US11401338B2 - Antibodies against signal-regulatory protein alpha and methods of use - Google Patents

Antibodies against signal-regulatory protein alpha and methods of use Download PDF

Info

Publication number
US11401338B2
US11401338B2 US15/710,798 US201715710798A US11401338B2 US 11401338 B2 US11401338 B2 US 11401338B2 US 201715710798 A US201715710798 A US 201715710798A US 11401338 B2 US11401338 B2 US 11401338B2
Authority
US
United States
Prior art keywords
seq
amino acid
domain
acid sequence
antibody
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US15/710,798
Other languages
English (en)
Other versions
US20180105600A1 (en
Inventor
Jaume Pons
Bang Janet Sim
Hong Wan
Tracy Chia-Chien Kuo
Steven Elliot KAUDER
William Don Harriman
Shelley IZQUIERDO
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Crystal Bioscience Inc
ALX Oncology Inc
Original Assignee
ALX Oncology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ALX Oncology Inc filed Critical ALX Oncology Inc
Priority to US15/710,798 priority Critical patent/US11401338B2/en
Publication of US20180105600A1 publication Critical patent/US20180105600A1/en
Assigned to Alexo Therapeutics Inc. reassignment Alexo Therapeutics Inc. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CRYSTAL BIOSCIENCE INC.
Assigned to ALX Oncology Inc. reassignment ALX Oncology Inc. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: Alexo Therapeutics Inc.
Assigned to Alexo Therapeutics Inc. reassignment Alexo Therapeutics Inc. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KAUDER, Steven Elliot, KUO, TRACY CHIA-CHIEN, PONS, JAUME, SIM, BANG JANET, WAN, HONG
Assigned to CRYSTAL BIOSCIENCE INC. reassignment CRYSTAL BIOSCIENCE INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HARRIMAN, WILLIAM DON, IZQUIERDO, Shelley
Priority to US17/337,180 priority patent/US20230018821A1/en
Priority to US17/337,348 priority patent/US20220002434A1/en
Priority to US17/337,176 priority patent/US11242404B2/en
Publication of US11401338B2 publication Critical patent/US11401338B2/en
Application granted granted Critical
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2896Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against molecules with a "CD"-designation, not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/04Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/06Antiasthmatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/04Antipruritics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/06Antipsoriatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • A61P21/04Drugs for disorders of the muscular or neuromuscular system for myasthenia gravis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • C07K16/2818Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against CD28 or CD152
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/289Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against CD45
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6854Immunoglobulins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • A61K2039/507Comprising a combination of two or more separate antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • C07K16/2827Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against B7 molecules, e.g. CD80, CD86
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/23Immunoglobulins specific features characterized by taxonomic origin from birds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/24Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/31Immunoglobulins specific features characterized by aspects of specificity or valency multispecific
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/34Identification of a linear epitope shorter than 20 amino acid residues or of a conformational epitope defined by amino acid residues
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • C07K2317/565Complementarity determining region [CDR]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/60Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
    • C07K2317/62Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
    • C07K2317/622Single chain antibody (scFv)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/92Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/705Assays involving receptors, cell surface antigens or cell surface determinants
    • G01N2333/70503Immunoglobulin superfamily, e.g. VCAMs, PECAM, LFA-3
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/705Assays involving receptors, cell surface antigens or cell surface determinants
    • G01N2333/70596Molecules with a "CD"-designation not provided for elsewhere in G01N2333/705
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2500/00Screening for compounds of potential therapeutic value
    • G01N2500/02Screening involving studying the effect of compounds C on the interaction between interacting molecules A and B (e.g. A = enzyme and B = substrate for A, or A = receptor and B = ligand for the receptor)

