi-Aventis Deutschland Gmbh Method and apparatus for a variable user interface
US9375169B2 (en) 2009-01-30 2016-06-28 Sanofi-Aventis Deutschland Gmbh Cam drive for managing disposable penetrating member actions with a single motor and motor and control system
US9386944B2 (en) 2008-04-11 2016-07-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for analyte detecting device
US9427532B2 (en) 2001-06-12 2016-08-30 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US9498778B2 (en) 2014-11-11 2016-11-22 Genmark Diagnostics, Inc. Instrument for processing cartridge for performing assays in a closed sample preparation and reaction system
US9560993B2 (en) 2001-11-21 2017-02-07 Sanofi-Aventis Deutschland Gmbh Blood testing apparatus having a rotatable cartridge with multiple lancing elements and testing means
US9598722B2 (en) 2014-11-11 2017-03-21 Genmark Diagnostics, Inc. Cartridge for performing assays in a closed sample preparation and reaction system
US9795747B2 (en) 2010-06-02 2017-10-24 Sanofi-Aventis Deutschland Gmbh Methods and apparatus for lancet actuation
US9820684B2 (en) 2004-06-03 2017-11-21 Sanofi-Aventis Deutschland Gmbh Method and apparatus for a fluid sampling device
US9839386B2 (en) 2002-04-19 2017-12-12 Sanofi-Aventis Deustschland Gmbh Body fluid sampling device with capacitive sensor
US9895692B2 (en) 2010-01-29 2018-02-20 Micronics, Inc. Sample-to-answer microfluidic cartridge

Families Citing this family (150)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2279574C (en) 1997-01-31 2007-07-24 The Horticulture & Food Research Institute Of New Zealand Ltd. Optical apparatus
US6071689A (en) * 1997-12-31 2000-06-06 Xy, Inc. System for improving yield of sexed embryos in mammals
US6149867A (en) 1997-12-31 2000-11-21 Xy, Inc. Sheath fluids and collection systems for sex-specific cytometer sorting of sperm
US6692952B1 (en) * 1999-11-10 2004-02-17 Massachusetts Institute Of Technology Cell analysis and sorting apparatus for manipulation of cells
US7208265B1 (en) * 1999-11-24 2007-04-24 Xy, Inc. Method of cryopreserving selected sperm cells
US8097471B2 (en) 2000-11-10 2012-01-17 3M Innovative Properties Company Sample processing devices
US6627159B1 (en) 2000-06-28 2003-09-30 3M Innovative Properties Company Centrifugal filling of sample processing devices
US20020052571A1 (en) * 2000-09-13 2002-05-02 Fazio Frank A. Artificial kidney and methods of using same
US20040031071A1 (en) * 2000-10-05 2004-02-12 Xy, Inc. System of hysteroscopic insemination of mares
US7713687B2 (en) * 2000-11-29 2010-05-11 Xy, Inc. System to separate frozen-thawed spermatozoa into x-chromosome bearing and y-chromosome bearing populations
WO2002043574A9 (en) 2000-11-29 2003-12-18 Xy Inc System to separate frozen-thawed spermatozoa into x-chromosome bearing and y-chromosome bearing populations
US20040109793A1 (en) * 2002-02-07 2004-06-10 Mcneely Michael R Three-dimensional microfluidics incorporating passive fluid control structures
US7141429B2 (en) * 2001-10-09 2006-11-28 University Of Washington Use of liquid junction potentials for electrophoresis without applied voltage in a microfluidic channel
GB0128350D0 (en) 2001-11-27 2002-01-16 Lab901 Ltd Non-rigid apparatus for microfluidic applications
US7691333B2 (en) 2001-11-30 2010-04-06 Fluidigm Corporation Microfluidic device and methods of using same
US20030175980A1 (en) * 2002-03-14 2003-09-18 Hayenga Jon W. Ribbon flow cytometry and cell sorting
WO2004038363A3 (en) 2002-05-09 2004-12-09 Univ Chicago Microfluidic device and method for pressure-driven plug transport and reaction
US7901939B2 (en) 2002-05-09 2011-03-08 University Of Chicago Method for performing crystallization and reactions in pressure-driven fluid plugs
CN1787739B (en) * 2002-07-22 2011-03-30 Xy有限责任公司 Sperm cell process system
US7135147B2 (en) * 2002-07-26 2006-11-14 Applera Corporation Closing blade for deformable valve in a microfluidic device and method
US7452509B2 (en) * 2002-07-26 2008-11-18 Applied Biosystems Inc. Microfluidic device including displaceable material trap, and system
US7198759B2 (en) * 2002-07-26 2007-04-03 Applera Corporation Microfluidic devices, methods, and systems
US7201881B2 (en) * 2002-07-26 2007-04-10 Applera Corporation Actuator for deformable valves in a microfluidic device, and method
EP1545203B1 (en) * 2002-08-01 2016-10-19 Xy, Llc Low pressure sperm cell separation system
US8486618B2 (en) 2002-08-01 2013-07-16 Xy, Llc Heterogeneous inseminate system
US7855078B2 (en) * 2002-08-15 2010-12-21 Xy, Llc High resolution flow cytometer
US20040115830A1 (en) * 2002-09-25 2004-06-17 Igor Touzov Components for nano-scale Reactor
EP1569510B1 (en) 2002-09-27 2011-11-02 The General Hospital Corporation Microfluidic device for cell separation and uses thereof
KR101216828B1 (en) 2002-12-30 2013-01-04 더 리전트 오브 더 유니버시티 오브 캘리포니아 Method and apparatus for pathogen detection and analysis
US7419638B2 (en) 2003-01-14 2008-09-02 Micronics, Inc. Microfluidic devices for fluid manipulation and analysis
JP2006520190A (en) * 2003-01-21 2006-09-07 マイクロニクス, インコーポレイテッド The microfluidic manipulation of fluids, methods and systems for amplification, and analysis (e.g., bacterial assays and anti-globulin test)
