WO2020013170A1 - 抗SIRPα抗体 - Google Patents

抗SIRPα抗体 Download PDF

Info

Publication number
WO2020013170A1
WO2020013170A1 PCT/JP2019/027114 JP2019027114W WO2020013170A1 WO 2020013170 A1 WO2020013170 A1 WO 2020013170A1 JP 2019027114 W JP2019027114 W JP 2019027114W WO 2020013170 A1 WO2020013170 A1 WO 2020013170A1
Authority
WO
WIPO (PCT)
Prior art keywords
amino acid
acid sequence
antibody
seq
heavy chain
Prior art date
Application number
PCT/JP2019/027114
Other languages
English (en)
French (fr)
Inventor
尚 的崎
真由美 須江
健介 中村
千草 吉村
Original Assignee
国立大学法人神戸大学
第一三共株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CN202311201098.2A priority Critical patent/CN117024593A/zh
Priority to CA3104462A priority patent/CA3104462C/en
Application filed by 国立大学法人神戸大学, 第一三共株式会社 filed Critical 国立大学法人神戸大学
Priority to JP2020530192A priority patent/JP7368809B2/ja
Priority to BR112020023322-6A priority patent/BR112020023322A2/pt
Priority to MX2020013068A priority patent/MX2020013068A/es
Priority to KR1020207034952A priority patent/KR20210030267A/ko
Priority to US17/258,115 priority patent/US20210155707A1/en
Priority to CN201980059246.7A priority patent/CN112673023B/zh
Priority to SG11202012338QA priority patent/SG11202012338QA/en
Priority to EP19833586.1A priority patent/EP3822289A4/en
Priority to AU2019302152A priority patent/AU2019302152A1/en
Publication of WO2020013170A1 publication Critical patent/WO2020013170A1/ja
Priority to CONC2020/0014727A priority patent/CO2020014727A2/es
Priority to IL279321A priority patent/IL279321A/en
Priority to PH12021500002A priority patent/PH12021500002A1/en
Priority to JP2023172481A priority patent/JP2023168526A/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2896Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against molecules with a "CD"-designation, not provided for elsewhere
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/32Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against translation products of oncogenes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • A61K2039/507Comprising a combination of two or more separate antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2863Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against receptors for growth factors, growth regulators
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2887Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against CD20
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/21Immunoglobulins specific features characterized by taxonomic origin from primates, e.g. man
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/24Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/33Crossreactivity, e.g. for species or epitope, or lack of said crossreactivity
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/34Identification of a linear epitope shorter than 20 amino acid residues or of a conformational epitope defined by amino acid residues
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • C07K2317/565Complementarity determining region [CDR]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/71Decreased effector function due to an Fc-modification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/72Increased effector function due to an Fc-modification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/73Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/73Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
    • C07K2317/732Antibody-dependent cellular cytotoxicity [ADCC]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding

Definitions

  • the present invention relates to an anti-SIRP ⁇ antibody useful for treating a tumor, and an antitumor agent containing the antibody.
  • SIRP ⁇ (SHPS-1) is a single transmembrane molecule of the Ig superfamily present in macrophages, dendritic cells, myeloid cells such as neutrophils, and glial cells (Non-Patent Document 1).
  • the extracellular region is composed of one IgV domain and two IgC domains, and 10 types of human IgV domains have been reported as binding sites for CD47 (Non-Patent Document 2).
  • the intracellular region contains immunoreceptor tyrosine-based inhibition motifs (ITIM), and its binding to CD47 induces the binding to tyrosine phosphatase SHP-1 and SHP-2, thereby transmitting an inhibitory signal.
  • ITIM immunoreceptor tyrosine-based inhibition motifs
  • Non-Patent Document 3 As a physiological phenomenon due to the SIRP ⁇ -CD47 interaction, it has been shown that CD47 on erythrocytes binds to SIRP ⁇ on macrophages and transmits a “Don't eat” me signal, thereby avoiding unnecessary phagocytosis of erythrocytes. (Non-Patent Document 3). On the other hand, even in a tumor microenvironment, it has been suggested that binding of CD47 highly expressed in tumor cells to SIRP ⁇ on macrophages and dendritic cells suppresses phagocytic activity on tumor cells. Suppression of phagocytosis is expected to lead to suppression of subsequent presentation of tumor antigens to T cells, and furthermore to suppression of tumor immune responses. Therefore, the immune phenomenon of tumor cell phagocytosis is considered to be a checkpoint for tumor antigen uptake (entry).
  • Non-Patent Document 4 It has been reported that inhibition of SIRP ⁇ -CD47 interaction with an antibody against CD47, which is a ligand of SIRP ⁇ , enhances the phagocytic activity on tumor cells. Even when is used, similar phenomena have been shown under conditions of combined use of anti-cancer antibodies that have an effector activity of attracting tumor cells to immune cells (Non-Patent Documents 5 and 6). In addition, it has been suggested that the allogeneic mouse tumor-bearing model using an anti-CD47 antibody induces not only an antitumor effect but also tumor immunity (Non-Patent Document 7). Under the conditions, a similar effect can be expected.
  • Non-patent Document 8 and 9 a plurality of antibodies against immunosuppressive molecules on T cells such as PD-1 / PD-L1 have been developed, and their effects have been demonstrated clinically (Non-patent Document 8 and 9).
  • SIRP ⁇ -CD47 is currently the only proven phagocytosis inhibitory molecule, and inhibitory antibodies against this molecule are expected to be potential new checkpoint inhibitors against targets other than T cells It has the potential to be widely effective in patients resistant to the drug.
  • Patent Document 1 shows not only the combination effect with the anticancer antibody having the effector activity expected conventionally but also the combination effect with the immune checkpoint inhibitor targeting T cells. Similar effects can be expected with the human SIRP ⁇ antibody.
  • Patent Documents 1, 2, and 3 patents on anti-SIRP ⁇ antibodies have been successively reported from various companies.
  • OSE-172 is an IgG4Pro-type antibody that shows binding to the SIRP ⁇ V1 type and SIRP ⁇ 1, but does not show binding to the SIRP ⁇ V2 type and SIRP ⁇ .
  • KWAR23 is an IgG1N279A type antibody, and has binding properties to 10 types of SIRP ⁇ variants and SIRP ⁇ 1 and SIRP ⁇ .
  • ADU-1805 is an IgG2 type antibody and exhibits binding properties to 10 types of SIRP ⁇ variants and SIRP ⁇ . It is unclear which antibody is most suitable as a medicine, and efforts are being made to obtain excellent antibodies.
  • Non-Patent Document 7 by preparing an environment that facilitates the uptake of tumor antigens by pre-administration of a chemotherapeutic agent, the antigen uptake ability (immunostimulation ability) by inhibiting the SIRP ⁇ -CD47 interaction is improved. It shows the possibility that the effect can be enhanced.
  • the anti-SIRP ⁇ antibody is a drug that can induce a stronger tumor immune response when used in combination with various antitumor agents.
  • the object of the present invention is to provide an anti-SIRP ⁇ antibody that can be used as an antitumor agent, and an antitumor agent containing the antibody as an active ingredient.
  • the present inventors have inhibited the interaction between SIRP ⁇ expressed in phagocytic cells having phagocytic activity and CD47 expressed in tumor cells with an anti-SIRP ⁇ antibody, and converted “Don't- A method for inhibiting the transmission of the "eat-me” signal and enhancing the phagocytosis of tumor cells by phagocytic cells was examined.
  • the present inventors have attempted to produce an antibody having a higher affinity for SIRP ⁇ and a high inhibitory effect on the interaction between SIRP ⁇ and CD47, and when the anti-SIRP ⁇ antibody has an effector function such as ADCC or ADCP. Considering the possibility of attacking their own immune cells, the production of an anti-SIRP ⁇ antibody having no effector function was also studied.
  • the subclass of the antibody was set to IgG4, and a mutation that reduced the effector function was introduced into the Fc region of the antibody.
  • an anti-SIRP ⁇ antibody that strongly inhibits the interaction between SIRP ⁇ and CD47 but has a reduced effector function could be produced. Since this antibody does not bind to the Fc receptor of effector cells and does not exert effector functions, it has no sufficient antitumor effect by itself. Thus, when used in combination with another antibody drug having an effector function or another antibody drug having an immune checkpoint inhibitory effect, it was confirmed that a good antitumor effect was exhibited, and the present invention was completed.
  • the present invention is as follows. [1] (a) a light chain CDRL1 consisting of the amino acid sequence represented by SEQ ID NO: 1, (B) a light chain CDRL2 consisting of the amino acid sequence represented by SEQ ID NO: 2, (C) a light chain CDRL3 consisting of the amino acid sequence represented by SEQ ID NO: 3, (D) a heavy chain CDRH1 consisting of the amino acid sequence represented by SEQ ID NO: 4, (E) heavy chain CDRH2 consisting of the amino acid sequence represented by SEQ ID NO: 5, and (f) heavy chain CDRH3 consisting of the amino acid sequence represented by SEQ ID NO: 6
  • the antibody of [1], wherein the heavy chain constant region is a human IgG4 heavy chain constant region and contains a mutation that causes a reduction in ADCC and / or ADCP activity.
  • the heavy chain constant region is the heavy chain constant region of human IgG4, wherein phenylalanine at position 234 shown by the EU index by Kabat et al. Is substituted with alanine, leucine at position 235 is substituted with alanine, and The antibody of [1] or [2], wherein serine is replaced by proline.
  • the antibody of [3], wherein the amino acid sequence of the heavy chain constant region is an amino acid sequence consisting of amino acid residues 140 to 466 of SEQ ID NO: 25.
  • the heavy chain constant region is the heavy chain constant region of human IgG4, wherein phenylalanine at position 234 shown by the EU index by Kabat et al. Is substituted with alanine, leucine at position 235 is substituted with alanine, and 228 The antibody of [5], wherein serine is replaced by proline.
  • the antibody of [6], wherein the amino acid sequence of the heavy chain constant region is an amino acid sequence consisting of amino acid residues 140 to 466 of SEQ ID NO: 25.
  • the antibody of [8], wherein the heavy chain constant region is a human IgG4 heavy chain constant region, and the mutation comprises a mutation that causes a reduction in ADCC and / or ADCP activity.
  • the heavy chain constant region is the heavy chain constant region of human IgG4, wherein phenylalanine at position 234 shown by the EU index by Kabat et al. Is substituted with alanine, leucine at position 235 is substituted with alanine, and An antibody which specifically binds to human SIRP ⁇ of [8] or [9], wherein serine is substituted by proline, and inhibits binding of human SIRP ⁇ to CD47.
  • the antibody of [10], wherein the amino acid sequence of the heavy chain constant region is an amino acid sequence consisting of amino acid residues 139 to 465 of SEQ ID NO: 29.
  • the heavy chain constant region is the heavy chain constant region of human IgG4, wherein phenylalanine at position 234 indicated by the EU index by Kabat et al. Is substituted with alanine, leucine at position 235 is substituted with alanine, and 228 of position 228 is further substituted.
  • the antibody of [13], wherein the amino acid sequence of the heavy chain constant region is an amino acid sequence consisting of amino acid residues 139 to 465 of SEQ ID NO: 29.
  • the antibody of [15], wherein the heavy chain constant region is a heavy chain constant region of human IgG4 and contains a mutation that results in a decrease in ADCC and / or ADCP activity.
  • the heavy chain constant region is the heavy chain constant region of human IgG4, wherein the phenylalanine at position 234 indicated by the EU index by Kabat et al. Is substituted with alanine, the leucine at position 235 is substituted with alanine, and the position at position 228 is further substituted.
  • the antibody of [17], wherein the amino acid sequence of the heavy chain constant region is an amino acid sequence consisting of amino acid residues 144 to 470 of SEQ ID NO: 33.
  • the heavy chain constant region is the heavy chain constant region of human IgG4, wherein phenylalanine at position 234 indicated by the EU index by Kabat et al. Is substituted with alanine, leucine at position 235 is substituted with alanine, and 228 of position 228 is further substituted.
  • the antibody of [20], wherein the amino acid sequence of the heavy chain constant region is an amino acid sequence consisting of amino acid residues 144 to 470 of SEQ ID NO: 33.
  • human SIRP ⁇ which specifically binds to human SIRP ⁇ and binds to an epitope containing Gln at position 82, Lys at position 83, Glu at position 84, and Gly at position 85 of human SIRP ⁇ represented by SEQ ID NO: 57, An antibody that inhibits the binding of to CD47.
  • the antibody of [24] wherein the heavy chain constant region is a heavy chain constant region of human IgG4 and contains a mutation that results in a decrease in ADCC and / or ADCP activity.
  • the heavy chain constant region is the heavy chain constant region of human IgG4, wherein phenylalanine at position 234 indicated by the EU index by Kabat et al.
  • the antigen-binding fragment of the antibody of [30] which is selected from the group consisting of Fab, F (ab ') 2, Fab', and scFv.
  • a pharmaceutical composition comprising, as an active ingredient, the antibody of any one of [1] to [29] or an antigen-binding fragment of the antibody of [30] or [31].
  • the pharmaceutical composition of [32] which is an antitumor agent.
  • [34] The pharmaceutical composition of [33], further comprising, as an active ingredient of the antitumor agent, an immune checkpoint inhibitor and / or an antibody drug having ADCC and / or ADCP activity specifically reacting with a cancer antigen.
  • an immune checkpoint inhibitor and / or a cancer antigen comprising an antibody of any one of [1] to [29] or an antigen-binding fragment of the antibody of [30] or [31] as an active ingredient
  • the pharmaceutical composition of [34] or [35] wherein the immune checkpoint inhibitor is a binding inhibitor of PD-L1 and PD-1, or a CTLA4 inhibitor.
  • An antibody drug having ADCC and / or ADCP activity specifically reacting with a cancer antigen is selected from the group consisting of an anti-CD20 antibody, an anti-HER2 antibody and an anti-EGFR antibody, [34] or [35]. ] A pharmaceutical composition.
  • the tumor is one or more selected from the group consisting of carcinoma, sarcoma, lymphoma, leukemia, myeloma, germinoma, brain tumor, carcinoid, neuroblastoma, retinoblastoma, and nephroblastoma
  • the pharmaceutical composition according to any one of [33] to [37], which is a tumor for: [39] If the tumor is renal, melanoma, squamous cell, basal cell, conjunctival, oral, laryngeal, pharyngeal, thyroid, lung, breast, esophageal cancer , Stomach, duodenum, small intestine, large intestine, rectum, appendix, anal, liver, gallbladder, bile duct, pancreatic, adrenal, bladder , Prostate cancer, uterine cancer, vaginal cancer, liposarcoma, hemangiosarcoma, chondrosarcoma, rhabdomy
  • a polynucleotide consisting of a nucleotide sequence encoding the amino acid sequence of the heavy and light chains of the antibody of any of [1] to [29].
  • a vector comprising the polynucleotide of [40].
  • a host cell comprising the polynucleotide of [40] or the vector of [41].
  • the method for producing the antibody of any of [1] to [29] comprising culturing the host cell of [42] and purifying the antibody from the culture.
  • the anti-SIRP ⁇ antibody of the present invention strongly inhibits the interaction between SIRP ⁇ expressed in phagocytic cells and CD47 expressed in tumor cells, and transmits “Don't-eat-me” signal from tumor cells to phagocytic cells. Is safe because it has no effector function and does not attack its own immune cells.
  • the anti-SIRP ⁇ antibody of the present invention can exhibit an excellent antitumor effect when used in combination with another antibody drug having an effector function or another antibody drug having an immune checkpoint inhibitory action.
  • FIG. 7A is a diagram showing the structure of the SIRPA construct used for the epitope analysis of the anti-SIRPA antibody (A) and the reactivity of the rat anti-human SIRPA antibody to each construct (B).
  • Figures (i)-(iv) showing the reactivity of the humanized anti-human SIRPA antibody to the hmSIRPA construct used for the epitope analysis of the anti-SIRPA antibody, and the amino acid sequence (v) of the SIRPA construct used for the epitope analysis of the anti-SIRPA antibody
  • FIG. It is a figure which shows the ribbon model of the whole complex of Fab fragment of anti-SIRPA antibody and SIRPA_V2_IgV.
  • FIG. 1 shows the interaction of the antibody SIRPA antibody (antibody D13) with the region before beta5 (A) and after beta5 (B) of human SIRPA. It is a figure which shows the comparison of the amino acid sequence of each variant of the beta5-6 loop part of human SIRPA. It is a figure which shows ADCP activity with respect to a gastric cancer cell line in the case of using (A) and anti-SIRPA antibody and Trastuzumab in combination when used as an anti-SIRPA antibody alone. It is a figure which shows the result of the binding evaluation with respect to human SIRPA of a human chimerized anti-SIRPA antibody (cD13, cF44, cF63). FIG.
  • A shows the ADCP activity of cD13, cF44 and cF63 on PBMC
  • B shows the ADCP activity of cF44 antibodies having different constant regions
  • C shows the abundance ratio of macrophages. It is a figure which shows comparison of the amino acid sequence of the heavy chain variable region of antibody D13, the variable region of humanized antibody heavy chain hH1, and the variable region of humanized antibody heavy chain hH2. It is a figure which shows the comparison of the amino acid sequence of the light chain variable region of antibody D13, the variable region of humanized antibody light chain hL2, the variable region of humanized antibody heavy chain hL3, and the variable region of humanized antibody light chain hL4.
  • FIG. 4 shows the binding activities of humanized anti-SIRPA antibodies to human SIRPA variants ((i): V1, (ii): V2, (iii): V3 and (iv): V4).
  • FIG. 7 shows the binding activities of humanized anti-SIRPA antibodies to human SIRPA variants ((i): V5, (ii): V6, (iii): V7 and (iv): V8).
  • FIG. 3 shows the binding activities of humanized anti-SIRPA antibodies to human SIRPA variants ((i): V9, (ii): V10, (iii): monkey SIRPA and (iv): Mock).
  • FIG. 2 shows the binding activity of a humanized anti-SIRPA antibody to mouse SIRPA ((i): C57BL / 6, (ii): Balb / c, (iii): 129 sv).
  • FIG. 3 shows the binding activity of a humanized anti-SIRPA antibody to mouse SIRPA ((i): NOD, (ii): Mock). It is a figure which shows the result of human (A and B) or monkey SIRPA (C) binding
  • FIG. 3 shows the nucleotide sequence encoding the cD13 light chain and the amino acid sequence of the cD13 light chain.
  • FIG. 3 shows the nucleotide sequence encoding the cD13 heavy chain and the amino acid sequence of the cD13 heavy chain.
  • FIG. 2 shows the nucleotide sequence encoding the cF44 light chain and the amino acid sequence of the cF44 light chain.
  • FIG. 3 shows the nucleotide sequence encoding the cF44 heavy chain and the amino acid sequence of the cF44 heavy chain.
  • FIG. 3 shows the nucleotide sequence encoding the cF63 light chain and the amino acid sequence of the cF63 light chain.
  • FIG. 3 shows the nucleotide sequence encoding the cF63 heavy chain and the amino acid sequence of the cF63 heavy chain. It is a figure which shows the nucleotide sequence which codes hL2, and the amino acid sequence of hL2. It is a figure which shows the nucleotide sequence which codes hL3, and the amino acid sequence of hL3.
  • FIG. 10 is a graph showing IC50 values of inhibition of / CD47 or SIRPA_V2 / CD47 binding activity. It is a figure which shows the result of the evaluation of the binding of various anti-human SIRPA antibodies to human SIRPB (A) and human SIRPG (B), and the result of a test as a negative control for A and B (C).
  • FIG. 7 shows the time-dependent (B), the concentration-dependent comparison results at a reaction time of 2 hours (C), and the self-ADCP activity (D) in which macrophages phagocytize each other by various anti-human SIRPA antibodies.
  • “Ab ⁇ ” indicates a negative control to which no antibody was added
  • “+ ⁇ Rmab” indicates that Rituximab was added simultaneously.
  • FIG. 2 shows the amino acid sequences of the heavy chain (OSE-172_hG4Pro) and the light chain (OSE-172_hK) of the OSE-172 antibody. It is a figure which shows the amino acid sequence of KWAR23 antibody heavy chain (KWAR23_hG4Pro) and light chain (KWAR23_hK).
  • FIG. 4 shows the amino acid sequences of ADU-1805 antibody heavy chain (ADU-1805_hG2) and light chain (ADU-1805_hK).
  • the present invention is an anti-SIRP ⁇ antibody that recognizes and binds to the extracellular IgV domain of SIRP ⁇ protein.
  • SIRP ⁇ signal regulatory protein ⁇
  • SIRP ⁇ signal regulatory protein ⁇
  • the extracellular region is composed of one IgV domain and two IgC domains.
  • the extracellular IgV domain of the SIRP ⁇ protein is one of three extracellular Ig-like domains constituting the SIRP ⁇ protein.
  • V1 and V2 are major variants, and the anti-SIRP ⁇ antibody of the present invention binds to all variants including major variants V1 and V2.
  • SIRP ⁇ may be referred to as “SIRPA”.
  • the monoclonal antibody used in the present invention is obtained by immunizing mammals such as mice, rats, rabbits, hamsters, guinea pigs, horses, monkeys, dogs, pigs, cows, goats, sheep and the like using SIRP ⁇ or a fragment thereof as an immunogen, spleen cells, etc. And a myeloma to produce a hybridoma, which can be obtained as an antibody produced and secreted by the hybridoma.
  • the hybridoma can be prepared by a known method.
  • SISIRP ⁇ as an immunogen can be chemically synthesized based on sequence information, or can be obtained as a recombinant protein by a known method based on DNA sequence information encoding a protein.
  • Antibody screening can be performed by any method.
  • screening may be performed by Cell-ELISA using animal cells transfected with DNA encoding SIRP ⁇ .
  • the amino acid sequence of the V1 protein of human SIRP ⁇ is shown in SEQ ID NO: 56 in the sequence listing, and the amino acid sequence of the V2 protein of human SIRP ⁇ is shown in SEQ ID NO: 57 in the sequence listing.
  • the anti-SIRP ⁇ antibody of the present invention inhibits the binding between SIRP ⁇ and CD47.
  • Tumor cells express CD47 at a high level, and the "Don't-eat-me” signal is transmitted to phagocytic cells by binding and interacting with SIRP ⁇ expressed in phagocytic cells having phagocytic ability. Escaped from phagocytosis by phagocytic cells.
  • the anti-SIRP ⁇ antibody inhibits the transmission of “Don't-eat-me” signal from tumor cells to phagocytic cells by inhibiting the binding of SIRP ⁇ to CD47, and inhibits the phagocytic activity of tumor cells by phagocytic cells. Strengthen.
  • Phagocytic cells having phagocytic activity include macrophages such as M1-type and M2-type macrophages and dendritic cells such as imDC (immature dendritic cells).
  • ADCC AntibodybDependent Cellular ⁇ Cytotoxicity: antibody-dependent
  • PBMC peripheral blood mononuclear cells
  • ADCP Antibody ⁇ Dependent ⁇ Cellular ⁇ Phagocytosis: antibody-dependent cell phagocytosis
  • the effector function of the anti-SIRP ⁇ antibody of the present invention is reduced in order to avoid attacks on its own cells.
  • the anti-SIRP ⁇ antibody of the present invention has only the effect of simply suppressing the binding between SIRP ⁇ and CD47, does not bind to the Fc receptor of effector cells, and does not exhibit effector functions.
  • the anti-SIRP ⁇ antibody of the present invention does not attack its own immune cells, it can be safely used as a medicine without side effects.
  • the anti-SIRP ⁇ antibody of the present invention alone does not exert a sufficient antitumor effect because the effector function is reduced. Therefore, it is used in combination with other antitumor agents as described below.
  • the subclass of the anti-SIRP ⁇ antibody of the present invention has been replaced with that derived from IgG4.
  • IgG4 is known as a subclass having a low effector function such as ADCC activity, CDC activity and / or ADCP activity (Bruggemann et al., J. Exp. Med., 1351-1361). , 1987).
  • the anti-SIRP ⁇ antibody of the present invention introduces a mutation into the heavy chain constant region that further reduces the effector function, that is, a mutation such as substitution of one or more amino acids that reduces ADCC and / or ADCP activity.
  • mutations include the substitution of phenylalanine at position 234 with alanine (F234A) at position 235, as indicated by the EU index by Kabat et al.
  • phenylalanine at position 234 indicated by the Kabat et al. EU index may be referred to as phenylalanine in EU numbering 234.
  • a mutation that promotes the formation of SS bonds between antibody heavy chains is introduced to enhance the stability.
  • Such mutations include the substitution of serine at position 228 by proline by Kabat et al. (S228P) (ANGAL et al., Molecular Immunology, 105-108, 1993). This antibody mutation is called a PRO mutation.
  • IgG4 heavy chain having both FALA and Pro mutations is also referred to as an “IgG4proFALA” type heavy chain, an “IgG4PFALA” type heavy chain, or an “IgG4pf” type heavy chain.
  • the constant region of the antibody heavy chain consists of the CH1, hinge, CH2 and CH3 regions.
  • CH1 has EU indexes 118 to 215, hinge has EU indexes 216 to 230, CH2 has EU indexes 231 to 340, and CH3 has EU indexes 341 to 446.
  • Alanine substituted by phenylalanine at position 234 shown by the EU index by Kabat et al. Is the 253rd alanine of SEQ ID NO: 25 showing the heavy chain amino acid sequence of antibody D13, and SEQ ID NO: 29 showing the heavy chain amino acid sequence of antibody F44.
  • amino acid sequence of the constant region of the “IgG4proFALA” type heavy chain is as follows: an amino acid sequence consisting of amino acid residues 140 to 466 of SEQ ID NO: 25; an amino acid sequence consisting of amino acid residues 139 to 465 of SEQ ID NO: 29; 33 is an amino acid sequence consisting of 33 amino acid residues 144 to 470.
  • human IgG1 has very strong effector functions such as CDC activity via complement fixation and antibody-dependent cytotoxicity activity (Bruggemann et al., J. Exp. Med., 1351-1361). 1987), when targeting a molecule highly expressed in cancer with a therapeutic antibody, it is used as an IgG format that exhibits a therapeutic effect by promoting the induction of cell death of cancer cells due to cytotoxicity via effector functions ( trastuzumab, rituximab, etc.).
  • IgG1 When IgG1 is used as the isotype of the antibody of the present invention, the effector function can be adjusted by substituting a part of the amino acid residues in the constant region (WO88 / 007089, W094 / 28027, W094 / 29351). reference).
  • IgG1 mutants having reduced effector functions include IgG1 @ LALA (IgG1-L234A, L235A), IgG1 @ LAGA (IgG1-L235A, G237A) and the like.
  • an IgG1 heavy chain constant region into which these mutations have been introduced can also be used.
  • human IgG2 has extremely weak effector functions such as CDC activity via complement fixation and antibody-dependent cytotoxicity (Bruggemann et al., J. Exp. Med., 1351-1361). 1987), which is used as one of the IgG formats to avoid toxicity due to effector function-mediated cytotoxicity when targeting a molecule expressed in a normal organ with a therapeutic antibody (denosumab, evolocumab, brodalumab, etc.). ).
  • the constant region of the antibody of the present invention it is possible to use an IgG2 heavy chain constant region.
  • the anti-SIRP ⁇ antibodies of the present invention bind to human SIRP ⁇ and monkeys (Cynomolgus monkey), but not to mouse SIRP ⁇ .
  • the anti-SIRP ⁇ antibodies of the present invention also include human chimerized antibodies and humanized antibodies that have been modified to reduce their xenoantigenicity to humans. Humanized antibodies are also referred to as CDR-grafted antibodies.
  • Human chimerized antibody refers to an antibody composed of a light chain variable region and a heavy chain variable region of a non-human animal antibody, and a light chain constant region and a heavy chain constant region of a human antibody.
  • a human chimerized antibody is obtained by collecting a cDNA encoding a light chain variable region and a cDNA encoding a heavy chain variable region from a hybridoma producing an anti-SIRP ⁇ antibody, and cDNA encoding the light chain constant region and heavy chain constant region of a human antibody.
  • To construct a human chimerized antibody expression vector by inserting it into an expression vector having
  • the heavy chain constant region is comprised of three domains C H 1, C H 2 and C H 3.
  • the human heavy chain constant region of the chimeric antibody is a heavy chain constant region of the IgG4 subclass, which is a heavy chain constant region having a Pro mutation and a FALA mutation, IgG4proFALA.
  • the light chain constant region may belong to human Ig, and is a ⁇ or ⁇ constant region.
  • human chimeric antibody of the anti-SIRP ⁇ antibody of the present invention examples include a human chimeric antibody having the variable regions of rat anti-human SIRP ⁇ monoclonal antibodies D13, F44 and F63, antibody cD13, antibody cF44 and antibody cF63. These three antibodies have high binding properties to human SIRP ⁇ , and have high inhibitory activity on the binding between SIRP ⁇ and CD47. Among them, antibodies cD13 and cF63 having high activity are preferable.
  • Antibody cD13 The nucleotide sequence of the cDNA encoding the light chain variable region of antibody cD13 is a nucleotide sequence consisting of nucleotides 61 to 378 of SEQ ID NO: 22 in the sequence listing (FIG. 17), and the amino acid sequence of the light chain variable region of antibody cD13 Is an amino acid sequence consisting of amino acid residues 21 to 126 of SEQ ID NO: 23 in the sequence listing (FIG. 17).
  • the nucleotide sequence of the cDNA encoding the heavy chain variable region of antibody cD13 is a nucleotide sequence consisting of nucleotides 58 to 417 of SEQ ID NO: 24 in the sequence listing (FIG. 18).
  • the amino acid sequence is an amino acid sequence consisting of the 20th to 139th amino acid residues of SEQ ID NO: 25 in the sequence listing (FIG. 18).
  • the anti-SIRP ⁇ antibody of the present invention comprises a light chain variable region consisting of the amino acid sequence consisting of amino acid residues 21 to 126 of SEQ ID NO: 23 and an amino acid sequence consisting of amino acid residue 20 to 139 of SEQ ID NO: 25
  • nucleotide sequence consisting of nucleotides 61 to 378 of SEQ ID NO: 22 or the nucleotide sequence consisting of nucleotides 58 to 417 of SEQ ID NO: 24 and CLUSTAL @ W (alignment tool) and the like has a sequence identity of at least 85% or more, preferably 90% or more, more preferably 95% or more, particularly preferably 97% or more, 98% or more, or 99% or more.
  • DNA encoding a protein having the activity of a light chain variable region or a heavy chain variable region of an antibody that is, a protein having an activity of binding to human SIRP ⁇ . Included in the DNA encoding the chain variable region.
  • DNA encoding a protein having an activity of a light chain variable region or a heavy chain variable region of an antibody may also contain the light chain variable region or the heavy chain variable region of the present invention. Included in the encoding DNA.
  • the above-mentioned light chain variable region or heavy chain variable region consists of an amino acid sequence consisting of amino acid residues 21 to 126 of SEQ ID NO: 23 or an amino acid sequence consisting of amino acid residues 20 to 139 of SEQ ID NO: 25. Not only the light chain variable region or heavy chain variable region but also one or several, for example, 1 to 10, preferably 1 to 5, more preferably 1 or 2, and more preferably 1 in the amino acid sequence.
  • the amino acid sequence of which is deleted, substituted, or added, the activity of the heavy chain variable region or light chain variable region of the antibody that is, the light chain variable region or heavy chain variable region comprising a protein having an activity of binding to human SIRP ⁇ . Also includes the area.
  • amino acid sequence consisting of amino acid residues 21 to 126 of SEQ ID NO: 23 or the amino acid sequence consisting of amino acid residues 20 to 139 of SEQ ID NO: 25 one or several amino acids are deleted, substituted or added.
  • default parameters at least 85% or more, preferably 90% or more, more preferably 95% or more, particularly preferably 97% or more, 98% or more, or 99% or more. Those having sequence identity can be mentioned.
  • amino acid sequence consisting of amino acid residues 21 to 126 of SEQ ID NO: 23 or the amino acid sequence consisting of amino acid residues 20 to 139 of SEQ ID NO: 25 one or several amino acids are deleted, substituted or added.
  • the protein having the amino acid sequence of SEQ ID NO: 23 is substantially the same as the protein having the amino acid sequence of amino acids 21 to 126 of SEQ ID NO: 23 or the amino acid sequence of amino acids 20 to 139 of SEQ ID NO: 25. is there.
  • the antibody cD13 comprises, as CDRs (complementarity determining regions) of the light chain variable region, CDRL1 consisting of the amino acid sequence represented by SEQ ID NO: 1 (GASKSVRTYMH) and amino acid sequence represented by SEQ ID NO: 2 (SASNLEA) CDRL2, which contains CDRL3 consisting of the amino acid sequence represented by SEQ ID NO: 3 (QQSNEPPYT), and further comprises CDRH1 consisting of the amino acid sequence represented by SEQ ID NO: 4 (GFTFSDYGMI) as the CDR of the heavy chain variable region; CDRH2 consisting of the amino acid sequence represented by the amino acid sequence (SISSSSSSYIY) and CDRH3 consisting of the amino acid sequence represented by the SEQ ID NO: 6 (RYYGFNYPFDY) (FIG. 28).
  • CDRL1 consisting of the amino acid sequence represented by SEQ ID NO: 1 (GASKSVRTYMH) and amino acid sequence represented by SEQ ID NO: 2 (SASNLEA) CDRL
  • the anti-SIRP ⁇ antibody of the present invention contains CDRL1 consisting of the amino acid sequence represented by SEQ ID NO: 1, CDRL2 consisting of the amino acid sequence represented by SEQ ID NO: 2, and CDRL3 consisting of the amino acid sequence represented by SEQ ID NO: 3. Furthermore, CDRH1 consisting of the amino acid sequence represented by SEQ ID NO: 4, CDRH2 consisting of the amino acid sequence represented by SEQ ID NO: 5, and CDRH3 consisting of the amino acid sequence represented by SEQ ID NO: 6 as CDRs of the heavy chain variable region. Antibodies.
  • Each of the above-mentioned CDRs is obtained from an amino acid sequence consisting of an amino acid sequence consisting of an amino acid sequence in which one or several, preferably one or two, and more preferably one amino acid has been deleted, substituted or added in the amino acid sequence represented by each. CDRs.
  • Chimeric or humanized D13 antibody binds to the SIRP ⁇ variant consisting of the amino acid sequence represented by SEQ ID NO: 73, but does not bind to the SIRP ⁇ variant consisting of the amino acid sequence represented by SEQ ID NO: 74 or 75.
  • the NQKEG sequence (SEQ ID NO: 76) in the amino acid sequence represented by SEQ ID NO: 73 is replaced with the NQKEE sequence (SEQ ID NO: 77) in SEQ ID NO: 74, and the SFTEG sequence (SEQ ID NO: 80) in SEQ ID NO: 75, It turned out that the NQKEG sequence (SEQ ID NO: 76) was required for binding of the chimeric or humanized D13 antibody to SIRP ⁇ .
  • antibody cD13 shows that amino acid residues Gln82, Lys83, Glu84, Gly85, His86, and Phe87 of human SIRP ⁇ variant 2 represented by SEQ ID NO: 57 (the position of each amino acid residue is (Corresponding to SEQ ID NO: 57), and it is suggested to bind to SIRP ⁇ , and the sequence consisting of Gln82, Lys83, Glu84, and Gly85 corresponds to the QKEG portion in the NQKEG sequence. Therefore, the NQKEG sequence is an epitope essential for binding of the D13 antibody to human SIRP ⁇ .
  • An antibody that specifically recognizes the NQKEG sequence (SEQ ID NO: 76), that is, binds to, but does not have, a SIRP ⁇ mutant consisting of the amino acid sequence represented by SEQ ID NO: 73 having the NQKEG sequence (SEQ ID NO: 76)
  • SEQ ID NO: 76 an antibody that does not bind to the SIRP ⁇ variant consisting of the amino acid sequence represented by SEQ ID NO: 74 or 75.
  • Antibody cF44 The nucleotide sequence of the cDNA encoding the light chain variable region of antibody cF44 is a nucleotide sequence consisting of nucleotides 61 to 381 of SEQ ID NO: 26 in the sequence listing (FIG. 19), and the amino acid sequence of the light chain variable region of antibody cF44 Is an amino acid sequence consisting of amino acid residues 21 to 127 of SEQ ID NO: 27 in the sequence listing (FIG. 19).
  • the nucleotide sequence of the cDNA encoding the heavy chain variable region of antibody cF44 is a nucleotide sequence consisting of nucleotides 58 to 414 of SEQ ID NO: 28 in the sequence listing (FIG. 20).
  • the amino acid sequence is an amino acid sequence consisting of amino acid residues 20 to 138 of SEQ ID NO: 29 in the sequence listing (FIG. 20).
  • the anti-SIRP ⁇ antibody of the present invention comprises a light chain variable region comprising an amino acid sequence consisting of amino acid residues 21 to 127 of SEQ ID NO: 27 and an amino acid sequence consisting of amino acid residues 20 to 138 of SEQ ID NO: 29
  • nucleotide sequence consisting of nucleotides 61 to 381 of SEQ ID NO: 26 or a nucleotide sequence consisting of nucleotides 58 to 414 of SEQ ID NO: 28 and CLUSTAL @ W (alignment tool) and the like has a sequence identity of at least 85% or more, preferably 90% or more, more preferably 95% or more, particularly preferably 97% or more, 98% or more, or 99% or more.
  • DNA encoding a protein having the activity of a light chain variable region or a heavy chain variable region of an antibody that is, a protein having an activity of binding to human SIRP ⁇ . Included in the DNA encoding the chain variable region.
  • DNA encoding a protein having an activity of a light chain variable region or a heavy chain variable region of an antibody may also contain the light chain variable region or the heavy chain variable region of the present invention. Included in the encoding DNA.
  • the above light chain variable region or heavy chain variable region consists of an amino acid sequence consisting of amino acid residues 21 to 127 of SEQ ID NO: 27 or an amino acid sequence consisting of amino acid residues 20 to 138 of SEQ ID NO: 29. Not only the light chain variable region or heavy chain variable region but also one or several, for example, 1 to 10, preferably 1 to 5, more preferably 1 or 2, and more preferably 1 in the amino acid sequence.
  • amino acid sequence consisting of amino acid residues 21 to 127 of SEQ ID NO: 27 or the amino acid sequence consisting of amino acid residues 20 to 138 of SEQ ID NO: 29 one or several amino acids are deleted, substituted or added.
  • default parameters at least 85% or more, preferably 90% or more, more preferably 95% or more, particularly preferably 97% or more, 98% or more, or 99% or more. Those having sequence identity can be mentioned.
  • amino acid sequence consisting of amino acid residues 21 to 127 of SEQ ID NO: 27 or the amino acid sequence consisting of amino acid residues 20 to 138 of SEQ ID NO: 29 one or several amino acids are deleted, substituted or added.
  • the protein having the amino acid sequence of SEQ ID NO: 27 is substantially the same as the protein having the amino acid sequence of amino acids 21 to 127 of SEQ ID NO: 27 or the amino acid sequence of amino acids 20 to 138 of SEQ ID NO: 29. is there.
  • the antibody cF44 comprises, as CDRs (complementarity determining regions) of the light chain variable region, CDRL1 consisting of the amino acid sequence represented by SEQ ID NO: 7 (KASKSISKYLA) and amino acid sequence consisting of the amino acid sequence represented by SEQ ID NO: 8 (SGSTLQS).
  • CDRL2 comprising CDRL3 consisting of the amino acid sequence represented by SEQ ID NO: 9 (QQHNEYPPT), and CDRH1 consisting of the amino acid sequence represented by SEQ ID NO: 10 (GFTFSNYYMA) as the CDR of the heavy chain variable region; CDRH2 consisting of the amino acid sequence represented by the amino acid sequence (YITTGGGSTY) represented by SEQ ID NO: 12 and CDRH3 consisting of the amino acid sequence represented by the amino acid sequence represented by SEQ ID NO: 12 (ANYGGSYFDY) (FIG. 29).
  • the anti-SIRP ⁇ antibody of the present invention contains CDRL1 consisting of the amino acid sequence represented by SEQ ID NO: 7, CDRL2 consisting of the amino acid sequence represented by SEQ ID NO: 8, and CDRL3 consisting of the amino acid sequence represented by SEQ ID NO: 9. Furthermore, CDRH1 consisting of the amino acid sequence represented by SEQ ID NO: 10, CDRH2 consisting of the amino acid sequence represented by SEQ ID NO: 11, and CDRH3 consisting of the amino acid sequence represented by SEQ ID NO: 12 as CDRs of the heavy chain variable region. Antibodies.
  • Each of the above-mentioned CDRs is obtained from an amino acid sequence consisting of an amino acid sequence consisting of an amino acid sequence in which one or several, preferably one or two, and more preferably one amino acid has been deleted, substituted or added in the amino acid sequence represented by each. CDRs.
  • Antibody cF63 The nucleotide sequence of the cDNA encoding the light chain variable region of antibody cF63 is a nucleotide sequence consisting of nucleotides 61 to 390 of SEQ ID NO: 30 in the sequence listing (FIG. 21), and the amino acid sequence of the light chain variable region of antibody F63 Is an amino acid sequence consisting of amino acid residues 21 to 130 of SEQ ID NO: 31 in the sequence listing (FIG. 21).
  • the nucleotide sequence of the cDNA encoding the heavy chain variable region of antibody cF63 is a nucleotide sequence consisting of nucleotides 58 to 429 of SEQ ID NO: 32 in the sequence listing (FIG. 22).
  • the amino acid sequence is an amino acid sequence consisting of amino acid residues 20 to 143 of SEQ ID NO: 33 in the sequence listing (FIG. 22).
  • the anti-SIRP ⁇ antibody of the present invention comprises a light chain variable region comprising an amino acid sequence consisting of amino acid residues 21 to 130 of SEQ ID NO: 31 and an amino acid sequence consisting of amino acid residues 20 to 143 of SEQ ID NO: 33
  • nucleotide sequence consisting of nucleotides 61 to 390 of SEQ ID NO: 30 or a nucleotide sequence consisting of nucleotides 58 to 429 of SEQ ID NO: 32 and CLUSTAL @ W (alignment tool) and the like has a sequence identity of at least 85% or more, preferably 90% or more, more preferably 95% or more, particularly preferably 97% or more, 98% or more, or 99% or more.
  • DNA encoding a protein having the activity of a light chain variable region or a heavy chain variable region of an antibody that is, a protein having an activity of binding to human SIRP ⁇ . Included in the DNA encoding the chain variable region.
  • DNA encoding a protein having an activity of a light chain variable region or a heavy chain variable region of an antibody may also contain the light chain variable region or the heavy chain variable region of the present invention. Included in the encoding DNA.
  • the above light chain variable region or heavy chain variable region comprises an amino acid sequence consisting of amino acid residues 21 to 130 of SEQ ID NO: 31 or an amino acid sequence consisting of amino acid residues 20 to 143 of SEQ ID NO: 33.
  • the light chain variable region or heavy chain variable region not only the light chain variable region or heavy chain variable region but also one or several, for example, 1 to 10, preferably 1 to 5, more preferably 1 or 2, and more preferably 1 in the amino acid sequence
  • amino acid sequence consisting of amino acid residues 21 to 130 of SEQ ID NO: 31 or the amino acid sequence consisting of amino acid residues 20 to 143 of SEQ ID NO: 33 one or several amino acids are deleted, substituted or added.
  • default parameters at least 85% or more, preferably 90% or more, more preferably 95% or more, particularly preferably 97% or more, 98% or more, or 99% or more. Those having sequence identity can be mentioned.
  • amino acid sequence consisting of amino acid residues 21 to 130 of SEQ ID NO: 31 or the amino acid sequence consisting of amino acid residues 20 to 143 of SEQ ID NO: 33 one or several amino acids are deleted, substituted or added. Is substantially the same as the protein having the amino acid sequence consisting of amino acid residues 21 to 130 of SEQ ID NO: 31 or the amino acid sequence consisting of amino acid residues 20 to 143 of SEQ ID NO: 33. is there.
  • the antibody cF63 comprises, as CDRs (complementarity determining regions) of the light chain variable region, CDRL1 consisting of the amino acid sequence represented by SEQ ID NO: 13 (ERSSGDIGDSYVS) and amino acid sequence represented by SEQ ID NO: 14 (ADDQRPS).
  • CDRL2 which contains CDRL3 consisting of the amino acid sequence represented by SEQ ID NO: 15 (QSYDSKIDI), and further comprises CDRs of the heavy chain variable region, CDRH1 consisting of the amino acid sequence represented by SEQ ID NO: 16 (GFSLASYSLS), SEQ ID NO: 17 CDRH2 consisting of the amino acid sequence (RMYYDGDTA) represented by CDRH3 consisting of the amino acid sequence represented by SEQ ID NO: 18 (DRSMFGGTDYPHWYFDF) (FIG. 30).
  • the anti-SIRP ⁇ antibody of the present invention contains CDRL1 consisting of the amino acid sequence represented by SEQ ID NO: 13, CDRL2 consisting of the amino acid sequence represented by SEQ ID NO: 14, and CDRL3 consisting of the amino acid sequence represented by SEQ ID NO: 15. Further, as CDRs of the heavy chain variable region, CDRH1 consisting of the amino acid sequence represented by SEQ ID NO: 16, CDRH2 consisting of the amino acid sequence represented by SEQ ID NO: 17, and CDRH3 consisting of the amino acid sequence represented by SEQ ID NO: 18 Antibodies.
  • Each of the above-mentioned CDRs is obtained from an amino acid sequence consisting of an amino acid sequence consisting of an amino acid sequence in which one or several, preferably one or two, and more preferably one amino acid has been deleted, substituted or added in the amino acid sequence represented by each. CDRs.
  • Humanized antibody The humanized antibody (CDR-grafted antibody) is obtained by converting the amino acid sequences of the CDRs of the light chain variable region and heavy chain variable region of an antibody of a non-human animal into the appropriate light chain variable region and heavy chain variable region of a human antibody. Refers to the antibody implanted at the location.
  • the humanized anti-SIRP ⁇ antibody of the present invention binds to human SIRP ⁇ , and inhibits the binding of SIRP ⁇ to CD47, thereby increasing the phagocytic activity of macrophages.
  • Encodes the variable region obtained by grafting the amino acid sequences of the CDRs of the light chain variable region and the heavy chain variable region of the antibody in the framework (FR: frame @ work) region of the light chain variable region and the heavy chain variable region of any human antibody cDNA is constructed, inserted into an expression vector for animal cells having genes encoding the light chain constant region and heavy chain constant region of a human antibody, respectively, to construct a humanized antibody expression vector, and expressed by introducing into an animal cell And can be manufactured.
  • a DNA sequence designed to link the CDR of the antibody D13, F44 or F63 with the framework region of the human antibody may be synthesized.
  • the framework regions of the human antibody linked via the CDRs are selected so that the CDRs form a good antigen-binding site.
  • amino acids of the framework region in the variable region of the antibody may be substituted so that the CDRs of the humanized antibody form an appropriate antigen-binding site.
  • the preparation of a humanized antibody into which CDR has been grafted can be performed by a known CDR grafting technique.
  • the heavy chain of the humanized antibody having CDRs of the heavy chain variable region of the antibody D13 (six CDRs consisting of the amino acids shown in SEQ ID NOs: 1 to 6), wherein a part of the framework region of the variable region
  • the heavy chains in which the amino acids are substituted include humanized antibody heavy chain hH1 and humanized antibody heavy chain hH2.
  • the light chain of a humanized antibody having CDRs of the light chain variable region of the antibody D13, wherein the light chain in which some amino acids of the framework region of the variable region have been substituted is a humanized antibody light chain hL2, human Light chain hL3 and humanized antibody light chain hL4.
  • the full length nucleotide sequence of the humanized antibody heavy chain hH1 is shown in SEQ ID NO: 40, and the amino acid sequence is shown in SEQ ID NO: 41.
  • the full length nucleotide sequence of the humanized antibody heavy chain hH2 is shown in SEQ ID NO: 42, and the amino acid sequence is shown in SEQ ID NO: 43.
  • the nucleotide sequence consisting of nucleotides 1 to 57 is a signal sequence
  • the nucleotide sequence consisting of nucleotides 58 to 417 is a variable region
  • the nucleotide sequence consisting of nucleotides 418 to 1398 is a constant region.
  • the amino acid sequence consisting of amino acid residues 1 to 19 is a signal sequence
  • the amino acid sequence consisting of amino acid residues 20 to 139 is a variable region
  • the amino acid sequence consisting of amino acid residues 140 to 466 is Is the amino acid sequence of the constant region.
  • FIG. 11 shows a comparison of the amino acid sequences (including the signal sequence) of the heavy chain variable region of the antibody D13, the variable region of the humanized antibody heavy chain hH1, and the variable region of the humanized antibody heavy chain hH2.
  • the anti-SIRP ⁇ antibody of the present invention includes an antibody having a heavy chain variable region consisting of amino acid residues 20 to 139 and a heavy chain constant region consisting of amino acid residues 140 to 466 of SEQ ID NO: 41 or 43.
  • the full length nucleotide sequence of the humanized antibody light chain hL2 is shown in SEQ ID NO: 34, and the amino acid sequence is shown in SEQ ID NO: 35.
  • the full length nucleotide sequence of the humanized antibody light chain hL3 is shown in SEQ ID NO: 36, and the amino acid sequence is shown in SEQ ID NO: 37.
  • the full length nucleotide sequence of the humanized antibody light chain hL4 is shown in SEQ ID NO: 38, and the amino acid sequence is shown in SEQ ID NO: 39.
  • nucleotide sequence consisting of nucleotides 1 to 60 is a signal sequence
  • nucleotide sequence consisting of nucleotides 61 to 381 is a variable region
  • nucleotide sequence consisting of nucleotides 382 to 702 is Each constant region is encoded.
  • amino acid sequence consisting of the 1st to 20th amino acid residues is a signal sequence
  • amino acid sequence consisting of the 21st to 127th amino acid residues is the variable region
  • the 128th to 234th amino acid residues are Is the amino acid sequence of the constant region.
  • the anti-SIRP ⁇ antibody of the present invention includes an antibody having a variable region consisting of amino acid residues 21 to 127 and a light chain constant region consisting of amino acid residues 128 to 234 of SEQ ID NOS: 35, 37 and 39.
  • the heavy chain constant region of the humanized antibody is a heavy chain constant region of the IgG4 subclass, which is a heavy chain constant region IgG4proFALA having a Pro mutation and a FALA mutation.
  • An antibody having a high binding activity to human SIRP ⁇ and having a high inhibitory activity on the binding between SIRP ⁇ and CD47 an antibody comprising a humanized antibody heavy chain hH1 and a humanized antibody light chain hL3 (hD13_H1L3 antibody), (HD13_H1L4 antibody), an antibody consisting of a humanized antibody heavy chain hH2 and a humanized antibody light chain hL2 (hD13_H2L2 antibody), and a humanized antibody heavy chain hH2 and a humanized antibody light chain
  • An antibody consisting of hL3 (hD13_H2L3 antibody) is included.
  • HD13_H1L3 antibody is an antibody having a heavy chain consisting of amino acid residues 20 to 466 of SEQ ID NO: 41 and a light chain consisting of amino acid residues 21 to 234 of SEQ ID NO: 37.
  • HD13_H1L4 antibody is an antibody having a heavy chain consisting of amino acid residues 20 to 466 of SEQ ID NO: 41 and a light chain consisting of amino acid residues 21 to 234 of SEQ ID NO: 39.
  • HD13_H2L2 antibody is an antibody having a heavy chain consisting of amino acid residues 20 to 466 of SEQ ID NO: 43 and a light chain consisting of amino acid residues 21 to 234 of SEQ ID NO: 35.
  • HD13_H2L3 antibody is an antibody having a heavy chain consisting of amino acid residues 20 to 466 of SEQ ID NO: 43 and a light chain consisting of amino acid residues 21 to 234 of SEQ ID NO: 37.
  • the present invention also includes antibodies in which the lysine residue at the carboxyl terminus of the heavy chain has been deleted.
  • the antibody of the present invention may be an antigen-binding fragment of an antibody having an antigen-binding portion of the antibody or a modified product thereof.
  • a fragment of the antibody can be obtained by treating the antibody with a protease such as papain or pepsin, or by modifying the antibody gene by a genetic engineering technique and expressing it in a suitable cultured cell.
  • a fragment retaining all or a part of the functions of the full-length antibody molecule can be referred to as an antigen-binding fragment of the antibody.
  • the functions of antibodies generally include antigen-binding activity, activity to neutralize antigen activity, activity to enhance antigen activity, antibody-dependent cytotoxic activity, complement-dependent cytotoxic activity, and complement-dependent activity. Cellular cytotoxic activity can be mentioned.
  • the function retained by the antigen-binding fragment of the antibody in the present invention is the binding activity to SIRP ⁇ .
  • antibody fragments include Fab, F (ab ') 2, variable region (Fv), or single chain Fv (scFv) in which heavy and light chain Fvs are linked by an appropriate linker, and diabody (diabodies).
  • Fab which is a monovalent fragment of the variable region of an antibody obtained by treating F (ab') 2 under reducing conditions is also included in the antibody fragment.
  • the antibody of the present invention may be a multispecific antibody having specificity for at least two different antigens. Usually such molecules bind to two types of antigens (ie, bispecific antibodies), but "multispecific antibodies" in the present invention include more (e.g., three types). Antibodies having specificity for the above antigens.
  • a multispecific antibody of the invention may be a full-length antibody, or a fragment of such an antibody (eg, an F (ab ') 2 bispecific antibody).
  • a bispecific antibody can be prepared by combining the heavy chain and the light chain (HL pair) of two types of antibodies, or can be produced by fusing hybridomas producing different monoclonal antibodies. It can also be produced by producing cells (Millstein et al., Nature (1983) 305, p. 537-539).
  • the antibody of the present invention may be a single-chain antibody (also referred to as scFv).
  • Single-chain antibodies are obtained by linking the heavy and light chain variable regions of the antibody with a polypeptide linker (Pluckthun, The Pharmacology of Monoclonal Antibodies, 113 (Rosenberg and Moore, Ed., Springer, N.W. York, p. 269-315 (1994), Nature @ Biotechnology (2005), 23, p.1126-1136)
  • a BiscFv fragment prepared by linking two scFvs with a polypeptide linker is used as a bispecific antibody. Can also be used.
  • the heavy chain variable region and the light chain variable region are linked via a linker that does not form a conjugate, preferably a polypeptide linker (Huston, JS et al., Proc. Natl. Acad. Sci.USA (1988), 85, p.5879-5883).
  • the heavy and light chain variable regions in an scFv may be derived from the same antibody or from different antibodies.
  • the polypeptide linker connecting the variable regions any single-chain peptide consisting of, for example, 12 to 19 residues is used.
  • the scFv-encoding DNA is a DNA encoding the antibody heavy chain or heavy chain variable region, and a DNA encoding the light chain or light chain variable region.
  • amplification is performed by PCR using primer pairs defining both ends thereof, and then the DNA encoding the polypeptide linker portion, and both ends thereof are linked to the heavy and light chains, respectively. And amplification by combining the primer pairs specified in (1).
  • an expression vector containing them and a host transformed with the expression vector can be obtained according to a conventional method.
  • the scFv can be obtained according to the method.
  • These antibody fragments can be obtained and expressed in the same manner as described above, and can be produced by a host.
  • the antibodies of the present invention may be those that have been multiplied to increase the affinity for the antigen.
  • the antibody to be multimerized may be one kind of antibody or a plurality of antibodies recognizing a plurality of epitopes of the same antigen. Methods for multiplying the antibody include binding of the IgG CH3 domain to two scFvs, binding to streptavidin, introduction of a helix-turn-helix motif, and the like.
  • the antibody of the present invention may be a polyclonal antibody that is a mixture of a plurality of types of anti-SIRP ⁇ antibodies having different amino acid sequences.
  • a mixture of a plurality of types of antibodies having different CDRs can be given.
  • an antibody purified from a culture of a mixture of cells producing different antibodies can be used (see WO 2004/061104).
  • an antibody bound to various molecules such as polyethylene glycol (PEG) can be used.
  • PEG polyethylene glycol
  • the antibodies of the present invention may be those in which these antibodies and other drugs form a conjugate (Immunoconjugate).
  • examples of such an antibody include those in which the antibody is bound to a radioactive substance or a compound having a pharmacological action (Nature @ Biotechnology (2005) 23, p. 1137-1146).
  • a method is also known in which the full-length sequences of the heavy and light chains of an antibody are linked using an appropriate linker to obtain a single-chain immunoglobulin (Lee, HS, et. al., Molecular @ Immunology (1999) 36, pp. 61-71; Shirrmann, T. et. al., mAbs (2010), 2, (1) p. 1-4).
  • a single-chain immunoglobulin Lee, HS, et. al., Molecular @ Immunology (1999) 36, pp. 61-71; Shirrmann, T. et. al., mAbs (2010), 2, (1) p. 1-4.
  • the antibody of the present invention may be an antibody having a single heavy chain variable region and no light chain sequence.
  • Such an antibody is called a single domain antibody (sdAb) or a nanobody (nanobody), and is actually observed in camels or llamas and reported to have retained antigen-binding ability.
  • sdAb single domain antibody
  • nanobody nanobody
  • the above antibody can be interpreted as a kind of the antigen-binding fragment of the antibody in the present invention.
  • the antibody of the present invention is obtained by inserting a DNA encoding a heavy chain variable region or a DNA encoding a light chain variable region into an expression vector, transforming a host cell for expression using the vector, By culturing the cells, the cells can be produced as recombinant antibodies.
  • the DNA encoding the antibody can be obtained by ligating the DNA encoding the heavy chain variable region and the DNA encoding the heavy chain constant region to obtain a DNA encoding the heavy chain, and further combining the DNA encoding the light chain variable region with the DNA encoding the light chain variable region.
  • the DNA encoding the light chain is obtained by ligating the DNA encoding the chain constant region.
  • the anti-SIRP ⁇ antibody of the present invention is produced by inserting the DNA encoding the heavy chain and the DNA encoding the light chain into an expression vector, transforming a host cell with the vector, and culturing the host cell. Can be done. At this time, the DNA encoding the heavy chain and the DNA encoding the light chain may be introduced into the same expression vector, and a host cell may be transformed using the vector, or the DNA encoding the heavy chain and the DNA encoding the light chain may be transformed. The DNAs encoding the strands may be inserted into separate vectors, and the two cells may be used to transform host cells.
  • the DNA encoding the heavy chain variable region and the light chain variable region may be introduced into a vector into which the DNA encoding the heavy chain constant region and the DNA encoding the light chain constant region have been introduced in advance.
  • the vector may contain DNA encoding a signal peptide that promotes secretion of the antibody from the host cell.
  • the DNA encoding the signal peptide and the DNA encoding the antibody are ligated in frame. deep.
  • the antibody can be obtained as a mature protein by removing the signal peptide after the antibody has been produced.
  • DNA encoding the heavy chain variable region, the DNA encoding the light chain variable region, the DNA encoding the heavy chain variable region and the DNA encoding the heavy chain constant region, and the light chain variable region are encoded.
  • DNA obtained by linking DNA and DNA encoding the light chain constant region may be operatively linked to elements such as promoter, enhancer, and polyadenylation signal.
  • “functionally linked” means that elements are linked so as to perform their functions.
  • the expression vector is not particularly limited as long as it can be replicated in a host such as an animal cell, a bacterium, or a yeast, and examples thereof include known plasmids and phages.