Definitions

  • the present disclosure relates to isolated antibodies that bind an extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ v1 polypeptide, an extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ v2 polypeptide, or both, as well as polynucleotides, vectors, host cells, and methods related thereto.
  • an extracellular domain e.g., the D1 domain
  • an extracellular domain e.g., the D1 domain of a human SIRP- ⁇ v2 polypeptide
  • SIRP- ⁇ Signal-regulatory protein alpha
  • a family of cell-surface receptors that plays critical roles in the regulation of the immune system (see, e.g., Barclay, A. N. and Brown, M. H. (2006) Nat. Rev. Immunol. 6:457-64).
  • SIRP- ⁇ is expressed on the surface of various cells, including leukocytes such as dendritic cells, eosinophils, neutrophils, and macrophages.
  • SIRP- ⁇ includes an extracellular domain that interacts with external stimuli such as ligands and an intracellular domain that mediates a variety of intracellular signals.
  • CD47 is expressed on the surface of a variety of cell types.
  • IgSF domain of CD47 binds the extracellular domain (e.g., the D1 domain) of SIRP- ⁇ expressed on an immune cell (e.g., a macrophage)
  • CD47 serves to convey what has been termed a “don't eat me” signal to the immune system that prevents phagocytosis of healthy cells (see, e.g., WO2015/138600 and Weiskopf, K. et al.
  • CD47 has also been shown to be highly expressed by a variety of cancers, and its interaction with SIRP- ⁇ in this context is thought to allow tumors to mimic the healthy “don't eat me” signal in order to evade immune surveillance and phagocytosis by macrophages (see, e.g., Majeti, R. et al. (2009) Cell 138:286-99; Zhao, X. W. et al. (2011) Proc. Natl. Acad. Sci. 108:18342-7). As such, antibodies that block this interaction are highly desirable.
  • SIRP- ⁇ is known to be a highly polymorphic protein in humans, monkeys, and mice. For example, 20 amino acid differences have been identified between SIRP- ⁇ proteins in the NOD and C57BL/6 mouse strains, and these polymorphisms lead to functional consequences related to CD47 binding and engraftment of human hematopoietic stem cells in these mouse strains. In humans, at least 10 distinct alleles of the SIRPA gene have been identified (Takenaka, K. et al. (2007) Nat. Immunol. 8:1313-23, Zhao, X. et al. (2011), PNAS. 108:18342-47; van der Heijden, J. (2014). Genetic variation in human Fc gamma receptors: Functional consequences of polymorphisms and copy number variation (Doctoral dissertation)).
  • SIRP- ⁇ -CD47 Due to the importance of the SIRP- ⁇ -CD47 interaction in normal immune function and tumorigenesis, as well as the polymorphic nature of SIRP- ⁇ and the existence of other SIRP family receptors, the identification of antibodies having different binding specificities with intra- and/or inter-species cross-reactivity is of great interest for development of clinical candidates that are effective across human populations and the characterization of these candidates in various animal models.
  • a need also exists for methods of isolating antibodies with a variety of SIRP- ⁇ binding specificities and effects on CD47-SIRP- ⁇ binding in order to understand and effectively target this critical interaction.
  • antibodies that bind an extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide.
  • the antibody binds the extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ v1 polypeptide, the extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ v2 polypeptide, or both.
  • the antibody binds an extracellular domain of a human SIRP- ⁇ v1 polypeptide comprising the amino acid sequence of EEELQVIQPDKSVLVAAGETATLRCTATSLIPVGPIQWFRGAGPGRELIYNQKEGHFPR VTTVSDLTKRNNMDF SIRIGNITPADAGTYYCVKFRKGSPDDVEFKSGAGTELSVRAK PS (SEQ ID NO:5).
  • the antibody binds an extracellular domain of a human SIRP- ⁇ v2 polypeptide comprising the amino acid sequence of EEELQVIQPDKSVSVAAGESAILHCTVTSLIPVGPIQWFRGAGPARELIYNQKEGHFPRV TTVSESTKRENMDF SISISNITPADAGTYYCVKFRKGSPDTEFKSGAGTELSVRAKPS (SEQ ID NO:6).
  • the antibody binds an extracellular domain of a human SIRP- ⁇ v1 polypeptide comprising the amino acid sequence of EEELQVIQPDKSVLVAAGETATLRCTATSLIPVGPIQWFRGAGPGRELIYNQKEGHFPR VTTVSDLTKRNNMDF SIRIGNITPADAGTYYCVKFRKGSPDDVEFKSGAGTELSVRAK PS (SEQ ID NO:5) and binds an extracellular domain of a human SIRP- ⁇ v2 polypeptide comprising the amino acid sequence of EEELQVIQPDKSVSVAAGESAILHCTVTSLIPVGPIQWFRGAGPARELIYNQKEGHFPRV TTVSESTKRENMDF SISISNITPADAGTYYCVKFRKGSPDTEFKSGAGTELSVRAKPS (SEQ ID NO:6).
  • the antibody binds the extracellular domains (e.g., the D1 domains) of three, four, five, six, seven, eight, nine or ten different human SIRP- ⁇ variant polypeptides.
  • each of the three, four, five, six, seven, eight, nine or ten different human SIRP- ⁇ variant polypeptides comprises an extracellular domain comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 5, 6, and 76-83.
  • the antibody binds an extracellular domain (e.g., the D1 domain) of a monkey SIRP- ⁇ polypeptide.
  • the monkey SIRP- ⁇ polypeptide is a cynomolgus SIRP- ⁇ polypeptide.
  • the antibody binds the extracellular domains (e.g., the D1 domains) of at least two different monkey SIRP- ⁇ variant polypeptides.
  • the antibody binds an extracellular domain of a cynomolgus SIRP- ⁇ polypeptide comprising the amino acid sequence of SEQ ID NO:11, an extracellular domain of a cynomolgus SIRP- ⁇ polypeptide comprising the amino acid sequence of SEQ ID NO:12, or both.
  • the antibody binds an extracellular domain (e.g., the D1 domain) of a murine SIRP- ⁇ polypeptide. In some embodiments, the antibody binds the extracellular domains (e.g., the D1 domains) of two or more different murine SIRP- ⁇ variant polypeptides. In some embodiments, the antibody binds an extracellular domain of one or more murine SIRP- ⁇ polypeptides, and wherein the one or more murine SIRP- ⁇ polypeptides each comprise an amino acid sequence selected from the group consisting of SEQ ID NOs: 7-10. In some embodiments, the antibody binds an extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide.
  • the antibody binds an extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide. In some embodiments, the antibody does not bind an extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide. In some embodiments, the antibody does not bind an extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide. In some embodiments, the antibody binds the extracellular domain of a human SIRP- ⁇ polypeptide comprising the amino acid sequence of SEQ ID NO:13, the extracellular domain of a human SIRP- ⁇ polypeptide comprising the amino acid sequence of SEQ ID NO:14, or both.
  • the antibody binds the extracellular domain of a human SIRP- ⁇ polypeptide comprising the amino acid sequence of SEQ ID NO:15.
  • the antibody modulates SIRP- ⁇ signaling in a cell expressing a human SIRP- ⁇ polypeptide.
  • the cell is a leukocyte selected from the group consisting of a macrophage, a dendritic cell, a neutrophil, an eosinophil, and a myeloid-derived suppressor cell (MDSC).
  • the antibody inhibits SIRP- ⁇ signaling in a macrophage expressing a human SIRP- ⁇ polypeptide.
  • the antibody enhances phagocytosis by a macrophage expressing a human SIRP- ⁇ polypeptide.
  • the antibody blocks binding between an extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide and an IgSF domain of a human CD47 polypeptide.
  • the antibody blocks binding between an extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide expressed on the surface of a first cell and an IgSF domain of a human CD47 polypeptide expressed on the surface of a second cell.
  • the antibody does not bind a complex comprising a SIRP- ⁇ D1 variant bound to an IgSF domain of CD47, wherein the SIRP- ⁇ D1 variant is a non-naturally occurring high affinity SIRP- ⁇ D1 domain, and wherein the SIRP- ⁇ D1 variant binds to human CD47 with an affinity that is at least 10-fold greater than the affinity of a naturally occurring SIRP- ⁇ D1 domain binding to human CD47.
  • the antibody does not block binding between an extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide and an IgSF domain of a human CD47 polypeptide.
  • the antibody does not block binding between an extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide expressed on the surface of a first cell and an IgSF domain of a human CD47 polypeptide expressed on the surface of a second cell.
  • the antibody binds a complex comprising a SIRP- ⁇ D1 variant bound to an IgSF domain of CD47, wherein the SIRP- ⁇ D1 variant is a non-naturally occurring high affinity SIRP- ⁇ D1 domain, and wherein the SIRP- ⁇ D1 variant binds to human CD47 with an affinity that is at least 10-fold greater than the affinity of a naturally occurring SIRP- ⁇ D1 domain binding to human CD47.
  • binding of the antibody to an extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide reduces affinity of the human SIRP- ⁇ polypeptide for binding an IgSF domain of a human CD47 polypeptide. In some embodiments, binding of the antibody to an extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide expressed on the surface of a first cell reduces affinity of the human SIRP- ⁇ polypeptide for binding an IgSF domain of a human CD47 polypeptide expressed on the surface of a second cell.
  • binding of the antibody to an extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide increases k off of the human SIRP- ⁇ polypeptide for binding an IgSF domain of a human CD47 polypeptide.
  • binding of the antibody to an extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide expressed on the surface of a first cell increases k off of the human SIRP- ⁇ polypeptide for binding an IgSF domain of a human CD47 polypeptide expressed on the surface of a second cell.
  • the antibody binds the extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ v1 polypeptide, the extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ v2 polypeptide, or both; wherein the antibody binds the extracellular domain (e.g., the D1 domain) of a monkey SIRP- ⁇ polypeptide; and wherein the antibody does not block binding between an extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide and an IgSF domain of a human CD47 polypeptide.
  • the antibody binds the extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ v1 polypeptide, the extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ v2 polypeptide, or both; wherein the antibody binds the extracellular domain (e.g., the D1 domain) of a monkey SIRP- ⁇ polypeptide; and wherein the antibody blocks binding between an extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide and an IgSF domain of a human CD47 polypeptide.
  • the antibody binds the extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ v1 polypeptide, the extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ v2 polypeptide, or both; wherein the antibody binds the extracellular domain (e.g., the D1 domain) of a monkey SIRP- ⁇ polypeptide; and wherein binding of the antibody to an extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide reduces affinity of the human SIRP- ⁇ polypeptide for binding an IgSF domain of a human CD47 polypeptide.
  • the antibody binds the extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ v1 polypeptide, the extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ v2 polypeptide, or both; wherein the antibody binds the extracellular domain (e.g., the D1 domain) of a monkey SIRP- ⁇ polypeptide; wherein the antibody binds the extracellular domain (e.g., the D1 domain) of a murine SIRP- ⁇ polypeptide; and wherein the antibody does not block binding between an extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide and an IgSF domain of a human CD47 polypeptide.
  • the extracellular domain e.g., the D1 domain of a human SIRP- ⁇ v1 polypeptide
  • the extracellular domain e.g., the D1 domain of a human SIRP- ⁇ v2 polypeptide
  • the antibody
  • the antibody binds the extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ v1 polypeptide, the extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ v2 polypeptide, or both; wherein the antibody binds the extracellular domain (e.g., the D1 domain) of a monkey SIRP- ⁇ polypeptide; wherein the antibody binds the extracellular domain (e.g., the D1 domain) of a murine SIRP- ⁇ polypeptide; and wherein the antibody blocks binding between an extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide and an IgSF domain of a human CD47 polypeptide.
  • the antibody binds the extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ v1 polypeptide, the extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ v2 polypeptide, or both; wherein the antibody binds the extracellular domain (e.g., the D1 domain) of a monkey SIRP- ⁇ polypeptide; wherein the antibody binds the extracellular domain (e.g., the D1 domain) of a murine SIRP- ⁇ polypeptide; and wherein binding of the antibody to an extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide reduces affinity of the human SIRP- ⁇ polypeptide for binding an IgSF domain of a human CD47 polypeptide.
  • the antibody binds the extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ v1 polypeptide, the extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ v2 polypeptide, or both; wherein the antibody binds the extracellular domain (e.g., the D1 domain) of a murine SIRP- ⁇ polypeptide; and wherein the antibody does not block binding between an extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide and an IgSF domain of a human CD47 polypeptide.
  • the antibody binds the extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ v1 polypeptide, the extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ v2 polypeptide, or both; wherein the antibody binds the extracellular domain (e.g., the D1 domain) of a murine SIRP- ⁇ polypeptide; and wherein the antibody blocks binding between an extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide and an IgSF domain of a human CD47 polypeptide.
  • the antibody binds the extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ v1 polypeptide, the extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ v2 polypeptide, or both; wherein the antibody binds the extracellular domain (e.g., the D1 domain) of a murine SIRP- ⁇ polypeptide; and wherein binding of the antibody to an extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide reduces affinity of the human SIRP- ⁇ polypeptide for binding an IgSF domain of a human CD47 polypeptide.
  • the antibody binds the extracellular domains (e.g., the D1 domain) of two or more different human SIRP- ⁇ variant polypeptides, a murine SIRP- ⁇ polypeptide, and a monkey SIRP- ⁇ polypeptide; wherein the antibody does not bind at least one of an extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide and an extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide; and wherein the antibody blocks binding between the extracellular domain (e.g., the D1 domain) of the human SIRP- ⁇ polypeptide and an IgSF domain of a human CD47 polypeptide.
  • the antibody comprises one, two, three, four, five, or six CDR sequences; a heavy chain variable domain sequence; and/or a light chain variable domain sequence from antibody S130.
  • the antibody binds the extracellular domains (e.g., the D1 domains) of two or more different human SIRP- ⁇ variant polypeptides, a murine SIRP- ⁇ polypeptide, a monkey SIRP- ⁇ polypeptide, and at least one of an extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide and an extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide; and wherein the antibody blocks binding between the extracellular domain (e.g., the D1 domain) of the human SIRP- ⁇ polypeptide and an IgSF domain of a human CD47 polypeptide.
  • the antibody comprises one, two, three, four, five, or six CDR sequences; a heavy chain variable domain sequence; and/or a light chain variable domain sequence from an antibody selected from the group consisting of S8, S13, S14, and S121.
  • the antibody binds the extracellular domains (e.g., the D1 domains) of two or more different human SIRP- ⁇ variant polypeptides, a murine SIRP- ⁇ polypeptide, and a monkey SIRP- ⁇ polypeptide; wherein the antibody does not bind, or binds with reduced affinity to, at least one of an extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide and an extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide; and wherein the antibody does not block binding between the extracellular domain (e.g., the D1 domain) of the human SIRP- ⁇ polypeptide and an IgSF domain of a human CD47 polypeptide.
  • an extracellular domain e.g., the D1 domain
  • an extracellular domain e.g., the D1 domain
  • an extracellular domain e.g., the D1 domain
  • an extracellular domain e.g., the D1 domain
  • the antibody comprises one, two, three, four, five, or six CDR sequences; a heavy chain variable domain sequence; and/or a light chain variable domain sequence from antibody S137.
  • the antibody binds the extracellular domains (e.g., the D1 domains) of two or more different human SIRP- ⁇ variant polypeptides and a monkey SIRP- ⁇ polypeptide; wherein the antibody does not bind a murine SIRP- ⁇ polypeptide; wherein the antibody does not bind at least one of an extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide and an extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide; and wherein the antibody blocks binding between the extracellular domain (e.g., the D1 domain) of the human SIRP- ⁇ polypeptide and an IgSF domain of a human CD47 polypeptide.
  • the antibody comprises one, two, three, four, five, or six CDR sequences; a heavy chain variable domain sequence; and/or a light chain variable domain sequence from an antibody selected from the group consisting of S128.
  • the antibody binds the extracellular domains (e.g., the D1 domains) of two or more different human SIRP- ⁇ variant polypeptides, a monkey SIRP- ⁇ polypeptide, and at least one of an extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide and an extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide; wherein the antibody does not bind a murine SIRP- ⁇ polypeptide; and wherein the antibody blocks binding between the extracellular domain (e.g., the D1 domain) of the human SIRP- ⁇ polypeptide and an IgSF domain of a human CD47 polypeptide.
  • the antibody comprises one, two, three, four, five, or six CDR sequences; a heavy chain variable domain sequence; and/or a light chain variable domain sequence from an antibody selected from the group consisting of S9, S11, S119, S120, S122, and 5135.
  • the antibody binds the extracellular domains (e.g., the D1 domains) of two or more different human SIRP- ⁇ variant polypeptides and the extracellular domains (e.g., the D1 domains) of two or more different monkey SIRP- ⁇ variant polypeptides, and wherein binding of the antibody to an extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide reduces affinity of the human SIRP- ⁇ polypeptide for binding an IgSF domain of a human CD47 polypeptide.
  • binding of the antibody to an extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide reduces affinity of the human SIRP- ⁇ polypeptide for binding an IgSF domain of a human CD47 polypeptide.
  • the antibody comprises one, two, three, four, five, or six CDR sequences; a heavy chain variable domain sequence; and/or a light chain variable domain sequence from an antibody selected from the group consisting of S115, S116, S117 and S118.
  • the antibody comprises a VH domain comprising the amino acid sequence of SEQ ID NO:120 and/or a VL domain comprising the amino acid sequence of SEQ ID NO:97.
  • the antibody comprises a VH domain comprising the amino acid sequence of SEQ ID NO:127 and/or a VL domain comprising the amino acid sequence of SEQ ID NO:104.
  • the antibody comprises a VH domain comprising the amino acid sequence of SEQ ID NO:133 and/or a VL domain comprising the amino acid sequence of SEQ ID NO:134. In some embodiments, the antibody comprises a VH domain comprising the amino acid sequence of SEQ ID NO:135 and/or a VL domain comprising the amino acid sequence of SEQ ID NO:136. In some embodiments, the antibody comprises a VH domain comprising the amino acid sequence of SEQ ID NO:137 and/or a VL domain comprising the amino acid sequence of SEQ ID NO:138.
  • the antibody comprises a VH domain comprising the amino acid sequence of SEQ ID NO:139 and/or a VL domain comprising the amino acid sequence of SEQ ID NO:140. In some embodiments, the antibody comprises a VH domain comprising the amino acid sequence of SEQ ID NO:141 and/or a VL domain comprising the amino acid sequence of SEQ ID NO:142.
  • the antibody comprises a VH domain comprising an amino acid sequence that is 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the VH domain of antibody 115 (e.g., as listed in Table 2) and/or a VL domain comprising an amino acid sequence that is 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the VL domain of antibody 115 (e.g., as listed in Table 2).
  • the antibody comprises a VH domain comprising an amino acid sequence that is 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the VH domain of antibody 116 (e.g., as listed in Table 2) and/or a VL domain comprising an amino acid sequence that is 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the VL domain of antibody 116 (e.g., as listed in Table 2).
  • the antibody comprises a VH domain comprising an amino acid sequence that is 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the VH domain of antibody 117 (e.g., as listed in Table 2) and/or a VL domain comprising an amino acid sequence that is 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the VL domain of antibody 117 (e.g., as listed in Table 2).
  • the antibody comprises a VH domain comprising an amino acid sequence that is 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the VH domain of antibody 118 (e.g., as listed in Table 2) and/or a VL domain comprising an amino acid sequence that is 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the VL domain of antibody 118 (e.g., as listed in Table 2).
  • the antibody comprises a VH domain comprising an amino acid sequence that is 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the VH domain of antibody 119 (e.g., as listed in Table 2) and/or a VL domain comprising an amino acid sequence that is 85%, 86%, 8′7%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the VL domain of antibody 119 (e.g., as listed in Table 2).
  • the antibody comprises a VH domain comprising an amino acid sequence that is 85%, 86%, 8′7%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the VH domain of antibody 120 (e.g., as listed in Table 2) and/or a VL domain comprising an amino acid sequence that is 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the VL domain of antibody 120 (e.g., as listed in Table 2).
  • the antibody comprises a VH domain comprising an amino acid sequence that is 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the VH domain of antibody 121 (e.g., as listed in Table 2) and/or a VL domain comprising an amino acid sequence that is 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the VL domain of antibody 121 (e.g., as listed in Table 2).
  • the antibody comprises a VH domain comprising an amino acid sequence that is 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the VH domain of antibody 122 (e.g., as listed in Table 2) and/or a VL domain comprising an amino acid sequence that is 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the VL domain of antibody 122 (e.g., as listed in Table 2).
  • the antibody comprises a VH domain comprising an amino acid sequence that is 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the VH domain of antibody 123 (e.g., as listed in Table 2) and/or a VL domain comprising an amino acid sequence that is 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the VL domain of antibody 123 (e.g., as listed in Table 2).
  • the antibody comprises a VH domain comprising an amino acid sequence that is 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the VH domain of antibody 126 (e.g., as listed in Table 2) and/or a VL domain comprising an amino acid sequence that is 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the VL domain of antibody 126 (e.g., as listed in Table 2).
  • the antibody comprises a VH domain comprising an amino acid sequence that is 85%, 86%, 8′7%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the VH domain of antibody 128 (e.g., as listed in Table 2) and/or a VL domain comprising an amino acid sequence that is 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the VL domain of antibody 128 (e.g., as listed in Table 2).
  • the antibody comprises a VH domain comprising an amino acid sequence that is 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the VH domain of antibody 130 (e.g., as listed in Table 2) and/or a VL domain comprising an amino acid sequence that is 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the VL domain of antibody 130 (e.g., as listed in Table 2).
  • the antibody comprises a VH domain comprising an amino acid sequence that is 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the VH domain of antibody 135 (e.g., as listed in Table 2) and/or a VL domain comprising an amino acid sequence that is 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the VL domain of antibody 135 (e.g., as listed in Table 2).
  • the antibody comprises a VH domain comprising an amino acid sequence that is 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the VH domain of antibody 137 (e.g., as listed in Table 2) and/or a VL domain comprising an amino acid sequence that is 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the VL domain of antibody 137 (e.g., as listed in Table 2).
  • the antibody comprises a VH domain comprising an amino acid sequence that is 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the VH domain of antibody 138 (e.g., as listed in Table 2) and/or a VL domain comprising an amino acid sequence that is 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the VL domain of antibody 138 (e.g., as listed in Table 2).
  • the antibody comprises a VH domain comprising an amino acid sequence that is 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the VH domain of antibody 1 (e.g., as listed in Table 2) and/or a VL domain comprising an amino acid sequence that is 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the VL domain of antibody 1 (e.g., as listed in Table 2).
  • the antibody comprises a VH domain comprising an amino acid sequence that is 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the VH domain of antibody 2 (e.g., as listed in Table 2) and/or a VL domain comprising an amino acid sequence that is 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the VL domain of antibody 2 (e.g., as listed in Table 2).
  • the antibody comprises a VH domain comprising an amino acid sequence that is 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the VH domain of antibody 8 (e.g., as listed in Table 2) and/or a VL domain comprising an amino acid sequence that is 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the VL domain of antibody 8 (e.g., as listed in Table 2).
  • the antibody comprises a VH domain comprising an amino acid sequence that is 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the VH domain of antibody 9 (e.g., as listed in Table 2) and/or a VL domain comprising an amino acid sequence that is 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the VL domain of antibody 9 (e.g., as listed in Table 2).
  • the antibody comprises a VH domain comprising an amino acid sequence that is 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the VH domain of antibody 11 (e.g., as listed in Table 2) and/or a VL domain comprising an amino acid sequence that is 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the VL domain of antibody 11 (e.g., as listed in Table 2).
  • the antibody comprises a VH domain comprising an amino acid sequence that is 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the VH domain of antibody 12 (e.g., as listed in Table 2) and/or a VL domain comprising an amino acid sequence that is 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the VL domain of antibody 12 (e.g., as listed in Table 2).
  • the antibody comprises a VH domain comprising an amino acid sequence that is 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the VH domain of antibody 13 (e.g., as listed in Table 2) and/or a VL domain comprising an amino acid sequence that is 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the VL domain of antibody 13 (e.g., as listed in Table 2).
  • the antibody comprises a VH domain comprising an amino acid sequence that is 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the VH domain of antibody 14 (e.g., as listed in Table 2) and/or a VL domain comprising an amino acid sequence that is 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the VL domain of antibody 14 (e.g., as listed in Table 2).
  • the antibody comprises a VH domain comprising an amino acid sequence that is 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the VH domain of antibody 21, 25, 27, or 66 (e.g., as listed in Table 2) and/or a VL domain comprising an amino acid sequence that is 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the VL domain of antibody 21, 25, 27, or 66 (e.g., as listed in Table 2).
  • the antibody comprises a VH domain comprising an amino acid sequence that is 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO:116 and/or a VL domain comprising an amino acid sequence that is 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO:93.
  • the antibody comprises a VH domain comprising an amino acid sequence that is 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO:117 and/or a VL domain comprising an amino acid sequence that is 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO:94.
  • the antibody comprises a VH domain comprising an amino acid sequence that is 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO:118 and/or a VL domain comprising an amino acid sequence that is 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO:95.
  • the antibody comprises a VH domain comprising an amino acid sequence that is 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO:119 and/or a VL domain comprising an amino acid sequence that is 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO:96.
  • the antibody comprises a VH domain comprising an amino acid sequence that is 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO:335 and/or a VL domain comprising an amino acid sequence that is 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO:97.
  • the antibody comprises a VH domain comprising an amino acid sequence that is 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO:121 and/or a VL domain comprising an amino acid sequence that is 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO:98.
  • the antibody comprises a VH domain comprising an amino acid sequence that is 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO:122 and/or a VL domain comprising an amino acid sequence that is 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO:99.
  • the antibody comprises a VH domain comprising an amino acid sequence that is 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO:123 and/or a VL domain comprising an amino acid sequence that is 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO:100.
  • the antibody comprises a VH domain comprising an amino acid sequence that is 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO:124 and/or a VL domain comprising an amino acid sequence that is 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO:101.
  • the antibody comprises a VH domain comprising an amino acid sequence that is 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO:125 and/or a VL domain comprising an amino acid sequence that is 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO:102.
  • the antibody comprises a VH domain comprising an amino acid sequence that is 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO:126 and/or a VL domain comprising an amino acid sequence that is 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO:103.
  • the antibody comprises a VH domain comprising an amino acid sequence that is 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO:127 and/or a VL domain comprising an amino acid sequence that is 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO:104.
  • the antibody comprises a VH domain comprising an amino acid sequence that is 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO:128 and/or a VL domain comprising an amino acid sequence that is 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO:105.
  • the antibody comprises a VH domain comprising an amino acid sequence that is 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO:129 and/or a VL domain comprising an amino acid sequence that is 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO:106.
  • the antibody comprises a VH domain comprising an amino acid sequence that is 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO:130 and/or a VL domain comprising an amino acid sequence that is 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO:107.
  • the antibody comprises a VH domain comprising an amino acid sequence that is 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO:108 and/or a VL domain comprising an amino acid sequence that is 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO:85.
  • the antibody comprises a VH domain comprising an amino acid sequence that is 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO:109 and/or a VL domain comprising an amino acid sequence that is 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO:86.
  • the antibody comprises a VH domain comprising an amino acid sequence that is 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO:110 and/or a VL domain comprising an amino acid sequence that is 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO:87.
  • the antibody comprises a VH domain comprising an amino acid sequence that is 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO:111 and/or a VL domain comprising an amino acid sequence that is 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO:88.
  • the antibody comprises a VH domain comprising an amino acid sequence that is 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO:112 and/or a VL domain comprising an amino acid sequence that is 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO:89.
  • the antibody comprises a VH domain comprising an amino acid sequence that is 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO:113 and/or a VL domain comprising an amino acid sequence that is 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO:90.
  • the antibody comprises a VH domain comprising an amino acid sequence that is 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO:114 and/or a VL domain comprising an amino acid sequence that is 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO:91.
  • the antibody comprises a VH domain comprising an amino acid sequence that is 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO:115 and/or a VL domain comprising an amino acid sequence that is 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO:92.
  • the antibody comprises a VH domain comprising an amino acid sequence that is 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO:135, 137, 139, or 141 and/or a VL domain comprising an amino acid sequence that is 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO:136, 138, 140, or 142.
  • the antibody comprises (a) a VH domain comprising an HVR-H1 comprising the amino acid sequence of SEQ ID NO:227 or 230, an HVR-H2 comprising the amino acid sequence of SEQ ID NO:228 or 231, and an HVR-H3 comprising the amino acid sequence of SEQ ID NO:229; and/or (b) a VL domain comprising an HVR-L1 comprising the amino acid sequence of SEQ ID NO:232, an HVR-L2 comprising the amino acid sequence of SEQ ID NO:233, and an HVR-L3 comprising the amino acid sequence of SEQ ID NO:234.
  • the antibody comprises (a) a VH domain comprising an HVR-H1 comprising the amino acid sequence of SEQ ID NO:219 or 235, an HVR-H2 comprising the amino acid sequence of SEQ ID NO:236 or 238, and an HVR-H3 comprising the amino acid sequence of SEQ ID NO:237; and/or (b) a VL domain comprising an HVR-L1 comprising the amino acid sequence of SEQ ID NO:239, an HVR-L2 comprising the amino acid sequence of SEQ ID NO:240, and an HVR-L3 comprising the amino acid sequence of SEQ ID NO:241.
  • the antibody comprises (a) an HVR-H1 sequence comprising the amino acid sequence of GFSFSX 1 X 2 AMX 3 , wherein X 1 is N or I; X 2 is F or Y; and X 3 is T or S (SEQ ID NO:185); (b) an HVR-H2 sequence comprising the amino acid sequence of TIGX 4 X 5 DTYYADSVKG, wherein X 4 is S or A and X 5 is G or D (SEQ ID NO:186); (c) an HVR-H3 sequence comprising the amino acid sequence of DSTVX 6 WSGDFFDY, wherein X 6 is S or G (SEQ ID NO:187); (d) an HVR-L1 sequence comprising the amino acid sequence of RASQNVX 7 X 8 DX 9 A, wherein X 7 is K or R; X 8 is N or S; and X 9 is L or I (SEQ ID NO:188); (e) an HVR-L2 sequence comprising the amino acid sequence
  • the antibody comprises one, two, three, four, five, or six HVR sequences from antibody 119 (e.g., as listed in Table 2). In some embodiments, the antibody comprises one, two, three, four, five, or six HVR sequences from the variable domain sequences of SEQ ID NOs:335 and 97 (e.g., one, two, or three heavy chain HVR sequences from the heavy chain variable domain sequence of SEQ ID NO:335 and/or one, two, or three light chain HVR sequences from the light chain variable domain sequence of SEQ ID NO:97). In some embodiments, the antibody comprises one, two, three, four, five, or six HVR sequences from antibody 135 (e.g., as listed in Table 2).
  • the antibody comprises one, two, three, four, five, or six HVR sequences from the variable domain sequences of SEQ ID NOs:127 and 104 (e.g., one, two, or three heavy chain HVR sequences from the heavy chain variable domain sequence of SEQ ID NO:127 and/or one, two, or three light chain HVR sequences from the light chain variable domain sequence of SEQ ID NO:104).
  • the antibody comprises one, two, three, four, five, or six HVR sequences from the variable domain sequences of SEQ ID NOs:97, 104, 120, 335, and 127 (e.g., one, two, or three heavy chain HVR sequences from the heavy chain variable domain sequence of SEQ ID NOs:335 and 127 and/or one, two, or three light chain HVR sequences from the light chain variable domain sequence of SEQ ID NOs:97 and 104).
  • HVR sequences from the variable domain sequences of SEQ ID NOs:97, 104, 120, 335, and 127 e.g., one, two, or three heavy chain HVR sequences from the heavy chain variable domain sequence of SEQ ID NOs:335 and 127 and/or one, two, or three light chain HVR sequences from the light chain variable domain sequence of SEQ ID NOs:97 and 104.
  • the antibody comprises one, two, three, four, five, or six HVR sequences having an amino acid sequence selected from SEQ ID NOs:143-148 (e.g., one, two, or three heavy chain HVR sequences selected from SEQ ID NOs:143-145 and/or one, two, or three light chain HVR sequences selected from SEQ ID NOs:146-148).
  • HVR sequences having an amino acid sequence selected from SEQ ID NOs:143-148 (e.g., one, two, or three heavy chain HVR sequences selected from SEQ ID NOs:143-145 and/or one, two, or three light chain HVR sequences selected from SEQ ID NOs:146-148).
  • the antibody comprises one, two, three, four, five, or six HVR sequences having an amino acid sequence selected from SEQ ID NOs:148-153 (e.g., one, two, or three heavy chain HVR sequences selected from SEQ ID NOs:149-151 and/or one, two, or three light chain HVR sequences selected from SEQ ID NOs:152, 153, and 148).
  • the antibody comprises one, two, three, four, five, or six HVR sequences from antibody 136 (e.g., as listed in Table 2).
  • the antibody comprises one, two, three, four, five, or six HVR sequences having an amino acid sequence selected from SEQ ID NOs:155-160 (e.g., one, two, or three heavy chain HVR sequences selected from SEQ ID NOs:155-157 and/or one, two, or three light chain HVR sequences selected from SEQ ID NOs:158-160).
  • the antibody comprises one, two, three, four, five, or six HVR sequences from antibody 21 (e.g., as listed in Table 2).
  • the antibody comprises one, two, three, four, five, or six HVR sequences having an amino acid sequence selected from SEQ ID NOs:161-166 (e.g., one, two, or three heavy chain HVR sequences selected from SEQ ID NOs:161-163 and/or one, two, or three light chain HVR sequences selected from SEQ ID NOs:164-166).
  • the antibody comprises one, two, three, four, five, or six HVR sequences from antibody 25 (e.g., as listed in Table 2).
  • the antibody comprises one, two, three, four, five, or six HVR sequences having an amino acid sequence selected from SEQ ID NOs: 161, 163, 168, and 170-172 (e.g., one, two, or three heavy chain HVR sequences selected from SEQ ID NOs: 161, 168, and 163 and/or one, two, or three light chain HVR sequences selected from SEQ ID NOs:170-172).
  • the antibody comprises one, two, three, four, five, or six HVR sequences from antibody 27 (e.g., as listed in Table 2).
  • the antibody comprises one, two, three, four, five, or six HVR sequences having an amino acid sequence selected from SEQ ID NOs: 163, 173, 174, and 176-178 (e.g., one, two, or three heavy chain HVR sequences selected from SEQ ID NOs:163, 173, and 174 and/or one, two, or three light chain HVR sequences selected from SEQ ID NOs:176-178).
  • the antibody comprises one, two, three, four, five, or six HVR sequences from antibody 66 (e.g., as listed in Table 2).
  • the antibody comprises one, two, three, four, five, or six HVR sequences having an amino acid sequence selected from SEQ ID NOs:162, 163, 179, and 182-184 (e.g., one, two, or three heavy chain HVR sequences selected from SEQ ID NOs: 162, 163, and 179 and/or one, two, or three light chain HVR sequences selected from SEQ ID NOs:182-184).
  • HVR sequences having an amino acid sequence selected from SEQ ID NOs:162, 163, 179, and 182-184 (e.g., one, two, or three heavy chain HVR sequences selected from SEQ ID NOs: 162, 163, and 179 and/or one, two, or three light chain HVR sequences selected from SEQ ID NOs:182-184).
  • the antibody comprises (a) a VH domain comprising an HVR-H1 comprising the amino acid sequence of SEQ ID NO:143, 202, 204, or 205, an HVR-H2 comprising the amino acid sequence of SEQ ID NO:144, 203, or 206, and an HVR-H3 comprising the amino acid sequence of SEQ ID NO:145 or 207; and/or (b) a VL domain comprising an HVR-L1 comprising the amino acid sequence of SEQ ID NO:146 or 208, an HVR-L2 comprising the amino acid sequence of SEQ ID NO:147 or 209, and an HVR-L3 comprising the amino acid sequence of SEQ ID NO:148 or 210.
  • the antibody comprises (a) a VH domain comprising an HVR-H1 comprising the amino acid sequence of SEQ ID NO:149, 211, 213, or 214, an HVR-H2 comprising the amino acid sequence of SEQ ID NO:150, 212, or 215, and an HVR-H3 comprising the amino acid sequence of SEQ ID NO:151 or 216; and/or (b) a VL domain comprising an HVR-L1 comprising the amino acid sequence of SEQ ID NO:152 or 217, an HVR-L2 comprising the amino acid sequence of SEQ ID NO:153 or 218, and an HVR-L3 comprising the amino acid sequence of SEQ ID NO:148.
  • the antibody comprises (a) a VH domain comprising an HVR-H1 comprising the amino acid sequence of SEQ ID NO:155, 219, 221, or 222, an HVR-H2 comprising the amino acid sequence of SEQ ID NO:156, 220, or 223, and an HVR-H3 comprising the amino acid sequence of SEQ ID NO:157 or 224; and/or (b) a VL domain comprising an HVR-L1 comprising the amino acid sequence of SEQ ID NO:158 or 225, an HVR-L2 comprising the amino acid sequence of SEQ ID NO:159 or 226, and an HVR-L3 comprising the amino acid sequence of SEQ ID NO:160.
  • the antibody comprises (a) a VH domain comprising an HVR-H1 comprising the amino acid sequence of SEQ ID NO:161, 191, or 194, an HVR-H2 comprising the amino acid sequence of SEQ ID NO:162, 192, or 195, and an HVR-H3 comprising the amino acid sequence of SEQ ID NO:163 or 193; and/or (b) a VL domain comprising an HVR-L1 comprising the amino acid sequence of SEQ ID NO:164, an HVR-L2 comprising the amino acid sequence of SEQ ID NO:165, and an HVR-L3 comprising the amino acid sequence of SEQ ID NO:166.
  • the antibody comprises (a) a VH domain comprising an HVR-H1 comprising the amino acid sequence of SEQ ID NO:161, 191, or 194, an HVR-H2 comprising the amino acid sequence of SEQ ID NO:168, 196, or 197, and an HVR-H3 comprising the amino acid sequence of SEQ ID NO:163 or 193; and/or (b) a VL domain comprising an HVR-L1 comprising the amino acid sequence of SEQ ID NO:170, an HVR-L2 comprising the amino acid sequence of SEQ ID NO:171, and an HVR-L3 comprising the amino acid sequence of SEQ ID NO:172.
  • the antibody comprises (a) a VH domain comprising an HVR-H1 comprising the amino acid sequence of SEQ ID NO:173, 198, or 200, an HVR-H2 comprising the amino acid sequence of SEQ ID NO:174, 199, or 201, and an HVR-H3 comprising the amino acid sequence of SEQ ID NO:163 or 193; and/or (b) a VL domain comprising an HVR-L1 comprising the amino acid sequence of SEQ ID NO:176, an HVR-L2 comprising the amino acid sequence of SEQ ID NO:177, and an HVR-L3 comprising the amino acid sequence of SEQ ID NO:178.
  • the antibody comprises (a) a VH domain comprising an HVR-H1 comprising the amino acid sequence of SEQ ID NO:179, an HVR-H2 comprising the amino acid sequence of SEQ ID NO:162, and an HVR-H3 comprising the amino acid sequence of SEQ ID NO:163; and/or (b) a VL domain comprising an HVR-L1 comprising the amino acid sequence of SEQ ID NO:182, an HVR-L2 comprising the amino acid sequence of SEQ ID NO:183, and an HVR-L3 comprising the amino acid sequence of SEQ ID NO:184.
  • the antibody comprises a VH domain comprising the amino acid sequence of SEQ ID NO:135 and/or a VL domain comprising an HVR-L1 comprising the amino acid sequence of SEQ ID NO:164, an HVR-L2 comprising the amino acid sequence of SEQ ID NO:165, and an HVR-L3 comprising the amino acid sequence of SEQ ID NO:166.
  • the antibody comprises a VH domain comprising the amino acid sequence of SEQ ID NO:137 and/or a VL domain comprising an HVR-L1 comprising the amino acid sequence of SEQ ID NO:170, an HVR-L2 comprising the amino acid sequence of SEQ ID NO:171, and an HVR-L3 comprising the amino acid sequence of SEQ ID NO:172.
  • the antibody comprises a VH domain comprising the amino acid sequence of SEQ ID NO:139 and/or a VL domain comprising an HVR-L1 comprising the amino acid sequence of SEQ ID NO:176, an HVR-L2 comprising the amino acid sequence of SEQ ID NO:177, and an HVR-L3 comprising the amino acid sequence of SEQ ID NO:178.
  • the antibody comprises a VH domain comprising the amino acid sequence of SEQ ID NO:141 and/or a VL domain comprising an HVR-L1 comprising the amino acid sequence of SEQ ID NO:182, an HVR-L2 comprising the amino acid sequence of SEQ ID NO:183, and an HVR-L3 comprising the amino acid sequence of SEQ ID NO:184.
  • the antibody comprises one, two, three, four, five, or six HVR sequences from antibody 3 (e.g., as listed in Table 2).
  • the antibody comprises (a) a VH domain comprising one, two, or three HVR sequences from SEQ ID NO:242; and/or (b) a VL domain comprising one, two, or three HVR sequences from SEQ ID NO:243.
  • the antibody comprises one, two, three, four, five, or six HVR sequences from antibody 45 (e.g., as listed in Table 2).
  • the antibody comprises (a) a VH domain comprising one, two, or three HVR sequences from SEQ ID NO:244; and/or (b) a VL domain comprising one, two, or three HVR sequences from SEQ ID NO:245.
  • the antibody comprises a VH domain comprising the amino acid sequence of SEQ ID NO:135 and/or a VL domain comprising an HVR-L1 comprising the amino acid sequence of SEQ ID NO:164, 170, 176, or 182; an HVR-L2 comprising the amino acid sequence of SEQ ID NO:165, 171, 177, or 183; and an HVR-L3 comprising the amino acid sequence of SEQ ID NO:166, 172, 178, or 184.
  • the antibody comprises a VH domain comprising the amino acid sequence of SEQ ID NO:137 and/or a VL domain comprising an HVR-L1 comprising the amino acid sequence of SEQ ID NO:164, 170, 176, or 182; an HVR-L2 comprising the amino acid sequence of SEQ ID NO:165, 171, 177, or 183; and an HVR-L3 comprising the amino acid sequence of SEQ ID NO:166, 172, 178, or 184.
  • the antibody comprises a VH domain comprising the amino acid sequence of SEQ ID NO:139 and/or a VL domain comprising an HVR-L1 comprising the amino acid sequence of SEQ ID NO:164, 170, 176, or 182; an HVR-L2 comprising the amino acid sequence of SEQ ID NO:165, 171, 177, or 183; and an HVR-L3 comprising the amino acid sequence of SEQ ID NO:166, 172, 178, or 184.
  • the antibody comprises a VH domain comprising the amino acid sequence of SEQ ID NO:141 and/or a VL domain comprising an HVR-L1 comprising the amino acid sequence of SEQ ID NO:164, 170, 176, or 182; an HVR-L2 comprising the amino acid sequence of SEQ ID NO:165, 171, 177, or 183; and an HVR-L3 comprising the amino acid sequence of SEQ ID NO:166, 172, 178, or 184.
  • one, two, three, four, five, or six of the HVR sequences are defined by Kabat.
  • one, two, three, four, five, or six of the HVR sequences are defined by Chothia.
  • one, two, three, four, five, or six of the HVR sequences are defined by IMGT.
  • the antibody comprises HVR sequences as defined by two or more of Kabat, Chothia, and IMGT (e.g., the antibody comprises one or more HVR sequences as defined by one delineation and one or more HVR sequences as defined by a different delineation).
  • an isolated antibody that binds an extracellular domain of a human SIRP- ⁇ polypeptide (e.g., the D1 domain), wherein the antibody comprises: (a) a heavy chain variable (VH) domain comprising (i) an HVR-H1 sequence comprising the amino acid sequence of NFAMT (SEQ ID NO:175), NFAVT (SEQ ID NO:204), or NFALT (SEQ ID NO:305), (ii) an HVR-H2 sequence comprising the amino acid sequence of TIGSGDTYYADSVKG (SEQ ID NO:144), and (iii) an HVR-H3 sequence comprising the amino acid sequence of DSTVSWSGDFFDY (SEQ ID NO:145); and/or (b) a light chain variable (VL) domain comprising (i) an HVR-L1 sequence comprising the amino acid sequence of RASQNVKNDLA (SEQ ID NO:146), (ii) an HVR-L2 sequence comprising the amino acid sequence of AARI
  • the VH domain comprises an amino acid sequence that is at least 90% identical to the amino acid sequence of SEQ ID NO:120, 335, 246, 258, or 327; and/or the VL domain comprises an amino acid sequence that is at least 90% identical to the amino acid sequence of SEQ ID NO:97 or 312.
  • the VH domain comprises the amino acid sequence of SEQ ID NO:246, and the VL domain comprises the amino acid sequence of SEQ ID NO:97; the VH domain comprises the amino acid sequence of SEQ ID NO:258, and the VL domain comprises the amino acid sequence of SEQ ID NO:97; the VH domain comprises the amino acid sequence of SEQ ID NO:335, and the VL domain comprises the amino acid sequence of SEQ ID NO:97; the VH domain comprises the amino acid sequence of SEQ ID NO:327, and the VL domain comprises the amino acid sequence of SEQ ID NO:97; the VH domain comprises the amino acid sequence of SEQ ID NO:246, and the VL domain comprises the amino acid sequence of SEQ ID NO:312; the VH domain comprises the amino acid sequence of SEQ ID NO:258, and the VL domain comprises the amino acid sequence of SEQ ID NO:312; the VH domain comprises the amino acid sequence of SEQ ID NO:335, and the VL domain comprises the amino acid sequence of SEQ ID NO:312; or
  • an isolated antibody that binds an extracellular domain of a human SIRP- ⁇ polypeptide (e.g., the D1 domain), wherein the antibody comprises: (a) a heavy chain variable (VH) domain comprising (i) an HVR-H1 sequence comprising the amino acid sequence of IYAMS (SEQ ID NO:269), IYAVS (SEQ ID NO:213), or IYALS (SEQ ID NO:306), (ii) an HVR-H2 sequence comprising the amino acid sequence of TIGADDTYYADSVKG (SEQ ID NO:150), and (iii) an HVR-H3 sequence comprising the amino acid sequence of DSTVGWSGDFFDY (SEQ ID NO:151); and/or (b) a light chain variable (VL) domain comprising (i) an HVR-L1 sequence comprising the amino acid sequence of RASQNVRSDIA (SEQ ID NO:152), (ii) an HVR-L2 sequence comprising the amino acid sequence of AASSR
  • the VH domain comprises an amino acid sequence that is at least 90% identical to the amino acid sequence of SEQ ID NO:341, 247, 259, or 328; and/or the VL domain comprises an amino acid sequence that is at least 90% identical to the amino acid sequence of SEQ ID NO:104 or 248.
  • the VH domain comprises the amino acid sequence of SEQ ID NO:127, and the VL domain comprises the amino acid sequence of SEQ ID NO:104; the VH domain comprises the amino acid sequence of SEQ ID NO:247, and the VL domain comprises the amino acid sequence of SEQ ID NO:104; the VH domain comprises the amino acid sequence of SEQ ID NO:259, and the VL domain comprises the amino acid sequence of SEQ ID NO:104; the VH domain comprises the amino acid sequence of SEQ ID NO:328, and the VL domain comprises the amino acid sequence of SEQ ID NO:104; the VH domain comprises the amino acid sequence of SEQ ID NO:127, and the VL domain comprises the amino acid sequence of SEQ ID NO:248; the VH domain comprises the amino acid sequence of SEQ ID NO:247, and the VL domain comprises the amino acid sequence of SEQ ID NO:248; the VH domain comprises the amino acid sequence of SEQ ID NO:259, and the VL domain comprises the amino acid sequence of SEQ ID NO:2;
  • an isolated antibody that binds an extracellular domain of a human SIRP- ⁇ polypeptide (e.g., the D1 domain), wherein the antibody comprises: (a) a heavy chain variable (VH) domain comprising: (i) an HVR-H1 sequence comprising the amino acid sequence of X 1 X 2 DX 3 N, wherein X 1 is S or T; X 2 is Y or S; and X 3 is M, L, or V (SEQ ID NO:307); (ii) an HVR-H2 sequence comprising the amino acid sequence of LISGSGEIX 1 YYADSVKG, wherein X 1 is I or T (SEQ ID NO:308); and (iii) an HVR-H3 sequence comprising the amino acid sequence of EX 1 X 2 X 3 YRFFDX 4 , wherein X 1 is N or D; X 2 is N or D; X 3 is R or M; and X 4 is D or Y (SEQ
  • the antibody comprises (a) a heavy chain variable (VH) domain comprising (i) an HVR-H1 sequence comprising the amino acid sequence of SYDMN (SEQ ID NO:270), SYDVN (SEQ ID NO:221), or SYDLN (SEQ ID NO:313), (ii) an HVR-H2 sequence comprising the amino acid sequence of LISGSGEIIYYADSVKG (SEQ ID NO:156), and (iii) an HVR-H3 sequence comprising the amino acid sequence of ENNRYRFFDD (SEQ ID NO:157); and/or (b) a light chain variable (VL) domain comprising (i) an HVR-L1 sequence comprising the amino acid sequence of RASQSVYTYLA (SEQ ID NO:158), (ii) an HVR-L2 sequence comprising the amino acid sequence of GASSRAT (SEQ ID NO:159), and (iii) an HVR-L3 sequence comprising the amino acid sequence of QQYYDRPP
  • the VH domain comprises an amino acid sequence that is at least 90% identical to the amino acid sequence of SEQ ID NO: 249, 133, 260, or 329; and/or the VL domain comprises an amino acid sequence that is at least 90% identical to the amino acid sequence of SEQ ID NO:134, 250, or 251.
  • the VH domain comprises the amino acid sequence of SEQ ID NO:133, and the VL domain comprises the amino acid sequence of SEQ ID NO:134;
  • the VH domain comprises the amino acid sequence of SEQ ID NO:260, and the VL domain comprises the amino acid sequence of SEQ ID NO:134;
  • the VH domain comprises the amino acid sequence of SEQ ID NO:329, and the VL domain comprises the amino acid sequence of SEQ ID NO:134;
  • the VH domain comprises the amino acid sequence of SEQ ID NO:133, and the VL domain comprises the amino acid sequence of SEQ ID NO:250;
  • the VH domain comprises the amino acid sequence of SEQ ID NO:260, and the VL domain comprises the amino acid sequence of SEQ ID NO:250;
  • the VH domain comprises the amino acid sequence of SEQ ID NO:329, and the VL domain comprises the amino acid sequence of SEQ ID NO:250;
  • an isolated antibody that binds an extracellular domain of a human SIRP- ⁇ polypeptide (e.g., the D1 domain), wherein the antibody comprises: a heavy chain variable (VH) domain comprising: an HVR-H1 sequence comprising the amino acid sequence of X 1 X 2 AX 3 S, wherein X 1 is S or T; X 2 is N, Y, H, or D; and X 3 is M, L, or V (SEQ ID NO:297); an HVR-H2 sequence comprising the amino acid sequence of GISX 1 X 2 X 3 X 4 X 5 X 6 YYX 7 X 8 SX 9 KG, wherein X 1 is A or S; X 2 is G, S, or absent; X 3 is S, D or G; X 4 is G or S; X 5 is D, S, or G; X 6 is T or A; X 7 is P, G, V, I, A, or S; X 8 is
  • an isolated antibody that binds an extracellular domain of a human SIRP- ⁇ polypeptide (e.g., the D1 domain), wherein the antibody comprises: a heavy chain variable (VH) domain comprising: a heavy chain variable (VH) domain comprising: an HVR-H1 sequence comprising the amino acid sequence of SX 1 AX 2 S, wherein X 1 is N or Y; and wherein X 2 is M, L, or V (SEQ ID NO:302); an HVR-H2 sequence comprising the amino acid sequence of GISX 1 GX 2 X 3 DTYYX 4 X 5 SVKG, wherein X 1 is A or S; X 2 is G or absent; X 3 is S or G; X 4 is P, G, or V; and X 5 is A or D (SEQ ID NO:303); and an HVR-H3 sequence comprising the amino acid sequence of ETWNHLFDY (SEQ ID NO:193); and/or a light chain variable (VH) domain comprising:
  • the VH domain comprises (i) an HVR-H1 sequence comprising the amino acid sequence of SNAMS (SEQ ID NO:194), SNAVS (SEQ ID NO:271), or SNALS (SEQ ID NO:318), (ii) an HVR-H2 sequence comprising the amino acid sequence of GISAGGSDTYYPASVKG (SEQ ID NO:195), and (iii) an HVR-H3 sequence comprising the amino acid sequence of ETWNHLFDY (SEQ ID NO:193).
  • the VH domain comprises an amino acid sequence that is at least 90% identical to the amino acid sequence of SEQ ID NO:135, 263, 264, or 330.
  • the VH domain comprises (i) an HVR-H1 sequence comprising the amino acid sequence of SNAMS (SEQ ID NO:194), SNAVS (SEQ ID NO:271), or SNALS (SEQ ID NO:318), (ii) an HVR-H2 sequence comprising the amino acid sequence of GISSGSDTYYGDSVKG (SEQ ID NO:197), and (iii) an HVR-H3 sequence comprising the amino acid sequence of ETWNHLFDY (SEQ ID NO:193).
  • the VH domain comprises an amino acid sequence that is at least 90% identical to the amino acid sequence of SEQ ID NO:137, 265, 266, or 331.
  • the VH domain comprises (i) an HVR-H1 sequence comprising the amino acid sequence of SYAMS (SEQ ID NO:200), SYAVS (SEQ ID NO:272), or SYALS (SEQ ID NO:319), (ii) an HVR-H2 sequence comprising the amino acid sequence of GISSGGDTYYVDSVKG (SEQ ID NO:201), and (iii) an HVR-H3 sequence comprising the amino acid sequence of ETWNHLFDY (SEQ ID NO:193).
  • the VH domain comprises an amino acid sequence that is at least 90% identical to the amino acid sequence of SEQ ID NO:139, 267, 268, or 332.
  • the VL domain comprises the sequence FW1-HVR-L1-FW2-HVR-L2-FW3-HVR-L3-FW4 (N-terminus to C-terminus), wherein FW1 comprises the amino acid sequence SYELTQPPSVSVSVSPGQTARITC (SEQ ID NO:314), FW2 comprises the amino acid sequence WYQQKPGQAPVTLIY (SEQ ID NO:315), FW3 comprises the amino acid sequence NIPERFSGSSSGTTVTLTISGVQAEDEADYYC (SEQ ID NO:316), and FW4 comprises the amino acid sequence FGGGTKLTVL (SEQ ID NO:317).
  • the VL domain comprises (i) an HVR-L1 sequence comprising the amino acid sequence of SGGSYSSYYYA (SEQ ID NO:170), (ii) an HVR-L2 sequence comprising the amino acid sequence of SDDKRPS (SEQ ID NO:336), and (iii) an HVR-L3 sequence comprising the amino acid sequence of GGYDQSSYTNP (SEQ ID NO:172).
  • the VL domain comprises an amino acid sequence that is at least 90% identical to the amino acid sequence of SEQ ID NO:252.
  • the VL domain comprises (i) an HVR-L1 sequence comprising the amino acid sequence of SGGAYSSYYYA (SEQ ID NO:261), (ii) an HVR-L2 sequence comprising the amino acid sequence of SDDKRPS (SEQ ID NO:336), and (iii) an HVR-L3 sequence comprising the amino acid sequence of GGYDQSSYTNP (SEQ ID NO:172).
  • the VL domain comprises an amino acid sequence that is at least 90% identical to the amino acid sequence of SEQ ID NO:262.
  • the VH domain comprises the amino acid sequence of SEQ ID NO:263, and the VL domain comprises the amino acid sequence of SEQ ID NO:252; the VH domain comprises the amino acid sequence of SEQ ID NO:264, and the VL domain comprises the amino acid sequence of SEQ ID NO:252; the VH domain comprises the amino acid sequence of SEQ ID NO:330, and the VL domain comprises the amino acid sequence of SEQ ID NO:252; the VH domain comprises the amino acid sequence of SEQ ID NO:135, and the VL domain comprises the amino acid sequence of SEQ ID NO:252; the VH domain comprises the amino acid sequence of SEQ ID NO:137, and the VL domain comprises the amino acid sequence of SEQ ID NO:252; the VH domain comprises the amino acid sequence of SEQ ID NO:139, and the VL domain comprises the amino acid sequence of SEQ ID NO:252; the VH domain comprises the amino acid sequence of SEQ ID NO:265, and the VL domain comprises the amino acid sequence of SEQ ID NO:252; the V
  • an isolated antibody that binds an extracellular domain of a human SIRP- ⁇ polypeptide (e.g., the D1 domain), wherein the antibody binds to a human SIRP- ⁇ v1 polypeptide at one or more amino acid positions selected from the group consisting of I31, V33, Q52, K53, T67, R69, N70, and K96, according to SEQ ID NO:296.
  • the antibody binds to the human SIRP- ⁇ v1 polypeptide at I31, V33, Q52, K53, T67, R69, N70, and K96, according to SEQ ID NO:296.
  • the antibody further binds to the human SIRP- ⁇ v1 polypeptide at one or more amino acid positions selected from the group consisting of L30, P32, E54, T62, N71, M72, F74, and R95, according to SEQ ID NO:296. In some embodiments, the antibody further binds to the human SIRP- ⁇ v1 polypeptide at L30, P32, E54, T62, N71, M72, F74, and R95, according to SEQ ID NO:296.
  • an isolated antibody that binds an extracellular domain of a human SIRP- ⁇ polypeptide (e.g., the D1 domain), wherein the antibody binds to a human SIRP- ⁇ v1 polypeptide at one or more amino acid positions selected from the group consisting of I7, P9, D10, K11, S12, A42, A108, and E111, according to SEQ ID NO:296.
  • the antibody binds to the human SIRP- ⁇ v1 polypeptide at K11, A42, A108, and E111, according to SEQ ID NO:296.
  • the antibody binds to the human SIRP- ⁇ v1 polypeptide at 17, P9, D10, K11, S12, A108, and E111, according to SEQ ID NO:296. In some embodiments, the antibody further binds to the human SIRP- ⁇ v1 polypeptide at one or more amino acid positions selected from the group consisting of L14, T26, T28, T88, Y90, 5106, 5113, and A116, according to SEQ ID NO:296. In some embodiments, the antibody further binds to the human SIRP- ⁇ v1 polypeptide at L14, T88, Y90, S106, S113, and A116 of human SIRP- ⁇ v1, according to SEQ ID NO:296. In some embodiments, the antibody further binds to the human SIRP- ⁇ v1 polypeptide at L14, T26, and T28, according to SEQ ID NO:296.
  • an isolated antibody that binds an extracellular domain of a human SIRP- ⁇ polypeptide (e.g., the D1 domain), wherein the antibody binds to a human SIRP- ⁇ v1 polypeptide at one or more amino acid positions selected from the group consisting of E47, L48, P58, R59, T82, and A84, according to SEQ ID NO:296.
  • the antibody binds to the human SIRP- ⁇ v1 polypeptide at E47, L48, P58, R59, T82, and A84, according to SEQ ID NO:296.
  • the antibody further binds to the human SIRP- ⁇ v1 polypeptide at one or more amino acid positions selected from the group consisting of A17, P44, G45, 149, E54, G55, H56, F57, and P83, according to SEQ ID NO:296. In some embodiments, the antibody further binds to the human SIRP- ⁇ v1 polypeptide at A17, P44, G45, 149, E54, G55, H56, F57, and P83 of human SIRP- ⁇ v1, according to SEQ ID NO:296.
  • an isolated antibody that binds an extracellular domain of a human SIRP- ⁇ polypeptide (e.g., the D1 domain), wherein the antibody binds the extracellular domain of a human SIRP- ⁇ v1 polypeptide with a dissociation constant (K D ) of less than 100 nM, and wherein the antibody blocks binding between an extracellular domain of a human SIRP- ⁇ polypeptide and an IgSF domain of a human CD47 polypeptide.
  • the antibody binds the extracellular domain of a human SIRP- ⁇ v2 polypeptide with a dissociation constant (K D ) of less than 100 nM.
  • the antibody binds the D1 domain of a human SIRP- ⁇ v1 polypeptide and the D1 domain of a human SIRP- ⁇ v2 polypeptide. In some embodiments, the antibody binds an extracellular domain of a cynomolgus SIRP- ⁇ polypeptide. In some embodiments, the antibody binds an extracellular domain of a human SIRP- ⁇ polypeptide. In some embodiments, the antibody binds an extracellular domain of a human SIRP- ⁇ polypeptide. In some embodiments, the antibody binds an extracellular domain of a murine SIRP- ⁇ polypeptide.
  • an isolated antibody that binds an extracellular domain of a human SIRP- ⁇ polypeptide (e.g., the D1 domain), wherein the antibody binds the D1 domain of a human SIRP- ⁇ polypeptide, and wherein the antibody does not block binding between an extracellular domain of a human SIRP- ⁇ polypeptide and an IgSF domain of a human CD47 polypeptide.
  • the antibody binds the D1 domain of a human SIRP- ⁇ with a dissociation constant (K D ) of less than 100 nM.
  • the antibody binds the D1 domain of a human SIRP- ⁇ v1 polypeptide with a dissociation constant (K D ) of less than 100 nM and/or binds the D1 domain of a human SIRP- ⁇ v2 polypeptide with a dissociation constant (K D ) of less than 100 nM.
  • the antibody binds the D1 domain of a human SIRP- ⁇ v1 polypeptide and the D1 domain of a human SIRP- ⁇ v2 polypeptide.
  • the antibody binds an extracellular domain of a cynomolgus SIRP- ⁇ polypeptide.
  • the antibody binds an extracellular domain of a human SIRP- ⁇ polypeptide.
  • the antibody binds an extracellular domain of a murine SIRP- ⁇ polypeptide.
  • an isolated antibody that binds an extracellular domain of a human SIRP- ⁇ polypeptide (e.g., the D1 domain), wherein the antibody competes for binding the extracellular domain of the human SIRP- ⁇ polypeptide with a reference anti-SIRP- ⁇ antibody comprising a heavy chain variable (VH) domain and a light chain variable (VL) domain of an antibody selected from the group consisting of antibodies 119, 120, 121, 122, 21, 25, 27, 66, and 135.
  • VH heavy chain variable
  • VL light chain variable
  • an isolated antibody that binds an extracellular domain of a human SIRP- ⁇ polypeptide (e.g., the D1 domain), wherein the antibody competes for binding the extracellular domain of the human SIRP- ⁇ polypeptide with a reference anti-SIRP- ⁇ antibody comprising: (a) a heavy chain variable (VH) domain comprising the amino acid sequence of SEQ ID NO:120 and a light chain variable (VL) domain comprising the amino acid sequence of SEQ ID NO:97; (b) a heavy chain variable (VH) domain comprising the amino acid sequence of SEQ ID NO:121 and a light chain variable (VL) domain comprising the amino acid sequence of SEQ ID NO:98; (c) a heavy chain variable (VH) domain comprising the amino acid sequence of SEQ ID NO:130 and a light chain variable (VL) domain comprising the amino acid sequence of SEQ ID NO:107; (d) a heavy chain variable (VH) domain comprising the amino acid sequence of SEQ ID NO
  • an isolated antibody that binds an extracellular domain of a human SIRP- ⁇ polypeptide (e.g., the D1 domain), wherein the antibody competes for binding the extracellular domain of the human SIRP- ⁇ polypeptide with a reference anti-SIRP- ⁇ antibody comprising a heavy chain variable (VH) domain and a light chain variable (VL) domain of an antibody selected from the group consisting of antibodies 136 and 137.
  • a human SIRP- ⁇ polypeptide e.g., the D1 domain
  • VH heavy chain variable
  • VL light chain variable
  • an isolated antibody that binds an extracellular domain of a human SIRP- ⁇ polypeptide (e.g., the D1 domain), wherein the antibody competes for binding the extracellular domain of the human SIRP- ⁇ polypeptide with a reference anti-SIRP- ⁇ antibody comprising: (a) a heavy chain variable (VH) domain comprising the amino acid sequence of SEQ ID NO:133 and a light chain variable (VL) domain comprising the amino acid sequence of SEQ ID NO:134; or (b) a heavy chain variable (VH) domain comprising the amino acid sequence of SEQ ID NO:128 and a light chain variable (VL) domain comprising the amino acid sequence of SEQ ID NO:105.
  • VH heavy chain variable
  • VL light chain variable domain
  • an isolated antibody that binds an extracellular domain of a human SIRP- ⁇ polypeptide (e.g., the D1 domain), wherein the antibody competes for binding the extracellular domain of the human SIRP- ⁇ polypeptide with a reference anti-SIRP- ⁇ antibody comprising a heavy chain variable (VH) domain and a light chain variable (VL) domain of an antibody selected from the group consisting of antibodies 3, 213, 173, and 209.
  • a human SIRP- ⁇ polypeptide e.g., the D1 domain
  • VH heavy chain variable
  • VL light chain variable
  • an isolated antibody that binds an extracellular domain of a human SIRP- ⁇ polypeptide (e.g., the D1 domain), wherein the antibody competes for binding the extracellular domain of the human SIRP- ⁇ polypeptide with a reference anti-SIRP- ⁇ antibody comprising: (a) a heavy chain variable (VH) domain comprising the amino acid sequence of SEQ ID NO:242 and a light chain variable (VL) domain comprising the amino acid sequence of SEQ ID NO:243; (b) a heavy chain variable (VH) domain comprising the amino acid sequence of SEQ ID NO:275 and a light chain variable (VL) domain comprising the amino acid sequence of SEQ ID NO:276; (c) a heavy chain variable (VH) domain comprising the amino acid sequence of SEQ ID NO:278 and a light chain variable (VL) domain comprising the amino acid sequence of SEQ ID NO:279; or (d) a heavy chain variable (VH) domain comprising the amino acid sequence
  • an isolated antibody that binds an extracellular domain of a human SIRP- ⁇ polypeptide (e.g., the D1 domain), wherein the antibody competes for binding the extracellular domain of the human SIRP- ⁇ polypeptide with a reference anti-SIRP- ⁇ antibody comprising a heavy chain variable (VH) domain and a light chain variable (VL) domain of an antibody selected from the group consisting of antibodies 115, 116, 117, 118, and 132.
  • VH heavy chain variable
  • VL light chain variable
  • an isolated antibody that binds an extracellular domain of a human SIRP- ⁇ polypeptide (e.g., the D1 domain), wherein the antibody competes for binding the extracellular domain of the human SIRP- ⁇ polypeptide with a reference anti-SIRP- ⁇ antibody comprising: (a) a heavy chain variable (VH) domain comprising the amino acid sequence of SEQ ID NO:116 and a light chain variable (VL) domain comprising the amino acid sequence of SEQ ID NO:93; (b) a heavy chain variable (VH) domain comprising the amino acid sequence of SEQ ID NO:117 and a light chain variable (VL) domain comprising the amino acid sequence of SEQ ID NO:94; (c) a heavy chain variable (VH) domain comprising the amino acid sequence of SEQ ID NO:118 and a light chain variable (VL) domain comprising the amino acid sequence of SEQ ID NO:95; (d) a heavy chain variable (VH) domain comprising the amino acid sequence of SEQ ID NO:
  • an isolated antibody that binds an extracellular domain of a human SIRP- ⁇ polypeptide (e.g., the D1 domain), wherein the antibody competes for binding the extracellular domain of the human SIRP- ⁇ polypeptide with a reference anti-SIRP- ⁇ antibody comprising a heavy chain variable (VH) domain and a light chain variable (VL) domain of an antibody selected from the group consisting of antibodies 218, 123, 149, 161, 162, and 194.
  • VH heavy chain variable
  • VL light chain variable
  • an isolated antibody that binds an extracellular domain of a human SIRP- ⁇ polypeptide (e.g., the D1 domain), wherein the antibody competes for binding the extracellular domain of the human SIRP- ⁇ polypeptide with a reference anti-SIRP- ⁇ antibody comprising: (a) a heavy chain variable (VH) domain comprising the amino acid sequence of SEQ ID NO:284 and a light chain variable (VL) domain comprising the amino acid sequence of SEQ ID NO:285; (b) a heavy chain variable (VH) domain comprising the amino acid sequence of SEQ ID NO:123 and a light chain variable (VL) domain comprising the amino acid sequence of SEQ ID NO:100; (c) a heavy chain variable (VH) domain comprising the amino acid sequence of SEQ ID NO:286 and a light chain variable (VL) domain comprising the amino acid sequence of SEQ ID NO:287; (d) a heavy chain variable (VH) domain comprising the amino acid sequence of
  • an isolated antibody that binds an extracellular domain of a human SIRP- ⁇ polypeptide (e.g., the D1 domain), wherein the antibody competes for binding the extracellular domain of the human SIRP- ⁇ polypeptide with a reference anti-SIRP- ⁇ antibody comprising a heavy chain variable (VH) domain and a light chain variable (VL) domain of antibody 45.
  • VH heavy chain variable
  • VL light chain variable
  • an isolated antibody that binds an extracellular domain of a human SIRP- ⁇ polypeptide (e.g., the D1 domain), wherein the antibody competes for binding the extracellular domain of the human SIRP- ⁇ polypeptide with a reference anti-SIRP- ⁇ antibody comprising a heavy chain variable (VH) domain comprising the amino acid sequence of SEQ ID NO:244 and a light chain variable (VL) domain comprising the amino acid sequence of SEQ ID NO:245.
  • VH heavy chain variable
  • VL light chain variable
  • the antibody enhances phagocytosis by a macrophage expressing a human SIRP- ⁇ polypeptide. In some embodiments, the antibody enhances activation of a dendritic cell expressing a human SIRP- ⁇ polypeptide. In some embodiments, the antibody inhibits in vivo growth of a tumor that expresses CD47. In some embodiments, the antibody does not prevent interactions between a CD47-expressing cell and a T cell.
  • the antibody is a monoclonal antibody.
  • the antibody is a scFv-Fc, single domain antibody, single heavy chain antibody, or single light chain antibody.
  • the antibody comprises a light chain constant region comprising the amino acid sequence of SEQ ID NO:325, 326, or 426.
  • the antibody comprises an amino acid sequence selected from the group consisting of SEQ ID NOs:320-324.
  • the antibody comprises an Fc region.
  • the Fc region is a human Fc region selected from the group consisting of an IgG1 Fc region, an IgG2 Fc region, and an IgG4 Fc region.
  • the Fc region comprises a human IgG1 Fc region comprising one or more mutations selected from the group consisting of L234A, L235A, L235E, G237A, and N297A, according to EU numbering. In some embodiments, the Fc region comprises a human IgG2 Fc region comprising one or more mutations selected from the group consisting of A330S, P331S and N297A, according to EU numbering. In some embodiments, the Fc region comprises a human IgG4 Fc region comprising one or more mutations selected from the group consisting of S228P, E233P, F234V, L235A, L235E, delG236, and N297A, according to EU numbering.
  • the antibody is an antibody fragment selected from the group consisting of a Fab, F(ab′)2, Fab′-SH, Fv, and scFv fragment. In some embodiments, the antibody is conjugated to a cytotoxic agent or label.
  • the antibody is a bispecific antibody.
  • the antibody comprises a first antigen binding domain that binds an extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide and a second antigen binding domain that binds an antigen expressed by a cancer cell.
  • the antigen expressed by the cancer cell is selected from the group consisting of CD19, CD20, CD22, CD30, CD33, CD38, CD52, CD56, CD70, CD74, CD79b, CD123, CD138, CS1/SLAMF7, Trop-2, 5T4, EphA4, BCMA, Mucin 1, Mucin 16, PD-L1, PTK7, STEAP1, Endothelin B Receptor, mesothelin, EGFRvIII, ENPP3, SLC44A4, GNMB, nectin 4, NaPi 2b, LIV-1A, Guanylyl cyclase C, DLL3, EGFR, HER2, VEGF, VEGFR, integrin ⁇ V ⁇ 3, integrin ⁇ 5 ⁇ 1, MET, IGF1R, TRAILR1, TRAILR2, RANKL, FAP, Tenascin, Le y , EpCAM, CEA, gpA33, PSMA, TAG72,
  • polynucleotides comprising the antibody according to any one of the above embodiments.
  • vectors comprising the polynucleotide according to any one of the above embodiments.
  • host cells comprising the polynucleotide or vector according to any one of the above embodiments.
  • methods of producing an antibody comprising culturing the host cell according to any one of the above embodiments such that the antibody is produced. In some embodiments, the methods further include recovering the antibody from the host cell.
  • methods of treating or delaying progression of cancer in an individual comprising administering to the individual an effective amount of the antibody according to any one of the above embodiments.
  • the methods further comprise administering to the individual an effective amount of a second antibody.
  • the second antibody binds an antigen expressed by a cancer cell.
  • the antigen expressed by the cancer cell is selected from the group consisting of CD19, CD20, CD22, CD30, CD33, CD38, CD52, CD56, CD70, CD74, CD79b, CD123, CD138, CS1/SLAMF7, Trop-2, 5T4, EphA4, BCMA, Mucin 1, Mucin 16, PTK7, STEAP1, Endothelin B Receptor, mesothelin, EGFRvIII, ENPP3, SLC44A4, GNMB, nectin 4, NaPi2b, LIV-1A, Guanylyl cyclase C, DLL3, EGFR, HER2, VEGF, VEGFR, integrin ⁇ V ⁇ 3, integrin ⁇ 5 ⁇ 1, MET, IGF1R, TRAILR1, TRAILR2, RANKL, FAP, Tenascin, Le y , EpCAM, CEA, gpA33, PSMA, TAG72, a mucin,
  • the methods further comprise administering to the individual an effective amount of an immunotherapeutic agent.
  • the immunotherapeutic agent comprises a second antibody.
  • the second antibody binds to an antigen selected from the group consisting of PD-1, PD-L1, OX40, CTLA-4, CD137/4-1BB, TNFR2, B7-H3, FZD7, CD27, CCR4, CSF1R, CSF, TIM-3, LAG-3, VISTA, ICOS, CCR2, IDO, A2R, CD39, CD73, TIGIT, CD80, CD47, arginase, TDO, and PVRIG.
  • the first antibody binds the extracellular domain of a human SIRP- ⁇ v1 polypeptide, the extracellular domain of a human SIRP- ⁇ v2 polypeptide, or the extracellular domains of both a human SIRP- ⁇ v1 polypeptide and a human SIRP- ⁇ v2 polypeptide with a dissociation constant (K D ) of less than 100 nM, wherein the first antibody blocks binding between an extracellular domain of a human SIRP- ⁇ polypeptide and an IgSF domain of a human CD47 polypeptide, and wherein the second antibody binds to PD-1.
  • K D dissociation constant
  • the first antibody binds the D1 domain of a human SIRP- ⁇ polypeptide, wherein the first antibody does not block binding between an extracellular domain of a human SIRP- ⁇ polypeptide and an IgSF domain of a human CD47 polypeptide, and wherein the second antibody binds to PD-1.
  • the first antibody binds the extracellular domain of a human SIRP- ⁇ v1 polypeptide with a dissociation constant (K D ) of less than 100 nM, wherein the first antibody blocks binding between an extracellular domain of a human SIRP- ⁇ polypeptide and an IgSF domain of a human CD47 polypeptide, and wherein the second antibody binds to PD-L1.
  • the first antibody binds the D1 domain of a human SIRP- ⁇ polypeptide, wherein the first antibody does not block binding between an extracellular domain of a human SIRP- ⁇ polypeptide and an IgSF domain of a human CD47 polypeptide, and wherein the second antibody binds to PD-L1.