WO2004077021A3 (en) * 2003-02-27 2009-04-09 Stephen A Lesko Standardized evaluation of therapeutic efficacy based on cellular biomarkers
US20060076295A1 (en) 2004-03-15 2006-04-13 The Trustees Of Columbia University In The City Of New York Systems and methods of blood-based therapies having a microfluidic membraneless exchange device
CA2518667C (en) * 2003-03-14 2011-07-19 The Trustees Of Columbia University In The City Of New York Systems and methods of blood-based therapies having a microfluidic membraneless exchange device
EP2308418B1 (en) 2003-03-28 2015-12-02 Inguran, LLC Flow cytometer nozzle for providing sex-sorted animal sperm
WO2004089810A3 (en) * 2003-04-03 2005-07-07 Fluidigm Corp Microfluidic devices and methods of using same
US7604965B2 (en) 2003-04-03 2009-10-20 Fluidigm Corporation Thermal reaction device and method for using the same
US8828663B2 (en) 2005-03-18 2014-09-09 Fluidigm Corporation Thermal reaction device and method for using the same
US7476363B2 (en) 2003-04-03 2009-01-13 Fluidigm Corporation Microfluidic devices and methods of using same
US20050145496A1 (en) 2003-04-03 2005-07-07 Federico Goodsaid Thermal reaction device and method for using the same
DE10320870A1 (en) 2003-05-09 2004-12-09 Evotec Technologies Gmbh Particle injector for a cell sorter
WO2004104178A3 (en) * 2003-05-15 2006-01-26 Xy Inc Efficient haploid cell sorting for flow cytometer systems
US20070160503A1 (en) * 2003-06-13 2007-07-12 Palaniappan Sethu Microfluidic systems for size based removal of red blood cells and platelets from blood
US7298478B2 (en) * 2003-08-14 2007-11-20 Cytonome, Inc. Optical detector for a particle sorting system
CN1886315B (en) 2003-10-30 2012-11-28 塞通诺米/St有限责任公司 Multilayer hydrodynamic sheath flow structure
GB0329220D0 (en) * 2003-12-17 2004-01-21 Inverness Medical Switzerland System
JP2007519896A (en) * 2003-12-17 2007-07-19 インバネス、メディカル、スウィッツァランド、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツングInverness Medical Switzerland Gmbh system
US20050266433A1 (en) * 2004-03-03 2005-12-01 Ravi Kapur Magnetic device for isolation of cells and biomolecules in a microfluidic environment
JP2007537727A (en) 2004-03-29 2007-12-27 モンサント テクノロジー エルエルシー Sperm dispersion liquid used in fertilization
US7833147B2 (en) 2004-07-22 2010-11-16 Inguran, LLC. Process for enriching a population of sperm cells
US7295306B2 (en) * 2004-04-22 2007-11-13 Kowa Company, Ltd. Microchip and fluorescent particle counter with microchip
US8071051B2 (en) * 2004-05-14 2011-12-06 Honeywell International Inc. Portable sample analyzer cartridge
US7641856B2 (en) * 2004-05-14 2010-01-05 Honeywell International Inc. Portable sample analyzer with removable cartridge
US7799553B2 (en) 2004-06-01 2010-09-21 The Regents Of The University Of California Microfabricated integrated DNA analysis system
US7032608B2 (en) * 2004-09-01 2006-04-25 Harris Corporation Microfluidic check-valve embedded in LCP
US8329118B2 (en) * 2004-09-02 2012-12-11 Honeywell International Inc. Method and apparatus for determining one or more operating parameters for a microfluidic circuit
JP2008513022A (en) 2004-09-15 2008-05-01 マイクロチップ バイオテクノロジーズ, インコーポレイテッド Microfluidic device
WO2006060783A3 (en) 2004-12-03 2006-09-14 Cytonome Inc Unitary cartridge for particle processing
US9260693B2 (en) 2004-12-03 2016-02-16 Cytonome/St, Llc Actuation of parallel microfluidic arrays
US8592219B2 (en) * 2005-01-17 2013-11-26 Gyros Patent Ab Protecting agent
EP1849005A1 (en) * 2005-01-17 2007-10-31 Gyros Patent Ab A method for detecting an at least bivalent analyte using two affinity reactants
FR2882939B1 (en) 2005-03-11 2007-06-08 Centre Nat Rech Scient A fluid separation
EP2594631A1 (en) * 2005-04-05 2013-05-22 Cellpoint Diagnostics Devices and method for detecting circulating tumor cells and other particles
US20070196820A1 (en) * 2005-04-05 2007-08-23 Ravi Kapur Devices and methods for enrichment and alteration of cells and other particles
US20070042427A1 (en) * 2005-05-03 2007-02-22 Micronics, Inc. Microfluidic laminar flow detection strip
EP1901846B1 (en) * 2005-07-01 2015-01-14 Honeywell International Inc. A microfluidic card for rbc analysis
US20070026416A1 (en) * 2005-07-29 2007-02-01 Martin Fuchs Devices and methods for enrichment and alteration of circulating tumor cells and other particles
US8921102B2 (en) * 2005-07-29 2014-12-30 Gpb Scientific, Llc Devices and methods for enrichment and alteration of circulating tumor cells and other particles
US20070026415A1 (en) * 2005-07-29 2007-02-01 Martin Fuchs Devices and methods for enrichment and alteration of circulating tumor cells and other particles
US20070026417A1 (en) * 2005-07-29 2007-02-01 Martin Fuchs Devices and methods for enrichment and alteration of circulating tumor cells and other particles
US20070026413A1 (en) * 2005-07-29 2007-02-01 Mehmet Toner Devices and methods for enrichment and alteration of circulating tumor cells and other particles
US20090181421A1 (en) * 2005-07-29 2009-07-16 Ravi Kapur Diagnosis of fetal abnormalities using nucleated red blood cells
US20070026414A1 (en) * 2005-07-29 2007-02-01 Martin Fuchs Devices and methods for enrichment and alteration of circulating tumor cells and other particles