  • Examples of the vector used for the construction of the expression vector include pcDNA (trademark) (ThermoFisher @ SCIENTIFIC), Flexi (registered trademark) vector (Promega), pUC19, pUEX2 (Amersham), pGEX-4T, pKK233-2 ( Pharmacia), pMAM-neo (Clontech) and the like.
  • Prokaryotic cells such as Escherichia coli and Bacillus subtilis and eukaryotic cells such as yeast and animal cells can be used as host cells, but eukaryotic cells are preferably used.
  • HEK293 cells Chinese hamster / ovary (CHO) cells, which are human embryonic kidney cell lines, may be used as animal cells.
  • the expression vector may be introduced into a host cell by a known method, and the host cell may be transformed. For example, electroporation, calcium phosphate precipitation, DEAE-dextran transfection and the like can be mentioned.
  • the produced antibody can be purified using separation and purification methods used for ordinary proteins. For example, affinity chromatography, other chromatography, filters, ultrafiltration, salting out, dialysis, etc. may be appropriately selected and combined.
  • the present invention includes an antitumor agent containing the anti-SIRP ⁇ antibody of the present invention as an active ingredient.
  • the heavy chain constant region of the anti-SIRP ⁇ antibody of the present invention is a heavy chain constant region of the IgG4 subclass, which is a heavy chain constant region having a Pro mutation and a FALA mutation, IgG4proFALA, and has no effector function. It has only the function of inhibiting "Don't-eat-me" signal transmission by inhibiting the binding of CD47 to CD47. Therefore, tumor cells cannot be sufficiently damaged only by the anti-SIRP ⁇ antibody of the present invention.
  • the present invention is used in combination with another antitumor agent having an effector function and capable of attacking and damaging a tumor cell, or another antitumor agent inhibiting an immune checkpoint of an immune cell by a tumor cell.
  • Other antitumor agents used in combination can bind to tumor cells and contact the tumor cells with phagocytic cells such as macrophages.
  • the anti-SIRP ⁇ antibody of the present invention inhibits the binding of tumor cells to CD47 and phagocytic cells by SIRP ⁇ , thereby enhancing the phagocytic ability of phagocytic tumor cells, thereby damaging the tumor cells. That is, by using the anti-SIRP ⁇ antibody of the present invention in combination with another antitumor agent, a synergistic antitumor effect can be exhibited.
  • Examples of the antitumor agent used in combination with the anti-SIRP ⁇ antibody of the present invention include an immune checkpoint inhibitor and an antibody drug which specifically binds to a cancer antigen and has ADCC and / or ADCP activity.
  • Examples of the immune checkpoint inhibitor include a binding inhibitor of PD-1 and its ligand, PD-L1, or a CTLA4 inhibitor, and specifically, anti-PD-1 antibodies (nivolumab, pembrolizumab, cemiprimimab).
  • antibody drugs having ADCC and / or ADCP activity specifically reacting with cancer antigens include anti-CD20 antibody (rituximab), anti-HER2 antibody (trastuzumab), anti-EGFR antibody (cetuximab), and anti-CD52 antibody ( alemutuzumab) and the like.
  • ADCC is a cell in which non-specific cytotoxic cells (eg, NK cells, neutrophils, macrophages, etc.) expressing Fc ⁇ receptors recognize antibodies bound on target cells, and subsequently cause lysis of the target cells Refers to an intervening reaction.
  • NK cells which are the primary cells responsible for ADCC, express Fc ⁇ RIIC and Fc ⁇ RIIIA, and monocytes express Fc ⁇ RI, Fc ⁇ RIIA, Fc ⁇ RIIC, and Fc ⁇ RIIIA.
  • ADCP refers to a cell-mediated reaction in which phagocytic cells (for example, macrophages, neutrophils, etc.) expressing an Fc receptor recognize an antibody bound on a target cell, and then phagocytose the target cell into the cell.
  • Monocytes which are the primary cells bearing ADCP, express Fc ⁇ RI, Fc ⁇ RIIA, Fc ⁇ RIIC, and Fc ⁇ RIIIA.
  • the present invention includes an antitumor agent containing an anti-SIRP ⁇ antibody as an active ingredient, which is used in combination with the other antitumor agents described above.
  • the present invention further includes an antitumor agent or kit containing both an antitumor agent containing an anti-SIRP ⁇ antibody as an active ingredient and the above-mentioned other antitumor agent.
  • the antitumor agent containing the anti-SIRP ⁇ antibody of the present invention as an active ingredient and the above-mentioned other antitumor agent may be administered simultaneously or sequentially.
  • the order of administration is not limited, and another antitumor agent may be administered after administration of the antitumor agent containing the anti-SIRP ⁇ antibody of the present invention as an active ingredient.
  • An antitumor agent containing the anti-SIRP ⁇ antibody of the present invention as an active ingredient may be administered.
  • the antitumor agent of the present invention may be one or more selected from carcinoma, sarcoma, lymphoma, leukemia, myeloma, germinoma, brain tumor, carcinoid, neuroblastoma, retinoblastoma, and nephroblastoma.
  • carcinomas include renal, melanoma, squamous cell, basal cell, conjunctival, oral, laryngeal, pharyngeal, thyroid, lung, breast , Esophageal, gastric, duodenal, small intestine, colon, rectal, appendix, anal, liver, gallbladder, bile duct, pancreatic, adrenal , Sarcoma, liposarcoma, angiosarcoma, chondrosarcoma, rhabdomyosarcoma, Ewing sarcoma, osteosarcoma, undifferentiated polymorphic sarcoma, Mucinous fibrosarcoma, malignant peripheral schwannoma, retroperitoneal sarcoma, synovial sarcoma, uterine sarcoma, gastrointestinal stromal tumor, leiomyosarcoma, epithelioid sarcoma, and the like; lymphomas include B
  • NK cell lymphoma NK cell lymphoma, Hodgkin's lymphoma, etc., and in leukemia, myeloid leukemia, lymphocytic leukemia, bone marrow augmentation Reproductive disease, myelodysplastic syndrome, etc.
  • myeloma includes multiple myeloma, etc.
  • germinoma includes testicular cancer, ovarian cancer, etc.
  • brain tumor includes glioma, Meningioma and the like.
  • the anti-SIRP ⁇ antibody of the present invention enhances cell-mediated immunity when used in combination with other antitumor agents.
  • the present invention also includes a cellular immunity enhancer containing an anti-SIRP ⁇ antibody as an active ingredient.
  • the cell-mediated immunity enhancer enhances cell-mediated immunity accompanying enhancement of the function of natural killer cells and / or T cells.
  • the antitumor agent of the present invention can contain a therapeutically effective amount of an anti-SIRP ⁇ antibody and a pharmaceutically acceptable carrier, diluent, solubilizer, emulsifier, preservative, adjuvant, and the like.
  • a pharmaceutically acceptable carrier diluent, solubilizer, emulsifier, preservative, adjuvant, and the like.
  • “Pharmaceutically acceptable carrier” and the like can be appropriately selected from a wide range according to the type of target disease and the administration form of the drug.
  • the administration method of the antitumor agent of the present invention can be appropriately selected. For example, it can be administered by injection, and can be locally injected, intraperitoneally, selectively intravenously injected, intravenously injected, subcutaneously injected, injected into organ perfusion, and the like. Can be adopted.
  • the solution for injection can be formulated using a carrier comprising a salt solution, a glucose solution, a mixture of saline and a glucose solution, various buffers and the like.
  • the preparation may be prepared in powder form and mixed with the liquid carrier at the time of use to prepare an injection solution.
  • oral solutions powders, pills, capsules, tablets and the like can be applied.
  • oral liquid preparations such as suspensions and syrups include water, sucrose, sorbitol, saccharides such as fructose, glycols such as polyethylene glycol, sesame oil, soybean oil and the like. It can be produced using oils, preservatives such as alkyl parahydroxybenzoate, flavors such as strawberry flavor, peppermint and the like.
  • Powders, pills, capsules and tablets include lactose, glucose, sucrose, mannitol, etc., excipients such as starch, sodium alginate, lubricants such as magnesium stearate, talc, polyvinyl alcohol. And a binder such as hydroxypropylcellulose and gelatin, a surfactant such as a fatty acid ester, and a plasticizer such as glycerin. Tablets and capsules are preferred unit dosage forms in the compositions of the present invention in that they are easy to administer. When manufacturing tablets and capsules, a solid manufacturing carrier is used.
  • the amount of antibody that is effective for treatment depends on the nature of the condition to be treated, the age and condition of the patient, and may be ultimately determined by a physician.
  • the dose is 0.0001 mg to 100 mg per kg of body weight at one time.
  • the predetermined dose may be administered once every 1 to 180 days, or may be administered at appropriate intervals in two, three, four or more divided doses per day.
  • Embodiment 1 Preparation of rat anti-SIRPA antibody 1) -1 Preparation of expression construct 1) -1-1 Construction of SIRPA_V1_ECD expression vector At the C-terminal side of amino acid sequence 1 to 373 of the amino acid sequence of human SIRPA_V1 (ACCESSION number: NP_001035111 in NCBI protein database) SIRPA_V____________________B Coupled using In-Fusion HD Cloning Kit (CLONTECH) by combining DNA which codes the polypeptide which linked HHHHHH and the vector pcDNA3.3-TOPO / LaxZ (ThermoFisher SCIENTIFIC) digested with restriction enzymes XbaI and PmeI, and SIRCD_V_ An expression vector was prepared.
  • the amino acid sequence of SIRPA_V1_ECD is shown in SEQ ID NO: 45 in the sequence listing, and the nucleotide sequence encoding SIRPA_V1_ECD is shown in
  • SIRPA_V1_IgV Expression Vector SIRPA_V1 (ACCESSION No. NP_001035111 in the protein database of NCBI) using a DNA encoding a polypeptide having an HHHHHH linked to the C-terminal of the 1st to 149th amino acids of the amino acid sequence 1) -An SIRPA_V1_IgV expression vector was prepared in the same manner as in 1-1.
  • the amino acid sequence of SIRPA_V1_IgV is shown in SEQ ID NO: 47 in the sequence listing, and the nucleotide sequence encoding SIRPA_V1_IgV is shown in SEQ ID NO: 46 in the sequence listing.
  • SIRPA_V2_ECD Expression Vector Polypeptide having HHHHHH ligated to the C-terminal of the 1st to 372nd amino acid sequence of the amino acid sequence of SIRPA_V2 (modified from V1 sequence, JBC Vol. 289, No. 14, 10024 (2014))
  • An SIRPA_V2_ECD expression vector was prepared in the same manner as in 1) -1-1, using DNA encoding the peptide.
  • the amino acid sequence of SIRPA_V2_ECD is shown in SEQ ID NO: 49 in the sequence listing, and the nucleotide sequence encoding SIRPA_V2_ECD is shown in SEQ ID NO: 48 in the sequence listing.
  • SIRPA_V2_IgV was prepared in the same manner as in 1) -1-1 using a DNA encoding a polypeptide having HHHHHH linked to the C-terminal of positions 1 to 148 of the amino acid sequence of SIRPA_V2.
  • An expression vector was prepared.
  • the amino acid sequence of SIRPA_V2_IgV is shown in SEQ ID NO: 51 in the sequence listing, and the nucleotide sequence encoding SIRPA_V2_IgV is shown in SEQ ID NO: 50 in the sequence listing.
  • CSIRPA_ECD expression vector was prepared in the same manner as in 1-1.
  • the amino acid sequence of cSIRPA_ECD is shown in SEQ ID NO: 53 in the sequence listing, and the nucleotide sequence encoding cSIRPA_ECD is shown in SEQ ID NO: 52 in the sequence listing.
  • CD47-Fc Expression Vector Expression of CD47-Fc in the same manner as in 1) -1-1, using a DNA encoding the polypeptide of human CD47 (ACCESSION No. NP_001271679 in the NCBI protein database). The vector was made.
  • the amino acid sequence of CD47-Fc is shown in SEQ ID NO: 55 in the sequence listing, and the nucleotide sequence encoding SIRPA_V1_ECD is shown in SEQ ID NO: 54 in the sequence listing.
  • SIRPA_V1_ECD 1-1-1 was transiently transfected by expression in FreeStyle 293F cells (ThermoFisher SCIENTIFIC). . After adding the culture supernatant to HisTrap Excel (GE Healthcare Japan) equilibrated with 3 ⁇ PBS, the column was washed with 3 ⁇ PBS. Next, elution was carried out with 3 ⁇ PBS, 500 mM Imidazole, pH 7.5. From the collected SIRPA_V1_ECD fraction, SIRPA_V1_ECD was purified using HiLoad 26/600 Superdex 75 pg (GE Healthcare Japan).
  • SIRPA_V1_IgV The SIRPA_V1_IgV expression vector prepared in 1) -1-2 was transiently expressed by transfection into FreeStyle 293F cells (ThermoFisher SCIENTIFIC). After adding the culture supernatant to HisTrap Excel (GE Healthcare Japan) equilibrated with 3 ⁇ PBS, the column was washed with 3 ⁇ PBS. Next, elution was carried out with 3 ⁇ PBS, 500 mM Imidazole, pH 7.5. SIRPA_V1_IgV was purified from the collected SIRPA_V1_IgV fraction using HiLoad 26/600 Superdex 75 pg (GE Healthcare Japan).
  • CD47-Fc was transiently expressed by transfection into FreeStyle 293F cells (ThermoFisher SCIENTIFIC). After all the culture supernatant was put into MabSelectSuRe (GE Healthcare Japan) equilibrated with PBS, the column was washed with PBS. Next, elution was performed with a 2 M arginine hydrochloride solution (pH 4.0), and a fraction containing CD47-Fc was collected. CD47-Fc was purified from the collected CD47-Fc fraction using HiLoad 26/600 Superdex 200 pg (GE Healthcare Japan).
  • Hybridoma Lymph node cells or spleen cells and mouse myeloma SP2 / 0-ag14 cells were subjected to electric cell fusion using LF301-Cell Fusion Unit (BEX) to produce Clona Cell-HY.
  • the cells were diluted and cultured in Selection Medium D (Stem Cell Technologies).
  • Selection Medium D Selection Medium D (Stem Cell Technologies).
  • the resulting hybridoma colonies were collected to prepare a monoclonal hybridoma. Each of the recovered hybridoma colonies was cultured, and the obtained hybridoma culture supernatant was used to screen for an anti-SIRPA antibody-producing hybridoma.
  • Example 1 After removing the culture supernatant of the expression vector-introduced 293 ⁇ cells prepared in -6-1, hybridoma culture was performed on each of pcDNA3.2 V5-DEST-SIRPA_V1, V2 or pcDNA3.2 V5-DEST-introduced 293 ⁇ cells. The supernatant was added and left at 4 ° C. for 1 hour. The cells in the wells were washed twice with PBS containing 5% FBS, and then added with Anti-Rat IgG-Peroxidase antioxidant induced in rabbit (SIGMA) diluted 500-fold with PBS containing 5% FBS, and added at 4 ° C.
  • SIGMA Anti-Rat IgG-Peroxidase antioxidant induced in rabbit
  • OPD color developing solution OPD dissolving solution (0.05 M trisodium citrate, 0.1 M disodium hydrogen phosphate.12 water, pH 4.5)
  • OPD dissolving solution 0.05 M trisodium citrate, 0.1 M disodium hydrogen phosphate.12 water, pH 4.5
  • H2O2 0.4 mg / mL and 0.6% (v / v), respectively
  • the cells in the wells are washed twice with PBS containing 5% FBS, and then washed with an OPD color developing solution (OPD dissolving solution (0.05 M trisodium citrate, 0.1 M disodium hydrogen phosphate.12 water, pH 4.5)).
  • OPD dissolving solution 0.05 M trisodium citrate, 0.1 M disodium hydrogen phosphate.12 water, pH 4.5
  • o-Phenylenediamine dihydrochloride manufactured by Wako Pure Chemical Industries, Ltd.
  • H2O2 0. mg / mL and 0.6% (v / v), respectively
  • the color reaction was performed with occasional stirring, and the color reaction was stopped by adding 100 ⁇ L / well of 1M HCl, and then the absorbance at 490 nm was measured using a plate reader (Spectramax: Molecular devices).
  • pcDNA3.2 V5-DEST-SIRPA_V1 or SIRPA_V2 expression was compared with a control medium addition group.
  • Hybridomas producing a culture supernatant exhibiting lower absorbance in the vector-transfected 293 ⁇ cells were selected as positive for production of anti-SIRPA antibody having ligand-binding inhibitory activity.
  • the rat anti-SIRPA monoclonal antibodies D13, F42, F60, and F86 had an isotype of IgG1 / ⁇ chain
  • F44 and F47 had an isotype of IgG2a / ⁇ chain
  • F63 had an isotype of IgG2a / ⁇ chain.
  • the antibody was purified from the culture supernatant of the hybridoma prepared in Example 1) -8-1 by Protein G affinity chromatography.
  • the antibody was adsorbed on a Protein G column (GE Healthcare Bioscience), and the column was washed with PBS and eluted with a 0.1 M glycine / hydrochloric acid aqueous solution (pH 2.7).
  • the buffer is replaced with PBS using Centrifugal UF Filter Device VIVASPIN20 (fraction molecular weight UF30K, Sartorius).
  • the antibody was concentrated, and the antibody concentration was adjusted to 2 mg / mL or more.
  • the solution was filtered through a Minisart-Plus filter (Sartorius) to obtain a purified sample.
  • Embodiment 2 In vitro evaluation of rat anti-human SIRPA antibodies (7 types) 2) -1 Construction of expression vector for screening antigen-binding antibody 2) -1-1 FLAG-human SIRPA expression vector (pFLAG V5-DEST-SIRPA_V1-V10) Construction cDNAs encoding 10 kinds of human SIRPA variant proteins (excerpted from Nature Immunology 8, 1313-1323, 2007) were cloned into pFLAG V5-DEST vector, and vectors pFLAG V5-DEST-SIRPA_V1-V1-expressing each variant protein. V10 was constructed.
  • the amino acid sequence of human SIRPA_V3 is shown in SEQ ID NO: 63 in the sequence listing
  • the amino acid sequence of human SIRPA_V4 is shown in SEQ ID NO. 64 in the sequence listing
  • the amino acid sequence of human SIRPA_V5 is shown in SEQ ID NO.
  • the amino acid sequence of human SIRPA_V7 is shown in SEQ ID NO: 67 of the Sequence Listing
  • the amino acid sequence of human SIRPA_V8 is shown in SEQ ID NO: 68 in the Sequence Listing
  • the amino acid sequence of human SIRPA_V9 is shown in SEQ ID NO: 69 in the Sequence Listing
  • amino acid sequence of human SIRPA_V2_IgV is shown in SEQ ID NO: 71 in the sequence listing, and the amino acid of human SIRPA_V2_IgV_IgC1 is shown in SEQ ID NO: 72 in the sequence listing.
  • the SIRPA mutant in which the SFTGE sequence consisting of amino acid residues 81 to 85 of SEQ ID NO: 60 (SEQ ID NO: 78) was substituted with the NQKEE sequence (SEQ ID NO: 77) was named hmSIRPA_ ⁇ 1.
  • a SIRPA mutant in which the SFTGE sequence (SEQ ID NO: 78) consisting of amino acid residues 81 to 85 of mouse SIRPA described in SEQ ID NO: 60 was substituted with the SFTEG sequence (SEQ ID NO: 80) was named hmSIRPA_ ⁇ 2.
  • CDNAs encoding these SIRPA mutants were cloned into the pFLAG V5-DEST vector, and vectors expressing the respective SIRPA mutants were constructed.
  • the amino acid sequence of hmSIRPA_ ⁇ 0 is shown in SEQ ID NO: 73 of the sequence listing
  • the amino acid of hmSIRPA_ ⁇ 1 is shown in SEQ ID NO: 74 of the sequence listing
  • the amino acid of hmSIRPA_ ⁇ 2 is shown in SEQ ID NO: 75 of the sequence listing.
  • hD13_H1L3, hD13_H1L4h, hD13_H2L2, hD13_H2L3, or cD13 showed antibody concentration-dependent binding to hmSIRPA_ ⁇ 0 having an NQKEG sequence, but ⁇ 1 and ⁇ 2 No binding was shown at any concentration. From the above, it was suggested that the sequence of NQKEG was required for binding of hD13 and cD13.
  • the buffer was replaced with 10 mM Tris HCl (pH 8.2) by filtration and concentrated to 3 g / L.
  • the complex solution was crystallized by a vapor diffusion method.
  • a solution obtained by adding an equal volume of a precipitant solution (0.2 M Potassium phosphate dibasic, 20% (w / v) Polyethylene Glycol 3350, pH 9.2) to 0.5 ⁇ L of the protein solution is added to 0.05 mL of the precipitant solution.
  • the two solutions were placed in a sealed container so that they did not touch each other, and allowed to stand at 25 ° C. After one week, rod-like crystals of 0.2 mm ⁇ 0.2 mm ⁇ 0.05 mm were obtained.
  • the obtained crystals were immersed in a solution obtained by diluting the precipitant solution with Glycol by about 1.4 times, and subsequently frozen with liquid nitrogen.
  • X-ray diffraction data were collected at the beamline PF BL-17A at the synchrotron radiation facility Photon Factory (Tsukuba).
  • the diffraction intensity was quantified from the obtained diffraction image using software XDS (Max Plan Institute for Medical Research) to determine the crystal structure factor.
  • FIG. 2 shows the ribbon model and the surface of the whole complex
  • FIG. 3 shows the interaction between human SIRPA before and after beta5 (A) and after beta5 (B) and cD13.
  • PKH26 Linker As a labeling solution to 10 ⁇ M with Diluent C, an equal amount of the PKH26 Linker solution was mixed with the cell suspension and allowed to stand at room temperature for 5 minutes. 25 mL of RPMI1640 medium containing 10% FBS (manufactured by Life Technology) was added, washed twice, and then resuspended to 2 ⁇ 10 6 cells / mL was used as target cells.
  • Example 2) -6-3 Preparation of effector cells
  • the PBMC cells prepared in Example 2) -6-2 were prepared at 5 ⁇ 10 7 cells / mL by RoboSep buffer (manufactured by STEMCELL). 50 ⁇ L of EasySep Human Monochrome enrichment cocktail attached to Human Monochrome Enrichment Kit With CD16 Depletion (manufactured by STEMCELL) was added per 1 mL of PBMC cell suspension. After the reaction at 4 ° C. for 10 minutes, 50 ⁇ L of EasySep Magnetic Particles was added per 1 mL of PBMC cell suspension. After reacting at 4 ° C.
  • the cells were cultured at 37 ° C. under the conditions of 5% CO 2 for 10 days. The culture supernatant was removed, and a 10% FBS-containing RPMI1640 medium (manufactured by Life Technology) containing 10 ng / mL IL-10 and 10 ng / mL M-CSF (manufactured by PEPROTEC) was added, followed by further culturing for 2 days. Twelve days later, TrypLE Express (manufactured by Life Technology) was added to the differentiation-induced macrophages, and the mixture was reacted at 37 ° C. for 40 minutes, and then separated. A 10% FBS-containing RPMI1640 medium (manufactured by Life Technology) was added and washed twice. After washing twice, the cells were resuspended in a 10% FBS-containing RPMI1640 medium (manufactured by Life Technology) at 5 ⁇ 10 5 cells / mL. Used as cells.
  • e0137345 prepared based on US2015183874), TTI-621 (prepared based on human SIRPA-Fc: WO2014 / 094122) or 50 ⁇ L / well of various control IgG.
  • an RPMI1640 medium containing 10% FBS manufactured by Life Technology
  • the RPMI1640 medium containing 10% FBS manufactured by Life Technology
  • Trastuzumab (Roche) was added at 50 ⁇ L / well.
  • Example 2 After adding 1 ⁇ 10 6 cells / mL and 50 ⁇ L / well of the effector cells prepared in -6-3, the mixture was allowed to stand at 37 ° C. and 5% CO 2 for 16 hours. After centrifugation at 1200 rpm for 4 minutes at 4 ° C. and removal of the supernatant, the plate was washed with 200 ⁇ L / well of PBS containing 5% FBS. To the cells, 45 ⁇ L / well of PBS containing 5% FBS and 5 ⁇ L / well of APC human CD11b (manufactured by Becton Dickison) were added, and the mixture was allowed to stand at 4 ° C. for 15 minutes.
  • Cells that became positive (B) in both APC and PE were defined as those in which the target cells were phagocytosed by macrophages.
  • the cell phagocytosis rate by ADCP activity was calculated by the following equation.
  • Cell phagocytosis rate (%) B / (A + B) ⁇ 100
  • the rat anti-human SIRPA antibody alone exhibited lower ADCP activity compared to Hu5F9G4 (anti-human CD47 antibody) and TTI-621 (human SIRPA-Fc) against the CD47-positive human gastric cancer cell line AGS. (FIG. 5A).
  • Embodiment 3 Analysis of nucleotide sequence and determination of amino acid sequence of variable region cDNA of rat anti-SIRPA antibody (D13, F44, F63) 3) -1 Analysis of nucleotide sequence of cDNA of variable region of D13 and determination of amino acid sequence 3) -1-1 D13 Preparation of Total RNA of Produced Hybridoma To amplify the cDNA encoding the variable region of D13, total RNA was prepared from the D13-produced hybridoma using TRIzol Reagent (Ambion).
  • Example 3 3) -1-2 Analysis of nucleotide sequence of amino acid sequence of cDNA of light chain variable region of D13 by 5′-RACE PCR and determination of amino acid sequence Amplification of cDNA encoding light chain variable region is described in Example 3) -1-1. Approximately 1 ⁇ g of the prepared total RNA and SMARTER RACE 5 ′ / 3 ′ Kit (Clontech) were used. UPM (Universal Primer A Mix: attached to SMARTer RACE 5 '/ 3' Kit) and a known rat light chain constant region were used as primers for amplifying the cDNA encoding the variable region of the D13 light chain gene by PCR. The primers designed from the above sequence were used.
  • the cDNA encoding the variable region of the light chain amplified by 5′-RACE PCR was cloned into a plasmid, and then the nucleotide sequence of the cDNA encoding the variable region of the light chain was sequenced.
  • the amino acid sequence of the variable region of the light chain of D13 encoded by the determined nucleotide sequence of the cDNA corresponds to the amino acid sequence consisting of amino acid residues 21 to 126 of SEQ ID NO: 23 in the sequence listing.
  • the amino acid sequences of CD13, CDRL2, and CDRL3 of D13 are shown in SEQ ID NOs: 1 to 3 in the sequence listing.
  • the amino acids of these CDRs are also shown in FIG.
  • the amino chain sequence of each CDR is defined by the definition of AbM (Martin, ACR, Cheetham, JC and Rees, AR (1989) Proc. Natl Acad. Sci. USA, 86, 9268- 9272).
  • Example 3 3) -1-3 Analysis of nucleotide sequence of cDNA of heavy chain variable region of D13 by 5'-RACE PCR and determination of amino acid sequence Amplification of cDNA encoding heavy chain variable region was performed in Example 3) -1-1. Approximately 1 ⁇ g of the prepared total RNA and SMARTER RACE 5 ′ / 3 ′ Kit (Clontech) were used. UPM (Universal Primer A Mix: attached to SMARTer RACE 5 '/ 3' Kit) and a known rat heavy chain constant region were used as primers for amplifying the cDNA encoding the variable region of the D13 heavy chain gene by PCR. The primers designed from the above sequence were used.
  • the cDNA encoding the variable region of the heavy chain amplified by 5'-RACE PCR was cloned into a plasmid, and then the nucleotide sequence of the cDNA encoding the variable region of the heavy chain was sequenced.
  • the amino acid sequence of the variable region of the heavy chain of D13 encoded by the determined nucleotide sequence of the cDNA corresponds to the amino acid sequence consisting of the 20th to 139th amino acid residues of SEQ ID NO: 25 in the sequence listing.
  • the amino acid sequences of CDRH1, CDRH2, and CDRH3 of D13 are shown in SEQ ID NOs: 4 to 6 in the sequence listing. The amino acid sequences of these CDRs are also shown in FIG.
  • the amino acid sequence of the variable region of the light chain of F44 encoded by the determined nucleotide sequence of the cDNA corresponds to the amino acid sequence consisting of amino acid residues 21 to 127 of SEQ ID NO: 27 in the sequence listing.
  • the amino acid sequence of the variable region of the heavy chain of F44 encoded by the determined nucleotide sequence of the cDNA corresponds to the amino acid sequence consisting of the 20th to 138th amino acid residues of SEQ ID NO: 29 in the sequence listing.
  • CD44, CDRL2, CDRL3, CDRH1, CDRH2, and CDRH3 of F44 are shown in SEQ ID NOs: 7 to 12 in the sequence listing. The amino acid sequences of these CDRs are also shown in FIG.
  • the amino acid sequence of the variable region of the light chain of F63 encoded by the determined nucleotide sequence of the cDNA corresponds to the amino acid sequence consisting of amino acid residues 21 to 130 of SEQ ID NO: 31 in the sequence listing.
  • the amino acid sequence of the variable region of the heavy chain of F63 encoded by the determined nucleotide sequence of the cDNA corresponds to the amino acid sequence consisting of the 20th to 143rd amino acid residues of SEQ ID NO: 33.
  • the amino acid sequences of F63 CDRL1, CDRL2, CDRL3, CDRH1, CDRH2, and CDRH3 are shown in SEQ ID NOs: 13 to 18 in the sequence listing. The amino acid sequences of these CDRs are also shown in FIG.
  • Embodiment 4 Preparation of human chimerized anti-SIRPA antibodies (cD13, cF44, cF63) 4) -1 Construction of human chimerized and humanized ⁇ -type light chain expression vector pCMA-LK And a DNA fragment containing a human light chain signal sequence shown in SEQ ID NO: 19 and a DNA sequence encoding a human kappa chain constant region represented by SEQ ID NO: 19, and an In-Fusion HD PCR cloning kit ( (Clontech) to produce pcDNA3.3 / LK.
  • pCMA-LK was constructed by removing the neomycin expression unit from pcDNA3.3 / LK.
  • the nucleotide sequence encoding the cD13 heavy chain is shown in SEQ ID NO: 24 in the sequence listing.
  • the nucleotide sequence consisting of nucleotides 1 to 57 encodes a signal sequence
  • the nucleotide sequence consisting of nucleotides 58 to 417 encodes a variable region
  • the nucleotide sequence consisting of nucleotides 418 to 1398 encodes a constant region.
  • the amino acid sequence of cD13 heavy chain is shown in SEQ ID NO: 25 in the sequence listing.
  • amino acid sequence consisting of amino acids 1 to 19 is in the signal sequence
  • amino acid sequence consisting of amino acids 20 to 139 is in the variable region
  • amino acid sequence consisting of amino acids 140 to 466 is in the constant region.
  • sequences of SEQ ID NO: 24 and SEQ ID NO: 25 are also shown in FIG.
  • cD13 Light Chain Expression Vector Using the cDNA encoding the variable region of D13 light chain obtained in Example 3) -1 as a template, PCR was performed with primers designed for In-fusion cloning. As a result, a DNA fragment containing cDNA encoding the variable region of the light chain was amplified.
  • a cD13 light chain expression vector was constructed by inserting an amplified DNA fragment into the site where pCMA-LK was cut with the restriction enzyme BsiWI, using an In-Fusion HD PCR cloning kit (Clontech). The nucleotide sequence encoding the cD13 light chain is shown in SEQ ID NO: 22 in the sequence listing.
  • the nucleotide sequence consisting of nucleotides 1 to 60 encodes a signal sequence
  • the nucleotide sequence consisting of nucleotides 61 to 378 encodes a variable region
  • the nucleotide sequence consisting of nucleotides 379 to 699 encodes a constant region, respectively.
  • the amino acid sequence of the cD13 light chain is shown in SEQ ID NO: 23 in the sequence listing.
  • the amino acid sequence consisting of amino acid residues 1 to 20 is in the signal sequence
  • the amino acid sequence consisting of amino acid residues 21 to 126 is in the variable region
  • the amino acid sequence consisting of amino acid residues 127 to 233 is in the constant region.
  • the sequences of SEQ ID NO: 22 and SEQ ID NO: 23 are also shown in FIG.
  • Example 4 -5 Construction of cF44 Expression Vector 4) -5-1 Construction of cF44 IgG4proFALA Type Heavy Chain Expression Vector Using the cDNA encoding the variable region of the F44 heavy chain obtained in Example 3) -2 as a template, Example 4) A cF44 heavy chain expression vector was constructed in the same manner as in 4-1. The nucleotide sequence encoding the cF44 heavy chain is shown in SEQ ID NO: 28 in the sequence listing.
  • the nucleotide sequence consisting of nucleotides 1 to 57 encodes the signal sequence
  • the nucleotide sequence consisting of nucleotides 58 to 414 encodes the variable region
  • the nucleotide sequence consisting of nucleotides 415 to 1395 encodes the constant region, respectively.
  • the amino acid sequence of cF44 heavy chain is shown in SEQ ID NO: 29 in the sequence listing.
  • the amino acid sequence consisting of amino acid residues 1 to 19 is in the signal sequence
  • the amino acid sequence consisting of amino acids 20 to 138 is in the variable region
  • the amino acid sequence consisting of amino acids 139 to 465 is in the constant region.
  • the sequences of SEQ ID NO: 28 and SEQ ID NO: 29 are also shown in FIG.
  • cF44 light chain expression vector Using the cDNA encoding the variable region of the F44 light chain obtained in Example 3) -2 as a template, the same method as in Example 4) -4-2 Constructed a cF44 light chain expression vector.
  • the nucleotide sequence encoding the cF44 light chain is shown in SEQ ID NO: 26 in the sequence listing.
  • the nucleotide sequence consisting of nucleotides 1 to 60 encodes a signal sequence
  • the nucleotide sequence consisting of nucleotides 61 to 381 encodes a variable region
  • nucleotide sequence consisting of nucleotides 382 to 702 encodes a constant region. .
  • the amino acid sequence of cF44 light chain is represented by SEQ ID NO: 27 in the sequence listing.
  • the amino acid sequence consisting of amino acid residues 1 to 20 is in the signal sequence
  • the amino acid sequence consisting of amino acid residues 21 to 127 is in the variable region
  • the amino acid sequence consisting of amino acid residues 128 to 234 is in the constant region.
  • the sequences of SEQ ID NO: 26 and SEQ ID NO: 27 are also shown in FIG.
  • Example 4 -6 Construction of Expression Vector for cF63 4) -6-1 Construction of IgG4proFALA-Type Heavy Chain Expression Vector for cF63 Using the cDNA encoding the variable region of the F63 heavy chain obtained in Example 3) -3 as a template, Example 4) A cF63 heavy chain expression vector was constructed in the same manner as in 4-1. The nucleotide sequence encoding the cF63 heavy chain is shown in SEQ ID NO: 32 in the sequence listing.
  • the nucleotide sequence consisting of nucleotides 1 to 57 encodes the signal sequence
  • the nucleotide sequence consisting of nucleotides 58 to 429 encodes the variable region
  • the nucleotide sequence consisting of nucleotides 430 to 1410 encodes the constant region, respectively.
  • the amino acid sequence of cF63 heavy chain is represented by SEQ ID NO: 33 in the sequence listing.
  • the amino acid sequence consisting of amino acid residues 1 to 19 is in the signal sequence
  • the amino acid sequence consisting of amino acids 20 to 143 is in the variable region
  • the amino acid sequence consisting of amino acids 144 to 470 is in the constant region.
  • the sequences of SEQ ID NO: 32 and SEQ ID NO: 33 are also shown in FIG.
  • the nucleotide sequence consisting of nucleotides 1 to 60 encodes the signal sequence
  • the nucleotide sequence consisting of nucleotides 61 to 390 encodes the variable region
  • the nucleotide sequence consisting of nucleotides 391 to 708 encodes the constant region, respectively.
  • the amino acid sequence of cF63 light chain is shown in SEQ ID NO: 31 in the sequence listing.
  • the amino acid sequence consisting of amino acid residues 1 to 20 is in the signal sequence
  • the amino acid sequence consisting of amino acid residues 21 to 130 is in the variable region
  • the amino acid sequence consisting of amino acid residues 131 to 236 is in the constant region.
  • the sequences of SEQ ID NO: 30 and SEQ ID NO: 31 are also shown in FIG.
  • -7-2 Purification of cD13, cF44 and cF63 Antibodies were purified from the culture supernatant obtained in Example 4) -7-1 in one step of rProtein A affinity chromatography.
  • the culture supernatant was applied to a column (manufactured by GE Healthcare Bioscience) packed with MabSelectSuRe equilibrated with PBS, and then the column was washed with twice or more the column volume of PBS. Next, elution was carried out with a 2M arginine hydrochloride solution (pH 4.0), and the fraction containing the antibody was collected.
  • the fraction was subjected to buffer replacement with PBS ( ⁇ ) by dialysis (Thermo Scientific, Slide-A-Lyzer Dialysis Cassette).
  • the antibody was concentrated with Centrifugal UF Filter Device VIVASPIN20 (fraction molecular weight UF10K, Sartorius), and the IgG concentration was adjusted to 10 mg / mL or more.
  • the solution was filtered through a Minisart-Plus filter (Sartorius) to obtain a purified sample.
  • Embodiment 5 In vitro evaluation of human chimerized anti-SIRPA antibodies (cD13, cF44, cF63) 5) -1 Evaluation of binding activity to human SIRPA 5) -1-1 Evaluation of binding activity to human SIRPA (Cell-ELISA) 293 ⁇ cells [described in Example 1) -6 were prepared at 5 ⁇ 10 5 cells / mL in DMEM medium containing 10% FBS.
  • pFLAG V5-DEST-SIRPA_V1, V2 or pFLAG V5-DEST was introduced using Lipofectamine LTX (manufactured by Invitrogen), and 100 ⁇ L was dispensed into a 96-well plate (manufactured by Corning), followed by 10 ⁇ L.
  • the cells were cultured in a DMEM medium containing 37% FBS at 37 ° C. and 5% CO 2 overnight. The obtained transfected cells were used in Cell-ELISA while keeping the adhered state.
  • cD13 IgG2, IgG4pf
  • cF44 IgG1, IgG2
  • pFLAG V5-DEST-SIRPA_V1, V2 or pFLAG V5-DEST transfected cells, respectively.
  • IgG4p, IgG4pf) and cF63 (IgG2, IgG4pf) antibodies were added at a final concentration of 0 to 10000 ng / mL, 50 ⁇ L / well, and allowed to stand at 4 ° C. for 1 hour.
  • OPD color developing solution OPD dissolving solution (0.05 M trisodium citrate, 0.1 M disodium hydrogen phosphate / 12 water, pH 4.5)
  • OPD dissolving solution 0.05 M trisodium citrate, 0.1 M disodium hydrogen phosphate / 12 water, pH 4.5
  • H 2 O 2 0.4 mg / mL and 0.6% (v / v) dissolved respectively
  • the color reaction was performed with occasional stirring, and the color reaction was stopped by adding 100 ⁇ L / well of 1M HCl, and then the absorbance at 490 nm was measured with a plate reader (ARVO: PerkinElmer).
  • ARVO PerkinElmer
  • the binding of the human chimeric anti-human SIRPA antibody to each construct was normalized based on the expression of the FLAG tag. As shown in FIG. 6, the cD13, cF44, and cF63 antibodies bound to both SIRPA_V1 and SIRPA_V2 (FIGS. 6A and B), and the binding was almost the same between each isotype (FIGS. 6C and D).
  • the binding activity to monkey SIRPA was evaluated in the same manner as the binding activity to human SIRPA. As shown in FIG. 7, the cD13, cF44 and cF63 antibodies showed binding to monkey SIRPA.
  • cD13 IgG2, IgG4pf
  • cF44 four constant regions of IgG1, IgG2, IgG4p, IgG4pf
  • cF63 IgG2, IgG4pf
  • an RPMI1640 medium containing 10% FBS (manufactured by Life Technology) was added in an amount of 50 ⁇ L / well, and in the combined group, the RPMI1640 medium containing 10% FBS (manufactured by Life Technology) was diluted to a final concentration of 400 ng / mL.
  • Rituximab (manufactured by Zenyaku Kogyo) was added at 50 ⁇ L / well.
  • ADCP activity was evaluated in the same manner as in 2-6-4. As shown in FIG.
  • PBMC prepared by the method of Example 5) -4-2 or macrophages (50 ⁇ L / well) were added to a 96-well ultra-low adhesion surface U-bottom microplate (Sumitomo Bakelite).
  • CD13 (IgG4pf) and cF44 (IgG1, IgG2, IgG4p, and IgG4pf constant regions) diluted with a 10% FBS-containing RPMI1640 medium (manufactured by Life Technology) to a final concentration of 0.64 to 10000 ng / mL.
  • CF63 IgG4pf
  • Hu5F9G4, TTI-621 or various control human IgG were added at 50 ⁇ L / well.
  • RPMI1640 medium containing 10% FBS manufactured by Life Technology
  • ADCP activity was evaluated in the same manner as in 2-6-4.
  • the ratio of ADCP activity to macrophages was calculated by dividing the number of macrophages counted when each antibody was added by the number counted when control antibodies were added.
  • FIG. 10A the ADCP activity of cD13, cF44 and cF63 on PBMC was almost equivalent to that of control IgG (FIG. 10A).
  • IgG1 type and IgG4p type exhibited ADCP activity depending on the concentration of the added antibody, whereas IgG2 type and IgG4pf type did not show ADCP activity (FIG. 10B).
  • IgG2 type and IgG4pf type did not show ADCP activity (FIG. 10B).
  • the IgG4pf type showed the lowest reduction rate of macrophages, indicating that the toxicity to SIRPA-positive cells induced by the antibody addition was low. The lowest probability was shown (FIG. 10C).
  • Example 6 Design of Humanized Anti-SIRPA Antibody 6) -1 Molecular Modeling of Variable Region of Chimeric Antibody cD13 Molecular modeling of the variable region of cD13 can be performed by a method known as homology modeling [Methods in Enzymology, 203, 121-153 ( 1991)]. Protein Data Bank [Nuc.] which has high sequence identity to the variable regions of the heavy and light chains of cD13. Acid Res. 35, D301-D303 (2007)], using a commercially available protein three-dimensional structure analysis program BioLuminate (manufactured by Schrodinger) with the template (PDB ID: 3CSY) as a template.
  • BioLuminate manufactured by Schrodinger
  • hH1 and hH2 The full length amino acid sequence of hH1 heavy chain is described in SEQ ID NO: 41 in the sequence listing.
  • the nucleotide sequence encoding the amino acid sequence of SEQ ID NO: 41 is described in SEQ ID NO: 40 in the sequence listing.
  • the full-length amino acid sequence of the heavy chain of hH2 is described in SEQ ID NO: 43 in the sequence listing.
  • the nucleotide sequence encoding the amino acid sequence of SEQ ID NO: 43 is described in SEQ ID NO: 42 in the sequence listing.
  • the amino acid sequence consisting of amino acid residues 1 to 19 is in the signal sequence
  • the amino acid sequence consisting of amino acid residues 20 to 139 is in the variable region
  • the amino acid sequence consisting of amino acid residues 140 to 466 is Amino acid sequences correspond to the constant regions, respectively.
  • the nucleotide sequence consisting of nucleotides 1 to 57 is a signal sequence
  • the nucleotide sequence consisting of nucleotides 58 to 417 is a variable region
  • the nucleotide sequence consisting of nucleotides 418 to 1398 is Each constant region is encoded.
  • FIG. 11 shows a comparison of the amino acid sequences of cD13_H, which is the heavy chain of the human chimeric anti-SIRPA antibody cD13, and the humanized antibody heavy chains hH1 and hH2.
  • cD13_H which is the heavy chain of the human chimeric anti-SIRPA antibody cD13
  • hH1 and hH2 the humanized antibody heavy chains
  • “•” indicates the same amino acid residue as c013_H, and the place where the amino acid residue is described indicates a substituted amino acid residue.
  • the three designed light chains were named hL2, hL3, and hL4.
  • the full length light chain amino acid sequence of hL2 is described in SEQ ID NO: 35 in the sequence listing.
  • the nucleotide sequence encoding the amino acid sequence of SEQ ID NO: 34 is described in SEQ ID NO: 34 in the sequence listing.
  • the light chain full length amino acid sequence of hL3 is described in SEQ ID NO: 37 in the sequence listing.
  • the nucleotide sequence encoding the amino acid sequence of SEQ ID NO: 37 is set forth in SEQ ID NO: 36.
  • the full length light chain amino acid sequence of hL4 is described in SEQ ID NO: 39 in the sequence listing.
  • the nucleotide sequence encoding the amino acid sequence of SEQ ID NO: 39 is set forth in SEQ ID NO: 38.
  • the amino acid sequence consisting of the 1st to 20th amino acid residues is in the signal sequence
  • the amino acid sequence consisting of the 21st to 127th amino acid residues is in the variable region
  • the 128th to 234th amino acid residues corresponds to the constant regions, respectively.
  • nucleotide sequence consisting of nucleotides 1 to 60 is a signal sequence
  • nucleotide sequence consisting of nucleotides 61 to 381 is a variable region
  • nucleotide sequence consisting of nucleotides 382 to 702 is The sequences each encode a constant region.
  • the sequence of SEQ ID NO: 34 and SEQ ID NO: 35 is also shown in FIG. 23
  • the sequence of SEQ ID NO: 36 and SEQ ID NO: 37 is also shown in FIG. 24, and the sequence of SEQ ID NO: 38 and SEQ ID NO: 39 are also shown in FIG. .
  • H1L3 antibody An antibody consisting of hH1 and hL3 is referred to as "H1L3 antibody” or “H1L3".
  • the antibody consisting of hH1 and hL4 is referred to as “H1L4 antibody” or "H1L4".
  • the antibody consisting of hH2 and hL2 is referred to as “H2L2 antibody” or “H2L2”.
  • the antibody consisting of hH2 and hL3 is referred to as "H2L3 antibody” or "H2L3”.
  • Embodiment 7 FIG. Preparation of humanized anti-SIRPA antibody 7) -1 Construction of humanized antibody heavy chain expression vector 7) -1-1 Construction of hH1 expression vector Nucleotide numbers 36 to 434 of the nucleotide sequence of hH1 shown in SEQ ID NO: 40 in the sequence listing was synthesized (GENEART). Using an In-Fusion HD PCR cloning kit (Clontech), a hH1 expression vector was constructed by inserting the synthesized DNA fragment into the site where pCMA-G4proFALA was cut with the restriction enzyme BlpI.
  • hL2 Expression Vector The DNA fragment represented by nucleotide number 37 to 402 of the nucleotide sequence of hL2 shown in SEQ ID NO: 34 in the sequence listing is synthesized. (GENEART). Using an In-Fusion HD PCR cloning kit (Clontech), a hL2 expression vector was constructed by inserting the synthesized DNA fragment into the site where pCMA-LK was cut with the restriction enzyme BsiWI.
  • Example 7 -3-2 Preparation of humanized antibody
  • the culture supernatant obtained in Example 7) -3-1 was purified in two steps of rProtein A affinity chromatography and ceramic hydroxyapatite. After the culture supernatant was applied to a column (manufactured by GE Healthcare Bioscience) packed with MabSelectSuRe equilibrated with PBS, the column was washed with twice or more the column volume of PBS. Next, the antibody was eluted with a 2 M arginine hydrochloride solution (pH 4.0).
  • the fraction containing the antibody was buffer-substituted with PBS by dialysis (Thermo Scientific, Slide-A-Lyzer Dialysis Cassette), and diluted 5-fold with a buffer of 5 mM sodium phosphate / 50 mM MES / pH 7.0.
  • the mixture was applied to a ceramic hydroxyapatite column (Bio-Scale CHT Type-1 Hydroxyapatite Column, Japan Bio-Rad) equilibrated with a buffer of 5 mM NaPi / 50 mM MES / 30 mM NaCl / pH 7.0.
  • a linear concentration gradient elution with sodium chloride was performed, and the fractions containing the antibody were collected.
  • the fraction was subjected to buffer replacement with HBSor (25 mM histidine / 5% sorbitol, pH 6.0) by dialysis (Thermo Scientific, Slide-A-Lyzer Dialysis Cassette).
  • the antibody was concentrated with Centrifugal UF Filter Device VIVASPIN20 (fraction molecular weight UF10K, Sartorius) to adjust the IgG concentration to 50 mg / mL.
  • the solution was filtered through a Minisart-Plus filter (Sartorius) to obtain a purified sample.
  • Embodiment 8 FIG. In vitro evaluation of humanized anti-SIRPA antibody (hD13_H1L3, hD13_H1L4h, hD13_H2L2, hD13_H2L3) 8) -1 Binding activity of humanized anti-SIRPA antibody to human, monkey, mouse SIRPA 8) -1-1 Humanized anti-SIRPA antibody Activity for mouse, monkey and mouse SIRPA (Cell-ELISA) 293 ⁇ cells [described in Example 1-6] were prepared at 5 ⁇ 10 5 cells / mL in DMEM medium containing 10% FBS.
  • pFLAG V5-DEST-SIRPA_V1-V10 pFLAG V5-DEST-monkey SIRPA, pFLAG V5-DEST-mouse SIRPA or pFLAG V5-Destl were introduced using Lipofectamine LTX (manufactured by Invitrogen). After dispensing 100 ⁇ L each on a plate (manufactured by Corning), the mixture was cultured overnight in a DMEM medium containing 10% FBS at 37 ° C. and 5% CO 2 . The obtained transfected cells were used in Cell-ELISA while keeping the adhered state.
  • hD13_H1L3, hD13_H1L4h, hD13_H2L2, hD13_H2L3, or cD13 prepared in Examples 6 and 7 and cD13 and a control antibody prepared in Examples 6 and 7 were used for each of the SIRPA gene-introduced cells. / Well and left at 4 ° C. for 1 hour.
  • the binding property to human SIRPA was evaluated in the same manner as in Example 5-1. As shown in FIGS.
  • the hD13_H1L3, hD13_H1L4h, hD13_H2L2, and hD13_H2L3 antibodies exhibited binding to SIRPA variants (V1-V10) and monkey SIRPA equivalent to or higher than that of the cD13 antibody.
  • SIRPA variants V1-V10
  • monkey SIRPA equivalent monkey SIRPA equivalent to or higher than that of the cD13 antibody.
  • FIGS. 14A and B neither humanized antibody nor human chimerized antibody showed binding property to mouse SIRPA.
  • HBS-EP + (manufactured by GE Healthcare Bioscience) was used as a running buffer
  • CM5 manufactured by GE Healthcare Bioscience
  • a sensor chip After adding 1 ⁇ g / mL of the humanized antibody to the chip at 10 ⁇ L / min for 60 seconds, a dilution series solution of human SIRPA protein (0.5 to 8 ⁇ g / mL) or a dilution series solution of monkey SIRPA protein (1 to 16 ⁇ g / mL) was added at a flow rate of 30 ⁇ L / min for 120 seconds, followed by monitoring the dissociation phase for 600 seconds.
  • the hD13_H1L3, hD13_H1L4h, hD13_H2L2, and hD13_H2L3 antibodies exhibited binding inhibitory activity to SIRPA_V1 (FIG. 15A), SIRPA_V2 (FIG. 15B), and monkey SIRPA (FIG. 15C) equal to or higher than that of the cD13 antibody.
  • effector cells 2) Prepare effector cells in the same manner as in -6-3, wash twice with PBS, and resuspend in PBS to 1 ⁇ 10 6 cells / mL. It became cloudy. A 1 ⁇ L / 10 6 cells / mL CFSE solution (manufactured by ThermoFisher) was added as a labeling solution, and the mixture was allowed to stand at room temperature for 10 minutes. After adding 20 ml of RPMI1640 medium containing 10% FBS (manufactured by Life Technology) and washing twice, the cells were resuspended to 1 ⁇ 10 6 cells / mL and used as effector cells.
  • RPMI1640 medium 10% FBS
  • an RPMI1640 medium containing 10% FBS (manufactured by Life Technology) was added in an amount of 50 ⁇ L / well, and in the combined group, the RPMI1640 medium containing 10% FBS (manufactured by Life Technology) was diluted to a final concentration of 400 ng / mL.
  • Rituximab (manufactured by Zenyaku Kogyo) was added at 50 ⁇ L / well. After adding 1 ⁇ 10 6 cells / mL and 50 ⁇ L / well of the effector cells prepared in Example 8-3-3, the mixture was allowed to stand at 37 ° C. and 5% CO 2 for 16 hours.
  • the plate was washed with 200 ⁇ L / well of PBS containing 5% FBS.
  • the cells were suspended in 100 ⁇ L / well of 1 ⁇ BD Stabilizing Fixative (manufactured by Becton Dickison) and allowed to stand at 4 ° C. overnight. The next day, it was measured by flow cytometry (FACS CantoII: manufactured by Becton Dickison). Flowjo (manufactured by TreeStar) was used for data analysis.
  • the hD13_H1L3, hD13_H1L4h, hD13_H2L2, hD13_H2L3, or cD13 antibody-added group showed no ADCP activity against CD47-positive human Burkitt's lymphoma cell lines Raji and Ramos cells by a single agent, FIG. ), When combined with Rituximab, showed ADCP activity dependent on the added antibody concentration (FIGS. 16B, D).
  • the humanized antibody clone showed ADCP activity equal to or higher than that of the human chimerized antibody clone.
  • Embodiment 9 FIG. In vitro evaluation of various anti-SIRPA antibodies 9) -1 Evaluation of binding properties of various anti-SIRPA antibodies to SIRPA hD13_H1L3 antibody prepared in Example 7, and OSE-172 (prepared with reference to International Publication No. WO17 / 178655), Dissociation constants of KWAR23 (prepared with reference to International Publication No. WO18 / 026600) or ADU-1805 (prepared with reference to International Publication No. WO18 / 190719) for human SIRPA_V1_IgV and human SIRPA_V2_IgV prepared in Example 1. Was measured.
  • the amino acid sequence of the heavy chain of OSE-172 is shown in SEQ ID NO: 81 in the sequence listing, the amino acid sequence of the light chain of OSE-172 is shown in SEQ ID NO: 82, the amino acid sequence of the heavy chain of KWAR23 is shown in SEQ ID NO: 83, and the amino acid sequence of KWAR23 is shown in SEQ ID NO: 83.
  • the amino acid sequence of the light chain is shown in SEQ ID NO: 84, the amino acid sequence of the heavy chain of ADU-1805 is shown in SEQ ID NO: 85, and the amino acid sequence of the light chain of ADU-1805 is shown in SEQ ID NO: 86.
  • Biacore T200 (manufactured by GE Healthcare Bioscience) was used, and Human Antibody Capture Kit (manufactured by GE Healthcare Bioscience) was used to immobilize each Anti-Human Cancer antibody to each antibody using GE Healthcare Bioscience (manufactured by GE Healthcare Bioscience). And the capture method of measuring the antigen as an analyte was performed.
  • HBS-EP + (manufactured by GE Healthcare Bioscience) was used as a running buffer
  • CM5 (manufactured by GE Healthcare Bioscience) was used as a sensor chip.
  • Peroxidase labeled CD47-Fc adjusted to 1 ⁇ g / mL with PBS containing 5% FBS was added at 50 ⁇ L / well, and the mixture was allowed to stand at 4 ° C. for 1 hour.
  • SIRPA-CD47 binding inhibitory activity was evaluated in the same manner as in 1) -6-3.
  • the hD13_H1L3, OSE-172, KWAR23, and ADU-1805 antibodies exhibited binding inhibitory activity against SIRPA_V1-CD47.
  • FIG. 31A the hD13_H1L3, OSE-172, KWAR23, and ADU-1805 antibodies exhibited binding inhibitory activity against SIRPA_V1-CD47.
  • FIG. 31A the hD13_H1L3, OSE-172, KWAR23, and ADU-1805 antibodies exhibited binding inhibitory activity against SIRPA_V1-CD47.
  • FIG. 31A the hD13_H1L3, OSE-172, KWAR23
  • hD13_H1L3, KWAR23, and ADU-1805 showed binding to human SIRPA_V2-CD47, but OSE-172 did not show binding inhibitory activity. Also, as shown in FIG. 31C, hD13_H1L3 inhibited binding at the lowest concentration.
  • SIRP ⁇ 1 signal regulatory protein ⁇ 1: the amino acid sequence is published as RefSeq accession number NP_006056
  • SIRP ⁇ signal regulatory protein ⁇ : (The amino acid sequence has been published as Accession No. NP_061026) is a SIRPA family molecule.
  • SIRP ⁇ may be referred to as “SIRPA”
  • SIRP ⁇ 1 may be referred to as “SIRPB1”
  • SIRP ⁇ may be referred to as “SIRPG”.
  • CHO-K1 cells were prepared at 3.3 ⁇ 10 5 cells / mL in Ham's F-12K medium containing 10% FBS and cultured overnight at 37 ° C. and 5% CO 2 .
  • pFLAG V5-DEST-human SIRPB, pFLAG V5-DEST-human SIRPG, or pFLAG V5-DEST or pFLAG V5-DEST was introduced using Lipofectamine LTX (manufactured by Invitrogen), and Ham's F-12K medium containing 10% FBS. And cultured for 24 hours at 37 ° C. and 5% CO 2 . The obtained transduced cells were collected and seeded on a 96-well plate.
  • various anti-human SIRPA antibodies or various control human IgGs were added to each of the gene-introduced cells at a final concentration of 0 to 10000 ng / mL, 100 ⁇ L / well, and left at 4 ° C. for 25 minutes. .
  • the supernatant was removed and washed twice with PBS containing 5% FBS.
  • the supernatant was removed, 50 ⁇ L / well of a 1/400 diluted solution of PE Mouse anti-Human IgG antibody (manufactured by Bioleend) was added, and the mixture was allowed to stand at 4 ° C. for 25 minutes.
  • effector cells 2) Prepare effector cells in the same manner as in -6-3, wash twice with PBS, and resuspend in PBS to 1 ⁇ 10 6 cells / mL. It became cloudy. A 1 ⁇ L / 10 6 cells / mL CFSE solution (manufactured by ThermoFisher) was added as a labeling solution, and the mixture was allowed to stand at room temperature for 10 minutes. After adding 20 ml of RPMI1640 medium containing 10% FBS (manufactured by Life Technology) and washing twice, the cells were resuspended to 1 ⁇ 10 6 cells / mL and used as effector cells.
  • RPMI1640 medium 10% FBS
  • the cells were suspended in 50 ⁇ L / well of 1 ⁇ BD Stabilizing Fixative (manufactured by Becton Dickison) and measured by flow cytometry (FACS CantoII: manufactured by Becton Dickison).
  • Flowjo manufactured by TreeStar
  • FSC forward scattered light
  • SSC side scattered light
  • hD13_H1L3 showed the highest to highest activity, ADU-1805 and KWAR23 were almost equivalent, and OSE-172 was in that order. From the above results, hD13_H1L3 enhanced ADCP activity from the lowest concentration in a short time.
  • the plate was washed with 200 ⁇ L / well of PBS containing 5% FBS.
  • the cells were suspended in 100 ⁇ L / well of 1 ⁇ BD Stabilizing Fixative (manufactured by Becton Dickison) and measured by flow cytometry (FACS CantoII: manufactured by Becton Dickison).
  • Flowjo manufactured by TreeStar was used for data analysis. After developing with FSC (forward scattered light) / SSC (side scattered light), the number of FITC-positive cells in each well was calculated (A).
  • Self-ADCP activity was calculated by the following equation.
  • Self-ADCP (%) (A / B) ⁇ 100
  • the decreasing rates were OSE-172, KWAR23, ADU-1805, and hD13_H1L3 in this order.
  • the high reduction rate indicates that the Self-ADCP activity by the anti-SIRPA antibody is high. This phenomenon suggests that administration of each anti-SIRPA antibody may reduce or deplete SIRPA-positive cells such as macrophages and dendritic cells, and serve as an indicator of side effects on the immune system.
  • Embodiment 10 In vivo evaluation of various anti-SIRPA antibodies Since SIRPA is a target expressed in host immune cells, it is necessary to examine human SIRPA-expressing mice in order to evaluate the antitumor effect of human SIRPA antibody [Ring et al. PNAS, 2017 (114) 49, E10578-E10585]. On the other hand, in order to evaluate the contribution of the immune system to the antitumor effect, it is important to use immunocompetent mice instead of immunodeficient mice [Yanagita et al. JCI, 2017 (2) 1, 1-. 15].
  • mice When a mouse cancer cell line transfected with human CD47 was transplanted into a genetically modified mouse transfected with human SIRPA alone or both human SIRPA and human CD47 into a mouse with normal immunity, a group was formed when the tumor volume reached about 100 mm 3. Divide. To these mice, various anti-SIRPA antibodies, anti-CD47 antibodies or anti-CD47 biologics such as SIRPA-Fc fusion protein, or PBS or the like as a negative control group is administered about 1 to 3 times a week for 1 to 3 weeks. When examining the additional antitumor effect of the concomitant drug, a chemotherapeutic agent, an antibody drug, a molecular targeted drug, etc. are administered to each of these groups.
  • the tumor diameter (major axis / minor axis) in each administration group is measured every 2-3 days with an electronic caliper or the like, and the tumor volume is calculated.
  • the tumor volume and the tumor growth inhibition rate are shown by the following equations.
  • Tumor volume (mm 3 ) (major axis ⁇ minor axis ⁇ minor axis) / 2
  • Tumor growth inhibition rate (%) (1-tumor volume of each administration group / tumor volume of negative control group) ⁇ 100
  • the anti-SIRP ⁇ antibody of the present invention can be used as an antibody drug to be used in combination with another antibody drug having another effector function or another antibody drug having an immune checkpoint inhibitory action.
  • SEQ ID NO: 1 amino acid sequence of D13 CDR-L1 SEQ ID NO: 2: amino acid sequence of D13 CDR-L2 SEQ ID NO: 3: amino acid sequence of D13 CDR-L3 SEQ ID NO: 4: amino acid sequence of D13 CDR-H1 SEQ ID NO: 5: D13 CDR -Amino acid sequence of H2 SEQ ID NO: 6: amino acid sequence of D13 CDR-H3 SEQ ID NO: 7: amino acid sequence of F44 CDR-L1 SEQ ID NO: 8: amino acid sequence of F44 CDR-L2 SEQ ID NO: 9: amino acid sequence of F44 CDR-L3 No.
  • Nucleotide sequence SEQ ID NO: 47 amino acid sequence of IgV of human SIRPA variant 1 SEQ ID NO: 48: nucleotide sequence encoding ECD of human SIRPA variant 2 SEQ ID NO: 49: amino acid sequence of ECD of human SIRPA variant 2 SEQ ID NO: 50: human SIRPA variant SEQ ID NO: 51: nucleotide sequence encoding IgV of human SIRPA variant 2: SEQ ID NO: 52: nucleotide sequence encoding ECD of monkey SIRPA SEQ ID NO: 53: amino acid sequence of ECD of monkey SIRPA SEQ ID NO: 54: human Nucleotide sequence encoding CD47-Fc SEQ ID NO: 55: amino acid sequence of IgV of human CD47-Fc SEQ ID NO: 56: amino acid sequence of human SIRPA variant 1 SEQ ID NO: 57: human SIRPA variant Amino acid sequence of monkey SIRPA SEQ ID NO: 58: amino acid sequence of monkey SIRPA SEQ ID NO
  • SEQ ID NO. 62 amino acid sequence of NOD mouse SIRPA SEQ ID NO. 63: amino acid sequence of human SIRPA variant 3 SEQ ID NO. 64: amino acid sequence of human SIRPA variant 4 SEQ ID NO. 65: amino acid sequence of human SIRPA variant 5 SEQ ID NO.