  • the individual is a human.
  • the autoimmune disease or inflammatory disease is selected from the group consisting of multiple sclerosis, rheumatoid arthritis, a spondyloarthropathy, systemic lupus erythematosus, an antibody-mediated inflammatory or autoimmune disease, graft versus host disease, sepsis, diabetes, psoriasis, psoriatic arthritis, atherosclerosis, Sjogren's syndrome, progressive systemic sclerosis, scleroderma, acute coronary syndrome, ischemic reperfusion, Crohn's Disease, ulcerative colitis, endometriosis, glomerulonephritis, IgA nephropathy, polycystic kidney disease, myasthenia gravis, idiopathic pulmonary fibrosis
  • an antigen binding domain that binds an extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide and does not block binding between human CD47 and the human SIRP- ⁇ polypeptide comprising (a) providing an antigen binding domain that binds the extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide; (b) assembling a complex comprising a SIRP- ⁇ D1 variant bound to a polypeptide comprising an IgSF domain of CD47, wherein the SIRP- ⁇ D1 variant is a non-naturally occurring high affinity SIRP- ⁇ D1 domain, and wherein the SIRP- ⁇ D1 variant binds to human CD47 with an affinity that is at least 10-fold greater than the affinity of a naturally occurring SIRP- ⁇ D1 domain binding to human CD47; (c) contacting the antigen binding domain with the assembled complex; and (d) detecting binding of the antigen binding domain to the complex, where
  • an antibody or antigen binding domain that binds an extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide and does not block binding between human CD47 and the human SIRP- ⁇ polypeptide comprising contacting an antibody or antigen binding domain that binds the extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide with a complex comprising a SIRP- ⁇ D1 variant bound to a polypeptide comprising an IgSF domain of CD47, wherein the SIRP- ⁇ D1 variant is a non-naturally occurring high affinity SIRP- ⁇ D1 domain, and wherein the SIRP- ⁇ D1 variant binds to human CD47 with an affinity that is at least 10-fold greater than the affinity of a naturally occurring SIRP- ⁇ D1 domain binding to human CD47; and detecting binding of the antigen binding domain to the complex, wherein binding of the antigen binding domain to the complex indicates that the antigen binding domain does not block
  • an antigen binding domain that binds an extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide and blocks binding between human CD47 and the human SIRP- ⁇ polypeptide comprising (a) providing an antigen binding domain that binds the extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide; (b) assembling a complex comprising a SIRP- ⁇ D1 variant bound to a polypeptide comprising an IgSF domain of CD47, wherein the SIRP- ⁇ D1 variant is a non-naturally occurring high affinity SIRP- ⁇ D1 domain, and wherein the SIRP- ⁇ D1 variant binds to human CD47 with an affinity that is at least 10-fold greater than the affinity of a naturally occurring SIRP- ⁇ D1 domain binding to human CD47; (c) contacting the antigen binding domain with the assembled complex; and (d) detecting binding of the antigen binding domain to the complex, wherein
  • an antibody or antigen binding domain that binds an extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide and blocks binding between human CD47 and the human SIRP- ⁇ polypeptide comprising contacting an antibody or antigen binding domain that binds the extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide with a complex comprising a SIRP- ⁇ D1 variant bound to a polypeptide comprising an IgSF domain of CD47, wherein the SIRP- ⁇ D1 variant is a non-naturally occurring high affinity SIRP- ⁇ D1 domain, and wherein the SIRP- ⁇ D1 variant binds to human CD47 with an affinity that is at least 10-fold greater than the affinity of a naturally occurring SIRP- ⁇ D1 domain binding to human CD47; and (d) detecting binding of the antigen binding domain to the complex, wherein a lack of binding of the antigen binding domain to the complex indicates that the antigen
  • the SIRP- ⁇ D1 variant comprises an amino acid sequence selected from the group consisting of SEQ ID NOs:17-52.
  • the IgSF domain of CD47 comprises the amino acid sequence of SEQ ID NO:16.
  • the polypeptide comprising the IgSF domain of CD47 comprises a human CD47 extracellular domain.
  • the polypeptide comprising the IgSF domain of CD47 further comprises an antibody Fc region.
  • an anti-SIRP- ⁇ antibody that binds the extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide comprising: (a) immunizing a chicken with a peptide comprising at least a portion of a human SIRP- ⁇ extracellular domain (e.g., the D1 domain); (b) obtaining an antibody from an antibody-producing cell from the immunized chicken; and (c) detecting binding between the antibody obtained from the cell and the extracellular domains (e.g., the D1 domains) of a human SIRP- ⁇ polypeptide, wherein binding between the antibody and the extracellular domain (e.g., the D1 domain) of the human SIRP- ⁇ polypeptide indicates that the antibody is an anti-SIRP- ⁇ antibody that binds the extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ variant polypeptide.
  • the antibody is a chicken, humanized, chimeric, or human antibody. In some embodiments, the antibody binds the extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ v1 polypeptide, the extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ v2 polypeptide, or both.
  • the extracellular domain e.g., the D1 domain
  • the extracellular domain e.g., the D1 domain of a human SIRP- ⁇ v2 polypeptide
  • the antibody binds an extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ v1 polypeptide comprising the amino acid sequence of EEELQVIQPDKSVLVAAGETATLRCTATSLIPVGPIQWFRGAGPGRELIYNQKEGHFPR VTTVSDLTKRNNMDF SIRIGNITPADAGTYYCVKFRKGSPDDVEFKSGAGTELSVRAK PS (SEQ ID NO:5).
  • a human SIRP- ⁇ v1 polypeptide comprising the amino acid sequence of EEELQVIQPDKSVLVAAGETATLRCTATSLIPVGPIQWFRGAGPGRELIYNQKEGHFPR VTTVSDLTKRNNMDF SIRIGNITPADAGTYYCVKFRKGSPDDVEFKSGAGTELSVRAK PS (SEQ ID NO:5).
  • the antibody binds an extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ v2 polypeptide comprising the amino acid sequence of EEELQVIQPDKSVSVAAGESAILHCTVTSLIPVGPIQWFRGAGPARELIYNQKEGHFPRV TTVSESTKRENMDF SISISNITPADAGTYYCVKFRKGSPDTEFKSGAGTELSVRAKPS (SEQ ID NO:6).
  • a human SIRP- ⁇ v2 polypeptide comprising the amino acid sequence of EEELQVIQPDKSVSVAAGESAILHCTVTSLIPVGPIQWFRGAGPARELIYNQKEGHFPRV TTVSESTKRENMDF SISISNITPADAGTYYCVKFRKGSPDTEFKSGAGTELSVRAKPS (SEQ ID NO:6).
  • the antibody binds an extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ v1 polypeptide comprising the amino acid sequence of EEELQVIQPDKSVLVAAGETATLRCTATSLIPVGPIQWFRGAGPGRELIYNQKEGHFPR VTTVSDLTKRNNMDF SIRIGNITPADAGTYYCVKFRKGSPDDVEFKSGAGTELSVRAK PS (SEQ ID NO:5) and binds an extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ v2 polypeptide comprising the amino acid sequence of EEELQVIQPDKSVSVAAGESAILHCTVTSLIPVGPIQWFRGAGPARELIYNQKEGHFPRV TTVSESTKRENMDF SISISNITPADAGTYYCVKFRKGSPDTEFKSGAGTELSVRAKPS (SEQ ID NO:6).
  • a human SIRP- ⁇ v1 polypeptide comprising the amino acid sequence of EE
  • the antibody binds the extracellular domains (e.g., the D1 domains) of three, four, five, six, seven, eight, nine or ten different human SIRP- ⁇ variant polypeptides.
  • each of the three, four, five, six, seven, eight, nine or ten different human SIRP- ⁇ variant polypeptides comprises an extracellular domain (e.g., the D1 domain) comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 5, 6, and 76-83.
  • the methods further comprise detecting binding between the antibody obtained from the cell and an extracellular domain (e.g., the D1 domain) of one or more SIRP- ⁇ polypeptides selected from the group consisting of a monkey SIRP- ⁇ polypeptide, a murine SIRP- ⁇ polypeptide, a human SIRP- ⁇ polypeptide, and a human SIRP- ⁇ polypeptide.
  • the antibody binds an extracellular domain (e.g., the D1 domain) of a monkey SIRP- ⁇ polypeptide.
  • the monkey SIRP- ⁇ polypeptide is a cynomolgus SIRP- ⁇ polypeptide.
  • the antibody binds the extracellular domains (e.g., the D1 domains) of at least two different monkey SIRP- ⁇ variant polypeptides. In some embodiments, the antibody binds an extracellular domain (e.g., the D1 domain) of a cynomolgus SIRP- ⁇ polypeptide comprising the amino acid sequence of SEQ ID NO:11, an extracellular domain (e.g., the D1 domain) of a cynomolgus SIRP- ⁇ polypeptide comprising the amino acid sequence of SEQ ID NO:12, or both. In some embodiments, the antibody binds an extracellular domain (e.g., the D1 domain) of a murine SIRP- ⁇ polypeptide.
  • the antibody binds the extracellular domains (e.g., the D1 domains) of two or more different murine SIRP- ⁇ variant polypeptides. In some embodiments, the antibody binds an extracellular domain (e.g., the D1 domain) of one or more murine SIRP- ⁇ polypeptides, and wherein the one or more murine SIRP- ⁇ polypeptides each comprise an amino acid sequence selected from the group consisting of SEQ ID NOs: 7-10. In some embodiments, the antibody binds an extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide.
  • the antibody binds an extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide. In some embodiments, the antibody does not bind an extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide. In some embodiments, the antibody does not bind an extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide.
  • the antibody binds the extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide comprising the amino acid sequence of SEQ ID NO:13, the extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide comprising the amino acid sequence of SEQ ID NO:14, or both. In some embodiments, the antibody binds the extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide comprising the amino acid sequence of SEQ ID NO:15.
  • the methods further comprise detecting binding or a lack of binding between the antibody obtained from the cell and a complex comprising a SIRP- ⁇ D1 variant bound to an IgSF domain of CD47, wherein the SIRP- ⁇ D1 variant is a non-naturally occurring high affinity SIRP- ⁇ D1 domain, and wherein the SIRP- ⁇ D1 variant binds to human CD47 with an affinity that is at least 10-fold greater than the affinity of a naturally occurring SIRP- ⁇ D1 domain binding to human CD47.
  • the antibody binds a complex comprising a SIRP- ⁇ D1 variant bound to an IgSF domain of CD47, wherein the SIRP- ⁇ D1 variant is a non-naturally occurring high affinity SIRP- ⁇ D1 domain, and wherein the SIRP- ⁇ D1 variant binds to human CD47 with an affinity that is at least 10-fold greater than the affinity of a naturally occurring SIRP- ⁇ D1 domain binding to human CD47.
  • the antibody does not block binding between an extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide and an IgSF domain of a human CD47 polypeptide.
  • the antibody does not block binding between an extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide expressed on the surface of a first cell and an IgSF domain of a human CD47 polypeptide expressed on the surface of a second cell.
  • the antibody does not bind a complex comprising a SIRP- ⁇ D1 variant bound to an IgSF domain of CD47, wherein the SIRP- ⁇ D1 variant is a non-naturally occurring high affinity SIRP- ⁇ D1 domain, and wherein the SIRP- ⁇ D1 variant binds to human CD47 with an affinity that is at least 10-fold greater than the affinity of a naturally occurring SIRP- ⁇ D1 domain binding to human CD47.
  • the antibody blocks binding between an extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide and an IgSF domain of a human CD47 polypeptide. In some embodiments, the antibody blocks binding between an extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide expressed on the surface of a first cell and an IgSF domain of a human CD47 polypeptide expressed on the surface of a second cell. In some embodiments, binding of the antibody to an extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide reduces affinity of the human SIRP- ⁇ polypeptide for binding an IgSF domain of a human CD47 polypeptide.
  • binding of the antibody to an extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide expressed on the surface of a first cell reduces affinity of the human SIRP- ⁇ polypeptide for binding an IgSF domain of a human CD47 polypeptide expressed on the surface of a second cell.
  • binding of the antibody to an extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide increases k off of the human SIRP- ⁇ polypeptide for binding an IgSF domain of a human CD47 polypeptide.
  • binding of the antibody to an extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide expressed on the surface of a first cell increases k off of the human SIRP- ⁇ polypeptide for binding an IgSF domain of a human CD47 polypeptide expressed on the surface of a second cell.
  • the antibody modulates SIRP- ⁇ signaling in a cell expressing a human SIRP- ⁇ polypeptide.
  • the cell is a leukocyte selected from the group consisting of a macrophage, a dendritic cell, a neutrophil, an eosinophil, and a myeloid-derived suppressor cell (MDSC).
  • the antibody inhibits SIRP- ⁇ signaling in a macrophage expressing a human SIRP- ⁇ polypeptide. In some embodiments, the antibody enhances phagocytosis by a macrophage expressing a human SIRP- ⁇ polypeptide.
  • FIG. 1A shows an alignment among the D1 domains of 10 different human SIRP- ⁇ variant polypeptides. Sequences shown correspond to SEQ ID NOs: 5, 6, and 76-83 (from top to bottom). Amino acid differences are indicated by asterisks.
  • FIG. 1B shows an alignment between human v1, human v2, cynomolgus monkey, and 129 mouse SIRP- ⁇ D1 domains. Sequences shown correspond to SEQ ID NOs: 5, 6, 11, and 7 (from top to bottom). Amino acid differences are indicated by asterisks.
  • FIG. 1C shows alignments between various human and mouse SIRP- ⁇ D1 domains, with R1, R2 and R3 loops indicated. Shown is an alignment between human v1, human v2, 129 mouse, NOD mouse, C57BL/6 mouse, and BALB/c mouse SIRP- ⁇ D1 domains. Sequences shown correspond to SEQ ID NOs: 5-10 (from top to bottom). Amino acid differences are indicated by asterisks.
  • FIG. 2 shows an alignment between human v1, human v2, cynomolgus monkey, 129 mouse, and chicken SIRP- ⁇ D1 domains. Sequences shown correspond to SEQ ID NOs: 5, 6, 11, 7, and 84 (from top to bottom). Amino acid differences are indicated by asterisks.
  • FIGS. 3A & 3B show binding specificity of antibody clone S130 for a variety of SIRP peptides.
  • FIG. 3A shows the ELISA binding curves for the antibody against the human v1, human v2, murine, and cynomolgus SIRP ⁇ D1 domains, as well as human SIRP ⁇ (SEQ ID NO:15) and a pre-formed complex of high-affinity SIRP- ⁇ variants bound to the IgSF domain of CD47 (SEQ ID NO:16).
  • the pre-formed complex was generated by mixing two high affinity human SIRP- ⁇ v1 and v2 polypeptides (SEQ ID NOs: 17 and 19) in a 1:1 ratio and combining the mixture with CD47 to generate the SIRP- ⁇ :CD47 complex.
  • the pre-formed complex SIRP- ⁇ :CD47 complex for FIGS. 4A-9B are also prepared similarly.
  • FIG. 3B summarizes the binding specificity of the clone against each of these targets (“+” indicates binding; “ ⁇ ” indicates non-binding).
  • FIGS. 4A & 4B show binding specificity of antibody clone S121 for a variety of SIRP peptides.
  • FIG. 4A shows the ELISA binding curves for the antibody against the human v1, human v2, murine, and cynomolgus SIRP ⁇ D1 domains, as well as human SIRP ⁇ (SEQ ID NO:15) and a pre-formed complex of high-affinity SIRP- ⁇ variants (SEQ ID NO:17 and 19) bound to the IgSF domain of CD47 (SEQ ID NO:16).
  • FIG. 4B summarizes the binding specificity of the clone against each of these targets (“+” indicates binding; “ ⁇ ” indicates non-binding).
  • FIGS. 5A & 5B show binding specificity of antibody clone S137 for a variety of SIRP peptides.
  • FIG. 5A shows the ELISA binding curves for the antibody against the human v1, human v2, murine, and cynomolgus SIRP ⁇ D1 domains, as well as human SIRP ⁇ (SEQ ID NO:15) and a pre-formed complex of high-affinity SIRP- ⁇ variants (SEQ ID NO:17 and 19) bound to the IgSF domain of CD47 (SEQ ID NO:16).
  • FIG. 5B summarizes the binding specificity of the clone against each of these targets (“+” indicates binding; “ ⁇ ” indicates non-binding).
  • FIGS. 6A & 6B show binding specificity of antibody clone S128 for a variety of SIRP peptides.
  • FIG. 6A shows the ELISA binding curves for the antibody against the human v1, human v2, murine, and cynomolgus SIRP ⁇ D1 domains, as well as human SIRP ⁇ (SEQ ID NO:15) and a pre-formed complex of high-affinity SIRP- ⁇ variants (SEQ ID NO:17 and 19) bound to the IgSF domain of CD47 (SEQ ID NO:16).
  • FIG. 6B summarizes the binding specificity of the clone against each of these targets (“+” indicates binding; “ ⁇ ” indicates non-binding).
  • FIGS. 7A & 7B show binding specificity of antibody clone 5135 for a variety of SIRP peptides.
  • FIG. 7A shows the ELISA binding curves for the antibody against the human v1, human v2, murine, and cynomolgus SIRP ⁇ D1 domains, as well as human SIRP ⁇ (SEQ ID NO:15) and a pre-formed complex of high-affinity SIRP- ⁇ variants (SEQ ID NO:17 and 19) bound to the IgSF domain of CD47 (SEQ ID NO:16).
  • FIG. 7B summarizes the binding specificity of the clone against each of these targets (“+” indicates binding; “ ⁇ ” indicates non-binding).
  • FIGS. 8A & 8B show binding specificity of antibody clone S126 for a variety of SIRP peptides.
  • FIG. 8A shows the ELISA binding curves for the antibody against the human v1, human v2, murine, and cynomolgus SIRP ⁇ D1 domains, as well as human SIRP ⁇ (SEQ ID NO:15) and a pre-formed complex of high-affinity SIRP- ⁇ variants (SEQ ID NO:17 and 19) bound to the IgSF domain of CD47 (SEQ ID NO:16).
  • FIG. 8B summarizes the binding specificity of the clone against each of these targets (“+” indicates binding; “ ⁇ ” indicates non-binding).
  • FIGS. 9A & 9B show binding specificity of antibody clone 5138 for a variety of SIRP peptides.
  • FIG. 9A shows the ELISA binding curves for the antibody against the human v1, human v2, murine, and cynomolgus SIRP ⁇ D1 domains, as well as human SIRP ⁇ (SEQ ID NO:15) and a pre-formed complex of high-affinity SIRP- ⁇ variants (SEQ ID NO:17 and 19) bound to the IgSF domain of CD47 (SEQ ID NO:16).
  • FIG. 9B summarizes the binding specificity of the clone against each of these targets (“+” indicates binding; “ ⁇ ” indicates non-binding).
  • FIGS. 10A-10C show an alignment of VH and VL domains of the scFv-Fc clones obtained from a wild-type chicken.
  • SEQ ID NOs:53-60 are shown (in order from top to bottom in the alignment).
  • CDR and linker sequences are indicated by lines. Amino acid differences are indicated by asterisks.
  • FIGS. 10D-10F show an alignment of VH and VL domains of the scFv-Fc clones obtained from a chicken that produces human antibodies.
  • SEQ ID NOs:61-74 are shown (in order from top to bottom in the alignment).
  • CDR and linker sequences are indicated by lines. Amino acid differences are indicated by asterisks.
  • FIGS. 11A-11D show an alignment of VH and VL domains of Family 2 clones.
  • the amino acid sequences of the VH domains are SEQ ID NOs: 294, 139, 358, 362, 354, 380, 384, 350, 137, 374, 356, 352, 135, 348, 376, 346, 342, 344, 141, 360, 370, 382, 364, 366, 368, 372, and 378 (in order from top to bottom in the alignment).
  • the amino acid sequences of the VL domains are SEQ ID NOs 295, 363, 140, 359, 355, 351, 136, 349, 377, 138, 375, 357, 353, 381, 385, 345, 365, 367, 369, 347, 142, 343, 371, 379, 383, 361, and 373 (in order from top to bottom in the alignment).
  • HVR sequences are indicated by lines.
  • the HVRs are according to Kabat. Amino acid differences are indicated by asterisks.
  • FIGS. 11E-11F show an alignment of VH and VL domains of Family 3 clones.
  • the amino acid sequences of the VH domains are SEQ ID NOs: 133, 128, 396, 386, 398, 402, 392, 388, 390, 394, and 400 (in order from top to bottom in the alignment).
  • the amino acid sequences of the VL domains are SEQ ID NOs 134, 105, 387, 389, 395, 397, 399, 403, 391, 393, and 401 (in order from top to bottom in the alignment).
  • HVR sequences are indicated by lines.
  • the HVRs are according to Kabat. Amino acid differences are indicated by asterisks.
  • FIGS. 11G & 11H show an alignment of VH and VL domains of Family 4 clones.
  • the amino acid sequences of the VH domains are SEQ ID NOs:116, 117, 118, 119, 282, 404, and 406 (in order from top to bottom in the alignment).
  • the amino acid sequences of the VL domains are SEQ ID NOs 93, 94, 95, 96, 283, 405, and 407 (in order from top to bottom in the alignment).
  • HVR sequences are indicated by lines.
  • the HVRs are according to Kabat. Amino acid differences are indicated by asterisks.
  • FIG. 11I shows an alignment of VH and VL domains of Family 5, Bin 4 clones.
  • the amino acid sequences of the VH domains are SEQ ID NOs: 278 and 412 (in order from top to bottom in the alignment).
  • the amino acid sequences of the VL domains are SEQ ID NOs 279 and 413 (in order from top to bottom in the alignment).
  • HVR sequences are indicated by lines.
  • the HVRs are according to Kabat. Amino acid differences are indicated by asterisks.
  • FIG. 11J shows an alignment of VH and VL domains of additional Family 5, Bin 4 clones.
  • the amino acid sequences of the VH domains are SEQ ID NOs: 275 and 414 (in order from top to bottom in the alignment).
  • the amino acid sequences of the VL domains are SEQ ID NOs: 276 and 415 (in order from top to bottom in the alignment).
  • HVR and linker sequences are indicated by lines.
  • the HVRs are according to Kabat. Amino acid differences are indicated by asterisks.
  • FIG. 11K shows the sequences of VH and VL domains (SEQ ID NOs 280 and 281, respectively of Family 5, Bin 4 clone 5209. The HVR sequences are underlined.
  • FIG. 11L shows an alignment of VH and VL domains of Family 5, Bin 5 clones.
  • the amino acid sequences of the VH domains are SEQ ID NOs: 123 and 292 (in order from top to bottom in the alignment).
  • the amino acid sequences of the VL domains are SEQ ID NOs 100 and 293 (in order from top to bottom in the alignment).
  • HVR sequences are indicated by lines.
  • the HVRs are according to Kabat. Amino acid differences are indicated by asterisks.
  • FIG. 11M shows an alignment of VH and VL domains of additional Family 5, Bin 5 clones.
  • the amino acid sequences of the VH domains are SEQ ID NOs: 288, 290, 408, and 410 (in order from top to bottom in the alignment).
  • the amino acid sequences of the VL domains are SEQ ID NOs: 289, 291, 409, and 411 (in order from top to bottom in the alignment).
  • HVR sequences are indicated by lines.
  • the HVRs are according to Kabat. Amino acid differences are indicated by asterisks.
  • FIG. 11N shows the sequences of VH and VL domains of clone 149 (SEQ ID NOs 286 and 287, respectively) and clone 218 (SEQ ID NOs 284 and 285, respectively. HVR sequences are underlined.
  • FIGS. 11O & 11P show an alignment of VH and VL domains of Family 1 clones.
  • the amino acid sequences of the VH domains are SEQ ID NOs: 120, 121, 130, and 122 (in order from top to bottom in the alignment).
  • the amino acid sequences of the VL domains are SEQ ID NOs: 97, 98, 107, and 99 (in order from top to bottom in the alignment).
  • HVR sequences are indicated by lines.
  • the HVRs are according to Kabat. Amino acid differences are indicated by asterisks.
  • FIGS. 12A-12C show surface plasmon resonance (SPR) binding profiles of representative antibody clones binding a pre-formed complex of a high affinity SIRP- ⁇ variant (SEQ ID NO:18) mixed with increasing concentrations of the IgSF domain of CD47 (SEQ ID NO:16).
  • FIG. 12A shows the binding curve of an antibody clone (S123) that does not block CD47 binding to SIRP- ⁇ (e.g., a non-blocking antibody).
  • FIG. 12B shows the binding curve of an antibody clone (S119) that blocks CD47 binding to SIRP- ⁇ (e.g., a blocking antibody).
  • FIG. 12C shows the binding curve of an antibody clone (S118) that binds to SIRP- ⁇ and reduces its affinity for binding CD47 (e.g., a “kick off” antibody).
  • FIGS. 13A-13G show the results of in vitro tumor cell phagocytosis assays using macrophages treated with anti-SIRP- ⁇ antibody (at indicated series of concentrations), cetuximab or trastuzumab, anti-SIRP- ⁇ antibody plus cetuximab or trastuzumab, or control antibody (IgG1, ⁇ ), as indicated.
  • Macrophages that had phagocytosed tumor cells were identified as cells positive for CD33, CD206, and CFSE by flow cytometry.
  • Tumor cells assayed were DLD-1 ( FIGS. 13A-13D & 13G ) or OE19 cells ( FIGS. 13E & 13F ).
  • Anti-SIRP- ⁇ antibodies tested were AB3a ( FIGS. 13A & 13B ), AB45a ( FIGS. 13C & 13D ), AB119a ( FIG. 13E ), AB135a ( FIG. 13F ), and AB136c ( FIG. 13
  • FIG. 14 shows the results of in vivo dendritic cell activation assays on dendritic cells isolated from the spleens of Balb/c mice treated with anti-SIRP- ⁇ antibody AB136b, control rat anti-mouse anti-SIRP- ⁇ antagonistic antibody (clone p84), rat IgG control, or mouse IgG control, as indicated.
  • Mice were intravenously injected with the indicated antibody at 10 mg/kg, and spleens were harvested five hours after injection.
  • Activation marker CD86 on dendritic cells was measured by flow cytometry.
  • FIG. 15 shows the results of an in vivo syngeneic mouse colon carcinoma model to assess single agent activity.
  • MC38 cells were implanted subcutaneously in C57BL/6 mice and randomized into groups (8 mice/group). Mice were treated with vehicle (PBS), CD47 blocking anti-SIRP- ⁇ antibody AB25b, CD47 blocking anti-SIRP- ⁇ antibody AB25c, CD47 blocking anti-SIRP- ⁇ antibody AB27b, CD47 non-blocking anti-SIRP- ⁇ antibody AB3b, or CD47 non-blocking anti-SIRP- ⁇ antibody 136b. Treatment was initiated when tumors were an average of 60 mm 3 , day 7 post implant. Mice were dosed intraperitoneally (IP) at 10 mg/kg twice a week for three weeks with anti-SIRP ⁇ antibodies. Animals were sacrificed when tumors reached a volume of ⁇ 2000 mm 3 .
  • IP intraperitoneally
  • FIG. 16 shows the results of an in vivo syngeneic mouse colon carcinoma model to assess single agent activity.
  • CT26 cells were implanted subcutaneously in BALB/c mice (8-9 mice were used per group) that were treated with AB136b or vehicle (PBS), as indicated. Treatment was initiated when tumors were an average of 80 mm 3 , day 7 post implant. Mice were dosed intraperitoneally (IP) at 3 mg/kg or 10 mg/kg twice a week for three weeks with anti-SIRP ⁇ antibodies. Animals were sacrificed when tumors reached a volume of ⁇ 2000 mm 3 .
  • IP intraperitoneally
  • FIG. 17A shows a comparison of CD47 and anti-SIRP- ⁇ antibody clone 119 Fab binding to SIRP- ⁇ , as determined by X-ray crystallography.
  • FIG. 17B shows the interaction site between anti-SIRP- ⁇ antibody clone 119 Fab and SIRP- ⁇ , as determined by buried surface area analyses.
  • FIG. 18A shows a comparison of CD47 and anti-SIRP- ⁇ antibody clone 136 Fab binding to SIRP- ⁇ , as determined by X-ray crystallography.
  • FIG. 18B shows the interaction site between anti-SIRP- ⁇ antibody clone 136 Fab and SIRP- ⁇ , as determined by buried surface area analyses.
  • FIG. 19A shows a comparison of CD47 and anti-SIRP- ⁇ antibody clone 3 Fab binding to SIRP- ⁇ , as determined by X-ray crystallography.
  • FIG. 19B shows the interaction site between anti-SIRP- ⁇ antibody clone 3 Fab and SIRP- ⁇ , as determined by buried surface area analyses.
  • FIG. 19C shows a comparison of CD47 and anti-SIRP- ⁇ antibody clone 115 Fab binding to SIRP- ⁇ , as determined by X-ray crystallography.
  • FIG. 19D shows the interaction site between anti-SIRP- ⁇ antibody clone 115 Fab and SIRP- ⁇ , as determined by buried surface area analyses.
  • FIG. 20A shows a comparison of CD47, anti-SIRP- ⁇ antibody clone 119 Fab, anti-SIRP- ⁇ antibody clone 136 Fab, anti-SIRP- ⁇ antibody clone 3 Fab, anti-SIRP- ⁇ antibody clone 115 Fab binding to SIRP- ⁇ , as determined by X-ray crystallography.
  • FIGS. 20B-20E show the epitopes for CD47, anti-SIRP- ⁇ antibody clone 119 Fab, anti-SIRP- ⁇ antibody clone 136 Fab, anti-SIRP- ⁇ antibody clone 3 Fab, and anti-SIRP- ⁇ antibody clone 115 Fab binding to SIRP- ⁇ , as determined by X-ray crystallography. Values indicate difference between surface accessible area of each residue atom in the Fab/CD47 when analyzed alone vs. when analyzed in complex with SIRP- ⁇ , expressed as buried surface area ( ⁇ 2 ). Residue numbering according to SEQ ID NO: 296.
  • FIG. 21A shows a flowchart for epitope binning of anti-SIRP- ⁇ antibodies.
  • FIG. 21B shows results of an exemplary assay for epitope binning of anti-SIRP- ⁇ antibodies A, B, C, D, E, and F.
  • FIGS. 22A & 22B show the results of epitope binning of the indicated anti-SIRP- ⁇ antibodies.
  • the clone number for the ligand (anti-SIRP ⁇ ) bound to the chip is indicated as rows, and the clone number for the analytes (anti-SIRP ⁇ ) injected over the chip is indicated as columns.
  • White boxes indicate antibodies that form sandwiches (and are considered to bind different epitopes).
  • Gray boxes indicate antibodies that did not form sandwiches (and are considered to bind the same epitope).
  • “X” indicates scenarios where the data from one orientation disagrees with the other.
  • FIG. 23 provides a model for anti-SIRP- ⁇ antibody and CD47 binding to the SIRP- ⁇ D1 domain based on epitope binning. Representative antibody clones for each bin are provided (and labeled by number).
  • FIG. 24A shows alignments between the parental 119 heavy chain (“119_VH_Wt”), the 119 variant heavy chain with 4 mutations (3 back-mutations to germline sequence in framework and one mutation in CDR-H1 removing a potential oxidation hot spot; “VH_MutALL”), the 119 variant heavy chain with 3 mutations (3 back-mutations to germline sequence in framework only; “VH_MutAll_V34M”), and the 119 variant heavy chain with 3 mutations and an M34L mutation (3 back-mutations to germline sequence in framework; “VH_MutAll_V34L”).
  • Sequences depicted are: SEQ ID NO:335 for 119_VH_Wt, SEQ ID NO:246 for VH_MutALL, SEQ ID NO:258 for VH_MutAll_V34M, and SEQ ID NO:327 for VH_MutAll_V34L.
  • CDR sequences are indicated with lines; amino acid differences are indicated by asterisks.
  • FIG. 24B shows alignments between the parental 119 light chain (“119_VL_Wt”), and the 119 variant light chain with 4 mutations (4 back-mutations to germline sequence in framework; “VL_mutAll”). Sequences depicted are: SEQ ID NO:97 for 119_VL_Wt and SEQ ID NO:312 for VL_mutAll. CDR sequences are indicated with lines; amino acid differences are indicated by asterisks.
  • FIG. 25A shows alignments between the parental 135 light chain (“VL_wt”) and the 135 variant light chain with 2 mutations (2 back-mutations to germline sequence in framework; “VL_mutALL”). Sequences depicted are: SEQ ID NO:104 for 135 VL_wt and SEQ ID NO:248 for 135 VL_MutALL. HVR sequences are indicated with lines; amino acid differences are indicated by asterisks.
  • FIG. 25B shows alignments between the parental 135 heavy chain (“VH_wt”) the 135 variant heavy chain with 6 mutations (5 back-mutations to germline sequence in framework and one mutation in CDR-H1 removing a potential oxidation hot spot; “VH_MutAll”), the 135 variant heavy chain with 5 back-mutations to germline sequence in framework (“VH_MutAll_V34M”), and the 135 variant heavy chain with 5 back-mutations to germline sequence in framework and M34L mutation (“VH_MutAll_V34L”).
  • FIG. 26A shows alignments between the parental 136 light chain (“VL_wt”), the 136 variant light chain with 4 mutations (4 back-mutations to germline sequence in framework; “VL_mutaLL”), the 136 variant light chain with a single I2T back-mutation reverted to wild-type sequence in an otherwise “all mut” background (“VL_Mutall_I2T”).
  • VL_wt parental 136 light chain
  • VL_mutaLL the 136 variant light chain with 4 mutations (4 back-mutations to germline sequence in framework
  • VL_Mutall_I2T the 136 variant light chain with a single I2T back-mutation reverted to wild-type sequence in an otherwise “all mut” background
  • FIG. 26B shows alignments between the parental 136 heavy chain (“VH_wt”), the 136 variant heavy chain with 6 mutations (5 back-mutations to germline sequence in framework and one mutation in CDR-H1 removing a potential oxidation hot spot; “VH_mutall”), the 136 variant heavy chain with 5 back-mutations to germline sequence in framework (“VH_Mutall_V34M”), and the 136 variant heavy chain with 5 back-mutations to germline sequence in framework and M34L mutation (“VH_Mutall_V34L”).
  • FIG. 27A shows binding affinities of antibody 136 variants to six SIRP- ⁇ proteins: human SIRP- ⁇ v1 (SEQ ID NO:5), human SIRP- ⁇ v2 (SEQ ID NO:6), cynomolgus SIRP- ⁇ (SEQ ID NO:11), NOD mouse SIRP- ⁇ (SEQ ID NO:8), BL/6 mouse SIRP- ⁇ (SEQ ID NO:9), and BALB/c mouse SIRP- ⁇ (SEQ ID NO:10).
  • Antibody variants had mutant (“mut”) or parental (“wt”) light chains and mutant or parental heavy chains, as indicated in the order light chain/heavy chain.
  • y-axis indicates the ratio of K D mut/K D wt.
  • a ratio of 1 means antibody had equivalent K D to wt/wt antibody (indicated by dotted line); ratio of >1 indicates lower affinity than wt/wt; and ratio of ⁇ 1 indicates higher affinity than wt/wt.
  • FIG. 27B shows binding affinities of antibody 136 variants to seven SIRP- ⁇ proteins: BL/6 mouse SIRP- ⁇ (SEQ ID NO:9), NOD mouse SIRP- ⁇ (SEQ ID NO:8), BALB/c mouse SIRP- ⁇ (SEQ ID NO:10), human SIRP- ⁇ v1 (SEQ ID NO:5), human SIRP- ⁇ v2 (SEQ ID NO:6), cynomolgus SIRP- ⁇ (SEQ ID NO:11), and human SIRP- ⁇ v1 (SEQ ID NO:15).
  • variants were constructed eliminating each individual mutation in an all mutant light chain background.
  • y-axis indicates the ratio of K D mut/K D wt.
  • a ratio of 1 means antibody had equivalent K D to wt/wt antibody (indicated by dotted line); ratio of >1 indicates lower affinity than wt/wt; and ratio of ⁇ 1 indicates higher affinity than wt/wt.
  • FIG. 28 compares expression yield and binding affinity of antibodies having indicated human heavy chains and humanized light chains in FreeStyleTM 293-FS cells (Thermo Fisher).
  • FIG. 29 shows an alignment between Hum1, Hum 8, and Hum9 VL domains.
  • Hum8 was generated based on Hum1 but with 5 amino acid substitutions near or in HVR-L1 and -L2 that increase humanness.
  • Hum9 was generated based on Hum1 but with 4 amino acid substitutions near or in HVR-L1 and -L2 that increase humanness.
  • SEQ ID NOs: 252 (Hum1), 416 (Hum 8), and 262 (Hum9) are depicted. HVR sequences are indicated with lines; amino acid differences are indicated by asterisks.
  • FIG. 30 shows alignments between the antibody 21 variant with germline back-mutations (“HC_MutAll”), the antibody 21 variant with germline back-mutations and mutation in CDR-H1 removing a potential oxidation hot spot M34V (“HC_MutAll_M34V”), the antibody 21 variant with germline back-mutations and M34L mutation (“HC_MutAll_M34L”), the antibody 25 variant with germline back-mutations (“HC_MutAll”), the antibody 25 variant with germline back-mutations and mutation in CDR-H1 removing a potential oxidation hot spot M34V (“HC_MutAll_M34V”), the antibody 25 variant with germline back-mutations and M34L mutation (“HC_MutAll_M34L”), the antibody 27 variant with germline back-mutations (“HC_MutAll”), the antibody 27 variant with germline back-mutations and mutation in CDR-H1 removing a potential oxidation hot spot M34V (“HC_MutAll
  • FIG. 31 shows the results of in vitro phagocytosis assays using HER2(+) OE19 cells as the target and M2 macrophages as the phagocytosing cell. “Kick off” anti-SIRP- ⁇ antibodies were tested at the indicated concentrations in combination with the anti-HER2 antibody trastuzumab. Phagocytosis was measured by percentage of CFSE+ cells.
  • FIG. 32 shows the results of in vitro phagocytosis assays using EGFR(+) DLD-1 cells as the target and M2 macrophages as the phagocytosing cell.
  • Non-blocking anti-SIRP- ⁇ antibodies were tested at the indicated concentrations in combination with the anti-EGFR antibody cetuximab. Phagocytosis was measured by percentage of CFSE+ cells.
  • FIGS. 33A-33C show the results of in vitro phagocytosis assays using EGFR(+) DLD-1 cells as the target and M2 macrophages as the phagocytosing cell.
  • Anti-SIRP- ⁇ antibodies were tested at the indicated concentrations in combination with the anti-EGFR antibody cetuximab. Phagocytosis was measured by percentage of CFSE+ cells.
  • FIG. 34 shows the results of in vitro phagocytosis assays using EGFR(+) DLD-1 cells as the target and M2 macrophages as the phagocytosing cell.
  • Non-blocking anti-SIRP- ⁇ antibodies 27 and 136 were each tested as a full-length antibody (with Fc region) or F(ab) 2 fragment at the indicated concentrations in combination with the anti-EGFR antibody cetuximab. Phagocytosis was measured by percentage of CFSE+ cells.
  • FIG. 35 shows the results of in vitro phagocytosis assays using EGFR(+) DLD-1 cells as the target and M2 macrophages as the phagocytosing cell.
  • Blocking anti-SIRP- ⁇ antibody 119 variants were tested at the indicated concentrations in combination with the anti-EGFR antibody cetuximab. Phagocytosis was measured by percentage of CFSE+ cells.
  • FIG. 36 shows the results of in vitro phagocytosis assays using EGFR(+) DLD-1 cells as the target and M2 macrophages as the phagocytosing cell.
  • Blocking anti-SIRP- ⁇ antibody 135 variants were tested at the indicated concentrations in combination with the anti-EGFR antibody cetuximab. Phagocytosis was measured by percentage of CFSE+ cells.
  • FIG. 37 shows the results of in vitro phagocytosis assays using EGFR(+) DLD-1 cells as the target and M2 macrophages as the phagocytosing cell.
  • Non-blocking anti-SIRP- ⁇ antibodies were tested at the indicated concentrations in combination with the anti-EGFR antibody cetuximab. Phagocytosis was measured by percentage of CFSE+ cells.
  • FIGS. 38A-38B show the results of in vivo dendritic cell activation assays with the indicated anti-SIRP- ⁇ antibodies. Mice were intravenously injected with the indicated antibody at 10 mg/kg, and spleens were harvested five hours after injection. Activation markers CD86, Halloween and CCR7 on CD4+ dendritic cells were measured by flow cytometry.
  • FIG. 39A shows the results of in vitro phagocytosis assays using EGFR(+) DLD-1 cells as the target and M2 macrophages as the phagocytosing cell.
  • 218a and 218 variant anti-SIRP- ⁇ antibodies were tested at the indicated concentrations in combination with the anti-EGFR antibody cetuximab. Phagocytosis was measured by percentage of CFSE+ cells.
  • FIG. 39B shows the results of in vitro phagocytosis assays using EGFR(+) DLD-1 cells as the target and M2 macrophages as the phagocytosing cell.
  • Exemplary blocking anti-SIRP- ⁇ antibodies 119a, 120a, and 122a were tested at the indicated concentrations. Phagocytosis was measured by percentage of CFSE+ cells.
  • FIG. 39C shows the results of in vitro phagocytosis assays using EGFR(+) DLD-1 cells as the target and M2 macrophages as the phagocytosing cell.
  • Exemplary non-blocking anti-SIRP- ⁇ antibodies 136a and 137a were tested at the indicated concentrations. Phagocytosis was measured by percentage of CFSE+ cells.
  • FIG. 39D shows the results of in vitro phagocytosis assays using EGFR(+) DLD-1 cells as the target and M2 macrophages as the phagocytosing cell.
  • Exemplary kick off anti-SIRP- ⁇ antibodies 115a, 116a, 117a, 118a, and 132a were tested at the indicated concentrations. Phagocytosis was measured by percentage of CFSE+ cells.
  • FIG. 40 shows the results of an in vivo syngeneic mouse colon carcinoma model to assess activity of combining anti-SIRP- ⁇ treatment with PD-L1/PD-1 pathway inhibition.
  • CT26 cells were implanted subcutaneously in C57BL/6 mice and randomized into groups (8 mice/group). Mice were treated with vehicle (PBS), anti-PD-L1 antibody, CD47 blocking anti-SIRP- ⁇ antibody AB25b, or AB25b and PD-L1. Treatment was initiated when tumors were an average of 60 mm 3 , day 7 post implant. Mice were dosed intraperitoneally (IP) at 10 mg/kg twice a week for three weeks and sacrificed when tumors reach a volume of ⁇ 2000 mm 3 .
  • IP intraperitoneally
  • FIG. 41 shows the results of an in vivo syngeneic mouse colon carcinoma model to assess activity of combining anti-SIRP- ⁇ treatment with PD-L1/PD-1 pathway inhibition.
  • MC38 cells were implanted subcutaneously in C57BL/6 mice and randomized into groups (8 mice/group). Mice were treated with vehicle (PBS), anti-PD-1 antibody, CD47 blocking anti-SIRP- ⁇ antibody AB25b, AB25b and anti-PD-1, CD47 non-blocking anti-SIRP- ⁇ antibody AB136b, or AB136b and anti-PD-1. Treatment was initiated when tumors were an average of 60 mm 3 , day 7 post implant. Mice were dosed intraperitoneally (IP) at 10 mg/kg twice a week for three weeks and sacrificed when tumors reach a volume of ⁇ 2000 mm 3 .
  • IP intraperitoneally
  • the present disclosure describes antibodies that bind the extracellular domains (e.g., the D1 domains) of one or more human SIRP- ⁇ polypeptides and have a variety of SIRP- ⁇ binding profiles of potential interest.
  • These unique SIRP- ⁇ binding profiles include one or more of the following binding capabilities, which are combined in a multifactorial manner to yield a multitude of unique specificities.
  • the antibody can bind the extracellular domains (e.g., the D1 domains) of human SIRP- ⁇ v1, human SIRP- ⁇ v2, or both; the antibody can bind the extracellular domains (e.g., the D1 domains) of one or more monkey SIRP- ⁇ polypeptides, or it can lack binding thereto; the antibody can bind the extracellular domains (e.g., the D1 domains) of one or more murine SIRP- ⁇ polypeptides, or it can lack binding thereto; the antibody can bind the extracellular domain (e.g., the D1 domain) of a human SIRP ⁇ polypeptide, or it can lacking binding thereto; and/or the antibody can bind the extracellular domain (e.g., the D1 domain) of a human SIRP ⁇ polypeptide, or it can lacking binding thereto.
  • the extracellular domain e.g., the D1 domains
  • the present disclosure describes antibodies that block binding of CD47 to SIRP- ⁇ , antibodies that do not block binding of CD47 to SIRP- ⁇ , and antibodies that do not block binding of CD47 to SIRP- ⁇ but decrease SIRP- ⁇ 's affinity for CD47, leading to more rapid dissociation of the CD47/SIRP- ⁇ complex.
  • anti-SIRP- ⁇ antibodies with one or more in vitro and/or in vivo biological properties of interest, such as the ability to enhance macrophage phagocytosis, enhance dendritic cell activation, inhibit in vivo growth of a tumor that expresses CD47, and/or the ability to accomplish one or more of these activities without preventing interactions between a CD47-expressing cell and a T cell.
  • the methods described herein may be used to identify antibodies with unique combinations of the above binding specificities. Without wishing to be bound to theory, it is thought that the ability to identify unique anti-SIRP- ⁇ antibodies with different binding profiles as described above allows for the identification of antibodies (e.g., those described herein) with desirable clinical properties and advantages for pre-clinical research.
  • isolated antibodies that bind the extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ v1 polypeptide, the extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ v2 polypeptide, or both.
  • polynucleotides and vectors encoding the antibodies of the present disclosure as well as methods of antibody production related thereto.
  • provided herein are methods for treating or delaying progression of cancer in an individual, comprising administering to the individual an effective amount of an antibody of the present disclosure.
  • provided herein are methods for treating or delaying progression of an autoimmune or inflammatory disease in an individual, comprising administering to the individual an effective amount of an antibody of the present disclosure.
  • an antigen binding domain that binds an extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide and does not block binding between human CD47 and the human SIRP- ⁇ polypeptide.
  • the methods include (a) providing an antigen binding domain that binds the extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide; (b) assembling a complex comprising a SIRP- ⁇ D1 variant bound to a polypeptide comprising an IgSF domain of CD47, wherein the SIRP- ⁇ D1 variant is a non-naturally occurring high affinity SIRP- ⁇ D1 domain, and wherein the SIRP- ⁇ D1 variant binds to human CD47 with an affinity that is at least 10-fold greater than the affinity of a naturally occurring SIRP- ⁇ D1 domain binding to human CD47; (c) contacting the antigen binding domain with the assembled complex; and (d) detecting binding of the antigen binding domain to the complex, wherein binding of the antigen binding domain to the complex indicates that the antigen binding domain does not block binding between human CD47 and the human SIRP- ⁇ polypeptide.
  • an antigen binding domain that binds the extracellular domain (e.g., the D1 domain) of
  • an antigen binding domain that binds an extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide and does not block binding between human CD47 and the human SIRP- ⁇ polypeptide.
  • the methods include contacting an antigen binding domain or antibody that binds the extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide with a complex comprising a SIRP- ⁇ D1 variant bound to a polypeptide comprising an IgSF domain of CD47, wherein the SIRP- ⁇ D1 variant is a non-naturally occurring high affinity SIRP- ⁇ D1 domain, and wherein the SIRP- ⁇ D1 variant binds to human CD47 with an affinity that is at least 10-fold greater than the affinity of a naturally occurring SIRP- ⁇ D1 domain binding to human CD47; and detecting binding of the antigen binding domain to the complex, wherein binding of the antigen binding domain to the complex indicates that the antigen binding domain does not block binding between human CD47 and the human SIRP- ⁇ polypeptide.
  • the extracellular domain e.g., the D1 domain
  • the SIRP- ⁇ D1 variant is a non-naturally occurring high affinity SIRP- ⁇ D1 domain
  • an antigen binding domain that binds an extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide and blocks binding between human CD47 and the human SIRP- ⁇ polypeptide.
  • the method includes (a) providing an antigen binding domain that binds the extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide; (b) assembling a complex comprising a SIRP- ⁇ D1 variant bound to a polypeptide comprising an IgSF domain of CD47, wherein the SIRP- ⁇ D1 variant is a non-naturally occurring high affinity SIRP- ⁇ D1 domain, and wherein the SIRP- ⁇ D1 variant binds to human CD47 with an affinity that is at least 10-fold greater than the affinity of a naturally occurring SIRP- ⁇ D1 domain binding to human CD47; (c) contacting the antigen binding domain with the assembled complex; and (d) detecting binding of the antigen binding domain to the complex, wherein a lack of binding of the antigen binding domain to the complex indicates that the antigen binding domain blocks binding between human CD47 and the human SIRP- ⁇ polypeptide.
  • an antigen binding domain that binds the extracellular domain (e.g., the D1 domain
  • an antigen binding domain that binds an extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide and blocks binding between human CD47 and the human SIRP- ⁇ polypeptide.
  • the method includes contacting an antigen binding domain or antibody that binds the extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide with a complex comprising a SIRP- ⁇ D1 variant bound to a polypeptide comprising an IgSF domain of CD47, wherein the SIRP- ⁇ D1 variant is a non-naturally occurring high affinity SIRP- ⁇ D1 domain, and wherein the SIRP- ⁇ D1 variant binds to human CD47 with an affinity that is at least 10-fold greater than the affinity of a naturally occurring SIRP- ⁇ D1 domain binding to human CD47; and detecting binding of the antigen binding domain to the complex, wherein a lack of binding of the antigen binding domain to the complex indicates that the antigen binding domain blocks binding between human CD47 and the human SIRP- ⁇ polypeptide.
  • the extracellular domain e.g., the D1 domain
  • the SIRP- ⁇ D1 variant is a non-naturally occurring high affinity SIRP- ⁇ D1 domain
  • the method includes (a) immunizing a chicken with a peptide comprising at least a portion of a human SIRP- ⁇ extracellular domain (e.g., the D1 domain); (b) obtaining an antibody from an antibody-producing cell from the immunized chicken; and (c) detecting binding between the antibody obtained from the cell and the extracellular domains (e.g., the D1 domains) of two or more different human SIRP- ⁇ variant polypeptides, wherein binding between the antibody and the extracellular domains (e.g., the D1 domains) of the two or more different human SIRP- ⁇ variant polypeptides indicates that the antibody is an anti-SIRP- ⁇ antibody that binds the extracellular domains (e.g., the D1 domains) of two
  • aspects and embodiments of the present disclosure include “comprising,” “consisting,” and “consisting essentially of” aspects and embodiments.
  • SIRP- ⁇ polypeptide may refer to any endogenous or naturally occurring SIRP- ⁇ polypeptide encoded by a genome from any vertebrate, including mammals such as humans, monkeys, rodents (e.g., mouse or rat), and birds, such as chickens.
  • the term also includes naturally occurring variants, e.g., alternatively spliced variants, allelic variants, or polymorphisms (e.g., those described herein).
  • the term may further refer to full-length, unprocessed SIRP- ⁇ polypeptides as well as SIRP- ⁇ polypeptides that result from cellular processing, e.g., removal of a signal sequence, etc.
  • a human SIRP- ⁇ polypeptide is one encoded by a human SIRPA gene, e.g., as described by NCBI Gene ID No. 140885.
  • SIRP- ⁇ polypeptides are highly polymorphic within and among species. For example, at least 10 human variants with amino acid polymorphisms in the extracellular domain have been identified.
  • SIRP- ⁇ polypeptides include an extracellular domain that binds ligands/partners, e.g., CD47.
  • SIRP- ⁇ polypeptides comprise 3 highly homologous immunoglobulin (Ig)-like extracellular domains—D1, D2, and D3.
  • the SIRP- ⁇ D1 domain (“D1 domain”) refers to the membrane distal, extracellular domain of SIRP- ⁇ and mediates binding of SIRP- ⁇ to CD47 (see, e.g., Hatherley, D. et al. (2008) Mol. Cell 31:266-77; Hatherley, D. et al. (2007) J. Biol. Chem. 282:14567-75; Hatherley, D. et al. (2009) J. Biol. Chem.
  • the extracellular domain generally refers to the entire extracellular portion of SIRP- ⁇ , e.g., as expressed on a cell surface, and may include distinct SIRP- ⁇ domains, such as the D1 domain.
  • the D1 domain contains residues shown to be critical for mediating CD47 binding (see, e.g., Lee, W. Y. et al. (2007) J. Immunol. 179:7741-50).
  • an antibody that binds an extracellular domain of a SIRP- ⁇ polypeptide binds one or more residues of the D1 domain.
  • Exemplary human SIRP- ⁇ D1 domain sequences are described throughout the present disclosure and include without limitation SEQ ID NOs:5, 6, and 76-83.
  • Human SIRP- ⁇ D2 and D3 domain sequences are also known and include, without limitation, APVVSGPAARATPQHTVSFTCESHGF SPRDITLKWFKNGNELSDFQTNVDPVGESVSYSI HSTAKVVLTREDVHSQVICEVAHVTLQGDPLRGTANLSETIR (SEQ ID NO: 131) for the D2 domain and VPPTLEVTQQPVRAENQVNVTCQVRKFYPQRLQLTWLENGNVSRTETASTVTENKDGT YNWMSWLLVNVSAHRDDVKLTCQVEHDGQPAVSKSHDLKVS (SEQ ID NO:132) for the D3 domain.
  • CD47 refers to a polypeptide that, among other roles, serves as a binding partner for SIRP- ⁇ polypeptides.
  • CD47 refers to a human CD47 polypeptide, e.g., a polypeptide encoded by a human CD47 gene, such as that described by NCBI Ref Seq ID No. 961.
  • Exemplary human CD47 amino acid sequences are known (see, e.g., NCBI Reference Sequence Accession No. NP 001768).
  • the IgSF domain of CD47 refers to the N-terminal extracellular domain of CD47 that is known to be critical for SIRP- ⁇ binding (see, e.g., Barclay, A. N. and Brown, M. H. (2006) Nat. Rev. Immunol. 6:457-64 and Hatherley, D. et al. (2009) J. Biol. Chem. 284:26613-9).
  • an IgSF domain of CD47 comprises the amino acid sequence of QLLFNKTKSVEFTFSNDTVVIPCFVTNMEAQNTTEVYVKWKFKGRDIYTFDGALNKSTV PTDFSSAKIEVSQLLKGDASLKMDKSDAVSHTGNYTCEVTELTREGETIIELKYRVVS (SEQ ID NO:16).
  • the term “CD47” may also include modified CD47 polypeptides that are able to bind SIRP- ⁇ , e.g., a polypeptide comprising an IgSF domain of CD47 conjugated to another polypeptide or other moiety, e.g., an Ig Fc region.
  • a “SIRP- ⁇ epitope” may refer to the amino acids of a SIRP- ⁇ polypeptide that form the binding site for an anti-SIRP- ⁇ antibody of the present disclosure and/or a SIRP- ⁇ binding partner, including without limitation CD47. Binding of an antibody or other polypeptide to an epitope can be characterized and/or mapped using a variety of assays known in the art, including without limitation a cross-blocking assay (see Antibodies, A Laboratory Manual , Cold Spring Harbor Laboratory, Ed Harlow and David Lane (1988)), epitope mapping (see Champe et al., J. Biol. Chem.
  • SIRP- ⁇ signaling may refer to antagonizing, agonizing, or otherwise interfering with one or more aspects of SIRP- ⁇ signaling in a cell expressing a SIRP- ⁇ polypeptide.
  • SIRP- ⁇ signaling may refer to one or more intracellular signaling events mediated by activation of a SIRP- ⁇ polypeptide, including without limitation tyrosine phosphorylation of the intracellular region of SIRP- ⁇ , phosphatase (e.g., SHP1) binding, adaptor protein binding (e.g., SCAP2, FYB, and/or GRB2), cytokine production (e.g.
  • IL-10 IL-10, IL-1 ⁇ , IFN or TNF
  • nitric oxide production and/or one or more intercellular phenotypes, including without limitation macrophage phagocytosis and other activating or suppressive phenotypes of macrophages, eosinophils, neutrophils, dendritic cells, and myeloid-derived suppressor cells (MDSCs).
  • macrophage phagocytosis including without limitation macrophage phagocytosis and other activating or suppressive phenotypes of macrophages, eosinophils, neutrophils, dendritic cells, and myeloid-derived suppressor cells (MDSCs).
  • MDSCs myeloid-derived suppressor cells
  • antibody may refer to intact antibodies; antibody fragments (including without limitation Fab, F(ab′)2, Fab′-SH, Fv, diabodies, scFv, scFv-Fc, single domain antibodies, single heavy chain antibodies, and single light chain antibodies), provided that they exhibit the desired biological activity (e.g. epitope binding); monoclonal antibodies; polyclonal antibodies; monospecific antibodies; multi-specific antibodies (e.g., bispecific antibodies); and antibody-like proteins.
  • antibody fragments including without limitation Fab, F(ab′)2, Fab′-SH, Fv, diabodies, scFv, scFv-Fc, single domain antibodies, single heavy chain antibodies, and single light chain antibodies
  • each binding specificity when used in reference to an antibody or antibody fragment includes an antibody or antibody fragment that possesses two different binding specificities.
  • each binding specificity may recognize a different antigen, or each binding specificity may recognize the same antigen with different affinity and/or precise epitope.
  • each different binding specificity comprises one or more different antibody antigen binding domains (e.g., variable domains), such that the bispecific antibody or antibody fragment comprises at least a first antigen binding domain with a first binding specificity and a second antigen binding domain with a second binding specificity.
  • variable domains e.g., variable domains
  • an “isolated” antibody may refer to an antibody that has been separated and/or recovered from a component of its natural environment, e.g., a host cell or organism.
  • an antibody is purified to a desired purity by weight (e.g., at least 95%); and/or homogeneity by SDS-PAGE using, for example, staining by silver, Coomassie, etc.
  • an isolated antibody is obtained following one or more purification steps.
  • “native” antibodies refer to typically heterotetrameric complexes including two identical light (L) chains and two identical heavy (H) chains. Variable numbers of disulfide bonds connect the two heavy chains, and one connects each light chain to a heavy chain, in addition to intrachain disulfide bridges.
  • the heavy chains include a variable domain (VH) followed (N-terminus to C-terminus) by three or four constant domains.
  • the light chains include a variable domain (VL) followed by a constant domain (CL).
  • VH variable domain
  • CL constant domain
  • mammalian light chains fall into one of two categories based on amino acid sequence: kappa and lambda.
  • a “constant domain” may refer to the more conserved portion of the antibody or fragment, e.g., outside the variable domains.
  • the term may include the CL domain as well as heavy chain constant domains CH1, CH2, CH3 and optionally CH4.
  • Constant domains of the heavy chain can be assigned to one of 5 major types: IgA, IgD, IgE, IgG, and IgM.
  • IgA immunoglobulin
  • IgD immunoglobulin
  • IgE immunoglobulin
  • IgG immunoglobulin G
  • IgM immunoglobulin M
  • antibody variable domain refers to the portions of the light and heavy chains of an antibody that include the complementary determining regions (CDRs, e.g., CDR L1, CDR L2, CDR L3, CDR H1, CDR H2, and CDR H3) and framework regions (FRs).
  • CDRs complementary determining regions
  • FRs framework regions
  • variable refers to the fact that subsequences of the variable domains differ substantially in sequence between antibodies and are critical to the binding specificity of a particular antibody for its antigen. Variability is concentrated in three hypervariable regions (HVRs) in both VH and VL domains. The more conserved portions of variable domains are called the framework regions (FR) in which the HVRs are interspersed.
  • HVRs hypervariable regions
  • FR framework regions
  • the variable domains of native heavy and light chains each comprise four FR regions connected by three HVRs that form loops (see Kabat et al., Sequences of Proteins of Immunological Interest , Fifth Edition, National Institute of Health, Bethesda, Md. (1991)).
  • hypervariable region may refer to the subregions of the VH and VL domains characterized by enhanced sequence variability and/or formation of defined loops. These include three HVRs in the VH domain (H1, H2, and H3) and three HVRs in the VL domain (L1, L2, and L3). H3 is believed to be critical in imparting fine binding specificity, with L3 and H3 showing the highest level of diversity. See Johnson and Wu, in Methods in Molecular Biology 248:1-25 (Lo, ed., Human Press, Totowa, N.J., 2003).
  • HVR delineations are known.
  • the Kabat Complementarity Determining Regions are based on sequence variability and are the most commonly used (Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, Md. (1991)). Chothia refers instead to the location of the structural loops (Chothia and Leski J. Mol. Biol. 196:901-917 (1987)).
  • the AbM HVRs represent a compromise between the Kabat HVRs and Chothia structural loops, and are used by Oxford Molecular's AbM antibody modeling software.
  • the “contact” HVRs are based on an analysis of the available complex crystal structures. The residues from each of these HVRs are noted below. “Framework” or “FR” residues are those variable domain residues other than the HVR residues.
  • Extended HVRs are also known: 24-36 or 24-34 (L1), 46-56 or 50-56 (L2) and 89-97 or 89-96 (L3) in the VL and 26-35 (H1), 50-65 or 49-65 (H2) and 93-102, 94-102, or 95-102 (H3) in the VH (Kabat numbering).
  • “Numbering according to Kabat” may refer to the numbering system used for heavy chain variable domains or light chain variable domains of the compilation of antibodies in Kabat et al., supra.
  • the actual linear amino acid sequence may contain fewer or additional amino acids corresponding to a shortening of, or insertion into, a FR or HVR of the variable domain.
  • the Kabat numbering of residues may be determined for a given antibody by alignment at regions of homology of the sequence of the antibody with a “standard” Kabat numbered sequence.
  • the Kabat numbering is used when referring to a residue in the variable domains (approximately residues 1-107 of the light chain and residues 1-113 of the heavy chain), whereas the EU numbering system or index (e.g., the EU index as in Kabat, numbering according to EU IgG1) is generally used when referring to a residue in the heavy chain constant region.
  • “Full length” or “intact” antibodies typically include heavy chains with an Fc region, e.g., as opposed to an antibody fragment.
  • Antigen-binding “Fab” fragments with a single antigen binding site may be released from the residual Fc fragment by papain digestion.
  • F(ab′)2 fragments include two antigen-binding sites produced by pepsin treatment of an antibody.
  • Antibody fragments will, however, include one or more antibody variable regions.
  • an “Fv” fragment contains a complete antigen-binding site.
  • a single chain Fv can include a VH and a VL domain linked by a peptide linker such that the VH and VL domains associate, e.g., as in an antibody or Fab fragment, such that the HVRs form an antigen binding site.
  • scFv single chain Fv
  • the scFv is fused to an antibody Fc domain (e.g., scFv-Fc).
  • HVRs typically comprise an antigen binding site
  • a single variable domain with three HVRs is still capable of binding an antigen, albeit at a lower affinity.
  • Single domain antibodies e.g., camelid antibodies
  • Single heavy chain (VHH) and single light chain antibodies are also known.
  • a Fab′ fragment typically includes a few more residues at the C-terminal end than a Fab fragment.
  • a Fab′-SH includes cysteine residues with a free thiol.
  • Various chemical couplings of antibody fragments are known in the art.
  • a “diabody” includes antibody fragments with two antigen-binding sites. These include a VH and VL domain connected by a linker, which is typically too short to facilitate pairing of domains in the same chain. Diabodies may be bivalent or bispecific. Tribodies and tetrabodies, or other numbers of VH/VL domains are known. See Hudson et al., Nat. Med. 9:129-134 (2003).
  • a “monoclonal” antibody refers to an antibody obtained from a population of substantially homogeneous antibodies, e.g., substantially identical but allowing for minor levels of background mutations and/or modifications. “Monoclonal” denotes the substantially homogeneous character of antibodies, and does not require production of the antibody by any particular method.
  • a monoclonal antibody is selected by its HVR, VH, and/or VL sequences and/or binding properties, e.g., selected from a pool of clones (e.g., recombinant, hybridoma, or phage-derived).
  • a monoclonal antibody may be engineered to include one or more mutations, e.g., to affect binding affinity or other properties of the antibody, create a humanized or chimeric antibody, improve antibody production and/or homogeneity, engineer a multispecific antibody, resultant antibodies of which are still considered to be monoclonal in nature.
  • a population of monoclonal antibodies may be distinguished from polyclonal antibodies as the individual monoclonal antibodies of the population recognize the same antigenic site.
  • phage-display technologies see, e.g., Clackson et al., Nature, 352: 624-628 (1991); Marks et al., J. Mol. Biol. 222: 581-597 (1992); Sidhu et al., J. Mol. Biol. 338(2): 299-310 (2004); Lee et al., J. Mol. Biol. 340(5): 1073-1093 (2004); Fellouse, Proc. Natl. Acad. Sci. USA 101(34): 12467-12472 (2004); and Lee et al., J. Immunol.
  • Chimeric antibodies may refer to an antibody with one portion of the heavy and/or light chain from a particular isotype, class, or organism and another portion from another isotype, class, or organism.
  • the variable region will be from one source or organism, and the constant region will be from another.
  • Humanized antibodies may refer to antibodies with predominantly human sequence and a minimal amount of non-human (e.g., mouse or chicken) sequence.
  • a humanized antibody has one or more HVR sequences (bearing a binding specificity of interest) from an antibody derived from a non-human (e.g., mouse or chicken) organism grafted onto a human recipient antibody framework (FR).
  • non-human residues are further grafted onto the human framework (not present in either source or recipient antibodies), e.g., to improve antibody properties.
  • a humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the hypervariable loops correspond to those of a non-human immunoglobulin, and all or substantially all of the FRs are those of a human immunoglobulin sequence.
  • the humanized antibody optionally will also comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin. See Jones et al., Nature 321:522-525 (1986); Riechmann et al., Nature 332:323-329 (1988); and Presta, Curr. Op. Struct. Biol. 2:593-596 (1992).
  • a “human” antibody may refer to an antibody having an amino acid sequence which corresponds to that of an antibody produced by a human and/or has been made using any of the techniques for making human antibodies as disclosed herein.
  • Human antibodies can be produced using various techniques known in the art, including phage-display libraries. Hoogenboom and Winter, J. Mol. Biol., 227:381 (1991); Marks et al., J. Mol. Biol., 222:581 (1991); preparation of human monoclonal antibodies as described in Cole et al., Monoclonal Antibodies and Cancer Therapy , Alan R. Liss, p. 77 (1985); Boerner et al., J.
  • immunized xenomice see, e.g., U.S. Pat. Nos. 6,075,181 and 6,150,584 regarding XENOMOUSE′ technology
  • chickens with human immunoglobulin sequence(s) see, e.g., WO2012162422, WO2011019844, and WO2013059159).
  • linker refers to a linkage between two elements, e.g., protein domains.
  • a linker can be a covalent bond or a spacer.
  • spacer refers to a moiety (e.g., a polyethylene glycol (PEG) polymer) or an amino acid sequence (e.g., a 1-200 amino acid sequence) occurring between two polypeptides or polypeptide domains to provide space or flexibility (or both space and flexibility) between the two polypeptides or polypeptide domains.
  • an amino acid spacer is part of the primary sequence of a polypeptide (e.g., joined to the spaced polypeptides or polypeptide domains via the polypeptide backbone).
  • cytotoxic agent may refer to any agent that inhibits cellular proliferation or induces cell death. Cytotoxic agents include, but are not limited to, chemotherapeutic agents; radioactive isotopes; growth inhibitory agents; and toxins such as small molecule toxins or enzymatically active toxins, including fragments and/or variants thereof.
  • Exemplary cytotoxic agents include without limitation metabolic inhibitors, anti-microtubule agents, platinum containing compounds, alkylating agents, proteasome inhibitors, topoisomerase II inhibitors, antimetabolites, topoisomerase I inhibitors, signal transduction pathway inhibitors, non-receptor tyrosine kinase angiogenesis inhibitors, hormones and hormonal analogues, proapoptotic agents, inhibitors of LDH-A, cell cycle inhibitors, HDAC inhibitors, and antibiotic agents.
  • a “label” may include any moiety that serves as a detection agent, e.g., of binding between a labeled antibody of the present disclosure and a macromolecule or cell.
  • exemplary labels include without limitation fluorescent (e.g., compounds or proteins), radioactive, or enzymatic moieties, as well as affinity purification tags.
  • an antibody may be said to “bind” an antigen with an affinity sufficient to render the antibody useful for in vitro and/or in vivo manipulation of the antigen.
  • an antibody that “binds” an antigen has a dissociation constant (K D ) for the antigen that is less than or equal to 1 ⁇ M at 25° C.
  • binding affinity refers to the strength of the binding interaction between two molecules.
  • binding affinity refers to the strength of the sum total of non-covalent interactions between a molecule and its binding partner, such as a high affinity SIRP- ⁇ D1 variant and CD47.
  • binding affinity refers to intrinsic binding affinity, which reflects a 1:1 interaction between members of a binding pair.
  • the binding affinity between two molecules is commonly described by the dissociation constant (K D ) or the association constant (K A ). Two molecules that have low binding affinity for each other generally bind slowly, tend to dissociate easily, and exhibit a large K D .
  • K D Two molecules that have high affinity for each other generally bind readily, tend to remain bound longer, and exhibit a small K D .
  • the K D of two interacting molecules is determined using known methods and techniques, e.g., surface plasmon resonance (SPR). K D can be calculated as the ratio of k off /k on .
  • K D less than refers to a numerically smaller K D value and an increasing binding affinity relative to the recited K D value.
  • K D greater than refers to a numerically larger K D value and a decreasing binding affinity relative to the recited K D value.
  • treatment may refer to therapeutic administration of a molecule, compound, formulation, composition, etc. so as to alter one or more pathological symptoms in an individual or cell being treated. Desirable effects of treatment can include without limitation decelerating disease progression, ameliorating or palliating a pathological symptom or disease state, improving prognosis, and/or achieving disease remission.
  • an individual's cancer is successfully “treated” if one or more symptoms associated with cancer are mitigated or abolished, such as, without limitation, reducing the proliferation of cancer cells, eliminating cancer cells or tumor burden, decreasing symptoms resulting from the cancer, increasing the quality of life of the individual, lessening the dose of other medication(s), and/or prolonging survival of the individual.
  • an autoimmune or inflammatory disease may be successfully “treated” if one or more symptoms associated with the autoimmune or inflammatory disease are mitigated or abolished, such as, without limitation, reducing autoreactive immune cells and/or inflammatory immune cells or cytokines, decreasing immune activation and/or inflammation, slowing or mitigating organ damage resulting from the disease, decreasing symptoms resulting from the disease, increasing the quality of life of the individual, lessening the dose of other medication(s), and/or prolonging survival of the individual.
  • delaying progression of a disease may refer to slowing, retarding, deferring, postponing development of, stabilizing, or otherwise hindering the pathological course of the disease.
  • the term may refer to a delay sufficient to effectively encompass prevention, e.g., in preventing the individual from developing the disease.
  • delaying progression may include delaying metastasis.
  • the precise length of delay may depend, e.g., upon the specific disease, condition of the individual, and the like.
  • cancer and “cancerous” may describe dysregulated or unregulated cell growth/proliferation by a cell or cells in a mammal. Any cancer type known in the art may be included, such as but not limited to carcinoma, sarcoma, lymphoma, leukemia, lymphoma, and blastoma.
  • cancers include, but are not limited to, lung cancer, squamous cell cancer, brain tumors, glioblastoma, head and neck cancer, hepatocellular cancer, colorectal cancer (e.g., colon or rectal cancers), liver cancer, bladder cancer, gastric or stomach cancer, pancreatic cancer, cervical cancer, ovarian cancer, cancer of the urinary tract, breast cancer, peritoneal cancer, uterine cancer, salivary gland cancer, kidney or renal cancer, prostate cancer, vulval cancer, thyroid cancer, anal carcinoma, penile carcinoma, melanoma, multiple myeloma and B-cell lymphoma (including non-Hodgkin's lymphomas (NHL)); acute lymphoblastic leukemia (ALL); chronic lymphocytic leukemia (CLL); acute myeloid leukemia (AML); Merkel cell carcinoma; hairy cell leukemia; chronic myeloblastic leukemia (CIVIL); and associated metastases.
  • NHL non-Hodgkin's
  • the term “effective amount” may refer to an amount of an antibody of the present disclosure or a pharmaceutical composition containing an antibody of the present disclosure that is sufficient and effective in achieving a desired therapeutic effect in treating or delaying progression of a patient having a disease, such as a cancer, e.g., solid tumor or hematological cancer.
  • a therapeutically effective amount will avoid adverse side effects, and/or such side effects will be outweighed by beneficial effects.
  • An effective amount may depend upon the individual being treated, e.g., age, weight, sex, disease state, as well as the ability of the agent to produce a desired response.
  • An effective amount can be administered in one or more administrations.
  • an effective amount of a drug, compound, or pharmaceutical composition may or may not be achieved in conjunction with another drug, compound, or pharmaceutical composition, such as another therapeutic agent.
  • an “effective amount” may also be considered in the context of administering one or more additional therapeutic agents, and a single agent may be considered to be given in an effective amount if, in conjunction with one or more other agents, a desirable result may be or is achieved.
  • the term “pharmaceutical composition” may refer to a medicinal or pharmaceutical formulation that includes an active ingredient as well as excipients or diluents (or both excipients and diluents) and enables the active ingredient to be administered by suitable methods of administration.
  • the pharmaceutical compositions disclosed herein include pharmaceutically acceptable components that are compatible with one or more antibodies of the present disclosure.
  • the pharmaceutical composition is in tablet or capsule form for oral administration or in aqueous form for intravenous or subcutaneous administration, for example by injection.
  • the terms “subject,” “individual,” and “patient” are used interchangeably to refer to a vertebrate, for example, a mammal. Mammals include, but are not limited to, murines, simians, humans, farm animals, sport animals, and pets.
  • conjunction with or “in combination with” may refer to administration of one therapeutic in addition to (e.g., before, during, and/or after) another therapeutic.
  • Certain aspects of the present disclosure relate to antibodies that bind the extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ v1 polypeptide, the extracellular domain of a human SIRP- ⁇ v2 polypeptide, or both.
  • antibodies have been characterized that specifically bind to v1 or v2, as well as antibodies that bind to both proteins.
  • at least 10 distinct alleles of SIRPA have been identified (see FIG. 1A ; see also Takenaka, K. et al. (2007) Nat. Immunol. 8:1313-23).
  • Antibodies that bind one or more human SIRP- ⁇ polypeptides and possess one or more of the other binding specificities described herein are an advantageous discovery of the present disclosure. Further, the present disclosure demonstrates methods for producing and identifying antibodies representing a surprising diversity of novel SIRP- ⁇ binding specificity profiles.
  • an antibody of the present disclosure binds an extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ v1 polypeptide comprising the amino acid sequence of EEELQVIQPDKSVLVAAGETATLRCTATSLIPVGPIQWFRGAGPGRELIYNQKEGHFPRV TTVSDLTKRNNMDF SIRIGNITPADAGTYYCVKFRKGSPDDVEFKSGAGTELSVRAKPS (SEQ ID NO:5).
  • an antibody of the present disclosure binds an extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ v2 polypeptide comprising the amino acid sequence of EEELQVIQPDKSVSVAAGESAILHCTVTSLIPVGPIQWFRGAGPARELIYNQKEGHFPRVT TVSESTKRENMDF SISISNITPADAGTYYCVKFRKGSPDTEFKSGAGTELSVRAKPS (SEQ ID NO:6).
  • an antibody of the present disclosure binds an extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ v1 polypeptide comprising the amino acid sequence of EEELQVIQPDKSVLVAAGETATLRCTATSLIPVGPIQWFRGAGPGRELIYNQKEGHFPRV TTVSDLTKRNNMDF SIRIGNITPADAGTYYCVKFRKGSPDDVEFKSGAGTELSVRAKPS (SEQ ID NO:5) and an extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ v2 polypeptide comprising the amino acid sequence of EEELQVIQPDKSVSVAAGESAILHCTVTSLIPVGPIQWFRGAGPARELIYNQKEGHFPRVT TVSESTKRENMDF SISISNITPADAGTYYCVKFRKGSPDTEFKSGAGTELSVRAKPS (SEQ ID NO:6).
  • an extracellular domain e.g., the D1 domain
  • an antibody of the present disclosure binds the extracellular domains (e.g., the D1 domains) of 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 different human SIRP- ⁇ variant polypeptides.
  • a “human SIRP- ⁇ variant polypeptide” may refer to a naturally occurring human SIRP- ⁇ variant polypeptide or polymorphism found expressed in a human, e.g., as opposed to a variant bearing one or more engineered mutations.
  • an antibody of the present disclosure binds the extracellular domain (e.g., the D1 domain) of one or more human SIRP- ⁇ variant polypeptides comprising a sequence shown in the Table 1.
  • an antibody of the present disclosure binds to an extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ v1 polypeptide and/or an extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ v2 polypeptide, and binds to an extracellular domain (e.g., the D1 domain) of one or more human SIRP- ⁇ polypeptides selected from v3, v4, v5, v6, v7, v8, v9, and v10.
  • an antibody of the present disclosure binds an extracellular domain (e.g., the D1 domain) of a monkey SIRP- ⁇ polypeptide (e.g., the D1 domain of a monkey SIRP- ⁇ polypeptide). In some embodiments, an antibody of the present disclosure binds an extracellular domain (e.g., the D1 domain) of a cynomolgus SIRP- ⁇ polypeptide (e.g., found in the organism Macaca fascicularis ). In some embodiments, the antibody binds the extracellular domains (e.g., the D1 domains) of at least two different monkey SIRP- ⁇ variant polypeptides.
  • the antibody binds the extracellular domains (e.g., the D1 domains) of at least two different cynomolgus SIRP- ⁇ variant polypeptides.
  • the antibody binds an extracellular domain (e.g., the D1 domain) of a cynomolgus SIRP- ⁇ polypeptide comprising the amino acid sequence of EEELQVIQPEKSVSVAAGESATLNCTATSLIPVGPIQWFRGVGPGRELIYHQKEGHFPRV TPVSDPTKRNNMDFSIRISNITPADAGTYYCVKFRKGSPDVELKSGAGTELSVRAKPS (SEQ ID NO:11), an extracellular domain (e.g., the D1 domain) of a cynomolgus SIRP- ⁇ polypeptide comprising the amino acid sequence of EEELQVIQPEKSVSVAAGDSATLNCTVSSLIPVGPIQWFRGAGPGRELIYNLKEGHFPRVT AVSDP
  • an antibody of the present disclosure binds an extracellular domain of a murine or mouse SIRP- ⁇ polypeptide (e.g., found in the organism Mus musculus ; e.g., the D1 domain of a murine or mouse SIRP- ⁇ polypeptide).
  • the antibody binds the extracellular domains (e.g., the D1 domains) of two or more different murine SIRP- ⁇ variant polypeptides.
  • a variety of murine SIRP- ⁇ variant polypeptides from different mouse strains are known.