WO2007021816A3 (en) * 2005-08-11 2007-07-12 Hugh C Crenshaw Methods and apparatuses for reducing effects of molecule adsorption within microfluidic channels
US20070059718A1 (en) * 2005-09-15 2007-03-15 Mehmet Toner Systems and methods for enrichment of analytes
US20070059719A1 (en) * 2005-09-15 2007-03-15 Michael Grisham Business methods for prenatal Diagnosis
US20070059683A1 (en) * 2005-09-15 2007-03-15 Tom Barber Veterinary diagnostic system
US20070059680A1 (en) * 2005-09-15 2007-03-15 Ravi Kapur System for cell enrichment
US20070059774A1 (en) * 2005-09-15 2007-03-15 Michael Grisham Kits for Prenatal Testing
US20070059781A1 (en) * 2005-09-15 2007-03-15 Ravi Kapur System for size based separation and analysis
US9056291B2 (en) 2005-11-30 2015-06-16 Micronics, Inc. Microfluidic reactor system
WO2013106458A3 (en) 2012-01-09 2013-11-07 Micronics, Inc. Microfluidic reactor system
US7763453B2 (en) 2005-11-30 2010-07-27 Micronics, Inc. Microfluidic mixing and analytic apparatus
WO2007084392A3 (en) * 2006-01-13 2007-11-08 C Frederick Battrell Electromagnetically actuated valves for use in microfluidic structures
US8616048B2 (en) * 2006-02-02 2013-12-31 E I Spectra, LLC Reusable thin film particle sensor
US9293311B1 (en) 2006-02-02 2016-03-22 E. I. Spectra, Llc Microfluidic interrogation device
US9452429B2 (en) 2006-02-02 2016-09-27 E. I. Spectra, Llc Method for mutiplexed microfluidic bead-based immunoassay
EP1979079A4 (en) 2006-02-03 2012-11-28 Integenx Inc Microfluidic devices
US7766033B2 (en) 2006-03-22 2010-08-03 The Regents Of The University Of California Multiplexed latching valves for microfluidic devices and processors
US7520164B1 (en) * 2006-05-05 2009-04-21 E.I. Spectra, Llc Thin film particle sensor
US8171778B2 (en) * 2006-05-05 2012-05-08 E I Spectra, LLC Thin film particle sensor
US7727399B2 (en) 2006-05-22 2010-06-01 The Trustees Of Columbia University In The City Of New York Systems and methods of microfluidic membraneless exchange using filtration of extraction outlet streams
EP2029779A4 (en) * 2006-06-14 2010-01-20 Living Microsystems Inc Use of highly parallel snp genotyping for fetal diagnosis
US8137912B2 (en) 2006-06-14 2012-03-20 The General Hospital Corporation Methods for the diagnosis of fetal abnormalities
US20080050739A1 (en) * 2006-06-14 2008-02-28 Roland Stoughton Diagnosis of fetal abnormalities using polymorphisms including short tandem repeats
US8372584B2 (en) 2006-06-14 2013-02-12 The General Hospital Corporation Rare cell analysis using sample splitting and DNA tags
EP2041573A2 (en) * 2006-06-23 2009-04-01 Micronics, Inc. Methods and devices for microfluidic point-of-care immunoassays
US8252160B2 (en) * 2006-07-28 2012-08-28 Hewlett-Packard Development Company, L.P. Prevention of fluid delivered to reservoir from wicking into channels within microfluidic device
WO2008052138A3 (en) 2006-10-25 2008-08-28 Univ California Inline-injection microdevice and microfabricated integrated dna analysis system using same
WO2008066485A1 (en) * 2006-11-28 2008-06-05 Åstc Aerospace Ab Micromechanical slow acting valve system
GB0700824D0 (en) 2007-01-16 2007-02-21 Lab901 Ltd Laminate
GB0700822D0 (en) * 2007-01-16 2007-02-21 Lab901 Ltd Microfluidic device
US20110039303A1 (en) 2007-02-05 2011-02-17 Stevan Bogdan Jovanovich Microfluidic and nanofluidic devices, systems, and applications
CN103977848B (en) 2007-04-06 2016-08-24 加利福尼亚技术学院 The microfluidic device
US8016260B2 (en) * 2007-07-19 2011-09-13 Formulatrix, Inc. Metering assembly and method of dispensing fluid
WO2009015296A1 (en) 2007-07-24 2009-01-29 The Regents Of The University Of California Microfabricated dropley generator
WO2009048673A3 (en) * 2007-07-26 2009-10-22 University Of Chicago Stochastic confinement to detect, manipulate, and utilize molecules and organisms
JP5852781B2 (en) * 2007-07-31 2016-02-03 マイクロニクス, インコーポレイテッド Hygienic swab collection system, a method for microfluidic assay device and diagnostic assays
EP2214825B1 (en) * 2007-11-26 2013-01-09 Atonomics A/S Separation device comprising a physical barrier
EP2234916A4 (en) 2008-01-22 2016-08-10 Integenx Inc Universal sample preparation system and use in an integrated analysis system
US8496606B2 (en) 2008-02-04 2013-07-30 The Trustees Of Columbia University In The City Of New York Fluid separation devices, systems and methods
US8961902B2 (en) * 2008-04-23 2015-02-24 Bioscale, Inc. Method and apparatus for analyte processing
CA2737643A1 (en) 2008-09-20 2010-03-25 Hei-Mun Fan Noninvasive diagnosis of fetal aneuploidy by sequencing
WO2010042539A1 (en) * 2008-10-10 2010-04-15 Cytyc Corporation Microfluidic apparatus and method for preparing cytological specimens
GB0818579D0 (en) * 2008-10-10 2008-11-19 Univ Dublin City Microfluidic multiplexed cellular and molecular analysis device and method
US8435465B2 (en) * 2008-11-03 2013-05-07 Cfd Research Corporation Microfluidic biological extraction chip
EP2384429A1 (en) 2008-12-31 2011-11-09 Integenx Inc. Instrument with microfluidic chip
US8100293B2 (en) * 2009-01-23 2012-01-24 Formulatrix, Inc. Microfluidic dispensing assembly