Abstract

本発明は、腫瘍剤として用いることができる抗SIRPα抗体、及び該抗体を有効成分として含む抗腫瘍剤の提供を目的とする。 本発明は、(a)配列番号1で表されるアミノ酸配列からなる軽鎖CDRL1、 (b)配列番号2で表されるアミノ酸配列からなる軽鎖CDRL2、 (c)配列番号3で表されるアミノ酸配列からなる軽鎖CDRL3、 (d)配列番号4で表されるアミノ酸配列からなる重鎖CDRH1、 (e)配列番号5で表されるアミノ酸配列からなる重鎖CDRH2、及び (f)配列番号6で表されるアミノ酸配列からなる重鎖CDRH3 を含み、重鎖定常領域がヒトIgG4の重鎖定常領域であり、KabatらによるEUインデックスにより示される234位のフェニルアラニンがアラニンへ置換され、235位のロイシンがアラニンに置換され、さらに228位のセリンがプロリンへ置換されている、ヒトSIRPαに特異的に結合し、ヒトSIRPαとCD47の結合を阻害する抗体である。

Description

抗SIRPα抗体
 本発明は、腫瘍の治療に有用な抗SIRPα抗体、及び該抗体を含む抗腫瘍剤に関する。
 SIRPα(SHPS-1)は、マクロファージ、樹上細胞、好中球などのミエロイド細胞、及びグリア細胞に存在するIgスーパーファミリーの1回膜貫通型分子である(非特許文献1)。細胞外領域は1つのIgVドメインと2つのIgCドメインからなり、CD47との結合部位であるIgVドメインについては、ヒトでは10種類のバリアントが報告されている(非特許文献2)。一方、細胞内領域はimmunoreceptor tyrosine-based inhibition motifs(ITIM)を含み、CD47との結合によりチロシン脱リン酸化酵素であるSHP-1、及びSHP-2への結合が誘導され抑制性のシグナルが伝えられる。
 SIRPα-CD47相互作用による生理現象としては、マクロファージ上のSIRPαに赤血球上のCD47が結合し“Don’t eat me”シグナルを伝えることで、赤血球の不必要な貪食を回避することが示されている(非特許文献3)。一方、腫瘍微小環境下においても、マクロファージや樹上細胞上のSIRPαに腫瘍細胞に高発現するCD47が結合することで、腫瘍細胞に対する貪食能を抑制することが示唆されている。貪食能の抑制は、その後のT細胞への腫瘍抗原提示の抑制、更には腫瘍免疫応答の抑制に繋がることが予想される。よって、腫瘍細胞の貪食という免疫現象は、腫瘍抗原の取り込み(エントリー)に対するチェックポイントに当たると考えられる。
 これまでに、SIRPαのリガンドであるCD47に対する抗体でSIRPα-CD47相互作用を阻害することにより、腫瘍細胞に対する貪食能を増強することが報告されており(非特許文献4)、これは抗SIRPα抗体を用いた場合でも、腫瘍細胞を免疫細胞に引き寄せるエフェクター活性を持つような抗癌抗体併用条件下では同様の現象が示されている(非特許文献5及び6)。また、抗CD47抗体を用いた同種マウス担癌モデルでは、抗腫瘍効果だけでなく、腫瘍免疫を誘導することが示唆されており(非特許文献7)、抗SIRPα抗体についても、抗癌抗体併用条件下では同様の効果が期待できる。
 一方で、免疫チェックポイント阻害剤として、PD-1/PD-L1などT細胞上の免疫抑制性分子に対する抗体が複数開発されており、臨床でもその効果が実証されている(非特許文献8及び9)。SIRPα-CD47は現在証明されている唯一の貪食抑制分子であり、この分子に対する阻害抗体は、T細胞以外の標的に対する新たなチェックポイント阻害剤としての可能性が予想され、従来の免疫チェックポイント阻害剤に抵抗性の患者に対しても、広く効果を示す可能性も持ち合わせている。
 これまでに、抗マウスSIRPα抗体(MY-1)を用いたヒトBurkitt’s lymphoma皮下移植モデルでの検討により、Rituximabとの併用で抗腫瘍効果が示されている。また、マウス大腸がんモデルではPD-1抗体との併用で抗腫瘍効果が認められている(非特許文献5)。加えて、クローンの異なる抗mSIRPα抗体(P84)を用いた検討では、マウス肝臓がんモデルで抗PD-L1抗体や抗4-1BB抗体との併用でも抗腫瘍効果及び延命効果が認められている。延命効果を示したマウスに同じ腫瘍細胞を再移植した際も、更なる抗腫瘍効果、延命効果が得られていることから、異なる免疫チェックポイントを阻害することで、強い腫瘍免疫応答を誘導できる可能性を示している(特許文献1)。これらの結果は、従来から予想されたエフェクター活性を持つ抗癌抗体との併用のみならず、T細胞を標的とした免疫チェックポイント阻害剤との併用においても併用効果を示した例であり、抗ヒトSIRPα抗体においても、同様の効果が期待できる。
 近年、各社から抗SIRPα抗体に関する特許の報告が相次いでいる(特許文献1、2及び3)。例えば、OSE-172はIgG4Pro型の抗体であり、SIRPαのV1タイプとSIRPβ1に結合性を示すが、SIRPαのV2タイプとSIRPγには結合性を示さない。KWAR23はIgG1N279A型の抗体であり、10種類のSIRPαバリアント並びにSIRPβ1及びSIRPγに結合性を示す。ADU-1805はIgG2型の抗体であり、10種類のSIRPαバリアントとSIRPγへの結合性を示す。いずれの抗体が医薬として最も適切か未解明であり、優れた抗体を取得する努力が続けられている。
 更に、抗CD47抗体を用いた検討では、前述のような抗体医薬以外に従来からSOC(標準療法:Standard of Care)として広く用いられている化学療法剤、放射線療法との併用でも、十分な抗腫瘍効果、延命効果を示すことが報告されている。特に、化学療法剤との併用事例では、化学療法剤を事前に投与し、続いて抗CD47抗体を投与することで、化学療法剤と抗CD47抗体の同時投与よりも強い抗腫瘍効果、延命効果を示すことから(非特許文献7)、化学療法剤の前投与により腫瘍抗原を取り込み易いような環境を準備することで、SIRPα-CD47相互作用の阻害による抗原取り込み能(免疫賦活化能)の効果を増強できる可能性を示している。
 以上のことから、抗SIRPα抗体は種々の抗腫瘍剤との併用により、より強い腫瘍免疫応答を誘導しうる薬剤であると推測できる。
国際公開第WO2017/178653号 国際公開第WO2018/026600号 国際公開第WO2018/190719号
Matozaki et al. Trends in cell biol. 2009(19) 2, 72-80 Takenaka et al. Nat Immunol. 2007(8)12, 1313-1323 Matozaki et al. Trends in cell biol. 2009(19) 2, 72-80 Liu et al. Plos One, 2015 (10) 9 Yanagita et al. JCI Insight, 2017 (2) 1, 1-15 Ring et al. PNAS, 2017 (114) 49, E10578-E10585 Liu et al, Nat Med. 2015 (21) 10, 1209-1215 Lee et al. The Oncologist, 2017(22)11, 1392-1399 Weinstock et al. Clin Can Res. 2017(23)16, 4534-4539
 本発明は、抗腫瘍剤として用いることができる抗SIRPα抗体、及び該抗体を有効成分として含む抗腫瘍剤の提供を目的とする。
 本発明者らは、貪食能を有する貪食細胞に発現しているSIRPαと腫瘍細胞に発現しているCD47との相互作用を抗SIRPα抗体により阻害し、腫瘍細胞から貪食細胞に“Don’t-eat-me”シグナルが伝達されるのを阻害し、貪食細胞による腫瘍細胞の貪食作用を増強する方法について検討を行った。本発明者らは、SIRPαに対する親和性がより高く、SIRPαとCD47との相互作用の阻害効果が高い抗体の作製を試みるとともに、抗SIRPα抗体がADCC又はADCPといったエフェクター機能を有している場合に、自己の免疫細胞を攻撃してしまう可能性があることを考え、エフェクター機能を有しない抗SIRPα抗体の作製についても検討を行った。エフェクター機能を低減させるために、抗体のサブクラスをIgG4とし、さらに、エフェクター機能を低減させる変異を抗体のFc領域に導入した。その結果、SIRPαとCD47との相互作用を強く阻害するが、エフェクター機能が低減されている抗SIRPα抗体を作製することができた。この抗体は、エフェクター細胞のFc受容体に結合せずエフェクター機能を発揮しないので、単独では十分な抗腫瘍作用がない。そこで、エフェクター機能を有する他の抗体医薬や免疫チェックポイント阻害作用を有する他の抗体医薬と併用したところ、良好な抗腫瘍効果を発揮することが確認され、本発明を完成させるに至った。
 すなわち、本発明は以下のとおりである。
[1](a)配列番号1で表されるアミノ酸配列からなる軽鎖CDRL1、
(b)配列番号2で表されるアミノ酸配列からなる軽鎖CDRL2、
(c)配列番号3で表されるアミノ酸配列からなる軽鎖CDRL3、
(d)配列番号4で表されるアミノ酸配列からなる重鎖CDRH1、
(e)配列番号5で表されるアミノ酸配列からなる重鎖CDRH2、及び
(f)配列番号6で表されるアミノ酸配列からなる重鎖CDRH3
を含む、ヒトSIRPαに特異的に結合し、ヒトSIRPαとCD47の結合を阻害する抗体。
[2] 重鎖定常領域がヒトIgG4の重鎖定常領域であり、ADCC及び/又はADCP活性の低減をもたらす変異を含む、[1]の抗体。
[3] 重鎖定常領域がヒトIgG4の重鎖定常領域であり、KabatらによるEUインデックスにより示される234位のフェニルアラニンがアラニンへ置換され、235位のロイシンがアラニンに置換され、さらに228位のセリンがプロリンへ置換されている、[1]又は[2]の抗体。
[4] 重鎖定常領域のアミノ酸配列が、配列番号25の140~466番目のアミノ酸残基からなるアミノ酸配列である、[3]の抗体。
[5] (ai)配列番号23の21~126番目のアミノ酸残基からなるアミノ酸配列からなる軽鎖可変領域若しくは
(aii)配列番号23の21~126番目のアミノ酸残基からなるアミノ酸配列と95%以上の配列同一性を有するアミノ酸配列からなり、ヒトSIRPαへの結合活性を有する軽鎖可変領域、並びに
(bi)配列番号25の20~139番目のアミノ酸残基からなるアミノ酸配列からなる重鎖可変領域若しくは
(bii)配列番号25の20~139番目のアミノ酸残基からなるアミノ酸配列と95%以上の配列同一性を有するアミノ酸配列からなり、ヒトSIRPαへの結合活性を有する重鎖可変領域
を含み、重鎖定常領域がヒトIgG4の重鎖定常領域であり、ADCC及び/又はADCP活性の低減をもたらす変異を含む、ヒトSIRPαに特異的に結合し、ヒトSIRPαとCD47の結合を阻害する抗体。
[6] 重鎖定常領域がヒトIgG4の重鎖定常領域であり、KabatらによるEUインデックスにより示される234位のフェニルアラニンがアラニンへ置換され、235位のロイシンがアラニンに置換され、さらに228位のセリンがプロリンへ置換されている、[5]の抗体。
[7] 重鎖定常領域のアミノ酸配列が、配列番号25の140~466番目のアミノ酸残基からなるアミノ酸配列である、[6]の抗体。
[8](a)配列番号7で表されるアミノ酸配列からなる軽鎖CDRL1、
(b)配列番号8で表されるアミノ酸配列からなる軽鎖CDRL2、
(c)配列番号9で表されるアミノ酸配列からなる軽鎖CDRL3、
(d)配列番号10で表されるアミノ酸配列からなる重鎖CDRH1、
(e)配列番号11で表されるアミノ酸配列からなる重鎖CDRH2、及び
(f)配列番号12で表されるアミノ酸配列からなる重鎖CDRH3
を含む、ヒトSIRPαに特異的に結合し、ヒトSIRPαとCD47の結合を阻害する抗体。
[9] 重鎖定常領域がヒトIgG4の重鎖定常領域であり、ADCC及び/又はADCP活性の低減をもたらす変異を含む、[8]の抗体。
[10] 重鎖定常領域がヒトIgG4の重鎖定常領域であり、KabatらによるEUインデックスにより示される234位のフェニルアラニンがアラニンへ置換され、235位のロイシンがアラニンに置換され、さらに228位のセリンがプロリンへ置換されている、[8]又は[9]のヒトSIRPαに特異的に結合し、ヒトSIRPαとCD47の結合を阻害する抗体。
[11] 重鎖定常領域のアミノ酸配列が、配列番号29の139~465番目のアミノ酸残基からなるアミノ酸配列である、[10]の抗体。
[12] (ai)配列番号27の21~127番目のアミノ酸残基からなるアミノ酸配列からなる軽鎖可変領域若しくは
(aii)配列番号27の21~127番目のアミノ酸残基からなるアミノ酸配列と95%以上の配列同一性を有するアミノ酸配列からなり、ヒトSIRPαへの結合活性を有する軽鎖可変領域、並びに
(bi)配列番号29の20~138番目のアミノ酸残基からなるアミノ酸配列からなる重鎖可変領域若しくは
(bii)配列番号29の20~138番目のアミノ酸残基からなるアミノ酸配列と95%以上の配列同一性を有するアミノ酸配列からなり、ヒトSIRPαへの結合活性を有する重鎖可変領域
を含み、重鎖定常領域がヒトIgG4の重鎖定常領域であり、ADCC及び/又はADCP活性の低減をもたらす変異を含む、ヒトSIRPαに特異的に結合し、ヒトSIRPαとCD47の結合を阻害する抗体。
[13] 重鎖定常領域がヒトIgG4の重鎖定常領域であり、KabatらによるEUインデックスにより示される234位のフェニルアラニンがアラニンへ置換され、235位のロイシンがアラニンに置換され、さらに228位のセリンがプロリンへ置換されている、[12]のヒトSIRPαに特異的に結合し、ヒトSIRPαとCD47の結合を阻害する抗体。
[14] 重鎖定常領域のアミノ酸配列が、配列番号29の139~465番目のアミノ酸残基からなるアミノ酸配列である、[13]の抗体。
[15](a)配列番号13で表されるアミノ酸配列からなる軽鎖CDRL1、
(b)配列番号14で表されるアミノ酸配列からなる軽鎖CDRL2、
(c)配列番号15で表されるアミノ酸配列からなる軽鎖CDRL3、
(d)配列番号16で表されるアミノ酸配列からなる重鎖CDRH1、
(e)配列番号17で表されるアミノ酸配列からなる重鎖CDRH2、及び
(f)配列番号18で表されるアミノ酸配列からなる重鎖CDRH3
を含む、ヒトSIRPαに特異的に結合し、ヒトSIRPαとCD47の結合を阻害する抗体。
[16] 重鎖定常領域がヒトIgG4の重鎖定常領域であり、ADCC及び/又はADCP活性の低減をもたらす変異を含む、[15]の抗体。
[17] 重鎖定常領域がヒトIgG4の重鎖定常領域であり、KabatらによるEUインデックスにより示される234位のフェニルアラニンがアラニンへ置換され、235位のロイシンがアラニンに置換され、さらに228位のセリンがプロリンへ置換されている、[15]又は[16]のヒトSIRPαに特異的に結合し、ヒトSIRPαとCD47の結合を阻害する抗体。
[18] 重鎖定常領域のアミノ酸配列が、配列番号33の144~470番目のアミノ酸残基からなるアミノ酸配列である、[17]の抗体。
[19] (ai)配列番号31の21~130番目のアミノ酸残基からなるアミノ酸配列からなる軽鎖可変領域若しくは
(aii)配列番号31の21~130番目のアミノ酸残基からなるアミノ酸配列と95%以上の配列同一性を有するアミノ酸配列からなり、ヒトSIRPαへの結合活性を有する軽鎖可変領域、並びに
(bi)配列番号33の20~143番目のアミノ酸残基からなるアミノ酸配列からなる重鎖可変領域若しくは
(bii)配列番号33の20~143番目のアミノ酸残基からなるアミノ酸配列と95%以上の配列同一性を有するアミノ酸配列からなり、ヒトSIRPαへの結合活性を有する重鎖可変領域
を含み、重鎖定常領域がヒトIgG4の重鎖定常領域であり、ADCC及び/又はADCP活性の低減をもたらす変異を含む、ヒトSIRPαに特異的に結合し、ヒトSIRPαとCD47の結合を阻害する抗体。
[20] 重鎖定常領域がヒトIgG4の重鎖定常領域であり、KabatらによるEUインデックスにより示される234位のフェニルアラニンがアラニンへ置換され、235位のロイシンがアラニンに置換され、さらに228位のセリンがプロリンへ置換されている、[19]のヒトSIRPαに特異的に結合し、ヒトSIRPαとCD47の結合を阻害する抗体。
[21] 重鎖定常領域のアミノ酸配列が、配列番号33の144~470番目のアミノ酸残基からなるアミノ酸配列である、[20]の抗体。
[22] 以下の(1)~(8)のいずれかの、[1]~[4]のいずれかの抗体:
(1)配列番号41の20~466番目のアミノ酸残基からなるアミノ酸配列からなる重鎖及び配列番号37の21~234番目のアミノ酸残基からなるアミノ酸配列からなる軽鎖からなるヒトSIRPαに特異的に結合し、ヒトSIRPαとCD47の結合を阻害する抗体;
(2)配列番号41の20~466番目のアミノ酸残基からなるアミノ酸配列と95%以上の配列同一性を有するアミノ酸配列からなり、ヒトSIRPαへの結合活性を有する重鎖及び配列番号37の21~234番目のアミノ酸残基と95%以上の配列同一性を有するアミノ酸配列からなり、ヒトSIRPαへの結合活性を有する軽鎖からなるヒトSIRPαに特異的に結合し、ヒトSIRPαとCD47の結合を阻害する抗体;
(3)配列番号41の20~466番目のアミノ酸残基からなるアミノ酸配列からなる重鎖及び配列番号39の21~234番目のアミノ酸残基からなるアミノ酸配列からなる軽鎖からなるヒトSIRPαに特異的に結合し、ヒトSIRPαとCD47の結合を阻害する抗体;
(4)配列番号41の20~466番目のアミノ酸残基からなるアミノ酸配列と95%以上の配列同一性を有するアミノ酸配列からなり、ヒトSIRPαへの結合活性を有する重鎖及び配列番号39の21~234番目のアミノ酸残基からなるアミノ酸配列と95%以上の配列同一性を有するアミノ酸配列からなり、ヒトSIRPαへの結合活性を有する軽鎖からなるヒトSIRPαに特異的に結合し、ヒトSIRPαとCD47の結合を阻害する抗体;
(5)配列番号43の20~466番目のアミノ酸残基からなるアミノ酸配列からなる重鎖及び配列番号35の21~234番目のアミノ酸残基からなるアミノ酸配列からなる軽鎖からなるヒトSIRPαに特異的に結合し、ヒトSIRPαとCD47の結合を阻害する抗体;
(6)配列番号43の20~466番目のアミノ酸残基からなるアミノ酸配列と95%以上の配列同一性を有するアミノ酸配列からなり、ヒトSIRPαへの結合活性を有する重鎖及び配列番号35の21~234番目のアミノ酸残基からなるアミノ酸配列と95%以上の配列同一性を有するアミノ酸配列からなり、ヒトSIRPαへの結合活性を有する軽鎖からなるヒトSIRPαに特異的に結合し、ヒトSIRPαとCD47の結合を阻害する抗体;
(7)配列番号43の20~466番目のアミノ酸残基からなるアミノ酸配列からなる重鎖及び配列番号37の21~234番目のアミノ酸残基からなるアミノ酸配列からなる軽鎖からなるヒトSIRPαに特異的に結合し、ヒトSIRPαとCD47の結合を阻害する抗体;及び
(8)配列番号43の20~466番目のアミノ酸残基からなるアミノ酸配列と95%以上の配列同一性を有するアミノ酸配列からなり、ヒトSIRPαへの結合活性を有する重鎖及び配列番号37の21~234番目のアミノ酸残基からなるアミノ酸配列と95%以上の配列同一性を有するアミノ酸配列からなり、ヒトSIRPαへの結合活性を有する軽鎖からなるヒトSIRPαに特異的に結合し、ヒトSIRPαとCD47の結合を阻害する抗体。
[23] ADCC及び/又はADCP活性が低減されている、[22]の抗体。
[24] 配列番号57で表されるヒトSIRPαの82番目のGln、83番目のLys、84番目のGlu、85番目のGlyを含むエピトープに結合する、ヒトSIRPαに特異的に結合し、ヒトSIRPαとCD47の結合を阻害する抗体。
[25] 重鎖定常領域がヒトIgG4の重鎖定常領域であり、ADCC及び/又はADCP活性の低減をもたらす変異を含む、[24]の抗体。
[26] 重鎖定常領域がヒトIgG4の重鎖定常領域であり、KabatらによるEUインデックスにより示される234位のフェニルアラニンがアラニンへ置換され、235位のロイシンがアラニンに置換され、さらに228位のセリンがプロリンへ置換されている、[24]又は[25]の抗体。
[27] 重鎖定常領域のアミノ酸配列が、配列番号25の140~466番目のアミノ酸残基からなるアミノ酸配列である、[26]の抗体。
[28] マクロファージの貪食作用を増強する[1]~[27]のいずれかの抗体。
[29] [1]~[28]のいずれかの抗体であって、重鎖カルボキシル末端のリシン残基が欠失している抗体。
[30] [1]~[29]のいずれかの抗体の抗原結合性断片。
[31] Fab、F(ab’)2、Fab’及びscFvからなる群から選択される、[30]の抗体の抗原結合性断片。
[32] [1]~[29]のいずれかの抗体又は[30]若しくは[31]の抗体の抗原結合断片を有効成分として含む医薬組成物。
[33] 抗腫瘍剤である、[32]の医薬組成物。
[34] 抗腫瘍剤の有効成分として、さらに免疫チェックポイント阻害剤及び/又はがん抗原に特異的に反応してADCC及び/又はADCP活性を有する抗体医薬を含む、[33]の医薬組成物。
[35] [1]~[29]のいずれかの抗体又は[30]若しくは[31]の抗体の抗原結合断片を有効成分として含む、免疫チェックポイント阻害剤及び/又はがん抗原に特異的に反応してADCC及び/又はADCP活性を有する抗体医薬と併用される医薬組成物。
[36] 免疫チェックポイント阻害剤が、PD-L1とPD-1との結合阻害剤、又はCTLA4阻害剤である、[34]又は[35]の医薬組成物。
[37] がん抗原に特異的に反応してADCC及び/又はADCP活性を有する抗体医薬が、抗CD20抗体、抗HER2抗体及び抗EGFR抗体からなる群から選択される、[34]又は[35]の医薬組成物。
[38] 腫瘍が、がん腫、肉腫、リンパ腫、白血病、骨髄腫、胚細胞腫、脳腫瘍、カルチノイド、神経芽腫、網膜芽細胞腫及び腎芽腫からなる群から選択される一種又は複数種の腫瘍である、[33]~[37]のいずれかの医薬組成物。
[39] 腫瘍が、腎がん、メラノーマ、有棘細胞がん、基底細胞がん、結膜がん、口腔がん、喉頭がん、咽頭がん、甲状腺がん、肺がん、乳がん、食道がん、胃がん、十二指腸がん、小腸がん、大腸がん、直腸がん、虫垂がん、肛門がん、肝がん、胆嚢がん、胆管がん、膵がん、副腎がん、膀胱がん、前立腺がん、子宮がん、膣がん、脂肪肉腫、血管肉腫、軟骨肉腫、横紋筋肉腫、ユーイング肉腫、骨肉腫、未分化多型肉腫、粘液型線維肉腫、悪性末梢性神経鞘腫、後腹膜肉腫、滑膜肉腫、子宮肉腫、消化管間質腫瘍、平滑筋肉腫、類上皮肉腫、B細胞リンパ腫、T・NK細胞リンパ腫、ホジキンリンパ腫、骨髄性白血病、リンパ性白血病、骨髄増殖性疾患、骨髄異形成症候群、多発性骨髄腫、精巣がん、卵巣がん、神経膠腫及び髄膜腫からなる群から選択される一種又は複数種の腫瘍である、[38]の医薬組成物。
[40] [1]~[29]のいずれかの抗体の重鎖及び軽鎖のアミノ酸配列をコードするヌクレオチド配列からなるポリヌクレオチド。
[41] [40]のポリヌクレオチドを含むベクター。
[42] [40]のポリヌクレオチド又は[41]のベクターを含む宿主細胞。
[43] [42]の宿主細胞を培養し、培養物から抗体を精製することを含む、[1]~[29]のいずれかの抗体の製造方法。
[44] [43]の方法によって製造された抗体。
 本明細書は本願の優先権の基礎となる日本国特許出願番号2018-131116号の開示内容を包含する。
 本発明の抗SIRPα抗体は、貪食細胞に発現しているSIRPαと腫瘍細胞に発現しているCD47との相互作用を強く阻害し、腫瘍細胞から貪食細胞に“Don’t-eat-me”シグナルが伝達されるのを阻害する一方で、エフェクター機能を有していないので自己の免疫細胞を攻撃することはないので安全である。
 本発明の抗SIRPα抗体は、エフェクター機能を有する他の抗体医薬や免疫チェックポイント阻害作用を有する他の抗体医薬と併用することにより、優れた抗腫瘍効果を発揮することができる。
抗SIRPA抗体のエピトープ解析に用いたSIRPAコンストラクトの構造(A)及びラット抗ヒトSIRPA抗体の各コンストラクトに対する反応性を示す図(B)である。 抗SIRPA抗体のエピトープ解析に用いたhmSIRPAコンストラクトに対するヒト化抗ヒトSIRPA抗体の反応性を示す図(i)-(iv)、及び抗SIRPA抗体のエピトープ解析に用いたSIRPAコンストラクトのアミノ酸配列(v)を示す図である。 抗SIRPA抗体のFab断片とSIRPA_V2_IgVの複合体全体のリボンモデルを示す図である。 ヒトSIRPAのbeta5以前(A)とbeta5以降(B)の領域と抗体SIRPA抗体(抗体D13)との相互作用を示す図である。 ヒトSIRPAのbeta5‐6ループ部分の各バリアントのアミノ酸配列の比較を示す図である。 抗SIRPA抗体単剤で用いた場合(A)と抗SIRPA抗体とTrastuzumabを併用した場合(B)の胃癌細胞株に対するADCP活性を示す図である。 ヒトキメラ化抗SIRPA抗体(cD13、cF44、cF63)のヒトSIRPAに対する結合性評価の結果を示す図である。 ヒトキメラ化抗SIRPA抗体(cD13、cF44、cF63)のサルSIRPAに対する結合性評価の結果を示す図である。 ヒトキメラ化抗SIRPA抗体(cD13、cF44、cF63)のヒト又はサルSIRPAとCD47の結合阻害活性評価の結果を示す図である((i):SIRPA_V1、(ii):SIRPA_V2、(iii):サルSIRPA)。 ヒトキメラ化抗SIRPA抗体(cF44の各アイソタイプ)のヒト又はサルSIRPAとCD47の結合阻害活性評価の結果を示す図である((i):SIRPA_V1、(ii):SIRPA_V2、(iii):サルSIRPA)。 抗SIRPA抗体単剤で用いた場合(A)と抗SIRPA抗体とRituximabを併用した場合(B)のBurkitt’s lymphoma細胞株に対するADCP活性を示す図である。 ヒトキメラ化抗ヒトSIRPA抗体のPBMC及びマクロファージに対する毒性評価の結果を示す図である。AはcD13、cF44及びcF63のPBMCに対するADCP活性を示し、Bは定常領域の異なるcF44抗体のADCP活性を示し、Cはマクロファージの存在比を示す。 抗体D13の重鎖可変領域とヒト化抗体重鎖hH1の可変領域とヒト化抗体重鎖hH2の可変領域のアミノ酸配列の比較を示す図である。 抗体D13の軽鎖可変領域とヒト化抗体軽鎖hL2の可変領域とヒト化抗体重鎖hL3の可変領域とヒト化抗体軽鎖hL4の可変領域のアミノ酸配列の比較を示す図である。 ヒト化抗SIRPA抗体のヒトSIRPAのバリアント((i):V1、(ii):V2、(iii):V3及び(iv):V4)に対する結合活性を示す図である。 ヒト化抗SIRPA抗体のヒトSIRPAのバリアント((i):V5、(ii):V6、(iii):V7及び(iv):V8)に対する結合活性を示す図である。 ヒト化抗SIRPA抗体のヒトSIRPAのバリアント((i):V9、(ii):V10、(iii):サルSIRPA及び(iv):Mock)に対する結合活性を示す図である。 ヒト化抗SIRPA抗体のマウスSIRPA((i):C57BL/6、(ii):Balb/c、(iii):129sv)に対する結合活性を示す図である。 ヒト化抗SIRPA抗体のマウスSIRPA((i):NOD、(ii):Mock)に対する結合活性を示す図である。 ヒト化抗SIRPA抗体のヒト(A及びB)、又はサルSIRPA(C)とCD47の結合の阻害活性評価の結果を示す図である。 ヒト化抗ヒトSIRPA抗体単剤で用いた場合(A及びC)とヒト化抗ヒトSIRPA抗体とRituximabを併用した場合(B及びD)の癌細胞株(A及びB:Raji株、C及びD:Ramos株)に対するADCP活性を示す図である。 cD13軽鎖をコードするヌクレオチド配列及びcD13軽鎖のアミノ酸配列を示す図である。 cD13重鎖をコードするヌクレオチド配列及びcD13重鎖のアミノ酸配列を示す図である。 cF44軽鎖をコードするヌクレオチド配列及びcF44軽鎖のアミノ酸配列を示す図である。 cF44重鎖をコードするヌクレオチド配列及びcF44重鎖のアミノ酸配列を示す図である。 cF63軽鎖をコードするヌクレオチド配列及びcF63軽鎖のアミノ酸配列を示す図である。 cF63重鎖をコードするヌクレオチド配列及びcF63重鎖のアミノ酸配列を示す図である。 hL2をコードするヌクレオチド配列及びhL2のアミノ酸配列を示す図である。 hL3をコードするヌクレオチド配列及びhL3のアミノ酸配列を示す図である。 hL4をコードするヌクレオチド配列及びhL4のアミノ酸配列を示す図である。 hH1をコードするヌクレオチド配列及びhH1のアミノ酸配列を示す図である。 hH2をコードするヌクレオチド配列及びhH2のアミノ酸配列を示す図である。 抗体D13のCDR配列を示す図である。 抗体F44のCDR配列を示す図である。 抗体F63のCDR配列を示す図である。 各種抗ヒトSIRPA抗体によるヒトSIRPA_V1/CD47結合阻害活性評価の結果(A)、各種抗ヒトSIRPA抗体によるヒトSIRPA_V2/CD47結合阻害活性評価の結果(B)、並びに各種抗体によるヒトSIRPA抗体によるヒトSIRPA_V1/CD47若しくはSIRPA_V2/CD47結合活性阻害のIC50値を示す図である。 各種抗ヒトSIRPA抗体のヒトSIRPB(A)、ヒトSIRPG(B)、に対する結合性評価の結果、並びにA及びBの陰性対照となる試験の結果(C)を示す図である。 各種抗ヒトSIRPA抗体にRituximabを併用した際のBurkitt‘s lymphoma細胞株(Raji)に対するADCP活性:10μg/mLにおけるドナー毎の反応性比較結果のうち、反応時間2時間(A)、反応時間16時間(B)、反応時間2時間における濃度依存性比較結果(C)、及び各種抗ヒトSIRPA抗体による、マクロファージ同士が貪食するSelf-ADCP活性(D)を示す図である。各図中の「Ab-」は抗体を添加しない陰性対照を示し、「+ Rmab」はRituximabを同時添加していることを示している。 OSE-172抗体重鎖(OSE-172_hG4Pro)及び軽鎖(OSE-172_hK)のアミノ酸配列を示す図である。 KWAR23抗体重鎖(KWAR23_hG4Pro)及び軽鎖(KWAR23_hK)のアミノ酸配列を示す図である。 ADU-1805抗体重鎖(ADU-1805_hG2)及び軽鎖(ADU-1805_hK)のアミノ酸配列を示す図である。
 以下、本発明を詳細に説明する。
抗SIRPα抗体の特性
 本発明は、SIRPα蛋白質の細胞外IgVドメインを認識し結合する抗SIRPα抗体である。
 SIRPα(signal regulatory protein α)は、マクロファージ、樹上細胞、好中球などのミエロイド細胞、及びグリア細胞に存在するIgスーパーファミリーの1回膜貫通型分子である。細胞外領域は1つのIgVドメインと2つのIgCドメインからなり、CD47との結合部位であるIgVドメインについては、ヒトではV1~V10の10種類のバリアントが報告されている。SIRPα蛋白質の細胞外IgVドメインは、SIRPα蛋白質を構成する3つの細胞外Ig様ドメインのうちの1つのIgVドメインである。このうち、V1及びV2がメジャーなバリアントであり、本発明の抗SIRPα抗体は、メジャーなバリアントであるV1及びV2を含むすべてのバリアントに結合する。本発明において、「SIRPα」を「SIRPA」と称する場合がある。
 ヒトSIRPα蛋白質のアミノ酸配列は、GenBank Accession No.:NP_001035111に開示されている。
 本発明で用いるモノクローナル抗体は、マウス、ラット、ウサギ、ハムスター、モルモット、ウマ、サル、イヌ、ブタ、ウシ、ヤギ、ヒツジ等の哺乳動物をSIRPα又はその断片を免疫原として免疫し、脾臓細胞等とミエローマとを融合し、ハイブリドーマを作製し、ハイブリドーマが産生分泌する抗体として得ることができる。ハイブリドーマは公知の方法で作製することができる。
 免疫原としてのSIRPαは配列情報に基づいて化学合成することもでき、またタンパク質をコードするDNA配列情報に基づいて公知の方法でリコンビナントタンパク質として得ることもできる。
 抗体のスクリーニングは任意の方法で行うことができるが、好ましくは、SIRPαをコードするDNAでトランスフェクトした動物細胞を用いたCell-ELISAによりスクリーニングすればよい。ヒトSIRPαのV1蛋白質のアミノ酸配列を配列表の配列番号56に、ヒトSIRPαのV2蛋白質のアミノ酸配列を配列表の配列番号57に示す。
 本発明の抗SIRPα抗体は、SIRPαとCD47の結合を阻害する。
 腫瘍細胞はCD47を高発現しており、貪食能を有する貪食細胞に発現しているSIRPαとCD47が結合し相互作用することにより、貪食細胞に“Don’t-eat-me”シグナルを伝達し、貪食細胞による貪食から逃れている。抗SIRPα抗体は、SIRPαとCD47の結合を阻害することにより、腫瘍細胞から貪食細胞に“Don’t-eat-me”シグナルが伝達されるのを阻害し、貪食細胞による腫瘍細胞の貪食作用を増強する。その結果、抗腫瘍効果を発揮し得る。貪食能を有する貪食細胞として、M1型、M2型マクロファージなどのマクロファージやimDC(未成熟樹状細胞)などの樹状細胞等が挙げられる。
 この際、抗SIRPα抗体がエフェクター機能を有し、マクロファージ等の貪食細胞やナチュラルキラー細胞やT細胞等のエフェクター細胞のFcγレセプター等のFcレセプターに結合すると、ADCC(Antibody Dependent Cellular Cytotoxicity:抗体依存性細胞傷害)やADCP(Antidoby Dependent Cellular Phagocytosis:抗体依存性細胞貪食能)によりPBMC(末梢血単核球)やマクロファージ等の自己のエフェクター細胞を攻撃してしまう。
 自己の細胞への攻撃を避けるため、本発明の抗SIRPα抗体は、エフェクター機能が低減されている。その結果、本発明の抗SIRPα抗体は、単にSIRPαとCD47の結合を抑制する作用のみを有し、エフェクター細胞のFcレセプターには結合せず、エフェクター機能を発揮しない。
 本発明の抗SIRPα抗体は、自己の免疫細胞を攻撃することがないため、副作用なしに医薬として安全に用いることができる。
 ただし、本発明の抗SIRPα抗体は、エフェクター機能が低減されているため、単独では十分な抗腫瘍効果を発揮しない。そのため、後記するように他の抗腫瘍剤と併用して用いる。
 エフェクター機能を低減させるためには、抗SIRPα抗体のFc部分がマクロファージやT細胞のFcレセプターに結合しないことが必要である。このため、本発明の抗SIRPα抗体のサブクラスはIgG4由来のものに置換してある。一般的にヒトIgGサブクラスの中で、IgG4はADCC活性、CDC活性及び/又はADCP活性等のエフェクター機能が低いサブクラスとして知られている(Bruggemann et al.,J.Exp.Med.,1351-1361,1987)。治療用抗体で正常臓器に発現する分子を標的とする場合にエフェクター機能を介した細胞障害による毒性を回避するためのIgGフォーマットの一つとして利用される(オプジーボなど)。ただし、IgG4サブクラスのエフェクター機能が低いといっても、全く無いわけではない。そこで、本発明の抗SIRPα抗体は重鎖定常領域にエフェクター機能をさらに低減させるような変異、すなわちADCC及び/又はADCP活性の低減をもたらす1アミノ酸以上の置換等の変異を導入している。そのような変異として、KabatらによるEUインデックス(Kabat et.al.,Sequences of proteins of immunological interest,1991 Fifth edition)により示される234位のフェニルアラニンのアラニンへの置換(F234A)及び235位のロイシンのアラニンへの置換(L235A)が挙げられる(Parekh et al.,mAbs,310-318,2012)。このような抗体の変異をFALA変異と呼ぶ。KabatらによるEUインデックスにより示される234位のフェニルアラニンをEUナンバリング234のフェニルアラニンということもある。
 また、IgG4は抗体重鎖間のSS結合の形成が安定していないので、安定性を高めるために、抗体重鎖間のSS結合の形成を促進させる変異を導入する。このような変異として、KabatらによるEUインデックスにより示される228位のセリンのプロリンへの置換(S228P)が挙げられる(ANGAL et.al.,Molecular Immunology,105-108,1993)。この抗体の変異をPRO変異と呼ぶ。
 本発明の抗体の定常領域には、上記のFALA変異及びPRO変異が同時に導入されていても良い(Vafa et.al.,Methods,65,114-126,2014)。FALA変異及びPro変異の両方の変異を有するIgG4重鎖を「IgG4proFALA」タイプ重鎖、「IgG4PFALA」タイプ重鎖又は「IgG4pf」タイプ重鎖とも呼ぶ。
 抗体重鎖定常領域はCH1、ヒンジ、CH2及びCH3領域からなり、CH1は、EUインデックス118から215、ヒンジはEUインデックス216から230、CH2はEUインデックス231から340、CH3はEUインデックス341から446と定義される。KabatらによるEUインデックスにより示される234位のフェニルアラニンから置換されたアラニンは抗体D13の重鎖アミノ酸配列を示す配列番号25の第253番目のアラニン、抗体F44の重鎖アミノ酸配列を示す配列番号29の第252番目のアラニン及び抗体F63の重鎖アミノ酸配列を示す配列番号33の第257番目のアラニンに相当し、235位のロイシンから置換されたアラニンは配列番号25の第254番目のアラニン、配列番号29の第253番目のアラニン及び配列番号33の第258番目のアラニンに相当する。また、KabatらによるEUインデックスにより示される228位のセリンから置換されたプロリンは配列番号25の第247番目のプロリン、配列番号29の第246番目のプロリン及び配列番号33の第251番目のプロリンに相当する。
 「IgG4proFALA」タイプ重鎖の定常領域のアミノ酸配列は、配列番号25の140~466番目のアミノ酸残基からなるアミノ酸配列、配列番号29の139~465番目のアミノ酸残基からなるアミノ酸配列及び配列番号33の144~470番目のアミノ酸残基からなるアミノ酸配列である。
 ヒトIgG1は、ヒトIgG サブクラスの中で、補体結合を介したCDC活性、抗体依存的な細胞障害活性といったエフェクター機能が非常に強く(Bruggemann et al.,J.Exp.Med.,1351-1361,1987)、治療用抗体で癌に高発現する分子を標的とする場合に、エフェクター機能を介した細胞障害による癌細胞の細胞死誘導を促すことで治療効果を示すIgGフォーマットとして利用される(trastuzumab、rituximabなど)。本発明の抗体のアイソタイプとしてIgG1を用いる場合は、定常領域のアミノ酸残基の一部を置換することによって、エフェクター機能を調整することが可能である(WO88/007089、W094/28027、W094/29351参照)。エフェクター機能を減弱させたIgG1の変異体としては、IgG1 LALA(IgG1-L234A、L235A)、IgG1 LAGA(IgG1-L235A、G237A)等が挙げられる。本発明の抗体の定常領域として、これらの変異が導入されたIgG1重鎖定常領域を使用することも可能である。
 ヒトIgG2は、ヒトIgG サブクラスの中で、補体結合を介したCDC活性、抗体依存的な細胞障害活性といったエフェクター機能が非常に弱く(Bruggemann et al.,J.Exp.Med.,1351-1361,1987)、治療用抗体で正常臓器に発現する分子を標的とする場合にエフェクター機能を介した細胞障害による毒性を回避するためのIgGフォーマットの一つとして利用される(denosumab、evolocumab、brodalumabなど)。本発明の抗体の定常領域として、IgG2重鎖定常領域を使用することも可能である。
 種交差性については、本発明の抗SIRPα抗体は、ヒトSIRPα及びサル(Cynomolgus monkey)に結合するが、マウスSIRPαには結合しない。
ヒトキメラ化抗体及びヒト化抗体
 本発明の抗SIRPα抗体は、ヒトに対する異種抗原性を低下させるために改変したヒトキメラ化抗体及びヒト化抗体も含む。ヒト化抗体はCDR移植抗体ともいう。
ヒトキメラ化抗体
 ヒトキメラ化抗体は、ヒト以外の動物の抗体の軽鎖可変領域及び重鎖可変領域とヒト抗体の軽鎖定常領域及び重鎖定常領域とからなる抗体をいう。ヒトキメラ化抗体は、抗SIRPα抗体を産生するハイブリドーマより軽鎖可変領域をコードするcDNA及び重鎖可変領域をコードするcDNAを採取し、ヒト抗体の軽鎖定常領域及び重鎖定常領域をコードするcDNAを有する発現ベクターに挿入してヒトキメラ化抗体発現ベクターを構築し、宿主細胞へ導入して発現させることにより作製することができる。
 重鎖定常領域は、3個のドメインC1、C2及びC3から構成されている。本発明においては、上記のように、キメラ抗体のヒト重鎖定常領域は、IgG4サブクラスの重鎖定常領域であってPro変異及びFALA変異を有する重鎖定常領域IgG4proFALAである。また、軽鎖定常領域としてはヒトIgに属すればよく、κ又はλ定常領域である。
 本発明の抗SIRPα抗体のヒトキメラ化抗体の例として、ラット抗ヒトSIRPαモノクローナル抗体D13、F44及びF63の可変領域を有するヒトキメラ化抗体、抗体cD13、抗体cF44及び抗体cF63が挙げられる。これら3つの抗体は、ヒトSIRPαとの結合性が高い抗体であり、SIRPαとCD47の結合の阻害活性が高い抗体である。この中でも、高い活性を有している抗体cD13及び抗体cF63が好ましい。
抗体cD13
 抗体cD13の軽鎖可変領域をコードするcDNAのヌクレオチド配列は、配列表の配列番号22の61~378番目のヌクレオチドからなるヌクレオチド配列であり(図17)、抗体cD13の軽鎖可変領域のアミノ酸配列は、配列表の配列番号23の21~126番目のアミノ酸残基からなるアミノ酸配列である(図17)。
 また、抗体cD13の重鎖可変領域をコードするcDNAのヌクレオチド配列は、配列表の配列番号24の58~417番目のヌクレオチドからなるヌクレオチド配列であり(図18)、抗体cD13の重鎖可変領域のアミノ酸配列は、配列表の配列番号25の20~139番目のアミノ酸残基からなるアミノ酸配列である(図18)。
 すなわち、本発明の抗SIRPα抗体は、配列番号23の21~126番目のアミノ酸残基からなるアミノ酸配列からなる軽鎖可変領域及び配列番号25の20~139番目のアミノ酸残基からなるアミノ酸配列からなる重鎖可変領域を含む、ヒトSIRPαに結合する抗ヒトSIRPα抗体である。
 また、上記の配列番号22の61~378番目のヌクレオチドからなるヌクレオチド配列又は配列番号24の58~417番目のヌクレオチドからなるヌクレオチド配列とCLUSTAL W(アラインメントツール)等(例えば、デフォルトすなわち初期設定のパラメータ)を用いて計算したときに、少なくとも85%以上、好ましくは90%以上、さらに好ましくは95%以上、特に好ましくは97%以上、98%以上、あるいは99%以上の配列同一性を有しているヌクレオチド配列からなるDNAであって、抗体の軽鎖可変領域又は重鎖可変領域の活性、すなわちヒトSIRPαへの結合活性を有するタンパク質をコードするDNAも本発明の抗体の軽鎖可変領域又は重鎖可変領域をコードするDNAに含まれる。
 また、上記の配列番号22の61~378番目のヌクレオチドからなるヌクレオチド配列又は配列番号24の58~417番目のヌクレオチドからなるヌクレオチド配列と相補的な配列からなるDNAとストリンジェントな条件下でハイブリダイズすることができるDNAであって抗体の軽鎖可変領域又は重鎖可変領域の活性、すなわちヒトSIRPαへの結合活性を有するタンパク質をコードするDNAも本発明の軽鎖可変領域又は重鎖可変領域をコードするDNAに含まれる。
 また、上記の軽鎖可変領域又は重鎖可変領域は、配列番号23の21~126番目のアミノ酸残基からなるアミノ酸配列又は配列番号25の20~139番目のアミノ酸残基からなるアミノ酸配列からなる軽鎖可変領域又は重鎖可変領域のみならず、該アミノ酸配列において、1若しくは数個、例えば、1~10個、好ましくは1~5個、さらに好ましくは1若しくは2個、さらに好ましくは1個のアミノ酸が欠失、置換、付加されたアミノ酸配列からなり、抗体の重鎖可変領域又は軽鎖可変領域の活性、すなわちヒトSIRPαへの結合活性を有するタンパク質からなる軽鎖可変領域又は重鎖可変領域も含む。
 このような配列番号23の21~126番目のアミノ酸残基からなるアミノ酸配列又は配列番号25の20~139番目のアミノ酸残基からなるアミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列として、配列番号23の21~126番目のアミノ酸残基からなるアミノ酸配列又は配列番号25の20~139番目のアミノ酸残基からなるアミノ酸配列と、CLUSTAL W(アラインメントツール)等(例えば、デフォルトすなわち初期設定のパラメータ)を用いて計算したときに、少なくとも85%以上、好ましくは90%以上、さらに好ましくは95%以上、特に好ましくは97%以上、98%以上、あるいは99%以上の配列同一性を有しているものが挙げられる。