  • the murine SIRP- ⁇ variant polypeptide comprises an amino acid sequence selected from KELKVTQPEKSVSVAAGDSTVLNCTLTSLLPVGPIKWYRGVGQSRLLIYSFTGEHFPRVT NVSDATKRNNMDF SIRISNVTPEDAGTYYCVKFQKGPSEPDTEIQSGGGTEVYVLAKPS (SEQ ID NO: 7; from 129 mouse strain), TEVKVIQPEKSVSVAAGDSTVLNCTLTSLLPVGPIRWYRGVGQSRQLIYSFTTEHFPRVT NVSDATKRSNLDF SIRISNVTPEDAGTYYCVKFQRGSPDTEIQSGGGTEVYVLAK (SEQ ID NO:8; from NOD mouse strain), KELKVTQPEKSVSVAAGDSTVLNCTLTSLLPVGPIRWYRGVGPSRLLIYSFAGEYVPRIR NVSDTTKRNNMDF SIRISNVTPADAGIYYC VKFQKGS SEPDTEIQ SGGGTEVYVLAK (SEQ ID NO
  • an antibody of the present disclosure binds an extracellular domain (e.g., the D1 domain) of a human SIRP family protein. In some embodiments, an antibody of the present disclosure binds an extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide.
  • a human SIRP- ⁇ polypeptide refers to a polypeptide encoded by a human SIRPB1 gene, e.g., as described by NCBI Ref Seq ID No. 10326.
  • the extracellular domain (e.g., the D1 domain) of the human SIRP- ⁇ polypeptide comprises the amino acid sequence of EDELQVIQPEKSVSVAAGESATLRCAMTSLIPVGPIMWFRGAGAGRELIYNQKEGHFPR VTTVSELTKRNNLDF SISISNITPADAGTYYCVKFRKGSPDDVEFKSGAGTELSVRAKPS (SEQ ID NO:13) or EEELQVIQPDKSISVAAGESATLHCTVTSLIPVGPIQWFRGAGPGRELIYNQKEGHFPRVT TVSDLTKRNNMDF SIRISNITPADAGTYYCVKFRKGSPDHVEFKSGAGTELSVRAKPS (SEQ ID NO:14).
  • an antibody of the present disclosure binds an extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide.
  • a human SIRP- ⁇ polypeptide refers to a polypeptide encoded by a human SIRPG gene, e.g., as described by NCBI Ref Seq ID No. 55423.
  • the extracellular domain (e.g., the D1 domain) of the human SIRP- ⁇ polypeptide comprises the amino acid sequence of EEELQMIQPEKLLLVTVGKTATLHCTVT SLLPVGPVLWFRGVGPGRELIYNQKEGHFPR VTTVSDLTKRNNMDFSIRISSITPADVGTYYCVKFRKGSPENVEFKSGPGTEMALGAKPS (SEQ ID NO:15).
  • the present disclosure contemplates antibodies that do not bind one or more of the polypeptides described above.
  • the binding profile of an antibody of the present disclosure may be characterized by positively or negatively reciting any of the binding specificities and/or properties described herein.
  • an antibody of the present disclosure modulates SIRP- ⁇ signaling in a cell expressing a human SIRP- ⁇ polypeptide. In some embodiments, an antibody of the present disclosure antagonizes SIRP- ⁇ signaling in a cell expressing a human SIRP- ⁇ polypeptide. In some embodiments, an antibody of the present disclosure interferes with SIRP- ⁇ signaling in a cell expressing a human SIRP- ⁇ polypeptide. In some embodiments, an antibody of the present disclosure agonizes SIRP- ⁇ signaling in a cell expressing a human SIRP- ⁇ polypeptide.
  • SIRP- ⁇ signaling includes one or more intracellular signaling events mediated by activation of a SIRP- ⁇ polypeptide, including without limitation tyrosine phosphorylation of the intracellular region of SIRP- ⁇ , phosphatase (e.g., SHP1) binding, adaptor protein binding (e.g., SCAP2, FYB, and/or GRB2), and nitric oxide production.
  • a SIRP- ⁇ polypeptide including without limitation tyrosine phosphorylation of the intracellular region of SIRP- ⁇ , phosphatase (e.g., SHP1) binding, adaptor protein binding (e.g., SCAP2, FYB, and/or GRB2), and nitric oxide production.
  • Various assays for measuring SIRP- ⁇ signaling in a cell include without limitation SIRP- ⁇ phosphorylation, SHP1 and SHP2 co-immunoprecipitation, PI3-kinase signaling, cytokine production (both inflammatory IL-12, IL-23, TNF ⁇ , IFN and suppressive cytokines IL-10, IL-4, IL-13, cell surface markers levels for M1 and M2 macrophage markers) or dendritic cell activation and function; Kharitonenkov, A. et al. (1997) Nature 386: 181-6; Ochi, F. et al. (1997) Biochem. Biophys. Res. Commun. 239:483-7; Kim, E. J. et al. (2013) Inflammation Research 62:377-86; Yi, T. et al. (2015) Immunity 43:764-75.
  • the cell expressing a human SIRP- ⁇ polypeptide is a leukocyte.
  • the cell is a macrophage, dendritic cell, neutrophil, eosinophil, or myeloid-derived suppressor cell (MDSC).
  • an antibody of the present disclosure decreases or antagonizes SIRP- ⁇ signaling in a cell expressing a human SIRP- ⁇ polypeptide by at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, or at least 90%, e.g., using one or more of the SIRP- ⁇ signaling assays described herein or otherwise known in the art.
  • an antibody of the present disclosure increases or agonizes SIRP- ⁇ signaling in a cell expressing a human SIRP- ⁇ polypeptide by at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, or at least 90%, e.g., using one or more of the SIRP- ⁇ signaling assays described herein or otherwise known in the art.
  • an antibody of the present disclosure modulates an intercellular phenotype mediated by SIRP- ⁇ . In some embodiments, an antibody of the present disclosure enhances phagocytosis by a macrophage expressing a human SIRP- ⁇ polypeptide.
  • phagocytic activity of a macrophage treated or contacted with an antibody of the present disclosure can be compared with phagocytic activity of a macrophage not treated or contacted with the antibody, or phagocytic activity of a macrophage that expresses a human SIRP- ⁇ polypeptide and is treated or contacted with an antibody of the present disclosure can be compared with phagocytic activity of a macrophage that does not express a human SIRP- ⁇ polypeptide and is treated or contacted with the antibody.
  • Exemplary phagocytosis assays may be found, e.g., in Wieskopf, K. et al (2013) Science 341: 88 and Willingham, S. B. et al.
  • an antibody of the present disclosure increases phagocytosis by a macrophage expressing a human SIRP- ⁇ polypeptide by at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, or at least 90%, e.g., using one or more of the phagocytosis assays described herein or otherwise known in the art.
  • an antibody of the present disclosure enhances activation of dendritic cell(s) expressing a human SIRP- ⁇ polypeptide (e.g., an increased level of activation of individual dendritic cells, or an increased proportion of dendritic cells that are activated within a sample population).
  • activation of dendritic cell(s) treated or contacted with an antibody of the present disclosure can be compared with activation of dendritic cell(s) not treated or contacted with the antibody, or activation of dendritic cell(s) that express a human SIRP- ⁇ polypeptide and are treated or contacted with an antibody of the present disclosure can be compared with activation of dendritic cell(s) that do not express a human SIRP- ⁇ polypeptide and are treated or contacted with the antibody.
  • Exemplary dendritic cell activation assays are described herein.
  • an antibody of the present disclosure increases dendritic cell (e.g., expressing a human SIRP- ⁇ polypeptide) activation by at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, or at least 90%, e.g., using one or more of the dendritic cell activation assays described herein or otherwise known in the art.
  • dendritic cell e.g., expressing a human SIRP- ⁇ polypeptide
  • an antibody of the present disclosure inhibits in vivo growth of a tumor that expresses CD47.
  • in vivo growth of a tumor that expresses CD47 and is treated with an antibody of the present disclosure can be compared against in vivo growth of a tumor that expresses CD47 and is not treated with an antibody of the present disclosure.
  • Exemplary in vivo tumor growth assays are described herein.
  • an antibody of the present disclosure inhibits in vivo growth of a tumor that expresses CD47 by at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, or at least 90%, e.g., using one or more of the in vivo tumor growth assays described herein or otherwise known in the art.
  • an antibody of the present disclosure blocks binding between an extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide and an IgSF domain of a human CD47 polypeptide (e.g., a “blocking” antibody).
  • the antibody and the CD47 polypeptide may “compete” for the same SIRP- ⁇ epitope, and/or antibody binding to SIRP- ⁇ may be mutually exclusive with CD47 binding to SIRP- ⁇ .
  • the binding interface between SIRP- ⁇ and CD47, as well as residues of both proteins that participate in binding, are known; see Hatherley, D. et al. (2007) J. Biol. Chem. 282:14567-75 and Nakaishi, A. et al.
  • an antibody of the present disclosure blocks binding between an extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide and an IgSF domain of a human CD47 polypeptide in an in vitro assay, e.g., using purified SIRP- ⁇ and/or CD47 polypeptides.
  • an extracellular domain e.g., the D1 domain
  • an IgSF domain of a human CD47 polypeptide in an in vitro assay, e.g., using purified SIRP- ⁇ and/or CD47 polypeptides.
  • in vitro ELISA and SPR assays are described herein, although this is not meant to be limiting, as other in vitro binding assays may also be used.
  • antibody binding to a complex comprising a SIRP- ⁇ D1 variant e.g., a non-naturally occurring high affinity SIRP- ⁇ D1 domain binding to CD47 with higher affinity than one or more naturally occurring counterparts as described herein
  • a SIRP- ⁇ D1 variant e.g., a non-naturally occurring high affinity SIRP- ⁇ D1 domain binding to CD47 with higher affinity than one or more naturally occurring counterparts as described herein
  • IgSF domain of CD47 is used to screen for blocking, non-blocking, and/or kick off antibodies.
  • “blocking” and/or “non-blocking” antibodies can be tested via surface plasmon resonance (SPR; e.g., as described in Example 1).
  • a complex can be formed between an IgSF domain of CD47 and a SIRP- ⁇ D1 variant (e.g., a non-naturally occurring high affinity SIRP- ⁇ D1 domain binding to CD47 with higher affinity than one or more naturally occurring counterparts as described herein), then binding of a test antibody to the complex can be measured.
  • a SIRP- ⁇ D1 variant e.g., a non-naturally occurring high affinity SIRP- ⁇ D1 domain binding to CD47 with higher affinity than one or more naturally occurring counterparts as described herein
  • a “blocking” anti-SIRP- ⁇ antibody of the present disclosure binds to the extracellular domain of a SIRP- ⁇ polypeptide (e.g., the D1 domain) at one or more residues of the binding interface between CD47 and SIRP- ⁇ , i.e., the blocking antibody and CD47 share partially or completely overlapping epitopes.
  • a “blocking” anti-SIRP- ⁇ antibody of the present disclosure binds to the extracellular domain of a SIRP- ⁇ polypeptide (e.g., the D1 domain) at one or more amino acid positions that are also bound by CD47 in the CD47:SIRP- ⁇ complex.
  • an antibody of the present disclosure blocks binding between an extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide expressed on the surface of a first cell and an IgSF domain of a human CD47 polypeptide expressed on the surface of a second cell, e.g., an in vivo binding assay between polypeptides expressed on the surface of cells.
  • an extracellular domain e.g., the D1 domain
  • IgSF domain of a human CD47 polypeptide expressed on the surface of a second cell e.g., an in vivo binding assay between polypeptides expressed on the surface of cells.
  • the in vivo assay may assess binding between an extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide expressed on the surface of a first cell and an IgSF domain of a human CD47 polypeptide expressed on the surface of a second cell by assaying one or more aspects of SIRP- ⁇ signaling, e.g., one or more intracellular signaling events mediated by activation of a SIRP- ⁇ polypeptide, including without limitation tyrosine phosphorylation of the intracellular region of SIRP- ⁇ , phosphatase (e.g., SHP1) binding, adaptor protein binding (e.g., SCAP2, FYB, and/or GRB2), cytokine production (e.g.
  • an extracellular domain e.g., the D1 domain
  • IgSF domain of a human CD47 polypeptide expressed on the surface of a second cell by assaying one or more aspects of SIRP- ⁇ signaling, e.g., one or more intra
  • IL-10 IL-10, IL-1 ⁇ , IFN or TNF
  • nitric oxide production and/or one or more intercellular phenotypes, including without limitation macrophage phagocytosis and other activating or suppressive phenotypes of macrophages, neutrophils, dendritic cells, eosinophils, and myeloid-derived suppressor cells (MDSCs).
  • macrophage phagocytosis including without limitation macrophage phagocytosis and other activating or suppressive phenotypes of macrophages, neutrophils, dendritic cells, eosinophils, and myeloid-derived suppressor cells (MDSCs).
  • MDSCs myeloid-derived suppressor cells
  • an antibody of the present disclosure does not block binding between an extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide and an IgSF domain of a human CD47 polypeptide (e.g., a “non-blocking” antibody).
  • the antibody and the CD47 polypeptide may bind distinct and/or non-overlapping epitopes of SIRP- ⁇ .
  • an antibody of the present disclosure does not block binding between an extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide and an IgSF domain of a human CD47 polypeptide in an in vitro assay, e.g., using purified SIRP- ⁇ and/or CD47 polypeptides.
  • an extracellular domain e.g., the D1 domain
  • an IgSF domain of a human CD47 polypeptide in an in vitro assay, e.g., using purified SIRP- ⁇ and/or CD47 polypeptides.
  • in vitro ELISA and SPR assays are described herein, although this is not meant to be limiting, as other in vitro binding assays may also be used.
  • antibody binding to a complex comprising a SIRP- ⁇ D1 variant e.g., a non-naturally occurring high affinity SIRP- ⁇ D1 domain binding to CD47 with higher affinity than one or more naturally occurring counterparts as described herein
  • a SIRP- ⁇ D1 variant e.g., a non-naturally occurring high affinity SIRP- ⁇ D1 domain binding to CD47 with higher affinity than one or more naturally occurring counterparts as described herein
  • IgSF domain of CD47 is used to screen for blocking, non-blocking, and/or kick off antibodies.
  • “blocking” and/or “non-blocking” antibodies can be tested via surface plasmon resonance (SPR; e.g., as described in Example 1).
  • a complex can be formed between an IgSF domain of CD47 and a SIRP- ⁇ D1 variant (e.g., a non-naturally occurring high affinity SIRP- ⁇ D1 domain binding to CD47 with higher affinity than one or more naturally occurring counterparts as described herein), then binding of a test antibody to the complex can be measured.
  • a SIRP- ⁇ D1 variant e.g., a non-naturally occurring high affinity SIRP- ⁇ D1 domain binding to CD47 with higher affinity than one or more naturally occurring counterparts as described herein
  • a “non-blocking” anti-SIRP- ⁇ antibody of the present disclosure binds to the extracellular domain of a SIRP- ⁇ polypeptide (e.g., the D1 domain) at one or more residues that are distinct from the binding interface between CD47 and SIRP- ⁇ , i.e., the non-blocking antibody and CD47 share completely non-overlapping epitopes.
  • the binding interfaces between SIRP- ⁇ and exemplary anti-SIRP- ⁇ antibodies or CD47 are described in Example 4.
  • an antibody of the present disclosure does not block binding between an extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide expressed on the surface of a first cell and an IgSF domain of a human CD47 polypeptide expressed on the surface of a second cell, e.g., an in vivo binding assay between polypeptides expressed on the surface of cells.
  • an extracellular domain e.g., the D1 domain
  • an IgSF domain of a human CD47 polypeptide expressed on the surface of a second cell e.g., an in vivo binding assay between polypeptides expressed on the surface of cells.
  • the in vivo assay may assess binding between an extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide expressed on the surface of a first cell and an IgSF domain of a human CD47 polypeptide expressed on the surface of a second cell by assaying one or more aspects of SIRP- ⁇ signaling, e.g., one or more intracellular signaling events mediated by activation of a SIRP- ⁇ polypeptide, including without limitation tyrosine phosphorylation of the intracellular region of SIRP- ⁇ , phosphatase (e.g., SHP1) binding, adaptor protein binding (e.g., SCAP2, FYB, and/or GRB2), cytokine production (e.g.
  • an extracellular domain e.g., the D1 domain
  • IgSF domain of a human CD47 polypeptide expressed on the surface of a second cell by assaying one or more aspects of SIRP- ⁇ signaling, e.g., one or more intra
  • IL-10 IL-1 ⁇ , IFN or TNF
  • nitric oxide production and/or one or more intercellular phenotypes, including without limitation macrophage phagocytosis and other activating or suppressive phenotypes of macrophages, neutrophils, dendritic cells, eosinophils, and myeloid-derived suppressor cells (MDSCs).
  • macrophage phagocytosis and other activating or suppressive phenotypes of macrophages, neutrophils, dendritic cells, eosinophils, and myeloid-derived suppressor cells (MDSCs).
  • MDSCs myeloid-derived suppressor cells
  • binding of an antibody of the present disclosure to an extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide reduces affinity of the human SIRP- ⁇ polypeptide for binding an IgSF domain of a human CD47 polypeptide (e.g., a “kick off” antibody).
  • binding of the antibody to an extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide increases k off of the human SIRP- ⁇ polypeptide for binding an IgSF domain of a human CD47 polypeptide.
  • binding of the antibody to an extracellular domain (e.g., the D1 domain) of a human high affinity SIRP- ⁇ polypeptide increases the k off of the human high affinity SIRP- ⁇ polypeptide (e.g., as described herein) for binding an IgSF domain of a human CD47 polypeptide to greater than about 1 ⁇ 10 ⁇ 3 l/s.
  • the antibody and the CD47 polypeptide may have adjacent or partially overlapping SIRP- ⁇ epitopes, such that the antibody is able to bind SIRP- ⁇ when it is bound to CD47, but the antibody: SIRP- ⁇ promotes dissociation of the SIRP- ⁇ : CD47 complex.
  • an antibody of the present disclosure reduces affinity of an extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide for binding an IgSF domain of a human CD47 polypeptide in an in vitro assay, e.g., using purified SIRP- ⁇ and/or CD47 polypeptides.
  • binding of the antibody to an extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide increases k off of the human SIRP- ⁇ polypeptide for binding an IgSF domain of a human CD47 polypeptide in an in vitro assay, e.g., using purified SIRP- ⁇ and/or CD47 polypeptides.
  • antibody binding to a complex comprising a SIRP- ⁇ D1 variant e.g., a non-naturally occurring high affinity SIRP- ⁇ D1 domain binding to CD47 with higher affinity than one or more naturally occurring counterparts as described herein
  • a complex comprising a SIRP- ⁇ D1 variant e.g., a non-naturally occurring high affinity SIRP- ⁇ D1 domain binding to CD47 with higher affinity than one or more naturally occurring counterparts as described herein
  • IgSF domain of CD47 is used to screen for blocking, non-blocking, and/or kick off antibodies.
  • an antibody of the present disclosure reduces affinity of an extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide expressed on the surface of a first cell for binding an IgSF domain of a human CD47 polypeptide expressed on the surface of a second cell, e.g., an in vivo binding assay between polypeptides expressed on the surface of cells.
  • an extracellular domain e.g., the D1 domain
  • an IgSF domain of a human CD47 polypeptide expressed on the surface of a second cell e.g., an in vivo binding assay between polypeptides expressed on the surface of cells.
  • a “kick off” anti-SIRP- ⁇ antibody of the present disclosure binds to the extracellular domain (e.g., the D1 domain) of a SIRP- ⁇ polypeptide at one or more residues of the binding interface between CD47 and SIRP- ⁇ , i.e., the kick off antibody and CD47 share partially overlapping epitopes.
  • a “kick off” anti-SIRP- ⁇ antibody of the present disclosure binds to the extracellular domain (e.g., the D1 domain) of a SIRP- ⁇ polypeptide at 1 or more residues that are also bound by CD47 in the CD47:SIRP- ⁇ complex.
  • a “kick off” anti-SIRP- ⁇ antibody can bind to the extracellular domain (e.g., the D1 domain) of a SIRP- ⁇ polypeptide at 2 or more residues that are also bound by CD47 in the CD47:SIRP- ⁇ complex and are at the periphery of the CD47 binding epitope of SIRP- ⁇ .
  • the binding interfaces between SIRP- ⁇ and exemplary anti-SIRP- ⁇ antibodies or CD47 are described in Example 4.
  • binding of an antibody of the present disclosure to an extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide expressed on the surface of a first cell increases k off of the human SIRP- ⁇ polypeptide for binding an IgSF domain of a human CD47 polypeptide expressed on the surface of a second cell, e.g., an in vivo binding assay between polypeptides expressed on the surface of cells.
  • the in vivo assay may assess binding between an extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide expressed on the surface of a first cell and an IgSF domain of a human CD47 polypeptide expressed on the surface of a second cell by assaying one or more aspects of SIRP- ⁇ signaling, e.g., one or more intracellular signaling events mediated by activation of a SIRP- ⁇ polypeptide, including without limitation tyrosine phosphorylation of the intracellular region of SIRP- ⁇ , phosphatase (e.g., SHP1) binding, adaptor protein binding (e.g., SCAP2, FYB, and/or GRB2), cytokine production (e.g.
  • an extracellular domain e.g., the D1 domain
  • IgSF domain of a human CD47 polypeptide expressed on the surface of a second cell by assaying one or more aspects of SIRP- ⁇ signaling, e.g., one or more intra
  • IL-10 IL-10, IL-1 ⁇ , IFN or TNF
  • nitric oxide production and/or one or more intercellular phenotypes, including without limitation macrophage phagocytosis and other activating or suppressive phenotypes of macrophages, neutrophils, dendritic cells, eosinophils, and myeloid-derived suppressor cells (MDSCs).
  • macrophage phagocytosis including without limitation macrophage phagocytosis and other activating or suppressive phenotypes of macrophages, neutrophils, dendritic cells, eosinophils, and myeloid-derived suppressor cells (MDSCs).
  • MDSCs myeloid-derived suppressor cells
  • an antibody of the present disclosure modulates one or more immune cell functions by binding to two or more (or all three) of SIRP- ⁇ , SIRP ⁇ , and SIRP ⁇ .
  • an antibody of the present disclosure binds the extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ v1 polypeptide, the extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ v2 polypeptide, or both; binds the extracellular domain (e.g., the D1 domain) of a monkey SIRP- ⁇ polypeptide; and the antibody does not block binding between an extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide and an IgSF domain of a human CD47 polypeptide.
  • an antibody of the present disclosure binds the extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ v1 polypeptide, the extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ v2 polypeptide, or both; binds the extracellular domain (e.g., the D1 domain) of a monkey SIRP- ⁇ polypeptide; and the antibody blocks binding between an extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide and an IgSF domain of a human CD47 polypeptide.
  • an antibody of the present disclosure binds the extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ v1 polypeptide, the extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ v2 polypeptide, or both; binds the extracellular domain (e.g., the D1 domain) of a monkey SIRP- ⁇ polypeptide; and binding of the antibody to an extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide reduces affinity of the human SIRP- ⁇ polypeptide for binding an IgSF domain of a human CD47 polypeptide.
  • an antibody of the present disclosure binds the extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ v1 polypeptide, the extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ v2 polypeptide, or both; binds the extracellular domain (e.g., the D1 domain) of a murine SIRP- ⁇ polypeptide; and the antibody does not block binding between an extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide and an IgSF domain of a human CD47 polypeptide.
  • an antibody of the present disclosure binds the extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ v1 polypeptide, the extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ v2 polypeptide, or both; binds the extracellular domain (e.g., the D1 domain) of a murine SIRP- ⁇ polypeptide; and the antibody blocks binding between an extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide and an IgSF domain of a human CD47 polypeptide.
  • an antibody of the present disclosure binds the extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ v1 polypeptide, the extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ v2 polypeptide, or both; binds the extracellular domain (e.g., the D1 domain) of a murine SIRP- ⁇ polypeptide; and binding of the antibody to an extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide reduces affinity of the human SIRP- ⁇ polypeptide for binding an IgSF domain of a human CD47 polypeptide.
  • an antibody of the present disclosure binds the extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ v1 polypeptide, the extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ v2 polypeptide, or both; binds the extracellular domain (e.g., the D1 domain) of a monkey (e.g., cynomolgus) SIRP- ⁇ polypeptide; binds the extracellular domain (e.g., the D1 domain) of a murine SIRP- ⁇ polypeptide; and the antibody does not block binding between an extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide and an IgSF domain of a human CD47 polypeptide.
  • an antibody of the present disclosure binds the extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ v1 polypeptide, the extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ v2 polypeptide, or both; binds the extracellular domain (e.g., the D1 domain) of a monkey (e.g., cynomolgus) SIRP- ⁇ polypeptide; binds the extracellular domain (e.g., the D1 domain) of a murine SIRP- ⁇ polypeptide; and the antibody blocks binding between an extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide and an IgSF domain of a human CD47 polypeptide.
  • a monkey e.g., cynomolgus
  • an antibody of the present disclosure binds the extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ v1 polypeptide, the extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ v2 polypeptide, or both; binds the extracellular domain (e.g., the D1 domain) of a monkey (e.g., cynomolgus) SIRP- ⁇ polypeptide; binds the extracellular domain (e.g., the D1 domain) of a murine SIRP- ⁇ polypeptide; and binding of the antibody to an extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide reduces affinity of the human SIRP- ⁇ polypeptide for binding an IgSF domain of a human CD47 polypeptide.
  • an antibody of the present disclosure binds the extracellular domains (e.g., the D1 domains) of two or more different human SIRP- ⁇ variant polypeptides, a murine SIRP- ⁇ polypeptide, and a monkey SIRP- ⁇ polypeptide; the antibody does not bind at least one of an extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide and an extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide; and the antibody blocks binding between the extracellular domain (e.g., the D1 domain) of the human SIRP- ⁇ polypeptide and an IgSF domain of a human CD47 polypeptide (see, e.g., FIGS. 3A & 3B ).
  • an antibody of the present disclosure binds the extracellular domains (e.g., the D1 domains) of two or more different human SIRP- ⁇ variant polypeptides, a murine SIRP- ⁇ polypeptide, a monkey SIRP- ⁇ polypeptide, and at least one of an extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide and an extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide; and the antibody blocks binding between the extracellular domain (e.g., the D1 domain) of the human SIRP- ⁇ polypeptide and an IgSF domain of a human CD47 polypeptide (see, e.g., FIGS. 4A & 4B ).
  • an antibody of the present disclosure binds the extracellular domains (e.g., the D1 domains) of two or more different human SIRP- ⁇ variant polypeptides, a murine SIRP- ⁇ polypeptide, and a monkey SIRP- ⁇ polypeptide; the antibody does not bind at least one of an extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide and an extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide; and the antibody does not block binding between the extracellular domain (e.g., the D1 domain) of the human SIRP- ⁇ polypeptide and an IgSF domain of a human CD47 polypeptide (see, e.g., FIGS. 5A & 5B ).
  • an antibody of the present disclosure binds the extracellular domains (e.g., the D1 domains) of two or more different human SIRP- ⁇ variant polypeptides and a monkey SIRP- ⁇ polypeptide; the antibody does not bind a murine SIRP- ⁇ polypeptide; the antibody does not bind at least one of an extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide and an extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide; and the antibody blocks binding between the extracellular domain (e.g., the D1 domain) of the human SIRP- ⁇ polypeptide and an IgSF domain of a human CD47 polypeptide (see, e.g., FIGS. 6A & 6B ).
  • an antibody of the present disclosure binds the extracellular domains (e.g., the D1 domains) of two or more different human SIRP- ⁇ variant polypeptides, a monkey SIRP- ⁇ polypeptide, and at least one of an extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide and an extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide; the antibody does not bind a murine SIRP- ⁇ polypeptide; and the antibody blocks binding between the extracellular domain (e.g., the D1 domain) of the human SIRP- ⁇ polypeptide and an IgSF domain of a human CD47 polypeptide (see, e.g., FIGS. 7A & 7B ).
  • an antibody of the present disclosure comprises three CDRs from a VH domain comprising a sequence set forth in Table 2 and/or three CDRs from a VL domain comprising a sequence set forth in Table 2 (VH and VL sequences with CDRs highlighted are provided in FIGS. 10A-10F & 11A-11P ).
  • an antibody of the present disclosure comprises three CDRs from a VH domain comprising a sequence selected from SEQ ID NOs: 294, 139, 358, 362, 354, 380, 384, 350, 137, 374, 356, 352, 135, 348, 376, 346, 342, 344, 141, 360, 370, 382, 364, 366, 368, 372, 378, 133, 128, 396, 386, 398, 402, 392, 388, 390, 394, 400, 116, 117, 118, 119, 282, 404, 406, 278, 412, 275, 414, 280, 123, 292, 288, 290, 408, 410, 286, 284, 120, 121, 130, and 122 and/or three CDRs from a VL domain comprising a sequence selected from SEQ ID NOs: 295, 363, 140, 359, 355, 351, 136, 349, 377, 138, 375, 357
  • an antibody of the present disclosure comprises a VH domain comprising a sequence set forth in Table 2 and/or a VL domain comprising a sequence set forth in Table 2 (see FIGS. 10A-10F & 11A-11P ).
  • an antibody of the present disclosure comprises a VH domain comprising an amino acid sequence selected from SEQ ID NOs: 294, 139, 358, 362, 354, 380, 384, 350, 137, 374, 356, 352, 135, 348, 376, 346, 342, 344, 141, 360, 370, 382, 364, 366, 368, 372, 378, 133, 128, 396, 386, 398, 402, 392, 388, 390, 394, 400, 116, 117, 118, 119, 282, 404, 406, 278, 412, 275, 414, 280, 123, 292, 288, 290, 408, 410, 286, 284, 120, 121, 130, and
  • an antibody of the present disclosure comprises six CDR sequences from an antibody described in Table 2 (see FIGS. 10A-10F & 11A-11P ).
  • an antibody of the present disclosure comprises a VL domain comprising the VL domain sequence of VL domains Hum1-Hum9 as described herein.
  • the antibody is a humanized antibody.
  • the antibody is a human antibody.
  • an antibody of the present disclosure comprises a VH domain and/or a VL domain from an antibody described in Table 2.
  • an antibody of the present disclosure comprises a VH domain comprising a D or E residue followed by (e.g., in the direction of N-terminus to C-terminus) a VH domain sequence selected from SEQ ID NOs:116-130.
  • an antibody of the present disclosure binds to a human SIRP- ⁇ polypeptide at one or more residues. It is to be understood that residues of a SIRP- ⁇ polypeptide that are bound by an antibody of the present disclosure may be described with respect to a reference SIRP- ⁇ polypeptide, but this description is not limited to a single SIRP- ⁇ polypeptide (i.e., the reference SIRP- ⁇ polypeptide). Rather, specific amino acid residues of a reference SIRP- ⁇ polypeptide are described to identify corresponding amino acid positions that can be identified on various SIRP- ⁇ polypeptides.
  • amino acid positions of SEQ ID NO:296 can be identified for various human SIRP- ⁇ polypeptides, such as v1 and/or v2. Since the amino acid sequences of SEQ ID NO:296 and SEQ ID NO:5 differ only at the N80 position (excepting a small number of C-terminal residues of SEQ ID NO:296 useful for protein production and purification), one of skill in the art will appreciate that references herein to amino acid positions with respect to the amino acid sequence of SEQ ID NO:296 will correspond to the same positions in the amino acid sequence of SEQ ID NO:5. Techniques for determining the residues of a SIRP- ⁇ polypeptide bound by an antibody are known in the art; exemplary and non-limiting descriptions are provided in Example 4.
  • an antibody of the present disclosure binds to a human SIRP- ⁇ v1 polypeptide at one or more amino acid positions selected from I31, V33, Q52, K53, T67, R69, N70, and K96, according to SEQ ID NO:296.
  • the antibody further binds to the human SIRP- ⁇ v1 polypeptide at one or more amino acid positions selected from L30, P32, E54, T62, N71, M72, F74, and R95, according to SEQ ID NO:296.
  • an antibody of the present disclosure binds to a human SIRP- ⁇ v1 polypeptide at one or more amino acid positions selected from 17, P9, D10, K11, S12, A42, A108, and E111, according to SEQ ID NO:296. In some embodiments, the antibody binds to the human SIRP- ⁇ v1 polypeptide at K11, A42, A108, and E111, according to SEQ ID NO:296. In some embodiments, the antibody binds to the human SIRP- ⁇ v1 polypeptide at 17, P9, D10, K11, S12, A108, and E111, according to SEQ ID NO:296.
  • the antibody further binds to the human SIRP- ⁇ v1 polypeptide at one or more amino acid positions selected from L14, T26, T28, T88, Y90, S106, S113, and A116, according to SEQ ID NO:296. In some embodiments, the antibody further binds to the human SIRP- ⁇ v1 polypeptide at L14, T88, Y90, S106, S113, and A116 of human SIRP- ⁇ v1, according to SEQ ID NO:296. In some embodiments, the antibody further binds to the human SIRP- ⁇ v1 polypeptide at L14, T26, and T28, according to SEQ ID NO:296.
  • an antibody of the present disclosure binds to a human SIRP- ⁇ v1 polypeptide at one or more amino acid positions selected from E47, L48, P58, R59, T82, and A84, according to SEQ ID NO:296. In some embodiments, the antibody further binds to the human SIRP- ⁇ v1 polypeptide at one or more amino acid positions selected from A17, P44, G45, 149, E54, G55, H56, F57, and P83, according to SEQ ID NO:296.
  • an antibody of the present disclosure binds the extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ v1 polypeptide with a dissociation constant (K D ) of less than 100 nM, less than 50 nM, or less than 30 nM.
  • K D dissociation constant
  • the antibody blocks binding between an extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide and an IgSF domain of a human CD47 polypeptide, and the antibody binds the extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ v1 polypeptide with a dissociation constant (Kb) of less than 100 nM, less than 50 nM, or less than 30 nM. In some embodiments, the antibody binds the D1 domain of a human SIRP- ⁇ v1 polypeptide and the D1 domain of a human SIRP- ⁇ v2 polypeptide.
  • Kb dissociation constant
  • the antibody binds an extracellular domain (e.g., the D1 domain) of a cynomolgus SIRP- ⁇ polypeptide. In some embodiments, the antibody binds an extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide. In some embodiments, the antibody binds an extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide. In some embodiments, the antibody binds an extracellular domain (e.g., the D1 domain) of a murine SIRP- ⁇ polypeptide.
  • an antibody of the present disclosure binds the D1 domain of a human SIRP- ⁇ polypeptide and does not block binding between an extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide and an IgSF domain of a human CD47 polypeptide.
  • the antibody binds the extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ v1 polypeptide with a dissociation constant (K D ) of less than 100 nM, less than 50 nM, or less than 30 nM.
  • K D dissociation constant
  • the antibody binds the D1 domain of a human SIRP- ⁇ v1 polypeptide.
  • the antibody binds the D1 domain of a human SIRP- ⁇ v1 polypeptide and the D1 domain of a human SIRP- ⁇ v2 polypeptide. In some embodiments, the antibody binds an extracellular domain (e.g., the D1 domain) of a cynomolgus SIRP- ⁇ polypeptide. In some embodiments, the antibody binds an extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide. In some embodiments, the antibody binds an extracellular domain (e.g., the D1 domain) of a murine SIRP- ⁇ polypeptide.
  • an antibody of the present disclosure competes for binding the extracellular domain (e.g., the D1 domain) of the human SIRP- ⁇ polypeptide with a reference anti-SIRP- ⁇ antibody.
  • Techniques for determining whether an antibody competes for binding the extracellular domain (e.g., the D1 domain) of the human SIRP- ⁇ polypeptide with a reference anti-SIRP- ⁇ antibody are known in the art; exemplary and non-limiting descriptions are provided in Example 5.
  • an antibody of the present disclosure competes for binding the extracellular domain (e.g., the D1 domain) of the human SIRP- ⁇ polypeptide with one or more reference anti-SIRP- ⁇ antibodies selected from 119, 120, 121, 122, 21, 25, 27, 66, and 135.
  • an antibody of the present disclosure competes for binding the extracellular domain (e.g., the D1 domain) of the human SIRP- ⁇ polypeptide with one or more of the following reference anti-SIRP- ⁇ antibodies: (a) an antibody comprising a VH domain comprising the amino acid sequence of SEQ ID NO:120 and a VL domain comprising the amino acid sequence of SEQ ID NO:97, (b) an antibody comprising a VH domain comprising the amino acid sequence of SEQ ID NO:121 and a VL domain comprising the amino acid sequence of SEQ ID NO:98, (c) an antibody comprising a VH domain comprising the amino acid sequence of SEQ ID NO:130 and a VL domain comprising the amino acid sequence of SEQ ID NO:107, (d) an antibody comprising a VH domain comprising the amino acid sequence of SEQ ID NO:122 and a VL domain comprising the amino acid sequence of SEQ ID NO:99, (e) an antibody comprising a VH domain comprising the amino acid sequence
  • an antibody of the present disclosure competes for binding the extracellular domain (e.g., the D1 domain) of the human SIRP- ⁇ polypeptide with one or more reference anti-SIRP- ⁇ antibodies selected from 136 and 137. In some embodiments, an antibody of the present disclosure competes for binding the extracellular domain (e.g., the D1 domain) of the human SIRP- ⁇ polypeptide with one or more of the following reference anti-SIRP- ⁇ antibodies: (a) an antibody comprising a VH domain comprising the amino acid sequence of SEQ ID NO:133 and a VL domain comprising the amino acid sequence of SEQ ID NO:134, and (b) an antibody comprising a VH domain comprising the amino acid sequence of SEQ ID NO:128 and a VL domain comprising the amino acid sequence of SEQ ID NO:105.
  • an antibody of the present disclosure competes for binding the extracellular domain (e.g., the D1 domain) of the human SIRP- ⁇ polypeptide with one or more reference anti-SIRP- ⁇ antibodies selected from 3, 213, 173, and 209. In some embodiments, an antibody of the present disclosure competes for binding the extracellular domain (e.g., the D1 domain) of the human SIRP- ⁇ polypeptide with one or more of the following reference anti-SIRP- ⁇ antibodies: (a) an antibody comprising a VH domain comprising the amino acid sequence of SEQ ID NO:242 and a VL domain comprising the amino acid sequence of SEQ ID NO:243, (b) an antibody comprising a VH domain comprising the amino acid sequence of SEQ ID NO:275 and a VL domain comprising the amino acid sequence of SEQ ID NO:276, (c) an antibody comprising a VH domain comprising the amino acid sequence of SEQ ID NO:278 and a VL domain comprising the amino acid sequence of SEQ ID NO:
  • an antibody of the present disclosure competes for binding the extracellular domain (e.g., the D1 domain) of the human SIRP- ⁇ polypeptide with one or more reference anti-SIRP- ⁇ antibodies selected from 115, 116, 117, 118, and 132.
  • an antibody of the present disclosure competes for binding the extracellular domain (e.g., the D1 domain) of the human SIRP- ⁇ polypeptide with one or more of the following reference anti-SIRP- ⁇ antibodies: (a) an antibody comprising a VH domain comprising the amino acid sequence of SEQ ID NO:116 and a VL domain comprising the amino acid sequence of SEQ ID NO:93, (b) an antibody comprising a VH domain comprising the amino acid sequence of SEQ ID NO:117 and a VL domain comprising the amino acid sequence of SEQ ID NO:94, (c) an antibody comprising a VH domain comprising the amino acid sequence of SEQ ID NO:118 and a VL domain comprising the amino acid sequence of SEQ ID NO:95, (d) an antibody comprising a VH domain comprising the amino acid sequence of SEQ ID NO:119 and a VL domain comprising the amino acid sequence of SEQ ID NO:96, and (e) an antibody comprising a VH domain comprising the amino acid
  • an antibody of the present disclosure competes for binding the extracellular domain (e.g., the D1 domain) of the human SIRP- ⁇ polypeptide with one or more reference anti-SIRP- ⁇ antibodies selected from 218, 123, 149, 161, 162, and 194.
  • an antibody of the present disclosure competes for binding the extracellular domain (e.g., the D1 domain) of the human SIRP- ⁇ polypeptide with one or more of the following reference anti-SIRP- ⁇ antibodies: (a) an antibody comprising a VH domain comprising the amino acid sequence of SEQ ID NO:284 and a VL domain comprising the amino acid sequence of SEQ ID NO:285, (b) an antibody comprising a VH domain comprising the amino acid sequence of SEQ ID NO:123 and a VL domain comprising the amino acid sequence of SEQ ID NO:100, (c) an antibody comprising a VH domain comprising the amino acid sequence of SEQ ID NO:286 and a VL domain comprising the amino acid sequence of SEQ ID NO:287, (d) an antibody comprising a VH domain comprising the amino acid sequence of SEQ ID NO:288 and a VL domain comprising the amino acid sequence of SEQ ID NO:289, (e) an antibody comprising a VH domain comprising a V
  • an antibody of the present disclosure competes for binding the extracellular domain (e.g., the D1 domain) of the human SIRP- ⁇ polypeptide with reference anti-SIRP- ⁇ antibody 45. In some embodiments, an antibody of the present disclosure competes for binding the extracellular domain (e.g., the D1 domain) of the human SIRP- ⁇ polypeptide with an antibody comprising a VH domain comprising the amino acid sequence of SEQ ID NO:244 and a VL domain comprising the amino acid sequence of SEQ ID NO:245.
  • the present disclosure provides multiple families of anti-SIRP- ⁇ antibodies, each family comprising multiple antibodies.
  • antibodies within a given family may share certain structural properties (e.g., similar or identical HVR or CDR sequences) as well as one or more functional properties, including but not limited to binding affinity to human, monkey, and/or mouse SIRP- ⁇ polypeptide(s), binding affinity to SIRP- ⁇ polypeptides, binding affinity to SIRP- ⁇ polypeptides, mode of binding to SIRP- ⁇ (e.g., CD47 blocking, CD47 non-blocking, or “kick off” binding), induction of phagocytosis (e.g., in an in vitro assay), activation of dendritic cells, anti-tumor efficacy, SIRP- ⁇ binding epitope residue(s) or “bin” (e.g., as determined by a binning assay), and the like (see, e.g., Tables P-T).
  • structural properties e.g., similar or identical HVR or C
  • HVR and/or VH or VL sequences of antibodies belonging to the same family can be interchanged or intermingled, such that an anti-SIRP- ⁇ antibody can comprise HVR and/or VH or VL derived from more than one specific an anti-SIRP- ⁇ antibody described herein.
  • an anti-SIRP- ⁇ antibody can comprise HVR and/or VH or VL derived from more than one specific an anti-SIRP- ⁇ antibody described herein.
  • various methodologies for determining HVR or CDR sequences of an antibody variable domain are known in the art and can be used interchangeably herein, including without limitation the Kabat, Chothia, and IMGT definitions, as well as combinations thereof.
  • an antibody of the present disclosure comprises an HVR-H1 from a VH domain sequence selected from the amino acid sequences of SEQ ID NOs:120, 246, 258, 327, 121, 130, 122, 127, 247, 259, 335, and 328; an HVR-H2 from a VH domain sequence selected from the amino acid sequences of SEQ ID NOs:120, 246, 258, 327, 121, 130, 122, 127, 247, 259, 335, and 328; an HVR-H3 from a VH domain sequence selected from the amino acid sequences of SEQ ID NOs:120, 246, 258, 327, 121, 130, 122, 127, 247, 259, 335, and 328; an HVR-L1 from a VL domain sequence selected from the amino acid sequences of SEQ ID NOs:97, 98, 107, 99, 104, and 312; an HVR-L2 from a VL domain sequence selected from the amino acid sequence
  • an antibody of the present disclosure comprises an HVR-H1 from a VH domain sequence selected from the amino acid sequences of SEQ ID NOs:120, 246, 258, 327, 121, 130, 122, 127, 247, 259, 335, and 328; an HVR-H2 from a VH domain sequence selected from the amino acid sequences of SEQ ID NOs: 120, 246, 258, 327, 121, 130, 122, 127, 247, 259, 335, and 328; and an HVR-H3 from a VH domain sequence selected from the amino acid sequences of SEQ ID NOs: 120, 246, 258, 327, 121, 130, 122, 127, 247, 259, 335, and 328.
  • an antibody of the present disclosure comprises an HVR-L1 from a VL domain sequence selected from the amino acid sequences of SEQ ID NOs: 97, 98, 107, 99, 104, and 312; an HVR-L2 from a VL domain sequence selected from the amino acid sequences of SEQ ID NOs: 97, 98, 107, 99, 104, and 312; and an HVR-L3 from a VL domain sequence selected from the amino acid sequences of SEQ ID NOs: 97, 98, 107, 99, 104, and 312.
  • an antibody of the present disclosure comprises an HVR-H1 from a VH domain sequence selected from the amino acid sequences of SEQ ID NOs:120, 246, 258, 327, 121, 130, 122, 127, 247, 259, 335, and 328; an HVR-H2 from a VH domain sequence selected from the amino acid sequences of SEQ ID NOs: 120, 246, 258, 327, 121, 130, 122, 127, 247, 259, 335, and 328; an HVR-H3 from a VH domain sequence selected from the amino acid sequences of SEQ ID NOs: 120, 246, 258, 327, 121, 130, 122, 127, 247, 259, 335, and 328; an HVR-L1 from a VL domain sequence selected from the amino acid sequences of SEQ ID NOs: 97, 98, 107, 99, 104, and 312; an HVR-L2 from a VL domain sequence selected from the amino acid
  • an antibody of the present disclosure comprises an HVR-H1 from a VH domain sequence selected from the amino acid sequences of SEQ ID NOs:135, 137, 265, 266, 331, 139, 267, 332, 141, 263, 264, 268, 330, 294, 342, 344, 346, 348, 350, 352, 354, 356, 358, 360, 362, 364, 366, 368, 370, 372, 374, 376, 378, 380, 382, and 384; an HVR-H2 from a VH domain sequence selected from the amino acid sequences of SEQ ID NOs: 135, 137, 265, 266, 331, 139, 267, 332, 141, 263, 264, 268, 330, 294, 342, 344, 346, 348, 350, 352, 354, 356, 358, 360, 362, 364, 366, 368, 370, 372, 374, 376, 378, 380, 382, and 384; an HVR-H3 from a VH
  • an antibody of the present disclosure comprises an HVR-H1 from a VH domain sequence selected from the amino acid sequences of SEQ ID NOs: 135, 137, 265, 266, 331, 139, 267, 332, 141, 263, 264, 268, 330, 294, 342, 344, 346, 348, 350, 352, 354, 356, 358, 360, 362, 364, 366, 368, 370, 372, 374, 376, 378, 380, 382, and 384; an HVR-H2 from a VH domain sequence selected from the amino acid sequences of SEQ ID NOs: 135, 137, 265, 266, 331, 139, 267, 332, 141, 263, 264, 268, 330, 294, 342, 344, 346, 348, 350, 352, 354, 356, 358, 360, 362, 364, 366, 368, 370, 372, 374, 376, 378, 380, 382, and 384; and an HVR-H3
  • an antibody of the present disclosure comprises an HVR-L1 from a VL domain sequence selected from the amino acid sequences of SEQ ID NOs: 136, 138, 140, 142, 252, 254, 262, 416, 295, 343, 345, 347, 349, 351, 353, 355, 357, 359, 361, 363, 365, 367, 369, 371, 373, 375, 377, 379, 381, 383, and 385; an HVR-L2 from a VL domain sequence selected from the amino acid sequences of SEQ ID NOs: 136, 138, 140, 142, 252, 254, 262, 416, 295, 343, 345, 347, 349, 351, 353, 355, 357, 359, 361, 363, 365, 367, 369, 371, 373, 375, 377, 379, 381, 383, and 385; and an HVR-L3 from a VL domain sequence selected from the amino acid sequences of SEQ ID NOs: 136,
  • an antibody of the present disclosure comprises an HVR-H1 from a VH domain sequence selected from the amino acid sequences of SEQ ID NOs: 135, 137, 265, 266, 331, 139, 267, 332, 141, 263, 264, 268, 330, 294, 342, 344, 346, 348, 350, 352, 354, 356, 358, 360, 362, 364, 366, 368, 370, 372, 374, 376, 378, 380, 382, and 384; an HVR-H2 from a VH domain sequence selected from the amino acid sequences of SEQ ID NOs: 135, 137, 265, 266, 331, 139, 267, 332, 141, 263, 264, 268, 330, 294, 342, 344, 346, 348, 350, 352, 354, 356, 358, 360, 362, 364, 366, 368, 370, 372, 374, 376, 378, 380, 382, and 384; an HVR-H3 from a VH
  • an antibody of the present disclosure comprises an HVR-H1 from a VH domain sequence selected from the amino acid sequences of SEQ ID NOs:133, 249, 260, 329, 128, 386, 388, 390, 392, 394, 396, 398, 400, and 402; an HVR-H2 from a VH domain sequence selected from the amino acid sequences of SEQ ID NOs: 133, 249, 260, 329, 128, 386, 388, 390, 392, 394, 396, 398, 400, and 402; an HVR-H3 from a VH domain sequence selected from the amino acid sequences of SEQ ID NOs: 133, 249, 260, 329, 128, 386, 388, 390, 392, 394, 396, 398, 400, and 402; an HVR-L1 from a VL domain sequence selected from the amino acid sequences of SEQ ID NOs:134, 251, 105, 250, 417, 418, 4
  • an antibody of the present disclosure comprises an HVR-H1 from a VH domain sequence selected from the amino acid sequences of SEQ ID NOs: 133, 249, 260, 329, 128, 386, 388, 390, 392, 394, 396, 398, 400, and 402; an HVR-H2 from a VH domain sequence selected from the amino acid sequences of SEQ ID NOs: 133, 249, 260, 329, 128, 386, 388, 390, 392, 394, 396, 398, 400, and 402; and an HVR-H3 from a VH domain sequence selected from the amino acid sequences of SEQ ID NOs: 133, 249, 260, 329, 128, 386, 388, 390, 392, 394, 396, 398, 400, and 402.
  • an antibody of the present disclosure comprises an HVR-L1 from a VL domain sequence selected from the amino acid sequences of SEQ ID NOs: 134, 251, 105, 250, 417, 418, 419, 387, 389, 391, 393, 395, 397, 399, 401, and 403; an HVR-L2 from a VL domain sequence selected from the amino acid sequences of SEQ ID NOs: 134, 251, 105, 250, 417, 418, 419, 387, 389, 391, 393, 395, 397, 399, 401, and 403; and an HVR-L3 from a VL domain sequence selected from the amino acid sequences of SEQ ID NOs: 134, 251, 105, 250, 417, 418, 419, 387, 389, 391, 393, 395, 397, 399, 401, and 403.
  • an antibody of the present disclosure comprises an HVR-H1 from a VH domain sequence selected from the amino acid sequences of SEQ ID NOs: 133, 249, 260, 329, 128, 386, 388, 390, 392, 394, 396, 398, 400, and 402; an HVR-H2 from a VH domain sequence selected from the amino acid sequences of SEQ ID NOs: 133, 249, 260, 329, 128, 386, 388, 390, 392, 394, 396, 398, 400, and 402; an HVR-H3 from a VH domain sequence selected from the amino acid sequences of SEQ ID NOs: 133, 249, 260, 329, 128, 386, 388, 390, 392, 394, 396, 398, 400, and 402; an HVR-L1 from a VL domain sequence selected from the amino acid sequences of SEQ ID NOs: 134, 251, 105, 250, 417, 418
  • an antibody of the present disclosure comprises an HVR-H1 from a VH domain sequence selected from the amino acid sequences of SEQ ID NOs:116, 117, 118, 119, 282, 404, and 406; an HVR-H2 from a VH domain sequence selected from the amino acid sequences of SEQ ID NOs: 116, 117, 118, 119, 282, 404, and 406; an HVR-H3 from a VH domain sequence selected from the amino acid sequences of SEQ ID NOs: 116, 117, 118, 119, 282, 404, and 406; an HVR-L1 from a VL domain sequence selected from the amino acid sequences of SEQ ID NOs:93, 94, 95, 96, 283, 405, and 407; an HVR-L2 from a VL domain sequence selected from the amino acid sequences of SEQ ID NOs: 93, 94, 95, 96, 283, 405, and 407; and/or an HVR-L3
  • an antibody of the present disclosure comprises an HVR-H1 from a VH domain sequence selected from the amino acid sequences of SEQ ID NOs: 116, 117, 118, 119, 282, 404, and 406; an HVR-H2 from a VH domain sequence selected from the amino acid sequences of SEQ ID NOs: 116, 117, 118, 119, 282, 404, and 406; and an HVR-H3 from a VH domain sequence selected from the amino acid sequences of SEQ ID NOs: 116, 117, 118, 119, 282, 404, and 406.
  • an antibody of the present disclosure comprises an HVR-L1 from a VL domain sequence selected from the amino acid sequences of SEQ ID NOs: 93, 94, 95, 96, 283, 405, and 407; an HVR-L2 from a VL domain sequence selected from the amino acid sequences of SEQ ID NOs: 93, 94, 95, 96, 283, 405, and 407; and an HVR-L3 from a VL domain sequence selected from the amino acid sequences of SEQ ID NOs: 93, 94, 95, 96, 283, 405, and 407.
  • an antibody of the present disclosure comprises an HVR-H1 from a VH domain sequence selected from the amino acid sequences of SEQ ID NOs: 116, 117, 118, 119, 282, 404, and 406; an HVR-H2 from a VH domain sequence selected from the amino acid sequences of SEQ ID NOs: 116, 117, 118, 119, 282, 404, and 406; an HVR-H3 from a VH domain sequence selected from the amino acid sequences of SEQ ID NOs: 116, 117, 118, 119, 282, 404, and 406; an HVR-L1 from a VL domain sequence selected from the amino acid sequences of SEQ ID NOs: 93, 94, 95, 96, 283, 405, and 407; an HVR-L2 from a VL domain sequence selected from the amino acid sequences of SEQ ID NOs: 93, 94, 95, 96, 283, 405, and 407; and an HVR-L3
  • an antibody of the present disclosure comprises an HVR-H1 from a VH domain sequence set forth in SEQ ID NO: 242; an HVR-H2 from a VH domain sequence set forth in SEQ ID NO: 242; an HVR-H3 from a VH domain sequence set forth in SEQ ID NO: 242; an HVR-L1 from a VL domain sequence set forth in SEQ ID NO: 243; an HVR-L2 from a VL domain sequence set forth in SEQ ID NO: 243; and/or an HVR-L3 from a VL domain sequence set forth in SEQ ID NO: 243.
  • an antibody of the present disclosure comprises an HVR-H1 from a VH domain sequence set forth in SEQ ID NO: 242; an HVR-H2 from a VH domain sequence set forth in SEQ ID NO: 242; and an HVR-H3 from a VH domain sequence set forth in SEQ ID NO: 242.
  • an antibody of the present disclosure comprises an HVR-L1 from a VL domain sequence set forth in SEQ ID NO: 243; an HVR-L2 from a VL domain sequence set forth in SEQ ID NO: 243; and an HVR-L3 from a VL domain sequence set forth in SEQ ID NO: 243.
  • an antibody of the present disclosure comprises an HVR-H1 from a VH domain sequence set forth in SEQ ID NO: 242; an HVR-H2 from a VH domain sequence set forth in SEQ ID NO: 242; an HVR-H3 from a VH domain sequence set forth in SEQ ID NO: 242; an HVR-L1 from a VL domain sequence set forth in SEQ ID NO: 243; an HVR-L2 from a VL domain sequence set forth in SEQ ID NO: 243; and an HVR-L3 from a VL domain sequence set forth in SEQ ID NO: 243.
  • an antibody of the present disclosure comprises an HVR-H1 from a VH domain sequence selected from the amino acid sequences of SEQ ID NOs: 278 and 412; an HVR-H2 from a VH domain sequence selected from the amino acid sequences of SEQ ID NOs: 278 and 412; an HVR-H3 from a VH domain sequence selected from the amino acid sequences of SEQ ID NOs: 278 and 412; an HVR-L1 from a VL domain sequence selected from the amino acid sequences of SEQ ID NOs: 279 and 413; an HVR-L2 from a VL domain sequence selected from the amino acid sequences of SEQ ID NOs: 279 and 413; and/or an HVR-L3 from a VL domain sequence selected from the amino acid sequences of SEQ ID NOs: 279 and 413.
  • an antibody of the present disclosure comprises an HVR-H1 from a VH domain sequence selected from the amino acid sequences of SEQ ID NOs: 278 and 412; an HVR-H2 from a VH domain sequence selected from the amino acid sequences of SEQ ID NOs: 278 and 412; and an HVR-H3 from a VH domain sequence selected from the amino acid sequences of SEQ ID NOs: 278 and 412.
  • an antibody of the present disclosure comprises an HVR-L1 from a VL domain sequence selected from the amino acid sequences of SEQ ID NOs: 279 and 413; an HVR-L2 from a VL domain sequence selected from the amino acid sequences of SEQ ID NOs: 279 and 413; and an HVR-L3 from a VL domain sequence selected from the amino acid sequences of SEQ ID NOs: 279 and 413.
  • an antibody of the present disclosure comprises an HVR-H1 from a VH domain sequence selected from the amino acid sequences of SEQ ID NOs: 278 and 412; an HVR-H2 from a VH domain sequence selected from the amino acid sequences of SEQ ID NOs: 278 and 412; an HVR-H3 from a VH domain sequence selected from the amino acid sequences of SEQ ID NOs: 278 and 412; an HVR-L1 from a VL domain sequence selected from the amino acid sequences of SEQ ID NOs: 279 and 413; an HVR-L2 from a VL domain sequence selected from the amino acid sequences of SEQ ID NOs: 279 and 413; and an HVR-L3 from a VL domain sequence selected from the amino acid sequences of SEQ ID NOs: 279 and 413.
  • an antibody of the present disclosure comprises an HVR-H1 from a VH domain sequence selected from the amino acid sequences of SEQ ID NOs: 275 and 414; an HVR-H2 from a VH domain sequence selected from the amino acid sequences of SEQ ID NOs: 275 and 414; an HVR-H3 from a VH domain sequence selected from the amino acid sequences of SEQ ID NOs: 275 and 414; an HVR-L1 from a VL domain sequence selected from the amino acid sequences of SEQ ID NOs: 276 and 415; an HVR-L2 from a VL domain sequence selected from the amino acid sequences of SEQ ID NOs: 276 and 415; and/or an HVR-L3 from a VL domain sequence selected from the amino acid sequences of SEQ ID NOs: 276 and 415.
  • an antibody of the present disclosure comprises an HVR-H1 from a VH domain sequence selected from the amino acid sequences of SEQ ID NOs: 275 and 414; an HVR-H2 from a VH domain sequence selected from the amino acid sequences of SEQ ID NOs: 275 and 414; and an HVR-H3 from a VH domain sequence selected from the amino acid sequences of SEQ ID NOs: 275 and 414.
  • an antibody of the present disclosure comprises an HVR-L1 from a VL domain sequence selected from the amino acid sequences of SEQ ID NOs: 276 and 415; an HVR-L2 from a VL domain sequence selected from the amino acid sequences of SEQ ID NOs: 276 and 415; and an HVR-L3 from a VL domain sequence selected from the amino acid sequences of SEQ ID NOs: 276 and 415.
  • an antibody of the present disclosure comprises an HVR-H1 from a VH domain sequence selected from the amino acid sequences of SEQ ID NOs: 275 and 414; an HVR-H2 from a VH domain sequence selected from the amino acid sequences of SEQ ID NOs: 275 and 414; an HVR-H3 from a VH domain sequence selected from the amino acid sequences of SEQ ID NOs: 275 and 414; an HVR-L1 from a VL domain sequence selected from the amino acid sequences of SEQ ID NOs: 276 and 415; an HVR-L2 from a VL domain sequence selected from the amino acid sequences of SEQ ID NOs: 276 and 415; and an HVR-L3 from a VL domain sequence selected from the amino acid sequences of SEQ ID NOs: 276 and 415.
  • an antibody of the present disclosure comprises an HVR-H1 from a VH domain sequence set forth in SEQ ID NO: 280; an HVR-H2 from a VH domain sequence set forth in SEQ ID NO: 280; an HVR-H3 from a VH domain sequence set forth in SEQ ID NO: 280; an HVR-L1 from a VL domain sequence set forth in SEQ ID NO: 281; an HVR-L2 from a VL domain sequence set forth in SEQ ID NO: 281; and/or an HVR-L3 from a VL domain sequence set forth in SEQ ID NO: 281.
  • an antibody of the present disclosure comprises an HVR-H1 from a VH domain sequence set forth in SEQ ID NO: 280; an HVR-H2 from a VH domain sequence set forth in SEQ ID NO: 280; and an HVR-H3 from a VH domain sequence set forth in SEQ ID NO: 280.
  • an antibody of the present disclosure comprises an HVR-L1 from a VL domain sequence set forth in SEQ ID NO: 281; an HVR-L2 from a VL domain sequence set forth in SEQ ID NO: 281; and an HVR-L3 from a VL domain sequence set forth in SEQ ID NO: 281.
  • an antibody of the present disclosure comprises an HVR-H1 from a VH domain sequence set forth in SEQ ID NO: 280; an HVR-H2 from a VH domain sequence set forth in SEQ ID NO: 280; an HVR-H3 from a VH domain sequence set forth in SEQ ID NO: 280; an HVR-L1 from a VL domain sequence set forth in SEQ ID NO: 281; an HVR-L2 from a VL domain sequence set forth in SEQ ID NO: 281; and an HVR-L3 from a VL domain sequence set forth in SEQ ID NO: 281.
  • an antibody of the present disclosure comprises an HVR-H1 from a VH domain sequence selected from the amino acid sequences of SEQ ID NOs: 123 and 292; an HVR-H2 from a VH domain sequence selected from the amino acid sequences of SEQ ID NOs: 123 and 292; an HVR-H3 from a VH domain sequence selected from the amino acid sequences of SEQ ID NOs: 123 and 292; an HVR-L1 from a VL domain sequence selected from the amino acid sequences of SEQ ID NOs: 100 and 293; an HVR-L2 from a VL domain sequence selected from the amino acid sequences of SEQ ID NOs: 100 and 293; and/or an HVR-L3 from a VL domain sequence selected from the amino acid sequences of SEQ ID NOs: 100 and 293.
  • an antibody of the present disclosure comprises an HVR-H1 from a VH domain sequence selected from the amino acid sequences of SEQ ID NOs: 123 and 292; an HVR-H2 from a VH domain sequence selected from the amino acid sequences of SEQ ID NOs: 123 and 292; and an HVR-H3 from a VH domain sequence selected from the amino acid sequences of SEQ ID NOs: 123 and 292.
  • an antibody of the present disclosure comprises an HVR-L1 from a VL domain sequence selected from the amino acid sequences of SEQ ID NOs: 100 and 293; an HVR-L2 from a VL domain sequence selected from the amino acid sequences of SEQ ID NOs: 100 and 293; and an HVR-L3 from a VL domain sequence selected from the amino acid sequences of SEQ ID NOs: 100 and 293.
  • an antibody of the present disclosure comprises an HVR-H1 from a VH domain sequence selected from the amino acid sequences of SEQ ID NOs: 123 and 292; an HVR-H2 from a VH domain sequence selected from the amino acid sequences of SEQ ID NOs: 123 and 292; an HVR-H3 from a VH domain sequence selected from the amino acid sequences of SEQ ID NOs: 123 and 292; an HVR-L1 from a VL domain sequence selected from the amino acid sequences of SEQ ID NOs: 100 and 293; an HVR-L2 from a VL domain sequence selected from the amino acid sequences of SEQ ID NOs: 100 and 293; and an HVR-L3 from a VL domain sequence selected from the amino acid sequences of SEQ ID NOs: 100 and 293.
  • an antibody of the present disclosure comprises an HVR-H1 from a VH domain sequence selected from the amino acid sequences of SEQ ID NOs: 288, 290, 408, and 410; an HVR-H2 from a VH domain sequence selected from the amino acid sequences of SEQ ID NOs: 288, 290, 408, and 410; an HVR-H3 from a VH domain sequence selected from the amino acid sequences of SEQ ID NOs: 288, 290, 408, and 410; an HVR-L1 from a VL domain sequence selected from the amino acid sequences of SEQ ID NOs: 289, 291, 409, and 411; an HVR-L2 from a VL domain sequence selected from the amino acid sequences of SEQ ID NOs: 289, 291, 409, and 411; and/or an HVR-L3 from a VL domain sequence selected from the amino acid sequences of SEQ ID NOs: 289, 291, 409, and 411.
  • an antibody of the present disclosure comprises an HVR-H1 from a VH domain sequence selected from the amino acid sequences of SEQ ID NOs: 288, 290, 408, and 410; an HVR-H2 from a VH domain sequence selected from the amino acid sequences of SEQ ID NOs: 288, 290, 408, and 410; and an HVR-H3 from a VH domain sequence selected from the amino acid sequences of SEQ ID NOs: 288, 290, 408, and 410.
  • an antibody of the present disclosure comprises an HVR-L1 from a VL domain sequence selected from the amino acid sequences of SEQ ID NOs: 289, 291, 409, and 411; an HVR-L2 from a VL domain sequence selected from the amino acid sequences of SEQ ID NOs: 289, 291, 409, and 411; and an HVR-L3 from a VL domain sequence selected from the amino acid sequences of SEQ ID NOs: 289, 291, 409, and 411.
  • an antibody of the present disclosure comprises an HVR-H1 from a VH domain sequence selected from the amino acid sequences of SEQ ID NOs: 288, 290, 408, and 410; an HVR-H2 from a VH domain sequence selected from the amino acid sequences of SEQ ID NOs: 288, 290, 408, and 410; an HVR-H3 from a VH domain sequence selected from the amino acid sequences of SEQ ID NOs: 288, 290, 408, and 410; an HVR-L1 from a VL domain sequence selected from the amino acid sequences of SEQ ID NOs: 289, 291, 409, and 411; an HVR-L2 from a VL domain sequence selected from the amino acid sequences of SEQ ID NOs: 289, 291, 409, and 411; and an HVR-L3 from a VL domain sequence selected from the amino acid sequences of SEQ ID NOs: 289, 291, 409, and 411.
  • an antibody of the present disclosure comprises an HVR-H1 from a VH domain sequence set forth in SEQ ID NO: 286; an HVR-H2 from a VH domain sequence set forth in SEQ ID NO: 286; an HVR-H3 from a VH domain sequence set forth in SEQ ID NO: 286; an HVR-L1 from a VL domain sequence set forth in SEQ ID NO: 287; an HVR-L2 from a VL domain sequence set forth in SEQ ID NO: 287; and/or an HVR-L3 from a VL domain sequence set forth in SEQ ID NO: 287.
  • an antibody of the present disclosure comprises an HVR-H1 from a VH domain sequence set forth in SEQ ID NO: 286; an HVR-H2 from a VH domain sequence set forth in SEQ ID NO: 286; and an HVR-H3 from a VH domain sequence set forth in SEQ ID NO: 286.
  • an antibody of the present disclosure comprises an HVR-L1 from a VL domain sequence set forth in SEQ ID NO: 287; an HVR-L2 from a VL domain sequence set forth in SEQ ID NO: 287; and an HVR-L3 from a VL domain sequence set forth in SEQ ID NO: 287.
  • an antibody of the present disclosure comprises an HVR-H1 from a VH domain sequence set forth in SEQ ID NO: 286; an HVR-H2 from a VH domain sequence set forth in SEQ ID NO: 286; an HVR-H3 from a VH domain sequence set forth in SEQ ID NO: 286; an HVR-L1 from a VL domain sequence set forth in SEQ ID NO: 287; an HVR-L2 from a VL domain sequence set forth in SEQ ID NO: 287; and an HVR-L3 from a VL domain sequence set forth in SEQ ID NO: 287.
  • an antibody of the present disclosure comprises an HVR-H1 from a VH domain sequence set forth in SEQ ID NO: 284; an HVR-H2 from a VH domain sequence set forth in SEQ ID NO: 284; an HVR-H3 from a VH domain sequence set forth in SEQ ID NO: 284; an HVR-L1 from a VL domain sequence set forth in SEQ ID NO: 285; an HVR-L2 from a VL domain sequence set forth in SEQ ID NO: 285; and/or an HVR-L3 from a VL domain sequence set forth in SEQ ID NO: 285.
  • an antibody of the present disclosure comprises an HVR-H1 from a VH domain sequence set forth in SEQ ID NO: 284; an HVR-H2 from a VH domain sequence set forth in SEQ ID NO: 284; and an HVR-H3 from a VH domain sequence set forth in SEQ ID NO: 284.
  • an antibody of the present disclosure comprises an HVR-L1 from a VL domain sequence set forth in SEQ ID NO: 285; an HVR-L2 from a VL domain sequence set forth in SEQ ID NO: 285; and an HVR-L3 from a VL domain sequence set forth in SEQ ID NO: 285.
  • an antibody of the present disclosure comprises an HVR-H1 from a VH domain sequence set forth in SEQ ID NO: 284; an HVR-H2 from a VH domain sequence set forth in SEQ ID NO: 284; an HVR-H3 from a VH domain sequence set forth in SEQ ID NO: 284; an HVR-L1 from a VL domain sequence set forth in SEQ ID NO: 285; an HVR-L2 from a VL domain sequence set forth in SEQ ID NO: 285; and an HVR-L3 from a VL domain sequence set forth in SEQ ID NO: 285.
  • an antibody of the present disclosure comprises an HVR-H1 from a VH domain sequence set forth in SEQ ID NO:244; an HVR-H2 from a VH domain sequence set forth in SEQ ID NO: 244; an HVR-H3 from a VH domain sequence set forth in SEQ ID NO: 244; an HVR-L1 from a VL domain sequence set forth in SEQ ID NO: 245; an HVR-L2 from a VL domain sequence set forth in SEQ ID NO: 245; and/or an HVR-L3 from a VL domain sequence s set forth in SEQ ID NO: 245.
  • an antibody of the present disclosure comprises an HVR-H1 from a VH domain sequence set forth in SEQ ID NO: 244; an HVR-H2 from a VH domain sequence set forth in SEQ ID NO: 244; and an HVR-H3 from a VH domain sequence set forth in SEQ ID NO: 244.
  • an antibody of the present disclosure comprises an HVR-L1 from a VL domain sequence s set forth in SEQ ID NO:245; an HVR-L2 from a VL domain sequence set forth in SEQ ID NO:245; and an HVR-L3 from a VL domain sequence selected set forth in SEQ ID NO:245.
  • an antibody of the present disclosure comprises an HVR-H1 from a VH domain sequence set forth in SEQ ID NO:244; an HVR-H2 from a VH domain sequence set forth in SEQ ID NO:244; an HVR-H3 from a VH domain sequence set forth in SEQ ID NO:244; an HVR-L1 from a VL domain sequence s set forth in SEQ ID NO:245; an HVR-L2 from a VL domain sequence set forth in SEQ ID NO: 245; and an HVR-L3 from a VL domain sequence set forth in SEQ ID NO: 245.
  • an antibody of the present disclosure comprises one, two, or three heavy chain HVR sequences from a VH domain comprising the amino acid sequence of SEQ ID NO:242 and/or one, two, or three light chain HVR sequences from a VL domain comprising the amino acid sequence of SEQ ID NO:243.
  • an antibody of the present disclosure comprises a VH domain comprising the amino acid sequence of SEQ ID NO:242 and/or a VL domain comprising the amino acid sequence of SEQ ID NO:243.
  • an antibody of the present disclosure comprises one, two, or three heavy chain HVR sequences from a VH domain comprising the amino acid sequence of SEQ ID NO:244 and/or one, two, or three light chain HVR sequences from a VL domain comprising the amino acid sequence of SEQ ID NO:245.
  • an antibody of the present disclosure comprises a VH domain comprising the amino acid sequence of SEQ ID NO:244 and/or a VL domain comprising the amino acid sequence of SEQ ID NO:245.
  • an antibody of the present disclosure comprises one, two, or three heavy chain HVR sequences from a VH domain comprising the amino acid sequence of SEQ ID NO:275 and/or one, two, or three light chain HVR sequences from a VL domain comprising the amino acid sequence of SEQ ID NO:276.
  • an antibody of the present disclosure comprises a VH domain comprising the amino acid sequence of SEQ ID NO:275 and/or a VL domain comprising the amino acid sequence of SEQ ID NO:276.
  • an antibody of the present disclosure comprises one, two, or three heavy chain HVR sequences from a VH domain comprising the amino acid sequence of SEQ ID NO:278 and/or one, two, or three light chain HVR sequences from a VL domain comprising the amino acid sequence of SEQ ID NO:279.
  • an antibody of the present disclosure comprises a VH domain comprising the amino acid sequence of SEQ ID NO:278 and/or a VL domain comprising the amino acid sequence of SEQ ID NO:279.
  • an antibody of the present disclosure comprises one, two, or three heavy chain HVR sequences from a VH domain comprising the amino acid sequence of SEQ ID NO:280 and/or one, two, or three light chain HVR sequences from a VL domain comprising the amino acid sequence of SEQ ID NO:281.
  • an antibody of the present disclosure comprises a VH domain comprising the amino acid sequence of SEQ ID NO:280 and/or a VL domain comprising the amino acid sequence of SEQ ID NO:281.
  • an antibody of the present disclosure comprises one, two, or three heavy chain HVR sequences from a VH domain comprising the amino acid sequence of SEQ ID NO:282 and/or one, two, or three light chain HVR sequences from a VL domain comprising the amino acid sequence of SEQ ID NO:283.
  • an antibody of the present disclosure comprises a VH domain comprising the amino acid sequence of SEQ ID NO:282 and/or a VL domain comprising the amino acid sequence of SEQ ID NO:283.
  • an antibody of the present disclosure comprises one, two, or three heavy chain HVR sequences from a VH domain comprising the amino acid sequence of SEQ ID NO:284 and/or one, two, or three light chain HVR sequences from a VL domain comprising the amino acid sequence of SEQ ID NO:285.
  • an antibody of the present disclosure comprises a VH domain comprising the amino acid sequence of SEQ ID NO:284 and/or a VL domain comprising the amino acid sequence of SEQ ID NO:285.
  • an antibody of the present disclosure comprises one, two, or three heavy chain HVR sequences from a VH domain comprising the amino acid sequence of SEQ ID NO:286 and/or one, two, or three light chain HVR sequences from a VL domain comprising the amino acid sequence of SEQ ID NO:287.
  • an antibody of the present disclosure comprises a VH domain comprising the amino acid sequence of SEQ ID NO:286 and/or a VL domain comprising the amino acid sequence of SEQ ID NO:287.
  • an antibody of the present disclosure comprises one, two, or three heavy chain HVR sequences from a VH domain comprising the amino acid sequence of SEQ ID NO:288 and/or one, two, or three light chain HVR sequences from a VL domain comprising the amino acid sequence of SEQ ID NO:289.
  • an antibody of the present disclosure comprises a VH domain comprising the amino acid sequence of SEQ ID NO:288 and/or a VL domain comprising the amino acid sequence of SEQ ID NO:289.
  • an antibody of the present disclosure comprises one, two, or three heavy chain HVR sequences from a VH domain comprising the amino acid sequence of SEQ ID NO:290 and/or one, two, or three light chain HVR sequences from a VL domain comprising the amino acid sequence of SEQ ID NO:291.
  • an antibody of the present disclosure comprises a VH domain comprising the amino acid sequence of SEQ ID NO:290 and/or a VL domain comprising the amino acid sequence of SEQ ID NO:291.
  • an antibody of the present disclosure comprises one, two, or three heavy chain HVR sequences from a VH domain comprising the amino acid sequence of SEQ ID NO:292 and/or one, two, or three light chain HVR sequences from a VL domain comprising the amino acid sequence of SEQ ID NO:293.
  • an antibody of the present disclosure comprises a VH domain comprising the amino acid sequence of SEQ ID NO:292 and/or a VL domain comprising the amino acid sequence of SEQ ID NO:293.
  • an antibody of the present disclosure comprises one, two, or three heavy chain HVR sequences from a VH domain comprising the amino acid sequence of SEQ ID NO:278 and/or one, two, or three light chain HVR sequences from a VL domain comprising the amino acid sequence of SEQ ID NO:279.
  • an antibody of the present disclosure comprises a VH domain comprising the amino acid sequence of SEQ ID NO:278 and/or a VL domain comprising the amino acid sequence of SEQ ID NO:279.
  • an antibody of the present disclosure comprises one, two, or three heavy chain HVR sequences from a VH domain comprising the amino acid sequence of SEQ ID NO:280 and/or one, two, or three light chain HVR sequences from a VL domain comprising the amino acid sequence of SEQ ID NO:281.
  • an antibody of the present disclosure comprises a VH domain comprising the amino acid sequence of SEQ ID NO:280 and/or a VL domain comprising the amino acid sequence of SEQ ID NO:281.
  • an antibody of the present disclosure comprises one, two, or three heavy chain HVR sequences from a VH domain comprising the amino acid sequence of SEQ ID NO:275 and/or one, two, or three light chain HVR sequences from a VL domain comprising the amino acid sequence of SEQ ID NO:276.
  • an antibody of the present disclosure comprises a VH domain comprising the amino acid sequence of SEQ ID NO:275 and/or a VL domain comprising the amino acid sequence of SEQ ID NO:276.
  • an antibody of the present disclosure comprises one, two, or three heavy chain HVR sequences from a VH domain comprising the amino acid sequence of SEQ ID NO:414 and/or one, two, or three light chain HVR sequences from a VL domain comprising the amino acid sequence of SEQ ID NO:415.
  • an antibody of the present disclosure comprises a VH domain comprising the amino acid sequence of SEQ ID NO:414 and/or a VL domain comprising the amino acid sequence of SEQ ID NO:415.
  • an antibody of the present disclosure comprises one, two, or three heavy chain HVR sequences from a VH domain comprising the amino acid sequence of SEQ ID NO:123 and/or one, two, or three light chain HVR sequences from a VL domain comprising the amino acid sequence of SEQ ID NO:100.
  • an antibody of the present disclosure comprises a VH domain comprising the amino acid sequence of SEQ ID NO:123 and/or a VL domain comprising the amino acid sequence of SEQ ID NO:100.
  • an antibody of the present disclosure comprises one, two, or three heavy chain HVR sequences from a VH domain comprising the amino acid sequence of SEQ ID NO:292 and/or one, two, or three light chain HVR sequences from a VL domain comprising the amino acid sequence of SEQ ID NO:293.
  • an antibody of the present disclosure comprises a VH domain comprising the amino acid sequence of SEQ ID NO:292 and/or a VL domain comprising the amino acid sequence of SEQ ID NO:293.
  • an antibody of the present disclosure comprises one, two, or three heavy chain HVR sequences from a VH domain comprising the amino acid sequence of SEQ ID NO:288 and/or one, two, or three light chain HVR sequences from a VL domain comprising the amino acid sequence of SEQ ID NO:289.
  • an antibody of the present disclosure comprises a VH domain comprising the amino acid sequence of SEQ ID NO:288 and/or a VL domain comprising the amino acid sequence of SEQ ID NO:289.
  • an antibody of the present disclosure comprises one, two, or three heavy chain HVR sequences from a VH domain comprising the amino acid sequence of SEQ ID NO:290 and/or one, two, or three light chain HVR sequences from a VL domain comprising the amino acid sequence of SEQ ID NO:291.
  • an antibody of the present disclosure comprises a VH domain comprising the amino acid sequence of SEQ ID NO:290 and/or a VL domain comprising the amino acid sequence of SEQ ID NO:291.
  • an antibody of the present disclosure comprises one, two, or three heavy chain HVR sequences from a VH domain comprising the amino acid sequence of SEQ ID NO:286 and/or one, two, or three light chain HVR sequences from a VL domain comprising the amino acid sequence of SEQ ID NO:287.
  • an antibody of the present disclosure comprises a VH domain comprising the amino acid sequence of SEQ ID NO:286 and/or a VL domain comprising the amino acid sequence of SEQ ID NO:287.
  • an antibody of the present disclosure comprises one, two, or three heavy chain HVR sequences from a VH domain comprising the amino acid sequence of SEQ ID NO:284 and/or one, two, or three light chain HVR sequences from a VL domain comprising the amino acid sequence of SEQ ID NOs:285, 333, or 334.