EP2216095A1 (en) * 2009-01-27 2010-08-11 Koninklijke Philips Electronics N.V. Microfluidic device for full blood count
GB2479112B (en) * 2009-02-24 2013-05-01 Schlumberger Holdings Micro-valve and micro-fluidic device using such
JP5859425B2 (en) * 2009-04-09 2016-02-10 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Preparation of a thin layer of a fluid containing cells for analysis
FR2944529B1 (en) * 2009-04-20 2013-09-06 Commissariat Energie Atomique of plasma enzyme assay method in whole blood
EP2438154A1 (en) 2009-06-02 2012-04-11 Integenx Inc. Fluidic devices with diaphragm valves
GB0919053D0 (en) * 2009-10-30 2009-12-16 Univ Dublin City Microfluidic device providing degassing driven fluid flow
US8584703B2 (en) * 2009-12-01 2013-11-19 Integenx Inc. Device with diaphragm valve
US8187979B2 (en) * 2009-12-23 2012-05-29 Varian Semiconductor Equipment Associates, Inc. Workpiece patterning with plasma sheath modulation
US20110189714A1 (en) * 2010-02-03 2011-08-04 Ayliffe Harold E Microfluidic cell sorter and method
US8512538B2 (en) 2010-05-28 2013-08-20 Integenx Inc. Capillary electrophoresis device
DE102011015184B4 (en) * 2010-06-02 2013-11-21 Thinxxs Microtechnology Ag An apparatus for handling small volumes of a fluid, in particular micropump or microvalve
WO2012005717A3 (en) * 2010-06-29 2015-09-17 Analogic Corporation Sample carrier
EP2606242A4 (en) 2010-08-20 2016-07-20 Integenx Inc Microfluidic devices with mechanically-sealed diaphragm valves
US9121058B2 (en) 2010-08-20 2015-09-01 Integenx Inc. Linear valve arrays
CN102465110B (en) 2010-10-29 2015-08-19 三星电子株式会社 Means that the cell lysis and cell or virus lysis method
KR101776215B1 (en) * 2010-10-29 2017-09-08 삼성전자 주식회사 Micro-device for disrupting cells and method of disrupting cells using the same
CN103157523A (en) * 2011-12-15 2013-06-19 三星电子株式会社 Microfluidic device and method of manufacturing the same
US9637775B2 (en) 2012-02-13 2017-05-02 Neumodx Molecular, Inc. System and method for processing biological samples
CN104271765B (en) * 2012-02-13 2017-04-26 纽莫德克斯莫勒库拉尔公司 Systems and methods for processing and detecting nucleic acids
US9604213B2 (en) 2012-02-13 2017-03-28 Neumodx Molecular, Inc. System and method for processing and detecting nucleic acids
WO2013126483A8 (en) 2012-02-21 2014-09-04 Fluidigm Corporation Method and systems for microfluidic logic devices
US8804105B2 (en) 2012-03-27 2014-08-12 E. I. Spectra, Llc Combined optical imaging and electrical detection to characterize particles carried in a fluid
EP2912174A4 (en) 2012-10-25 2016-06-15 Neumodx Molecular Inc Method and materials for isolation of nucleic acid materials
CA2889544A1 (en) * 2012-11-14 2014-05-22 Ams Research Corporation Cell delivery device and system with anti-clumping feature and methods for pelvic tissue treatment
US9701998B2 (en) 2012-12-14 2017-07-11 10X Genomics, Inc. Methods and systems for processing polynucleotides
US20140170678A1 (en) 2012-12-17 2014-06-19 Leukodx Ltd. Kits, compositions and methods for detecting a biological condition
US9207166B2 (en) * 2013-01-31 2015-12-08 Honeywell International Inc. Micro-molded cytometer cartridge with integrated optics
US9506934B2 (en) * 2013-04-29 2016-11-29 Honeywell International Inc. Polymer test cartridge mixer for cell lysis
GB201313527D0 (en) * 2013-07-29 2013-09-11 Atlas Genetics Ltd A valve which depressurises, and a valve system
KR101670826B1 (en) 2014-05-30 2016-11-10 한국과학기술원 A microfluidic floating block and manufacturing method of the same
CN105467111A (en) * 2014-09-05 2016-04-06 宏达国际电子股份有限公司 Micro channel module
US9366606B1 (en) 2015-08-27 2016-06-14 Ativa Medical Corporation Fluid processing micro-feature devices and methods

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4858883A (en) * 1987-12-11 1989-08-22 Integrated Fluidics, Inc. Valve with flexible sheet member
US4869282A (en) * 1988-12-09 1989-09-26 Rosemount Inc. Micromachined valve with polyimide film diaphragm
US5176359A (en) * 1991-05-20 1993-01-05 Photovac International, Inc. Fluid control valve arrangement
US5197192A (en) * 1990-08-01 1993-03-30 Photovac Incorporated Method of making a fluid control valve
US5593130A (en) * 1993-06-09 1997-01-14 Pharmacia Biosensor Ab Valve, especially for fluid handling bodies with microflowchannels
US5652398A (en) * 1995-03-03 1997-07-29 Microsensor Technology, Inc. Fixed-volume injector with backflush capability
US5932799A (en) * 1997-07-21 1999-08-03 Ysi Incorporated Microfluidic analyzer module
US6431212B1 (en) * 2000-05-24 2002-08-13 Jon W. Hayenga Valve for use in microfluidic structures
US6619311B2 (en) * 2000-11-06 2003-09-16 Nanostream, Inc. Microfluidic regulating device

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2943116C2 (en) * 1979-10-25 1986-06-19 Gesellschaft Fuer Strahlen- Und Umweltforschung Mbh, 8000 Muenchen, De
US4663058A (en) * 1983-10-11 1987-05-05 E. I. Du Pont De Nemours And Company Process for continuous separation of leukocyte/platelet-enriched fraction from whole blood
US5032381A (en) * 1988-12-20 1991-07-16 Tropix, Inc. Chemiluminescence-based static and flow cytometry
JPH09505130A (en) * 1993-09-24 1997-05-20 ローズマウント アナリティカル インコーポレイテッド Micromachined valve device