 このような配列番号23の21~126番目のアミノ酸残基からなるアミノ酸配列又は配列番号25の20~139番目のアミノ酸残基からなるアミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列を有するタンパク質は配列番号23の21~126番目のアミノ酸残基からなるアミノ酸配列又は配列番号25の20~139番目のアミノ酸残基からなるアミノ酸配列を有するタンパク質と実質的に同一である。
 さらに、抗体cD13は、軽鎖可変領域のCDR(相補性決定領域)として、配列番号1で表されるアミノ酸配列(GASKSVRTYMH)からなるCDRL1、配列番号2で表されるアミノ酸配列(SASNLEA)からなるCDRL2、配列番号3で表されるアミノ酸配列(QQSNEPPYT)からなるCDRL3を含み、さらに、重鎖可変領域のCDRとして、配列番号4で表されるアミノ酸配列(GFTFSDYGMI)からなるCDRH1、配列番号5で表されるアミノ酸配列(SISSSSSYIY)からなるCDRH2、配列番号6で表されるアミノ酸配列(RYYGFNYPFDY)からなるCDRH3を含む(図28)。
 すなわち、本発明の抗SIRPα抗体は、配列番号1で表されるアミノ酸配列からなるCDRL1、配列番号2で表されるアミノ酸配列からなるCDRL2、配列番号3で表されるアミノ酸配列からなるCDRL3を含み、さらに、重鎖可変領域のCDRとして、配列番号4で表されるアミノ酸配列からなるCDRH1、配列番号5で表されるアミノ酸配列からなるCDRH2、配列番号6で表されるアミノ酸配列からなるCDRH3を含む抗体である。
 上記の各CDRは、それぞれに表されるアミノ酸配列において、1若しくは数個、好ましくは1若しくは2個、さらに好ましくは1個のアミノ酸が欠失、置換、付加されたアミノ酸配列からなるアミノ酸配列からなるCDRも含む。
 キメラ又はヒト化D13抗体は、配列番号73で表されるアミノ酸配列からなるSIRPα変異体には結合するが、配列番号74又は75で表されるアミノ酸配列からなるSIRPα変異体には結合しない。配列番号73で表されるアミノ酸配列中のNQKEG配列(配列番号76)は、配列番号74ではNQKEE配列(配列番号77)に、配列番号75ではSFTEG配列(配列番号80)に置換されており、キメラ又はヒト化D13抗体とSIRPαの結合にNQKEG配列(配列番号76)が必要であることが明らかになった。なお、X線結晶構造解析により、抗体cD13は配列番号57で表されるヒトSIRPαバリアント2のアミノ酸残基Gln82、Lys83、Glu84、Gly85、His86、Phe87(各アミノ酸残基の位置は、配列表の配列番号57に対応している)を介してSIRPαと結合することが示唆されており、Gln82、Lys83、Glu84、Gly85からなる配列が、上記NQKEG配列中のQKEG部分に相当する。従って、NQKEG配列はD13抗体とヒトSIRPαの結合に必須なエピトープである。NQKEG配列(配列番号76)を特異的に認識する抗体、すなわちNQKEG配列(配列番号76)を有する配列番号73で表されるアミノ酸配列からなるSIRPα変異体には結合するが該配列を有さない配列番号74又は75で表されるアミノ酸配列からなるSIRPα変異体には結合しない抗体を選択することにより、D13抗体と同一のエピトープを有する抗体を選択することができる。
抗体cF44
 抗体cF44の軽鎖可変領域をコードするcDNAのヌクレオチド配列は、配列表の配列番号26の61~381番目のヌクレオチドからなるヌクレオチド配列であり(図19)、抗体cF44の軽鎖可変領域のアミノ酸配列は、配列表の配列番号27の21~127番目のアミノ酸残基からなるアミノ酸配列である(図19)。
 また、抗体cF44の重鎖可変領域をコードするcDNAのヌクレオチド配列は、配列表の配列番号28の58~414番目のヌクレオチドからなるヌクレオチド配列であり(図20)、抗体cF44の重鎖可変領域のアミノ酸配列は、配列表の配列番号29の20~138番目のアミノ酸残基からなるアミノ酸配列である(図20)。
 すなわち、本発明の抗SIRPα抗体は、配列番号27の21~127番目のアミノ酸残基からなるアミノ酸配列からなる軽鎖可変領域及び配列番号29の20~138番目のアミノ酸残基からなるアミノ酸配列からなる重鎖可変領域を含む、ヒトSIRPαに結合する抗ヒトSIRPα抗体である。
 また、上記の配列番号26の61~381番目のヌクレオチドからなるヌクレオチド配列又は配列番号28の58~414番目のヌクレオチドからなるヌクレオチド配列とCLUSTAL W(アラインメントツール)等(例えば、デフォルトすなわち初期設定のパラメータ)を用いて計算したときに、少なくとも85%以上、好ましくは90%以上、さらに好ましくは95%以上、特に好ましくは97%以上、98%以上、あるいは99%以上の配列同一性を有しているヌクレオチド配列からなるDNAであって、抗体の軽鎖可変領域又は重鎖可変領域の活性、すなわちヒトSIRPαへの結合活性を有するタンパク質をコードするDNAも本発明の抗体の軽鎖可変領域又は重鎖可変領域をコードするDNAに含まれる。
 また、上記の配列番号26の61~381番目のヌクレオチドからなるヌクレオチド配列又は配列番号28の58~414番目のヌクレオチドからなるヌクレオチド配列と相補的な配列からなるDNAとストリンジェントな条件下でハイブリダイズすることができるDNAであって抗体の軽鎖可変領域又は重鎖可変領域の活性、すなわちヒトSIRPαへの結合活性を有するタンパク質をコードするDNAも本発明の軽鎖可変領域又は重鎖可変領域をコードするDNAに含まれる。
 また、上記の軽鎖可変領域又は重鎖可変領域は、配列番号27の21~127番目のアミノ酸残基からなるアミノ酸配列又は配列番号29の20~138番目のアミノ酸残基からなるアミノ酸配列からなる軽鎖可変領域又は重鎖可変領域のみならず、該アミノ酸配列において、1若しくは数個、例えば、1~10個、好ましくは1~5個、さらに好ましくは1若しくは2個、さらに好ましくは1個のアミノ酸が欠失、置換、付加されたアミノ酸配列からなり、抗体の重鎖可変領域又は軽鎖可変領域の活性、すなわちヒトSIRPαへの結合活性を有するタンパク質からなる軽鎖可変領域又は重鎖可変領域も含む。
 このような配列番号27の21~127番目のアミノ酸残基からなるアミノ酸配列又は配列番号29の20~138番目のアミノ酸残基からなるアミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列として、配列番号27の21~127番目のアミノ酸残基からなるアミノ酸配列又は配列番号29の20~138番目のアミノ酸残基からなるアミノ酸配列と、CLUSTAL W(アラインメントツール)等(例えば、デフォルトすなわち初期設定のパラメータ)を用いて計算したときに、少なくとも85%以上、好ましくは90%以上、さらに好ましくは95%以上、特に好ましくは97%以上、98%以上、あるいは99%以上の配列同一性を有しているものが挙げられる。
 このような配列番号27の21~127番目のアミノ酸残基からなるアミノ酸配列又は配列番号29の20~138番目のアミノ酸残基からなるアミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列を有するタンパク質は配列番号27の21~127番目のアミノ酸残基からなるアミノ酸配列又は配列番号29の20~138番目のアミノ酸残基からなるアミノ酸配列を有するタンパク質と実質的に同一である。
 さらに、抗体cF44は、軽鎖可変領域のCDR(相補性決定領域)として、配列番号7で表されるアミノ酸配列(KASKSISKYLA)からなるCDRL1、配列番号8で表されるアミノ酸配列(SGSTLQS)からなるCDRL2、配列番号9で表されるアミノ酸配列(QQHNEYPPT)からなるCDRL3を含み、さらに、重鎖可変領域のCDRとして、配列番号10で表されるアミノ酸配列(GFTFSNYYMA)からなるCDRH1、配列番号11で表されるアミノ酸配列(YITTGGGSTY)からなるCDRH2、配列番号12で表されるアミノ酸配列(ANYGGSYFDY)からなるCDRH3を含む(図29)。
 すなわち、本発明の抗SIRPα抗体は、配列番号7で表されるアミノ酸配列からなるCDRL1、配列番号8で表されるアミノ酸配列からなるCDRL2、配列番号9で表されるアミノ酸配列からなるCDRL3を含み、さらに、重鎖可変領域のCDRとして、配列番号10で表されるアミノ酸配列からなるCDRH1、配列番号11で表されるアミノ酸配列からなるCDRH2、配列番号12で表されるアミノ酸配列からなるCDRH3を含む抗体である。
 上記の各CDRは、それぞれに表されるアミノ酸配列において、1若しくは数個、好ましくは1若しくは2個、さらに好ましくは1個のアミノ酸が欠失、置換、付加されたアミノ酸配列からなるアミノ酸配列からなるCDRも含む。
抗体cF63
 抗体cF63の軽鎖可変領域をコードするcDNAのヌクレオチド配列は、配列表の配列番号30の61~390番目のヌクレオチドからなるヌクレオチド配列であり(図21)、抗体F63の軽鎖可変領域のアミノ酸配列は、配列表の配列番号31の21~130番目のアミノ酸残基からなるアミノ酸配列である(図21)。
 また、抗体cF63の重鎖可変領域をコードするcDNAのヌクレオチド配列は、配列表の配列番号32の58~429番目のヌクレオチドからなるヌクレオチド配列であり(図22)、抗体cF63の重鎖可変領域のアミノ酸配列は、配列表の配列番号33の20~143番目のアミノ酸残基からなるアミノ酸配列である(図22)。
 すなわち、本発明の抗SIRPα抗体は、配列番号31の21~130番目のアミノ酸残基からなるアミノ酸配列からなる軽鎖可変領域及び配列番号33の20~143番目のアミノ酸残基からなるアミノ酸配列からなる重鎖可変領域を含む、ヒトSIRPαに結合する抗ヒトSIRPα抗体である。
 また、上記の配列番号30の61~390番目のヌクレオチドからなるヌクレオチド配列又は配列番号32の58~429番目のヌクレオチドからなるヌクレオチド配列とCLUSTAL W(アラインメントツール)等(例えば、デフォルトすなわち初期設定のパラメータ)を用いて計算したときに、少なくとも85%以上、好ましくは90%以上、さらに好ましくは95%以上、特に好ましくは97%以上、98%以上、あるいは99%以上の配列同一性を有しているヌクレオチド配列からなるDNAであって、抗体の軽鎖可変領域又は重鎖可変領域の活性、すなわちヒトSIRPαへの結合活性を有するタンパク質をコードするDNAも本発明の抗体の軽鎖可変領域又は重鎖可変領域をコードするDNAに含まれる。
 また、上記の配列番号30の61~390番目のヌクレオチドからなるヌクレオチド配列又は配列番号32の58~429番目のヌクレオチドからなるヌクレオチド配列と相補的な配列からなるDNAとストリンジェントな条件下でハイブリダイズすることができるDNAであって抗体の軽鎖可変領域又は重鎖可変領域の活性、すなわちヒトSIRPαへの結合活性を有するタンパク質をコードするDNAも本発明の軽鎖可変領域又は重鎖可変領域をコードするDNAに含まれる。
 また、上記の軽鎖可変領域又は重鎖可変領域は、配列番号31の21~130番目のアミノ酸残基からなるアミノ酸配列又は配列番号33の20~143番目のアミノ酸残基からなるアミノ酸配列からなる軽鎖可変領域又は重鎖可変領域のみならず、該アミノ酸配列において、1若しくは数個、例えば、1~10個、好ましくは1~5個、さらに好ましくは1若しくは2個、さらに好ましくは1個のアミノ酸が欠失、置換、付加されたアミノ酸配列からなり、抗体の重鎖可変領域又は軽鎖可変領域の活性、すなわちヒトSIRPαへの結合活性を有するタンパク質からなる軽鎖可変領域又は重鎖可変領域も含む。
 このような配列番号31の21~130番目のアミノ酸残基からなるアミノ酸配列又は配列番号33の20~143番目のアミノ酸残基からなるアミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列として、配列番号31の21~130番目のアミノ酸残基からなるアミノ酸配列又は配列番号33の20~143番目のアミノ酸残基からなるアミノ酸配列と、CLUSTAL W(アラインメントツール)等(例えば、デフォルトすなわち初期設定のパラメータ)を用いて計算したときに、少なくとも85%以上、好ましくは90%以上、さらに好ましくは95%以上、特に好ましくは97%以上、98%以上、あるいは99%以上の配列同一性を有しているものが挙げられる。
 このような配列番号31の21~130番目のアミノ酸残基からなるアミノ酸配列又は配列番号33の20~143番目のアミノ酸残基からなるアミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列を有するタンパク質は配列番号31の21~130番目のアミノ酸残基からなるアミノ酸配列又は配列番号33の20~143番目のアミノ酸残基からなるアミノ酸配列を有するタンパク質と実質的に同一である。
 さらに、抗体cF63は、軽鎖可変領域のCDR(相補性決定領域)として、配列番号13で表されるアミノ酸配列(ERSSGDIGDSYVS)からなるCDRL1、配列番号14で表されるアミノ酸配列(ADDQRPS)からなるCDRL2、配列番号15で表されるアミノ酸配列(QSYDSKIDI)からなるCDRL3を含み、さらに、重鎖可変領域のCDRとして、配列番号16で表されるアミノ酸配列(GFSLASYSLS)からなるCDRH1、配列番号17で表されるアミノ酸配列(RMYYDGDTA)からなるCDRH2、配列番号18で表されるアミノ酸配列(DRSMFGTDYPHWYFDF)からなるCDRH3を含む(図30)。
 すなわち、本発明の抗SIRPα抗体は、配列番号13で表されるアミノ酸配列からなるCDRL1、配列番号14で表されるアミノ酸配列からなるCDRL2、配列番号15で表されるアミノ酸配列からなるCDRL3を含み、さらに、重鎖可変領域のCDRとして、配列番号16で表されるアミノ酸配列からなるCDRH1、配列番号17で表されるアミノ酸配列からなるCDRH2、配列番号18で表されるアミノ酸配列からなるCDRH3を含む抗体である。
 上記の各CDRは、それぞれに表されるアミノ酸配列において、1若しくは数個、好ましくは1若しくは2個、さらに好ましくは1個のアミノ酸が欠失、置換、付加されたアミノ酸配列からなるアミノ酸配列からなるCDRも含む。
ヒト化抗体
 ヒト化抗体(CDR移植抗体)は、ヒト以外の動物の抗体の軽鎖可変領域及び重鎖可変領域のCDRのアミノ酸配列をヒト抗体の軽鎖可変領域及び重鎖可変領域の適切な位置に移植した抗体をいう。
 本発明のヒト化抗SIRPα抗体は、ヒトSIRPαに結合し、かつ、SIRPαとCD47の結合を阻害することにより、マクロファージの貪食能を増強するモノクローナル抗体を産生するハイブリドーマから産生されるヒト以外の動物の抗体の軽鎖可変領域及び重鎖可変領域のCDRのアミノ酸配列を任意のヒト抗体の軽鎖可変領域及び重鎖可変領域のフレームワーク(FR:frame work)領域に移植した可変領域をコードするcDNAを構築し、ヒト抗体の軽鎖定常領域及び重鎖定常領域をコードする遺伝子を有する動物細胞用発現ベクターにそれぞれ挿入してヒト化抗体発現ベクターを構築し、動物細胞へ導入することにより発現させ、製造することができる。
 具体的には、抗体D13、抗体F44又は抗体F63のCDRとヒト抗体のフレームワーク領域とを連結するように設計したDNA配列を合成すればよい。CDRを介して連結されるヒト抗体のフレームワーク領域は、CDRが良好な抗原結合部位を形成するように選択される。また、必要な場合は、ヒト化抗体のCDRが適切な抗原結合部位を形成するように、抗体の可変領域におけるフレームワーク領域のアミノ酸を置換してもよい。CDRを移植したヒト化抗体の作製は、公知のCDRグラフティング技術により行うことができる。
 上記の方法で、抗体D13の重鎖可変領域のCDR(配列番号1~6に示すアミノ酸からなる6つのCDR)を有するヒト化抗体の重鎖であって、可変領域のフレームワーク領域の一部のアミノ酸が置換された重鎖として、ヒト化抗体重鎖hH1及びヒト化抗体重鎖hH2が挙げられる。また、抗体D13の軽鎖可変領域のCDRを有するヒト化抗体の軽鎖であって、可変領域のフレームワーク領域の一部のアミノ酸が置換された軽鎖として、ヒト化抗体軽鎖hL2、ヒト化抗体軽鎖hL3及びヒト化抗体軽鎖hL4が挙げられる。
 ヒト化抗体重鎖hH1の全長ヌクレオチド配列を配列番号40に、アミノ酸配列を配列番号41に示す。また、ヒト化抗体重鎖hH2の全長ヌクレオチド配列を配列番号42に、アミノ酸配列を配列番号43に示す。配列番号40及び42において、1~57番目のヌクレオチドからなるヌクレオチド配列はシグナル配列を、58~417番目のヌクレオチドからなるヌクレオチド配列は可変領域を、418~1398番目のヌクレオチドからなるヌクレオチド配列は定常領域を、それぞれコードしている。また、配列番号41及び43において、1~19番目のアミノ酸残基からなるアミノ酸配列はシグナル配列、20~139番目のアミノ酸残基からなるアミノ酸配列は可変領域、140~466番目のアミノ酸残基からなるアミノ酸配列は定常領域のアミノ酸配列である。図11に抗体D13の重鎖可変領域とヒト化抗体重鎖hH1の可変領域とヒト化抗体重鎖hH2の可変領域のアミノ酸配列(シグナル配列を含む)の比較を示す。
 本発明の抗SIRPα抗体は、配列番号41又は43の20~139番目のアミノ酸残基からなる重鎖可変領域と140~466番目のアミノ酸残基からなる重鎖定常領域を有する抗体を含む。
 ヒト化抗体軽鎖hL2の全長ヌクレオチド配列を配列番号34に、アミノ酸配列を配列番号35に示す。また、ヒト化抗体軽鎖hL3の全長ヌクレオチド配列を配列番号36に、アミノ酸配列を配列番号37に示す。さらに、ヒト化抗体軽鎖hL4の全長ヌクレオチド配列を配列番号38に、アミノ酸配列を配列番号39に示す。配列番号34、36及び38において、1~60番目のヌクレオチドからなるヌクレオチド配列はシグナル配列を、61~381番目のヌクレオチドからなるヌクレオチド配列は可変領域を、382~702番目のヌクレオチドからなるヌクレオチド配列は定常領域を、それぞれコードしている。配列番号35、37及び39において、1~20番目のアミノ酸残基からなるアミノ酸配列はシグナル配列、21~127番目のアミノ酸残基からなるアミノ酸配列は可変領域、128~234番目のアミノ酸残基からなるアミノ酸配列は定常領域のアミノ酸配列である。図12に抗体D13の軽鎖可変領域とヒト化抗体軽鎖hL2の可変領域とヒト化抗体重鎖hL3の可変領域とヒト化抗体軽鎖hL4の可変領域のアミノ酸配列(シグナル配列を含む)の比較を示す。
 本発明の抗SIRPα抗体は、配列番号35、37及び39の21~127番目のアミノ酸残基からなる可変領域と128~234番目のアミノ酸残基からなる軽鎖定常領域を有する抗体を含む。
 ヒト化抗体の重鎖定常領域は、IgG4サブクラスの重鎖定常領域であってPro変異及びFALA変異を有する重鎖定常領域IgG4proFALAである。
 ヒトSIRPαとの結合性が高い抗体であり、SIRPαとCD47の結合の阻害活性が高い抗体として、ヒト化抗体重鎖hH1及びヒト化抗体軽鎖hL3からなる抗体(hD13_H1L3抗体)、ヒト化抗体重鎖hH1及びヒト化抗体軽鎖hL4からなる抗体(hD13_H1L4抗体)、ヒト化抗体重鎖hH2及びヒト化抗体軽鎖hL2からなる抗体(hD13_H2L2抗体)及びヒト化抗体重鎖hH2及びヒト化抗体軽鎖hL3からなる抗体(hD13_H2L3抗体)が挙げられる。
 hD13_H1L3抗体は、配列番号41の20~466番目のアミノ酸残基からなる重鎖及び配列番号37の21~234番目のアミノ酸残基からなる軽鎖を有する抗体である。
 hD13_H1L4抗体は、配列番号41の20~466番目のアミノ酸残基からなる重鎖及び配列番号39の21~234番目のアミノ酸残基からなる軽鎖を有する抗体である。
 hD13_H2L2抗体は、配列番号43の20~466番目のアミノ酸残基からなる重鎖及び配列番号35の21~234番目のアミノ酸残基からなる軽鎖を有する抗体である。
 hD13_H2L3抗体は、配列番号43の20~466番目のアミノ酸残基からなる重鎖及び配列番号37の21~234番目のアミノ酸残基からなる軽鎖を有する抗体である。
 なお、哺乳類培養細胞で生産される抗体の重鎖のカルボキシル末端のリシン残基が欠失することが知られている(Tsubaki et.al.,Int.J.Biol.Macromol,139-147,2013)。しかし、この重鎖配列の欠失は、抗体の抗原結合能及びエフェクター機能(補体の活性化や抗体依存性細胞障害作用など)には影響を及ぼさない。従って、本発明には重鎖カルボキシル末端のリシン残基が欠失した抗体も含まれる。
その他の抗体
 本発明の抗体は、抗体の抗原結合部を有する抗体の抗原結合性断片又はその修飾物であってもよい。抗体をパパイン、ペプシン等の蛋白質分解酵素で処理するか、あるいは抗体遺伝子を遺伝子工学的手法によって改変し適当な培養細胞において発現させることによって、該抗体の断片を得ることができる。このような抗体断片のうちで、抗体全長分子の持つ機能の全て又は一部を保持している断片を抗体の抗原結合性断片と呼ぶことができる。抗体の機能としては、一般的には抗原結合活性、抗原の活性を中和する活性、抗原の活性を増強する活性、抗体依存性細胞傷害活性、補体依存性細胞傷害活性及び補体依存性細胞性細胞傷害活性を挙げることができる。本発明における抗体の抗原結合性断片が保持する機能は、SIRPαに対する結合活性である。
 例えば、抗体の断片としては、Fab、F(ab’)2、可変領域(Fv)、又は重鎖及び軽鎖のFvを適当なリンカーで連結させたシングルチェインFv(scFv)、diabody(diabodies)、線状抗体、及び抗体断片より形成された多特異性抗体などを挙げることができる。また、F(ab’)2を還元条件下で処理した抗体の可変領域の一価の断片であるFab’も抗体の断片に含まれる。
 さらに、本発明の抗体は少なくとも2種類の異なる抗原に対して特異性を有する多特異性抗体であってもよい。通常このような分子は2種類の抗原に結合するものであるが(即ち、二重特異性抗体(bispecific antibody))、本発明における「多特異性抗体」は、それ以上(例えば、3種類)の抗原に対して特異性を有する抗体を包含するものである。
 本発明の多特異性抗体は、全長からなる抗体、又はそのような抗体の断片(例えば、F(ab’)2二重特異性抗体)でもよい。二重特異性抗体は2種類の抗体の重鎖と軽鎖(HL対)を結合させて作製することもできるし、異なるモノクローナル抗体を産生するハイブリドーマを融合させて、二重特異性抗体産生融合細胞を作製することによっても、作製することができる(Millstein et al.,Nature(1983)305,p.537-539)。
 本発明の抗体は一本鎖抗体(scFvとも記載する)でもよい。一本鎖抗体は、抗体の重鎖可変領域と軽鎖可変領域とをポリペプチドのリンカーで連結することにより得られる(Pluckthun,The Pharmacology of Monoclonal Antibodies,113(Rosenberg及びMoore編、Springer Verlag,New York,p.269-315(1994)、Nature Biotechnology(2005),23,p.1126-1136)。また、2つのscFvをポリペプチドリンカーで結合させて作製されるBiscFv断片を二重特異性抗体として使用することもできる。
 一本鎖抗体を作製する方法は当技術分野において周知である(例えば、米国特許第4,946,778号、米国特許第5,260,203号、米国特許第5,091,513号、米国特許第5,455,030号等を参照)。このscFvにおいて、重鎖可変領域と軽鎖可変領域は、コンジュゲートを作らないようなリンカー、好ましくはポリペプチドリンカーを介して連結される(Huston,J.S.et al.,Proc.Natl.Acad.Sci.U.S.A.(1988),85,p.5879-5883)。scFvにおける重鎖可変領域及び軽鎖可変領域は、同一の抗体に由来してもよく、別々の抗体に由来してもよい。可変領域を連結するポリペプチドリンカーとしては、例えば12~19残基からなる任意の一本鎖ペプチドが用いられる。
 scFvをコードするDNAは、前記抗体の重鎖又は重鎖可変領域をコードするDNA、及び軽鎖又は軽鎖可変領域をコードするDNAのうち、それらの配列のうちの全部又は所望のアミノ酸配列をコードするDNA部分を鋳型とし、その両端を規定するプライマー対を用いてPCR法により増幅し、次いで、さらにポリペプチドリンカー部分をコードするDNA、及びその両端が各々重鎖、軽鎖と連結されるように規定するプライマー対を組み合わせて増幅することにより得られる。
 また、一旦scFvをコードするDNAが作製されると、それらを含有する発現ベクター、及び該発現ベクターにより形質転換された宿主を常法に従って得ることができ、また、その宿主を用いることにより、常法に従ってscFvを得ることができる。これらの抗体断片は、前記と同様にして遺伝子を取得し発現させ、宿主により産生させることができる。
 本発明の抗体は、多量化して抗原に対する親和性を高めたものであってもよい。多量化する抗体としては、1種類の抗体であっても、同一の抗原の複数のエピトープを認識する複数の抗体であってもよい。抗体を多量化する方法としては、IgG CH3ドメインと2つのscFvとの結合、ストレプトアビジンとの結合、へリックスーターン-へリックスモチーフの導入等を挙げることができる。
 本発明の抗体は、アミノ酸配列が異なる複数種類の抗SIRPα抗体の混合物である、ポリクローナル抗体であってもよい。ポリクローナル抗体の一例としては、CDRが異なる複数種類の抗体の混合物を挙げることができる。そのようなポリクローナル抗体としては、異なる抗体を産生する細胞の混合物を培養し、該培養物から精製された抗体を用いることが出来る(WO2004/061104号参照)。
 抗体の修飾物として、ポリエチレングリコール(PEG)等の各種分子と結合した抗体を使用することもできる。
 本発明の抗体は、更にこれらの抗体と他の薬剤がコンジュゲートを形成しているもの(Immunoconjugate)でもよい。このような抗体の例としては、該抗体が放射性物質や薬理作用を有する化合物と結合している物を挙げることができる(Nature Biotechnology(2005)23,p.1137-1146)。
 また、抗体の重鎖及び軽鎖の全長配列を適切なリンカーを用いて連結し、一本鎖イムノグロブリン(single chain immunoglobulin)を取得する方法も知られている(Lee,H-S,et.al.,Molecular Immunology(1999)36,p.61-71;Shirrmann,T.et.al.,mAbs(2010),2,(1)p.1-4)。このような一本鎖イムノグロブリンは二量体化することによって、本来は四量体である抗体と類似した構造と活性を保持することが可能である。また、本発明の抗体は、単一の重鎖可変領域を有し、軽鎖配列を有さない抗体であっても良い。このような抗体は、単一ドメイン抗体(single domain antibody:sdAb)又はナノボディ(nanobody)と呼ばれており、実際にラクダ又はラマで観察され、抗原結合能が保持されていることが報告されている(Muyldemans S.et.al.,Protein Eng.(1994)7(9),1129-35,Hamers-Casterman C.et.al.,Nature(1993)363(6428)446-8)。上記の抗体は、本発明における抗体の抗原結合性断片の一種と解釈することも可能である。
抗体の産生方法
 本発明の抗体は、重鎖可変領域をコードするDNA又は軽鎖可変領域をコードするDNAを発現ベクターに挿入し、発現用の宿主細胞を該ベクターを用いて形質転換し、宿主細胞を培養することにより、リコンビナント抗体として細胞に産生させることができる。
 抗体をコードするDNAは、重鎖可変領域をコードするDNAと重鎖定常領域をコードするDNAを連結することにより重鎖をコードするDNAが得られ、さらに軽鎖可変領域をコードするDNAと軽鎖定常領域をコードするDNAを連結することにより軽鎖をコードするDNAが得られる。
 本発明の抗SIRPα抗体は、上記の重鎖をコードするDNA及び軽鎖をコードするDNAを発現ベクターに挿入し、宿主細胞を該ベクターを用いて形質転換し、該宿主細胞を培養して産生させることができる。この際、上記の重鎖をコードするDNA及び軽鎖をコードするDNAを同じ発現ベクターに導入し、該ベクターを用いて宿主細胞を形質転換してもよいし、重鎖をコードするDNAと軽鎖をコードするDNAを別々のベクターに挿入し、2つのベクターを用いて宿主細胞を形質転換してもよい。この際、重鎖定常領域をコードするDNA及び軽鎖定常領域をコードするDNAを予め導入したベクターに重鎖可変領域及び軽鎖可変領域をコードするDNAを導入してもよい。また、該ベクターは宿主細胞からの抗体の分泌を促進するシグナルペプチドをコードするDNAを含んでいてもよい、この場合、シグナルペプチドをコードするDNAと抗体をコードするDNAをインフレームで連結しておく。抗体が産生された後にシグナルペプチドを除去することにより、抗体を成熟タンパク質として得ることができる。
 この際、重鎖可変領域をコードするDNA、軽鎖可変領域をコードするDNA、重鎖可変領域をコードするDNA及び重鎖定常領域をコードするDNAを連結したDNA、軽鎖可変領域をコードするDNAと軽鎖定常領域をコードするDNAを連結したDNAをプロモータ、エンハンサー、ポリアデニル化シグナル等のエレメントと機能的に連結してもよい。ここで機能的に連結とは、エレメントがその機能を果たすように連結することをいう。
 発現ベクターは、動物細胞、細菌、酵母等の宿主中で複製可能なものであれば特に限定されず、例えば、公知のプラスミド、ファージ等が挙げられる。発現ベクターの構築に用いられるベクターとしては、例えば、pcDNA(商標)(ThermoFisher SCIENTIFIC)、Flexi(登録商標)ベクター(プロメガ社)、pUC19、pUEX2(アマシャム社製)、pGEX-4T、pKK233-2(ファルマシア社製)、pMAM-neo(クロンテック社製)等が挙げられる。宿主細胞としては、大腸菌、枯草菌等の原核細胞も酵母、動物細胞等の真核細胞も用いることができるが、真核細胞を用いることが好ましい。例えば、動物細胞として、ヒト胎児腎細胞株であるHEK293細胞、チャイニーズ・ハムスター・卵巣(CHO)細胞等を用いればよい。発現ベクターは公知の方法で宿主細胞に導入し、宿主細胞を形質転換すればよい。例えば、エレクトロポレーション法、リン酸カルシウム沈殿法、DEAE-デキストラントランスフェクション法等が挙げられる。産生された抗体は、通常のタンパク質で使用されている分離、精製方法を使用して精製することができる。例えば、アフィニティークロマトグラフィー、その他のクロマトグラフィー、フィルター、限外濾過、塩析、透析等を適宜選択し、組み合わせればよい。
抗腫瘍剤
 本発明は、本発明の抗SIRPα抗体を有効成分として含む抗腫瘍剤を包含する。ただし、本発明の抗SIRPα抗体の重鎖定常領域は、IgG4サブクラスの重鎖定常領域であってPro変異及びFALA変異を有する重鎖定常領域IgG4proFALAであり、エフェクター機能を有しておらず、SIRPαとCD47の結合を阻害することにより、“Don’t-eat-me”シグナル伝達を阻害する機能のみを有している。そのため、本発明の抗SIRPα抗体のみでは、腫瘍細胞を十分に傷害することはできない。そこで、本発明はエフェクター機能を有し、腫瘍細胞を攻撃し傷害し得る他の抗腫瘍剤や腫瘍細胞による免疫細胞の免疫チェックポイントを阻害する他の抗腫瘍剤と併用する。併用に用いる他の抗腫瘍剤は、腫瘍細胞に結合し、腫瘍細胞とマクロファージ等の貪食細胞とを接触させることができる。そのときに本発明の抗SIRPα抗体が腫瘍細胞のCD47と貪食細胞のSIRPαとの結合を阻害することにより、貪食細胞の腫瘍細胞の貪食能を増強するので、腫瘍細胞は傷害される。すなわち、本発明の抗SIRPα抗体と他の抗腫瘍剤を併用することにより、相乗的な抗腫瘍効果を発揮することができる。
 本発明の抗SIRPα抗体と併用する抗腫瘍剤として、免疫チェックポイント阻害剤、がん抗原に特異的に結合してADCC及び/又はADCP活性を有する抗体医薬が挙げられる。免疫チェックポイント阻害剤としては、PD-1と、そのリガンドであるPD-L1との結合阻害剤、又はCTLA4阻害剤などが挙げられ、具体的には抗PD-1抗体(nivolumab、pembrolizumab、cemiplimab、spartalizumab、PDR-001、BI 754091)、抗PD-L1抗体(atezolizumab、avelumab、durbarumab)、抗CTLA4抗体(ipilimumab、tremelimumab)等が挙げられる。また、がん抗原に特異的に反応してADCC及び/又はADCP活性を有する抗体医薬としては、抗CD20抗体(rituximab)、抗HER2抗体(trastuzumab)、抗EGFR抗体(cetuximab)、抗CD52抗体(alemutuzumab)等が挙げられる。
 ADCCは、Fcγレセプターを発現する非特異的細胞傷害性細胞(例えばNK細胞、好中球、及びマクロファージ等)が標的細胞上に結合した抗体を認識して、その後にターゲット細胞の溶解を起こす細胞介在性反応をいう。ADCCを担うプライマリー細胞であるNK細胞ではFcγRIICとFcγRIIIAが発現しており、単球ではFcγRI、FcγRIIA、FcγRIIC及びFcγRIIIAを発現している。一方、ADCPは、Fcレセプターを発現する貪食細胞(例えばマクロファージ、好中球等)が標的細胞上に結合した抗体を認識して、その後、ターゲット細胞を細胞内に貪食する細胞介在性反応をいう。ADCPを担うプライマリー細胞である単球ではFcγRI、FcγRIIA、FcγRIIC及びFcγRIIIAが発現している。
 本発明は、抗SIRPα抗体を有効成分として含む抗腫瘍剤であって、上記の他の抗腫瘍剤と併用される抗腫瘍剤を含む。
 さらに、本発明は抗SIRPα抗体を有効成分として含む抗腫瘍剤と上記の他の抗腫瘍剤の両方を含む抗腫瘍剤又はキットを含む。
 本発明の抗SIRPα抗体を有効成分として含む抗腫瘍剤と上記の他の抗腫瘍剤は同時に投与しても、逐次に投与してもよい。また、投与順は限定されず、本発明の抗SIRPα抗体を有効成分として含む抗腫瘍剤を投与した後に他の抗腫瘍剤を投与してもよく、他の抗腫瘍剤を投与した後に、本発明の抗SIRPα抗体を有効成分として含む抗腫瘍剤を投与してもよい。
 本発明の抗腫瘍剤は、がん腫、肉腫、リンパ腫、白血病、骨髄腫、胚細胞腫、脳腫瘍、カルチノイド、神経芽腫、網膜芽細胞腫、腎芽腫から選択される一種又は複数種に対して使用することができる。具体的には、がん腫では、腎がん、メラノーマ、有棘細胞がん、基底細胞がん、結膜がん、口腔がん、喉頭がん、咽頭がん、甲状腺がん、肺がん、乳がん、食道がん、胃がん、十二指腸がん、小腸がん、大腸がん、直腸がん、虫垂がん、肛門がん、肝がん、胆嚢がん、胆管がん、膵がん、副腎がん、膀胱がん、前立腺がん、子宮がん、膣がんなどが挙げられ、肉腫では、脂肪肉腫、血管肉腫、軟骨肉腫、横紋筋肉腫、ユーイング肉腫、骨肉腫、未分化多型肉腫、粘液型線維肉腫、悪性末梢性神経鞘腫、後腹膜肉腫、滑膜肉腫、子宮肉腫、消化管間質腫瘍、平滑筋肉腫、類上皮肉腫などが挙げられ、リンパ腫では、B細胞リンパ腫、T・NK細胞リンパ腫、ホジキンリンパ腫などが挙げられ、白血病では、骨髄性白血病、リンパ性白血病、骨髄増殖性疾患、骨髄異形成症候群などが挙げられ、骨髄腫では、多発性骨髄腫などが挙げられ、胚細胞腫では、精巣がん、卵巣がんなどが挙げられ、脳腫瘍では、神経膠腫、髄膜腫などが挙げられる。
 本発明の抗SIRPα抗体は、他の抗腫瘍剤と併用することにより細胞性免疫を増強する。本発明は、抗SIRPα抗体を有効成分として含む細胞性免疫増強剤も包含する。該細胞性免疫増強剤においては、ナチュラルキラー細胞及び/又はT細胞の機能増強に伴う細胞性免疫を増強する。
 本発明の抗腫瘍剤は、治療に有効量の抗SIRPα抗体と薬学上許容可能な担体、希釈剤、可溶化剤、乳化剤、保存剤、補助剤等を含めることができる。「薬学上許容可能な担体」等は、対象疾患の種類や薬剤の投与形態に応じて広い範囲から適宜選択することができる。本発明の抗腫瘍剤の投与方法は適宜選択することができるが、例えば注射投与することができ、局所注入、腹腔内投与、選択的静脈内注入、静脈注射、皮下注射、臓器灌流液注入等を採用することができる。また、注射用の溶液は、塩溶液、グルコース溶液、又は塩水とグルコース溶液の混合物、各種の緩衝液等からなる担体を用いて製剤化することができる。また粉末状態で製剤化し、使用時に前記液体担体と混合して注射液を調整するようにしてもよい。 
 他の投与方法についても、製剤の開発と共に適宜選択することができる。例えば経口投与の場合には、経口液剤や散剤、丸剤、カプセル剤及び錠剤等を適用することができる。経口液剤の場合には、懸濁剤及びシロップ剤等のような経口液体調整物として、水、シュークロース、ソルビトール、フラクト-ス等の糖類、ポリエチレングリコール等のグリコール類、ごま油、大豆油等の油類、アルキルパラヒドロキシベンゾエート等の防腐剤、ストロベリー・フレーバー、ペパーミント等のフレーバー類等を使用して製造することができる。散剤、丸剤、カプセル剤及び錠剤は、ラクト-ス、グルコース、シュークロース、マンニトール等の賦形剤、デンプン、アルギニン酸ソーダ等の崩壊剤、マグネシウムステアレート、タルク等の滑沢剤、ポリビニルアルコール、ヒドロキシプロピルセルロース、ゼラチン等の結合剤、脂肪酸エステル等の表面活性剤、グリセリン等の可塑剤等を用いて製剤化することができる。錠剤及びカプセル剤は、投与が容易であるという点において、この発明の組成物における好ましい単位投与形態である。錠剤やカプセル剤を製造する際には、固体の製造担体が用いられる。
 治療に用いるに有効な抗体の量は、治療する病状の性質、患者の年齢や状態により変更され、最終的には医師が決めればよい。例えば、1回体重1kg当たり0.0001mg~100mgである。所定の投与量は1~180日に1回投与してもよいし、1日当たり2回、3回、4回又はそれ以上の分割投与とし適当な間隔で投与してもよい。
 本発明を以下の実施例によって具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。
実施例1.ラット抗SIRPA抗体の作製
1)‐1 発現コンストラクト調製
1)‐1‐1 SIRPA_V1_ECD発現ベクターの構築
 ヒトSIRPA_V1(NCBIの蛋白データベースのACCESSION番号:NP_001035111)のアミノ酸配列の1乃至373番目のC末端側にHHHHHHを連結したポリペプチドをコードするDNAと制限酵素XbaIとPmeIで消化したベクターpcDNA3.3-TOPO/LaxZ(ThermoFisher SCIENTIFIC)をIn‐Fusion HD Cloning Kit(CLONTECH)を用いて結合することにより、SIRPA_V1_ECD発現ベクターを作製した。SIRPA_V1_ECDのアミノ酸配列を配列表の配列番号45に、SIRPA_V1_ECDをコードするヌクレオチド配列を配列表の配列番号44に示す。
1)‐1‐2 SIRPA_V1_IgV発現ベクターの構築
 SIRPA_V1(NCBIの蛋白データベースのACCESSION番号NP_001035111)のアミノ酸配列の1乃至149番目のC末端側にHHHHHHを連結したポリペプチドをコードするDNAを用いて1)‐1‐1と同様の方法でSIRPA_V1_IgV発現ベクターを作製した。SIRPA_V1_IgVのアミノ酸配列を配列表の配列番号47に、SIRPA_V1_IgVをコードするヌクレオチド配列を配列表の配列番号46に示す。
1)‐1‐3 SIRPA_V2_ECD発現ベクターの構築
 SIRPA_V2(V1配列、JBC Vol.289,No14,10024(2014)を元に改変)のアミノ酸配列の1乃至372番目のC末端側にHHHHHHを連結したポリペプチドをコードするDNAを用いて1)‐1‐1と同様の方法でSIRPA_V2_ECD発現ベクターを作製した。SIRPA_V2_ECDのアミノ酸配列を配列表の配列番号49に、SIRPA_V2_ECDをコードするヌクレオチド配列を配列表の配列番号48に示す。
1)‐1‐4 SIRPA_V2_IgV発現ベクターの構築
 SIRPA_V2のアミノ酸配列の1乃至148番目のC末端側にHHHHHHを連結したポリペプチドをコードするDNAを用いて1)‐1‐1と同様の方法でSIRPA_V2_IgV発現ベクターを作製した。SIRPA_V2_IgVのアミノ酸配列を配列表の配列番号51に、SIRPA_V2_IgVをコードするヌクレオチド配列を配列表の配列番号50に示す。
1)‐1‐5 cSIRPA_ECD発現ベクターの構築
 cSIRPA(NCBIの蛋白データベースのACCESSION番号NP_001768)のアミノ酸配列の1乃至372番目のC末端側にHHHHHHHを連結したポリペプチドをコードするDNAを用いて1)‐1‐1と同様の方法でcSIRPA_ECD発現ベクターを作製した。cSIRPA_ECDのアミノ酸配列を配列表の配列番号53に、cSIRPA_ECDをコードするヌクレオチド配列を配列表の配列番号52に示す。
1)‐1‐6 CD47‐Fc発現ベクターの構築
 ヒトCD47(NCBIの蛋白データベースのACCESSION番号NP_001271679)のポリペプチドをコードするDNAを用いて1)‐1‐1と同様の方法でCD47‐Fc発現ベクターを作製した。CD47‐Fcのアミノ酸配列を配列表の配列番号55に、SIRPA_V1_ECDをコードするヌクレオチド配列を配列表の配列番号54に示す。
1)‐2 リコンビナント蛋白質の調製
1)‐2‐1 SIRPA_V1_ECDの調製
 1)‐1‐1で作製したSIRPA_V1_ECD発現ベクターをFreeStyle 293F cells(ThermoFisher SCIENTIFIC)にトランスフェクションすることで一過性に発現させた。培養上清を3×PBSで平衡化したHisTrap excel(GEヘルスケア・ジャパン社)に添加したのち、3×PBSでカラムを洗浄した。次に3×PBS、500 mM Imidazole,pH 7.5で溶出した。回収したSIRPA_V1_ECD画分からHiLoad 26/600 Superdex 75 pg(GEヘルスケア・ジャパン社)を用いてSIRPA_V1_ECDを精製した。
1)‐2‐2 SIRPA_V1_IgVの調製
 1)‐1‐2で作製したSIRPA_V1_IgV発現ベクターをFreeStyle 293F cells(ThermoFisher SCIENTIFIC)にトランスフェクションすることで一過性に発現させた。培養上清を3×PBSで平衡化したHisTrap excel(GEヘルスケア・ジャパン社)に添加したのち、3×PBSでカラムを洗浄した。次に3×PBS、500 mM Imidazole,pH 7.5で溶出した。回収したSIRPA_V1_IgV画分からHiLoad 26/600 Superdex 75 pg(GEヘルスケア・ジャパン社)を用いてSIRPA_V1_IgVを精製した。
1)‐2‐3 SIRPA_V2_ECDの調製
 1)‐1‐3で作製したSIRPA_V2_ECD発現ベクターを用いて1)‐2‐1と同様の方法でSIRPA_V2_ECDを精製した。
1)‐2‐4 SIRPA_V2_IgVの調製
 1)‐1‐4で作製したSIRPA_V2_ECD発現ベクターを用いて1)‐2‐2と同様の方法でSIRPA_V2_ECDを精製した。
1)‐2‐5 cSIRPA_ECDの調製
 1)‐1‐5で作製したcSIRPA_ECD発現ベクターを用いて1)‐2‐1と同様の方法でcSIRPA_ECDを精製した。
1)‐2‐6 CD47‐Fcの調製
 CD47‐Fc発現ベクターをFreeStyle 293F cells(ThermoFisher SCIENTIFIC)にトランスフェクションすることで一過性に発現させた。培養上清をPBSで平衡化したMabSelectSuRe(GEヘルスケア・ジャパン社)にすべて入れたのち、PBSでカラムを洗浄した。次に2Mアルギニン塩酸塩溶液(pH4.0)で溶出し、CD47‐Fcの含まれる画分を集めた。回収したCD47‐Fc画分からHiLoad 26/600 Superdex 200 pg(GEヘルスケア・ジャパン社)を用いてCD47‐Fcを精製した。
1)‐3 免疫
 免疫にはWKY/Izmラットの雌(日本エスエルシー社)を使用した。1)‐2で作製した抗原蛋白SIRPA_V1_ECD、SIRPA_V1_IgV、SIRPA_V2_ECD、SIRPA_V2_IgVそれぞれとFreund‘s Complete Adjuvant(和光純薬社)を混合したものを尾根部に投与したラットのリンパ節及び脾臓を採取しハイブリドーマ作製に用いた。
1)‐4 ハイブリドーマ作製
 リンパ節細胞あるいは脾臓細胞とマウスミエローマSP2/0‐ag14細胞(ATCC:CRL‐1581)をLF301‐Cell Fusion Unit(BEX社)を用いて電気細胞融合し、Clona Cell‐HY Selection MediumD(Stem Cell Technologies社)に希釈して培養した。出現したハイブリドーマコロニーを回収することでモノクローンハイブリドーマを作製した。回収された各ハイブリドーマコロニーを培養し、得られたハイブリドーマ培養上清を用いて抗SIRPA抗体産生ハイブリドーマのスクリーニングを実施した。
1)‐5 抗原結合性抗体スクリーニング用発現ベクターの構築
1)‐5‐1 ヒトSIRPA_V1及びV2発現ベクター(pcDNA3.2 V5‐DEST‐SIRPA_V1_ECD及びSIRPA_V2_ECD)の構築