  • an antibody of the present disclosure comprises a VH domain comprising the amino acid sequence of SEQ ID NO:284 and/or a VL domain comprising the amino acid sequence of SEQ ID NOs: 285, 333, or 334.
  • an antibody of the present disclosure comprises (a) a heavy chain variable (VH) domain comprising (i) an HVR-H1 sequence comprising the amino acid sequence of NFAMT (SEQ ID NO:175), NFAVT (SEQ ID NO:204), or NFALT (SEQ ID NO:305), (ii) an HVR-H2 sequence comprising the amino acid sequence of TIGSGDTYYADSVKG (SEQ ID NO:144), and (iii) an HVR-H3 sequence comprising the amino acid sequence of DSTVSWSGDFFDY (SEQ ID NO:145); and/or (b) a light chain variable (VL) domain comprising (i) an HVR-L1 sequence comprising the amino acid sequence of RASQNVKNDLA (SEQ ID NO:146), (ii) an HVR-L2 sequence comprising the amino acid sequence of AARIRET (SEQ ID NO:147), and (iii) an HVR-L3 sequence comprising the amino acid sequence of QQYYDWPP
  • the VH domain comprises an amino acid sequence that is at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identical to the amino acid sequence of SEQ ID NO:120, 246, 258, or 327; and/or the VL domain comprises an amino acid sequence that is at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identical to the amino acid sequence of SEQ ID NO:97 or 312.
  • the VH domain comprises the amino acid sequence of SEQ ID NO:246, and the VL domain comprises the amino acid sequence of SEQ ID NO:97; the VH domain comprises the amino acid sequence of SEQ ID NO:258, and the VL domain comprises the amino acid sequence of SEQ ID NO:97; the VH domain comprises the amino acid sequence of SEQ ID NO:120, and the VL domain comprises the amino acid sequence of SEQ ID NO:97; the VH domain comprises the amino acid sequence of SEQ ID NO:327, and the VL domain comprises the amino acid sequence of SEQ ID NO:97; the VH domain comprises the amino acid sequence of SEQ ID NO:246, and the VL domain comprises the amino acid sequence of SEQ ID NO:312; the VH domain comprises the amino acid sequence of SEQ ID NO:258, and the VL domain comprises the amino acid sequence of SEQ ID NO:312; the VH domain comprises the amino acid sequence of SEQ ID NO:120, and the VL domain comprises the amino acid sequence of SEQ ID NO:312; or
  • an antibody of the present disclosure comprises (a) a heavy chain variable (VH) domain comprising (i) an HVR-H1 sequence comprising the amino acid sequence of IYAMS (SEQ ID NO:269), IYAVS (SEQ ID NO:213), or IYALS (SEQ ID NO:306), (ii) an HVR-H2 sequence comprising the amino acid sequence of TIGADDTYYADSVKG (SEQ ID NO:150), and (iii) an HVR-H3 sequence comprising the amino acid sequence of DSTVGWSGDFFDY (SEQ ID NO:151); and/or (b) a light chain variable (VL) domain comprising (i) an HVR-L1 sequence comprising the amino acid sequence of RASQNVRSDIA (SEQ ID NO:152), (ii) an HVR-L2 sequence comprising the amino acid sequence of AASSRDT (SEQ ID NO:153), and (iii) an HVR-L3 sequence comprising the amino acid sequence of QQYYDWPP
  • the VH domain comprises an amino acid sequence that is at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identical to the amino acid sequence of SEQ ID NO:341, 127, 247, 259, or 328; and/or the VL domain comprises an amino acid sequence that is at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identical to the amino acid sequence of SEQ ID NO:104 or 248.
  • the VH domain comprises the amino acid sequence of SEQ ID NO:127, and the VL domain comprises the amino acid sequence of SEQ ID NO:104; the VH domain comprises the amino acid sequence of SEQ ID NO:341, and the VL domain comprises the amino acid sequence of SEQ ID NO:104; the VH domain comprises the amino acid sequence of SEQ ID NO:247, and the VL domain comprises the amino acid sequence of SEQ ID NO:104; the VH domain comprises the amino acid sequence of SEQ ID NO:259, and the VL domain comprises the amino acid sequence of SEQ ID NO:104; the VH domain comprises the amino acid sequence of SEQ ID NO:328, and the VL domain comprises the amino acid sequence of SEQ ID NO:104; the VH domain comprises the amino acid sequence of SEQ ID NO:127, and the VL domain comprises the amino acid sequence of SEQ ID NO:248; the VH domain comprises the amino acid sequence of SEQ ID NO:341, and the VL domain comprises the amino acid sequence of SEQ ID NO:248; the VH domain comprises
  • an antibody of the present disclosure comprises (a) a heavy chain variable (VH) domain comprising: (i) an HVR-H1 sequence comprising the amino acid sequence of X 1 X 2 DX 3 N, wherein X 1 is S or T; X 2 is Y or S; and X 3 is M, L, or V (SEQ ID NO:307); (ii) an HVR-H2 sequence comprising the amino acid sequence of LISGSGEIX 1 YYADSVKG, wherein X 1 is I or T (SEQ ID NO:308); and (iii) an HVR-H3 sequence comprising the amino acid sequence of EX 1 X 2 X 3 YRFFDX 4 , wherein X 1 is N or D; X 2 is N or D; X 3 is R or M; and X 4 is D or Y (SEQ ID NO:309); and/or (b) a light chain variable (VL) domain comprising: (i) an HVR-L1 sequence
  • an antibody of the present disclosure comprises (a) a heavy chain variable (VH) domain comprising (i) an HVR-H1 sequence comprising the amino acid sequence of SYDMN (SEQ ID NO:270), SYDVN (SEQ ID NO:221), or SYDLN (SEQ ID NO:313), (ii) an HVR-H2 sequence comprising the amino acid sequence of LISGSGEIIYYADSVKG (SEQ ID NO:156), and (iii) an HVR-H3 sequence comprising the amino acid sequence of ENNRYRFFDD (SEQ ID NO:157); and/or (b) a light chain variable (VL) domain comprising (i) an HVR-L1 sequence comprising the amino acid sequence of RASQSVYTYLA (SEQ ID NO:158), (ii) an HVR-L2 sequence comprising the amino acid sequence of GASSRAT (SEQ ID NO:159), and (iii) an HVR-L3 sequence comprising the amino acid sequence of QQ
  • the VH domain comprises an amino acid sequence that is at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identical to the amino acid sequence of SEQ ID NO:133, 260, 329, or 249; and/or the VL domain comprises an amino acid sequence that is at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identical to the amino acid sequence of SEQ ID NO:134, 250, 251, 417, 418, or 419.
  • the VH domain comprises the amino acid sequence of SEQ ID NO:133, and the VL domain comprises the amino acid sequence of SEQ ID NO:134;
  • the VH domain comprises the amino acid sequence of SEQ ID NO:260, and the VL domain comprises the amino acid sequence of SEQ ID NO:134;
  • the VH domain comprises the amino acid sequence of SEQ ID NO:329, and the VL domain comprises the amino acid sequence of SEQ ID NO:134;
  • the VH domain comprises the amino acid sequence of SEQ ID NO:249, and the VL domain comprises the amino acid sequence of SEQ ID NO:134;
  • the VH domain comprises the amino acid sequence of SEQ ID NO:133, and the VL domain comprises the amino acid sequence of SEQ ID NO:417;
  • the VH domain comprises the amino acid sequence of SEQ ID NO:260, and the VL domain comprises the amino acid sequence of SEQ ID NO:417;
  • the VH domain comprises the amino acid sequence of SEQ ID NO:329, and the VL domain comprises the amino acid sequence
  • an antibody of the present disclosure comprises (a) a heavy chain variable (VH) domain comprising: (i) an HVR-H1 sequence comprising the amino acid sequence of X 1 X 2 AX 3 S, wherein X 1 is S or T; X 2 is N, Y, H, or D; and X 3 is M, L, or V (SEQ ID NO:297); (ii) an HVR-H2 sequence comprising the amino acid sequence of GISX 1 X 2 X 3 X 4 X 5 X 6 YYX 7 X 8 SX 9 KG, wherein X 1 is A or S; X 2 is G, S, or absent; X 3 is S, D or G; X 4 is G or S; X 5 is D, S, or G; X 6 is T or A; X 7 is P, G, V, I, A, or S; X 8 is A, D, or G; and X 9 is V or M (SEQ ID NO:298); and
  • an antibody of the present disclosure comprises (a) a heavy chain variable (VH) domain comprising: (i) an HVR-H1 sequence comprising the amino acid sequence of SX 1 AX 2 S, wherein X 1 is N or Y; and wherein X 2 is M, L, or V (SEQ ID NO:302); (ii) an HVR-H2 sequence comprising the amino acid sequence of GISX 1 GX 2 X 3 DTYYX 4 X 5 SVKG, wherein X 1 is A or S; X 2 is G or absent; X 3 is S or G; X 4 is P, G, or V; and X 5 is A or D (SEQ ID NO:303); and (iii) an HVR-H3 sequence comprising the amino acid sequence of ETWNHLFDY (SEQ ID NO:193); and/or (b) a light chain variable (VL) domain comprising: (i) an HVR-L1 sequence comprising the amino acid sequence of SGGX 1 Y
  • the VH domain comprises (i) an HVR-H1 sequence comprising the amino acid sequence of SNAMS (SEQ ID NO:194), SNAVS (SEQ ID NO:271), or SNALS (SEQ ID NO:318), (ii) an HVR-H2 sequence comprising the amino acid sequence of GISAGGSDTYYPASVKG (SEQ ID NO:195), and (iii) an HVR-H3 sequence comprising the amino acid sequence of ETWNHLFDY (SEQ ID NO:193).
  • the VH domain comprises an amino acid sequence that is at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 135, 263, 264, or 330.
  • the VH domain comprises (i) an HVR-H1 sequence comprising the amino acid sequence of SNAMS (SEQ ID NO:194), SNAVS (SEQ ID NO:271), or SNALS (SEQ ID NO:318), (ii) an HVR-H2 sequence comprising the amino acid sequence of GISSGSDTYYGDSVKG (SEQ ID NO:197), and (iii) an HVR-H3 sequence comprising the amino acid sequence of ETWNHLFDY (SEQ ID NO:193).
  • the VH domain comprises an amino acid sequence that is at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 137, 265, 266, or 331.
  • the VH domain comprises (i) an HVR-H1 sequence comprising the amino acid sequence of SYAMS (SEQ ID NO:200), SYAVS (SEQ ID NO:272), or SYALS (SEQ ID NO:319), (ii) an HVR-H2 sequence comprising the amino acid sequence of GISSGGDTYYVDSVKG (SEQ ID NO:201), and (iii) an HVR-H3 sequence comprising the amino acid sequence of ETWNHLFDY (SEQ ID NO:193).
  • the VH domain comprises an amino acid sequence that is at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 139, 267, 268, or 332.
  • the VL domain comprises one or more human IGLV3 framework sequences. In some embodiments, the VL domain comprises four human IGLV3 framework sequences.
  • the VL domain comprises the sequence FW1-HVR-L1-FW2-HVR-L2-FW3-HVR-L3-FW4 (N-terminus to C-terminus), wherein FW1 comprises the amino acid sequence SYELTQPPSVSVSVSPGQTARITC (SEQ ID NO:314), FW2 comprises the amino acid sequence WYQQKPGQAPVTLIY (SEQ ID NO:315), FW3 comprises the amino acid sequence NIPERFSGSSSGTTVTLTISGVQAEDEADYYC (SEQ ID NO:316), and FW4 comprises the amino acid sequence FGGGTKLTVL (SEQ ID NO:317).
  • the VL domain comprises (i) an HVR-L1 sequence comprising the amino acid sequence of SGGSYSSYYYA (SEQ ID NO:170), (ii) an HVR-L2 sequence comprising the amino acid sequence of SDDKRPS (SEQ ID NO:336), and (iii) an HVR-L3 sequence comprising the amino acid sequence of GGYDQSSYTNP (SEQ ID NO:172).
  • the VL domain comprises an amino acid sequence that is at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identical to the amino acid sequence of SEQ ID NO:252. In some embodiments, the VL domain comprises an amino acid sequence that is at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identical to the amino acid sequence of SEQ ID NO:254.
  • the VL domain comprises an amino acid sequence that is at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identical to the amino acid sequence of SEQ ID NO:416.
  • the VL domain comprises (i) an HVR-L1 sequence comprising the amino acid sequence of SGGAYSSYYYA (SEQ ID NO:261), (ii) an HVR-L2 sequence comprising the amino acid sequence of SDDKRPS (SEQ ID NO:336), and (iii) an HVR-L3 sequence comprising the amino acid sequence of GGYDQSSYTNP (SEQ ID NO:172).
  • the VL domain comprises an amino acid sequence that is at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identical to the amino acid sequence of SEQ ID NO:262.
  • the VH domain comprises the amino acid sequence of SEQ ID NO:263, and the VL domain comprises the amino acid sequence of SEQ ID NO:252; the VH domain comprises the amino acid sequence of SEQ ID NO:264, and the VL domain comprises the amino acid sequence of SEQ ID NO:252; the VH domain comprises the amino acid sequence of SEQ ID NO:330, and the VL domain comprises the amino acid sequence of SEQ ID NO:252; the VH domain comprises the amino acid sequence of SEQ ID NO:135, and the VL domain comprises the amino acid sequence of SEQ ID NO:252; the VH domain comprises the amino acid sequence of SEQ ID NO:137, and the VL domain comprises the amino acid sequence of SEQ ID NO:252; the VH domain comprises the amino acid sequence of SEQ ID NO:139, and the VL domain comprises the amino acid sequence of SEQ ID NO:252; the VH domain comprises the amino acid sequence of SEQ ID NO:265, and the VL domain comprises the amino acid sequence of SEQ ID NO:252; the V
  • an antibody of the present disclosure comprises a VH domain comprising the amino acid sequence of SEQ ID NO:120 and/or a VL domain comprising the amino acid sequence of SEQ ID NO:97. In some embodiments, an antibody of the present disclosure comprises a VH domain comprising the amino acid sequence of SEQ ID NO:127 and/or a VL domain comprising the amino acid sequence of SEQ ID NO:104. In some embodiments, an antibody of the present disclosure comprises a VH domain comprising the amino acid sequence of SEQ ID NO:133 and/or a VL domain comprising the amino acid sequence of SEQ ID NO:134.
  • an antibody of the present disclosure comprises a VH domain comprising the amino acid sequence of SEQ ID NO:135 and/or a VL domain comprising the amino acid sequence of SEQ ID NO:136. In some embodiments, an antibody of the present disclosure comprises a VH domain comprising the amino acid sequence of SEQ ID NO:137 and/or a VL domain comprising the amino acid sequence of SEQ ID NO:138. In some embodiments, an antibody of the present disclosure comprises a VH domain comprising the amino acid sequence of SEQ ID NO:139 and/or a VL domain comprising the amino acid sequence of SEQ ID NO:140. In some embodiments, an antibody of the present disclosure comprises a VH domain comprising the amino acid sequence of SEQ ID NO:141 and/or a VL domain comprising the amino acid sequence of SEQ ID NO:142.
  • the antibody comprises (a) an HVR-H1 sequence comprising the amino acid sequence of GFSFSX 1 X 2 AMX 3 , wherein X 1 is N or I; X 2 is F or Y; and X 3 is T or S (SEQ ID NO:185); (b) an HVR-H2 sequence comprising the amino acid sequence of TIGX 4 X 5 DTYYADSVKG, wherein X 4 is S or A and X 5 is G or D (SEQ ID NO:186); (c) an HVR-H3 sequence comprising the amino acid sequence of DSTVX 6 WSGDFFDY, wherein X 6 is S or G (SEQ ID NO:187); (d) an HVR-L1 sequence comprising the amino acid sequence of RASQNVX 7 X 8 DX 9 A, wherein X 7 is K or R; X 8 is N or S; and X 9 is L or I (SEQ ID NO:188); (e) an HVR-L2 sequence comprising the amino acid sequence
  • an antibody of the present disclosure comprises one, two, three, four, five, or six HVR sequences having an amino acid sequence selected from SEQ ID NOs:143-148 (e.g., one, two, or three heavy chain HVR sequences selected from SEQ ID NOs:143-145 and/or one, two, or three light chain HVR sequences selected from SEQ ID NOs:146-148).
  • an antibody of the present disclosure comprises one, two, three, four, five, or six HVR sequences having an amino acid sequence selected from SEQ ID NOs:148-153 (e.g., one, two, or three heavy chain HVR sequences selected from SEQ ID NOs:149-151 and/or one, two, or three light chain HVR sequences selected from SEQ ID NOs:152, 153, and 148).
  • HVR sequences having an amino acid sequence selected from SEQ ID NOs:148-153 (e.g., one, two, or three heavy chain HVR sequences selected from SEQ ID NOs:149-151 and/or one, two, or three light chain HVR sequences selected from SEQ ID NOs:152, 153, and 148).
  • an antibody of the present disclosure comprises one, two, three, four, five, or six HVR sequences having an amino acid sequence selected from SEQ ID NOs:155-160 (e.g., one, two, or three heavy chain HVR sequences selected from SEQ ID NOs:155-157 and/or one, two, or three light chain HVR sequences selected from SEQ ID NOs:158-160).
  • an antibody of the present disclosure comprises one, two, three, four, five, or six HVR sequences having an amino acid sequence selected from SEQ ID NOs:161-166 (e.g., one, two, or three heavy chain HVR sequences selected from SEQ ID NOs:161-163 and/or one, two, or three light chain HVR sequences selected from SEQ ID NOs:164-166).
  • an antibody of the present disclosure comprises one, two, three, four, five, or six HVR sequences having an amino acid sequence selected from SEQ ID NOs:161-166 (e.g., one, two, or three heavy chain HVR sequences selected from SEQ ID NOs:161-163 and/or one, two, or three light chain HVR sequences of a variable domain shown in Table 2).
  • an antibody of the present disclosure comprises one, two, three, four, five, or six HVR sequences having an amino acid sequence selected from SEQ ID NOs:161, 163, 168, and 170-172 (e.g., one, two, or three heavy chain HVR sequences selected from SEQ ID NOs: 161, 168, and 163 and/or one, two, or three light chain HVR sequences selected from SEQ ID NOs:170-172).
  • an antibody of the present disclosure comprises one, two, three, four, five, or six HVR sequences having an amino acid sequence selected from SEQ ID NOs: 161, 163, 168, and 170-172 (e.g., one, two, or three heavy chain HVR sequences selected from SEQ ID NOs: 161, 168, and 163 and/or one, two, or three light chain HVR sequences of a variable domain shown in Table 2).
  • an antibody of the present disclosure comprises one, two, three, four, five, or six HVR sequences having an amino acid sequence selected from SEQ ID NOs:163, 173, 174, and 176-178 (e.g., one, two, or three heavy chain HVR sequences selected from SEQ ID NOs:163, 173, and 174 and/or one, two, or three light chain HVR sequences selected from SEQ ID NOs:176-178).
  • an antibody of the present disclosure comprises one, two, three, four, five, or six HVR sequences having an amino acid sequence selected from SEQ ID NOs: 162, 163, 179, and 182-184 (e.g., one, two, or three heavy chain HVR sequences selected from SEQ ID NOs: 162, 163, and 179 and/or one, two, or three light chain HVR sequences selected from SEQ ID NOs:182-184).
  • an antibody of the present disclosure comprises one, two, three, four, five, or six HVR sequences having an amino acid sequence selected from SEQ ID NOs: 162, 163, 179, and 182-184 (e.g., one, two, or three heavy chain HVR sequences selected from SEQ ID NOs: 162, 163, and 179 and/or one, two, or three light chain HVR sequences of a variable domain shown in Table 2).
  • an antibody of the present disclosure comprises one, two, three, four, five, or six HVR sequences from the variable domain sequences of SEQ ID NOs:120 and 97 (e.g., one, two, or three heavy chain HVR sequences from the heavy chain variable domain sequence of SEQ ID NO:120 and/or one, two, or three light chain HVR sequences from the light chain variable domain sequence of SEQ ID NO:97).
  • an antibody of the present disclosure comprises one, two, three, four, five, or six HVR sequences from the variable domain sequences of SEQ ID NOs:127 and 104 (e.g., one, two, or three heavy chain HVR sequences from the heavy chain variable domain sequence of SEQ ID NO:127 and/or one, two, or three light chain HVR sequences from the light chain variable domain sequence of SEQ ID NO:104).
  • an antibody of the present disclosure comprises one, two, three, four, five, or six HVR sequences from the variable domain sequences of SEQ ID NOs:97, 104, 120, and 127 (e.g., one, two, or three heavy chain HVR sequences from the heavy chain variable domain sequence of SEQ ID NOs:120 and 127 and/or one, two, or three light chain HVR sequences from the light chain variable domain sequence of SEQ ID NOs:97 and 104).
  • an antibody of the present disclosure comprises (a) a VH domain comprising an HVR-H1 comprising the amino acid sequence of SEQ ID NO:143, an HVR-H2 comprising the amino acid sequence of SEQ ID NO:144, and an HVR-H3 comprising the amino acid sequence of SEQ ID NO:145; and/or (b) a VL domain comprising an HVR-L1 comprising the amino acid sequence of SEQ ID NO:146, an HVR-L2 comprising the amino acid sequence of SEQ ID NO:147, and an HVR-L3 comprising the amino acid sequence of SEQ ID NO:148.
  • an antibody of the present disclosure comprises (a) a VH domain comprising an HVR-H1 comprising the amino acid sequence of SEQ ID NO:149, an HVR-H2 comprising the amino acid sequence of SEQ ID NO:150, and an HVR-H3 comprising the amino acid sequence of SEQ ID NO:151; and/or (b) a VL domain comprising an HVR-L1 comprising the amino acid sequence of SEQ ID NO:152, an HVR-L2 comprising the amino acid sequence of SEQ ID NO:153, and an HVR-L3 comprising the amino acid sequence of SEQ ID NO:148.
  • an antibody of the present disclosure comprises (a) a VH domain comprising an HVR-H1 comprising the amino acid sequence of SEQ ID NO:143 or 149, an HVR-H2 comprising the amino acid sequence of SEQ ID NO:144 or 150, and an HVR-H3 comprising the amino acid sequence of SEQ ID NO:145 or 151; and/or (b) a VL domain comprising an HVR-L1 comprising the amino acid sequence of SEQ ID NO:146 or 152, an HVR-L2 comprising the amino acid sequence of SEQ ID NO:147 or 153, and an HVR-L3 comprising the amino acid sequence of SEQ ID NO:148.
  • an antibody of the present disclosure comprises (a) a VH domain comprising an HVR-H1 comprising the amino acid sequence of SEQ ID NO:155, an HVR-H2 comprising the amino acid sequence of SEQ ID NO:156, and an HVR-H3 comprising the amino acid sequence of SEQ ID NO:157; and/or (b) a VL domain comprising an HVR-L1 comprising the amino acid sequence of SEQ ID NO:158, an HVR-L2 comprising the amino acid sequence of SEQ ID NO:159, and an HVR-L3 comprising the amino acid sequence of SEQ ID NO:160.
  • an antibody of the present disclosure comprises (a) a VH domain comprising an HVR-H1 comprising the amino acid sequence of SEQ ID NO:161, an HVR-H2 comprising the amino acid sequence of SEQ ID NO:162, and an HVR-H3 comprising the amino acid sequence of SEQ ID NO:163; and/or (b) a VL domain comprising an HVR-L1 comprising the amino acid sequence of SEQ ID NO:164, an HVR-L2 comprising the amino acid sequence of SEQ ID NO:165, and an HVR-L3 comprising the amino acid sequence of SEQ ID NO:166.
  • an antibody of the present disclosure comprises (a) a VH domain comprising an HVR-H1 comprising the amino acid sequence of SEQ ID NO:161, an HVR-H2 comprising the amino acid sequence of SEQ ID NO:168, and an HVR-H3 comprising the amino acid sequence of SEQ ID NO:163; and/or (b) a VL domain comprising an HVR-L1 comprising the amino acid sequence of SEQ ID NO:170, an HVR-L2 comprising the amino acid sequence of SEQ ID NO:171, and an HVR-L3 comprising the amino acid sequence of SEQ ID NO:172.
  • an antibody of the present disclosure comprises (a) a VH domain comprising an HVR-H1 comprising the amino acid sequence of SEQ ID NO:173, an HVR-H2 comprising the amino acid sequence of SEQ ID NO:174, and an HVR-H3 comprising the amino acid sequence of SEQ ID NO:163; and/or (b) a VL domain comprising an HVR-L1 comprising the amino acid sequence of SEQ ID NO:176, an HVR-L2 comprising the amino acid sequence of SEQ ID NO:177, and an HVR-L3 comprising the amino acid sequence of SEQ ID NO:178.
  • an antibody of the present disclosure comprises (a) a VH domain comprising an HVR-H1 comprising the amino acid sequence of SEQ ID NO:179, an HVR-H2 comprising the amino acid sequence of SEQ ID NO:162, and an HVR-H3 comprising the amino acid sequence of SEQ ID NO:163; and/or (b) a VL domain comprising an HVR-L1 comprising the amino acid sequence of SEQ ID NO:182, an HVR-L2 comprising the amino acid sequence of SEQ ID NO:183, and an HVR-L3 comprising the amino acid sequence of SEQ ID NO:184.
  • an antibody of the present disclosure comprises a VH domain comprising the amino acid sequence of SEQ ID NO:135 and/or a VL domain comprising an HVR-L1 comprising the amino acid sequence of SEQ ID NO:164, an HVR-L2 comprising the amino acid sequence of SEQ ID NO:165, and an HVR-L3 comprising the amino acid sequence of SEQ ID NO:166.
  • an antibody of the present disclosure comprises a VH domain comprising the amino acid sequence of SEQ ID NO:137 and/or a VL domain comprising an HVR-L1 comprising the amino acid sequence of SEQ ID NO:170, an HVR-L2 comprising the amino acid sequence of SEQ ID NO:171, and an HVR-L3 comprising the amino acid sequence of SEQ ID NO:172.
  • an antibody of the present disclosure comprises a VH domain comprising the amino acid sequence of SEQ ID NO:139 and/or a VL domain comprising an HVR-L1 comprising the amino acid sequence of SEQ ID NO:176, an HVR-L2 comprising the amino acid sequence of SEQ ID NO:177, and an HVR-L3 comprising the amino acid sequence of SEQ ID NO:178.
  • an antibody of the present disclosure comprises a VH domain comprising the amino acid sequence of SEQ ID NO:141 and/or a VL domain comprising an HVR-L1 comprising the amino acid sequence of SEQ ID NO:182, an HVR-L2 comprising the amino acid sequence of SEQ ID NO:183, and an HVR-L3 comprising the amino acid sequence of SEQ ID NO:184.
  • an antibody of the present disclosure comprises (a) a VH domain comprising an HVR-H1 comprising the amino acid sequence of SEQ ID NO:161, an HVR-H2 comprising the amino acid sequence of SEQ ID NO:162, and an HVR-H3 comprising the amino acid sequence of SEQ ID NO:163; and/or (b) a VL domain comprising an HVR-L1 comprising the amino acid sequence of SEQ ID NO:164, 170, 176, or 182, an HVR-L2 comprising the amino acid sequence of SEQ ID NO:165, 171, 177, or 183, and an HVR-L3 comprising the amino acid sequence of SEQ ID NO:166, 172, 178, or 184.
  • an antibody of the present disclosure comprises (a) a VH domain comprising an HVR-H1 comprising the amino acid sequence of SEQ ID NO:161, an HVR-H2 comprising the amino acid sequence of SEQ ID NO:168, and an HVR-H3 comprising the amino acid sequence of SEQ ID NO:163; and/or (b) a VL domain comprising an HVR-L1 comprising the amino acid sequence of SEQ ID NO:164, 170, 176, or 182, an HVR-L2 comprising the amino acid sequence of SEQ ID NO:165, 171, 177, or 183, and an HVR-L3 comprising the amino acid sequence of SEQ ID NO:166, 172, 178, or 184.
  • an antibody of the present disclosure comprises (a) a VH domain comprising an HVR-H1 comprising the amino acid sequence of SEQ ID NO:173, an HVR-H2 comprising the amino acid sequence of SEQ ID NO:174, and an HVR-H3 comprising the amino acid sequence of SEQ ID NO:163; and/or (b) a VL domain comprising an HVR-L1 comprising the amino acid sequence of SEQ ID NO:164, 170, 176, or 182, an HVR-L2 comprising the amino acid sequence of SEQ ID NO:165, 171, 177, or 183, and an HVR-L3 comprising the amino acid sequence of SEQ ID NO:166, 172, 178, or 184.
  • an antibody of the present disclosure comprises (a) a VH domain comprising an HVR-H1 comprising the amino acid sequence of SEQ ID NO:179, an HVR-H2 comprising the amino acid sequence of SEQ ID NO:162, and an HVR-H3 comprising the amino acid sequence of SEQ ID NO:163; and/or (b) a VL domain comprising an HVR-L1 comprising the amino acid sequence of SEQ ID NO:164, 170, 176, or 182, an HVR-L2 comprising the amino acid sequence of SEQ ID NO:165, 171, 177, or 183, and an HVR-L3 comprising the amino acid sequence of SEQ ID NO:166, 172, 178, or 184.
  • an antibody of the present disclosure comprises a VH domain comprising the amino acid sequence of SEQ ID NO:135 and/or a VL domain comprising an HVR-L1 comprising the amino acid sequence of SEQ ID NO:164, 170, 176, or 182; an HVR-L2 comprising the amino acid sequence of SEQ ID NO:165, 171, 177, or 183; and an HVR-L3 comprising the amino acid sequence of SEQ ID NO:166, 172, 178, or 184.
  • an antibody of the present disclosure comprises a VH domain comprising the amino acid sequence of SEQ ID NO:137 and/or a VL domain comprising an HVR-L1 comprising the amino acid sequence of SEQ ID NO:164, 170, 176, or 182; an HVR-L2 comprising the amino acid sequence of SEQ ID NO:165, 171, 177, or 183; and an HVR-L3 comprising the amino acid sequence of SEQ ID NO:166, 172, 178, or 184.
  • an antibody of the present disclosure comprises a VH domain comprising the amino acid sequence of SEQ ID NO:139 and/or a VL domain comprising an HVR-L1 comprising the amino acid sequence of SEQ ID NO:164, 170, 176, or 182; an HVR-L2 comprising the amino acid sequence of SEQ ID NO:165, 171, 177, or 183; and an HVR-L3 comprising the amino acid sequence of SEQ ID NO:166, 172, 178, or 184.
  • an antibody of the present disclosure comprises a VH domain comprising the amino acid sequence of SEQ ID NO:141 and/or a VL domain comprising an HVR-L1 comprising the amino acid sequence of SEQ ID NO:164, 170, 176, or 182; an HVR-L2 comprising the amino acid sequence of SEQ ID NO:165, 171, 177, or 183; and an HVR-L3 comprising the amino acid sequence of SEQ ID NO:166, 172, 178, or 184.
  • an antibody of the present disclosure comprises (a) a VH domain comprising one, two, or three HVR sequences from SEQ ID NO:242; and/or (b) a VL domain comprising one, two, or three HVR sequences from SEQ ID NO:243. In some embodiments, an antibody of the present disclosure comprises (a) a VH domain comprising one, two, or three HVR sequences from SEQ ID NO:244; and/or (b) a VL domain comprising one, two, or three HVR sequences from SEQ ID NO:245.
  • an antibody of the present disclosure comprises HVRs as defined by Chothia, Kabat, IMGT, or a combination thereof (e.g., one or more HVRs as defined by one delineation and one or more HVRs as defined by a different delineation).
  • HVR sequences of antibodies of the present disclosure delineated using three known delineation Chothia, Kabat, and IMGT are provided in Table 5.
  • the numbering of HVR residues is defined by Kabat numbering.
  • Hum 1 HVR-L1 170 SGGSYSSYYYA (Chothia) HVR-L2 336 SDDKRPS HVR-L3 172 GGYDQSSYTNP
  • Hum 1 HVR-L1 170 SGGSYSSYYYA (Kabat)
  • HVR-L2 336 SDDKRPS HVR-L3 172 GGYDQSSYTNP
  • Hum 1 HVR-L1 337 GSYSS (IMGT) HVR-L2 338 IYS HVR-L3 339 GGYDQSSYT
  • Hum 7 HVR-L1 164 SGGDYYSYYYG (Chothia) HVR-L2 336 SDDKRPS HVR-L3 166 GGYDYSTYANA Hum 7 HVR-L1 164 SGGDYYSYYYG (Kabat) HVR-L2 336 SDDKRPS HVR-L3 166 GGYDYSTYANA Hum 7 HVR-L1
  • an antibody of the present disclosure comprises 1, 2, 3, 4, 5, or 6 HVRs listed in Table 5 (e.g., a VL domain comprising 1, 2, or 3 light chain HVRs listed in Table 5 and/or a VH domain comprising 1, 2, or 3 heavy chain HVRs listed in Table 5).
  • an antibody of the present disclosure comprises a VH domain comprising an HVR-H1 comprising the amino acid sequence of SEQ ID NO:191, an HVR-H2 comprising the amino acid sequence of SEQ ID NO: 192, and an HVR-H3 comprising the amino acid sequence of SEQ ID NO: 193.
  • an antibody of the present disclosure comprises a VH domain comprising an HVR-H1 comprising the amino acid sequence of SEQ ID NO:191, an HVR-H2 comprising the amino acid sequence of SEQ ID NO: 196, and an HVR-H3 comprising the amino acid sequence of SEQ ID NO: 193.
  • an antibody of the present disclosure comprises a VH domain comprising an HVR-H1 comprising the amino acid sequence of SEQ ID NO: 198, an HVR-H2 comprising the amino acid sequence of SEQ ID NO: 199, and an HVR-H3 comprising the amino acid sequence of SEQ ID NO: 193.
  • an antibody of the present disclosure comprises a VL domain comprising an HVR-L1 comprising the amino acid sequence of SEQ ID NO:164, an HVR-L2 comprising the amino acid sequence of SEQ ID NO:165, and an HVR-L3 comprising the amino acid sequence of SEQ ID NO: 166 and/or a VH domain comprising an HVR-H1 comprising the amino acid sequence of SEQ ID NO:191 or 198, an HVR-H2 comprising the amino acid sequence of SEQ ID NO: 192, 196, or 199, and an HVR-H3 comprising the amino acid sequence of SEQ ID NO: 193.
  • an antibody of the present disclosure comprises a VL domain comprising an HVR-L1 comprising the amino acid sequence of SEQ ID NO:232, an HVR-L2 comprising the amino acid sequence of SEQ ID NO:233, and an HVR-L3 comprising the amino acid sequence of SEQ ID NO:234 and/or a VH domain comprising an HVR-H1 comprising the amino acid sequence of SEQ ID NO:230, an HVR-H2 comprising the amino acid sequence of SEQ ID NO:231, and an HVR-H3 comprising the amino acid sequence of SEQ ID NO:232.
  • an antibody of the present disclosure comprises a VL domain comprising an HVR-L1 comprising the amino acid sequence of SEQ ID NO:239, an HVR-L2 comprising the amino acid sequence of SEQ ID NO:240, and an HVR-L3 comprising the amino acid sequence of SEQ ID NO:241 and/or a VH domain comprising an HVR-H1 comprising the amino acid sequence of SEQ ID NO:219, an HVR-H2 comprising the amino acid sequence of SEQ ID NO:238, and an HVR-H3 comprising the amino acid sequence of SEQ ID NO:237.
  • an antibody of the present disclosure comprises a VH domain comprising an HVR-H1 comprising the amino acid sequence of SEQ ID NO: 194, an HVR-H2 comprising the amino acid sequence of SEQ ID NO: 195, and an HVR-H3 comprising the amino acid sequence of SEQ ID NO: 193.
  • an antibody of the present disclosure comprises a VH domain comprising an HVR-H1 comprising the amino acid sequence of SEQ ID NO: 194, an HVR-H2 comprising the amino acid sequence of SEQ ID NO: 197, and an HVR-H3 comprising the amino acid sequence of SEQ ID NO: 193.
  • an antibody of the present disclosure comprises a VH domain comprising an HVR-H1 comprising the amino acid sequence of SEQ ID NO: 200, an HVR-H2 comprising the amino acid sequence of SEQ ID NO: 201, and an HVR-H3 comprising the amino acid sequence of SEQ ID NO: 193.
  • an antibody of the present disclosure comprises a VL domain comprising an HVR-L1 comprising the amino acid sequence of SEQ ID NO:164, an HVR-L2 comprising the amino acid sequence of SEQ ID NO:165, and an HVR-L3 comprising the amino acid sequence of SEQ ID NO: 166 and/or a VH domain comprising an HVR-H1 comprising the amino acid sequence of SEQ ID NO: 194, 198, or 200, an HVR-H2 comprising the amino acid sequence of SEQ ID NO: 195, 197, or 201, and an HVR-H3 comprising the amino acid sequence of SEQ ID NO: 193.
  • an antibody of the present disclosure comprises a VL domain comprising an HVR-L1 comprising the amino acid sequence of SEQ ID NO:232, an HVR-L2 comprising the amino acid sequence of SEQ ID NO:233, and an HVR-L3 comprising the amino acid sequence of SEQ ID NO:234 and/or a VH domain comprising an HVR-H1 comprising the amino acid sequence of SEQ ID NO:227, an HVR-H2 comprising the amino acid sequence of SEQ ID NO:228, and an HVR-H3 comprising the amino acid sequence of SEQ ID NO:230.
  • an antibody of the present disclosure comprises a VL domain comprising an HVR-L1 comprising the amino acid sequence of SEQ ID NO:239, an HVR-L2 comprising the amino acid sequence of SEQ ID NO:240, and an HVR-L3 comprising the amino acid sequence of SEQ ID NO:241 and/or a VH domain comprising an HVR-H1 comprising the amino acid sequence of SEQ ID NO:235, an HVR-H2 comprising the amino acid sequence of SEQ ID NO:236, and an HVR-H3 comprising the amino acid sequence of SEQ ID NO:237.
  • an antibody of the present disclosure comprises a VH domain comprising an HVR-H1 comprising the amino acid sequence of SEQ ID NO:161, an HVR-H2 comprising the amino acid sequence of SEQ ID NO:162, and an HVR-H3 comprising the amino acid sequence of SEQ ID NO:163.
  • an antibody of the present disclosure comprises a VH domain comprising an HVR-H1 comprising the amino acid sequence of SEQ ID NO:161, an HVR-H2 comprising the amino acid sequence of SEQ ID NO:168, and an HVR-H3 comprising the amino acid sequence of SEQ ID NO:163.
  • an antibody of the present disclosure comprises a VH domain comprising an HVR-H1 comprising the amino acid sequence of SEQ ID NO:173, an HVR-H2 comprising the amino acid sequence of SEQ ID NO:174, and an HVR-H3 comprising the amino acid sequence of SEQ ID NO:163.
  • an antibody of the present disclosure comprises (a) a VH domain comprising an HVR-H1 comprising the amino acid sequence of SEQ ID NO: 202, an HVR-H2 comprising the amino acid sequence of SEQ ID NO: 203, and an HVR-H3 comprising the amino acid sequence of SEQ ID NO:145; and/or (b) a VL domain comprising an HVR-L1 comprising the amino acid sequence of SEQ ID NO:146, an HVR-L2 comprising the amino acid sequence of SEQ ID NO:147, and an HVR-L3 comprising the amino acid sequence of SEQ ID NO:148.
  • an antibody of the present disclosure comprises (a) a VH domain comprising an HVR-H1 comprising the amino acid sequence of SEQ ID NO: 211, an HVR-H2 comprising the amino acid sequence of SEQ ID NO: 212, and an HVR-H3 comprising the amino acid sequence of SEQ ID NO:151; and/or (b) a VL domain comprising an HVR-L1 comprising the amino acid sequence of SEQ ID NO:152, an HVR-L2 comprising the amino acid sequence of SEQ ID NO:153, and an HVR-L3 comprising the amino acid sequence of SEQ ID NO:148.
  • an antibody of the present disclosure comprises (a) a VH domain comprising an HVR-H1 comprising the amino acid sequence of SEQ ID NO: 219, an HVR-H2 comprising the amino acid sequence of SEQ ID NO: 220, and an HVR-H3 comprising the amino acid sequence of SEQ ID NO:157; and/or (b) a VL domain comprising an HVR-L1 comprising the amino acid sequence of SEQ ID NO:158, an HVR-L2 comprising the amino acid sequence of SEQ ID NO:159, and an HVR-L3 comprising the amino acid sequence of SEQ ID NO:160.
  • an antibody of the present disclosure comprises (a) a VH domain comprising an HVR-H1 comprising the amino acid sequence of SEQ ID NO: 204, an HVR-H2 comprising the amino acid sequence of SEQ ID NO:144, and an HVR-H3 comprising the amino acid sequence of SEQ ID NO:145; and/or (b) a VL domain comprising an HVR-L1 comprising the amino acid sequence of SEQ ID NO:146, an HVR-L2 comprising the amino acid sequence of SEQ ID NO:147, and an HVR-L3 comprising the amino acid sequence of SEQ ID NO:148.
  • an antibody of the present disclosure comprises (a) a VH domain comprising an HVR-H1 comprising the amino acid sequence of SEQ ID NO: 213, an HVR-H2 comprising the amino acid sequence of SEQ ID NO:150, and an HVR-H3 comprising the amino acid sequence of SEQ ID NO:151; and/or (b) a VL domain comprising an HVR-L1 comprising the amino acid sequence of SEQ ID NO:152, an HVR-L2 comprising the amino acid sequence of SEQ ID NO:153, and an HVR-L3 comprising the amino acid sequence of SEQ ID NO:148.
  • an antibody of the present disclosure comprises (a) a VH domain comprising an HVR-H1 comprising the amino acid sequence of SEQ ID NO: 221, an HVR-H2 comprising the amino acid sequence of SEQ ID NO:156, and an HVR-H3 comprising the amino acid sequence of SEQ ID NO:157; and/or (b) a VL domain comprising an HVR-L1 comprising the amino acid sequence of SEQ ID NO:158, an HVR-L2 comprising the amino acid sequence of SEQ ID NO:159, and an HVR-L3 comprising the amino acid sequence of SEQ ID NO:160.
  • an antibody of the present disclosure comprises (a) a VH domain comprising an HVR-H1 comprising the amino acid sequence of SEQ ID NO: 205, an HVR-H2 comprising the amino acid sequence of SEQ ID NO: 206, and an HVR-H3 comprising the amino acid sequence of SEQ ID NO: 207; and/or (b) a VL domain comprising an HVR-L1 comprising the amino acid sequence of SEQ ID NO: 208, an HVR-L2 comprising the amino acid sequence of SEQ ID NO: 209, and an HVR-L3 comprising the amino acid sequence of SEQ ID NO: 210.
  • an antibody of the present disclosure comprises (a) a VH domain comprising an HVR-H1 comprising the amino acid sequence of SEQ ID NO: 214, an HVR-H2 comprising the amino acid sequence of SEQ ID NO: 215, and an HVR-H3 comprising the amino acid sequence of SEQ ID NO: 216; and/or (b) a VL domain comprising an HVR-L1 comprising the amino acid sequence of SEQ ID NO: 217, an HVR-L2 comprising the amino acid sequence of SEQ ID NO: 218, and an HVR-L3 comprising the amino acid sequence of SEQ ID NO:148.
  • an antibody of the present disclosure comprises (a) a VH domain comprising an HVR-H1 comprising the amino acid sequence of SEQ ID NO: 222, an HVR-H2 comprising the amino acid sequence of SEQ ID NO: 223, and an HVR-H3 comprising the amino acid sequence of SEQ ID NO: 224; and/or (b) a VL domain comprising an HVR-L1 comprising the amino acid sequence of SEQ ID NO: 225, an HVR-L2 comprising the amino acid sequence of SEQ ID NO: 226, and an HVR-L3 comprising the amino acid sequence of SEQ ID NO:160.
  • the antibody enhances phagocytosis by a macrophage expressing a human SIRP- ⁇ polypeptide, enhances activation of a dendritic cell expressing a human SIRP- ⁇ polypeptide, inhibits in vivo growth of a tumor or tumor cell(s) that expresses CD47, and/or does not prevent interactions between a CD47-expressing cell and a T cell.
  • exemplary assays for measuring phagocytosis, dendritic cell activation, tumor growth inhibition, and interactions between CD47-expressing cells and T cells are described herein and known in the art.
  • An antibody of the present disclosure may be produced by any means known in the art. Exemplary techniques for antibody production are described below; however these exemplary techniques are provided for illustrative purposes only and are not intended to be limiting. In addition, exemplary antibody properties contemplated for use with the antibodies described herein are further described.
  • an antibody that “binds” an antigen has a dissociation constant (K D ) for the antigen that is less than or equal to 1 ⁇ M at 25° C.
  • an antibody of the present disclosure has a dissociation constant (K D ) for human v1 and/or v2 SIRP- ⁇ polypeptides that is less than or equal to 1 ⁇ M at 25° C., less than or equal to 500 nM at 25° C., less than or equal to 400 nM at 25° C., less than or equal to 300 nM at 25° C., less than or equal to 250 nM at 25° C., less than or equal to 200 nM at 25° C., less than or equal to 200 nM at 25° C., less than or equal to 100 nM at 25° C., or less than or equal to 50 nM at 25° C.
  • an antibody that binds a human SIRP- ⁇ polypeptide and one or more non-human SIRP- ⁇ polypeptides binds the human SIRP- ⁇ polypeptide at a higher affinity (e.g., 10-fold or 100-fold higher) than the non-human SIRP- ⁇ polypeptide, though it still considered to “bind” both polypeptides.
  • an antibody that binds a non-human SIRP- ⁇ polypeptide and one or more human SIRP- ⁇ polypeptides binds the non-human SIRP- ⁇ polypeptide at a higher affinity (e.g., 10-fold or 100-fold higher) than the human SIRP- ⁇ polypeptide, though it still considered to “bind” both polypeptides.
  • Assays for determining binding affinity include without limitation surface plasmon resonance (SPR), e.g., as described herein; radiolabeled antigen binding assay (RIA), e.g., using a Fab version of an antibody and its antigen; and the like. Other exemplary binding assays are described herein.
  • SPR surface plasmon resonance
  • RIA radiolabeled antigen binding assay
  • the antigen may be purified or otherwise obtained from a natural source, or it may be expressed using recombinant techniques.
  • the antigen may be used as a soluble protein.
  • the antigen may be conjugate to another polypeptide or other moiety, e.g., to increase its immunogenicity.
  • an antigen described herein may be coupled with an Fc region.
  • a cell expressing the antigen on its cell surface may be used as the antigen.
  • Polyclonal antibodies can be raised in an animal by multiple subcutaneous (sc) or intraperitoneal (ip) injections of the antigen and an adjuvant.
  • sc subcutaneous
  • ip intraperitoneal
  • the antigen is conjugated with an immunogenic protein, e.g., keyhole limpet hemocyanin, serum albumin, bovine thyroglobulin, or soybean trypsin inhibitor using a bifunctional or derivatizing agent.
  • an immunogenic protein e.g., keyhole limpet hemocyanin, serum albumin, bovine thyroglobulin, or soybean trypsin inhibitor using a bifunctional or derivatizing agent.
  • Exemplary methods for immunization of chickens are provided herein. Relevant methods suitable for a variety of other organisms, such as mammals, are well known in the art.
  • monoclonal antibodies may be produced by a variety of methods.
  • a monoclonal antibody of the present disclosure is made using the hybridoma method first described by Kohler et al., Nature, 256:495 (1975), and further described in Hongo et al., Hybridoma, 14 (3): 253-260 (1995); Harlow et al., Antibodies: A Laboratory Manual , (Cold Spring Harbor Laboratory Press, 2nd ed. 1988); and Hammerling et al., in: Monoclonal Antibodies and T - Cell Hybridomas 563-681 (Elsevier, N.Y., 1981).
  • a culture medium in which hybridoma cells are grown may be screened for the presence of an antibody of interest, e.g., by in vitro binding assay, immunoprecipitation, ELISA, RIA, etc.; and the binding affinity may be determined, e.g., by Scatchard analysis.
  • a hybridoma that produces an antibody with desired binding properties can be subcloned and grown using known culture techniques, grown in vivo as ascites tumors in an animal, and the like.
  • a monoclonal antibody is made using a library method, such as a phage display library.
  • a library method such as a phage display library. See, e.g., Hoogenboom et al. in Methods in Molecular Biology 178:1-37 (O'Brien et al., ed., Human Press, Totowa, N.J., 2001).
  • repertoires of VH and VL genes are cloned by polymerase chain reaction (PCR) and recombined randomly in phage libraries, which are then screened for antigen-binding phage, e.g., as described in Winter et al., Ann. Rev. Immunol., 12: 433-455 (1994).
  • Phage typically display antibody fragments, either as single-chain Fv (scFv) fragments or as Fab fragments.
  • the naive repertoire can be cloned (e.g., from human) to provide a single source of antibodies to a wide range of non-self and also self-antigens without any immunization as described by Griffiths et al., EMBO J, 12: 725-734 (1993).
  • naive libraries can also be made synthetically by cloning unrearranged V-gene segments from stem cells, and using PCR primers containing random sequence to encode the highly variable CDR3 regions and to accomplish rearrangement in vitro, as described by Hoogenboom and Winter, J. Mol. Biol., 227: 381-388 (1992).
  • an antibody of the present disclosure is a chicken antibody.
  • Chicken antibodies can be produced using various techniques known in the art; see, e.g., U.S. Pat. Nos. 6,143,559; 8,592,644; and 9,380,769.
  • an antibody of the present disclosure is a chimeric antibody. See, e.g., U.S. Pat. No. 4,816,567 and Morrison et al., Proc. Natl. Acad. Sci. USA, 81:6851-6855 (1984).
  • a chimeric antibody comprises a non-human variable region (e.g., a variable region derived from a chicken, mouse, rat, hamster, rabbit, or non-human primate, such as a monkey) and a human constant region.
  • a chimeric antibody is a “class switched” antibody in which the class or subclass has been changed from that of the parent antibody. Chimeric antibodies include antigen-binding fragments thereof.
  • a chimeric antibody is a humanized antibody.
  • a non-human antibody can be humanized to reduce immunogenicity to humans, while retaining the specificity and affinity of the parental non-human antibody.
  • a humanized antibody comprises one or more variable domains in which HVRs, e.g., CDRs, (or portions thereof) are derived from a non-human antibody (e.g., a chicken antibody), and FRs (or portions thereof) are derived from human antibody sequences.
  • HVRs e.g., CDRs
  • FRs or portions thereof
  • a humanized antibody optionally will also comprise at least a portion of a human constant region.
  • some FR residues in a humanized antibody are substituted with corresponding residues from a non-human antibody (e.g., the antibody from which the HVR residues are derived), e.g., to restore or improve antibody specificity or affinity.
  • a non-human antibody e.g., the antibody from which the HVR residues are derived
  • Humanized antibodies and methods of making them are reviewed, e.g., in Almagro and Fransson, Front. Biosci. 13:1619-1633 (2008). Methods of humanizing a chicken antibody have also been described, e.g., in WO2005014653.
  • Human framework regions useful for humanization include but are not limited to: framework regions selected using the “best-fit” method; framework regions derived from the consensus sequence of human antibodies of a particular subgroup of light or heavy chain variable regions; human somatically mutated framework regions or human germline framework regions; and framework regions derived from screening FR libraries. See, e.g., Sims et al. J. Immunol. 151:2296 (1993); Carter et al. Proc. Natl. Acad. Sci. USA, 89:4285 (1992); Presta et al. J. Immunol., 151:2623 (1993); Almagro and Fransson, Front. Biosci. 13:1619-1633 (2008); and Baca et al., J. Biol. Chem. 272:10678-10684 (1997).
  • an antibody of the present disclosure is a human antibody.
  • Human antibodies can be produced using various techniques known in the art.
  • the human antibody is produced by a non-human animal, such as the genetically engineered chickens (see, e.g., U.S. Pat. Nos. 8,592,644; and 9,380,769) and/or mice described herein. Human antibodies are described generally in Lonberg, Curr. Opin. Immunol. 20:450-459 (2008).
  • an antibody of the present disclosure is generated by or derived from a chicken, e.g., using the methods described herein.
  • an antibody of the present disclosure is an antibody fragment, including without limitation a Fab, F(ab′)2, Fab′-SH, Fv, or scFv fragment, or a single domain, single heavy chain, or single light chain antibody.
  • Antibody fragments can be generated, e.g., by enzymatic digestion or by recombinant techniques. In some embodiments, Proteolytic digestion of an intact antibody is used to generate an antibody fragment, e.g., as described in Morimoto et al., Journal of Biochemical and Biophysical Methods 24:107-117 (1992) and Brennan et al., Science, 229:81 (1985).
  • an antibody fragment is produced by a recombinant host cell. For example, Fab, Fv and ScFv antibody fragments are expressed by and secreted from E. coli . Antibody fragments can alternatively be isolated from an antibody phage library.
  • Fab′-SH fragments can be directly recovered from E. coli and chemically coupled to form F(ab′)2 fragments. See Carter et al., Bio/Technology 10:163-167 (1992). F(ab′) 2 fragments can also be isolated directly from a recombinant host cell culture. Fab and F(ab′) 2 fragment with increased in vivo half-life comprising salvage receptor binding epitope residues are described in U.S. Pat. No. 5,869,046.
  • an antibody is a single chain Fv fragment (scFv). See WO 93/16185 and U.S. Pat. Nos. 5,571,894 and 5,587,458.
  • scFv fusion proteins can be constructed to produce a fusion of an effector protein at either the amino or the carboxy terminus of an scFv.
  • the antibody fragment may also be a “linear antibody”, e.g., as described in U.S. Pat. No. 5,641,870, for example. Such linear antibodies may be monospecific or bispecific.
  • an antibody of the present disclosure is a multispecific antibody. Multispecific antibodies possess binding specificities against more than one antigen (e.g., having two, three, or more binding specificities).
  • the antibody is a bispecific antibody.
  • a bispecific antibody comprises two different binding specificities for the same antigen (e.g., having different binding affinity and/or specific epitope of the same antigen).
  • a bispecific antibody comprises binding specificities for two distinct antigens.
  • the bispecific antibody is a full-length or intact antibody.
  • the bispecific antibody is an antibody fragment of the present disclosure.
  • bispecific or multispecific antibodies with a variety of combinations of binding specificities are contemplated herein.
  • the bispecific antibody has a first binding specificity for one or more SIRP- ⁇ polypeptides as described herein.
  • the bispecific antibody has a second binding specificity for an antigen expressed by a cancer cell, e.g., on the cell surface.
  • antigens include without limitation CD19, CD20, CD22, CD30, CD33, CD38, CD52, CD56, CD70, CD74, CD79b, CD123, CD138, CS1/SLAMF7, Trop-2, 5T4, EphA4, BCMA, Mucin 1, Mucin 16, PTK7, PD-L1, STEAP1, Endothelin B Receptor, mesothelin, EGFRvIII, ENPP3, SLC44A4, GNMB, nectin 4, NaPi2b, LIV-1A, Guanylyl cyclase C, DLL3, EGFR, HER2, VEGF, VEGFR, integrin ⁇ V ⁇ 3, integrin ⁇ 5 ⁇ 1, MET, IGF1R, TRAILR1, TRAILR2, RANKL, FAP, Tenascin, Le y , EpCAM, CEA, gpA33, PSMA, TAG72, a mucin, CAIX, EPHA3,
  • a binding specificity with a binding specificity against a SIRP- ⁇ is particularly advantageous, e.g., to direct FcR-expressing leukocytes to target a tumor cell with the second binding specificity while also inhibiting the responsiveness of SIRP- ⁇ expressed by the leukocyte to any CD47 expressed by the tumor cell with the first binding specificity.
  • knobs-into-holes or “protuberance-into-cavity” approach (see, e.g., U.S. Pat. No. 5,731,168).
  • heterodimerization of Fc domain monomers is promoted by introducing different, but compatible, substitutions in the two Fc domain monomers, such as “knob-into-hole” residue pairs and charge residue pairs.
  • the knob and hole interaction favors heterodimer formation, whereas the knob-knob and the hole-hole interaction hinder homodimer formation due to steric clash and deletion of favorable interactions.
  • a hole refers to a void that is created when an original amino acid in a protein is replaced with a different amino acid having a smaller side-chain volume.
  • a knob refers to a bump that is created when an original amino acid in a protein is replaced with a different amino acid having a larger side-chain volume.
  • an amino acid being replaced is in the CH3 antibody constant domain of an Fc domain monomer and involved in the dimerization of two Fc domain monomers.
  • a hole in one CH3 antibody constant domain is created to accommodate a knob in another CH3 antibody constant domain, such that the knob and hole amino acids act to promote or favor the heterodimerization of the two Fc domain monomers.
  • a hole in one CH3 antibody constant domain is created to better accommodate an original amino acid in another CH3 antibody constant domain.
  • a knob in one CH3 antibody constant domain is created to form additional interactions with original amino acids in another CH3 antibody constant domain.
  • a hole is constructed by replacing amino acids having larger side chains such as tyrosine or tryptophan with amino acids having smaller side chains such as alanine, valine, or threonine, for example a Y407V mutation in the CH3 antibody constant domain.
  • a knob is constructed by replacing amino acids having smaller side chains with amino acids having larger side chains, for example a T366W mutation in the CH3 antibody constant domain.
  • one Fc domain monomer includes the knob mutation T366W and the other Fc domain monomer includes hole mutations T366S, L358A, and Y407V.
  • a polypeptide of the disclosure including a high affinity SIRP- ⁇ D1 variant is fused to an Fc domain monomer including the knob mutation T366W to limit unwanted knob-knob homodimer formation.
  • knob-into-hole amino acid pairs are included, without limitation, in Table 3.
  • Another approach uses antibody variable domains with the desired binding specificities (antibody-antigen combining sites) fused to immunoglobulin constant domain sequences, e.g., with an immunoglobulin heavy chain constant domain, comprising at least part of the hinge, CH2, and CH3 regions.
  • the bispecific antibody has a hybrid immunoglobulin heavy chain with a first binding specificity in one arm and a hybrid immunoglobulin heavy chain-light chain pair (providing a second binding specificity) in the other arm. See WO 94/04690.
  • Another approach uses cross-linking (see, e.g., U.S. Pat. No. 4,676,980) to produce a heterconjugate antibody.
  • bispecific antibodies can be prepared using chemical linkage (see, e.g., Brennan et al., Science, 229: 81 (1985)) to proteolytically cleave an intact antibody into F(ab′)2 fragments that are reduced in the presence of a dithiol complexing agent and converted to thionitrobenzoate (TNB) derivatives, one of which is reconverted to the Fab′-thiol by reduction and mixed with the other Fab′-TNB derivative to form the bispecific antibody.
  • Fab′-SH fragments are chemically coupled.
  • bispecific antibody fragments are produced in cell culture using leucine zippers, as in Kostelny et al., J. Immunol., 148(5):1547-1553 (1992). For other bispecific antibody formats, see, e.g., Spiess, C. et al. (2015) Mol. Immunol. 67:95-106.
  • an antibody of the present disclosure is a diabody. See, e.g., Hollinger et al., Proc. Natl. Acad. Sci. USA, 90:6444-6448 (1993).
  • a diabody the VH and VL domains of one fragment pair with complementary VL and VH domains of another fragment, thus forming two antigen-binding sites.
  • Another strategy for making bispecific antibody fragments by the use of single-chain Fv (sFv) dimers has also been reported. See Gruber et al, J. Immunol, 152:5368 (1994).
  • an antibody of the present disclosure is a single-domain antibody.
  • a single-domain antibody refers to a single polypeptide chain comprising all or a portion of the heavy chain variable domain or all or a portion of the light chain variable domain of an antibody.
  • a single-domain antibody is a human single-domain antibody (see, e.g., U.S. Pat. No. 6,248,516 B1).
  • a single-domain antibody includes all or a portion of the heavy chain variable domain of an antibody. Camelid antibodies are also known.
  • Antibodies can be produced using recombinant methods.
  • nucleic acid encoding the antibody is isolated and inserted into a replicable vector for further cloning (amplification of the DNA) or for expression.
  • DNA encoding the antibody may be readily isolated and sequenced using conventional procedures (e.g., by using oligonucleotide probes that are capable of binding specifically to genes encoding the heavy and light chains of the antibody).
  • the vector components generally include, but are not limited to, one or more of the following: a signal sequence, an origin of replication, one or more marker genes, an enhancer element, a promoter, and a transcription termination sequence.
  • An antibody of the present disclosure can be produced recombinantly as a fusion polypeptide with a heterologous polypeptide, e.g., a signal sequence or other polypeptide having a specific cleavage site at the N-terminus of the mature protein or polypeptide.
  • a heterologous polypeptide e.g., a signal sequence or other polypeptide having a specific cleavage site at the N-terminus of the mature protein or polypeptide.
  • the heterologous signal sequence selected can be one that is recognized and processed (e.g., cleaved by a signal peptidase) by the host cell.
  • the signal sequence is substituted by a prokaryotic signal sequence selected, for example, from alkaline phosphatase, penicillinase, 1pp, or heat-stable enterotoxin II leaders.
  • the native signal sequence may be substituted by, e.g., the yeast invertase leader, a factor leader (including Saccharomyces and Kluyveromyces ⁇ -factor leaders), or acid phosphatase leader, the C. albicans glucoamylase leader, etc.
  • yeast invertase leader e.g., the yeast invertase leader, a factor leader (including Saccharomyces and Kluyveromyces ⁇ -factor leaders), or acid phosphatase leader, the C. albicans glucoamylase leader, etc.
  • mammalian signal sequences as well as viral secretory leaders for example, the herpes simplex gD signal, are available.
  • Both expression and cloning vectors contain a nucleic acid sequence that enables the vector to replicate in one or more selected host cells, e.g., to allow the vector to replicate independently of the host chromosomal DNA.
  • This sequence can include origins of replication or autonomously replicating sequences. Such sequences are well known for a variety of bacteria, yeast, and viruses. Generally, the origin of replication component is not needed for mammalian expression vectors (the SV40 origin may be used because it contains the early promoter).
  • Selection genes can contain a selection gene or selectable marker.
  • Typical selection genes encode proteins that (a) confer resistance to antibiotics or other toxins, e.g., ampicillin, neomycin, methotrexate, or tetracycline, (b) complement auxotrophic deficiencies, or (c) supply critical nutrients not available from complex media. Examples of dominant selection use the drugs neomycin, mycophenolic acid and hygromycin.
  • Suitable selectable markers for mammalian cells are those that enable the identification of cells competent to take up antibody-encoding nucleic acid, such as DHFR, glutamine synthetase (GS), thymidine kinase, metallothionein-I and -II, preferably primate metallothionein genes, adenosine deaminase, ornithine decarboxylase, and the like.
  • DHFR glutamine synthetase
  • GS glutamine synthetase
  • GS glutamine synthetase
  • metallothionein-I and -II preferably primate metallothionein genes
  • adenosine deaminase ornithine decarboxylase
  • CHO Chinese hamster ovary
  • host cells transformed or co-transformed with DNA sequences encoding an antibody of interest, wild-type DHFR gene, and another selectable marker such as aminoglycoside 3′-phosphotransferase (APH) can be selected by cell growth in medium containing a selection agent for the selectable marker such as an aminoglycosidic antibiotic, e.g., kanamycin, neomycin, or G418.
  • APH aminoglycoside 3′-phosphotransferase
  • Expression and cloning vectors generally contain a promoter that is recognized by the host organism and is operably linked to nucleic acid encoding an antibody.
  • Promoters suitable for use with prokaryotic hosts include the phoA promoter, ⁇ -lactamase and lactose promoter systems, alkaline phosphatase promoter, a tryptophan (trp) promoter system, and hybrid promoters such as the tac promoter.
  • trp tryptophan
  • promoter sequences are known for eukaryotes.
  • Yeast promoters are well known in the art and can include inducible promoters/enhancers regulated by growth conditions.
  • Virtually all eukaryotic genes have an AT-rich region located approximately 25 to 30 bases upstream from the site where transcription is initiated.
  • Examples include without limitation the promoters for 3-phosphoglycerate kinase or other glycolytic enzymes, such as enolase, glyceraldehyde-3-phosphate dehydrogenase, hexokinase, pyruvate decarboxylase, phosphofructokinase, glucose-6-phosphate isomerase, 3-phosphoglycerate mutase, pyruvate kinase, triosephosphate isomerase, phosphoglucose isomerase, and glucokinase.
  • 3-phosphoglycerate kinase or other glycolytic enzymes such as enolase, glyceraldehyde-3-phosphate dehydrogenase, hexokinase, pyruvate decarboxylase, phosphofructokinase, glucose
  • Antibody transcription from vectors in mammalian host cells can be controlled, for example, by promoters obtained from the genomes of viruses.
  • the early and late promoters of the SV40 virus are conveniently obtained as an SV40 restriction fragment that also contains the SV40 viral origin of replication.
  • the immediate early promoter of the human cytomegalovirus is conveniently obtained as a HindIII E restriction fragment.
  • the Rous Sarcoma Virus long terminal repeat can be used as the promoter.
  • Enhancer sequences are now known from mammalian genes (globin, elastase, albumin, ⁇ -fetoprotein, and insulin). Typically, however, one will use an enhancer from a eukaryotic cell virus.
  • Expression vectors used in eukaryotic host cells will also contain sequences necessary for the termination of transcription and for stabilizing the mRNA.
  • Suitable host cells for cloning or expressing the DNA in the vectors herein are the prokaryote, yeast, or higher eukaryote cells described above.
  • Suitable prokaryotes for this purpose include eubacteria, such as Gram-negative or Gram-positive organisms, for example, Enterobacteriaceae such as Escherichia , e.g., E. coli, Enterobacter, Envinia, Klebsiella, Proteus, Salmonella , e.g., Salmonella typhimurium, Serratia , e.g., Serratia marcescans , and Shigella , etc.
  • Enterobacteriaceae such as Escherichia , e.g., E. coli, Enterobacter, Envinia, Klebsiella, Proteus
  • Salmonella e.g., Salmonella typhimurium
  • Serratia e.g., Serratia marcescans
  • eukaryotic microbes such as filamentous fungi or yeast are suitable cloning or expression hosts for antibody-encoding vectors.
  • Saccharomyces cerevisiae or common baker's yeast, is the most commonly used among lower eukaryotic host microorganisms.
  • Certain fungi and yeast strains may be selected in which glycosylation pathways have been “humanized,” resulting in the production of an antibody with a partially or fully human glycosylation pattern. See, e.g., Li et al., Nat. Biotech. 24:210-215 (2006).
  • Plant cell cultures of cotton, corn, potato, soybean, petunia , tomato, duckweed (Leninaceae), alfalfa ( M. truncatula ), and tobacco can also be utilized as hosts.
  • Suitable host cells for the expression of glycosylated antibody are also derived from multicellular organisms (invertebrates and vertebrates). Examples of invertebrate cells include plant and insect cells. Numerous baculoviral strains and variants and corresponding permissive insect host cells from hosts such as Spodoptera frupperda (caterpillar), Aedes aegypti (mosquito), Aedes albopictus (mosquito), Drosophila melanogaster (fruitfly), and Bombyx mori have been identified.
  • Vertebrate cells may be used as hosts, and propagation of vertebrate cells in culture (tissue culture) has become a routine procedure.
  • useful mammalian host cell lines are monkey kidney CV1 line transformed by SV40 (COS-7, ATCC CRL 1651); human embryonic kidney line (293 or 293 cells subcloned for growth in suspension culture, Graham et al., J. Gen Virol. 36:59 (1977)); baby hamster kidney cells (BHK, ATCC CCL 10); mouse sertoli cells (TM4, Mather, Biol. Reprod.
  • monkey kidney cells (CV1 ATCC CCL 70); African green monkey kidney cells (VERO-76, ATCC CRL-1587); human cervical carcinoma cells (HELA, ATCC CCL 2); canine kidney cells (MDCK, ATCC CCL 34); buffalo rat liver cells (BRL 3A, ATCC CRL 1442); human lung cells (W138, ATCC CCL 75); human liver cells (Hep G2, HB 8065); mouse mammary tumor (MMT 060562, ATCC CCL51); TRI cells (Mather et al., Annals N.Y. Acad. Sci. 383:44-68 (1982)); MRC 5 cells; FS4 cells; and a human hepatoma line (Hep G2).
  • CHO Chinese hamster ovary
  • DHFR ⁇ CHO cells Urlaub et al., Proc. Natl. Acad. Sci. USA 77:4216 (1980)
  • myeloma cell lines such as NSO and Sp2/0.
  • Yazaki and Wu Methods in Molecular Biology , Vol. 248 (B. K. C. Lo, ed., Humana Press, Totowa, N.J., 2003), pp. 255-268.
  • the host cells of the present disclosure may be cultured in a variety of media.
  • Commercially available media such as Ham's F10 (Sigma), Minimal Essential Medium ((MEM), (Sigma), RPMI-1640 (Sigma), and Dulbecco's Modified Eagle's Medium ((DMEM), Sigma) are suitable for culturing the host cells.
  • any of these media may be supplemented as necessary with hormones and/or other growth factors (such as insulin, transferrin, or epidermal growth factor), salts (such as sodium chloride, calcium, magnesium, and phosphate), buffers (such as HEPES), nucleotides (such as adenosine and thymidine), antibiotics (such as GENTAMYCINTM drug), trace elements (defined as inorganic compounds usually present at final concentrations in the micromolar range), and glucose or an equivalent energy source. Any other necessary supplements may also be included at appropriate concentrations that would be known to those skilled in the art.
  • the culture conditions such as temperature, pH, and the like, are those previously used with the host cell selected for expression, and will be apparent to one of skill in the art.
  • the antibody can be produced intracellularly, in the periplasmic space, or directly secreted into the medium. If the antibody is produced intracellularly, as a first step, the particulate debris, either host cells or lysed fragments, are removed, for example, by centrifugation or ultrafiltration. Carter et al., Bio/Technology 10:163-167 (1992) describe a procedure for isolating antibodies which are secreted to the periplasmic space of E. coli.
  • the antibody composition prepared from the cells can be purified using, for example, hydroxylapatite chromatography, hydrophobic interaction chromatography, gel electrophoresis, dialysis, and affinity chromatography, with affinity chromatography being among one of the typically preferred purification steps.
  • an antibody of the present disclosure comprises a kappa or lambda light chain constant region. In some embodiments, an antibody of the present disclosure comprises a light chain constant region comprising the amino acid sequence of SEQ ID NO:325, 326, or 426. Exemplary and non-limiting light chain constant region sequences are provided in Table 6. In some embodiments, an antibody of the present disclosure comprises an IGLC3 lambda light chain constant region or an IGLC7 constant region.
  • an antibody of the present disclosure includes an Fc region.
  • the Fc region is a human Fc region, e.g., IgG1, IgG2, or IgG4 and subtypes thereof.
  • Exemplary and non-limiting Fc regions are provided within the amino acid sequences of SEQ ID NOs:320-324 shown in Table 6.
  • an Fc region within one or more of the amino acid sequences of SEQ ID NOs:320-324 comprises one or more of the mutations described herein, e.g., infra.
  • the Fc region includes one or more mutations that influence one or more antibody properties, such as stability, pattern of glycosylation or other modifications, effector cell function, pharmacokinetics, and so forth.
  • an antibody of the present disclosure has reduced or minimal glycosylation.
  • an antibody of the present disclosure has ablated or reduced effector function.
  • Exemplary Fc mutations include without limitation (i) a human IgG1 Fc region mutations L234A, L235A, G237A, and N297A; (ii) a human IgG2 Fc region mutations A330S, P331S and N297A; and (iii) a human IgG4 Fc region mutations S228P, E233P, F234V, L235A, delG236, and N297A (EU numbering).
  • the human IgG2 Fc region comprises A330S and P331S mutations.
  • the human IgG4 Fc region comprises an S288P mutation.
  • the human IgG4 Fc region comprises S288P and L235E mutations.
  • Antibodies that target cell surface antigens can trigger immunostimulatory and effector functions that are associated with Fc receptor (FcR) engagement on immune cells.
  • Fc receptor Fc receptor
  • Binding of the Fc region to Fc receptors on cell surfaces can trigger a number of biological responses including phagocytosis of antibody-coated particles (antibody-dependent cell-mediated phagocytosis, or ADCP), clearance of immune complexes, lysis of antibody-coated cells by killer cells (antibody-dependent cell-mediated cytotoxicity, or ADCC) and, release of inflammatory mediators, placental transfer, and control of immunoglobulin production. Additionally, binding of the C1 component of complement to antibodies can activate the complement system. Activation of complement can be important for the lysis of cellular pathogens. However, the activation of complement can also stimulate the inflammatory response and can also be involved in autoimmune hypersensitivity or other immunological disorders. Variant Fc regions with reduced or ablated ability to bind certain Fc receptors are useful for developing therapeutic antibodies and Fc-fusion polypeptide constructs which act by targeting, activating, or neutralizing ligand functions while not damaging or destroying local cells or tissues.
  • a Fc domain monomer refers to a polypeptide chain that includes second and third antibody constant domains (e.g., CH2 and CH3).
  • an Fc domain monomer also includes a hinge domain.
  • the Fc domain monomer is of any immunoglobulin antibody isotype, including IgG, IgE, IgM, IgA, and IgD. Additionally, in some embodiments, an Fc domain monomer is of any IgG subtype (e.g., IgG1, IgG2, IgG2a, IgG2b, IgG2c, IgG3, and IgG4).
  • Fc domain monomers include as many as ten changes from a wild-type Fc domain monomer sequence (e.g., 1-10, 1-8, 1-6, 1-4 amino acid substitutions, additions or insertions, deletions, or combinations thereof) that alter the interaction between an Fc domain and an Fc receptor.
  • a wild-type Fc domain monomer sequence e.g., 1-10, 1-8, 1-6, 1-4 amino acid substitutions, additions or insertions, deletions, or combinations thereof
  • an Fc domain monomer of an immunoglobulin or a fragment of an Fc domain monomer is capable of forming an Fc domain with another Fc domain monomer. In some embodiments, an Fc domain monomer of an immunoglobulin or a fragment of an Fc domain monomer is not capable of forming an Fc domain with another Fc domain monomer. In some embodiments, an Fc domain monomer or a fragment of an Fc domain is fused to a polypeptide of the disclosure to increase serum half-life of the polypeptide.
  • an Fc domain monomer or a fragment of an Fc domain monomer fused to a polypeptide of the disclosure dimerizes with a second Fc domain monomer to form an Fc domain which binds an Fc receptor, or alternatively, an Fc domain monomer binds to an Fc receptor.
  • an Fc domain or a fragment of the Fc domain fused to a polypeptide to increase serum half-life of the polypeptide does not induce any immune system-related response.
  • An Fc domain includes two Fc domain monomers that are dimerized by the interaction between the CH3 antibody constant domains.
  • a wild-type Fc domain forms the minimum structure that binds to an Fc receptor, e.g., Fc ⁇ RI, Fc ⁇ RIIa, Fc ⁇ RIIb, Fc ⁇ RIIIa, Fc ⁇ RIIIb, and Fc ⁇ RIV.
  • the Fc domain in an antibody of the present disclosure comprises one or more amino acid substitutions, additions or insertions, deletions, or any combinations thereof that lead to decreased effector function such as decreased antibody-dependent cell-mediated cytotoxicity (ADCC), decreased complement-dependent cytolysis (CDC), decreased antibody-dependent cell-mediated phagocytosis (ADCP), or any combinations thereof.
  • an antibody of the present disclosure can exhibit decreased binding (e.g., minimal binding or absence of binding) to a human Fc receptor and decreased binding (e.g., minimal binding or absence of binding) to complement protein Clq; decreased binding (e.g., minimal binding or absence of binding) to human Fc ⁇ RI, Fc ⁇ RIIA, Fc ⁇ RIIB, Fc ⁇ RIIIB, Fc ⁇ RIIIB, or any combinations thereof, and Clq; altered or reduced antibody-dependent effector function, such as ADCC, CDC, ADCP, or any combinations thereof; and so forth.
  • Exemplary mutations include without limitation one or more amino acid substitutions at E233, L234, L235, G236, G237, D265, D270, N297, E318, K320, K322, A327, A330, P331, or P329 (numbering according to the EU index of Kabat (Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, Md. (1991)).
  • an antibody of the present disclosure has reduced or ablated binding to CD16a, CD32a, CD32b, CD32c, and CD64 Fc ⁇ receptors.
  • an antibody with a non-native Fc region described herein exhibits at least a 5%, 10%, 15%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or greater reduction in C1q binding compared to an antibody comprising a wild-type Fc region.
  • an antibody with a non-native Fc region as described herein exhibit at least a 5%, 10%, 15%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or greater reduction in CDC compared to an antibody comprising a wild-type Fc region.
  • the Fc variants herein are minimally glycosylated or have reduced glycosylation relative to a wild-type sequence.
  • deglycosylation is accomplished with a mutation of N297A, or by mutating N297 to any amino acid which is not N.
  • variants of antibody IgG constant regions possess a reduced capacity to specifically bind Fc ⁇ receptors or have a reduced capacity to induce phagocytosis.
  • variants of antibody IgG constant regions possess a reduced capacity to specifically bind Fc ⁇ receptors and have a reduced capacity to induce phagocytosis.
  • an Fc domain is mutated to lack effector functions, typical of a “dead” Fc domain.
  • an Fc domain includes specific amino acid substitutions that are known to minimize the interaction between the Fc domain and an Fc ⁇ receptor.
  • an Fc domain monomer is from an IgG1 antibody and includes one or more of amino acid substitutions L234A, L235A, G237A, and N297A (as designated according to the EU numbering system per Kabat et al., 1991).
  • one or more additional mutations are included in such IgG1 Fc variant.
  • additional mutations for human IgG1 Fc variants include E318A and K322A.
  • a human IgG1 Fc variant has up to 12, 11, 10, 9, 8, 7, 6, 5 or 4 or fewer mutations in total as compared to wild-type human IgG1 sequence.
  • one or more additional deletions are included in such IgG1 Fc variant.
  • the C-terminal lysine of the Fc IgG1 heavy chain constant region is deleted, for example to increase the homogeneity of the polypeptide when the polypeptide is produced in bacterial or mammalian cells.
  • a human IgG1 Fc variant has up to 12, 11, 10, 9, 8, 7, 6, 5 or 4 or fewer deletions in total as compared to wild-type human IgG1 sequence.
  • an Fc domain monomer is from an IgG2 antibody and includes amino acid substitutions A330S, P331S, or both A330S and P331S.
  • the aforementioned amino acid positions are defined according to Kabat, et al. (1991).
  • the Kabat numbering of amino acid residues can be determined for a given antibody by alignment at regions of homology of the sequence of the antibody with a “standard” Kabat numbered sequence.
  • the Fc variant comprises a human IgG2 Fc sequence comprising one or more of A330S, P331S and N297A amino acid substitutions (as designated according to the EU numbering system per Kabat, et al. (1991).
  • one or more additional mutations are included in such IgG2 Fc variants.
  • additional mutations for human IgG2 Fc variant include V234A, G237A, P238S, V309L and H268A (as designated according to the EU numbering system per Kabat et al. (1991)).
  • a human IgG2 Fc variant has up to 12, 11, 10, 9, 8, 7, 6, 5, 4, 3 or fewer mutations in total as compared to wild-type human IgG2 sequence.
  • one or more additional deletions are included in such IgG2 Fc variant.
  • such Fc variant comprises a S228P, E233P, F234V, L235A, L235E, or delG236 mutation (as designated according to Kabat, et al. (1991)).
  • a human IgG4 Fc variant has up to 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2 or 1 mutation(s) in total as compared to wild-type human IgG4 sequence.
  • the Fc variant exhibits reduced binding to an Fc receptor of the subject compared to the wild-type human IgG Fc region. In some embodiments, the Fc variant exhibits ablated binding to an Fc receptor of the subject compared to the wild-type human IgG Fc region. In some embodiments, the Fc variant exhibits a reduction of phagocytosis compared to the wild-type human IgG Fc region. In some embodiments, the Fc variant exhibits ablated phagocytosis compared to the wild-type human IgG Fc region.
  • Antibody-dependent cell-mediated cytotoxicity which is also referred to herein as ADCC, refers to a form of cytotoxicity in which secreted Ig bound onto Fc receptors (FcRs) present on certain cytotoxic cells (e.g., Natural Killer (NK) cells and neutrophils) enabling these cytotoxic effector cells to bind specifically to an antigen-bearing target cell and subsequently kill the target cell.
  • FcRs Fc receptors
  • Antibody-dependent cell-mediated phagocytosis which is also referred to herein as ADCP, refers to a form of cytotoxicity in which secreted Ig bound onto Fc receptors (FcRs) present on certain phagocytic cells (e.g., macrophages) enabling these phagocytic effector cells to bind specifically to an antigen-bearing target cell and subsequently engulf and digest the target cell.