DE69628016D1 (en) * 1995-06-16 2003-06-12 Univ Washington Seattle Miniaturized differential extraction device and process
US5726751A (en) * 1995-09-27 1998-03-10 University Of Washington Silicon microchannel optical flow cytometer
US5948684A (en) * 1997-03-31 1999-09-07 University Of Washington Simultaneous analyte determination and reference balancing in reference T-sensor devices
US5716852A (en) * 1996-03-29 1998-02-10 University Of Washington Microfabricated diffusion-based chemical sensor
US6184978B1 (en) * 1996-05-15 2001-02-06 International Remote Imaging Systems, Inc. Method and apparatus for verifying uniform flow of a fluid sample through a flow cell and distribution on a slide
EP0910474B1 (en) * 1996-06-14 2004-03-24 University of Washington Absorption-enhanced differential extraction method
US6120666A (en) * 1996-09-26 2000-09-19 Ut-Battelle, Llc Microfabricated device and method for multiplexed electrokinetic focusing of fluid streams and a transport cytometry method using same
US5858187A (en) * 1996-09-26 1999-01-12 Lockheed Martin Energy Systems, Inc. Apparatus and method for performing electrodynamic focusing on a microchip
DE69823347D1 (en) * 1997-05-16 2004-05-27 Alberta Res Council Edmonton Microfluidic system and process for its operation
CA2312102C (en) * 1997-12-24 2007-09-04 Cepheid Integrated fluid manipulation cartridge
EP1046032A4 (en) * 1998-05-18 2002-05-29 Univ Washington Liquid analysis cartridge
US6067157A (en) * 1998-10-09 2000-05-23 University Of Washington Dual large angle light scattering detection
US6416642B1 (en) * 1999-01-21 2002-07-09 Caliper Technologies Corp. Method and apparatus for continuous liquid flow in microscale channels using pressure injection, wicking, and electrokinetic injection
US6685809B1 (en) * 1999-02-04 2004-02-03 Ut-Battelle, Llc Methods for forming small-volume electrical contacts and material manipulations with fluidic microchannels
EP1163369B1 (en) * 1999-02-23 2011-05-04 Caliper Life Sciences, Inc. Sequencing by incorporation
US6379973B1 (en) * 1999-03-05 2002-04-30 The United States Of America As Represented By The Department Of Health And Human Services Chromatographic separation apparatus and method
US6533938B1 (en) * 1999-05-27 2003-03-18 Worcester Polytechnic Institue Polymer enhanced diafiltration: filtration using PGA
JP4733331B2 (en) * 2000-03-14 2011-07-27 マイクロニックス、インコーポレーテッド Device for micro-fluid analysis
WO2001075415A3 (en) * 2000-03-31 2002-02-28 Micronics Inc Protein crystallization in microfluidic structures
WO2001089675A3 (en) * 2000-05-24 2010-06-24 Micronics, Inc. Jet vortex mixer
US7060227B2 (en) * 2001-08-06 2006-06-13 Sau Lan Tang Staats Microfluidic devices with raised walls

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4858883A (en) * 1987-12-11 1989-08-22 Integrated Fluidics, Inc. Valve with flexible sheet member
US4869282A (en) * 1988-12-09 1989-09-26 Rosemount Inc. Micromachined valve with polyimide film diaphragm
US5197192A (en) * 1990-08-01 1993-03-30 Photovac Incorporated Method of making a fluid control valve
US5176359A (en) * 1991-05-20 1993-01-05 Photovac International, Inc. Fluid control valve arrangement
US5593130A (en) * 1993-06-09 1997-01-14 Pharmacia Biosensor Ab Valve, especially for fluid handling bodies with microflowchannels
US5652398A (en) * 1995-03-03 1997-07-29 Microsensor Technology, Inc. Fixed-volume injector with backflush capability
US5932799A (en) * 1997-07-21 1999-08-03 Ysi Incorporated Microfluidic analyzer module
US6431212B1 (en) * 2000-05-24 2002-08-13 Jon W. Hayenga Valve for use in microfluidic structures
US6619311B2 (en) * 2000-11-06 2003-09-16 Nanostream, Inc. Microfluidic regulating device

Cited By (126)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7666149B2 (en) 1997-12-04 2010-02-23 Peliken Technologies, Inc. Cassette of lancet cartridges for sampling blood
US8439872B2 (en) 1998-03-30 2013-05-14 Sanofi-Aventis Deutschland Gmbh Apparatus and method for penetration with shaft having a sensor for sensing penetration depth
US7909775B2 (en) 2001-06-12 2011-03-22 Pelikan Technologies, Inc. Method and apparatus for lancet launching device integrated onto a blood-sampling cartridge
US8382683B2 (en) 2001-06-12 2013-02-26 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8360991B2 (en) 2001-06-12 2013-01-29 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US9694144B2 (en) 2001-06-12 2017-07-04 Sanofi-Aventis Deutschland Gmbh Sampling module device and method
US7981055B2 (en) 2001-06-12 2011-07-19 Pelikan Technologies, Inc. Tissue penetration device
US8641643B2 (en) 2001-06-12 2014-02-04 Sanofi-Aventis Deutschland Gmbh Sampling module device and method
US9427532B2 (en) 2001-06-12 2016-08-30 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8343075B2 (en) 2001-06-12 2013-01-01 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8679033B2 (en) 2001-06-12 2014-03-25 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8282577B2 (en) 2001-06-12 2012-10-09 Sanofi-Aventis Deutschland Gmbh Method and apparatus for lancet launching device integrated onto a blood-sampling cartridge
US9802007B2 (en) 2001-06-12 2017-10-31 Sanofi-Aventis Deutschland Gmbh Methods and apparatus for lancet actuation