 ヒトSIRPA_V1蛋白質(NP_001035111)、又はヒトSIRPA_V2蛋白質[NP_001035111、JBC Vol.289,No14,10024(2014)を元に改変]をコードするcDNAをpcDNA3.2 V5‐DESTベクターにクローニングし、それぞれを発現するベクターpcDNA3.2 V5‐DEST‐SIRPA_V1_ECD、V2_ECD(又はpcDNA3.2 V5‐DEST‐SIRPA_V1、V2)を構築した。ヒトSIRPA_V1蛋白質のアミノ酸配列を配列表の配列番号56に、ヒトSIRPA_V2蛋白質のアミノ酸配列を配列表の配列番号57にそれぞれ示す。
1)‐5‐2 サルSIRPA及びマウスSIRPA発現ベクター(pcDNA3.2 V5‐DEST‐サルSIRPA、pFLAG V5‐DEST‐サルSIRPA又はpFLAG V5‐DEST‐マウスSIRPA)の構築
 サルSIRPA蛋白質(NP_001271679)又はマウスSIRPA蛋白質(C57BL6:NP_031573、BALB/c:BAA20376、129:P97797、NOD SCID:Immunology,143,61-67,2014を元に改変)をコードするcDNAをpcDNA3.2 V5-DESTベクター、又はpFLAG V5‐DESTベクターにクローニングし、それぞれの蛋白質を発現するベクターpcDNA3.2 V5‐DEST‐サルSIRPA、pFLAG V5‐DEST‐サルSIRPA及びpFLAG V5‐DEST‐マウスSIRPA(C57BL6、BALB/c、129、NOD)を構築した。サルSIRPAのアミノ酸配列を配列表の配列番号58に、マウスSIRPA_C57BL/6のアミノ酸配列を配列表の配列番号59に、マウスSIRPA_BALB/cのアミノ酸配列を配列表の配列番号60に、マウスSIRPA_129のアミノ酸配列を配列表の配列番号61に、マウスSIRPA_NODのアミノ酸配列を配列表の配列番号62にそれぞれ示す。
1)‐6 ハイブリドーマスクリーニング
1)‐6‐1 Cell‐ELISA用抗原遺伝子発現細胞の調製
 HEK293α細胞(インテグリンαv及びインテグリンβ3を発現するHEK293由来の安定発現細胞株)を10% FBS含有DMEM培地中7.5×10細胞/mLになるよう調製した。それに対し、Lipofectamine 2000(Thermo Fisher Scientific社)を用いた形質移入手順に従い、pcDNA3.2 V5‐DEST‐SIRPA_V1若しくはpcDNA3.2 V5‐DEST‐SIRPA_V2、又はコントロールとしてpcDNA3.2 V5‐DESTを導入後、96‐Half area well plate(Corning社)に50μLずつ分注、又は96‐well plate(Corning社製)に100μLずつ分注し、10% FBS含有DMEM培地中で37℃、5% COの条件下で24から27時間培養した。得られた導入細胞を接着状態のまま、Cell‐ELISAに使用した。
1)‐6‐2 ヒトSIRPAに対する結合性評価(Cell‐ELISA)
 実施例1)‐6‐1で調製した発現ベクター導入293α細胞の培養上清を除去後、pcDNA3.2 V5‐DEST‐SIRPA_V1、V2又はpcDNA3.2 V5‐DEST導入293α細胞のそれぞれに対しハイブリドーマ培養上清を添加し、4℃で1時間静置した。ウェル中の細胞を5% FBS含有PBSで2回洗浄後、5% FBS含有PBSで500倍に希釈したAnti‐Rat IgG‐Peroxidase antibody produced in rabbit(SIGMA社)を加えて、4℃で1時間静置した。well中の細胞を5% FBS含有PBSで2回洗浄した後、OPD発色液(OPD溶解液(0.05 M クエン酸3ナトリウム、0.1M リン酸水素2ナトリウム・12水 pH4.5)にo-フェニレンジアミン二塩酸塩(和光純薬社)、H2O2をそれぞれ0.4mg/mL、0.6%(v/v)になるように溶解)を50μL/wellで添加した。時々攪拌しながら発色反応を行い、1M HCLを50μL/wellで添加して発色反応を停止させた後、プレートリーダー(ENVISION:PerkinElmer社)で490nmの吸光度を測定した。細胞膜表面上に発現するSIRPAに特異的に結合する抗体を産生するハイブリドーマを選択するため、コントロールのpcDNA3.2 V5‐DEST導入293α細胞と比較し、pcDNA3.2 V5-DEST‐SIRPA_V1及びSIRPA_V2発現ベクター導入293α細胞の方でより高い吸光度を示す培養上清を産生するハイブリドーマを抗SIRPA抗体産生陽性として選択した。
1)‐6‐3 SIRPA‐CD47結合阻害活性評価
 実施例1)‐6‐1で調製した発現ベクター導入293α細胞の培養上清を除去後、pcDNA3.2 V5‐DEST‐SIRPA_V1、SIRPA_V2又はpcDNA3.2 V5‐DEST導入293α細胞のそれぞれに対しハイブリドーマ培養上清を添加し、直後に終濃度で10000ng/mLになるよう5% FBS含有PBSで調製したPeroxidase labeled CD47‐Fcを50μL/ウェル添加し、4℃で1時間静置した。ウェル中の細胞を5% FBS含有PBSで2回洗浄した後、OPD発色液(OPD溶解液(0.05 M クエン酸3ナトリウム、0.1M リン酸水素2ナトリウム・12水 pH4.5)にo‐フェニレンジアミン二塩酸塩(和光純薬社製)、H2O2をそれぞれ0.4mg/mL、0.6%(v/v)になるように溶解)を100μL/ウェルで添加した。時々攪拌しながら発色反応を行い、1M HClを100μL/ウェルを添加して発色反応を停止させた後、プレートリーダー(Spectramax:Molecular devices社)で490nmの吸光度を測定した。細胞膜表面上に発現するSIRPAとCD47‐Fcの結合を特異的に阻害する抗体を産生するハイブリドーマを選択するため、コントロールの培地添加群と比較し、pcDNA3.2 V5‐DEST‐SIRPA_V1、又はSIRPA_V2発現ベクター導入293α細胞において、より低い吸光度を示す培養上清を産生するハイブリドーマを、リガンド結合阻害活性を持つ抗SIRPA抗体産生陽性として選択した。
1)‐6‐4 マウス、サルSIRPAに対する種交差性評価
 実施例1)‐5‐2で調製したpcDNA3.2 V5‐DEST‐サルSIRPA、又はマウスSIRPA発現ベクター導入293α細胞、及びpcDNA3.2 V5‐DEST導入293α細胞の培養上清を除去後、ヒトSIRPAの結合活性評価と同じ方法でサル、又はマウスSIRPAに対する結合性を評価した。上記のヒト、及び動物種への結合活性、並びにSIRPA‐CD47結合阻害活性をもとに、D13、F42、F44、F47、F60、F63、及びF86抗体の計7クローンを選抜した。
1)‐7 抗体のアイソタイプ決定
 取得したラット抗SIRPA抗体産生ハイブリドーマの中から、強く特異的にヒトSIRPA_V1及びSIRPA_V2並びにサルSIRPAに結合し、高いSIRPA-CD47結合阻害活性能を有することが示唆されたD13、F42、F44、F47、F60、F63、及びF86抗体を産生するハイブリドーマを選抜し、抗体アイソタイプを同定した。アイソタイプは、Rat Immunoglobulin Isotyping ELISA Kit(BD Pharmingen社)により決定された。その結果、ラット抗SIRPAモノクローナル抗体D13、F42、F60、及びF86のアイソタイプはIgG1/κ鎖、F44、F47のアイソタイプはIgG2a/κ鎖、F63のアイソタイプはIgG2a/λ鎖であることが確認された。
1)‐8 モノクローナル抗体の調製
1)‐8‐1 培養上清の調製
 7種類のラット抗SIRPAモノクローナル抗体は、ハイブリドーマ培養上清から精製した。まず各抗体産生ハイブリドーマをClonaCell‐HY Selection Medium E(StemCell Technologies社)で十分量まで増殖させた後、Ultra Low IgG FBS(Thermo Fisher Scientific社)を20%添加した、5μg/mLのゲンタマイシン(Thermo Fisher Scientific社)含有Hybridoma SFM(Thermo Fisher Scientific社)に培地交換し、7日間培養した。本培養上清を回収し、0.22μmのフィルター(Corning社)を通して滅菌した。
1)‐8‐2 抗体の精製
 実施例1)‐8‐1で調製したハイブリドーマの培養上清から抗体をProtein Gアフィニティークロマトグラフィーで精製した。Protein Gカラム(GE Healthcare Bioscience社)に抗体を吸着させ、PBSでカラムを洗浄後に0.1M グリシン/塩酸水溶液(pH2.7)で溶出した。溶出液に1M Tris-HCl(pH9.0)を加えてpH7.0~7.5に調整した後に、Centrifugal UF Filter Device VIVASPIN20(分画分子量UF30K、Sartorius社)にてPBSへのバッファー置換を行うとともに抗体の濃縮を行い、抗体濃度を2mg/mL以上に調製した。最後にMinisart‐Plus filter(Sartorius社)でろ過し、精製サンプルとした。
実施例2.ラット抗ヒトSIRPA抗体(7種)のin vitro評価
2)‐1 抗原結合性抗体スクリーニング用発現ベクターの構築
2)‐1‐1 FLAG‐ヒトSIRPA発現ベクター(pFLAG V5‐DEST‐SIRPA_V1‐V10)の構築
 10種類のヒトSIRPAバリアント蛋白質(Nature Immunology 8,1313‐1323,2007より抜粋)をコードするcDNAをpFLAG V5‐DESTベクターにクローニングし、それぞれのバリアント蛋白質を発現するベクターpFLAG V5‐DEST‐SIRPA_V1‐V10を構築した。
 ヒトSIRPA_V3のアミノ酸配列を配列表の配列番号63に、ヒトSIRPA_V4のアミノ酸配列を配列表の配列番号64に、ヒトSIRPA_V5のアミノ酸配列を配列表の配列番号65に、ヒトSIRPA_V6のアミノ酸配列を配列表の配列番号66に、ヒトSIRPA_V7のアミノ酸配列を配列表の配列番号67に、ヒトSIRPA_V8のアミノ酸配列を配列表の配列番号68に、ヒトSIRPA_V9のアミノ酸配列を配列表の配列番号69に、ヒトSIRPA_V10のアミノ酸配列を配列表の配列番号70に、それぞれ示す。
2)‐1‐2‐1 ヒトSIRPA_ECD、IgV、及びIgV_IgC1発現ベクター(pFLAG V5‐DEST‐SIRPA_ECD、及びIgVIgV_IgC1)の構築
 ヒトSIRPA_V2の全長アミノ酸(1乃至504番)、及び165乃至371番の領域の欠損体(以下「IgV体」と記す)、225乃至371番の領域の欠損体(以下「IgV_IgC体」と記す)をコードするcDNAをpFLAG V5‐DESTベクターにクローニングし、それぞれの変異体蛋白質を発現するベクターを構築した。
 ヒトSIRPA_V2_IgV体のアミノ酸配列を配列表の配列番号71に、ヒトSIRPA_V2_IgV_IgC1体のアミノ酸を配列表の配列番号72に示す。
2)‐1‐2‐2 hmSIRPA_Δ0、Δ1、及びΔ2_マウスSIRPA発現ベクター(pFLAG V5‐DEST‐hmSIRPA_Δ0、Δ1、及びΔ2)の構築
 配列番号60に記載のマウスSIRPAの81乃至85番目のアミノ酸残基からなるSFTGE配列(配列番号78)をNQKEG配列(配列番号76)に置換し、126乃至130番目のアミノ酸残基からなるRGSSE配列(配列番号79)をKGS配列に置換したSIRPA変異体をhmSIRPA_Δ0と命名した。配列番号60に記載のマウスSIRPAの81乃至85番のアミノ酸残基からなるSFTGE配列(配列番号78)をNQKEE配列(配列番号77)に置換したSIRPA変異体をhmSIRPA_Δ1と命名した。さらに、配列番号60に記載のマウスSIRPAの81乃至85番のアミノ酸残基からなるSFTGE配列(配列番号78)をSFTEG配列(配列番号80)に置換したSIRPA変異体をhmSIRPA_Δ2と命名した。これらのSIRPA変異体をコードするcDNAをpFLAG V5‐DESTベクターにクローニングし、それぞれのSIRPA変異体を発現するベクターを構築した。
 hmSIRPA_Δ0のアミノ酸配列を配列表の配列番号73に、hmSIRPA_Δ1のアミノ酸を配列表の配列番号74に、hmSIRPA_Δ2のアミノ酸を配列表の配列番号75にそれぞれ示す。
2)‐2 ヒトSIRPAバリアントV1~V10に対する結合性評価
 実施例2)‐1‐1で調製した10種類のバリアント蛋白質の発現ベクター導入293α細胞の培養上清を除去後、pFLAG V5‐DEST‐SIRPA_V1~V10又はpFLAG V5‐DEST導入293α細胞のそれぞれに対し終濃度で10000ng/mLになるよう5% FBS含有PBSで希釈したラット抗ヒトSIRPA精製抗体を50μL/ウェル添加し、4℃で1時間静置した。また、各SIRPAバリアント発現検出用のウェルには、終濃度で10000ng/mLになるよう5% FBS含有PBSで希釈した抗FLAG M2抗体(SIGMA社製)を50μL/ウェル添加し、4℃で1時間静置した。以下は1)‐6‐2に示すヒトSIRPAの結合活性表価と同じ方法で、10種類のヒトSIRPAバリアント体に対する結合性を評価した。各バリアントに対するラット抗ヒトSIRPA抗体の結合性はFLAGタグの発現をもとに標準化した。
 表1に示すように何れのクローンも全てのバリアントに対し結合性を示した。
Figure JPOXMLDOC01-appb-T000001
2)‐3 マウス、サルSIRPAに対する種交差性評価
 実施例1)‐5‐2で調製したpFLAG V5‐DEST‐サルSIRPA、又はpFLAG V5‐DEST‐マウスSIRPA発現ベクター導入293α細胞、及びpFLAG V5‐DEST導入293α細胞の培養上清を除去後、ヒトSIRPAの結合活性評価と同じ方法でサル、又はマウスSIRPAに対する結合性を評価した。
 表2に示す通り、ラット抗ヒトSIRPA抗体はいずれもサルSIRPAには結合性を示したが、マウスSIRPAには結合性を示さなかった。
Figure JPOXMLDOC01-appb-T000002
2)‐4 エピトープ解析
2)‐4‐1‐1 Cell‐ELISA法によるエピトープ解析(1)
 2)‐1‐2‐1で調製したpFLAG V5‐DEST‐ECD体、IgV体、並びにIgV_IgC1体発現ベクター導入293α細胞、及びpFLAG V5‐DEST導入293α細胞の培養上清を除去後、それぞれの細胞に対し終濃度で10000ng/mLになるよう5% FBS含有PBSで希釈したラット抗ヒトSIRPA精製抗体を50μL/ウェル添加し、4℃で1時間静置した。また、各SIRPAコンストラクト発現検出用のウェルには、終濃度で10000ng/mLになるよう5% FBS含有PBSで希釈した抗FLAG M2抗体(SIGMA社製)を50μL/ウェル添加し、4℃で1時間静置した。以下はヒトSIRPAの結合活性評価と同じ方法で精製抗体7クローンの各ドメイン体への結合性を評価した。各コンストラクトに対するラット抗ヒトSIRPA抗体の結合性はFLAGタグの発現をもとに標準化した。
 図1Aに示す通り、ラット抗ヒトSIRPA抗体は何れのコンストラクトに対しても結合を示すことから、IgVドメインを認識することが示唆された。
2)‐4‐1‐2 Cell‐ELISA法によるエピトープ解析(2)
 2)‐1‐2‐2で調製したpFLAG V5‐DEST‐hmSIRPA_Δ0、Δ1、並びにΔ2発現ベクター導入293α細胞、及びpFLAG V5‐DEST導入293α細胞の培養上清を除去後、それぞれの細胞に対し終濃度で10000ng/mLになるよう5% FBS含有PBSで希釈したD13ヒト化抗ヒトSIRPA抗体4種、及びキメラ化抗ヒトSIRPA抗体をそれぞれ50μL/ウェル添加し、4℃で1時間静置した。また、各SIRPAコンストラクト発現検出用のウェルには、終濃度で10000ng/mLになるよう5% FBS含有PBSで希釈した抗FLAG M2抗体(SIGMA社製)を50μL/ウェル添加し、4℃で1時間静置した。以下はヒトSIRPAの結合活性評価と同じ方法で各コンストラクトへの結合性を評価した。各コンストラクトに対する抗ヒトSIRPA抗体の結合性はFLAGタグの発現をもとに標準化した。
 図1Bに示す通り、hD13_H1L3、hD13_H1L4h、hD13_H2L2、hD13_H2L3、又はcD13はNQKEG配列を持つhmSIRPA_Δ0に対しては、添加した抗体濃度依存的な結合性を示したが、Δ1、及びΔ2に対しては、いずれの濃度においても結合性を示さなかった。
 以上のことから、hD13及びcD13の結合にはNQKEGの配列が必要であることが示唆された。
2)‐4‐2 X線結晶構造解析によるエピトープ解析
2)‐4‐2‐1 複合体の結晶化
 全長型のcD13抗体を弱酸性下でLysyl Endopeptidase(Wako)により限定的に切断し、BioAssist S陽イオン交換カラム(東ソー)を用いてcD13抗体のFab断片を分離した。実施例1)‐2で取得したSIRPA_V2_IgVとcD13のFab断片をモル比1:1で混合し、Superdex 75,10/300GLゲルろ過カラム(GE Healthcare)で複合体画分を分離した後、限外ろ過により10mM Tris HCl(pH 8.2)に緩衝液を置換し、3g/Lに濃縮した。複合体溶液を蒸気拡散法により結晶化した。タンパク質溶液0.5μLに沈殿剤溶液(0.2M Potassium phosphate dibasic、20%(w/v) Polyethylene Glycol 3350、pH 9.2)を等量加えた溶液を、0.05mLの沈殿剤溶液を入れた密閉容器に両溶液が触れ合わないように収め、25℃で静置した。1週間後に0.2mm×0.2mm×0.05mmの棒状晶が得られた。得られた結晶を、Glycolで沈殿剤溶液を約1.4倍希釈した溶液に浸し、続いて液体窒素で凍結した。放射光施設フォトンファクトリー(つくば)のビームラインPF BL‐17AにてX線回折データを収集した。得られた回折像からソフトウェアXDS(Max Plank Institute for Medical Research)を用いて回折強度を数値化し、結晶構造因子を求めた。結晶は六方晶系で空間群はR32、結晶の単位格子はa=b=149.61Å、c=155.61Å、alpha=beta=90°、gamma=120°であった。
2)‐4‐2‐2 複合体の構造解析
 得られた構造因子とFab断片のホモロジーモデル及びヒトSIRPAのIgVドメインの既知構造(PDBID:2JJS)の三次元構造座標を用いて分子置換法を行い、位相を決定した。計算にはソフトウェアphaser(CCP4:Collaborative Computational Project No.4)を使用した。結晶は非対称単位に1つの複合体を含んでいた。ソフトウェアRefmac5(CCP4:Collaborative Computational Project No.4)を用いて構造の精密化を行い、ソフトウェアcootを用いてモデルの修正を行った。この操作を繰り返し行い、2.4Å分解能で最終のR値22%、free R値25%を得た。最終のモデルはcD13のFab断片のL鎖アミノ酸残基1‐213、H鎖アミノ酸残基1‐225、及び、ヒトSIRPAバリアント2のアミノ酸残基33‐143を含む。
2)‐4‐2‐3 複合体の構造解析D13のエピトープの同定
 cD13のFab断片から4Å以内にあるヒトSIRPAのアミノ酸残基(各アミノ酸残基の位置は、配列表の配列番号57に対応している)は以下の通りである:Gly64、Pro65、Leu78、Gln82、Lys83、Glu84、Gly85、His86、Phe87、Thr91、Thr92、Glu95、Thr97、Lys98、Lys126。図2に複合体全体のリボンモデルと表面を、図3にヒトSIRPAのbeta5以前(A)とbeta5以降(B)の領域とcD13との相互作用を示した。cD13がヒトSIRPAにおいて配列多様性の低いbeta4‐5ループ、つまり残基番号82‐87を強く認識することが、様々なバリアントに強く結合することを可能としていることが示唆された(図4)。一方で、beta5‐6ループつまり残基番号92‐105の領域での相互作用は弱い。例えば、グルタミン酸の代わりにアスパラギン酸に置換されたバリアントが存在するGlu95はFab近傍に存在するが、その側鎖の電子密度が観測されず相互作用に大きく寄与していないことが示唆される。なお、図4の配列において「・」はSIRPA_V1と同一のアミノ酸残基を示し、アミノ酸残基が記載されている箇所は異なるアミノ酸残基を示す。
2)‐5 ヒトSIRPA‐CD47結合阻害活性評価
 1)‐5‐1で調製したヒトSIRPA発現ベクター導入293α細胞の培養上清を除去後、pcDNA3.2 V5‐DEST‐SIRPA_V1、V2又はpcDNA3.2 V5‐DEST導入293α細胞のそれぞれに対し、終濃度で0乃至10000ng/mLになるよう5% FBS含有PBSで希釈したラット抗ヒトSIRPA精製抗体を50μL/ウェル添加した。直後に終濃度で10000ng/mLになるよう5% FBS含有PBSで調製したPeroxidase labeled CD47‐Fcを50μL/ウェル添加し、4℃で1時間静置した。以下は1)‐6‐3と同様の方法で結合阻害活性を評価した。
 表3に示すとおり、ラット抗ヒトSIRPA抗体は、何れもヒトSIRPA‐CD47に対して結合阻害活性を示した。
Figure JPOXMLDOC01-appb-T000003
2)‐6 ラット抗ヒトSIRPA抗体の癌細胞株に対するADCP活性
2)‐6‐1 標的細胞の調製
 ヒト胃癌細胞株AGS細胞はTrypLE Express(Life Technology社製)を添加し、37℃ 5分間反応後、剥離した。10% FBS含有RPMI1640培地(Life Technology社製)を添加し2回洗浄後、PBSで2回洗浄後、生細胞数をトリパンブルー色素排除試験にて計測した。4×10細胞を分取、遠心後、PKH26 Red Fluorescent Cell Linker Kit for General Cell Membrane Labeling(Sigma社製)付属のDilluentC 2mLで細胞を懸濁した。標識溶液として1mM PKH26 LinkerをDilluentCで10μMに希釈後、ただちに、細胞懸濁液と等量のPKH26 Linker溶液を混合し、室温5分間静置した。25mLの10% FBS含有RPMI1640培地(Life Technology社製)を添加し2回洗浄後、2×10細胞/mLになるよう再懸濁したものを標的細胞として用いた。
2)‐6‐2 PBMC細胞の調製
 20mL Ficoll Paque Plus(GE社製)に25mL健常人血液をゆっくり重層後、室温1500rpm×30分間遠心した。血漿とFicoll Paque Plusの中間に位置する細胞層をスポイトで回収し、20mL 10% FBS含有RPMI1640培地(Life Technology社製)に懸濁した。1500rpm×5分間遠心、上清除去後、20mL 10% FBS含有RPMI1640培地を添加し、2回洗浄した。1mLのRobosep buffer(STEMCELL社)に懸濁したのち、生細胞数をトリパンブルー色素排除試験にて計測しエフェクター細胞として用いた。
2)‐6‐3 エフェクター細胞の調製
 実施例2)‐6‐2で調製したPBMC細胞はRoboSep buffer(STEMCELL社製)にて5×10細胞/mLになるように調製した。Human monocyte Enrichment Kit Without CD16 Depletion(STEMCELL社製)付属のEasySep human Monocyte enrichment cocktailをPBMC細胞懸濁液1mLあたり50μL添加した。4℃ 10分間反応後、EasySep Magnetic ParticlesをPBMC細胞懸濁液1mLあたり50μL添加した。4℃ 5分間反応後、2.5mLになるようにRoboSep buffer(STEMCELL社製)を添加し、EasySep Magnetにセットした。2分30秒後に上清を回収した後1200rpm×5分間遠心し、Monocyte画分を分取した。10% FBS含有RPMI1640培地(Life Technology社製)を添加1回洗浄後、10ng/mL M‐CSF(PEPROTEC社製)を含む10% FBS含有RPMI1640培地(Life Technology社製)を添加し、浮遊用225cm2フラスコ(住友ベークライト社製)に播種した。37℃、5% COの条件下で10日間培養した。培養上清を除き、10ng/mL IL‐10、10ng/mL M‐CSF(PEPROTEC社製)を含む10% FBS含有RPMI1640培地(Life Technology社製)を添加し、さらに2日間培養した。12日後、分化誘導されたマクロファージはTrypLE Express(Life Technology社製)を添加し、37℃ 40分間反応後、剥離した。10% FBS含有RPMI1640培地(Life Technology社製)を添加し2回洗浄後、5×10細胞/mLになるように、10% FBS含有RPMI1640培地(Life Technology社製)に再懸濁し、エフェクター細胞として用いた。
2)‐6‐4 ADCP活性の評価
 実施例2)‐6‐1の方法で調製した標的細胞50μL/ウェルを超低接着表面96穴U底マイクロプレート(住友ベークライト社製)に添加した。そこに終濃度で0乃至10000ng/mLになるよう10% FBS含有RPMI1640培地(Life Technology社製)で希釈したラット抗ヒトSIRPA抗体7クローン、Hu5F9G4(抗ヒトCD47抗体:PloS ONE 10[9]:e0137345、US2015183874を元に調製)、TTI‐621(ヒトSIRPA‐Fc:WO2014/094122を元に調製)又は各種コントロールIgGを50μL/ウェル添加した。単剤群では10% FBS含有RPMI1640培地(Life Technology社製)を50μL/ウェル添加し、併用群では終濃度で250ng/mLになるよう10% FBS含有RPMI1640培地(Life Technology社製)で希釈したTrastuzumab(Roche社製)を50μL/ウェル添加した。実施例2)‐6‐3で調製した、1×10細胞/mL、50μL/ウェルのエフェクター細胞を添加後、37℃、5% COの条件下で16時間静置した。4℃ 1200rpm×5分間遠心、上清除去後、200μL/ウェルの5%FBS含有PBSで洗浄した。細胞に45μL/ウェルの5%FBS含有PBS、5μL/ウェルのAPC human CD11b(Becton Dickison社製)を添加し、4℃、15分間静置した。200μL/ウェルの5%FBS含有PBSで2回洗浄した。100μL/ウェルの1×BD Stabilizing Fixative(Becton Dickison社製)で懸濁し、4℃、一晩静置した。翌日フローサイトメトリー(FACS CantoII:Becton Dickison社製)にて測定した。データ解析にはFlowjo(TreeStar社製)を用いた。FSC(前方散乱光)/SSC(側方散乱光)で展開したのち、PE陽性(A)、APC、PE共に陽性(B)となる細胞数を算出した。APC、PE共に陽性(B)となった細胞をマクロファージにより標的細胞が貪食されたものとした。ADCP活性による細胞貪食率は次式で算出した。
細胞貪食率(%)=B/(A+B)×100
 図5に示す通り、CD47陽性ヒト胃癌細胞株AGSに対し、ラット抗ヒトSIRPA抗体単剤では、Hu5F9G4(抗ヒトCD47抗体)、及びTTI‐621(ヒトSIRPA‐Fc)と比較し低いADCP活性を示した(図5A)。一方で、Trastuzumab併用時は、Hu5F9‐G4、及びTTI‐621と同等程度のADCP活性を示した(図5B)。よって、抗SIRPA抗体によりSIRPA‐CD47の結合を阻害することで、マクロファージの貪食能が増強することが示唆された。
実施例3.ラット抗SIRPA抗体(D13、F44、F63)可変領域のcDNAのヌクレオチド配列解析とアミノ酸配列の決定
3)‐1 D13の可変領域のcDNAのヌクレオチド配列解析とアミノ酸配列の決定
3)‐1‐1 D13生産ハイブリドーマのtotal RNAの調製
 D13の可変領域をコードするcDNAを増幅するため、D13産生ハイブリドーマよりTRIzol Reagent(Ambion社)を用いてtotal RNAを調製した。
3)‐1‐2 5’‐RACE PCRによるD13の軽鎖可変領域のcDNAのヌクレオチド配列解析とアミノ酸配列の決定
 軽鎖可変領域をコードするcDNAの増幅は、実施例3)‐1‐1で調製したtotal RNAの約1μgとSMARTer RACE 5’/3’ Kit(Clontech社)を用いて実施した。D13の軽鎖遺伝子の可変領域をコードするcDNAをPCRで増幅するためのプライマーとして、UPM (Universal Primer A Mix:SMARTer RACE 5’/3’ Kitに付属)、及び公知のラット軽鎖の定常領域の配列から設計したプライマーを用いた。
 5’‐RACE PCRで増幅した軽鎖の可変領域をコードするcDNAをプラスミドにクローニングし、次に軽鎖の可変領域をコードするcDNAのヌクレオチド配列のシークエンス解析を実施した。
 決定されたcDNAのヌクレオチド配列にコードされるD13の軽鎖の可変領域のアミノ酸配列は配列表の配列番号23の21~126番目のアミノ酸残基からなるアミノ酸配列に相当する。D13のCDRL1、CDRL2、CDRL3のアミノ酸配列を、配列表の配列番号1乃至3に示す。これらのCDRのアミノ酸は図28にも示されている。
 各CDRのアミノ鎖配列は、AbMの定義 (Martin, A. C. R., Cheetham, J. C. and Rees, A. R. (1989) Proc. Natl Acad. Sci. USA, 86,9268-9272)に基づき記載されている。
3)‐1‐3 5’-RACE PCRによるD13の重鎖可変領域のcDNAのヌクレオチド配列解析とアミノ酸配列の決定
 重鎖可変領域をコードするcDNAの増幅は、実施例3)‐1‐1で調製したtotal RNAの約1μgとSMARTer RACE 5’/3’ Kit(Clontech社)を用いて実施した。D13の重鎖遺伝子の可変領域をコードするcDNAをPCRで増幅するためのプライマーとして、UPM(Universal Primer A Mix:SMARTer RACE 5’/3’ Kitに付属)、及び公知のラット重鎖の定常領域の配列から設計したプライマーを用いた。
 5’‐RACE PCRで増幅した重鎖の可変領域をコードするcDNAをプラスミドにクローニングし、次に重鎖の可変領域をコードするcDNAのヌクレオチド配列のシークエンス解析を実施した。
 決定されたcDNAのヌクレオチド配列にコードされるD13の重鎖の可変領域のアミノ酸配列は配列表の配列番号25の20~139番目のアミノ酸残基からなるアミノ酸配列に相当する。D13のCDRH1、CDRH2、CDRH3のアミノ酸配列を、配列表の配列番号4乃至6に示す。これらのCDRのアミノ酸配列は図28にも示されている。
3)‐2 F44の可変領域のcDNAのヌクレオチド配列解析とアミノ酸配列の決定
 実施例3)‐1と同様の方法で実施した。決定されたcDNAのヌクレオチド配列にコードされるF44の軽鎖の可変領域のアミノ酸配列は配列表の配列番号27の21~127番目のアミノ酸残基からなるアミノ酸配列に相当する。また、決定されたcDNAのヌクレオチド配列にコードされるF44の重鎖の可変領域のアミノ酸配列は配列表の配列番号29の20~138番目のアミノ酸残基からなるアミノ酸配列に相当する。F44のCDRL1、CDRL2、CDRL3、CDRH1、CDRH2、CDRH3のアミノ酸配列を、配列表の配列番号7乃至12に示す。これらのCDRのアミノ酸配列は図29にも示されている。
3)‐3 F63の可変領域のcDNAのヌクレオチド配列解析とアミノ酸配列の決定
 実施例3)‐1と同様の方法で実施した。決定されたcDNAのヌクレオチド配列にコードされるF63の軽鎖の可変領域のアミノ酸配列は配列表の配列番号31の21~130番目のアミノ酸残基からなるアミノ酸配列に相当する。また、決定されたcDNAのヌクレオチド配列にコードされるF63の重鎖の可変領域のアミノ酸配列は配列番号33の20~143番目のアミノ酸残基からなるアミノ酸配列に相当する。F63のCDRL1、CDRL2、CDRL3、CDRH1、CDRH2、CDRH3のアミノ酸配列を、配列表の配列番号13乃至18に示す。これらのCDRのアミノ酸配列は図30にも示されている。
実施例4.ヒトキメラ化抗SIRPA抗体(cD13、cF44、cF63)の作製
4)‐1 ヒトキメラ化及びヒト化κタイプ軽鎖発現ベクターpCMA-LKの構築
 プラスミドpcDNA3.3‐TOPO/LacZ(Invitrogen社)を制限酵素XbaI及びPmeIで消化して得られる約5.4kbのフラグメントと、配列番号19に示すヒト軽鎖シグナル配列及びヒトκ鎖定常領域をコードするDNA配列を含むDNA断片をIn‐Fusion HD PCRクローニングキット(Clontech社)を用いて結合して、pcDNA3.3/LKを作製した。
 pcDNA3.3/LKからネオマイシン発現ユニットを除去することによりpCMA‐LKを構築した。
4)‐2 ヒトキメラ化及びヒト化λタイプ軽鎖発現ベクターpCMA‐LLの構築
 pCMA‐LKをXbaI及びPmeIで消化して軽鎖シグナル配列及びヒトκ鎖定常領域を取り除いたDNA断片と、配列番号20で示されるヒト軽鎖シグナル配列及びヒトλ鎖定常領域をコードするDNA配列を含むDNA断片をIn‐Fusion HD PCRクローニングキット(Clontech社)を用いて結合して、pCMA‐LLを構築した。
4)‐3 ヒトキメラ化及びヒト化IgG4proFALAタイプ重鎖発現ベクターpCMA‐G4PFALAの構築
 配列番号21で示されるヒト重鎖シグナル配列及びヒトIgG4PFALA定常領域のアミノ酸をコードするDNA配列を含むDNA断片を用いて、実施例4)‐2と同様の方法でpCMA‐G4proFALAを構築した。
4)‐4 cD13の発現ベクターの構築
4)‐4‐1 cD13のIgG4proFALAタイプ重鎖発現ベクターの構築
 実施例3)‐1で得られたD13重鎖の可変領域をコードするcDNAをテンプレートとして、In‐fusionクローニング用に設計したプライマーでPCRを行うことにより重鎖の可変領域をコードするcDNAを含むDNA断片を増幅した。pCMA‐G4proFALAを制限酵素BlpIで切断した箇所に、In‐Fusion HD PCRクローニングキット(Clontech社)を用いて、増幅したDNA断片を挿入することによりcD13重鎖発現ベクターを構築した。cD13重鎖をコードするヌクレオチド配列を、配列表の配列番号24に示す。1~57番目のヌクレオチドからなるヌクレオチド配列はシグナル配列を、58~417番目のヌクレオチドからなるヌクレオチド配列は可変領域を、418~1398番目のヌクレオチドからなるヌクレオチド配列は定常領域を、それぞれコードしている。cD13重鎖のアミノ酸配列を、配列表の配列番号25に示す。1~19番目のアミノ酸残基からなるアミノ酸配列はシグナル配列に、20~139番目のアミノ酸残基からなるアミノ酸配列は可変領域に、140~466番目のアミノ酸残基からなるアミノ酸配列は定常領域に、それぞれ相当する。配列番号24及び配列番号25の配列は図18にも示されている。
4)‐4‐2 cD13の軽鎖発現ベクターの構築
 実施例3)‐1で得られたD13軽鎖の可変領域をコードするcDNAをテンプレートとして、In‐fusionクローニング用に設計したプライマーでPCRを行うことにより軽鎖の可変領域をコードするcDNAを含むDNA断片を増幅した。pCMA‐LKを制限酵素BsiWIで切断した箇所に、In‐Fusion HD PCRクローニングキット(Clontech社)を用いて、増幅したDNA断片を挿入することによりcD13軽鎖発現ベクターを構築した。cD13軽鎖をコードするヌクレオチド配列を、配列表の配列番号22に示す。1~60番目のヌクレオチドからなるヌクレオチド配列はシグナル配列を、61~378番目のヌクレオチドからなるヌクレオチド配列は可変領域を、379~699番目のヌクレオチドからなるヌクレオチド配列は定常領域を、それぞれコードしている。cD13軽鎖のアミノ酸配列を、配列表の配列番号23に示す。1~20番目のアミノ酸残基からなるアミノ酸配列はシグナル配列に、21~126番目のアミノ酸残基からなるアミノ酸配列は可変領域に、127~233番目のアミノ酸残基からなるアミノ酸配列は定常領域に、それぞれ相当する。配列番号22及び配列番号23の配列は図17にも示されている。
4)‐5 cF44の発現ベクターの構築
4)‐5‐1 cF44のIgG4proFALAタイプ重鎖発現ベクターの構築
 実施例3)‐2で得られたF44重鎖の可変領域をコードするcDNAをテンプレートとして、実施例4)‐4‐1と同様の方法でcF44重鎖発現ベクターを構築した。cF44重鎖をコードするヌクレオチド配列を、配列表の配列番号28に示す。1~57番目のヌクレオチドからなるヌクレオチド配列はシグナル配列を、58~414番目のヌクレオチドからなるヌクレオチド配列は可変領域を、415~1395番目のヌクレオチドからなるヌクレオチド配列は定常領域を、それぞれコードしている。cF44重鎖のアミノ酸配列を、配列表の配列番号29に示す。1~19番目のアミノ酸残基からなるアミノ酸配列はシグナル配列に、20~138番目のアミノ酸残基からなるアミノ酸配列は可変領域に、139~465番目のアミノ酸残基からなるアミノ酸配列は定常領域に、それぞれ相当する。配列番号28及び配列番号29の配列は図20にも示されている。
4)‐5‐2 cF44の軽鎖発現ベクターの構築
 実施例3)‐2で得られたF44軽鎖の可変領域をコードするcDNAをテンプレートとして、実施例4)‐4‐2と同様の方法でcF44軽鎖発現ベクターを構築した。cF44軽鎖をコードするヌクレオチド配列を、配列表の配列番号26に示す。1~60番目のヌクレオチドからなるヌクレオチド配列はシグナル配列を、61~381番目のヌクレオチドからなるヌクレオチド配列は可変領域を、382~702番目のヌクレオチドからなるヌクレオチド配列は定常領域を、それぞれコードしている。cF44軽鎖のアミノ酸配列を、配列表の配列番号27に示す。1~20番目のアミノ酸残基からなるアミノ酸配列はシグナル配列に、21~127番目のアミノ酸残基からなるアミノ酸配列は可変領域に、128~234番目のアミノ酸残基からなるアミノ酸配列は定常領域に、それぞれ相当する。配列番号26及び配列番号27の配列は図19にも示されている。
4)‐6 cF63の発現ベクターの構築
4)‐6‐1 cF63のIgG4proFALAタイプ重鎖発現ベクターの構築
 実施例3)‐3で得られたF63重鎖の可変領域をコードするcDNAをテンプレートとして、実施例4)‐4‐1と同様の方法でcF63重鎖発現ベクターを構築した。cF63重鎖をコードするヌクレオチド配列を、配列表の配列番号32に示す。1~57番目のヌクレオチドからなるヌクレオチド配列はシグナル配列を、58~429番目のヌクレオチドからなるヌクレオチド配列は可変領域を、430~1410番目のヌクレオチドからなるヌクレオチド配列は定常領域を、それぞれコードしている。cF63重鎖のアミノ酸配列を、配列表の配列番号33に示す。1~19番目のアミノ酸残基からなるアミノ酸配列はシグナル配列に、20~143番目のアミノ酸残基からなるアミノ酸配列は可変領域に、144~470番目のアミノ酸残基からなるアミノ酸配列は定常領域に、それぞれ相当する。配列番号32及び配列番号33の配列は図22にも示されている。
4)‐6‐2 cF63の軽鎖発現ベクターの構築
 実施例3)‐3で得られたF63軽鎖の可変領域をコードするcDNAをテンプレートとして、In‐fusionクローニング用に設計したプライマーでPCRを行うことにより軽鎖の可変領域をコードするcDNAを含むDNA断片を増幅した。pCMA‐LLを制限酵素BsiWIとHpaIで切断した箇所に、In‐Fusion HD PCRクローニングキット(Clontech社)を用いて、増幅したDNA断片を挿入することによりcF63軽鎖発現ベクターを構築した。cF63軽鎖をコードするヌクレオチド配列を、配列表の配列番号30に示す。1~60番目のヌクレオチドからなるヌクレオチド配列はシグナル配列を、61~390番目のヌクレオチドからなるヌクレオチド配列は可変領域を、391~708番目のヌクレオチドからなるヌクレオチド配列は定常領域を、それぞれコードしている。cF63軽鎖のアミノ酸配列を、配列表の配列番号31に示す。1~20番目のアミノ酸残基からなるアミノ酸配列はシグナル配列に、21~130番目のアミノ酸残基からなるアミノ酸配列は可変領域に、131~236番目のアミノ酸残基からなるアミノ酸配列は定常領域に、それぞれ相当する。配列番号30及び配列番号31の配列は図21にも示されている。
4)‐7 cD13、cF44、cF63の調製
4)‐7‐1 cD13、cF44、cF63の生産
 FreeStyle 293F細胞(Invitrogen社)はマニュアルに従い、継代、培養をおこなった。対数増殖期の1.2×10個のFreeStyle 293F細胞(Invitrogen社)を3L Fernbach Erlenmeyer Flask(CORNING社)に播種し、FreeStyle 293 expression medium(Invitrogen社)で希釈して2.0×10細胞/mLに調製した。40mLのOpti‐Pro SFM培地(Invitrogen社)に0.24mgの重鎖発現ベクターと0.36mgの軽鎖発現ベクターと1.8mgのPolyethyleneimine(Polyscience #24765)を加えて穏やかに攪拌し、さらに5分間放置した後にFreeStyle 293F細胞に添加した。37℃、8%COインキュベーターで4時間、90rpmで振とう培養後に600mLのEX‐CELL VPRO培地(SAFC Biosciences社)、18mLのGlutaMAX I(GIBCO社)、及び30mLのYeastolate Ultrafiltrate(GIBCO社)を添加し、37℃、8%COインキュベーターで7日間、90rpmで振とう培養して得られた培養上清をDisposable Capsule Filter(Advantec #CCS‐045‐E1H)でろ過した。
4)‐7‐2 cD13、cF44、cF63の精製
 実施例4)‐7‐1で得られた培養上清から抗体をrProtein Aアフィニティークロマトグラフィーの1段階工程で精製した。培養上清をPBSで平衡化したMabSelectSuReが充填されたカラム(GE Healthcare Bioscience社製)にアプライしたのちに、カラム容量の2倍以上のPBSでカラムを洗浄した。次に2M アルギニン塩酸塩溶液(pH4.0)で溶出し、抗体の含まれる画分を集めた。その画分を透析(Thermo Scientific社、Slide‐A‐Lyzer Dialysis Cassette)によりPBS(-)へのバッファー置換を行った。Centrifugal UF Filter Device VIVASPIN20(分画分子量UF10K,Sartorius社)で抗体を濃縮し、IgG濃度を10mg/mL以上に調製した。最後にMinisart‐Plus filter(Sartorius社)でろ過し、精製サンプルとした。
実施例5.ヒトキメラ化抗SIRPA抗体(cD13、cF44、cF63)のin vitro評価
5)‐1 ヒトSIRPAに対する結合性評価
5)‐1‐1 ヒトSIRPAに対する結合性評価(Cell‐ELISA)
 293α細胞[実施例1)‐6に記載]を10% FBS含有DMEM培地中5x10細胞/mLになるよう調製した。それに対し、Lipofectamine LTX(Invitrogen社製)を用いて、pFLAG V5‐DEST‐SIRPA_V1、V2、若しくはpFLAG V5‐DESTを導入し、96‐well plate(Corning社製)に100μLずつ分注したのち、10% FBS含有DMEM培地中で37℃、5% COの条件下で一晩培養した。得られた導入細胞を接着状態のまま、Cell‐ELISAに使用した。培養上清を除去後、pFLAG V5‐DEST‐SIRPA_V1、V2、若しくはpFLAG V5‐DEST導入細胞のそれぞれに対し、実施例3及び実施例4で調製したcD13(IgG2、IgG4pf)、cF44(IgG1、IgG2、IgG4p、IgG4pf)、cF63(IgG2、IgG4pf)抗体を終濃度0乃至10000ng/mL、50μL/ウェルで添加し、4℃で1時間静置した。また、各SIRPAコンストラクト発現検出用のウェルには、終濃度で10000ng/mLになるよう5% FBS含有PBSで希釈した抗FLAG M2抗体(SIGMA社製)を50μL/ウェル添加し、4℃で1時間静置した。ウェル中の細胞を5% FBS含有PBSで1回洗浄後、5% FBS含有PBSで1000倍に希釈したPeroxidase AffiniPure F(ab’)Fragment Goat Anti‐Human IgG、 Fcγ Fragment Specific(Jackson ImmunoResearch社製)を加えて、4℃で1時間静置した。ウェル中の細胞を5% FBS含有PBSで5回洗浄した後、OPD発色液(OPD溶解液(0.05M クエン酸3ナトリウム、0.1M リン酸水素2ナトリウム・12水 pH4.5)にo‐フェニレンジアミン二塩酸塩(和光純薬社製)、Hをそれぞれ0.4mg/mL、0.6%(v/v)になるように溶解)を100μL/ウェルで添加した。時々攪拌しながら発色反応を行い、1M HClを100μL/ウェルを添加して発色反応を停止させた後、プレートリーダー(ARVO:PerkinElmer社)で490nmの吸光度を測定した。各コンストラクトに対するヒトキメラ化抗ヒトSIRPA抗体の結合性はFLAGタグの発現をもとに標準化した。