  • FcRs Fc receptors
  • Ligand-specific high-affinity IgG antibodies directed to the surface of target cells can stimulate the cytotoxic or phagocytic cells and can be used for such killing.
  • polypeptide constructs comprising an Fc variant as described herein exhibit reduced ADCC or ADCP as compared to a polypeptide construct comprising a wild-type Fc region.
  • polypeptide constructs comprising an Fc variant as described herein exhibit at least a 5%, 10%, 15%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or greater reduction in ADCC or ADCP compared to a polypeptide construct comprising a wild-type Fc region.
  • antibodies comprising an Fc variant as described herein exhibit ablated ADCC or ADCP as compared to a polypeptide construct comprising a wild-type Fc region.
  • Complement-directed cytotoxicity which is also referred to herein as CDC, refers to a form of cytotoxicity in which the complement cascade is activated by the complement component Clq binding to antibody Fc.
  • polypeptide constructs comprising an Fc variant as described herein exhibit at least a 5%, 10%, 15%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or greater reduction in Clq binding compared to a polypeptide construct comprising a wild-type Fc region.
  • polypeptide constructs comprising an Fc variant as described herein exhibit reduced CDC as compared to a polypeptide construct comprising a wild-type Fc region.
  • polypeptide constructs comprising an Fc variant as described herein exhibit at least a 5%, 10%, 15%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or greater reduction in CDC compared to a polypeptide construct comprising a wild-type Fc region.
  • antibodies comprising an Fc variant as described herein exhibit negligible CDC as compared to a polypeptide construct comprising a wild-type Fc region.
  • Fc variants herein include those that exhibit reduced binding to an Fc ⁇ receptor compared to the wild-type human IgG Fc region.
  • an Fc variant exhibits binding to an Fc ⁇ receptor that is less than the binding exhibited by a wild-type human IgG Fc region to an Fc ⁇ receptor.
  • an Fc variant has reduced binding to an Fc ⁇ receptor by a factor of 10%, 20% 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 96%, 97%, 98%, 99% or 100% (fully ablated effector function).
  • the reduced binding is for any one or more Fc ⁇ receptors, e.g., CD16a, CD32a, CD32b, CD32c, or CD64.
  • the Fc variants disclosed herein exhibit a reduction of phagocytosis compared to its wild-type human IgG Fc region.
  • Such Fc variants exhibit a reduction in phagocytosis compared to its wild-type human IgG Fc region, wherein the reduction of phagocytosis activity is e.g., by a factor of 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 96%, 97%, 98%, 99% or 100%.
  • an Fc variant exhibits ablated phagocytosis compared to its wild-type human IgG Fc region.
  • the Fc variants disclosed herein are coupled to one or more fusion partners.
  • the fusion partner is a therapeutic moiety, such as a cytotoxic agent of the present disclosure.
  • the fusion partner is selected to enable targeting of an expressed protein, purification, screening, display, and the like.
  • the fusion partner also affects the degree of binding to Fc receptors or the degree of phagocytosis reduction.
  • fusion partners are linked to the Fc variant sequence via a linker sequence.
  • the linker sequence generally comprises a small number of amino acids, such as less than ten amino acids, although longer linkers are also utilized.
  • the linker has a length less than 10, 9, 8, 7, 6, or 5 amino acids or shorter.
  • the linker has a length of at least 10, 11, 12, 13, 14, 15, 20, 25, 30, or 35 amino acids or longer.
  • a cleavable linker is employed.
  • a fusion partner is a targeting or signal sequence that directs an Fc variant protein and any associated fusion partners to a desired cellular location or to the extracellular media.
  • certain signaling sequences target a protein to be either secreted into the growth media, or into the periplasmic space, located between the inner and outer membrane of the cell.
  • a fusion partner is a sequence that encodes a peptide or protein that enables purification or screening.
  • Such fusion partners include, but are not limited to, polyhistidine tags (His-tags) (for example His6 and His10) or other tags for use with Immobilized Metal Affinity Chromatography (IMAC) systems (e.g., Ni+2 affinity columns), GST fusions, MBP fusions, Strep-tag, the BSP biotinylation target sequence of the bacterial enzyme BirA, and epitope tags which are targeted by antibodies (for example c-myc tags, flag-tags, and the like).
  • His-tags polyhistidine tags
  • IMAC Immobilized Metal Affinity Chromatography
  • such tags are useful for purification, for screening, or both.
  • an Fc variant is purified using a His-tag by immobilizing it to a Ni+2 affinity column, and then after purification the same His-tag is used to immobilize the antibody to a Ni+2 coated plate to perform an ELISA or other binding assay.
  • fusion partners that enable a variety of selection methods are available. For example, by fusing the members of an Fc variant library to the gene III protein, phage display can be employed. In some embodiments, fusion partners enable Fc variants to be labeled. Alternatively, in some embodiments, a fusion partner binds to a specific sequence on the expression vector, enabling the fusion partner and associated Fc variant to be linked covalently or noncovalently with the nucleic acid that encodes them.
  • the therapeutic moiety is, e.g., a cytotoxic agent, a peptide, a protein, an antibody, a siRNA, or a small molecule.
  • an antibody of the present disclosure is bound to various carriers or labels and used to detect the presence of specific antigen expressing cells.
  • carriers include glass, polystyrene, polypropylene, polyethylene, dextran, nylon, amylases, natural and modified celluloses, polyacrylamides, agaroses, and magnetite.
  • the nature of the carrier can be either soluble or insoluble.
  • labels and methods of labeling are known. Examples of labels include enzymes, radioisotopes, fluorescent compounds, colloidal metals, chemiluminescent compounds, and bio-luminescent compounds.
  • the antibodies are coupled to low molecular weight haptens.
  • the hapten biotin is used with avidin or the haptens dinitrophenol, pyridoxal, or fluorescein are detected with specific anti-hapten antibodies (e.g., anti-dinitrophenol antibodies, anti-pyridoxal antibodies, and anti-fluorescein antibodies respectively).
  • the antibodies described herein are utilized in vitro for binding assays, such as immune assays.
  • the antibodies are utilized in liquid phase or bound to a solid phase carrier.
  • antibodies utilized for immunoassays are detectably labeled in various ways.
  • Certain aspects of the present disclosure relate to methods of identifying an antigen binding domain that binds an extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide.
  • the methods described herein can be used to identify antigen binding domains that block binding between human CD47 and a human SIRP- ⁇ polypeptide, do not block binding between human CD47 and a human SIRP- ⁇ polypeptide, or reduce affinity of a human SIRP- ⁇ polypeptide for human CD47.
  • the methods include providing an antigen binding domain that binds the extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide.
  • an antigen binding domain that binds the extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide.
  • Exemplary antigen binding domains and antibodies that bind the extracellular domain (e.g., the D1 domain) of a human SIRP- ⁇ polypeptide, and/or other SIRP polypeptides are described herein, as are exemplary methods for identifying such antigen binding domains/antibodies. Exemplary methods are described in greater detail in the Examples infra.
  • the methods include assembling a complex comprising a SIRP- ⁇ D1 variant bound to a polypeptide comprising an IgSF domain of CD47.
  • “assembling” the complex includes providing a solution containing both a SIRP- ⁇ D1 variant and a polypeptide comprising an IgSF domain of CD47.
  • the SIRP- ⁇ D1 variant is a non-naturally occurring variant, e.g., that binds to human CD47 with an affinity that is at least 10-fold, at least 100-fold, or at least 100-fold greater than the affinity of a naturally occurring SIRP- ⁇ D1 domain binding to human CD47.
  • this facilitates antibody screening, as a natural SIRP- ⁇ :CD47 interaction may be too weak for use in binding and screening assays.
  • Exemplary variants are described in greater detail infra.
  • the methods include contacting the antigen binding domain with the assembled complex. In some embodiments, binding, or a lack or deficiency thereof, of the antigen binding domain to the complex is detected. Various detection techniques are described herein. In some embodiments, SPR or ELISA is used. Detectable binding of the antigen binding domain to the complex indicates that the antigen binding domain does not block binding between human CD47 and the human SIRP- ⁇ polypeptide. A lack of binding of the antigen binding domain to the complex indicates that the antigen binding domain blocks binding between human CD47 and the human SIRP- ⁇ polypeptide. In addition, SPR is used to distinguish blocking, non-blocking and kick-off antibodies.
  • a non-blocking antibody increases RUs when injected on top of pre-formed SIRP ⁇ :CD47 complex
  • a kick-off antibody increases K off of a pre-formed SIRP ⁇ :CD47 complex
  • blocking antibody does not change the RUs or K off of a pre-formed SIRP ⁇ :CD47 complex.
  • the IgSF domain of CD47 is a human IgSF domain.
  • the polypeptide comprising the IgSF domain of CD47 comprises a human CD47 extracellular domain.
  • the IgSF domain of CD47 comprises the amino acid sequence of QLLFNKTKSVEFTFSNDTVVIPCFVTNMEAQNTTEVYVKWKFKGRDIYTFDGALNKSTV PTDFSSAKIEVSQLLKGDASLKMDKSDAVSHTGNYTCEVTELTREGETIIELKYRVVS (SEQ ID NO:16).
  • the polypeptide comprising the IgSF domain of CD47 is conjugated to another polypeptide or other moiety, e.g., an Ig Fc region.
  • SIRP- ⁇ D1 variants are contemplated for use herein.
  • the SIRP- ⁇ D1 variant comprises an amino acid sequence selected from the group consisting of SEQ ID NOs:17-52 (see Table 4). Further descriptions of SIRP- ⁇ D1 variants follow.
  • a SIRP- ⁇ D1 variant polypeptide or fragment thereof binds to CD47 with a K D less than 1 ⁇ 10 ⁇ 8 M, less than 5 ⁇ 10 ⁇ 9 M, less than 1 ⁇ 10 ⁇ 9 M, less 5 ⁇ 10 ⁇ 10 M, less than 1 ⁇ 10 ⁇ 10 M or less than 1 ⁇ 10 ⁇ 11 M.
  • a SIRP- ⁇ D1 variant polypeptide or fragment thereof binds to CD47 with a K D between about 500 nM and 100 nM, between about 100 nM and 50 nM, between about 50 nM and 10 nM, between about 10 nM and 5 nM, between about 5 nM and 1 nM, between about 1 nM and 500 pM, between about 500 pM and 100 pM, between about 100 pM and 50 pM, or between about 50 pM and 10 pM.
  • fragments include polypeptides of less than 10 amino acids in length, about 10 amino acids in length, about 20 amino acids in length, about 30 amino acids in length, about 40 amino acids in length, about 50 amino acids in length, about 60 amino acids in length, about 70 amino acids in length, about 80 amino acids in length, about 90 amino acids in length, about 100 amino acids in length, or more than about 100 amino acids in length. Fragments retain the ability to bind to CD47.
  • SIRP- ⁇ D1 variant polypeptides and fragments thereof bind to CD47 with a higher affinity than a SIRP- ⁇ polypeptide binds to CD47.
  • the above-mentioned SIRP- ⁇ D1 variant polypeptides are attached or fused to a second polypeptide.
  • the second polypeptide includes, without limitation, an Fc polypeptide, an Fc variant, an HSA polypeptide, an albumin peptide, a PEG polymer or a fragment of the foregoing.
  • the polypeptide includes a high affinity SIRP- ⁇ D1 domain that has at least 85% sequence identity (e.g., at least 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity) to any variant provided in Table 4.
  • sequence identity e.g., at least 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity
  • Certain aspects of the present disclosure relate to methods of producing an anti-SIRP- ⁇ antibody that binds the extracellular domains (e.g., the D1 domains) of two or more different human SIRP- ⁇ variant polypeptides.
  • the use of chicken is particularly advantageous because of the greater diversity between chicken SIRP- ⁇ and mammalian (e.g., human, monkey, mouse, etc.) SIRP- ⁇ .
  • the phylogenetic distance between chickens and mammals allows for the identification of antibodies that cross-react against, e.g., human and mouse SIRP- ⁇ polypeptides, which can be difficult to achieve by producing antibodies in mouse due to self-tolerance.
  • the methods include immunizing a chicken with a peptide comprising at least a portion of a human SIRP- ⁇ extracellular domain (e.g., the D1 domain).
  • a human SIRP- ⁇ extracellular domain e.g., the D1 domain.
  • An exemplary immunization schedule is described infra. Methods for chicken immunization are described, e.g., in Mettler Izquierdo, S. et al. (2016) Microscopy ( Oxf ) 1-16.
  • the methods include obtaining an antibody from an antibody-producing cell from the immunized chicken.
  • the methods include detecting binding between the antibody obtained from the cell and the extracellular domains (e.g., the D1 domains) of two or more different human SIRP- ⁇ variant polypeptides.
  • human SIRP- ⁇ v1 and v2 e.g., as described herein, are used.
  • Exemplary detection techniques are described herein and include without limitation the GEM assay (see. e.g., WO2009111014 and Mettler Izquierdo, S. et al. (2016) Microscopy ( Oxf ) 1-16), SPR, and ELISA.
  • the disease is cancer.
  • the disease is an autoimmune or inflammatory disease.
  • antibodies described herein may be useful in the treatment of cancer, e.g., by abrogating the cancer's ability to inhibit phagocytosis and immune surveillance through the CD47: SIRP- ⁇ signaling axis, or by otherwise enhancing activation of the immune system (such as by activation of dendritic cells).
  • an antibody of the present disclosure is administered in combination with a chemotherapeutic agent.
  • an antibody of the present disclosure is administered in combination with a second antibody, e.g., an antibody that binds an antigen expressed by the cancer.
  • exemplary antigens expressed by cancers are known in the art and include without limitation CD19, CD20, CD22, CD30, CD33, CD38, CD52, CD56, CD70, CD74, CD79b, CD123, CD138, CS1/SLAMF7, Trop-2, 5T4, EphA4, BCMA, Mucin 1, Mucin 16, PTK7, PD-L1, STEAP1, Endothelin B Receptor, mesothelin, EGFRvIII, ENPP3, SLC44A4, GNMB, nectin 4, NaPi2b, LIV-1A, Guanylyl cyclase C, DLL3, EGFR, HER2, VEGF, VEGFR, integrin ⁇ V ⁇ 3, integrin ⁇ 5 ⁇ 1, MET, IGF1R, TRAILR1, TRAILR2,
  • an antibody of the present disclosure is administered in combination with a monoclonal antibody that binds CD123 (also known as IL-3 receptor alpha), such as talacotuzumab (also known as CSL362 and JNJ-56022473).
  • a monoclonal antibody that binds EGFR such as cetuximab.
  • the second antibody includes one or more effector functions, e.g., effector functions that are associated with Fc receptor (FcR) engagement on immune cells including without limitation ADCC or ADCP, and/or complement-dependent cytotoxicity (CDC).
  • an antibody of the present disclosure is particularly advantageous, e.g., to direct FcR-expressing leukocytes to target a tumor cell to which the second antibody is bound while also inhibiting the responsiveness of SIRP- ⁇ expressed by the leukocyte to any CD47 expressed by the tumor cell with the SIRP- ⁇ antibody.
  • an antibody of the present disclosure is administered in combination with an immunotherapeutic agent.
  • An immunotherapeutic agent may refer to any therapeutic that targets the immune system and promotes a therapeutic redirection of the immune system, such as a modulator of a costimulatory pathway, cancer vaccine, recombinantly modified immune cell, etc.
  • the immunotherapeutic agent comprises an antibody.
  • antigens of immunotherapeutic antibodies include without limitation PD-1, PD-L1, OX40, CTLA-4, CD137/4-1BB, B7-H3, FZD7, CD27, TNFR2, CCR4, CSF1R, CSF, TIM-3, LAG-3, VISTA, ICOS, CCR2, IDO, A2R, CD39, CD73, TIGIT, CD80, CD47, arginase, TDO, and PVRIG.
  • Immunotherapeutic agents that are approved or in late-stage clinical testing include, without limitation, ipilimumab, pembrolizumab, nivolumab, atezolizumab, avelumab, durvalumab, and the like. Without wishing to be bound to theory, it is thought that the antibodies of the present disclosure are suitable for use with immunotherapeutic agents due to complementary mechanisms of action, e.g., in activating both macrophages and T effector cells to target tumor cells. In certain embodiments, an antibody of the present disclosure is administered in combination with an inhibitor of the PD-L1/PD-1 pathway, e.g., an anti-PD-L1 or anti-PD-1 antibody.
  • an inhibitor of the PD-L1/PD-1 pathway e.g., an anti-PD-L1 or anti-PD-1 antibody.
  • a blocking anti-SIRP- ⁇ antibody of the present disclosure is administered in combination with an anti-PD-1 antibody.
  • a non-blocking anti-SIRP- ⁇ antibody of the present disclosure is administered in combination with an anti-PD-1 antibody.
  • a blocking anti-SIRP- ⁇ antibody of the present disclosure is administered in combination with an anti-PD-L1 antibody.
  • a non-blocking anti-SIRP- ⁇ antibody of the present disclosure is administered in combination with an anti-PD-L1 antibody.
  • cancers include, but are not limited to, lung cancer, squamous cell cancer, brain tumors, glioblastoma, head and neck cancer, hepatocellular cancer, colorectal cancer (e.g., colon or rectal cancers), liver cancer, bladder cancer, gastric or stomach cancer, pancreatic cancer, cervical cancer, ovarian cancer, cancer of the urinary tract, breast cancer, peritoneal cancer, uterine cancer, salivary gland cancer, kidney or renal cancer, prostate cancer, vulval cancer, thyroid cancer, anal carcinoma, penile carcinoma, melanoma, multiple myeloma and B-cell lymphoma (including non-Hodgkin's lymphomas (NHL)); acute lymphoblastic leukemia (ALL); chronic lymphocytic leukemia (CLL); acute myeloid
  • the antibodies provided herein are useful in therapies in which monoclonal antibodies are administered for the purpose of depleting cells, e.g., in the treatment of inflammatory diseases by depletion immune cells.
  • the an antibody provided herein is administered in combination with a second therapeutic antibody, e.g. with rituximab for depletion of B cells in inflammatory diseases and autoimmune conditions; alemtuzumab for multiple sclerosis; OKT3 for immunosuppression; others for bone marrow transplant conditioning; and the like.
  • Autoimmune diseases and inflammatory diseases amenable to treatment according to the disclosure include, but are not limited to, multiple sclerosis, rheumatoid arthritis, a spondyloarthropathy, systemic lupus erythematosus, an antibody-mediated inflammatory or autoimmune disease, graft versus host disease, sepsis, diabetes, psoriasis, atherosclerosis, Sjogren's syndrome, progressive systemic sclerosis, scleroderma, acute coronary syndrome, ischemic reperfusion, Crohn's Disease, endometriosis, glomerulonephritis, myasthenia gravis, idiopathic pulmonary fibrosis, asthma, acute respiratory distress syndrome (ARDS), vasculitis, and inflammatory autoimmune myositis.
  • ARDS acute respiratory distress syndrome
  • an antibody of the present disclosure is administered in combination with a therapeutic agent, such as an immunosuppressive, anti-inflammatory, or immunomodulatory agent.
  • a therapeutic agent such as an immunosuppressive, anti-inflammatory, or immunomodulatory agent.
  • an antibody provided herein is used in the treatment of an autoimmune disease or an inflammatory disease, e.g., multiple sclerosis, rheumatoid arthritis, a spondyloarthropathy, systemic lupus erythematosus, an antibody-mediated inflammatory or autoimmune disease, graft versus host disease, sepsis, diabetes, psoriasis, psoriatic arthritis, atherosclerosis, Sjogren's syndrome, progressive systemic sclerosis, scleroderma, acute coronary syndrome, ischemic reperfusion, Crohn's Disease, ulcerative colitis, endometriosis, glomerulonephritis, IgA nephropathy, polycystic kidney disease, myas
  • an antibody of the present disclosure is part of a pharmaceutical formulation, e.g., including the antibody and one or more pharmaceutically acceptable carriers.
  • Pharmaceutical compositions and formulations as described herein can be prepared by mixing the active ingredients (such as an antibody or a polypeptide) having the desired degree of purity with one or more optional pharmaceutically acceptable carriers ( Remington's Pharmaceutical Sciences 16th edition, Osol, A. Ed. (1980)), in the form of lyophilized formulations or aqueous solutions.
  • Pharmaceutically acceptable carriers are generally nontoxic to recipients at the dosages and concentrations employed, and include, but are not limited to: buffers such as phosphate, citrate, and other organic acids; antioxidants including ascorbic acid and methionine; preservatives; low molecular weight (less than about 10 residues) polypeptides; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids; monosaccharides, disaccharides, and other carbohydrates including glucose, mannose, or dextrins; chelating agents such as EDTA; sugars such as sucrose, mannitol, trehalose or sorbitol; salt-forming counter-ions such as sodium; metal complexes (e.g. Zn-protein complexes); and/or non-ionic surfactants such as polyethylene glycol (PEG).
  • buffers such as phosphate, citrate, and other organic acids
  • antioxidants including ascorbic acid and me
  • Each includes a human or mouse SIRP- ⁇ peptide fused to a modified Fc region (either an S228P human IgG4 Fc or an L234A/L235A/G237A/N297A human IgG1 Fc designated as IgG1_AAA_N297A) for increased immunogenicity.
  • a modified Fc region either an S228P human IgG4 Fc or an L234A/L235A/G237A/N297A human IgG1 Fc designated as IgG1_AAA_N297A
  • the above proteins were used to immunize wild-type chickens, SynVH chickens which are transgenic chickens containing VH from human and VL from chicken, or chickens with fully human “HuMAB” immunoglobulin loci (Crystal Bioscience; see, e.g., WO2012162422, WO2011019844, and WO2013059159). Chickens were immunized with varied schedules having alternating doses of antigen.
  • An exemplary immunization schedule is as follows: initial immunization with 100 ⁇ g dose of antigen having the sequence of SEQ ID NO:1 at week 1, boost of 100 ⁇ g of antigen having the sequence of SEQ ID NO: 2 at week 3, draw at week 4, boost with 50 ⁇ g dose of antigen having the sequence of SEQ ID NO:1 at week 5, draw at week 6, boost with 50 ⁇ g of antigen having the sequence of SEQ ID NO: 2 at week 7, and draw at week 8. Additional descriptions of chicken immunization may be found, e.g., in Mettler Izquierdo, S. et al. (2016) Microscopy ( Oxf ) 1-16.
  • Clones were generated and screened according to the GEM assay (see Mettler Izquierdo, S. et al. (2016) Microscopy ( Oxf ) 1-16). Clones were tested in a scFv-Fc format in which the light chain is fused via linker with the heavy chain. The scFv was fused to the N-terminus of human Fc-IgG1. Clones were expressed in FreeStyleTM 293-FS cells (Thermo Fisher) and secreted media was used for ELISA and SPR binding characterization.
  • Binding of the antibody clones to various SIRP proteins was determined using surface plasmon resonance (SPR) detection on a ProteOn XPR36 instrument (Bio-Rad, Hercules, Calif.) using phosphate buffered saline (PBS, pH 7.4) supplemented with 0.01% Tween-20 (PBST) as running buffer.
  • the pre-filtered media containing the secreted antibodies was used directly for the assay.
  • anti-Human IgG Fc (BR-1008-39, GE Healthcare) was amine-coupled onto a GLC sensor chip to generate the capture surfaces for the antibodies. About 4000 RU per flow cell of immobilized anti-human IgG Fc is achieved. Each clone is screened using the same method as follows.
  • the SIRP analytes used for the screen are listed in Table C.
  • Biosensor data were double-referenced by subtracting the interspot data (containing no immobilized anti-human IgG Fc) from the reaction spot data (immobilized anti-human IgG Fc) and then subtracting the response of a buffer “blank” analyte injection from that of an analyte injection. Binding was fitted using a 1:1 Langmuir and K off (1/S) values calculated. All SPR assays were performed at 25° C.
  • ELISA assays were carried out to screen binding of antibody clones to SIRP analytes and SIRP- ⁇ :CD47 complex. Briefly, 96-well flat-bottom, high binding plates (Greiner Bio-One #655061) were coated with the following proteins in separate ELISA experiments: Avidin (Sigma A9275) (2 ug/ml) followed by biotinylated human SIRP ⁇ V1 (0.5 ug/ml), Avidin (2 ug/ml) followed by human SIRP ⁇ V2 biotin (0.5 ug/ml), mouse NOD SIRP ⁇ (2 ug/ml), human SIRP ⁇ (2 ug/ml), CD47 (2 ug/ml) followed by high affinity human SIRP ⁇ V1 and V2 (at 2 ug/ml each) or anti-hFc (2 ug/ml Rockland 609-4103).
  • Plates were blocked with PBSTM (Phosphate Buffered Saline pH 7.4, 0.05% Tween®20 polysorbate, 3% milk), 50 ul of supernatant containing the secreted scFv-Fc are added for 1 hr at room temp. Plates were washed with PB ST. 50 ul of anti-hFc-HRP (1:5000 Rockland 609-4303) added for 1 hr at room temp. Plates were washed with PBST. TMB was developed for 5 min and stopped with 1N HCl. ELISA results were read using BioTek Synergy H1 Hybrid Reader.
  • human SIRP ⁇ V1 (SEQ ID NO: 5); human SIRP ⁇ V2 (SEQ ID NO:6); cynomolgus SIRP ⁇ (SEQ ID NO:11); mouse NOD SIRP ⁇ (SEQ ID NO: 8); human SIRP ⁇ (SEQ ID NO: 15); CD47 (SEQ ID NO: 16); high affinity SIRP ⁇ V1 (SEQ ID NO: 42); high affinity SIRP ⁇ V2 (SEQ ID NO:17).
  • SIRP- ⁇ is a highly polymorphic protein in humans, monkeys, and mice. For example, 20 amino acid differences have been identified between SIRP- ⁇ proteins in the NOD and C57BL/6 mouse strains, and these polymorphisms lead to functional consequences related to CD47 binding and engraftment of human hematopoietic stem cells in these mouse strains. In humans, at least 10 distinct alleles of SIRPA have been identified, and amino acid variations that distinguish the alleles are found in predicted CD47-binding residues (Takenaka, K. et al. (2007) Nat. Immunol. 8:1313-23). An alignment of 10 human variant SIRP- ⁇ protein sequences is provided in FIG. 1A . The identification of antibodies having different binding specificities with intra- and/or inter-species cross-reactivity is of great interest for development of clinical candidates that are effective across human populations and the characterization of these candidates in various animal models.
  • the D1 domains of SIRP- ⁇ proteins from human (v1 and v2 variants), cynomologus monkey, and mouse 129 were aligned to identify conserved amino acids ( FIG. 1B ). While the cynomolgus monkey and mouse 129 sequences are much more divergent from human v1 and v2 than human variants v3-v10 as shown in FIG. 1A , these alignments demonstrate some degree of conservation among all four proteins, suggesting that cross-reactive antibodies could perhaps be identified. However, each protein also shows unique polymorphisms, suggesting that specific antibodies were also possible.
  • SIRP- ⁇ protein sequences representing multiple human variants and mouse strains were also aligned.
  • R1, R2, R3 delineate residues located around binding sites of SIRP ⁇ to CD47.
  • anti-SIRP- ⁇ antibodies that bind to specific murine SIRP- ⁇ proteins may be useful, e.g., for pharmacokinetic studies (such as those using CD-1 mice), development of transgenic mice (such as those in a C57BL/6 background), and/or characterization in SCID (e.g., in a NOD background) or syngeneic (e.g., in a BALB/c or C57BL/6 background) mouse models.
  • Mammalian SIRP- ⁇ D1 domains described above were also aligned with the D1 domain of chicken SIRP- ⁇ comprising the sequence DFKLQQPQSSVVVIKGDTLTLNCTASGSGPIGAVKWVKGWGSDNQTVYEHKGSFPRVM RAVPDPTNDFTIRISNVSLEDAGTYYCVKLRKGIVDDVVFTR GGGTEVSVHA (SEQ ID NO:84) ( FIG. 2 ).
  • the sequence of chicken SIPRa was found to be significantly more divergent. Pairwise comparisons of the percentage of sequence identity between various SIRP- ⁇ proteins is shown in Table B.
  • antibody clones were characterized in the scFv-Fc format as described above. Each antibody clone was tested at concentrations between 0.008 and 1.0 ⁇ g/mL for binding using ELISA to the following targets: the D1 domain of human SIRP- ⁇ v1 (sequence according to SEQ ID NO:5), the D1 domain of human SIRP- ⁇ v2 (sequence according to SEQ ID NO:6), the D1 domain of a cynomolgus SIRP- ⁇ variant (sequence according to SEQ ID NO:11), the D1 domain of mouse 129 SIRP- ⁇ (sequence according to SEQ ID NO:7), and a human SIRP ⁇ isoform (sequence according to SEQ ID NO:15).
  • antibody clones are referred to by clone ID number.
  • S[clone number] refers to an sc-Fv-Fc format
  • AB[clone number] refers to a full IgG antibody format
  • the notation “AB[clone number]a” refers to a human IgG1 with L234A, L235A, G237A, and N297A mutations
  • “AB[clone number]b” refers to a mouse IgG1 N297A format
  • AB[clone number]c refers to a mouse IgG2a format
  • [clone number] Fab refers to a Fab fragment format.
  • each antibody clone to a pre-complex prepared using a 1:1 mix of two high affinity SIRP- ⁇ variants (SEQ ID NO:42 and SEQ ID NO:18) bound with the IgSF domain of CD47 (sequence according to SEQ ID NO:16) was characterized.
  • the affinity between the wild-type SIRP- ⁇ D1 domain and the IgSF domain of CD47 is relatively low, the use of a complex comprising a high affinity SIRP- ⁇ variant allows the identification of antibodies that bind to SIRP- ⁇ while it is complexed with CD47 (e.g., a non-blocking antibody).
  • SIRP- ⁇ e.g., a blocking antibody
  • the two SIRP ⁇ variants used correspond to high affinity SIRP ⁇ D1 domain engineered using human SIRP ⁇ polypeptide variant 1 and variant 2, respectively.
  • FIG. 3A shows the ELISA binding curve for clone 5130 (SEQ ID NO:71).
  • This clone demonstrated cross-reactivity across mammalian SIRP- ⁇ proteins, with binding to multiple human variants as well as cynomolgus and murine proteins ( FIG. 3B ). However, its binding was also isoform-specific, since no binding was observed with human SIRP ⁇ .
  • This clone was also identified as a blocker of the interaction between SIRP- ⁇ and CD47, as no binding to a pre-formed complex containing CD47 bound to a high-affinity SIRP- ⁇ variant was detected.
  • FIG. 4A shows the ELISA binding curve for clone S121 (SEQ ID NO:75). This clone also demonstrated cross-reactivity across mammalian SIRP- ⁇ proteins, but it also bound to human SIRP ⁇ , indicating pan-isoformic binding ( FIG. 4B ). This clone was also identified as a blocker of the interaction between SIRP- ⁇ and CD47.
  • FIG. 5A shows the ELISA binding curve for clone 5137 (SEQ ID NO:73). Like the clone shown in FIGS. 3A & 3B , this clone demonstrated cross-reactivity across mammalian SIRP- ⁇ proteins with isoform-specific binding, as it did not bind to human SIRP ⁇ ( FIG. 5B ). However, this clone was identified as a non-blocker of the interaction between SIRP- ⁇ and CD47, since it bound to the pre-formed complex.
  • FIG. 6A shows the ELISA binding curve for clone 5128 (SEQ ID NO:70). This clone demonstrated isoform-specific cross-reactivity across primate SIRP- ⁇ proteins, but it did not bind to the murine protein ( FIG. 6B ). This clone was also identified as a blocker of the interaction between SIRP- ⁇ and CD47.
  • FIG. 7A shows the ELISA binding curve for clone 5135 (SEQ ID NO:72). Similar to the clone shown in FIGS. 6A & 6B , this blocking clone demonstrated cross-reactivity across primate SIRP- ⁇ proteins, but it did not bind to the murine protein ( FIG. 7B ). Unlike clone S128, this clone was found to cross-react with human SIRP ⁇ .
  • FIG. 8A shows the ELISA binding curve for clone 5126 (SEQ ID NO:69). This clone was found to be human-specific, binding to both human SIRP- ⁇ variants but none of the other peptides ( FIG. 8B ). This clone was identified as a blocker of the interaction between SIRP- ⁇ and CD47.
  • FIG. 9A shows the ELISA binding curve for clone 5138 (SEQ ID NO:74). This clone only bound human SIRP- ⁇ variant 1, demonstrating a high degree of intra- and inter-species binding specificity ( FIG. 9B ). This clone was identified as a blocker of the interaction between SIRP- ⁇ and CD47.
  • FIGS. 10A-10C provide an alignment showing scFv-Fc variable domain sequences obtained from a chicken that produces chicken antibodies (CDRs are indicated).
  • FIGS. 10D-10F provide an alignment showing scFv-Fc variable domain sequences obtained from a chicken that produces human antibodies (CDRs are indicated).
  • an SPR screen was also carried out, in addition to screening by ELISA.
  • Antibody capture was carried out using an anti-human IgG-Fc immobilized GLC surface prepared as described above.
  • a SIRP ⁇ variant (SEQ ID NO:17) engineered to bind CD47 (SEQ ID NO:16) with high nM affinity was used for the screen rather than a wildtype SIRP- ⁇ . This is because the wildtype SIRP- ⁇ variant has low uM binding affinity to CD47, which does not allow stable complex interaction to assess sandwich formation.
  • SIRP- ⁇ refers to SEQ ID NO:17.
  • a third category of antibodies was isolated that have a “kick off” profile.
  • Antibody clone S118 was found to match this profile.
  • An example of the profile for S118 is shown in FIG. 12C .
  • CD47 e.g. 500 nM and 1500 nM CD47
  • a transient sandwich was formed between the antibody, SIRP- ⁇ and CD47 as indicated by the higher resonance of 300RU which then decayed over time. This decay of resonance units indicates that the antibody was able to bind to SIRP- ⁇ in the complex and “kick SIRP- ⁇ off” from binding to CD47.
  • the k off rates of binding of each clone to each SIRP analyte were determined using SPR (Table C).
  • SPR screening conditions have been described herein, and the K off values were determined using Langmuir kinetic fittings.
  • the CD47 blocking properties (block, non-block, kick-off) are described in the last column of the Table C.
  • Each antibody is identified according to its corresponding SEQ ID NO.
  • SIRP analyte sequences are as follows: CV1-3, SEQ ID NO:18; v1, SEQ ID NO:5; v2, SEQ ID NO:6; cyno1, SEQ ID NO:11; cyno2, SEQ ID NO:12; m129, SEQ ID NO:7; NOD, SEQ ID NO: 8; BL6, SEQ ID NO:9; sirpb1, SEQ ID NO:13; sirpg, SEQ ID NO:15.
  • antibodies with cross-reactive binding among human, cynomologus, and/or murine proteins may allow for characterization of antibodies in both animal models and clinical testing.
  • Antibodies with isoform- and/or variant-specific binding may be useful for personalized medicine approaches to specific human populations and/or studies on specific variants of interest.
  • the methods described herein also allow for identification of antibodies that block or do not block binding between SIRP- ⁇ and CD47, as well as antibodies that “kick SIRP ⁇ -off” from binding to CD47.
  • the running buffer was PBS pH 7.4 with 0.01% Tween-20 (PBST+). All analytes were used at their nominal concentrations as determined by A280 Absorbance and using their molar calculated extinction coefficient. Analytes were injected in a “one-shot” kinetic mode as described elsewhere (see, e.g., Bravman, T. et al. (2006) Anal. Biochem. 358:281-288).
  • the analytes were injected and flowed over anti-SIRP ⁇ antibodies immobilized ( ⁇ 1000 RUs) on GLC chips using ProteonTM Amine Coupling Kit.
  • GLC chip was activated with EDAC/Sulpho-NHS 1:1 (Biorad) diluted 1/100 for 300s at 25 ⁇ L/min.
  • Anti-SIRP ⁇ antibodies were diluted to 80 nM concentration in 10 mM sodium acetate buffer pH 4.5 and immobilized to the chip at 30 ⁇ L/min for 50s. Chip was inactivated with ethanolamine for 300s at 25 ⁇ L/min.
  • the analytes e.g., SIRP- ⁇ from different species, SIRP- ⁇ , SIRP- ⁇
  • the analytes were injected in a “one-shot” kinetic mode at nominal concentrations of 100, 33, 11, 3.7, 1.2 and 0 nM. Association times were monitored for 90 s at 100 ⁇ L/min, and dissociation times were monitored for 1200 s.
  • the surfaces were regenerated with a 2:1 v/v blend of Pierce IgG elution buffer/4M NaCl.
  • K D determination was performed using antibody capture via an NLC chip.
  • 15 ug/mL biotinylated protein A (Thermofisher) was injected at 30 uL/min for 120 s over the NLC chip to obtain an immobilization response of ⁇ 1000-1200RUs.
  • anti-SIRP ⁇ antibodies ( ⁇ 160 nM) were injected for 80s at 30 uL/min.
  • the analytes (SIRP ⁇ from different species, SIRP- ⁇ and SIPR- ⁇ ) were subsequently injected in a “one-shot” kinetic mode at nominal concentrations of 100, 33, 11, 3.7, 1.2 and 0 nM. Association times were monitored for 60s at 25 ⁇ L/min, and dissociation times were monitored for 120s.
  • the surfaces were regenerated with a 2:1 v/v blend of Pierce IgG elution buffer/4M NaCl.
  • Three representative antibodies were further characterized for binding to various SIRP- ⁇ , - ⁇ , - ⁇ proteins as described above.
  • the three antibodies contain human sequences and were derived from the HuMab chicken immunization experiments. These antibodies were tested as full-length human IgG1 antibodies with L234A, L235A, G237A, and N297A mutations.
  • SIRP- ⁇ proteins examined in these experiments corresponded to human SIRP- ⁇ v1 (SEQ ID NO:5), human SIRP- ⁇ v2 (SEQ ID NO:6), cynomolgus SIRP- ⁇ (SEQ ID NO:11), human SIRP ⁇ isoform 1 (SEQ ID NO:13), human SIRP ⁇ isoform 2 (SEQ ID NO:14), and human SIRP ⁇ isoform 1 (SEQ ID NO:15).
  • Human SIRP ⁇ isoform 1 (SEQ ID NO:13) is also known in the art as SIRP ⁇ 1 isoform 1.
  • mice proteins that were tested include BALBc (SEQ ID NO:10), BL6 (SEQ ID NO:9), NOD (SEQ ID NO:8), and m129 (SEQ ID NO:7) SIRP- ⁇ proteins.
  • BALBc SEQ ID NO:10
  • BL6 SEQ ID NO:9
  • NOD SEQ ID NO:8
  • m129 SEQ ID NO:7
  • Tables F-I Antibody clones labeled as “c” were tested as full-length mouse IgG2a antibodies; antibody clones labeled as “a” were tested as full-length human IgG1 antibodies with L234A, L235A, G237A, and N297A mutations.
  • VH and VL domain sequences were as follows: AB136a: SEQ ID NO: 133 and 134; AB3c: SEQ ID NO: 242 and 243; AB21c: SEQ ID NO: 135 and 136; AB25c: SEQ ID NO: 137 and 138; AB27c: SEQ ID NO: 139 and 140; AB66c: SEQ ID NO: 141 and 142.
  • blocking i.e., antibodies that block binding between SIRP- ⁇ and CD47
  • non-blocking i.e., antibodies that do not block binding between SIRP- ⁇ and CD47
  • antibody clones labeled as “a” were tested as full-length human IgG1 antibodies with L234A, L235A, G237A, and N297A mutations.
  • Antibody clones labeled as “b” were tested as full-length mouse IgG1 antibodies with an N297A mutation.
  • Antibody clones labeled as “c” were tested as full-length mouse IgG2a antibodies.
  • DLD-1 human colorectal adenocarcinoma
  • OE19 human esophageal carcinoma
  • growth medium comprised of RPMI (Gibco) supplemented with 10 percent heat-inactivated Fetal Bovine Serum (Gibco), one percent penicillin/streptomycin (Gibco), and one percent GlutamaxTM glutamine supplement (Gibco).
  • PBMCs were collected from the interface and resuspended in FACS buffer (PBS with 0.5 percent Bovine Serum Albumin (Gibco)).
  • CD14 + monocytes were purified by negative selection using the Monocyte Isolation Kit II (Miltenyi Biotec) and LS columns (Miltenyi Biotec) according to the manufacturer's protocol.
  • CD14 + monocytes were seeded into 15 cm tissue culture plates (Corning) at 10 million cells per dish in 25 ml IMDM (Gibco) supplemented with 10 percent human AB serum (Corning), one percent penicillin/streptomycin, and one percent GlutamaxTM glutamine supplement. Cells were cultured for seven to ten days.
  • CD14 + monocytes were seeded into 15 cm tissue culture plates (Corning) at 6 million cells per dish in 25 ml RPMI(Gibco) supplemented with 10 fetal bovine serum (Thermo Fisher), one percent penicillin/streptomycin, and one percent Glutamax, and 50 ng/ml M-CSF (Miltenyi). Cells were cultured for seven to ten days.
  • DLD-1 and OE19 cells were detached from culture plates by washing twice with 20 ml PBS and incubation in 10 ml TrypLETM Select (Gibco) adherent cell dissociation enzyme for 10 minutes at 37° C. Cells were centrifuged, washed in PBS, and resuspended in medium. Cells were labeled with the CelltraceTM CFSE Cell Proliferation kit (Thermo Fisher) according to the manufacturer's instructions and resuspended in IMDM. Macrophages were detached from culture plates by washing twice with 20 ml PBS and incubation in 10 ml TrypLETM Select adherent cell dissociation enzyme for 20 minutes at 37° C. Cells were removed with a cell scraper (Corning), washed in PBS, and resuspended in IMDM.
  • a cell scraper Corning
  • Phagocytosis assays were assembled in ultra-low attachment U-bottom 96 well plates (Corning) containing 100,000 DLD-1 or OE19 cells, 50,000 macrophages, five-fold serial dilutions of anti-SIRP- ⁇ antibody from 100 nM to 6.4 pM, and cetuximab (Absolute Antibody) at 1 or 0.01 ug/ml, trastuzumab at 0.01 ug/ml, or control antibody of the same isotype (Southern Biotech). All anti-SIRP- ⁇ antibodies tested had a human IgG1 with L234A, L235A, G237A, and N297A mutations except AB136c, which had a mouse IgG2a.
  • a control rat anti-mouse anti-SIRP- ⁇ antagonistic antibody clone p84
  • rat IgG control rat IgG control
  • AB136b AB136 with a mouse IgG1 Fc region bearing an N297A mutation
  • mouse IgG control or vehicle (PBS) at 10 mg/kg.
  • spleens were harvested and processed into single cell suspension by mechanical dissociation through a 7004 cell strainer. Cells were washed two with PBS and red blood cell lysis was performed. Subsequently, cells were washed for an additional two times with PBS/10% FBS and
  • Cells were stained with fluorochrome conjugated CD8, 33D1, CD4, CD11c, CD86, CCR7 and viability dye at 4 degrees for one hour. Cells were washed two times and analyzed using a BD CantoTM II flow cytometer and data were processed using Flowjo.
  • CT26 syngeneic mouse colon carcinoma model CT26 cells were implanted subcutaneously in BALB/c mice and randomized into groups (8-9 mice/group). Treatment groups included vehicle (PBS) and AB136b. AB136 anti-SIRP- ⁇ had a mouse IgG1 Fc region bearing an N297A mutation. Treatment was initiated when tumors were an average of 75-80 mm 3 , day 7 or 8 post implant. Mice were dosed intraperitoneally (IP) at 3 mg/kg twice a week for three weeks with AB136b. Animals were sacrificed when tumors reached a volume of ⁇ 2000 mm 3 .
  • IP intraperitoneally
  • MC38 cells were implanted subcutaneously in C57BL/6 mice and randomized into groups (8-10 mice/group).
  • Treatment groups included vehicle (PBS), AB25b, AB25c, AB27b, AB3b, and AB136b.
  • All anti-SIRP ⁇ antibodies had a mouse IgG1 Fc region bearing an N297A mutation except for AB25c, which had a mouse IgG2a.
  • Treatment was initiated when tumors were an average of 60-65 mm 3 , day 7 post implant.
  • Mice were dosed intraperitoneally (IP) at 10 mg/kg twice a week for three weeks for anti-SIRP ⁇ . Animals were sacrificed when tumors reached a volume of ⁇ 2000 mm 3 .
  • SIRP analyte sequences are as follows: CV1-3, SEQ ID NO:18; v1, SEQ ID NO:5; v2, SEQ ID NO:6; cyno1, SEQ ID NO:11; cyno2, SEQ ID NO:12; m129, SEQ ID NO:7; NOD, SEQ ID NO:8; BL6, SEQ ID NO:9; sirpb1, SEQ ID NO:13; sirpg, SEQ ID NO:15.
  • non-blocking anti-SIRP- ⁇ antibody AB3a was found to induce phagocytosis of DLD-1 tumor cells in M2 polarized macrophages.
  • treatment of macrophages with cetuximab (anti-EGFR antibody) and AB3a led to robust induction of tumor cell phagocytosis.
  • non-blocking anti-SIRP- ⁇ antibody AB45a was found to induce phagocytosis of DLD-1 tumor cells M2 polarized macrophages, and treatment of macrophages with cetuximab (anti-EGFR antibody) and AB45a led to robust induction of tumor cell phagocytosis ( FIGS.
  • Blocking anti-SIRP- ⁇ antibodies AB119a ( FIG. 13E ) and AB135a ( FIG. 13F ) were also found to induce phagocytosis of OE19 tumor cells when co-administered with trastuzumab (anti-HER2 antibody).
  • Non-blocking anti-SIRP- ⁇ antibody AB136c was also found to induce phagocytosis of DLD-1 tumor cells ( FIG. 13G ).
  • a dendritic cell activation assay was used to characterize the in vivo effects of non-blocking anti-SIRP- ⁇ antibody AB136b (SEQ ID NOs:133 and 134 for VH and VL domain sequences, respectively). Failure to engage mouse SIRP- ⁇ receptor on splenic dendritic cells via CD47 binding leads to splenic dendritic cell activation. Control anti-SIRP- ⁇ antagonist antibody p84 activated splenic dendritic cells when injected intravenously into mice ( FIG. 14 ). Non-blocking anti-SIRP- ⁇ antibody AB136b was tested in vivo to determine if it leads to dendritic cell activation. Interestingly, AB136b treatment led to activation of splenic dendritic cells at a similar level as p84 ( FIG. 14 ).
  • mice below 600 mm 3 for AB25b and AB27b had three mice below 600 mm 3 for AB25c and AB3b, four mice below 600 mm 3 for AB25c and AB3b and five mice below 600 mm 3 for AB136b, while the vehicle-treated group had only two mice below 600 mm 3 .
  • anti-SIRP- ⁇ antibodies have been generated with a variety of specificities and modes of binding to SIRP- ⁇ , e.g., antibodies that block CD47 binding to SIRP- ⁇ , antibodies that do not block CD47 binding to SIRP- ⁇ , and antibodies that bind to SIRP- ⁇ and reduce its affinity for binding CD47 (“kick off” antibodies). Structural analyses were undertaken in order to understand how these types of antibodies bind to the D1 domain of SIRP- ⁇ as compared to CD47 and characterize the epitopes of selected anti-SIRP- ⁇ antibodies.
  • Fabs and SIRP ⁇ were similar to previously established protocols and involved traditional methods of affinity chromatography and size exclusion for protein purification.
  • a human SIRP- ⁇ v1 mutant bearing an N80A mutation as compared to SEQ ID NO:5 was used for ease of protein production in Expi293 (SEQ ID NO:296).
  • the goal of using an N80A SIRP ⁇ was to produce a homogenous, non-glycosylated form of SIRP ⁇ that would be most amenable for crystallization.
  • the final purification buffer is minimal with only 10 mM Tris pH 7.5 and 50 mM NaCl.
  • the purified complex sample is stable at 4° C. and was concentrated to 10-12 mg/mL in preparation for crystallization experiments and eventual structure determination.
  • Kits used for initial sparse matrix screening.
  • Kit Cat. No./ID Classics Suite 130901 Classics II Suite 130923
  • Classics L Suite 130902 PEGs Suite 130904
  • PEGs II Suite 130916 PACT Suite 130918
  • ProComplex Suite 130915 AmSO 4 Suite 130905 Crystallization Summary and Crystal Harvesting
  • Crystallization of the 4 complexes was achieved with derivatives of two main conditions as shown in Table J3). Crystal harvesting was done on optimal crystal forms so that manipulation and cryo-freezing in liquid nitrogen would not jeopardize the integrity of the crystal prior to X-ray diffraction screening and possible data collection. To prevent icing, a cryo-protectant was implemented during freezing. The typical cryo-protectant included an addition of 20% glycerol to the crystallization condition that formed the crystal. When crystals formed in conditions with 30% PEG 4000 or above, the addition of glycerol was not necessary. The high percentage of PEG 4000 behaved as a viable cryo-protectant.
  • Crystals of complexes were manipulated with cryo loops that are either nylon or Mitigen® crystal mount style. Single crystals were isolated and excised out of the drop in which they formed and transferred into cryo-protectant for a short period before plunging into liquid nitrogen to flash freeze.
  • Fab Antibody Buffer Salt Precipitant 119 0.1M Tris-HCl pH 8.5 0.2M MgCl2 15% (w/v) PEG 4000 136 0.1M Tris-HCl pH 8.5 0.2M MgCl2 30% (w/v) PEG 4000 3 0.1M Sodium Acetate 0.45M Ammonium 35% (w/v) pH 4.6 Sulfate PEG 4000 115 0.1M Tris pH 7.2 0.2M MgCl2 18% (w/v) PEG 4000 Data Collection and Processing
  • xia2 is a wrapper script that allows for automated reduction of macromolecular crystallographic data.
  • the program is able to utilize multiple data reducing programs such as XDS, DIALS, Mosflm, and Aimless. These programs allow for the diffraction data to be indexed into the appropriate space group and unit cell, integration of intensities, and scaling to produce an estimate of intensity of each unique reflection.
  • Model building utilized the Coot program.
  • Complex 1 was calculated to have 4 molecules in the ASU, therefore, 4 pairs of AB119f complexed with SIRP ⁇ are to be built to complete the structure model.
  • the strategy of structure building was to build amino acid residues into electron density following the known sequence of the target proteins. Quality of data directly correlates to the fit of the structure model into the observed crystal dataset. Therefore, building the tertiary structure of the Complex followed established protocol. Initially, the peptide bone of the residue was built. This was followed by the placement of the correct residue side chain if the electron density map permits.
  • Buried surface area of the antigen for the epitope was calculated as the difference between the solvent-accessible surface area of the antigen alone and antigen in complex with Fab fragment of the antibody.
  • buried surface area of the antibody heavy and light chains for the paratope was calculated as the difference between the solvent-accessible surface area of the fab fragment alone and in complex with its antigen.
  • the surface accessible area was calculated by the rolling ball method with probe radius of 1.4 ⁇ . Buried surface area is reported in ⁇ 2 . All antibody: SIRP ⁇ complexes were superimposed by selecting SIRP ⁇ from each structure and superimposing its carbon atoms.
  • CD47: SIRP ⁇ complex (V1 variant) structure used for the analysis is PDB:4CMM. The superimposition and the RMSD calculation was performed using PYMOL.
  • blocking antibody 119 Fab bound to SIRP- ⁇ was determined and compared to CD47 binding to SIRP- ⁇ .
  • FIG. 17A antibody 119 and CD47 bound to a similar epitope of the SIRP- ⁇ D1 domain. 56% of the SIRP- ⁇ residues in the antibody 119 epitope were also found in the CD47 epitope, while 75% of the SIRP- ⁇ residues in the CD47 epitope were also found in the antibody 119 epitope.
  • the SIRP- ⁇ residues participating in the interaction with antibody 119 are shaded and shown as space-filled models in FIG. 17B .
  • FIG. 18A shows a comparison between CD47 binding to the SIRP- ⁇ D1 domain and non-blocking antibody 136 Fab binding to the SIRP- ⁇ D1 domain.
  • the SIRP- ⁇ binding epitopes of antibody 136 and CD47 were found to be completely non-overlapping.
  • the SIRP- ⁇ residues participating in the interaction with antibody 136 are shaded and shown as space-filled models in FIG. 18B .
  • Key residues from the antibody 136 Fab paratope are also shown (black sticks), including heavy chain residues E56, Y59, and R102, and light chain residues Y92 and R94 (based on the heavy and light chain variable domain sequences according to SEQ ID NOs:133 and 134, respectively).
  • FIG. 19A shows a comparison between CD47 binding to the SIRP- ⁇ D1 domain and non-blocking antibody 3 Fab binding to the SIRP- ⁇ D1 domain.
  • the SIRP- ⁇ binding epitopes of antibody 3 and CD47 were also found to be completely non-overlapping.
  • the SIRP- ⁇ residues participating in the interaction with antibody 3 are shaded and shown as space-filled models in FIG. 19B .
  • Key residues from the antibody 3 Fab paratope are also shown (black sticks), including heavy chain residues R56 and G100 and light chain residues R24, R26, Y86, and G88 (based on the heavy and light chain variable domain sequences according to SEQ ID NOs:242 and 243, respectively).
  • FIG. 19C shows a comparison between CD47 binding to the SIRP- ⁇ D1 domain and “kick off” antibody 115 Fab binding to the SIRP- ⁇ D1 domain.
  • the SIRP- ⁇ binding epitope of antibody 115 was found to be adjacent to the epitope of CD47. While mAb 115 was found to bind an epitope of the SIRP- ⁇ D1 domain adjacent to that of CD47, parts of the 115 epitope likely overlap with CD47 itself. Comparing both epitopes, there are 2 identical residues, suggesting that the interactions from the non-overlapping portions of each epitope allow the 115 Fab and CD47 to bind SIRP- ⁇ simultaneously.
  • FIG. 20A illustrates the binding of antibodies 119, 136, 3, and 115 to SIRP- ⁇ , as compared to CD47 binding to SIRP- ⁇ .
  • Blocking antibody 119 was found to bind a completely non-overlapping SIRP- ⁇ epitope, as compared with the SIRP- ⁇ epitopes of both non-blocking antibodies 136 and 3.
  • SIRP- ⁇ and antibody residues that participate in these interactions are summarized in Table K1.
  • SIRP- ⁇ residues determined to interact with CD47 were determined as follows: 29, 30, 31, 33, 34, 35, 36, 37, 50, 51, 52, 53, 54, 66, 67, 68, 69, 74, 93, 96, 97, 98, 99, and 101 (according to SEQ ID NO:5).
  • the numbering of amino acid residues of an antibody used to indicate the paratope is based on numbering according to the amino acid sequence of the heavy or light chain, and not, e.g., the Kabat or Chothia numbering of antibody residues.
  • SIRP- ⁇ epitopes and antibody paratopes for selected anti-SIRP- ⁇ antibodies.
  • the binding locations for additional anti-SIRP ⁇ antibodies can be characterized by carrying out epitope binning described in Example 5. For instance, for any anti-SIRP ⁇ antibodies that compete with non-blocker 136 for binding to SIRP ⁇ , we can predict that these antibodies would share similar binding epitopes as 136 as defined by crystallography.
  • Anti-SIRP- ⁇ antibodies described above were next assayed in epitope binning experiments with SIRP- ⁇ in order to categorize antibodies having shared and distinct epitopes.
  • epitope binning was conducted as shown in FIG. 21A .
  • a first anti-SIRP- ⁇ antibody was immobilized on a chip, then human SIRP- ⁇ v1 (SEQ ID NO:5) was injected.
  • a second anti-SIRP- ⁇ antibody was then injected. If the second antibody was able to bind the complex formed between the first anti-SIRP- ⁇ antibody and SIRP- ⁇ , the first and second antibodies were determined to bind different epitopes. If the second antibody was not able to bind, the first and second antibodies were determined to share an epitope.
  • FIG. 21B Exemplary results of a binning assay using anti-SIRP- ⁇ antibody (A) immobilized to the chip and injecting anti-SIRP- ⁇ antibodies (B-F) are shown in FIG. 21B .
  • Anti-SIRP ⁇ antibody (B), (E) and (F) form sandwiches with the complex, and this is indicated by the increasing RU at time 60s (upon injection of respective anti-SIRP ⁇ antibodies). As such, they are determined to bind different epitopes than anti-SIRP ⁇ (A) and are indicated by white boxes in the binning plot ( FIGS. 22A & 22B ).
  • anti-SIRP ⁇ antibody (C) and (D) did not form a sandwich, and this is indicated by a steady RU after injection of respective anti-SIRP ⁇ antibodies. As such, they are determined to bind the same epitope as anti-SIRP ⁇ (A) and are shaded gray in the binning plot ( FIGS. 22A & 22B ).
  • the clone number for the ligand (anti-SIRP ⁇ ) bound to the chip is indicated as rows, and the clone number for the analytes (anti-SIRP ⁇ ) injected over the chip is indicated as columns in FIGS. 22A & 22B .
  • “X” indicates scenarios where the data from one orientation disagreed with the other.
  • anti-SIRP ⁇ antibodies were immobilized on GLC chips using ProteonTM Amine Coupling Kit as described before. Briefly, for the immobilization step, GLC chip was activated with EDAC/Sulpho-NHS 1:1 (Biorad) diluted 1/80 for 300 s at 25 ⁇ L/min. Anti-SIRP ⁇ antibodies were diluted to 80 nM concentration in 10 mM sodium acetate buffer pH 4.5 and immobilized to the chip at 30 ⁇ L/min for 50s. Chip was inactivated with ethanolamine for 300 s at 25 ⁇ L/min.
  • SIRP- ⁇ v1 (SEQ ID NO:5) (100 nM) was first injected at 100 uL/min for 60s followed by injecting the anti-SIRP ⁇ antibodies in testing (100-150 nM) at 100 uL/min for 60s.
  • the surfaces were regenerated with a 2:1 v/v blend of Pierce IgG elution buffer/4M NaCl. The resultant sensograms were used to score and group the antibodies into different bins according to their binding profiles.
  • anti-SIRP- ⁇ antibody clones were binned: 3, 21, 25, 27, 45, 66, 115, 116, 117, 118, 119, 120, 121, 122, 123, 132, 135, 136, 137, 149, 161, 162, 173, 194, 209, 213, and 218.
  • FIGS. 22A & 22B the results demonstrated that each mode (B: blocking, NB: non-blocking, and KO: “kick off”) of anti-SIRP- ⁇ antibody binding to human SIRP- ⁇ v1 binned separately.
  • the anti-SIRP ⁇ antibodies could be further separated into 4 bins based on their binding profiles.
  • anti-SIRP ⁇ antibodies 123, 149, 161, 162, 194 and 218 were grouped as Bin5.
  • Anti-SIRP ⁇ antibodies 3, 173, 209 and 213 were grouped as Bin 4.
  • Anti-SIRP ⁇ antibodies 136 and 137 were grouped as Bin 2.
  • Anti-SIRP ⁇ antibody 45 has a unique binding profile and is grouped as Bin 6.
  • anti-SIRP ⁇ antibodies in Bin 5 are postulated to bind adjacent to anti-SIRP ⁇ 136 (Bin 2) and 115 (Bin 3) respectively and share overlapping epitopes. This is based on binning data showing anti-SIRP ⁇ antibodies in Bin 5 competed with antibodies in Bins 2 and 3 for binding to SIRP ⁇ V1, and they did not compete with antibodies in Bins 1, 4 and 6 ( FIG. 22B ).
  • Anti-SIRP ⁇ antibody 45 (Bin 6) is postulated to bind adjacent to anti-SIRP ⁇ 3 (Bin 4) and 136 (Bin 2) respectively and share overlapping epitopes. This is based on binning data showing anti-SIRP ⁇ 45 competed with antibodies in Bins 2 and 4 for binding to SIRP ⁇ V1, and anti-SIRP ⁇ 45 did not compete with antibodies in Bins 1, 3 and 5 ( FIG. 22B ).
  • the model in FIG. 23 illustrates the epitope of each antibody bin based on structural and binning analyses, and demonstrates the overlap between various antibody bins using exemplary antibody clones.
  • Additional anti-SIRP- ⁇ antibodies isolated herein are grouped into families and bins based on their epitope mapping profiles, homologies in their VH/VL domain sequences, binding specificities to SIRP proteins and the sources of the antibodies.
  • anti-SIRP- ⁇ antibodies in family 1/Bin 1 are CD47 blockers that share high sequence homologies in their VH and VL domains (Table P and FIGS. 11O & 11P ). The VH and VL are fully human sequences.
  • Anti-SIRP- ⁇ antibodies in family 2/Bin 1 are also CD47 blockers.
  • the anti-SIRP- ⁇ antibodies in Family 3/Bin 2 include CD47 non-blockers, and their highly homologous VH/VL are fully human sequences (Table P, FIGS. 11E-11F ).
  • the anti-SIRP- ⁇ antibodies in Family 4/Bin 3 include kick-off antibodies, and their highly homologous VH/VL are fully human sequences (Table P, FIGS. 11G & 11H ).
  • Family 5 includes CD47 non-blockers that are separately mapped into Bins 4, 5, and 6. The sequence alignments of these antibodies and their binding profiles are shown in FIGS. 11I-11N and Table P, respectively.
  • the K off binding values to various SIRP- ⁇ , SIRP-0, and SIRP- ⁇ polypeptides of the corresponding anti-SIRP ⁇ antibodies in Families 1-5 are presented in Table T.
  • Some anti-SIRP- ⁇ antibodies described above are fully human antibodies generated in a chicken (e.g., antibodies 119, 135, and 136). As such, some of these antibodies may contain mutations in the variable domain framework sequences, as compared to wild-type human germline sequence, by virtue of generating these antibodies in chicken B cells. Therefore, it is desirable to “back-mutate” these respective residues to match that of human germline sequence with the goal of limiting immunogenicity when these anti-SIRP ⁇ antibodies are tested in humans as potential therapeutics. In addition to germline back-mutations, the CDRs and framework region of antibodies 119, 135 and 136 were analyzed for liability hot spots. These analyses identified sites where engineering may be desired to limit risk due to modifications that may occur during manufacturing, storage and/or drug development of anti-SIRP ⁇ antibodies.
  • the K D for respective germline and liability mutants binding to SIRP were determined using direct immobilization using GLC chip as described supra.
  • the wildtype and mutant antibodies were expressed in Expi293 and purified by Protein A affinity column chromatography as described earlier. All antibodies were expressed as human L234A/L235A/G237A/N297A IgG1 Fc antibodies. Mutagenesis was carried out using QuikChange Lightning Site Directed Mutagenesis kit according to manufacturer's instructions (Agilent Catalog #210518).
  • Antibodies 119, 135, and 136 were examined. Selected antibody sequences were aligned with available human germline sequences using IgBlast (NCBI). For instance, a total of 7 sites on the heavy and light chains of 119 were identified. As shown in FIG. 24A , residues that were not commonly occurring in human germline sequence of 119 VH (e.g., D1, E43, and L112) were back-mutated to match human germline sequence (e.g., D1E, E43K, and L112Q) while keeping CDR sequences intact. As for 119 VL ( FIG. 24B ), residues that were not commonly occurring in human germline sequence of 119 VL (e.g.
  • F21, R39, E60, and T76 were back-mutated to match human germline sequence (e.g. F21L, R39K, E60A, and T76S) while keeping CDR sequences intact.
  • all mut and mut refer to variable domains containing all of the germline mutations described herein for a particular antibody variable domain.
  • the amino acid numberings used to describe the germline and liability mutations are based on sequential numbering accordingly to respective SEQ IDs.
  • antibody sequences were also analyzed for “liability” hot spots, including residues that may be susceptible to oxidation, deamidation, isomerization, hydrolysis, and N-linked glycosylation. Potential hot spots are shown in Table L. In particular, M34V and M34L variants of HVR-H1 were generated for the VH domain of multiple antibodies.
  • Variants of antibody 119 were generated using heavy and/or light chain variable domains bearing germline and liability back-mutations.
  • a 119 mutant (“mut”) VH domain was generated with the germline back mutations D1E, E43K, and L112Q, as well as the M34V mutations in CDR-H1 that remove a methionine residue that could potentially be oxidized (see SEQ ID NOs:246 for VH sequences).
  • Another variant was generated with the germline back mutations D1E, E43K, and L112Q (see SEQ ID NO:258 for VH sequence). Alignments between the parental and variant sequences are shown in FIG. 24A .
  • a 119 mutant (“mut”) light chain was also generated with the germline back mutations F21L, R39K, E60A, and T76S; an alignment between the parental and variant sequence is shown in FIG. 24B .
  • Antibody 119 variants with the mutant heavy and/or light chain were compared with the parental 119 antibody with an IgG1 Fc region bearing L234A, L235A, G237A, and N297A mutations (EU numbering), and a parental 119 antibody with an IgG4 Fc region bearing an S228P mutation (EU numbering), for binding affinity to human SIRP- ⁇ v1 (SEQ ID NO:5), human SIRP- ⁇ v2 (SEQ ID NO:6), and cynomolgus SIRP- ⁇ (SEQ ID NO:11).
  • the 119 mutant heavy and light chains were both found to cause slight reductions in binding affinity to all three SIRP- ⁇ proteins.
  • M34V and M34L single mutations were generated in the 119 VH wildtype background and combined with 119 wildtype light chain. Both 119 wt/wt M34V and 119 wt/wt M34L had comparable affinities (K D , M) to human SIRP ⁇ v1 and v2 as compared with 119 wt/wt. This indicates that residue M34 is not critical for SIRP- ⁇ binding and can be substituted with M34L or M34V mutations.
  • the corresponding VH sequences for M34V and M34L single mutations generated in the 119 VH wildtype background are SEQ ID NO: 421 and 420, respectively.
  • a 135 mutant (mut) heavy chain was generated with the germline back mutations D1E, R13Q, E16G, E43K, and L112Q, as well as the M34V mutation in CDR-H1 that removes a methionine residue that could potentially be oxidized (see SEQ ID NO:247 for VH sequence).
  • a similar variant was constructed without the M34V mutation in CDR-H1 (see SEQ ID NO:259 for VH sequence).
  • a 135 mutant (mut) light chain was generated with the germline back mutations F21L and D60A (see SEQ ID NO:248 for VL sequence). Alignments between the parental and variant sequences are shown in FIGS. 25A & 25B .
  • Antibody 135 variants with the mutant heavy and/or light chain were compared with the parental 135 antibody for binding affinity to human SIRP- ⁇ v1 (SEQ ID NO:5), human SIRP- ⁇ v2 (SEQ ID NO:6), cynomolgus SIRP- ⁇ (SEQ ID NO:11), and human SIRP- ⁇ v1 (SEQ ID NO:15).
  • the 135 mutant heavy and light chains had comparable binding affinity to all four SIRP- ⁇ proteins, as well as comparable yields (Table N1).
  • M34V and M34L single mutations were generated in the 135 VH wildtype background and combined with a 135 wildtype light chain. Both 135 wt/wt M34V and 135 wt/wt M34L had comparable affinities (K D , M) to human SIRP ⁇ v1 and v2 as compared with 135 wt/wt. This indicates that residue M34 is not critical for SIRP- ⁇ binding and can be substituted with an M34L or M34V mutation.
  • the corresponding VH sequences for M34V and M34L single mutations generated in the 135 VH wildtype background are SEQ ID NO: 423 and 422, respectively.
  • a 136 mutant (mut) heavy chain was generated with the germline back mutations D1E, R13Q, E16R, E43K, and L111Q, as well as the M34V mutation in CDR-H1 that removes a methionine residue that could potentially be oxidized (see SEQ ID NO:249 for VH sequence).
  • a similar variant was constructed without the M34V mutation in CDR-H1 (see SEQ ID NO:260 for VH sequence).
  • a 136 mutant (mut) light chain was generated with the germline back mutations T2I, T12S, T22S, and E38Q (see SEQ ID NO:250 for VL). Alignments between the parental and variant sequences are shown in FIGS. 26A & 26B .
  • antibody 136 variants with the mutant heavy and/or light chain were compared with the parental (“wt”) 136 antibody as IgG1_AAA_N297A for binding affinity to human SIRP- ⁇ v1 (SEQ ID NO:5), human SIRP- ⁇ v2 (SEQ ID NO:6), cynomolgus SIRP- ⁇ (SEQ ID NO:11), NOD mouse SIRP- ⁇ (SEQ ID NO:8), BL/6 mouse SIRP- ⁇ (SEQ ID NO:9), and BALB/c mouse SIRP- ⁇ (SEQ ID NO:10).
  • the Y-axis shows the ratio of K D mut/K D wt binding to various SIRP.
  • I2T, S12T, S22T, and Q38E mutations were individually tested in otherwise “all mutant” light chains, as shown in FIG. 27B .
  • the I2T mutation in an otherwise all mut background showed consistently similar binding affinity, as compared with the parental wt/wt antibody (see SEQ ID NO:251 for I2T in all mut background and FIG. 27A for alignment with parental and mutant 136 antibodies).
  • the other three reverse mutations S12T, S22T, and Q38E consistently showed binding affinities more similar to 136 mut/mut, indicating that the T2I mutation is responsible for reduced binding affinity to various SIRP proteins. Additional data from these experiments are provided in Table Q infra.
  • Antibodies were humanized using standard techniques. For measuring production yield, equal volume of Expi293 cultures expressing anti-SIRP ⁇ antibodies were purified by Protein A affinity chromatography. After buffer exchange into PBS, the protein concentration was determined by A280 and expressed in mg/mL.
  • each chicken light chain sequence was aligned to the closest human germline framework by IgBLAST (NCBI).
  • NCBI the closest match to the chicken lambda light chain framework is human IGLV3 (see SEQ ID NOs:314-317).
  • Hum1 (AB25 HVRs+human IGLV3 framework), Hum2 (AB25 HVRs+human IGLV1 framework), Hum3 (AB66 HVRs+human IGLV3 framework), Hum4 (AB66 HVRs+human IGLV1 framework), Hum5 (AB25 HVRs+human IGLV2 framework), and Hum6 (AB21 HVRs+human IGLV1 framework). Sequences of the resulting light chain variable domains are provided in Table 01.
  • Each of the 6 humanized light chains was paired with each of four heavy chains (derived from AB21, AB25, AB27, and AB66), generating 24 unique antibodies. Antibodies were expressed as described above. Surprisingly, human IGLV1 framework sequences resulted in decreased antibody expression regardless of the heavy chain. This refers to all the heavy chain pairings with Hum2, Hum4 and Hum6 (except when pairing was carried out with heavy chain from AB66). The results are summarized in FIG. 28 as “protein yield” (row 1). In contrast, antibodies with light chains including human IGLV2 and IGLV3 frameworks (Hum 1, Hum3, Hum5) showed higher levels of expression regardless of the heavy chain.
  • Selected antibodies were next characterized for binding to a variety of SIRP proteins (e.g., to human SIRP- ⁇ v1, human SIRP- ⁇ v2, cynomolgus SIRP- ⁇ , mouse BALB/c SIRP- ⁇ , and human SIRP- ⁇ ). These data are also summarized in FIG. 28 . Selected humanized light chains caused a decrease in binding to one or more antigens. For instance, the human IGLV3 framework (represented by Hum1 and Hum3) was found to allow for superior levels of antibody production without perturbing binding affinity.
  • IGLV3 frameworks and either the antibody 25 or antibody 66 HVR sequences represented by Hum1 and Hum 3 respectively
  • heavy chains e.g., heavy variable domains from antibodies 21, 25, 27, and 66
  • IGLV1 and IGLV2 frameworks represented by Hum2, Hum4, Hum5 and Hum6
  • Table R infra The human IGLV3 framework was selected for further testing.
  • Another goal for humanization of these antibodies was antibody sequences having greater than or equal to 85% identity to human germline light chain/heavy chain sequences. Additional VL domain Hum9 and Hum8 was generated based on the Hum1 VL domain. Compared to Hum1, Hum9 contains 4 amino acid substitutions near or in HVR-L1 and -L2 that increase the humanness of the light chain to greater than or equal to 85% identity to human light chain sequence ( FIG. 29 ). Compared to Hum1, Hum8, contains 5 amino acid substitutions respectively near or in HVR-L1 and -L2 that increase the humanness of the light chain to greater than or equal to 85% identity to human light chain sequence ( FIG. 29 ).
  • Hum1, Hum8 and Hum9 VLs when paired with heavy chain all_mut_AB21 (carrying germline mutations) produced anti-SIRP ⁇ antibodies that bind to human v1 with affinity equal or better than 10 pM (Table S).
  • the anti-SIRP ⁇ antibodies bind to human v1 with affinity equal or better than 10 pM. Additional binding data from these experiments are provided in Table S infra.
  • These light chains can be combined interchangeably with antibody VH domains 21, 25, and 27 (as well as variants thereof, which were modified as described supra for antibodies 119, 135, and 136; FIG. 30 ). Without wishing to be bound to theory, it is thought that the humanization process described above can be applied to the light chain of any antibody of family 2 (bin 1).
  • Example 8 Induction of Phagocytosis and Dendritic Cell Activation by Anti-SIRP- ⁇ Antibodies
  • anti-SIRP- ⁇ antibodies representing different modes of binding to SIRP- ⁇ (e.g., blocking, non-blocking, and “kick off” antibodies) were next examined in phagocytosis assays.
  • CD47-Fc was conjugated with Alexa Fluor 647 (AF647) using the Alexa Fluor 647 Microscale Protein Labeling Kit (Thermo Fisher Scientific).
  • AF647 Alexa Fluor 647 Microscale Protein Labeling Kit
  • 100,000 PBMCs were suspended in 100 ⁇ l 0.25 ⁇ M AF647-labeled CD47-Fc and 1 ⁇ l anti-CD14 PE antibody (Biolegend) in FACS buffer. Cells were incubated on ice for 30 minutes, washed in FACS buffer, and incubated in 10-fold serial dilutions of anti-SIRP- ⁇ antibody from 1.25 ⁇ M to 25 pM.
  • the adhesion assay was performed using isogenic cells lacking or expressing human CD47.
  • Hamster CD47 knockout CHO cells (CHO CD47 KO ) were generated using CRISPR technology. Isogenic cells expressing human CD47 were generated by transiently transfecting human CD47 into CHO CD47 KO 24 hours post transfection, human CD47 transfected CHO CD47 KO cells (4 ⁇ 10 5 ) were re-plated onto 24 well tissue culture treated plates and allowed to reattach and reach confluency overnight at 37° C.
  • PBMCs Human peripheral blood mononuclear cells
  • CD3+ and CD14+ cells were isolated from PBMCs by negative selection using magnetic beads.
  • Isolated CD3+ and CD14+ cells (5 ⁇ 10 6 ) were pre-incubated with Hum1/AB21mutall, Hum9/AB21mutall or 136 wt/mut antibodies containing mutated human IgG1 (L234A L235A G237A, and N297A) (20 ug/mL) at 37° C. for 20 minutes, before plating onto CHO CD47 KO and CHO hcD47+ cells and allowed to adhere for 1 hour at 37° C.
  • Non-adherent cells were removed by five gentle washes with PBS. Adherent cells were detached with trypsin and neutralized with 10% FBS. Cells were transferred to 96 well plate and washed 2 times with PBS+0.5% BSA followed by cell surface labeling with fluorochrome conjugated human CD3, CD4, CD8 and CD14 antibodies. Counting beads were added and cell adhesion was quantified using a BD CantoTM II flow cytometer. Analysis of flow cytometry data was done using Flowjo.
  • humanized antibodies described above were tested for their effects on phagocytosis of EGFR(+) DLD-1 cells by M2 macrophages in combination with the anti-EGFR antibody cetuximab ( FIG. 33A ). All humanized antibodies were found to enhance cetuzimab-induced phagocytosis. Additional variants of antibody 136 (described supra) were tested for their effects on phagocytosis of EGFR(+) DLD-1 cells by M2 macrophages in combination with the anti-EGFR antibody cetuximab ( FIG. 33B ). All variants of antibody 136 enhanced cetuximab-induced phagocytosis, but to varying degrees.
  • non-blocking antibodies were tested for their effects on phagocytosis of EGFR(+) DLD-1 cells by M2 macrophages in combination with the anti-EGFR antibody cetuximab ( FIG. 37 ). All non-blocking antibodies were found to enhance cetuximab-induced phagocytosis.
  • FIGS. 38A-38B various anti-SIRP- ⁇ antibodies were examined for their effects on in vivo dendritic cell activation ( FIGS. 38A-38B ), including known anti-SIRP- ⁇ antibody p84 (see, e.g., Tangsheng, Y. et al (2015) Immunity 433:1-12). Failure to engage mouse SIRP- ⁇ receptor on splenic dendritic cells via CD47 binding leads to splenic dendritic cell activation. Control anti-SIRP- ⁇ antagonist antibody p84 activated splenic dendritic cells when injected intravenously into mice.
  • Non-blocking anti-SIRP- ⁇ antibodies (AB136b, AB3b and AB136 wt/mut) and blocking anti-SIRP- ⁇ antibodies (Hum1/AB21mutall, Hum8/AB21mutall, and Hum9/AB21mutall) were tested in vivo to determine if it leads to dendritic cell activation. As determined by CD86 and 2020 expression, both SIRP- ⁇ blockers and non-blockers induce activation of dendritic cells. These results suggest that blocking and non-blocking anti-SIRP- ⁇ antibodies induce activation of dendritic cells.
  • Exemplary blocking, non-blocking, and kick off anti-SIRP- ⁇ antibodies were next tested for induction of phagocytosis as single agents.
  • three antibodies that block CD47 from binding SIRP- ⁇ , AB119a, AB120a, and AB122a were examined for their effects as single agents on phagocytosis of EGFR(+) DLD-1 cells by M2 macrophages (as described above). All blocking antibodies were found to induce phagocytosis as single agents ( FIG. 39B ).
  • two antibodies that do not block CD47 from binding SIRP- ⁇ , AB136a and AB137a were examined for their effects as single agents on phagocytosis of EGFR(+) DLD-1 cells by M2 macrophages.
  • CT26 cells were implanted subcutaneously in BALB/c mice and randomized into groups (8-9 mice/group).
  • Treatment groups included vehicle (PBS), AB25b, anti-PD-L1, and AB25b/anti-PD-L1.
  • Anti-PD-L1 is generated by fusing the VH and VL domain of Atezolizumab with mouse IgG1 Fc region bearing an N297A mutation. All anti-SIRP- ⁇ antibodies also have a mouse IgG1 Fc region bearing an N297A mutation.
  • Treatment was initiated when tumors were an average of 75-80 mm 3 , day 7 or 8 post implant.
  • mice were dosed intraperitoneally (IP) at 3 mg/kg or 10 mg/kg twice a week for three weeks for anti-SIRP ⁇ antibodies and three doses at 3 mg/kg, five days apart for anti-PD-L1. Animals were sacrificed when tumors reached a volume of ⁇ 2000 mm 3 .
  • MC38 cells were implanted subcutaneously in C57BL/6 mice and randomized into groups (8-10mice/group). Treatment groups included vehicle (PBS), AB25b, AB136b, anti-PD1 (clone RMP1-14, BioXCell), AB136b/anti-PD1, and AB25b/anti-PD1. All anti-SIRP ⁇ antibodies had a murine IgG1 Fc region bearing an N297A mutation except for AB25c. Treatment was initiated when tumors were an average of 60-65 mm 3 , day 7 post implant.
  • mice were dosed intraperitoneally (IP) at 10 mg/kg twice a week for three weeks for anti-SIRP ⁇ and three doses at 2 mg/kg for anti-PD1. Animals were sacrificed when tumors reached a volume of ⁇ 2000 mm 3 .
  • Anti-tumor activity of the blocking AB25b anti-SIRP- ⁇ antibody was tested alone and in combination with an anti-PD-L1 antibody in the CT26 syngeneic mouse colon carcinoma model.
  • administration of AB25b at 10 mg/kg in combination with anti-PD-L1 at 3 mg/kg delayed tumor formation when compared to treatment with each single agent or vehicle control.
  • the combination treatment group had six mice with tumors below 600 mm 3 in size, as compared to two, two, and two mice with tumors below 600 mm 3 in size in the vehicle, anti-PD-L1 single agent, and anti-SIRP- ⁇ single agent treatment groups, respectively.
  • the AB25b/PD-1 combination treatment group had seven mice with tumors below 600 mm 3 in size, and the AB136b/PD-1 combination treatment group had six mice with tumors below 600 mm 3 in size, as compared to one, five, two, and one mice with tumors below 600 mm 3 in size in the vehicle, anti-PD-1 single agent, AB25b single agent, and AB136b single agent treatment groups, respectively.
  • K D SEQ SEQ SEQ ID ID SEQ SEQ SEQ ID ID In Human Human Type of NO: 5 NO: 6 ID ID ID ID NO: 13 NO: 15 vitro In vivo Light Heavy Binding Bin Human Human NO: 11 NO: 8 NO: 9 NO: 10 Human Human phago mouse Antibody Chain Chain (NB/B/KO) No. v1 v2 Cyno NOD BL6 BALBc SIRPb SIRPg (+/ ⁇ ) (+/ ⁇ ) 119 wt wt B 1 1.83E ⁇ 10 6.82E ⁇ 11 1.12E ⁇ 10 NLB NLB NLB 3.42E ⁇ 10 2.67E ⁇ 10 + N.A.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Neurology (AREA)
  • Food Science & Technology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Rheumatology (AREA)
  • Dermatology (AREA)
  • Diabetes (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Pulmonology (AREA)
  • Pain & Pain Management (AREA)
US15/710,798 2016-09-21 2017-09-20 Antibodies against signal-regulatory protein alpha and methods of use Active 2037-12-11 US11401338B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/710,798 US11401338B2 (en) 2016-09-21 2017-09-20 Antibodies against signal-regulatory protein alpha and methods of use
US17/337,176 US11242404B2 (en) 2016-09-21 2021-06-02 Antibodies against signal-regulatory protein alpha and methods of use
US17/337,180 US20230018821A1 (en) 2016-09-21 2021-06-02 Antibodies against signal-regulatory protein alpha and methods of use
US17/337,348 US20220002434A1 (en) 2016-09-21 2021-06-02 Antibodies against signal-regulatory protein alpha and methods of use