US8721671B2 (en) 2001-06-12 2014-05-13 Sanofi-Aventis Deutschland Gmbh Electric lancet actuator
US7682318B2 (en) 2001-06-12 2010-03-23 Pelikan Technologies, Inc. Blood sampling apparatus and method
US7699791B2 (en) 2001-06-12 2010-04-20 Pelikan Technologies, Inc. Method and apparatus for improving success rate of blood yield from a fingerstick
US8845550B2 (en) 2001-06-12 2014-09-30 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8216154B2 (en) 2001-06-12 2012-07-10 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8211037B2 (en) 2001-06-12 2012-07-03 Pelikan Technologies, Inc. Tissue penetration device
US8206317B2 (en) 2001-06-12 2012-06-26 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8206319B2 (en) 2001-06-12 2012-06-26 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8162853B2 (en) 2001-06-12 2012-04-24 Pelikan Technologies, Inc. Tissue penetration device
US7841992B2 (en) 2001-06-12 2010-11-30 Pelikan Technologies, Inc. Tissue penetration device
US8123700B2 (en) 2001-06-12 2012-02-28 Pelikan Technologies, Inc. Method and apparatus for lancet launching device integrated onto a blood-sampling cartridge
US7850622B2 (en) 2001-06-12 2010-12-14 Pelikan Technologies, Inc. Tissue penetration device
US8016774B2 (en) 2001-06-12 2011-09-13 Pelikan Technologies, Inc. Tissue penetration device
US8622930B2 (en) 2001-06-12 2014-01-07 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US7988645B2 (en) 2001-06-12 2011-08-02 Pelikan Technologies, Inc. Self optimizing lancing device with adaptation means to temporal variations in cutaneous properties
US9560993B2 (en) 2001-11-21 2017-02-07 Sanofi-Aventis Deutschland Gmbh Blood testing apparatus having a rotatable cartridge with multiple lancing elements and testing means
US9089678B2 (en) 2002-04-19 2015-07-28 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7901362B2 (en) 2002-04-19 2011-03-08 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7909774B2 (en) 2002-04-19 2011-03-22 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7909777B2 (en) 2002-04-19 2011-03-22 Pelikan Technologies, Inc Method and apparatus for penetrating tissue
US7914465B2 (en) 2002-04-19 2011-03-29 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7938787B2 (en) 2002-04-19 2011-05-10 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7959582B2 (en) 2002-04-19 2011-06-14 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7976476B2 (en) 2002-04-19 2011-07-12 Pelikan Technologies, Inc. Device and method for variable speed lancet
US7892183B2 (en) 2002-04-19 2011-02-22 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
US7981056B2 (en) 2002-04-19 2011-07-19 Pelikan Technologies, Inc. Methods and apparatus for lancet actuation
US7874994B2 (en) 2002-04-19 2011-01-25 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7988644B2 (en) 2002-04-19 2011-08-02 Pelikan Technologies, Inc. Method and apparatus for a multi-use body fluid sampling device with sterility barrier release
US8007446B2 (en) 2002-04-19 2011-08-30 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7862520B2 (en) 2002-04-19 2011-01-04 Pelikan Technologies, Inc. Body fluid sampling module with a continuous compression tissue interface surface
US8062231B2 (en) 2002-04-19 2011-11-22 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8079960B2 (en) 2002-04-19 2011-12-20 Pelikan Technologies, Inc. Methods and apparatus for lancet actuation
US9186468B2 (en) 2002-04-19 2015-11-17 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7833171B2 (en) 2002-04-19 2010-11-16 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US9072842B2 (en) 2002-04-19 2015-07-07 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8197421B2 (en) 2002-04-19 2012-06-12 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8197423B2 (en) 2002-04-19 2012-06-12 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8202231B2 (en) 2002-04-19 2012-06-19 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US9226699B2 (en) 2002-04-19 2016-01-05 Sanofi-Aventis Deutschland Gmbh Body fluid sampling module with a continuous compression tissue interface surface
US9248267B2 (en) 2002-04-19 2016-02-02 Sanofi-Aventis Deustchland Gmbh Tissue penetration device
US7731729B2 (en) 2002-04-19 2010-06-08 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7717863B2 (en) 2002-04-19 2010-05-18 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8221334B2 (en) 2002-04-19 2012-07-17 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8905945B2 (en) 2002-04-19 2014-12-09 Dominique M. Freeman Method and apparatus for penetrating tissue
US7713214B2 (en) 2002-04-19 2010-05-11 Pelikan Technologies, Inc. Method and apparatus for a multi-use body fluid sampling device with optical analyte sensing
US7674232B2 (en) 2002-04-19 2010-03-09 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8267870B2 (en) 2002-04-19 2012-09-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for body fluid sampling with hybrid actuation
US7648468B2 (en) 2002-04-19 2010-01-19 Pelikon Technologies, Inc. Method and apparatus for penetrating tissue