 図6に示す通り、cD13、cF44、cF63抗体はSIRPA_V1とSIRPA_V2両方に結合し(図6A、B)、各アイソタイプ間で結合性はほぼ同等であった(図6C、D)。
5)‐1‐2 ヒトキメラ化抗体のヒトSIRPAに対する結合性評価
 実施例4で作製したcD13、cF44、cF63の実施例1で作製したヒトSIRPA_V1_IgVに対する解離定数測定は、Biacore T200(GE Healthcare Bioscience社製)を使用し、ヒトキメラ化抗体をリガンドとして捕捉し、抗原をアナライトとして測定するキャプチャー法にて行った。ランニングバッファーとしてHBS-EP+(GE Healthcare Bioscience社製)、センサーチップとしてCM5(GE Healthcare Bioscience社製)を用いた。チップ上に1μg/mLのヒトキメラ化抗体を10μL/分で60秒間添加した後、抗原としてヒトSIRPA蛋白質の希釈系列溶液(0.5~8μg/mL)を流速30μL/分で120秒間添加し、引き続き600秒間の解離相をモニターした。再生溶液として、3M magnesium chloride(GE Healthcare Bioscience社製)を流速20μL/分で30秒間添加した。データの解析には1:1結合モデルを用いて、結合速度定数ka、解離速度定数kd及び解離定数(KD;KD=kd/ka)を算出した。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
5)‐2 サルSIRPAに対する種交差性評価
 293α細胞を10% FBS含有DMEM培地中5x10細胞/mLになるよう調製した。それに対し、Lipofectamine LTX(Invitrogen社製)を用いて、pFLAG V5‐DEST‐サルSIRPA、若しくはpFLAG V5‐DESTを導入し、96‐well plate(Corning社製)に100μLずつ分注したのち、10% FBS含有DMEM培地中で37℃、5% COの条件下で一晩培養した。得られた導入細胞を接着状態のまま、Cell‐ELISAに使用した。培養上清を除去後、ヒトSIRPAに対する結合活性と同様の方法でサルSIRPAに対する結合活性を評価した。
 図7に示すように、cD13、cF44、cF63抗体はサルSIRPAに結合性を示した。
5)‐3 ヒト、又はサルSIRPA‐CD47結合阻害活性評価
 実施例5)-1、5)-2で調製したヒトSIRPA、又はサルSIRPA発現ベクター導入293α細胞の培養上清を除去後、pcDNA3.2 V5‐DEST‐SIRPA_V1、pcDNA3.2 V5‐DEST‐サルSIRPA又はpcDNA3.2 V5‐DEST導入293α細胞のそれぞれに対し、終濃度で0乃至10000ng/mLになるよう5% FBS含有PBSで希釈したcD13(IgG2、IgG4pf)、cF44(IgG1、IgG2、IgG4p、IgG4pfの定常領域4種)、及びcF63(IgG2、IgG4pf)を50μL/ウェル添加した。直後に終濃度で10000ng/mLになるよう5% FBS含有PBSで調製したPeroxidase labeled CD47‐Fcを50μL/ウェル添加し、4℃で1時間静置した。以下は1)‐6‐3と同様の方法でSIRPA‐CD47結合阻害活性を評価した。
 図8に示すように、cF44、cF63、cD13はヒト及びサルSIRPA‐CD47結合阻害活性を示し(図8A(i)、(ii)、(iii))、各アイソタイプ間でその活性はほぼ同等であった(図8B(i)、(ii)、(iii)。
5)‐4 ヒトキメラ化抗ヒトSIRPA抗体の癌細胞株に対するADCP活性
5)‐4‐1 標的細胞の調製
 CD47陽性ヒトBurkitt’s lymphoma細胞株Raji細胞を回収し、PBSで2回洗浄後、生細胞数をトリパンブルー色素排除試験にて計測した。以下は2‐6‐1と同様の方法にて標的細胞を調製した。
5)‐4‐2 PBMC細胞の調製
 2)‐6‐2と同様の方法にてPBMC細胞を調製した。
5)‐4‐3 エフェクター細胞の調製
 2)‐6‐3と同様の方法にてエフェクター細胞を調製した。
5)‐4‐4 ADCP活性の評価
 実施例5)-4-1の方法で調製した標的細胞50μL/ウェルを超低接着表面96穴U底マイクロプレート(住友ベークライト社製)に添加した。そこに終濃度で0乃至10000ng/mLになるよう10% FBS含有RPMI1640培地(Life Technology社製)で希釈したcD13、cF44、cF63、Hu5F9G4、TTI‐621又は各種コントロールHuman IgGを50μL/ウェル添加した。単剤群では10% FBS含有RPMI1640培地(Life Technology社製)を50μL/ウェル添加し、併用群では終濃度で400ng/mLになるよう10% FBS含有RPMI1640培地(Life Technology社製)で希釈したRituximab(全薬工業社製)を50μL/ウェル添加した。以下は2‐6‐4と同様の方法にてADCP活性を評価した。
 図9に示す通り、cD13、cF44、cF63は、CD47陽性ヒトBurkitt’s lymphoma細胞株Raji細胞に対し、単剤ではADCP活性を示さず(図9A)、Rituximab併用時において、Hu5F9G4並びにTTI-621と同程度のADCP活性を示した(図9B)。
5)‐5 ヒトキメラ化抗ヒトSIRPA抗体のPBMC及びマクロファージに対する毒性評価
5)‐5‐1 標的細胞としてのPBMC、並びにマクロファージの調製
 2)‐6‐2(PBMC)、並びに2)‐6‐3(マクロファージ)と同様の方法にて標的細胞を調製した。回収した各細胞は2)‐6‐1と同様の方法で蛍光標識し、標的細胞として用いた。
5)‐5‐2 エフェクター細胞の調製
 2)‐6‐3と同様の方法にてエフェクター細胞を調製した。
5)‐5‐3 ADCP活性の評価
 実施例5)-4-2の方法で調製したPBMC、又はマクロファージ50μL/ウェルを超低接着表面96穴U底マイクロプレート(住友ベークライト社製)に添加した。そこに終濃度で0.64乃至10000ng/mLになるよう10% FBS含有RPMI1640培地(Life Technology社製)で希釈したcD13(IgG4pf)、cF44(IgG1、IgG2、IgG4p、IgG4pfの定常領域4種)、cF63(IgG4pf)、Hu5F9G4、TTI‐621又は各種コントロールHuman IgGを50μL/ウェル添加した。10% FBS含有RPMI1640培地(Life Technology社製)を50μL/ウェル添加した。以下は2‐6‐4と同様の方法にてADCP活性を評価した。なお、マクロファージに対するADCP活性の比率は各抗体添加時のマクロファージのカウント数をコントロール抗体添加時のカウント数で除することで算出した。
 図10に示す通り、cD13、cF44、cF63のPBMCに対するADCP活性はコントロールIgGとほぼ同等であった(図10A)。また、定常領域の異なるcF44抗体を比較すると、IgG1型、IgG4p型では添加した抗体の濃度依存的にADCP活性を示すのに対し、IgG2型、IgG4pf型ではADCP活性を示さなかった(図10B)。
 一方で、抗体添加16時間後のマクロファージの存在比について定常領域の異なるcF44抗体を比較すると、IgG4pf型が最もマクロファージの減少率が低いことから、抗体添加により誘導される、SIRPA陽性細胞に対する毒性が最も低い可能性が示された(図10C)。
実施例6 ヒト化抗SIRPA抗体の設計
6)‐1 キメラ化抗体cD13の可変領域の分子モデリング
 cD13の可変領域の分子モデリングは、ホモロジーモデリングとして公知の方法[Methods in Enzymology,203,121‐153(1991)]を利用した。cD13の重鎖と軽鎖の可変領域に対して高い配列同一性を有するProtein Data Bank[Nuc.Acid Res.35,D301‐D303(2007)]に登録されている構造(PDB ID:3CSY)を鋳型に、市販のタンパク質立体構造解析プログラムBioLuminate(Schrodinger社製)を用いて行った。
6)‐2 ヒト化アミノ酸配列の設計
 cD13は、CDRグラフティング[Proc.Natl.Acad.Sci.USA 86,10029‐10033(1989)]によりヒト化した。IMGT(THE INTERNATIONAL IMMUNOGENETICS INFORMATION SYSTEM,http://www.imgt.org)に登録されているヒトgermline配列のIGHV3‐30*13とIGHJ3*01、及びIGKV1‐6*01とIGKJ2*01、そしてKabat et al.[Sequences of Proteins of Immunological Interest,5th Ed.Public Health Service National Institutes of Health,Bethesda,MD.(1991)]において既定されるヒトのカッパ鎖サブグループ4のコンセンサス配列がcD13のフレームワーク領域に対して高い同一性を有することから、アクセプターとして選択された。アクセプター上に移入すべきドナー残基は、Queen et al.[Proc.Natl.Acad.Sci.USA 86,10029‐10033(1989)]によって与えられる基準などを参考に三次元モデルを分析することで選択された。
6)‐3 cD13重鎖のヒト化
 設計された2種の重鎖をhH1及びhH2と命名した。hH1の重鎖全長アミノ酸配列を、配列表の配列番号41に記載する。配列番号41のアミノ酸配列をコードするヌクレオチド配列を、配列表の配列番号40に記載する。hH2の重鎖全長アミノ酸配列を、配列表の配列番号43に記載する。配列番号43のアミノ酸配列をコードするヌクレオチド配列を、配列表の配列番号42に記載する。配列番号41及び43において、1~19番目のアミノ酸残基からなるアミノ酸配列はシグナル配列に、20~139番目のアミノ酸残基からなるアミノ酸配列は可変領域に、140~466番目のアミノ酸残基からなるアミノ酸配列は定常領域に、それぞれ相当する。また、配列番号40及び42において、1~57番目のヌクレオチドからなるヌクレオチド配列はシグナル配列を、58~417番目のヌクレオチドからなるヌクレオチド配列は可変領域を、418~1398番目のヌクレオチドからなるヌクレオチド配列は定常領域を、それぞれコードしている。配列番号40及び配列番号41の配列は図26にも、配列番号42及び配列番号43の配列は図27にも、示されている。
 ヒトキメラ化抗SIRPA抗体cD13の重鎖であるcD13_H、ヒト化抗体重鎖hH1、及びhH2のアミノ酸配列の比較を図11に示す。hH1及びhH2の配列において「・」はc013_Hと同一のアミノ酸残基を示し、アミノ酸残基が記載されている箇所は置換されたアミノ酸残基を示す。
6)‐4 cD13軽鎖のヒト化
 設計された3種の軽鎖をhL2、hL3、及びhL4と命名した。hL2の軽鎖全長アミノ酸配列を、配列表の配列番号35に記載する。配列番号34のアミノ酸配列をコードするヌクレオチド配列を、配列表の配列番号34に記載する。hL3の軽鎖全長アミノ酸配列を、配列表の配列番号37に記載する。配列番号37のアミノ酸配列をコードするヌクレオチド配列は配列番号36に記載する。hL4の軽鎖全長アミノ酸配列を、配列表の配列番号39に記載する。配列番号39のアミノ酸配列をコードするヌクレオチド配列を、配列番号38に記載する。配列番号35、37及び39において、1~20番目のアミノ酸残基からなるアミノ酸配列はシグナル配列に、21~127番目のアミノ酸残基からなるアミノ酸配列は可変領域に、128~234番目のアミノ酸残基からなるアミノ酸配列は定常領域に、それぞれ相当する。また、配列番号34、36及び38において、1~60番目のヌクレオチドからなるヌクレオチド配列はシグナル配列を、61~381番目のヌクレオチドからなるヌクレオチド配列は可変領域を、382~702番目のヌクレオチドからなるヌクレオチド配列は定常領域を、それぞれコードしている。配列番号34及び配列番号35の配列は図23にも、配列番号36及び配列番号37の配列は図24にも、配列番号38及び配列番号39の配列は図25にも、それぞれ示されている。
 ヒトキメラ化抗SIRPA抗体cD13の軽鎖であるcD13_L、ヒト化抗体軽鎖hL2、hL3及びhL4のアミノ酸配列の比較を図12に示す。hL2、hL3、及びhL4の配列において、「・」はcD13_Lと同一のアミノ酸残基を示し、アミノ酸残基が記載されている箇所は置換されたアミノ酸残基を示す。
6)‐5 重鎖及び軽鎖の組み合わせによるヒト化抗体の設計
 hH1及びhL3からなる抗体を「H1L3抗体」又は「H1L3」と称する。hH1及びhL4からなる抗体を「H1L4抗体」又は「H1L4」と称する。hH2及びhL2からなる抗体を「H2L2抗体」又は「H2L2」と称する。hH2及びhL3からなる抗体を「H2L3抗体」又は「H2L3」と称する。
実施例7.ヒト化抗SIRPA抗体の作製
7)-1 ヒト化抗体の重鎖発現ベクターの構築
7)-1-1 hH1発現ベクターの構築
 配列表の配列番号40に示すhH1のヌクレオチド配列のヌクレオチド番号36乃至434に示されるDNA断片を合成した(GENEART社)。In-Fusion HD PCRクローニングキット(Clontech社)を用いて、pCMA-G4proFALAを制限酵素BlpIで切断した箇所に合成したDNA断片を挿入することによりhH1発現ベクターを構築した。
7)-1-2 hH2発現ベクターの構築
 配列表の配列番号42に示すhH2のヌクレオチド配列のヌクレオチド番号36乃至434に示されるDNA断片を合成した(GENEART社)。実施例7)-1-1と同様の方法でhH2発現ベクターを構築した。
7)-2 ヒト化抗体の軽鎖発現ベクターの構築
7)-2-1 hL2発現ベクターの構築
 配列表の配列番号34に示すhL2のヌクレオチド配列のヌクレオチド番号37乃至402に示されるDNA断片を合成した(GENEART社)。In-Fusion HD PCRクローニングキット(Clontech社)を用いて、pCMA-LKを制限酵素BsiWIで切断した箇所に合成したDNA断片を挿入することによりhL2発現ベクターを構築した。
7)-2-2 hL3発現ベクターの構築
 配列表の配列番号36に示すhL3のヌクレオチド配列のヌクレオチド番号37乃至402に示されるDNA断片を合成した(GENEART社)。実施例7)-2-1と同様の方法でhL3発現ベクターを構築した。
7)-2-3 hL4発現ベクターの構築
 配列表の配列番号38に示すhL4のヌクレオチド配列のヌクレオチド番号37乃至402に示されるDNA断片を合成した(GENEART社)。実施例7)-2-1と同様の方法でhL4発現ベクターを構築した。
7)‐3 ヒト化抗体の調製
7)-3-1 ヒト化抗体の生産
 実施例4)-7-1と同様の方法で生産した。実施例6)‐5に示したH鎖とL鎖の組み合わせに対応したH鎖発現ベクターとL鎖発現ベクターの組み合わせで、各種ヒト化抗体を取得した。
7)-3-2 ヒト化抗体の調製
 実施例7)-3-1で得られた培養上清をrProtein Aアフィニティークロマトグラフィーとセラミックハイドロキシアパタイトの2段階工程で精製した。培養上清をPBSで平衡化したMabSelectSuReが充填されたカラム(GE Healthcare Bioscience社製)にアプライした後に、カラム容量の2倍以上のPBSでカラムを洗浄した。次に2 Mアルギニン塩酸塩溶液(pH4.0)で抗体を溶出した。抗体の含まれる画分を透析(Thermo Scientific社、Slide-A-Lyzer Dialysis Cassette)によりPBSへのバッファー置換を行い、5mMリン酸ナトリウム/50mM MES/pH7.0のバッファーで5倍希釈した後に、5mM NaPi/50mM MES/30mM NaCl/pH7.0のバッファーで平衡化したセラミックハイドロキシアパタイトカラム(日本バイオラッド、Bio-Scale CHT Type―1 Hydroxyapatite Column)にアプライした。塩化ナトリウムによる直線的濃度勾配溶出を実施し、抗体の含まれる画分を集めた。その画分を透析(Thermo Scientific社、Slide-A-Lyzer Dialysis Cassette)によりHBSor(25mM ヒスチジン/5% ソルビトール、pH6.0)へのバッファー置換を行った。Centrifugal UF Filter Device VIVASPIN20(分画分子量UF10K,Sartorius社)にて抗体を濃縮し、IgG濃度を50mg/mLに調製した。最後にMinisart-Plus filter(Sartorius社)でろ過し、精製サンプルとした。
実施例8.ヒト化抗SIRPA抗体(hD13_H1L3、hD13_H1L4h、hD13_H2L2、hD13_H2L3)のin vitro評価
8)‐1 ヒト化抗SIRPA抗体のヒト、サル、マウスSIRPAに対する結合活性
8)‐1-1 ヒト化抗SIRPA抗体のヒト、サル、マウスSIRPAに対する結合活性(Cell‐ELISA)
 293α細胞[実施例1]‐6に記載]を10% FBS含有DMEM培地中5x10細胞/mLになるよう調製した。それに対し、Lipofectamine LTX(Invitrogen社製)を用いて、pFLAG V5‐DEST‐SIRPA_V1‐V10、pFLAG V5‐DEST‐サルSIRPA、pFLAG V5‐DEST‐マウスSIRPA若しくはpFLAG V5‐DESTを導入し、96‐well plate(Corning社製)に100μLずつ分注したのち、10% FBS含有DMEM培地中で37℃、5% COの条件下で一晩培養した。得られた導入細胞を接着状態のまま、Cell‐ELISAに使用した。培養上清を除去後、各種SIRPA遺伝子導入細胞のそれぞれに対し、実施例6及び実施例7で調製したhD13_H1L3、hD13_H1L4h、hD13_H2L2、hD13_H2L3、又はcD13及びコントロール抗体を終濃度0乃至10000ng/mL、50μL/ウェル添加し、4℃で1時間静置した。以下は実施例5-1と同様の方法にてヒトSIRPAへの結合性を評価した。
 図13A~Cに示す通り、hD13_H1L3、hD13_H1L4h、hD13_H2L2、hD13_H2L3抗体はSIRPAバリアント(V1‐V10)、サルSIRPAに対しcD13抗体と同等以上の結合性を示した。一方で、図14A及びBに示す通りマウスSIRPAに対しては、ヒト化抗体、ヒトキメラ化抗体共に結合性を示さなかった。
8)‐1-2 ヒト化抗体のSIRPAに対する結合性評価
 実施例7で作製したhD13_H1L3、hD13_H1L4、hD13_H2L2及びhD13_H2L3の、実施例1で作製したヒトSIRPA_V1_IgV及びサルSIRPA_ECDに対する解離定数測定は、Biacore T200(GE Healthcare Bioscience社製)を使用し、Human Antibody Capture Kit(GE Healthcare Bioscience社製)を用いて固定化したAnti‐Human IgG(Fc)antibodyにヒト化抗体をリガンドとして捕捉し、抗原をアナライトとして測定するキャプチャー法にて行った。ランニングバッファーとしてHBS-EP+(GE Healthcare Bioscience社製)、センサーチップとしてCM5(GE Healthcare Bioscience社製)を用いた。チップ上に1μg/mLのヒト化抗体を10μL/分で60秒間添加した後、抗原としてヒトSIRPA蛋白質の希釈系列溶液(0.5~8μg/mL)又はサルSIRPA蛋白質の希釈系列溶液(1~16μg/mL)を流速30μL/分で120秒間添加し、引き続き600秒間の解離相をモニターした。再生溶液として、3M magnesium chloride(GE Healthcare Bioscience社製)を流速20μL/分で30秒間添加した。データの解析には1:1結合モデルを用いて、結合速度定数ka、解離速度定数kd及び解離定数(KD;KD=kd/ka)を算出した。結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
8)-2 ヒト化抗SIRPA抗体のヒト、又はサルSIRPA‐CD47結合阻害活性評価
 実施例8)-1で調製したヒトSIRPA、又はサルSIRPA発現ベクター導入293α細胞の培養上清を除去後、pcDNA3.2 V5‐DEST‐SIRPA_V1、V2、pcDNA3.2 V5‐DEST‐サルSIRPA又はpcDNA3.2 V5‐DEST導入293α細胞のそれぞれに対し、終濃度0乃至10000ng/mLとなるように5% FBS含有PBSで希釈したhD13_H1L3、hD13_H1L4h、hD13_H2L2、hD13_H2L3を50μL/ウェル添加し添加し、直後に5% FBS含有PBSで1μg/mLに調製したPeroxidase labeled CD47‐Fcを加えて、4℃で1時間静置した。以下は1)‐6‐3と同様の方法でSIRPA‐CD47結合阻害活性を評価した。
 図15に示す通り、hD13_H1L3、hD13_H1L4h、hD13_H2L2、hD13_H2L3抗体は、SIRPA_V1(図15A)、SIRPA_V2(図15B)、サルSIRPA(図15C)に対しcD13抗体と同等以上の結合阻害活性を示した。
8)‐3 ヒト化抗ヒトSIRPA抗体の癌細胞株に対するADCP活性
8)‐3‐1 標的細胞の調製
 CD47陽性ヒトBurkitt’s lymphoma細胞株Raji細胞、又はRamos細胞を回収し、PBSで2回洗浄後、生細胞数をトリパンブルー色素排除試験にて計測した。4×10細胞を分取、遠心後、CellVue Claret Far Red Fluorescent Cell Linker Kit(Sigma社製)付属のDilluentC 2mLで細胞を懸濁した。標識溶液として1mM CellVue Claret DyeをDilluentCで10μMに希釈後、ただちに、細胞懸濁液と等量のCellVue Claret Dye溶液を混合し、室温15分間静置した。25mLの10% FBS含有RPMI1640培地(Life Technology社製)を添加し2回洗浄後、2×10細胞/mLになるよう再懸濁したものを標的細胞として用いた。以下は2)‐6‐1と同様の方法にて標的細胞を調製した。
8)‐3‐2 PBMC細胞の調製
 2)‐6‐2と同様の方法にてPBMC細胞を調製した。
8)‐3‐3 エフェクター細胞の調製
 2)‐6‐3と同様の方法にてエフェクター細胞を調製し、PBSで2回洗浄後、1×10細胞/mLになるようにPBSに再懸濁した。標識溶液として1μL/10細胞/mLのCFSE溶液(ThermoFisher社製)を添加し、室温10分間静置した。20mlの10% FBS含有RPMI1640培地(Life Technology社製)を添加し2回洗浄後、1×10細胞/mLになるよう再懸濁したものをエフェクター細胞として用いた。
8)‐3‐4 ADCP活性の評価
 実施例8)-3-1の方法で調製した標的細胞50μL/ウェルを超低接着表面96穴U底マイクロプレート(住友ベークライト社製)に添加した。そこに終濃度0乃至10000ng/mLとなるように10% FBS含有RPMI1640培地(Life Technology社製)で希釈したhD13_H1L3、hD13_H1L4h、hD13_H2L2、hD13_H2L3、又はcD13抗体、Hu5F9G4、TTI‐621又は各種コントロールHuman IgGを50μL/ウェル添加した。単剤群では10% FBS含有RPMI1640培地(Life Technology社製)を50μL/ウェル添加し、併用群では終濃度で400ng/mLになるよう10% FBS含有RPMI1640培地(Life Technology社製)で希釈したRituximab(全薬工業社製)を50μL/ウェル添加した。実施例8‐3‐3で調製した、1×10細胞/mL、50μL/ウェルのエフェクター細胞を添加後、37℃、5% COの条件下で16時間静置した。4℃ 1200rpm×5分間遠心、上清除去後、200μL/ウェルの5%FBS含有PBSで洗浄した。100μL/ウェルの1×BD Stabilizing Fixative(Becton Dickison社製)で懸濁し、4℃、一晩静置した。翌日フローサイトメトリー(FACS CantoII:Becton Dickison社製)にて測定した。データ解析にはFlowjo(TreeStar社製)を用いた。FSC(前方散乱光)/SSC(側方散乱光)で展開したのち、APC陽性(A)、APC、FITC共に陽性(B)となる細胞数を算出した。APC、FITC共に陽性(B)となった細胞をマクロファージにより標的細胞が貪食されたものとした。ADCP活性による細胞貪食率は次式で算出した。
細胞貪食率(%)=B/(A+B)×100
 図16に示す通り、hD13_H1L3、hD13_H1L4h、hD13_H2L2、hD13_H2L3、又はcD13抗体添加群はCD47陽性ヒトBurkitt’s lymphoma細胞株Raji、及びRamos細胞に対し、単剤ではADCP活性を示さず(図16A、C)、Rituximab併用時において、添加した抗体濃度依存的なADCP活性を示した(図16B、D)。なお、ヒト化抗体クローンはヒトキメラ化抗体クローンと同等以上のADCP活性を示した。
実施例9.各種抗SIRPA抗体のin vitro評価
9)‐1 各種抗SIRPA抗体のSIRPAに対する結合性評価
 実施例7で作製したhD13_H1L3抗体、及びOSE‐172(国際公報第WO17/178653号を参照して調製)、KWAR23(国際公報第WO18/026600号を参照して調製)、又はADU‐1805(国際公報第WO18/190719号を参照して調製)の、実施例1で作製したヒトSIRPA_V1_IgV及びヒトSIRPA_V2_IgVに対する解離定数を測定した。なお、OSE‐172の重鎖のアミノ酸配列は配列表の配列番号81に、OSE‐172の軽鎖のアミノ酸配列は配列番号82に、KWAR23の重鎖のアミノ酸配列は配列番号83に、KWAR23の軽鎖のアミノ酸配列は配列番号84に、ADU‐1805の重鎖のアミノ酸配列は配列番号85に、ADU‐1805の軽鎖のアミノ酸配列は配列番号86に、それぞれ示されている。解離定数の測定には、Biacore T200(GE Healthcare Bioscience社製)を使用し、Human Antibody Capture Kit(GE Healthcare Bioscience社製)を用いて固定化したAnti‐Human IgG(Fc)antibodyに各抗体をリガンドとして捕捉し、抗原をアナライトとして測定するキャプチャー法にて行った。ランニングバッファーとしてHBS-EP+(GE Healthcare Bioscience社製)、センサーチップとしてCM5(GE Healthcare Bioscience社製)を用いた。チップ上に2μg/mLの各種抗体を10μL/分で30秒間添加した後、抗原としてヒトSIRPA蛋白質の希釈系列溶液(0.25~16nM)を流速30μL/分で120秒間添加し、引き続き600秒間の解離相をモニターした。再生溶液として、3M magnesium chloride(GE Healthcare Bioscience社製)を流速20μL/分で30秒間添加した。データの解析には1:1結合モデルを用いて、結合速度定数ka、解離速度定数kd及び解離定数(KD;KD=kd/ka)を算出した。結果を表6に示す。
Figure JPOXMLDOC01-appb-T000006
9)-2 各種抗ヒトSIRPA抗体のヒトSIRPA‐CD47結合阻害活性評価
 実施例9)-1で調製したヒトSIRPA_V1又はV2発現ベクター導入293α細胞の培養上清を除去後、pcDNA3.2 V5‐DEST‐SIRPA_V1、V2導入293α細胞のそれぞれに対し、終濃度0乃至10000ng/mLとなるように5% FBS含有PBSで希釈した各種抗SIRPA抗体、又は各種コントロールHuman IgGを50μL/ウェル添加し、直後に5% FBS含有PBSで1μg/mLに調製したPeroxidase labeled CD47‐Fcを50μL/ウェル加えて、4℃で1時間静置した。以下は1)‐6‐3と同様の方法でSIRPA‐CD47結合阻害活性を評価した。
 図31Aに示す通り、hD13_H1L3、OSE‐172、KWAR23、及びADU‐1805抗体はSIRPA_V1‐CD47に対し結合阻害活性を示した。一方で、図31Bに示す通りヒトSIRPA_V2‐CD47に対して、hD13_H1L3、KWAR23、及びADU‐1805は結合性を示したが、OSE‐172は結合阻害活性を示さなかった。また、図31Cで示されるように、hD13_H1L3が最も低濃度で結合を阻害した。
9)-3 各種抗ヒトSIRPA抗体のヒトSIRPB、及びヒトSIRPG結合活性評価
 SIRPβ1(signal regulatory protein β1:RefSeqアクセッション番号NP_006056としてアミノ酸配列が公開されている)、及び SIRPγ(signal regulatory protein γ:RefSeqアクセッション番号NP_061026としてアミノ酸配列が公開されている)は、 SIRPAのファミリー分子である。本発明において、「SIRPα」を「SIRPA」、「SIRPβ1」を「SIRPB1」、「SIRPγ」を「SIRPG」と称する場合がある。CHO‐K1細胞を10% FBS含有Ham‘s F‐12K培地中3.3x10細胞/mLになるよう調製し、37℃、5% COの条件下で一晩培養した。それに対し、Lipofectamine LTX(Invitrogen社製)を用いて、pFLAG V5‐DEST‐ヒトSIRPB、pFLAG V5‐DEST‐ヒトSIRPG、若しくはpFLAG V5‐DESTを導入し、10% FBS含有Ham‘s F‐12K培地中で37℃、5% COの条件下で24時間培養した。得られた導入細胞を回収し、96 well plateに播種した。培養上清を除去後、各種遺伝子導入細胞のそれぞれに対し、各種抗ヒトSIRPA抗体、又は各種コントロールHuman IgGを終濃度0乃至10000ng/mL、100μL/ウェル添加し、4℃で25分間静置した。遠心後、上清を除去し、5%FBS含有PBSで2回洗浄した。遠心後、上清を除去し、PE Mouse anti‐Human IgG抗体(Biolegend社製)の1/400希釈溶液を50μL/ウェル添加し、4℃で25分間静置した。遠心後、上清を除去し、5%FBS含有PBSで2回洗浄した。
 遠心後、上清を除去し、100μL/ウェルの1×BD Stabilizing Fixative(Becton Dickison社製)で懸濁し、フローサイトメトリー(FACS CantoII:Becton Dickison社製)にて測定した。データ解析にはFlowjo(TreeStar社製)を用いた。FSC(前方散乱光)/SSC(側方散乱光)で展開したのち、PEの平均蛍光強度を計測した。二次抗体のみ反応させたサンプルの平均蛍光強度で標準化することで、各種抗体におけるファミリー分子への結合性を算出した。
 図32A及びBに示す通り、各種抗ヒトSIRPA抗体はヒトSIRPB、及びヒトSIRPGに対し濃度依存的な結合性を示したが、OSE‐172はヒトSIRPGに対し結合性を示さなかった。
9)‐4 各種抗ヒトSIRPA抗体の癌細胞株に対するADCP活性
9)‐4‐1 標的細胞の調製
 CD47陽性ヒトBurkitt’s lymphoma細胞株Raji細胞を回収し、PBSで2回洗浄後、生細胞数をトリパンブルー色素排除試験にて計測した。1×10細胞/mLになるようにPBSに再懸濁した。標識溶液として1μL/10細胞/mLのCell Trace Far Red溶液(ThermoFisher社製)を添加し、室温10分間静置した。25mLの10% FBS含有RPMI1640培地(Life Technology社製)を添加し2回洗浄後、2×10細胞/mLになるよう再懸濁したものを標的細胞として用いた。以下は2)‐6‐1と同様の方法にて標的細胞を調製した。
9)‐4‐2 PBMC細胞の調製
 2)‐6‐2と同様の方法にてPBMC細胞を調製した。
9)‐4‐3 エフェクター細胞の調製
 2)‐6‐3と同様の方法にてエフェクター細胞を調製し、PBSで2回洗浄後、1×10細胞/mLになるようにPBSに再懸濁した。標識溶液として1μL/10細胞/mLのCFSE溶液(ThermoFisher社製)を添加し、室温10分間静置した。20mlの10% FBS含有RPMI1640培地(Life Technology社製)を添加し2回洗浄後、1×10細胞/mLになるよう再懸濁したものをエフェクター細胞として用いた。
9)‐4‐4 ADCP活性の評価
 実施例8-3-1の方法で調製した標的細胞50μL/ウェルを超低接着表面96穴U底マイクロプレート(住友ベークライト社製)に添加した。そこに終濃度0乃至10000ng/mLとなるように10% FBS含有RPMI1640培地(Life Technology社製)で希釈した各種抗SIRPA抗体、又は各種コントロールHuman IgGを50μL/ウェル添加した。併用群として終濃度で1000ng/mLになるよう10% FBS含有RPMI1640培地(Life Technology社製)で希釈したRituximab(全薬工業社製)を50μL/ウェル添加した。実施例8‐3‐3で調製した、1×10細胞/mL、50μL/ウェルのエフェクター細胞を添加後、37℃、5% COの条件下で2~16時間静置した。4℃ 1200rpm×5分間遠心、上清除去後、200μL/ウェルの5%FBS含有PBSで洗浄した。50μL/ウェルの1×BD Stabilizing Fixative(Becton Dickison社製)で懸濁し、フローサイトメトリー(FACS CantoII:Becton Dickison社製)にて測定した。データ解析にはFlowjo(TreeStar社製)を用いた。FSC(前方散乱光)/SSC(側方散乱光)で展開したのち、APC陽性(A)、APC、FITC共に陽性(B)となる細胞数を算出した。APC、FITC共に陽性(B)となった細胞をマクロファージにより標的細胞が貪食されたものとした。ADCP活性による細胞貪食率は次式で算出した。
 細胞貪食率(%)=B/(A+B)×100
 図33A-Cに示す通り、hD13_H1L3、OSE‐172、KWAR23、及びADU‐1805抗体添加群は、CD47陽性ヒトBurkitt’s lymphoma細胞株Rajiに対し、Rituximab併用時において、ADCP活性を示した。2時間反応後のADCP増強活性の強さはhD13_H1L3、ADU‐1805、KWAR23、OSE‐172の順であり(A)、16時間反応後はADU‐1805、hD13_H1L3、KWAR23、OSE‐172の順だった(B)。なお、16時間での反応性は貪食活性の飽和状態にあると推測される。2時間反応後の濃度依存性とADCP活性比較については、hD13_H1L3が最も低濃度から高い活性を示し、ADU‐1805とKWAR23はほぼ同等、OSE‐172の順だった。以上の結果より、hD13_H1L3は短時間で最も低濃度からADCP活性を増強した。
9)‐4‐5 各種抗ヒトSIRPA抗体によるマクロファージ同士の貪食活性(Self‐ADCP活性)評価
 実施例8‐3‐3の方法で調製したエフェクター細胞50μL/ウェルを超低接着表面96穴U底マイクロプレート(住友ベークライト社製)に添加した。そこに終濃度0乃至5000ng/mLとなるように10% FBS含有RPMI1640培地(Life Technology社製)で希釈した各種抗SIRPA抗体、又は各種コントロールHuman IgGを50μL/ウェル添加した。10% FBS含有RPMI1640培地(Life Technology社製)を100μL/ウェル添加した。37℃、5% COの条件下で16~20時間静置した。4℃ 1200rpm×5分間遠心、上清除去後、200μL/ウェルの5%FBS含有PBSで洗浄した。100μL/ウェルの1×BD Stabilizing Fixative(Becton Dickison社製)で懸濁し、フローサイトメトリー(FACS CantoII:Becton Dickison社製)にて測定した。データ解析にはFlowjo(TreeStar社製)を用いた。FSC(前方散乱光)/SSC(側方散乱光)で展開したのち、各ウェルでのFITC陽性となる細胞数を算出した(A)。抗体添加なしのウェルにおけるFITC陽性細胞のカウント(B)で標準化することで、各サンプルでの減少分はマクロファージ同士の貪食によるものとした。Self‐ADCP活性は次式で算出した。
 Self-ADCP(%)=(A/B)×100
 図33Bに示す通り、hD13_H1L3、OSE‐172、KWAR23、及びADU‐1805抗体添加により、エフェクター細胞であるマクロファージに対し、Self-ADCP活性を示した。減少率の高さはOSE‐172、KWAR23、ADU‐1805、hD13_H1L3の順だった。減少率の高さは、抗SIRPA抗体によるSelf-ADCP活性が高いことを示している。この現象は、各抗SIRPA抗体の投与によりマクロファージや樹状細胞などSIRPA陽性細胞が減少又は枯渇する可能性を示唆しており、免疫系に対する副作用の指標となる。
実施例10.各種抗SIRPA抗体のin vivo評価
 SIRPAは宿主の免疫細胞に発現する標的であることから、ヒトSIRPA抗体による抗腫瘍効果を評価するためには、ヒトSIRPAを発現するマウスでの検討が必要となる[Ring et al. PNAS, 2017 (114) 49, E10578‐E10585]。一方で、抗腫瘍効果における免疫系の寄与を評価するためには、免疫不全マウスではなく、免疫正常なマウスを用いることが重要である[Yanagita et al. JCI, 2017 (2) 1, 1‐15]。ヒトSIRPA単独、若しくはヒトSIRPA及びヒトCD47の両方を免疫正常マウスに導入した遺伝子改変マウスに、ヒトCD47を遺伝子導入したマウスがん細胞株を移植し、腫瘍体積が100mm程度になったところで群分けを行う。これらのマウスに対し、各種抗SIRPA抗体、抗CD47抗体又はSIRPA-Fc融合蛋白質等の抗CD47バイオロジクス、又は陰性対照群としてPBS等を週に1~3回程度、1~3週間投与する。併用薬剤による抗腫瘍効果の上乗せを検討する場合には、これらの各群に対し化学療法剤、抗体医薬、分子標的薬等を併せて投与する。2~3日毎に各投与群における腫瘍径(長径/短径)を電子ノギス等で測定し、腫瘍体積を算出する。各種抗体投与群と陰性対照群の腫瘍体積から腫瘍増殖抑制率を算出することで、各々のin vivoにおける薬効を比較評価することが出来る。なお、腫瘍体積、及び腫瘍増殖抑制率は次式で示される。
 腫瘍体積(mm)=(長径×短径×短径)/2
 腫瘍増殖抑制率(%)=(1-各投与群の腫瘍体積/陰性対象群の腫瘍体積)×100
 本発明の抗SIRPα抗体は、他のエフェクター機能を有する他の抗体医薬や免疫チェックポイント阻害作用を有する他の抗体医薬と併用するための抗体医薬として利用することができる。
配列番号1:D13 CDR-L1のアミノ酸配列
配列番号2:D13 CDR-L2のアミノ酸配列
配列番号3:D13 CDR-L3のアミノ酸配列
配列番号4:D13 CDR-H1のアミノ酸配列
配列番号5:D13 CDR-H2のアミノ酸配列
配列番号6:D13 CDR-H3のアミノ酸配列
配列番号7:F44 CDR-L1のアミノ酸配列
配列番号8:F44 CDR-L2のアミノ酸配列
配列番号9:F44 CDR-L3のアミノ酸配列
配列番号10:F44 CDR-H1のアミノ酸配列
配列番号11:F44 CDR-H2のアミノ酸配列
配列番号12:F44 CDR-H3のアミノ酸配列
配列番号13:F63 CDR-L1のアミノ酸配列
配列番号14:F63 CDR-L2のアミノ酸配列
配列番号15:F63 CDR-L3のアミノ酸配列
配列番号16:F63 CDR-H1のアミノ酸配列
配列番号17:F63 CDR-H2のアミノ酸配列
配列番号18:F63 CDR-H3のアミノ酸配列
配列番号19:ヒト軽鎖シグナル配列及びヒトκ軽鎖の定常領域をコードするヌクレオチド配列を含むDNA断片
配列番号20:ヒト軽鎖シグナル配列及びヒトλ軽鎖の定常領域をコードするヌクレオチド配列を含むDNA断片
配列番号21:ヒト重鎖シグナル配列及びヒトIgG4ProFALA重鎖定常領域をコードするヌクレオチド配列を含むDNA断片
配列番号22:ヒトキメラ抗体D13の軽鎖をコードするヌクレオチド配列
配列番号23:ヒトキメラ抗体D13の軽鎖のアミノ酸配列
配列番号24:ヒトキメラ抗体D13の重鎖をコードするヌクレオチド配列
配列番号25:ヒトキメラ抗体D13の重鎖のアミノ酸配列
配列番号26:ヒトキメラ抗体F44の軽鎖をコードするヌクレオチド配列
配列番号27:ヒトキメラ抗体F44の軽鎖のアミノ酸配列
配列番号28:ヒトキメラ抗体F44の重鎖をコードするヌクレオチド配列
配列番号29:ヒトキメラ抗体F44の重鎖のアミノ酸配列
配列番号30:ヒトキメラ抗体F63の軽鎖をコードするヌクレオチド配列
配列番号31:ヒトキメラ抗体F63の軽鎖のアミノ酸配列
配列番号32:ヒトキメラ抗体F63の重鎖をコードするヌクレオチド配列
配列番号33:ヒトキメラ抗体F63の重鎖のアミノ酸配列
配列番号34:ヒト化D13のhL2軽鎖をコードするヌクレオチド配列
配列番号35:ヒト化D13のhL2軽鎖のアミノ酸配列
配列番号36:ヒト化D13のhL3軽鎖をコードするヌクレオチド配列
配列番号37:ヒト化D13のhL3軽鎖のアミノ酸配列
配列番号38:ヒト化D13のhL4軽鎖をコードするヌクレオチド配列
配列番号39:ヒト化D13のhL4軽鎖のアミノ酸配列
配列番号40:ヒト化D13のhH1重鎖をコードするヌクレオチド配列
配列番号41:ヒト化D13のhH1重鎖のアミノ酸配列
配列番号42:ヒト化D13のhH2重鎖をコードするヌクレオチド配列
配列番号43:ヒト化D13のhH2重鎖のアミノ酸配列
配列番号44:ヒトSIRPAバリアント1のECDをコードするヌクレオチド配列
配列番号45:ヒトSIRPAバリアント1のECDのアミノ酸配列
配列番号46:ヒトSIRPAバリアント1のIgVをコードするヌクレオチド配列
配列番号47:ヒトSIRPAバリアント1のIgVのアミノ酸配列
配列番号48:ヒトSIRPAバリアント2のECDをコードするヌクレオチド配列
配列番号49:ヒトSIRPAバリアント2のECDのアミノ酸配列
配列番号50:ヒトSIRPAバリアント2のIgVをコードするヌクレオチド配列
配列番号51:ヒトSIRPAバリアント2のIgVのアミノ酸配列
配列番号52:サルSIRPAのECDをコードするヌクレオチド配列
配列番号53:サルSIRPAのECDのアミノ酸配列
配列番号54:ヒトCD47-Fcをコードするヌクレオチド配列
配列番号55:ヒトCD47-FcのIgVのアミノ酸配列
配列番号56:ヒトSIRPAバリアント1のアミノ酸配列
配列番号57:ヒトSIRPAバリアント2のアミノ酸配列
配列番号58:サルSIRPAのアミノ酸配列
配列番号59:C57 BL/6マウスSIRPAのアミノ酸配列
配列番号60:BALB/CマウスSIRPAのアミノ酸配列
配列番号61:129マウスSIRPAのアミノ酸配列
配列番号62:NODマウスSIRPAのアミノ酸配列
配列番号63:ヒトSIRPAバリアント3のアミノ酸配列
配列番号64:ヒトSIRPAバリアント4のアミノ酸配列
配列番号65:ヒトSIRPAバリアント5のアミノ酸配列
配列番号66:ヒトSIRPAバリアント6のアミノ酸配列
配列番号67:ヒトSIRPAバリアント7のアミノ酸配列
配列番号68:ヒトSIRPAバリアント8のアミノ酸配列
配列番号69:ヒトSIRPAバリアント9のアミノ酸配列
配列番号70:ヒトSIRPAバリアント10のアミノ酸配列
配列番号71:ヒトSIRPA_V2_IgV体のアミノ酸配列
配列番号72:ヒトSIRPA_V2_IgV_IgC1体のアミノ酸配列
配列番号73:マウスSIRPA変異体hmSIRPA_Δ0のアミノ酸配列
配列番号74:マウスSIRPA変異体hmSIRPA_Δ1のアミノ酸配列
配列番号75:マウスSIRPA変異体hmSIRPA_Δ2のアミノ酸配列
配列番号76:マウスSIRPA変異体hmSIRPA_Δ0のアミノ酸配列中の81番目~85番目のアミノ酸配列
配列番号77:マウスSIRPA変異体hmSIRPA_Δ1のアミノ酸配列中の81番目~85番目のアミノ酸配列
配列番号78:BALB/CマウスSIRPAのアミノ酸配列中の81番目~85番目のアミノ酸配列
配列番号79:BALB/CマウスSIRPAのアミノ酸配列中の126番目~130番目のアミノ酸配列
配列番号80:マウスSIRPA変異体hmSIRPA_Δ2のアミノ酸配列中の81番目~85番目のアミノ酸配列
配列番号81:OSE-172抗体重鎖(OSE-172_hG4Pro)のアミノ酸配列
配列番号82:OSE-172抗体軽鎖(OSE-172_hK)のアミノ酸配列
配列番号83:KWAR23抗体重鎖(KWAR23_hG4Pro)のアミノ酸配列
配列番号84:KWAR23抗体軽鎖(KWAR23_hK)のアミノ酸配列
配列番号85:ADU-1805抗体重鎖(ADU-1805_hG2)のアミノ酸配列
配列番号86:ADU-1805抗体軽鎖(ADU-1805_hK)のアミノ酸配列
 本明細書で引用した全ての刊行物、特許及び特許出願はそのまま引用により本明細書に組み入れられるものとする。