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201662397752P 2016-09-21 2016-09-21
US201762515480P 2017-06-05 2017-06-05
US15/710,798 US11401338B2 (en) 2016-09-21 2017-09-20 Antibodies against signal-regulatory protein alpha and methods of use

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US17/337,348 Division US20220002434A1 (en) 2016-09-21 2021-06-02 Antibodies against signal-regulatory protein alpha and methods of use
US17/337,180 Division US20230018821A1 (en) 2016-09-21 2021-06-02 Antibodies against signal-regulatory protein alpha and methods of use
US17/337,176 Continuation US11242404B2 (en) 2016-09-21 2021-06-02 Antibodies against signal-regulatory protein alpha and methods of use

Publications (2)

Publication Number Publication Date
US20180105600A1 US20180105600A1 (en) 2018-04-19
US11401338B2 true US11401338B2 (en) 2022-08-02

Family

ID=61689740

Family Applications (4)

Application Number Title Priority Date Filing Date
US15/710,798 Active 2037-12-11 US11401338B2 (en) 2016-09-21 2017-09-20 Antibodies against signal-regulatory protein alpha and methods of use
US17/337,176 Active US11242404B2 (en) 2016-09-21 2021-06-02 Antibodies against signal-regulatory protein alpha and methods of use
US17/337,180 Pending US20230018821A1 (en) 2016-09-21 2021-06-02 Antibodies against signal-regulatory protein alpha and methods of use
US17/337,348 Pending US20220002434A1 (en) 2016-09-21 2021-06-02 Antibodies against signal-regulatory protein alpha and methods of use

Family Applications After (3)

Application Number Title Priority Date Filing Date
US17/337,176 Active US11242404B2 (en) 2016-09-21 2021-06-02 Antibodies against signal-regulatory protein alpha and methods of use
US17/337,180 Pending US20230018821A1 (en) 2016-09-21 2021-06-02 Antibodies against signal-regulatory protein alpha and methods of use
US17/337,348 Pending US20220002434A1 (en) 2016-09-21 2021-06-02 Antibodies against signal-regulatory protein alpha and methods of use

Country Status (32)

Country Link
US (4) US11401338B2 (es)
EP (2) EP4119580A1 (es)
JP (2) JP7181874B2 (es)
KR (1) KR102601298B1 (es)
CN (3) CN109862915B (es)
AU (1) AU2017332285B2 (es)
BR (1) BR112019003027A2 (es)
CA (1) CA3034480A1 (es)
CL (2) CL2019000668A1 (es)
CO (1) CO2019003809A2 (es)
DK (1) DK3515490T3 (es)
ES (1) ES2932602T3 (es)
GE (2) GEP20237528B (es)
HR (1) HRP20221323T1 (es)
HU (1) HUE060170T2 (es)
IL (2) IL265439B2 (es)
JO (1) JOP20190009A1 (es)
LT (1) LT3515490T (es)
MA (1) MA46290A (es)
MX (1) MX2019003168A (es)
MY (1) MY197854A (es)
PE (1) PE20190575A1 (es)
PH (1) PH12019500600A1 (es)
PL (1) PL3515490T3 (es)
PT (1) PT3515490T (es)
RS (1) RS63658B1 (es)
SA (1) SA519401371B1 (es)
SG (1) SG10201912878UA (es)
SI (1) SI3515490T1 (es)
UA (1) UA126281C2 (es)
WO (1) WO2018057669A1 (es)
ZA (1) ZA201900937B (es)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230012273A1 (en) * 2021-06-04 2023-01-12 Boehringer Ingelheim International Gmbh Anti-sirp-alpha antibodies
US11939393B2 (en) 2018-03-21 2024-03-26 ALX Oncology Inc. Antibodies against signal-regulatory protein alpha and methods of use

Families Citing this family (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170151281A1 (en) 2015-02-19 2017-06-01 Batu Biologics, Inc. Chimeric antigen receptor dendritic cell (car-dc) for treatment of cancer
RS62151B1 (sr) 2015-08-07 2021-08-31 Alx Oncology Inc Konstrukti koji sadrže sirp-alfa domen ili njegovu varijantu
JOP20190009A1 (ar) 2016-09-21 2019-01-27 Alx Oncology Inc أجسام مضادة ضد بروتين ألفا منظم للإشارات وطرق استخدامها
CA3044684A1 (en) 2016-12-09 2018-06-14 Alector Llc Anti-sirp-alpha antibodies and methods of use thereof
JP7179743B2 (ja) * 2017-02-17 2022-11-29 オーエスイー・イミュノセラピューティクス 抗SIRPg抗体の新規の使用
KR20240135066A (ko) * 2017-04-13 2024-09-10 사이로파 비.브이. 항-sirp 알파 항체
US11401329B2 (en) 2017-08-02 2022-08-02 Phanes Therapeutics, Inc. Anti-CD47 antibodies and uses thereof
EA202092420A1 (ru) * 2018-04-09 2021-01-28 Ориджинселл Терапьютикс Ко., Лтд. Антитело против pd-l1 и его применение
CN118146372A (zh) * 2018-05-08 2024-06-07 凡恩世制药(北京)有限公司 抗dll3抗体及其用途
CN112218893A (zh) * 2018-05-25 2021-01-12 艾利妥 抗-sirpa抗体及其使用方法
CN110577597B (zh) * 2018-06-11 2021-10-22 康诺亚生物医药科技(成都)有限公司 一种阻断CD47和SIRPα相互作用的抗体
MX2020013068A (es) * 2018-07-10 2021-03-02 Univ Kobe Nat Univ Corp Anticuerpo anti proteína reguladora de señales alfa sirpalfana.
EP3833391A4 (en) * 2018-08-08 2022-08-10 Orionis Biosciences, Inc. CHIMERIC PROTEINS TARGETED AT SIRP1alpha AND THEIR USES
CN110878123B (zh) 2018-09-05 2022-08-23 华瑞同康生物技术(深圳)有限公司 一种抗tk1原核重组单链抗体及制备方法
AU2019349651B2 (en) * 2018-09-27 2023-12-07 Celgene Corporation SIRP alpha binding proteins and methods of use thereof
US11591390B2 (en) 2018-09-27 2023-02-28 Celgene Corporation SIRP-α binding proteins and methods of use thereof
AU2019360216A1 (en) * 2018-10-17 2021-05-13 Tallac Therapeutics, Inc. Immunomodulating polynucleotide conjugates and methods of use
EP3876977A1 (en) 2018-11-06 2021-09-15 The Regents Of The University Of California Chimeric antigen receptors for phagocytosis
JP2022507295A (ja) * 2018-11-14 2022-01-18 アーチ オンコロジー,インコーポレイテッド 治療用SIRPα抗体
BR112021009275A2 (pt) 2018-11-15 2022-01-04 Byondis Bv Anticorpo humanizado anti-sirp alfa ou um fragmento de ligação a antígeno do mesmo, composição farmacêutica, molécula de ácido nucleico, e, célula hospedeira.
CN113784984A (zh) * 2019-03-04 2021-12-10 齐鲁普吉湾生物治疗公司 抗SIRPα抗体
US11013764B2 (en) 2019-04-30 2021-05-25 Myeloid Therapeutics, Inc. Engineered phagocytic receptor compositions and methods of use thereof
CA3141130A1 (en) 2019-05-31 2020-12-03 ALX Oncology Inc. Methods of treating cancer with sirp alpha fc fusion in combination with an immune checkpoint inhibitor
JP7561775B2 (ja) * 2019-06-07 2024-10-04 エーエルエックス オンコロジー インコーポレイテッド 血清学的アッセイにおいてcd47に結合する薬物の干渉を低減するための方法及び試薬
CA3142513A1 (en) 2019-06-25 2020-12-30 Gilead Sciences, Inc. Flt3l-fc fusion proteins and methods of use
CN114173813A (zh) * 2019-07-03 2022-03-11 晶体生物科学股份有限公司 抗b7-h3抗体及其使用方法
CA3142632A1 (en) * 2019-07-03 2021-01-07 Crystal Bioscience Inc. Anti-cd38 antibody and methods of use thereof
KR102236127B1 (ko) 2019-08-08 2021-04-07 주식회사 하울바이오 티로시나아제를 억제하는 항-티로시나아제 항체 및 이의 용도
EP3810197A1 (en) * 2019-08-20 2021-04-28 Elpiscience (Suzhou) Biopharma, Ltd. Novel anti-sirpa antibodies
JP2022546592A (ja) 2019-09-03 2022-11-04 マイエロイド・セラピューティクス,インコーポレーテッド ゲノム組込みのための方法および組成物
CN114555123B (zh) 2019-10-18 2024-04-02 四十七公司 用于治疗骨髓增生异常综合征和急性髓系白血病的联合疗法
CN110734897A (zh) * 2019-10-31 2020-01-31 浙江蓝盾药业有限公司 杂交瘤细胞株12g6、抗体及其应用
AU2020374947A1 (en) 2019-10-31 2022-03-31 Forty Seven, Inc. Anti-CD47 and anti-CD20 based treatment of blood cancer
CN114901700A (zh) * 2019-11-21 2022-08-12 尤尼蒂生物技术公司 针对tie-2的抗体及其使用方法
KR20220107223A (ko) 2019-11-27 2022-08-02 알렉소 온콜로지 인크. 암 치료를 위한 병용 요법
US10980836B1 (en) 2019-12-11 2021-04-20 Myeloid Therapeutics, Inc. Therapeutic cell compositions and methods of manufacturing and use thereof
WO2021129697A1 (en) * 2019-12-24 2021-07-01 Lanova Medicines Limited Company ANTI-SIRPα MONOCLONAL ANTIBODIES AND USES THEREOF
US11845723B2 (en) 2019-12-24 2023-12-19 Gilead Sciences, Inc. Diacylglycerol kinase modulating compounds
TWI832035B (zh) 2020-02-14 2024-02-11 美商基利科學股份有限公司 結合ccr8之抗體及融合蛋白及其用途
WO2021174091A1 (en) 2020-02-28 2021-09-02 Tallac Therapeutics, Inc. Transglutaminase-mediated conjugation
WO2021201571A1 (ko) * 2020-03-31 2021-10-07 웰마커바이오 주식회사 Igsf1 에 대한 항체를 유효성분으로 포함하는 암 예방 또는 치료용 약학 조성물 및 이를 이용한 암 치료 방법
US20220401516A1 (en) 2020-06-01 2022-12-22 ALX Oncology Inc. Combination therapies comprising a hypomethylation agent for treating cancer
US20230174634A1 (en) * 2020-06-10 2023-06-08 Crystal Bioscience Inc. Anti-bdnf antibodies and methods of use thereof
US20230265187A1 (en) * 2020-08-05 2023-08-24 Crystal Bioscience Inc. Anti-tigit antibody and methods of use thereof
JP2023549140A (ja) 2020-11-04 2023-11-22 マイエロイド・セラピューティクス,インコーポレーテッド 操作されたキメラ融合タンパク質組成物およびその使用方法
EP4256336A1 (en) * 2020-12-06 2023-10-11 ALX Oncology Inc. Multimers for reducing the interference of drugs that bind cd47 in serological assays
WO2022197949A2 (en) 2021-03-17 2022-09-22 Myeloid Therapeutics, Inc. Engineered chimeric fusion protein compositions and methods of use thereof
TW202302145A (zh) 2021-04-14 2023-01-16 美商基利科學股份有限公司 CD47/SIRPα結合及NEDD8活化酶E1調節次單元之共抑制以用於治療癌症
BR112023022774A2 (pt) 2021-05-13 2024-01-02 Alx Oncology Inc Terapias de combinação para tratamento de câncer
TW202313094A (zh) 2021-05-18 2023-04-01 美商基利科學股份有限公司 使用FLT3L—Fc融合蛋白之方法
WO2022271659A1 (en) 2021-06-23 2022-12-29 Gilead Sciences, Inc. Diacylglyercol kinase modulating compounds
WO2022271677A1 (en) 2021-06-23 2022-12-29 Gilead Sciences, Inc. Diacylglyercol kinase modulating compounds
US11976072B2 (en) 2021-06-23 2024-05-07 Gilead Sciences, Inc. Diacylglycerol kinase modulating compounds
KR20240005901A (ko) 2021-06-23 2024-01-12 길리애드 사이언시즈, 인코포레이티드 디아실글리세롤 키나제 조절 화합물
JP2024527551A (ja) 2021-06-29 2024-07-25 シージェン インコーポレイテッド 非フコシル化抗cd70抗体及びcd47アンタゴニストの組み合わせを用いるがんを処置する方法
JP2024529967A (ja) * 2021-07-30 2024-08-14 アレクトル エルエルシー 抗sirpアルファ抗体及びその使用方法
WO2023020459A1 (zh) 2021-08-17 2023-02-23 杭州九源基因工程有限公司 靶向SIRPα的单克隆抗体及其用途
CN118139858A (zh) 2021-10-28 2024-06-04 吉利德科学公司 吡地嗪-3(2h)-酮衍生物
KR20240097895A (ko) 2021-10-29 2024-06-27 길리애드 사이언시즈, 인코포레이티드 Cd73 화합물
CA3237577A1 (en) 2021-12-22 2023-06-29 Gilead Sciences, Inc. Ikaros zinc finger family degraders and uses thereof
CA3239528A1 (en) 2021-12-22 2023-06-29 Gilead Sciences, Inc. Ikaros zinc finger family degraders and uses thereof
TW202340168A (zh) 2022-01-28 2023-10-16 美商基利科學股份有限公司 Parp7抑制劑
WO2023154578A1 (en) 2022-02-14 2023-08-17 Sana Biotechnology, Inc. Methods of treating patients exhibiting a prior failed therapy with hypoimmunogenic cells
AU2023233730A1 (en) 2022-03-17 2024-09-26 Gilead Sciences, Inc. Ikaros zinc finger family degraders and uses thereof
WO2023183313A1 (en) 2022-03-22 2023-09-28 Sana Biotechnology, Inc. Engineering cells with a transgene in b2m or ciita locus and associated compositions and methods
US20230355796A1 (en) 2022-03-24 2023-11-09 Gilead Sciences, Inc. Combination therapy for treating trop-2 expressing cancers
TW202345901A (zh) 2022-04-05 2023-12-01 美商基利科學股份有限公司 用於治療結腸直腸癌之組合療法
WO2023202672A1 (en) * 2022-04-20 2023-10-26 Biosion Inc. Antibodies targeting sirp-alpha and uses thereof
WO2023205719A1 (en) 2022-04-21 2023-10-26 Gilead Sciences, Inc. Kras g12d modulating compounds
WO2023235754A1 (en) 2022-06-01 2023-12-07 ALX Oncology Inc. Combination therapies for treating urothelial carcinoma
US20240116928A1 (en) 2022-07-01 2024-04-11 Gilead Sciences, Inc. Cd73 compounds
US20240091351A1 (en) 2022-09-21 2024-03-21 Gilead Sciences, Inc. FOCAL IONIZING RADIATION AND CD47/SIRPa DISRUPTION ANTICANCER COMBINATION THERAPY
KR102584898B1 (ko) * 2022-10-24 2023-10-04 연세대학교 산학협력단 자궁내막암 진단 방법 및 이를 이용한 키트
WO2024105180A1 (en) 2022-11-16 2024-05-23 Boehringer Ingelheim International Gmbh Predictive efficacy biomarkers for anti-sirpa antibodies
WO2024125330A1 (en) * 2022-12-16 2024-06-20 Beijing Neox Biotech Limited ANTIBODIES AGAINST SIRPα AND USES THEREOF
WO2024125331A1 (en) * 2022-12-16 2024-06-20 Beijing Neox Biotech Limited ANTIBODIES AGAINST SIRPα AND USES THEREOF
WO2024137852A1 (en) 2022-12-22 2024-06-27 Gilead Sciences, Inc. Prmt5 inhibitors and uses thereof
CN118546255A (zh) * 2023-02-24 2024-08-27 恒翼生物医药(上海)股份有限公司 一种靶向αvβ3和CD47的双功能融合蛋白以及其应用