US8690796B2 (en) 2002-04-19 2014-04-08 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US9314194B2 (en) 2002-04-19 2016-04-19 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8333710B2 (en) 2002-04-19 2012-12-18 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8337419B2 (en) 2002-04-19 2012-12-25 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8337420B2 (en) 2002-04-19 2012-12-25 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US9089294B2 (en) 2002-04-19 2015-07-28 Sanofi-Aventis Deutschland Gmbh Analyte measurement device with a single shot actuator
US9498160B2 (en) 2002-04-19 2016-11-22 Sanofi-Aventis Deutschland Gmbh Method for penetrating tissue
US9724021B2 (en) 2002-04-19 2017-08-08 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8382682B2 (en) 2002-04-19 2013-02-26 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US9795334B2 (en) 2002-04-19 2017-10-24 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8388551B2 (en) 2002-04-19 2013-03-05 Sanofi-Aventis Deutschland Gmbh Method and apparatus for multi-use body fluid sampling device with sterility barrier release
US8403864B2 (en) 2002-04-19 2013-03-26 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8414503B2 (en) 2002-04-19 2013-04-09 Sanofi-Aventis Deutschland Gmbh Methods and apparatus for lancet actuation
US8430828B2 (en) 2002-04-19 2013-04-30 Sanofi-Aventis Deutschland Gmbh Method and apparatus for a multi-use body fluid sampling device with sterility barrier release
US8435190B2 (en) 2002-04-19 2013-05-07 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US9839386B2 (en) 2002-04-19 2017-12-12 Sanofi-Aventis Deustschland Gmbh Body fluid sampling device with capacitive sensor
US8579831B2 (en) 2002-04-19 2013-11-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7909778B2 (en) 2002-04-19 2011-03-22 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US9034639B2 (en) 2002-12-30 2015-05-19 Sanofi-Aventis Deutschland Gmbh Method and apparatus using optical techniques to measure analyte levels
US7850621B2 (en) 2003-06-06 2010-12-14 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
US8251921B2 (en) 2003-06-06 2012-08-28 Sanofi-Aventis Deutschland Gmbh Method and apparatus for body fluid sampling and analyte sensing
US9144401B2 (en) 2003-06-11 2015-09-29 Sanofi-Aventis Deutschland Gmbh Low pain penetrating member
US8282576B2 (en) 2003-09-29 2012-10-09 Sanofi-Aventis Deutschland Gmbh Method and apparatus for an improved sample capture device
US8945910B2 (en) 2003-09-29 2015-02-03 Sanofi-Aventis Deutschland Gmbh Method and apparatus for an improved sample capture device
US9351680B2 (en) 2003-10-14 2016-05-31 Sanofi-Aventis Deutschland Gmbh Method and apparatus for a variable user interface
US8668656B2 (en) 2003-12-31 2014-03-11 Sanofi-Aventis Deutschland Gmbh Method and apparatus for improving fluidic flow and sample capture
US8296918B2 (en) 2003-12-31 2012-10-30 Sanofi-Aventis Deutschland Gmbh Method of manufacturing a fluid sampling device with improved analyte detecting member configuration
US9561000B2 (en) 2003-12-31 2017-02-07 Sanofi-Aventis Deutschland Gmbh Method and apparatus for improving fluidic flow and sample capture
US9261476B2 (en) 2004-05-20 2016-02-16 Sanofi Sa Printable hydrogel for biosensors
US8828203B2 (en) 2004-05-20 2014-09-09 Sanofi-Aventis Deutschland Gmbh Printable hydrogels for biosensors
US9820684B2 (en) 2004-06-03 2017-11-21 Sanofi-Aventis Deutschland Gmbh Method and apparatus for a fluid sampling device
US8652831B2 (en) 2004-12-30 2014-02-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for analyte measurement test time
US7822454B1 (en) 2005-01-03 2010-10-26 Pelikan Technologies, Inc. Fluid sampling device with improved analyte detecting member configuration
US20060246575A1 (en) * 2005-01-13 2006-11-02 Micronics, Inc. Microfluidic rare cell detection device
US8182767B2 (en) 2005-12-27 2012-05-22 Honeywell International Inc. Needle-septum interface for a fluidic analyzer
US7485153B2 (en) 2005-12-27 2009-02-03 Honeywell International Inc. Fluid free interface for a fluidic analyzer
US20070148039A1 (en) * 2005-12-27 2007-06-28 Honeywell International Inc. Fluid sensing and control in a fluidic analyzer
US20070144277A1 (en) * 2005-12-27 2007-06-28 Honeywell International Inc. Fluid free interface for a fluidic analyzer
US20070149863A1 (en) * 2005-12-27 2007-06-28 Honeywell International Inc. Needle-septum interface for a fluidic analyzer
US8518328B2 (en) 2005-12-27 2013-08-27 Honeywell International Inc. Fluid sensing and control in a fluidic analyzer
US8222023B2 (en) 2006-03-15 2012-07-17 Micronics, Inc. Integrated nucleic acid assays
US20090148847A1 (en) * 2006-03-15 2009-06-11 Micronics, Inc. Rapid magnetic flow assays
US8772017B2 (en) 2006-03-15 2014-07-08 Micronics, Inc. Integrated nucleic acid assays
US7569789B2 (en) 2006-03-16 2009-08-04 Visiongate, Inc. Cantilevered coaxial flow injector apparatus and method for sorting particles
US20070215528A1 (en) * 2006-03-16 2007-09-20 Hayenga Jon W Cantilevered coaxial flow injector apparatus and method for sorting particles
US20090325276A1 (en) * 2006-09-27 2009-12-31 Micronics, Inc. Integrated microfluidic assay devices and methods