Citations (95)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE30985E (en) 1978-01-01 1982-06-29 Serum-free cell culture media
US4560655A (en) 1982-12-16 1985-12-24 Immunex Corporation Serum-free cell culture medium and process for making same
WO1987000195A1 (en) 1985-06-28 1987-01-15 Celltech Limited Animal cell culture
US4657866A (en) 1982-12-21 1987-04-14 Sudhir Kumar Serum-free, synthetic, completely chemically defined tissue culture media
US4676980A (en) 1985-09-23 1987-06-30 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Target specific cross-linked heteroantibodies
US4767704A (en) 1983-10-07 1988-08-30 Columbia University In The City Of New York Protein-free culture medium
US4816567A (en) 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
WO1990003430A1 (en) 1988-09-23 1990-04-05 Cetus Corporation Cell culture medium for enhanced cell growth, culture longevity and product expression
US4927762A (en) 1986-04-01 1990-05-22 Cell Enterprises, Inc. Cell culture medium with antioxidant
WO1991010741A1 (en) 1990-01-12 1991-07-25 Cell Genesys, Inc. Generation of xenogeneic antibodies
US5122469A (en) 1990-10-03 1992-06-16 Genentech, Inc. Method for culturing Chinese hamster ovary cells to improve production of recombinant proteins
WO1993016185A2 (en) 1992-02-06 1993-08-19 Creative Biomolecules, Inc. Biosynthetic binding protein for cancer marker
WO1994004690A1 (en) 1992-08-17 1994-03-03 Genentech, Inc. Bispecific immunoadhesins
US5537456A (en) 1993-07-07 1996-07-16 Pouyet International Terminal device for subscriber telephone interconnection
US5545807A (en) 1988-10-12 1996-08-13 The Babraham Institute Production of antibodies from transgenic animals
US5545806A (en) 1990-08-29 1996-08-13 Genpharm International, Inc. Ransgenic non-human animals for producing heterologous antibodies
US5569825A (en) 1990-08-29 1996-10-29 Genpharm International Transgenic non-human animals capable of producing heterologous antibodies of various isotypes
WO1996033735A1 (en) 1995-04-27 1996-10-31 Abgenix, Inc. Human antibodies derived from immunized xenomice
WO1996034096A1 (en) 1995-04-28 1996-10-31 Abgenix, Inc. Human antibodies derived from immunized xenomice
US5571894A (en) 1991-02-05 1996-11-05 Ciba-Geigy Corporation Recombinant antibodies specific for a growth factor receptor
US5625126A (en) 1990-08-29 1997-04-29 Genpharm International, Inc. Transgenic non-human animals for producing heterologous antibodies
US5633425A (en) 1990-08-29 1997-05-27 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
US5641370A (en) 1993-06-24 1997-06-24 Alfred D. Lobo Co. Method for making a laminate from synthetic resinous sheets
US5661016A (en) 1990-08-29 1997-08-26 Genpharm International Inc. Transgenic non-human animals capable of producing heterologous antibodies of various isotypes
WO1997048723A2 (en) 1996-06-17 1997-12-24 MAX-PLANCK-GESELLSCHAFT ZUR FÖRDERUNG DER WISSENSCHAFTEN E.V. Hofgartenstrasse 2 Ptp-20, pcp-2, bdp1, clk and sirp proteins and related products
US5731168A (en) 1995-03-01 1998-03-24 Genentech, Inc. Method for making heteromultimeric polypeptides
WO1998024893A2 (en) 1996-12-03 1998-06-11 Abgenix, Inc. TRANSGENIC MAMMALS HAVING HUMAN IG LOCI INCLUDING PLURAL VH AND Vλ REGIONS AND ANTIBODIES PRODUCED THEREFROM
US5869046A (en) 1995-04-14 1999-02-09 Genentech, Inc. Altered polypeptides with increased half-life
WO1999040940A1 (en) 1998-02-16 1999-08-19 Marie Sarfati Ligands of the cd47 antigen, agents binding the ligands of the cd47 antigen and uses thereof
US6075131A (en) 1996-12-14 2000-06-13 Zeneca Limited Monoazocompounds with an indanyl moiety
US6143559A (en) 1996-11-18 2000-11-07 Arch Development Corporation Methods for the production of chicken monoclonal antibodies
US6150584A (en) 1990-01-12 2000-11-21 Abgenix, Inc. Human antibodies derived from immunized xenomice
US6180370B1 (en) 1988-12-28 2001-01-30 Protein Design Labs, Inc. Humanized immunoglobulins and methods of making the same
US6248518B1 (en) 1996-10-29 2001-06-19 Board Of Regents Of University Of Nebraska Method for detecting point mutations in DNA utilizing fluorescence energy transfer
US20020114807A1 (en) 1999-04-28 2002-08-22 Berg Timo Kars Van Den Method for inhibiting cell functioning for use in anti-inflammatory and anti-tumor therapies
US20030026803A1 (en) 1999-12-24 2003-02-06 Medical Research Council Compositions for inhibiting macrophage activity
US20030054415A1 (en) 1999-11-30 2003-03-20 Hans-Jorg Buhring Antibodies directed against signal regulator proteins
US20040147731A1 (en) 2001-05-15 2004-07-29 Parkos Charles A. Polynucleotides and polypeptides relating to the modulation of sirp alpha-cd47
US20040213792A1 (en) 2003-04-24 2004-10-28 Clemmons David R. Method for inhibiting cellular activation by insulin-like growth factor-1
WO2005014653A2 (en) 2003-02-28 2005-02-17 Protein Design Labs, Inc. Humanized chicken antibodies
US20060263356A1 (en) 2005-01-03 2006-11-23 Josef Endl Antibodies against IL-13 receptor alpha1 and uses thereof
US7575893B2 (en) 2003-01-23 2009-08-18 Genentech, Inc. Methods for producing humanized antibodies and improving yield of antibodies or antigen binding fragments in cell culture
WO2009111014A2 (en) 2008-03-04 2009-09-11 Crystal Bioscience Inc. Gel microdrop composition and method of using the same
US20100215640A1 (en) 2003-04-24 2010-08-26 The University Of North Carolina At Chapel Hill Method for inhibiting cellular activation by insulin-like growth factor-1
US20100239578A1 (en) 2007-10-11 2010-09-23 University Health Network Modulation of sirp-alpha - cd47 interaction for increasing human hematopoietic stem cell engraftment and compounds therefor
WO2011019844A1 (en) 2009-08-13 2011-02-17 Crystal Bioscience Inc. Transgenic animal for production of antibodies having minimal cdrs
US8088896B2 (en) 2005-10-12 2012-01-03 Morphosys Ag Generation and profiling of fully human gold-derived therapeutic antibodies specific for human CD38
WO2012162422A2 (en) 2011-05-24 2012-11-29 Crystal Bioscience Inc. Transgenic chicken comprising an inactivated immunoglobulin gene
WO2013056352A1 (en) 2011-10-19 2013-04-25 University Health Network Antibodies and antibody fragments targeting sirp-alpha and their use in treating hematologic cancers
WO2013059159A1 (en) 2011-10-21 2013-04-25 Crystal Bioscience, Inc. In vivo method for generating diversity in a protein scaffold
US20140065169A1 (en) 2008-01-15 2014-03-06 The Board Of Trustees Of The Leland Stanford Junior University Methods of Treating Acute Myeloid Leukemia by Blocking CD47
WO2015138600A2 (en) 2014-03-11 2015-09-17 The Board Of Trustees Of The Leland Stanford Junior University Anti sirp-alpha antibodies and bi-specific macrophage enhancing antibodies
US9151760B2 (en) 2009-09-29 2015-10-06 The Board Of Trustees Of The Leland Stanford Junior University Isolation and use of melanoma cancer stem cells
WO2016063233A1 (en) 2014-10-24 2016-04-28 Effimune Method and compositions for inducing differentiation of myeloid derived suppressor cell to treat cancer and infectious diseases
US9330769B2 (en) 2010-02-09 2016-05-03 Samsung Electronics Co., Ltd. Nonvolatile memory devices, operating methods thereof and memory systems including the same
US9352037B2 (en) 2008-04-23 2016-05-31 Stichting Sanquin Bloedvoorziening Compositions and methods to enhance the immune system
US20160186150A1 (en) 2014-08-08 2016-06-30 Alexo Therapeutics International Sirp-alpha variant constructs and uses thereof
US20160333093A1 (en) 2014-01-08 2016-11-17 The Board Of Trustees Of The Leland Stanford Junior University Targeted Therapy for Small Cell Lung Cancer
US9623079B2 (en) 2013-03-15 2017-04-18 The Board Of Trustees Of The Leland Stanford Junior University Methods for achieving therapeutically effective doses of anti-CD47 agents for treating cancer
US20170114134A1 (en) 2011-08-26 2017-04-27 The University Of North Carolina At Chapel Hill Antagonists of iap-shps1 interaction
US20170151282A1 (en) 2015-12-01 2017-06-01 The Trustees Of The University Of Pennsylvania Compositions and methods for selective phagocytosis of human cancer cells
US9771428B2 (en) 2013-02-05 2017-09-26 The Board Of Trustees Of The Leland Stanford Junior University CD47 targeted therapies for the treatment of infectious disease
WO2017178653A2 (en) 2016-04-14 2017-10-19 Ose Immunotherapeutics NEW ANTI-SIRPa ANTIBODIES AND THEIR THERAPEUTIC APPLICATIONS
WO2018057669A1 (en) 2016-09-21 2018-03-29 Alexo Therapeutics Inc. Antibodies against signal-regulatory protein alpha and methods of use
US20180214524A1 (en) 2017-01-30 2018-08-02 The Board Of Trustees Of The Leland Stanford Junior University Non-genotoxic conditioning regimen for stem cell transplantation
US20180244748A1 (en) 2015-07-28 2018-08-30 The Trustees Of The University Of Pennsylvania Modified Monocytes/Macrophage Expressing Chimeric Antigen Receptors and Uses Thereof
US10064925B2 (en) 2013-04-29 2018-09-04 The Board Of Trustees Of The Leland Stanford Junior University Use of anti-CD47 agents to enhance immunization
WO2018190719A2 (en) 2017-04-13 2018-10-18 Aduro Biotech Holdings, Europe B.V. Anti-sirp alpha antibodies
US20180312600A1 (en) 2015-10-21 2018-11-01 Ose Immunotherapeutics Methods and compositions for modifying macrophage polarization into pro-inflammatory cells to treat cancer
WO2018210793A2 (en) 2017-05-16 2018-11-22 Synthon Biopharmaceuticals B.V. ANTI-SIRPα ANTIBODIES
US20190119396A1 (en) 2017-07-26 2019-04-25 Forty Seven, Inc. Anti-SIRP-Alpha Antibodies and Related Methods
US20190127477A1 (en) 2016-04-14 2019-05-02 Ose Immunotherapeutics NEW ANTI-SIRPa ANTIBODIES AND THEIR THERAPEUTIC APPLICATIONS
US20190134089A1 (en) 2016-04-10 2019-05-09 Georgia State University Research Foundation, Inc. Methods for treating cancer and inhibiting graft rejection
EP3482772A1 (en) 2016-07-05 2019-05-15 National University Corporation Kobe University Antitumor agent
US10329354B2 (en) 2013-09-18 2019-06-25 The Board Of Trustees Of The Leland Stanford Junior University Modulation of efferocytosis pathways for treatment of atherosclerotic disease
EP3308641B1 (en) 2012-11-05 2019-07-03 Regeneron Pharmaceuticals, Inc. Immunodeficient, genetically modified rodent and methods of use thereof
US10344094B2 (en) 2015-12-11 2019-07-09 The Board Of Trustees Of The Leland Stanford Junior University Treatment of cancer with dual targeting of CD47 and EGFR
EP2931752B1 (en) 2012-12-17 2019-08-14 Trillium Therapeutics Inc. Treatment of cd47+ disease cells with sirp alpha-fc fusions
US20190275150A1 (en) 2016-12-09 2019-09-12 Alector Llc Anti-SIRP-Alpha Antibodies and Methods of Use Thereof
EP3186395B1 (en) 2014-08-26 2019-09-25 The Board of Trustees of the Leland Stanford Junior University Engraftment of stem cells with a combination of an agent that targets stem cells and modulation of immunoregulatory signaling
EP3180363B1 (en) 2014-08-15 2019-09-25 Merck Patent GmbH Sirp-alpha immunoglobulin fusion proteins
US20190322986A1 (en) 2010-08-27 2019-10-24 University Health Network Methods for enriching pluripotent stem cell-derived cardiomyocyte progenitor cells and cardiomyocyte cells based on sirpa expression
US20190352419A1 (en) 2018-03-21 2019-11-21 ALX Oncology Inc. Antibodies against signal-regulatory protein alpha and methods of use
US20190359707A1 (en) 2018-05-25 2019-11-28 Alector Llc Anti-Sirpa Antibodies and Methods of Use Thereof
EP3421601B1 (en) 2011-12-30 2019-12-04 Cellscript, Llc Making and using in vitro-synthesized ssrna for introducing into mammalian cells to induce a biological or biochemical effect
WO2020013170A1 (ja) 2018-07-10 2020-01-16 国立大学法人神戸大学 抗SIRPα抗体
US20200102387A1 (en) 2018-09-27 2020-04-02 Celgene Corporation SIRP-Alpha BINDING PROTEINS AND METHODS OF USE THEREOF
US10611842B2 (en) 2016-08-03 2020-04-07 The Board Of Trustees Of The Leland Stanford Junior University Disrupting FC receptor engagement on macrophages enhances efficacy of anti-SIRPα antibody therapy
EP3043181B1 (en) 2008-01-15 2020-04-08 The Board of Trustees of the Leland Stanford Junior University Markers of acute myeloid leukemia stem cells
US10618976B2 (en) 2015-06-16 2020-04-14 The Board Of Trustees Of The Leland Stanford Junior University SIRP-α agonist antibody
WO2020099653A1 (en) 2018-11-15 2020-05-22 Byondis B.V. HUMANIZED ANTI-SIRPα ANTIBODIES
US20200223923A1 (en) 2015-08-26 2020-07-16 The Board Of Trustees Of The Leland Stanford Junior University Enhanced depletion of targeted cells with cd47 blockade and an immune costimulatory agonist
EP3209769B1 (en) 2014-10-24 2020-08-05 The Board of Trustees of the Leland Stanford Junior University Compositions and methods for inducing phagocytosis of mhc class i positive cells and countering anti-cd47/sirpa resistance
US10780117B2 (en) 2015-01-21 2020-09-22 The Board Of Trustees Of The Leland Stanford Junior University Macrophages eat cancer cells using their own calreticulin as a guide
US20200297842A1 (en) 2018-11-14 2020-09-24 Arch Oncology, Inc. THERAPEUTIC SIRP-alpha ANTIBODIES

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0368684B2 (en) 1988-11-11 2004-09-29 Medical Research Council Cloning immunoglobulin variable domain sequences.
US6075181A (en) 1990-01-12 2000-06-13 Abgenix, Inc. Human antibodies derived from immunized xenomice
US5587458A (en) 1991-10-07 1996-12-24 Aronex Pharmaceuticals, Inc. Anti-erbB-2 antibodies, combinations thereof, and therapeutic and diagnostic uses thereof
US5641870A (en) 1995-04-20 1997-06-24 Genentech, Inc. Low pH hydrophobic interaction chromatography for antibody purification

Patent Citations (128)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE30985E (en) 1978-01-01 1982-06-29 Serum-free cell culture media
US4560655A (en) 1982-12-16 1985-12-24 Immunex Corporation Serum-free cell culture medium and process for making same
US4657866A (en) 1982-12-21 1987-04-14 Sudhir Kumar Serum-free, synthetic, completely chemically defined tissue culture media
US4816567A (en) 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
US4767704A (en) 1983-10-07 1988-08-30 Columbia University In The City Of New York Protein-free culture medium
WO1987000195A1 (en) 1985-06-28 1987-01-15 Celltech Limited Animal cell culture
US4676980A (en) 1985-09-23 1987-06-30 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Target specific cross-linked heteroantibodies
US4927762A (en) 1986-04-01 1990-05-22 Cell Enterprises, Inc. Cell culture medium with antioxidant
WO1990003430A1 (en) 1988-09-23 1990-04-05 Cetus Corporation Cell culture medium for enhanced cell growth, culture longevity and product expression
US5545807A (en) 1988-10-12 1996-08-13 The Babraham Institute Production of antibodies from transgenic animals
US6180370B1 (en) 1988-12-28 2001-01-30 Protein Design Labs, Inc. Humanized immunoglobulins and methods of making the same
WO1991010741A1 (en) 1990-01-12 1991-07-25 Cell Genesys, Inc. Generation of xenogeneic antibodies
US6150584A (en) 1990-01-12 2000-11-21 Abgenix, Inc. Human antibodies derived from immunized xenomice
US5545806A (en) 1990-08-29 1996-08-13 Genpharm International, Inc. Ransgenic non-human animals for producing heterologous antibodies
US5661016A (en) 1990-08-29 1997-08-26 Genpharm International Inc. Transgenic non-human animals capable of producing heterologous antibodies of various isotypes
US5569825A (en) 1990-08-29 1996-10-29 Genpharm International Transgenic non-human animals capable of producing heterologous antibodies of various isotypes
US5625126A (en) 1990-08-29 1997-04-29 Genpharm International, Inc. Transgenic non-human animals for producing heterologous antibodies
US5633425A (en) 1990-08-29 1997-05-27 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
US5122469A (en) 1990-10-03 1992-06-16 Genentech, Inc. Method for culturing Chinese hamster ovary cells to improve production of recombinant proteins
US5571894A (en) 1991-02-05 1996-11-05 Ciba-Geigy Corporation Recombinant antibodies specific for a growth factor receptor
WO1993016185A2 (en) 1992-02-06 1993-08-19 Creative Biomolecules, Inc. Biosynthetic binding protein for cancer marker
WO1994004690A1 (en) 1992-08-17 1994-03-03 Genentech, Inc. Bispecific immunoadhesins
US5641370A (en) 1993-06-24 1997-06-24 Alfred D. Lobo Co. Method for making a laminate from synthetic resinous sheets
US5537456A (en) 1993-07-07 1996-07-16 Pouyet International Terminal device for subscriber telephone interconnection
US5731168A (en) 1995-03-01 1998-03-24 Genentech, Inc. Method for making heteromultimeric polypeptides
US5869046A (en) 1995-04-14 1999-02-09 Genentech, Inc. Altered polypeptides with increased half-life
WO1996033735A1 (en) 1995-04-27 1996-10-31 Abgenix, Inc. Human antibodies derived from immunized xenomice
WO1996034096A1 (en) 1995-04-28 1996-10-31 Abgenix, Inc. Human antibodies derived from immunized xenomice
WO1997048723A2 (en) 1996-06-17 1997-12-24 MAX-PLANCK-GESELLSCHAFT ZUR FÖRDERUNG DER WISSENSCHAFTEN E.V. Hofgartenstrasse 2 Ptp-20, pcp-2, bdp1, clk and sirp proteins and related products
US6248518B1 (en) 1996-10-29 2001-06-19 Board Of Regents Of University Of Nebraska Method for detecting point mutations in DNA utilizing fluorescence energy transfer
US6143559A (en) 1996-11-18 2000-11-07 Arch Development Corporation Methods for the production of chicken monoclonal antibodies
WO1998024893A2 (en) 1996-12-03 1998-06-11 Abgenix, Inc. TRANSGENIC MAMMALS HAVING HUMAN IG LOCI INCLUDING PLURAL VH AND Vλ REGIONS AND ANTIBODIES PRODUCED THEREFROM
US6075131A (en) 1996-12-14 2000-06-13 Zeneca Limited Monoazocompounds with an indanyl moiety
WO1999040940A1 (en) 1998-02-16 1999-08-19 Marie Sarfati Ligands of the cd47 antigen, agents binding the ligands of the cd47 antigen and uses thereof
US20020114807A1 (en) 1999-04-28 2002-08-22 Berg Timo Kars Van Den Method for inhibiting cell functioning for use in anti-inflammatory and anti-tumor therapies
US20030054415A1 (en) 1999-11-30 2003-03-20 Hans-Jorg Buhring Antibodies directed against signal regulator proteins
US20030026803A1 (en) 1999-12-24 2003-02-06 Medical Research Council Compositions for inhibiting macrophage activity
US20040147731A1 (en) 2001-05-15 2004-07-29 Parkos Charles A. Polynucleotides and polypeptides relating to the modulation of sirp alpha-cd47
US7575893B2 (en) 2003-01-23 2009-08-18 Genentech, Inc. Methods for producing humanized antibodies and improving yield of antibodies or antigen binding fragments in cell culture
WO2005014653A2 (en) 2003-02-28 2005-02-17 Protein Design Labs, Inc. Humanized chicken antibodies
US20040213792A1 (en) 2003-04-24 2004-10-28 Clemmons David R. Method for inhibiting cellular activation by insulin-like growth factor-1
US20080160013A1 (en) 2003-04-24 2008-07-03 The University Of North Carolina Method for inhibiting cellular activation by insulin-like growth factor-1
US20100215640A1 (en) 2003-04-24 2010-08-26 The University Of North Carolina At Chapel Hill Method for inhibiting cellular activation by insulin-like growth factor-1
US20060263356A1 (en) 2005-01-03 2006-11-23 Josef Endl Antibodies against IL-13 receptor alpha1 and uses thereof
US8088896B2 (en) 2005-10-12 2012-01-03 Morphosys Ag Generation and profiling of fully human gold-derived therapeutic antibodies specific for human CD38
US20100239578A1 (en) 2007-10-11 2010-09-23 University Health Network Modulation of sirp-alpha - cd47 interaction for increasing human hematopoietic stem cell engraftment and compounds therefor
US20130189253A1 (en) 2007-10-11 2013-07-25 The Hospital For Sick Children Modulation of sirp-alpha - cd47 interaction for increasing human hematopoietic stem cell engraftment and compounds therefor
US9493575B2 (en) 2008-01-15 2016-11-15 The Board Of Trustees Of The Leland Stanford Junior University Methods for manipulating phagocytosis mediated by CD47
US9624305B2 (en) 2008-01-15 2017-04-18 The Board Of Trustees Of The Leland Stanford Junior University Methods of manipulating phagocytosis mediated by CD47
EP3043181B1 (en) 2008-01-15 2020-04-08 The Board of Trustees of the Leland Stanford Junior University Markers of acute myeloid leukemia stem cells
US20190233515A1 (en) 2008-01-15 2019-08-01 The Board Of Trustees Of The Leland Stanford Junior University Methods for Manipulating Phagocytosis Mediated by CD47
US9605076B2 (en) 2008-01-15 2017-03-28 The Board Of Trustees Of The Leland Stanford Junior University Methods of manipulating phagocytosis mediated by CD47
US9611329B2 (en) 2008-01-15 2017-04-04 The Board Of Trustees Of The Leland Stanford Junior University Methods of manipulating phagocytosis mediated by CD47
US20140065169A1 (en) 2008-01-15 2014-03-06 The Board Of Trustees Of The Leland Stanford Junior University Methods of Treating Acute Myeloid Leukemia by Blocking CD47
US20140161825A1 (en) 2008-01-15 2014-06-12 The Board Of Trustees Of The Leland Stanford Junior University Methods of Treating Acute Myeloid Leukemia by Blocking CD47
EP2242512B1 (en) 2008-01-15 2016-04-27 The Board of Trustees of the Leland Stanford Junior University Methods for manipulating phagocytosis mediated by cd47
US9765143B2 (en) 2008-01-15 2017-09-19 The Board Of Trustees Of The Leland Stanford Junior University Methods for manipulating phagocytosis mediated by CD47
US9399682B2 (en) 2008-01-15 2016-07-26 The Board Of Trustees Of The Leland Stanford Junior University Methods for manipulating phagocytosis mediated by CD47
WO2009111014A2 (en) 2008-03-04 2009-09-11 Crystal Bioscience Inc. Gel microdrop composition and method of using the same
US9790275B2 (en) 2008-04-23 2017-10-17 Stichting Sanquin Bloedvoorziening Compositions and methods to enhance the immune system
US9920122B2 (en) 2008-04-23 2018-03-20 Stichting Sanquin Bloedvoorziening Compositions and methods to enhance the immune system
US20180155424A1 (en) 2008-04-23 2018-06-07 Stichting Sanquin Bloedvoorziening Compositions and Methods to Enhance the Immune System
US9352037B2 (en) 2008-04-23 2016-05-31 Stichting Sanquin Bloedvoorziening Compositions and methods to enhance the immune system
WO2011019844A1 (en) 2009-08-13 2011-02-17 Crystal Bioscience Inc. Transgenic animal for production of antibodies having minimal cdrs
US8592644B2 (en) 2009-08-13 2013-11-26 Crystal Bioscience Inc. Transgenic animal for production of antibodies having minimal CDRS
US9151760B2 (en) 2009-09-29 2015-10-06 The Board Of Trustees Of The Leland Stanford Junior University Isolation and use of melanoma cancer stem cells
US9330769B2 (en) 2010-02-09 2016-05-03 Samsung Electronics Co., Ltd. Nonvolatile memory devices, operating methods thereof and memory systems including the same
US20190322986A1 (en) 2010-08-27 2019-10-24 University Health Network Methods for enriching pluripotent stem cell-derived cardiomyocyte progenitor cells and cardiomyocyte cells based on sirpa expression
WO2012162422A2 (en) 2011-05-24 2012-11-29 Crystal Bioscience Inc. Transgenic chicken comprising an inactivated immunoglobulin gene
US20170114134A1 (en) 2011-08-26 2017-04-27 The University Of North Carolina At Chapel Hill Antagonists of iap-shps1 interaction
WO2013056352A1 (en) 2011-10-19 2013-04-25 University Health Network Antibodies and antibody fragments targeting sirp-alpha and their use in treating hematologic cancers
US20140242095A1 (en) 2011-10-19 2014-08-28 University Health Network Antibodies and antibody fragments targeting sirp-alpha and their use in treating hematologic cancers
WO2013059159A1 (en) 2011-10-21 2013-04-25 Crystal Bioscience, Inc. In vivo method for generating diversity in a protein scaffold
EP3421601B1 (en) 2011-12-30 2019-12-04 Cellscript, Llc Making and using in vitro-synthesized ssrna for introducing into mammalian cells to induce a biological or biochemical effect
EP3308641B1 (en) 2012-11-05 2019-07-03 Regeneron Pharmaceuticals, Inc. Immunodeficient, genetically modified rodent and methods of use thereof
EP2931752B1 (en) 2012-12-17 2019-08-14 Trillium Therapeutics Inc. Treatment of cd47+ disease cells with sirp alpha-fc fusions
US9771428B2 (en) 2013-02-05 2017-09-26 The Board Of Trustees Of The Leland Stanford Junior University CD47 targeted therapies for the treatment of infectious disease
US10184004B2 (en) 2013-02-05 2019-01-22 The Board Of Trustees Of The Leland Stanford Junior University CD47 targeted therapies for the treatment of infectious disease
US10723803B2 (en) 2013-02-05 2020-07-28 The Board Of Trustees Of The Leland Stanford Junior University CD47 targeted therapies for the treatment of infectious disease
US20200354469A1 (en) 2013-02-05 2020-11-12 The Board Of Trustees Of The Leland Stanford Junior University Cd47 targeted therapies for the treatment of infectious disease
US9623079B2 (en) 2013-03-15 2017-04-18 The Board Of Trustees Of The Leland Stanford Junior University Methods for achieving therapeutically effective doses of anti-CD47 agents for treating cancer
US10301387B2 (en) 2013-03-15 2019-05-28 The Board Of Trustees Of The Leland Stanford Junior University Methods for achieving therapeutically effective doses of anti-CD47 agents
US10064925B2 (en) 2013-04-29 2018-09-04 The Board Of Trustees Of The Leland Stanford Junior University Use of anti-CD47 agents to enhance immunization
US10329354B2 (en) 2013-09-18 2019-06-25 The Board Of Trustees Of The Leland Stanford Junior University Modulation of efferocytosis pathways for treatment of atherosclerotic disease
US20160333093A1 (en) 2014-01-08 2016-11-17 The Board Of Trustees Of The Leland Stanford Junior University Targeted Therapy for Small Cell Lung Cancer
WO2015138600A2 (en) 2014-03-11 2015-09-17 The Board Of Trustees Of The Leland Stanford Junior University Anti sirp-alpha antibodies and bi-specific macrophage enhancing antibodies
US10781256B2 (en) 2014-03-11 2020-09-22 The Board Of Trustees Of The Leland Stanford Junior University Anti SIRP-α antibodies and bi-specific macrophage enhancing antibodies
US10081680B2 (en) 2014-03-11 2018-09-25 The Board Of Trustees Of The Leland Stanford Junior University Anti-SIRP-alpha antibodies and bispecific macrophage enhancing antibodies
US20160186150A1 (en) 2014-08-08 2016-06-30 Alexo Therapeutics International Sirp-alpha variant constructs and uses thereof
EP3180363B1 (en) 2014-08-15 2019-09-25 Merck Patent GmbH Sirp-alpha immunoglobulin fusion proteins
EP3186395B1 (en) 2014-08-26 2019-09-25 The Board of Trustees of the Leland Stanford Junior University Engraftment of stem cells with a combination of an agent that targets stem cells and modulation of immunoregulatory signaling
US20200129557A1 (en) 2014-08-26 2020-04-30 The Board Of Trustees Of The Leland Stanford Junior University Engraftment of stem cells with a combination of an agent that targets stem cells and modulation of immunoregulatory signaling
US20170247464A1 (en) 2014-10-24 2017-08-31 Ose Immunotherapeutics Method and Compositions for Inducing Differentiation of Myeloid Derived Suppressor Cell to Treat Cancer and Infectious Diseases
EP3209769B1 (en) 2014-10-24 2020-08-05 The Board of Trustees of the Leland Stanford Junior University Compositions and methods for inducing phagocytosis of mhc class i positive cells and countering anti-cd47/sirpa resistance
EP3209691B1 (en) 2014-10-24 2020-07-15 OSE Immunotherapeutics Compositions for inducing differentiation of myeloid derived suppressor cell to treat cancer and infectious diseases
WO2016063233A1 (en) 2014-10-24 2016-04-28 Effimune Method and compositions for inducing differentiation of myeloid derived suppressor cell to treat cancer and infectious diseases
US10780117B2 (en) 2015-01-21 2020-09-22 The Board Of Trustees Of The Leland Stanford Junior University Macrophages eat cancer cells using their own calreticulin as a guide
US10618976B2 (en) 2015-06-16 2020-04-14 The Board Of Trustees Of The Leland Stanford Junior University SIRP-α agonist antibody
US20180244748A1 (en) 2015-07-28 2018-08-30 The Trustees Of The University Of Pennsylvania Modified Monocytes/Macrophage Expressing Chimeric Antigen Receptors and Uses Thereof
US20200223923A1 (en) 2015-08-26 2020-07-16 The Board Of Trustees Of The Leland Stanford Junior University Enhanced depletion of targeted cells with cd47 blockade and an immune costimulatory agonist
US20180312600A1 (en) 2015-10-21 2018-11-01 Ose Immunotherapeutics Methods and compositions for modifying macrophage polarization into pro-inflammatory cells to treat cancer
US20170151282A1 (en) 2015-12-01 2017-06-01 The Trustees Of The University Of Pennsylvania Compositions and methods for selective phagocytosis of human cancer cells
US10344094B2 (en) 2015-12-11 2019-07-09 The Board Of Trustees Of The Leland Stanford Junior University Treatment of cancer with dual targeting of CD47 and EGFR
US20190134089A1 (en) 2016-04-10 2019-05-09 Georgia State University Research Foundation, Inc. Methods for treating cancer and inhibiting graft rejection
WO2017178653A2 (en) 2016-04-14 2017-10-19 Ose Immunotherapeutics NEW ANTI-SIRPa ANTIBODIES AND THEIR THERAPEUTIC APPLICATIONS
US20190127477A1 (en) 2016-04-14 2019-05-02 Ose Immunotherapeutics NEW ANTI-SIRPa ANTIBODIES AND THEIR THERAPEUTIC APPLICATIONS
EP3482772A1 (en) 2016-07-05 2019-05-15 National University Corporation Kobe University Antitumor agent
US20190153095A1 (en) 2016-07-05 2019-05-23 National University Corporation Kobe University Antitumor Agent
US10611842B2 (en) 2016-08-03 2020-04-07 The Board Of Trustees Of The Leland Stanford Junior University Disrupting FC receptor engagement on macrophages enhances efficacy of anti-SIRPα antibody therapy
US20200262918A1 (en) 2016-08-03 2020-08-20 The Board Of Trustees Of The Leland Stanford Junior University Disrupting FC Receptor Engagement on Macrophages Enhances Efficacy of Anti-SIRPalpha Antibody Therapy
US20220002434A1 (en) 2016-09-21 2022-01-06 ALX Oncology Inc. Antibodies against signal-regulatory protein alpha and methods of use
US11242404B2 (en) 2016-09-21 2022-02-08 ALX Oncology Inc. Antibodies against signal-regulatory protein alpha and methods of use
US20180105600A1 (en) 2016-09-21 2018-04-19 Alexo Therapeutics Inc. Antibodies against signal-regulatory protein alpha and methods of use
WO2018057669A1 (en) 2016-09-21 2018-03-29 Alexo Therapeutics Inc. Antibodies against signal-regulatory protein alpha and methods of use
US20190275150A1 (en) 2016-12-09 2019-09-12 Alector Llc Anti-SIRP-Alpha Antibodies and Methods of Use Thereof
US20180214524A1 (en) 2017-01-30 2018-08-02 The Board Of Trustees Of The Leland Stanford Junior University Non-genotoxic conditioning regimen for stem cell transplantation
US10851164B2 (en) 2017-04-13 2020-12-01 Aduro Biotech Holdings, Europe B.V. Anti-SIRPα antibodies
US20180312587A1 (en) 2017-04-13 2018-11-01 Aduro Biotech Holdings, Europe B.V. Anti-sirp alpha antibodies
WO2018190719A2 (en) 2017-04-13 2018-10-18 Aduro Biotech Holdings, Europe B.V. Anti-sirp alpha antibodies
WO2018210793A2 (en) 2017-05-16 2018-11-22 Synthon Biopharmaceuticals B.V. ANTI-SIRPα ANTIBODIES
WO2018210795A1 (en) 2017-05-16 2018-11-22 Synthon Biopharmaceuticals B.V. ANTI-SIRPα ANTIBODIES
US20190119396A1 (en) 2017-07-26 2019-04-25 Forty Seven, Inc. Anti-SIRP-Alpha Antibodies and Related Methods
US20190352419A1 (en) 2018-03-21 2019-11-21 ALX Oncology Inc. Antibodies against signal-regulatory protein alpha and methods of use
US20190359707A1 (en) 2018-05-25 2019-11-28 Alector Llc Anti-Sirpa Antibodies and Methods of Use Thereof
WO2020013170A1 (ja) 2018-07-10 2020-01-16 国立大学法人神戸大学 抗SIRPα抗体
US20200102387A1 (en) 2018-09-27 2020-04-02 Celgene Corporation SIRP-Alpha BINDING PROTEINS AND METHODS OF USE THEREOF
US20200297842A1 (en) 2018-11-14 2020-09-24 Arch Oncology, Inc. THERAPEUTIC SIRP-alpha ANTIBODIES
WO2020099653A1 (en) 2018-11-15 2020-05-22 Byondis B.V. HUMANIZED ANTI-SIRPα ANTIBODIES

Non-Patent Citations (105)

* Cited by examiner, † Cited by third party
Title
Almagro and Fransson (2008). "Humanization of antibodies," Front. Biosci. 13:1619-1633.
Araghi et al. (J. Feline Med. Surg. Apr. 2014; 16 (4): 265-74). *
Baca et al. (1997). "Antibody humanization using monovalent phage display," J. Biol. Chem., 272(16):10678-10684.
Barclay et al. (Annu. Rev. Immunol. 2014; 32: 25-50). *
Barclay, A.N. and Brown, M.H. (2006). "The SIRP family of receptors and immune regulation," Nat. Rev. Immunol., 6(6):457-464.
Barnes et al. (1980). "Methods for growth of cultured cells in serum-free medium," Anal. Biochem. 102:255-70.
BioLegend. (2016). "Purified anti-human CD172a/b (SIRPa/b) Antibody," https://www.biolegend.com/en-gb/global-elements/pdf-popup/purified-anti-human-cd172a-b-sirpalpha-beta-antibody-4028?filename=Purified%20anti-human%20CD172ab%20SIRPalphabeta%20Antibody.pdf&pdfgen=true, Retrieved: Dec. 15, 2017.
Boerner et al. (1991). "Production of antigen-specific human monoclonal antibodies from in vitro-primed human splenocytes," J. Immunol., 147(1):86-95.
Bravman, T. et al. (2006). "Exploring "one-shot" kinetics and small molecule analysis using the ProteOn XPR36 array biosensor," Anal. Biochem., 358(2):281-288.
Brennan et al. (1985). "Preparation of bispecific antibodies by chemical recombination of monoclonal immunoglobulin G1 fragments," Science, 229(4708):81-3.
Bruggemann et al. (1993). "Designer mice: the production of human antibody repertoires in transgenic animals," Year in Immunol., 7:33-40.
Carter et al. (1992). "High level Escherichia coli expression and production of a bivalent humanized antibody fragment," Biotechnology, 10(2):163-167.
Carter et al. (1992). "Humanization of an anti-p185HER2 antibody for human cancer therapy," Proc. Natl. Acad. Sci. USA, 89(10):4285-9.
Champe et al. (1995). "Monoclonal antibodies that block the activity of leukocyte function-associated antigen 1 recognize three discrete epitopes in the inserted domain of CD11a," J. Biol. Chem., 270(3):1388-1394.
Chin et al. (Chang Gung Med J. Jan.-Feb. 2008; 31 (1): 1-15). *
Chothia and Lesk, (1987). "Canonical structures for the hypervariable regions of immunoglobulins," J. Mal. Biol., 196(4):901-917.
Clackson et al. (1991). "Making antibody fragments using phage display libraries," Nature, 352: 624-628.
Fellouse (2004). "Synthetic antibodies from a four-amino-acid code: a dominant role for tyrosine in antigen recognition," Proc. Natl. Acad. Sci. USA, 101(34):12467-12472.
Fishwild et al. (1996). "High-avidity human IgG kappa monoclonal antibodies from a novel strain of minilocus transgenic mice," Nature Biotechnol., 14(7):845-851.
George et al. (Circulation. 1998; 97: 900-906). *
Glanville, J. et al. (2009). "Precise determination of the diversity of a combinatorial antibody library gives insight into the human immunoglobulin repertoire," Proc. Natl. Acad. Sci., 106(48):20216-20221.
Graham et al. (1977). "Characteristics of a human cell line transformed by DNA from human adenovirus type 5," J. Gen Viral., 36(1):59-74.
Griffiths et al. (1993). "Human anti-self antibodies with high specificity from phage display libraries," EMBO J, 12(2):725-734.
Gruber et al. (1994). "Efficient tumor cell lysis mediated by a bispecific single chain antibody expressed in Escherichia coli," J. Immunol, 152(11):5368-74.
Ham et al. (1979). "Media and growth requirements," Meth. Enz., 58:44-93.
Hamers-Casterman et al. (1993). "Naturally occurring antibodies devoid of light chains," Nature, 363(6428):446-448.
Hatherley, D. et al. (2007). "The structure of the macrophage signal regulatory protein alpha (SIRPalpha) inhibitory receptor reveals a binding face reminiscent of that used by T cell receptors," J. Biol. Chem., 282(19):14567-75.
Hatherley, D. et al. (2008). "Paired receptor specificity explained by structures of signal regulatory proteins alone and complexed with CD47," Mal. Cell, 31(2):266-77.
Hatherley, D. et al. (2009). "Structure of signal-regulatory protein alpha: a link to antigen receptor evolution," J. Biol. Chem., 284(39):26613-9.
Hlavacek et al. (1999). "Steric Effects on Multivalent Ligand-Receptor Binding: Exclusion of Ligand Sites by Bound Cell Surface Receptors," Biophysical Journal, vol. 76, Issue 6, pp. 3031-3043.
Hollinger et al. (1993). "‘Diabodies’: small bivalent and bispecific antibody fragments," Proc. Natl. Acad. Sci. USA, 90(14):6444-6448.
Hongo et al. (1995). "Development and characterization of murine monoclonal antibodies to the latency-associated peptide of transforming growth factor beta 1," Hybridoma, 14(3):253-260.
Hoogenboom and Winter (1992). "By-passing immunisation. Human antibodies from synthetic repertoires of germline VH gene segments rearranged in vitro," J. Mol. Biol., 227(2):381-388.
Hoogenboom, H.R. (2002). "Overview of antibody phage-display technology and its applications," Methods in Molecular Biology, 178:1-37.
Hudson et al. (2003). "Engineered antibodies," Nat. Med., 9(1):129-134.
International Search Report and Written Opinion directed to PCT Application No. PCT/US2017/052592, dated Dec. 20, 2017, 22 pages.
International Search Report and Written Opinion directed to PCT Application No. PCT/US2019/023238, dated May 20, 2019, 6 pages.
Jakobovits et al. (1993). "Analysis of homozygous mutant chimeric mice: deletion of the immunoglobulin heavy-chain joining region blocks B-cell development and antibody production," Proc. Natl. Acad. Sci. USA, 90(36):2551-5.
Jakobovits et al. (1993). "Germ-line transmission and expression of a human-derived yeast artificial chromosome," Nature, 362(6417):255-258.
Janeway et al. (2001). "Immunobiology: the immune system in health and disease." 5th Editions, New York, Garland Science, 5 pages.
Jayaram, N. et al. (2012). "Germline VH/VL pairing in antibodies," Protein Eng. Des. Sel., 25(10):523-529.
Jiang et al. (J. Biol. Chem. Feb. 11, 2005; 280 (6): 4656-4662). *
Jones et al. (1986). "Replacing the complementarity-determining regions in a human antibody with those from a mouse," Nature, 321(6069):522-525.
Kharitonenkov, A. et al. (1997). "A family of proteins that inhibit signalling through tyrosine kinase receptors," Nature, 386(6621):181-6.
Kim, E.J. et al. (2013). "SHPS-1 and a synthetic peptide representing its ITIM inhibit the MyD88, but not TRIF, pathway of TLR signaling through activation of SHP and PI3K in THP-1 cells," Inflammation Research, 62(4):377-86.
Kipriyanov et al. (2004). "Generation and production of engineered antibodies." Molecular biotechnology, 26(1):39-60.
Kohler and Milstein, (1975). "Continuous cultures of fused cells secreting antibody of predefined specificity," Nature, 256(5517):495-97.
Kostelny et al. (1992). "Formation of a bispecific antibody by the use of leucine zippers." J. Immunol., 148(5):1547-1553.
Krieg et al. (2005). "Functional analysis of B and T lymphocyte attenuator engagement on CD4+ and CD8+ T cells," Journal of Immunology (Baltimore, MD.:1950), vol. 175, No. 10, pp. 6420-6427.
Lee et al. (2004). "Bivalent antibody phage display mimics natural immunoglobulin," J. Immunol. Methods, 284(1-2):119-132.
Lee et al. (2004). "High-affinity human antibodies from phage-displayed synthetic Fab libraries with a single framework scaffold," J. Mol. Biol., 340(5):1073-1093.
Lee et al. (J. Immunol. Dec. 1, 2007; 179 (11): 7741-50). *
Lee, W.Y. et al. (2007). "Novel structural determinants on SIRP alpha that mediate binding to CD47," J. Immunol., 179(11):7741-50.
Lee, W.Y. et al. (2010). "The role of cis dimerization of signal regulatory protein alpha (SIRPalpha) in binding to CD47," J. Biol. Chem., 285(49):37953-63.
Li et al. (2006). "Optimization of humanized IgGs in glycoengineered Pichia pastoris," Nat. Biotech., 24(2):210-215.
Liu et al. (J. Mol. Biol. Jan. 19, 2007; 365 (3): 680-93). *
Lloyd, C. et al. (2009). "Modelling the human immune response: performance of a 1011 human antibody repertoire against a broad panel of therapeutically relevant antigens," Protein Eng. Des. Sel., 22(3):159-168.
Lonberg (2008). "Fully human antibodies from transgenic mouse and phage display platforms," Curr. Opin. Immunol., 20(4):450-459.
Lonberg and Huszar (1995) "Human antibodies from transgenic mice," Intern. Rev. Immunol., 13(1):65-93.
Lonberg et al. (1994). "Antigen-specific human antibodies from mice comprising four distinct genetic modifications," Nature, 368(6474):856-859.
Ludwig et al. (2017). "Mechanisms of Autoantibody-Induced Pathology," Front Immunol, 8:603.
Majeti, R. et al. (2009). "CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells," Cell, 138(2):286-99.
Marks et al. (1992). "By-passing immunization. Human antibodies from V-gene libraries displayed on phage," J. Mol. Biol., 222(3): 581-597.
Marks et al. (1992). "By-passing immunization: building high affinity human antibodies by chain shuffling," Biotechnology, 10(7):779-783.
Mather (1980). "Establishment and characterization of two distinct mouse testicular epithelial cell lines," Biol. Reprod., 23(1):243-252.
Mather et al. (1982). "Culture of testicular cells in hormone-supplemented serum-free medium," Annals N.Y. Acad. Sci., 383:44-68.
Mettler Izquierdo, S. et al. (2016). "High-efficiency antibody discovery achieved with multiplexed microscopy," Microscopy (Oxf), 341-52.
Morimoto et al. (1992). "Single-step purification of F(ab′)2 fragments of mouse monoclonal antibodies (immunoglobulins G1) by hydrophobic interaction high performance liquid chromatography using TSKgel Phenyl-5PW," Journal of Biochemical and Biophysical Methods, 24(1-2):107-117.
Morrison (1994). "Immunology. Success in specification," Nature, 368(6474):812-813.
Morrison et al. (1984). "Chimeric human antibody molecules: mouse antigen-binding domains with human constant region domains," Proc. Natl. Acad. Sci. USA, 81(21):6851-6855.
Murata, Y. et al. (2014). The CD47-SIRPα signaling system: its physiological roles and therapeutic application, The Journal of Biochemistry, 155(6):335-344.
Nakaishi, A. et al. (2008). "Structural insight into the specific interaction between murine SHPS-1/SIRP alpha and its ligand CD47," J. Mal. Biol. 375:650-60.
Nettleship, J. et al. (2013). "Crystal structure of signal regulatory protein gamma (SIRPg) in complex with an antibody Fab fragment", BMC Structural Biology, 13(13):1-8.
Neuberger (1996). "Generating high-avidity human Mabs in mice," Nature Biotechnol., 14(7):826.
Ochi, F. et al. (1997). "Epidermal growth factor stimulates the tyrosine phosphorylation of SHPS-1 and association of SHPS-1 with SHP-2, a SH2 domain-containing protein tyrosine phosphatase," Biochem. Biophys. Res. Commun., 239(2):483-7.
Padian (1994). "Anatomy of the antibody molecule," Mol. Immunol., 31:169-217.
Plückthun et al. (1997). "New protein engineering approaches to multivalent and bispecific antibody fragments," Immunotechnology, 3(2):83-105.
Presta (1992). "Antibody engineering," Curr. Op. Struct. Biol. 2:593-596.
Presta et al. (1993). "Humanization of an antibody directed against IgE," J. Immunol., 151(5):2623-32.
Riechmann et al. (1988). "Reshaping human antibodies for therapy," Nature, 332(6162):323-327.
Riemer et al. (Mol. Immunol. 2005; 42: 1121-1124). *
Rudikoff et al. (1982). "Single amino acid substitution altering antigen-binding specificity," Proc. Nat. Acad. Sci., vol. 79, pp. 1979-1983, Immunology.
Seiffert, M. et al. (1999). "Human Signal-Regulatory Protein Is Expressed on Normal, But Not on Subsets of Leukemic Myeloid Cells and Mediates Cellular Adhesion Involving Its Counterreceptor CD47," Blood, 94(11):3633-3643.
Seiffert, M. et al. (2001). "Signal-regulatory protein a (SIRPa) but not SIRPb is involved in T-cell activation, binds to CD47 with high affinity, and is expressed on immature CD34+CD38− hematopoietic cells," Blood, 97(9):2741-2749.
Sheriff et al. (1996). "Redefining the minimal antigen-binding fragment," Nature Struct. Biol., 3(9):733-736.
Sidhu et al. (2004). "Phage-displayed antibody libraries of synthetic heavy chain complementarity determining regions," J. Mol. Biol., 338(2): 299-310.
Sims et al. (1993). "A humanized CD18 antibody can block function without cell destruction," J. Immunol., 151(4):2296-308.
Sinn et al. (MAbs. Aug./Sep. 2019; 11 (6): 1036-1052). *
Spiess, C. et al. (2015). "Alternative molecular formats and therapeutic applications for bispecific antibodies," Mal. Immunol., 67(2 Pt A):95-106.
Takenaka, K. et al. (2007). "Polymorphism in Sirpa modulates engraftment of human hematopoietic stem cells," Nat. Immunol., 8(12):1313-23.
Treffers et al., (2018). "Genetic variation of human neutrophil Fcγ receptors and SIRPα in antibody-dependent cellular cytotoxicity towards cancer cells," European Journal of Immunology 48(2):344-354.
U.S. Appl. No. 16/359,799, filed Mar. 20, 2019, titled "Antibodies Against Signal-Regulatory Protein Alpha and Methods of Use," inventor Pons et al., Applicant ALX Oncology Inc. (Copy not submitted herewith pursuant to the waiver of 37 C.F.R. § 1.98(a)(2)(iii)).
U.S. Appl. No. 17/337,180, filed Jun. 2, 2021, titled "Antibodies Against Signal-Regulatory Protein Alpha and Methods of Use," Inventor Pons et al., Applicant ALX Oncology Inc. (Copy not submitted herewith pursuant to the waiver of 37 C.F.R. § 1.98(a)(2)(iii)).
Urlaub et al. (1980). "Isolation of Chinese hamster cell mutants deficient in dihydrofolate reductase activity," Proc. Natl. Acad. Sci. USA, 77(7):4216-20.
Van Der Heijden, J. (Jul. 1, 2014). "Genetic Variation in Human Fc Gamma Receptors: Functional Consequences of Polymorphisms and Copy Number Variation," located at <https://dare.uva.nl/search?identifier=54e3332e-a8c8-4fec-a49d-833b35617f2f> last visited on Sep. 7, 2017, pp. 115-135, 22 pages.
Vollmers and Brandlein, (2005). "Death by stress: natural IgM-induced apoptosis," Methods and Findings in Experimental and Clinical Pharmacology, 27(3):185-91.
Vollmers and Brandlein, (2005). "The ‘early birds’: natural IgM antibodies and immune surveillance," Histology and Histopathology, 20(3):927-937.
Weiskopf, K. et al. (2013). "Engineered SIRPα variants as immunotherapeutic adjuvants to anticancer antibodies," Science, 341(6141):88-91.
Willingham, S.B. et al. (2012). "The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors," 109(17):6662-7.
Winkler et al. (J. Immunol 2000; 165: 4505-14). *
Winter et al. (1994). "Making antibodies by phage display technology," Ann. Rev. Immunol., 12:433-455.
Yanagita, T. et al. (2017). "Anti-SIRPα antibodies as a potential new tool for cancer immunotherapy," JCI Insight, 2(1):e89140.
Yi. et al (2015). "Splenic dendritic cells survey red blood cells for missing self-CD47 to trigger adaptive immune responses," Immunity, 433(4):764-775.
Zhang et al. (2020.) "CD47 decline in pancreatic islet cells promotes macrophage-mediated phagocytosis in type I diabetes," World J Diabetes, 11(6):239-251.
Zhao, X.W. et al. (2011). "CD47-signal regulatory protein-α (SIRPα) interactions form a barrier for antibody-mediated tumor cell destruction," Proc. Natl. Acad. Sci., 108(45):18342-7.

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11939393B2 (en) 2018-03-21 2024-03-26 ALX Oncology Inc. Antibodies against signal-regulatory protein alpha and methods of use
US20230012273A1 (en) * 2021-06-04 2023-01-12 Boehringer Ingelheim International Gmbh Anti-sirp-alpha antibodies
US11572412B2 (en) * 2021-06-04 2023-02-07 Boehringer Ingelheim International Gmbh Anti-SIRP-alpha antibodies

Also Published As

Publication number Publication date
US20210363269A1 (en) 2021-11-25
HUE060170T2 (hu) 2023-02-28
IL265439B1 (en) 2024-04-01
SA519401371B1 (ar) 2022-12-04
CL2019000668A1 (es) 2019-05-31
EP3515490B8 (en) 2022-09-14
JP2022003031A (ja) 2022-01-11
GEP20237480B (en) 2023-03-27
CN109862915A (zh) 2019-06-07
SG10201912878UA (en) 2020-02-27
AU2017332285A1 (en) 2019-02-14
PL3515490T3 (pl) 2022-12-19
BR112019003027A2 (pt) 2019-05-14
GEP20237528B (en) 2023-08-10
MX2019003168A (es) 2019-06-10
JOP20190009A1 (ar) 2019-01-27
EP3515490A1 (en) 2019-07-31
CN117946268A (zh) 2024-04-30
IL297891A (en) 2023-01-01
SI3515490T1 (sl) 2023-06-30
ZA201900937B (en) 2023-05-31
RU2019111888A (ru) 2020-10-22
KR20190052100A (ko) 2019-05-15
UA126281C2 (uk) 2022-09-14
PE20190575A1 (es) 2019-04-22
CO2019003809A2 (es) 2019-04-30
CN109862915B (zh) 2023-12-12
IL297891B1 (en) 2024-04-01
RU2019111888A3 (es) 2020-10-22
AU2017332285B2 (en) 2024-07-04
DK3515490T3 (da) 2022-10-24
RS63658B1 (sr) 2022-11-30
ES2932602T3 (es) 2023-01-23
JP2020503057A (ja) 2020-01-30
EP3515490B1 (en) 2022-08-10
EP4119580A1 (en) 2023-01-18
EP3515490A4 (en) 2020-04-29
US11242404B2 (en) 2022-02-08
HRP20221323T1 (hr) 2022-12-23
LT3515490T (lt) 2022-11-10
CN117756937A (zh) 2024-03-26
WO2018057669A1 (en) 2018-03-29
US20220002434A1 (en) 2022-01-06
JP7508425B2 (ja) 2024-07-01
PH12019500600A1 (en) 2019-06-03
PT3515490T (pt) 2022-10-18
JP7181874B2 (ja) 2022-12-01
IL265439A (en) 2019-05-30
MA46290A (fr) 2019-07-31
IL265439B2 (en) 2024-08-01
IL297891B2 (en) 2024-08-01
US20180105600A1 (en) 2018-04-19
KR102601298B1 (ko) 2023-11-15
CL2021000704A1 (es) 2021-07-30
US20230018821A1 (en) 2023-01-19
CA3034480A1 (en) 2018-03-29
MY197854A (en) 2023-07-20

Similar Documents

Publication Publication Date Title
US11242404B2 (en) Antibodies against signal-regulatory protein alpha and methods of use
US11603405B2 (en) Anti-CD3 antibodies and uses thereof
US20210284739A1 (en) Anti-cd74 antibodies, compositions comprising anti-cd74 antibodies and methods of using anti-cd74 antibodies
BR112020018927A2 (pt) Anticorpos contra proteína alfa reguladora de sinal e métodos de uso
JP2020504171A (ja) 抗PD−1抗体との組み合わせのための抗Tim−3抗体
US11130802B2 (en) Anti-lap antibody variants
CN111744013B (zh) 抗tigit抗体联合pd-1抑制剂治疗疾病的方法和药物组合
CA3231553A1 (en) Pharmaceutical composition comprising anti-pvrig/tigit bispecific antibody
JP2022538374A (ja) Pdgf-bおよびpdgf-dに結合する抗原結合分子ならびにその使用
RU2771964C2 (ru) Антитела против сигнал-регуляторного белка альфа и способы их применения
JP2023548034A (ja) デルタ様リガンド3(dll3)抗原結合ドメインを含むタンパク質及びその使用

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: CRYSTAL BIOSCIENCE INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HARRIMAN, WILLIAM DON;IZQUIERDO, SHELLEY;REEL/FRAME:047004/0567

Effective date: 20180830

Owner name: ALEXO THERAPEUTICS INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PONS, JAUME;SIM, BANG JANET;WAN, HONG;AND OTHERS;SIGNING DATES FROM 20180820 TO 20180823;REEL/FRAME:047004/0597

Owner name: ALEXO THERAPEUTICS INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CRYSTAL BIOSCIENCE INC.;REEL/FRAME:047004/0609

Effective date: 20180822

Owner name: ALX ONCOLOGY INC., CALIFORNIA

Free format text: CHANGE OF NAME;ASSIGNOR:ALEXO THERAPEUTICS INC.;REEL/FRAME:047228/0690

Effective date: 20180619

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT RECEIVED

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE

STPP Information on status: patent application and granting procedure in general

Free format text: WITHDRAW FROM ISSUE AWAITING ACTION

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE

CC Certificate of correction