US8702624B2 (en) 2006-09-29 2014-04-22 Sanofi-Aventis Deutschland Gmbh Analyte measurement device with a single shot actuator
KR100931302B1 (en) 2008-02-05 2009-12-11 한국과학기술원 Micro fluid distributor valve with each other, having different critical pressure
US9386944B2 (en) 2008-04-11 2016-07-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for analyte detecting device
EP2138233A1 (en) 2008-06-02 2009-12-30 Boehringer Ingelheim microParts GmbH Microfluid film structure for metering liquids
US9375169B2 (en) 2009-01-30 2016-06-28 Sanofi-Aventis Deutschland Gmbh Cam drive for managing disposable penetrating member actions with a single motor and motor and control system
US8230744B2 (en) 2009-05-06 2012-07-31 Cequr Sa Low-dead volume microfluidic circuit and methods
US20100282766A1 (en) * 2009-05-06 2010-11-11 Heiko Arndt Low-Dead Volume Microfluidic Component and Method
US9895692B2 (en) 2010-01-29 2018-02-20 Micronics, Inc. Sample-to-answer microfluidic cartridge
US8965476B2 (en) 2010-04-16 2015-02-24 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US9795747B2 (en) 2010-06-02 2017-10-24 Sanofi-Aventis Deutschland Gmbh Methods and apparatus for lancet actuation
DE102011078770A1 (en) 2011-07-07 2013-01-10 Robert Bosch Gmbh The microfluidic device, a microfluidic system and method for conveyance of fluids
US9188244B2 (en) 2011-07-07 2015-11-17 Robert Bosch Gmbh Microfluidic device, microfluidic system and method for transporting fluids
DE102011078770B4 (en) * 2011-07-07 2016-04-28 Robert Bosch Gmbh The microfluidic device, a microfluidic system and method for conveyance of fluids
US9222623B2 (en) 2013-03-15 2015-12-29 Genmark Diagnostics, Inc. Devices and methods for manipulating deformable fluid vessels
US9453613B2 (en) 2013-03-15 2016-09-27 Genmark Diagnostics, Inc. Apparatus, devices, and methods for manipulating deformable fluid vessels
US9410663B2 (en) 2013-03-15 2016-08-09 Genmark Diagnostics, Inc. Apparatus and methods for manipulating deformable fluid vessels
WO2015191916A1 (en) 2014-06-11 2015-12-17 Micronics, Inc. Microfluidic cartridges and apparatus with integrated assay controls for analysis of nucleic acids
US9598722B2 (en) 2014-11-11 2017-03-21 Genmark Diagnostics, Inc. Cartridge for performing assays in a closed sample preparation and reaction system
US9498778B2 (en) 2014-11-11 2016-11-22 Genmark Diagnostics, Inc. Instrument for processing cartridge for performing assays in a closed sample preparation and reaction system

Also Published As

Publication number Publication date Type
US20020148992A1 (en) 2002-10-17 application
WO2002081934A3 (en) 2003-01-16 application
JP3949056B2 (en) 2007-07-25 grant
DE60227649D1 (en) 2008-08-28 grant
US20050201903A1 (en) 2005-09-15 application
JP2004528556A (en) 2004-09-16 application
JP2005509113A (en) 2005-04-07 application
EP1377821A2 (en) 2004-01-07 application
US20020160518A1 (en) 2002-10-31 application
WO2002082057A3 (en) 2003-02-13 application
US20020159920A1 (en) 2002-10-31 application
WO2002082057A2 (en) 2002-10-17 application
WO2002081934A9 (en) 2002-11-28 application
US20020172622A1 (en) 2002-11-21 application
EP1377811A2 (en) 2004-01-07 application
WO2002081934A2 (en) 2002-10-17 application
US6674525B2 (en) 2004-01-06 grant
US20020150502A1 (en) 2002-10-17 application
EP1377811B1 (en) 2008-07-16 grant
US20020149766A1 (en) 2002-10-17 application

Similar Documents

Publication Publication Date Title
Gravesen et al. Microfluidics-a review
van den Berg et al. Micro total analysis systems: microfluidic aspects, integration concept and applications
Shoji Fluids for sensor systems
Hosokawa et al. A pneumatically-actuated three-way microvalve fabricated with polydimethylsiloxane using the membrane transfer technique
US7832429B2 (en) Microfluidic pump and valve structures and fabrication methods
US6681788B2 (en) Non-mechanical valves for fluidic systems
US7863035B2 (en) Fluidics devices
US7318912B2 (en) Microfluidic systems and methods for combining discrete fluid volumes
US7144616B1 (en) Microfabricated elastomeric valve and pump systems
US6382254B1 (en) Microfluidic valve and method for controlling the flow of a liquid
US20100200782A1 (en) Microfabricated Elastomeric Valve And Pump Systems
US6929030B2 (en) Microfabricated elastomeric valve and pump systems
US20020166592A1 (en) Apparatus and method for small-volume fluid manipulation and transportation
US20070042427A1 (en) Microfluidic laminar flow detection strip
US6619311B2 (en) Microfluidic regulating device
Zhang et al. Micropumps, microvalves, and micromixers within PCR microfluidic chips: advances and trends
US20020127736A1 (en) Microfluidic devices and methods of use
US20030180965A1 (en) Micro-fluidic device and method of manufacturing and using the same
US20020197167A1 (en) Microfluidic flow control device
US20100303687A1 (en) Fluidic devices with diaphragm valves
US5726404A (en) Valveless liquid microswitch
Blankenstein et al. Modular concept of a laboratory on a chip for chemical and biochemical analysis
US20060090800A1 (en) Fluid processing device including size-changing barrier
US20080289710A1 (en) Microfabricated elastomeric valve and pump systems
US6561224B1 (en) Microfluidic valve and system therefor