Claims (44)

  1. (a)配列番号1で表されるアミノ酸配列からなる軽鎖CDRL1、
    (b)配列番号2で表されるアミノ酸配列からなる軽鎖CDRL2、
    (c)配列番号3で表されるアミノ酸配列からなる軽鎖CDRL3、
    (d)配列番号4で表されるアミノ酸配列からなる重鎖CDRH1、
    (e)配列番号5で表されるアミノ酸配列からなる重鎖CDRH2、及び
    (f)配列番号6で表されるアミノ酸配列からなる重鎖CDRH3
    を含む、ヒトSIRPαに特異的に結合し、ヒトSIRPαとCD47の結合を阻害する抗体。
  2.  重鎖定常領域がヒトIgG4の重鎖定常領域であり、ADCC及び/又はADCP活性の低減をもたらす変異を含む、請求項1記載の抗体。
  3.  重鎖定常領域がヒトIgG4の重鎖定常領域であり、KabatらによるEUインデックスにより示される234位のフェニルアラニンがアラニンへ置換され、235位のロイシンがアラニンに置換され、さらに228位のセリンがプロリンへ置換されている、請求項1又は2に記載の抗体。
  4.  重鎖定常領域のアミノ酸配列が、配列番号25の140~466番目のアミノ酸残基からなるアミノ酸配列である、請求項3記載の抗体。
  5.  (ai)配列番号23の21~126番目のアミノ酸残基からなるアミノ酸配列からなる軽鎖可変領域若しくは
    (aii)配列番号23の21~126番目のアミノ酸残基からなるアミノ酸配列と95%以上の配列同一性を有するアミノ酸配列からなり、ヒトSIRPαへの結合活性を有する軽鎖可変領域、並びに
    (bi)配列番号25の20~139番目のアミノ酸残基からなるアミノ酸配列からなる重鎖可変領域若しくは
    (bii)配列番号25の20~139番目のアミノ酸残基からなるアミノ酸配列と95%以上の配列同一性を有するアミノ酸配列からなり、ヒトSIRPαへの結合活性を有する重鎖可変領域
    を含み、重鎖定常領域がヒトIgG4の重鎖定常領域であり、ADCC及び/又はADCP活性の低減をもたらす変異を含む、ヒトSIRPαに特異的に結合し、ヒトSIRPαとCD47の結合を阻害する抗体。
  6.  重鎖定常領域がヒトIgG4の重鎖定常領域であり、KabatらによるEUインデックスにより示される234位のフェニルアラニンがアラニンへ置換され、235位のロイシンがアラニンに置換され、さらに228位のセリンがプロリンへ置換されている、請求項5記載の抗体。
  7.  重鎖定常領域のアミノ酸配列が、配列番号25の140~466番目のアミノ酸残基からなるアミノ酸配列である、請求項6記載の抗体。
  8. (a)配列番号7で表されるアミノ酸配列からなる軽鎖CDRL1、
    (b)配列番号8で表されるアミノ酸配列からなる軽鎖CDRL2、
    (c)配列番号9で表されるアミノ酸配列からなる軽鎖CDRL3、
    (d)配列番号10で表されるアミノ酸配列からなる重鎖CDRH1、
    (e)配列番号11で表されるアミノ酸配列からなる重鎖CDRH2、及び
    (f)配列番号12で表されるアミノ酸配列からなる重鎖CDRH3
    を含む、ヒトSIRPαに特異的に結合し、ヒトSIRPαとCD47の結合を阻害する抗体。
  9.  重鎖定常領域がヒトIgG4の重鎖定常領域であり、ADCC及び/又はADCP活性の低減をもたらす変異を含む、請求項8記載の抗体。
  10.  重鎖定常領域がヒトIgG4の重鎖定常領域であり、KabatらによるEUインデックスにより示される234位のフェニルアラニンがアラニンへ置換され、235位のロイシンがアラニンに置換され、さらに228位のセリンがプロリンへ置換されている、請求項8又は9に記載の抗体。
  11.  重鎖定常領域のアミノ酸配列が、配列番号29の139~465番目のアミノ酸残基からなるアミノ酸配列である、請求項10記載の抗体。
  12.  (ai)配列番号27の21~127番目のアミノ酸残基からなるアミノ酸配列からなる軽鎖可変領域若しくは
    (aii)配列番号27の21~127番目のアミノ酸残基からなるアミノ酸配列と95%以上の配列同一性を有するアミノ酸配列からなり、ヒトSIRPαへの結合活性を有する軽鎖可変領域、並びに
    (bi)配列番号29の20~138番目のアミノ酸残基からなるアミノ酸配列からなる重鎖可変領域若しくは
    (bii)配列番号29の20~138番目のアミノ酸残基からなるアミノ酸配列と95%以上の配列同一性を有するアミノ酸配列からなり、ヒトSIRPαへの結合活性を有する重鎖可変領域
    を含み、重鎖定常領域がヒトIgG4の重鎖定常領域であり、ADCC及び/又はADCP活性の低減をもたらす変異を含む、ヒトSIRPαに特異的に結合し、ヒトSIRPαとCD47の結合を阻害する抗体。
  13.  重鎖定常領域がヒトIgG4の重鎖定常領域であり、KabatらによるEUインデックスにより示される234位のフェニルアラニンがアラニンへ置換され、235位のロイシンがアラニンに置換され、さらに228位のセリンがプロリンへ置換されている、請求項12記載のヒトSIRPαに特異的に結合し、ヒトSIRPαとCD47の結合を阻害する抗体。
  14.  重鎖定常領域のアミノ酸配列が、配列番号29の139~465番目のアミノ酸残基からなるアミノ酸配列である、請求項13記載の抗体。
  15. (a)配列番号13で表されるアミノ酸配列からなる軽鎖CDRL1、
    (b)配列番号14で表されるアミノ酸配列からなる軽鎖CDRL2、
    (c)配列番号15で表されるアミノ酸配列からなる軽鎖CDRL3、
    (d)配列番号16で表されるアミノ酸配列からなる重鎖CDRH1、
    (e)配列番号17で表されるアミノ酸配列からなる重鎖CDRH2、及び
    (f)配列番号18で表されるアミノ酸配列からなる重鎖CDRH3
    を含む、ヒトSIRPαに特異的に結合し、ヒトSIRPαとCD47の結合を阻害する抗体。
  16.  重鎖定常領域がヒトIgG4の重鎖定常領域であり、ADCC及び/又はADCP活性の低減をもたらす変異を含む、請求項15記載の抗体。
  17.  重鎖定常領域がヒトIgG4の重鎖定常領域であり、KabatらによるEUインデックスにより示される234位のフェニルアラニンがアラニンへ置換され、235位のロイシンがアラニンに置換され、さらに228位のセリンがプロリンへ置換されている、請求項15又は16に記載の抗体。
  18.  重鎖定常領域のアミノ酸配列が、配列番号33の144~470番目のアミノ酸残基からなるアミノ酸配列である、請求項17記載の抗体。
  19.  (ai)配列番号31の21~130番目のアミノ酸残基からなるアミノ酸配列からなる軽鎖可変領域若しくは
    (aii)配列番号31の21~130番目のアミノ酸残基からなるアミノ酸配列と95%以上の配列同一性を有するアミノ酸配列からなり、ヒトSIRPαへの結合活性を有する軽鎖可変領域、並びに
    (bi)配列番号33の20~143番目のアミノ酸残基からなるアミノ酸配列からなる重鎖可変領域若しくは
    (bii)配列番号33の20~143番目のアミノ酸残基からなるアミノ酸配列と95%以上の配列同一性を有するアミノ酸配列からなり、ヒトSIRPαへの結合活性を有する重鎖可変領域
    を含み、重鎖定常領域がヒトIgG4の重鎖定常領域であり、ADCC及び/又はADCP活性の低減をもたらす変異を含む、ヒトSIRPαに特異的に結合し、ヒトSIRPαとCD47の結合を阻害する抗体。
  20.  重鎖定常領域がヒトIgG4の重鎖定常領域であり、KabatらによるEUインデックスにより示される234位のフェニルアラニンがアラニンへ置換され、235位のロイシンがアラニンに置換され、さらに228位のセリンがプロリンへ置換されている、請求項19記載のヒトSIRPαに特異的に結合し、ヒトSIRPαとCD47の結合を阻害する抗体。
  21.  重鎖定常領域のアミノ酸配列が、配列番号33の144~470番目のアミノ酸残基からなるアミノ酸配列である、請求項20記載の抗体。
  22.  以下の(1)~(8)のいずれかの、請求項1~4のいずれか1項に記載の抗体:
    (1)配列番号41の20~466番目のアミノ酸残基からなるアミノ酸配列からなる重鎖及び配列番号37の21~234番目のアミノ酸残基からなるアミノ酸配列からなる軽鎖からなるヒトSIRPαに特異的に結合し、ヒトSIRPαとCD47の結合を阻害する抗体;
    (2)配列番号41の20~466番目のアミノ酸残基からなるアミノ酸配列と95%以上の配列同一性を有するアミノ酸配列からなり、ヒトSIRPαへの結合活性を有する重鎖及び配列番号37の21~234番目のアミノ酸残基と95%以上の配列同一性を有するアミノ酸配列からなり、ヒトSIRPαへの結合活性を有する軽鎖からなるヒトSIRPαに特異的に結合し、ヒトSIRPαとCD47の結合を阻害する抗体;
    (3)配列番号41の20~466番目のアミノ酸残基からなるアミノ酸配列からなる重鎖及び配列番号39の21~234番目のアミノ酸残基からなるアミノ酸配列からなる軽鎖からなるヒトSIRPαに特異的に結合し、ヒトSIRPαとCD47の結合を阻害する抗体;
    (4)配列番号41の20~466番目のアミノ酸残基からなるアミノ酸配列と95%以上の配列同一性を有するアミノ酸配列からなり、ヒトSIRPαへの結合活性を有する重鎖及び配列番号39の21~234番目のアミノ酸残基からなるアミノ酸配列と95%以上の配列同一性を有するアミノ酸配列からなり、ヒトSIRPαへの結合活性を有する軽鎖からなるヒトSIRPαに特異的に結合し、ヒトSIRPαとCD47の結合を阻害する抗体;
    (5)配列番号43の20~466番目のアミノ酸残基からなるアミノ酸配列からなる重鎖及び配列番号35の21~234番目のアミノ酸残基からなるアミノ酸配列からなる軽鎖からなるヒトSIRPαに特異的に結合し、ヒトSIRPαとCD47の結合を阻害する抗体;
    (6)配列番号43の20~466番目のアミノ酸残基からなるアミノ酸配列と95%以上の配列同一性を有するアミノ酸配列からなり、ヒトSIRPαへの結合活性を有する重鎖及び配列番号35の21~234番目のアミノ酸残基からなるアミノ酸配列と95%以上の配列同一性を有するアミノ酸配列からなり、ヒトSIRPαへの結合活性を有する軽鎖からなるヒトSIRPαに特異的に結合し、ヒトSIRPαとCD47の結合を阻害する抗体;
    (7)配列番号43の20~466番目のアミノ酸残基からなるアミノ酸配列からなる重鎖及び配列番号37の21~234番目のアミノ酸残基からなるアミノ酸配列からなる軽鎖からなるヒトSIRPαに特異的に結合し、ヒトSIRPαとCD47の結合を阻害する抗体;及び
    (8)配列番号43の20~466番目のアミノ酸残基からなるアミノ酸配列と95%以上の配列同一性を有するアミノ酸配列からなり、ヒトSIRPαへの結合活性を有する重鎖及び配列番号37の21~234番目のアミノ酸残基からなるアミノ酸配列と95%以上の配列同一性を有するアミノ酸配列からなり、ヒトSIRPαへの結合活性を有する軽鎖からなるヒトSIRPαに特異的に結合し、ヒトSIRPαとCD47の結合を阻害する抗体。
  23.  ADCC及び/又はADCP活性が低減されている、請求項22記載の抗体。
  24.  配列番号57で表されるヒトSIRPαの82番目のGln、83番目のLys、84番目のGlu、85番目のGlyを含むエピトープに結合する、ヒトSIRPαに特異的に結合し、ヒトSIRPαとCD47の結合を阻害する抗体。
  25.  重鎖定常領域がヒトIgG4の重鎖定常領域であり、ADCC及び/又はADCP活性の低減をもたらす変異を含む、請求項24記載の抗体。
  26.  重鎖定常領域がヒトIgG4の重鎖定常領域であり、KabatらによるEUインデックスにより示される234位のフェニルアラニンがアラニンへ置換され、235位のロイシンがアラニンに置換され、さらに228位のセリンがプロリンへ置換されている、請求項24又は25に記載の抗体。
  27.  重鎖定常領域のアミノ酸配列が、配列番号25の140~466番目のアミノ酸残基からなるアミノ酸配列である、請求項26記載の抗体。
  28.  マクロファージの貪食作用を増強する請求項1~27のいずれか1項に記載の抗体。
  29.  請求項1~28のいずれか1項に記載の抗体であって、重鎖カルボキシル末端のリシン残基が欠失している抗体。
  30.  請求項1~29のいずれか1項に記載の抗体の抗原結合性断片。
  31.  Fab、F(ab’)2、Fab’及びscFvからなる群から選択される、請求項30に記載の抗体の抗原結合性断片。
  32.  請求項1~29のいずれか1項に記載の抗体又は請求項30若しくは31に記載の抗体の抗原結合断片を有効成分として含む医薬組成物。
  33.  抗腫瘍剤である、請求項32記載の医薬組成物。
  34.  抗腫瘍剤の有効成分として、さらに免疫チェックポイント阻害剤及び/又はがん抗原に特異的に反応してADCC及び/又はADCP活性を有する抗体医薬を含む、請求項33記載の医薬組成物。
  35.  請求項1~29のいずれか1項に記載の抗体又は請求項30若しくは31に記載の抗体の抗原結合断片を有効成分として含む、免疫チェックポイント阻害剤及び/又はがん抗原に特異的に反応してADCC及び/又はADCP活性を有する抗体医薬と併用される医薬組成物。
  36.  免疫チェックポイント阻害剤が、PD-L1とPD-1との結合阻害剤、又はCTLA4阻害剤である、請求項34又は35に記載の医薬組成物。
  37.  がん抗原に特異的に反応してADCC及び/又はADCP活性を有する抗体医薬が、抗CD20抗体、抗HER2抗体及び抗EGFR抗体からなる群から選択される、請求項34又は35に記載の医薬組成物。
  38.  腫瘍が、がん腫、肉腫、リンパ腫、白血病、骨髄腫、胚細胞腫、脳腫瘍、カルチノイド、神経芽腫、網膜芽細胞腫及び腎芽腫からなる群から選択される一種又は複数種の腫瘍である、請求項33~37のいずれか1項に記載の医薬組成物。
  39.  腫瘍が、腎がん、メラノーマ、有棘細胞がん、基底細胞がん、結膜がん、口腔がん、喉頭がん、咽頭がん、甲状腺がん、肺がん、乳がん、食道がん、胃がん、十二指腸がん、小腸がん、大腸がん、直腸がん、虫垂がん、肛門がん、肝がん、胆嚢がん、胆管がん、膵がん、副腎がん、膀胱がん、前立腺がん、子宮がん、膣がん、脂肪肉腫、血管肉腫、軟骨肉腫、横紋筋肉腫、ユーイング肉腫、骨肉腫、未分化多型肉腫、粘液型線維肉腫、悪性末梢性神経鞘腫、後腹膜肉腫、滑膜肉腫、子宮肉腫、消化管間質腫瘍、平滑筋肉腫、類上皮肉腫、B細胞リンパ腫、T・NK細胞リンパ腫、ホジキンリンパ腫、骨髄性白血病、リンパ性白血病、骨髄増殖性疾患、骨髄異形成症候群、多発性骨髄腫、精巣がん、卵巣がん、神経膠腫及び髄膜腫からなる群から選択される一種又は複数種の腫瘍である、請求項38記載の医薬組成物。
  40.  請求項1~29のいずれか1項に記載の抗体の重鎖及び軽鎖のアミノ酸配列をコードするヌクレオチド配列からなるポリヌクレオチド。
  41.  請求項40記載のポリヌクレオチドを含むベクター。
  42.  請求項40記載のポリヌクレオチド又は請求項41記載のベクターを含む宿主細胞。
  43.  請求項42に記載の宿主細胞を培養し、培養物から抗体を精製することを含む、請求項1~29のいずれか1項に記載の抗体の製造方法。
  44.  請求項43記載の方法によって製造された抗体。
PCT/JP2019/027114 2018-07-10 2019-07-09 抗SIRPα抗体 WO2020013170A1 (ja)

Priority Applications (15)

Application Number Priority Date Filing Date Title
SG11202012338QA SG11202012338QA (en) 2018-07-10 2019-07-09 ANTI-SIRPa ANTIBODY
CN201980059246.7A CN112673023B (zh) 2018-07-10 2019-07-09 抗SIRPα抗体
JP2020530192A JP7368809B2 (ja) 2018-07-10 2019-07-09 抗SIRPα抗体
CA3104462A CA3104462C (en) 2018-07-10 2019-07-09 Anti-sirp.alpha. antibody
MX2020013068A MX2020013068A (es) 2018-07-10 2019-07-09 Anticuerpo anti proteína reguladora de señales alfa sirpalfana.
KR1020207034952A KR20210030267A (ko) 2018-07-10 2019-07-09 항 SIRPα 항체
EP19833586.1A EP3822289A4 (en) 2018-07-10 2019-07-09 ANTIBODY ANTI-SIRP ALPHA
CN202311201098.2A CN117024593A (zh) 2018-07-10 2019-07-09 抗SIRPα抗体
BR112020023322-6A BR112020023322A2 (pt) 2018-07-10 2019-07-09 anticorpo anti-sirpalfa
US17/258,115 US20210155707A1 (en) 2018-07-10 2019-07-09 ANTI-SIRPalpha ANTIBODY
AU2019302152A AU2019302152A1 (en) 2018-07-10 2019-07-09 Anti-sirpalpha antibody
CONC2020/0014727A CO2020014727A2 (es) 2018-07-10 2020-11-27 Anticuerpo anti proteína reguladora de señales alfa sirpαlfa
IL279321A IL279321A (en) 2018-07-10 2020-12-09 Anti-SIRPalpha antibody
PH12021500002A PH12021500002A1 (en) 2018-07-10 2021-01-07 ANTIBODY-SIRPa ANTIBODY
JP2023172481A JP2023168526A (ja) 2018-07-10 2023-10-04 抗SIRPα抗体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018131116 2018-07-10
JP2018-131116 2018-07-10

Publications (1)

Publication Number Publication Date
WO2020013170A1 true WO2020013170A1 (ja) 2020-01-16

Family

ID=69142391

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/027114 WO2020013170A1 (ja) 2018-07-10 2019-07-09 抗SIRPα抗体

Country Status (15)

Country Link
US (1) US20210155707A1 (ja)
EP (1) EP3822289A4 (ja)
JP (2) JP7368809B2 (ja)
KR (1) KR20210030267A (ja)
CN (2) CN112673023B (ja)
AU (1) AU2019302152A1 (ja)
BR (1) BR112020023322A2 (ja)
CA (2) CA3219158A1 (ja)
CO (1) CO2020014727A2 (ja)
IL (1) IL279321A (ja)
MX (1) MX2020013068A (ja)
PH (1) PH12021500002A1 (ja)
SG (1) SG11202012338QA (ja)
TW (1) TW202035449A (ja)
WO (1) WO2020013170A1 (ja)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020263830A1 (en) 2019-06-25 2020-12-30 Gilead Sciences, Inc. Flt3l-fc fusion proteins and methods of use
WO2021076908A1 (en) 2019-10-18 2021-04-22 Forty Seven, Inc. Combination therapies for treating myelodysplastic syndromes and acute myeloid leukemia
WO2021087064A1 (en) 2019-10-31 2021-05-06 Forty Seven, Inc. Anti-cd47 and anti-cd20 based treatment of blood cancer
WO2021130638A1 (en) 2019-12-24 2021-07-01 Carna Biosciences, Inc. Diacylglycerol kinase modulating compounds
WO2021163064A2 (en) 2020-02-14 2021-08-19 Jounce Therapeutics, Inc. Antibodies and fusion proteins that bind to ccr8 and uses thereof
US11242404B2 (en) 2016-09-21 2022-02-08 ALX Oncology Inc. Antibodies against signal-regulatory protein alpha and methods of use
US11292850B2 (en) 2018-03-21 2022-04-05 ALX Oncology Inc. Antibodies against signal-regulatory protein α and methods of use
WO2022102634A1 (ja) 2020-11-11 2022-05-19 第一三共株式会社 抗体-薬物コンジュゲートと抗SIRPα抗体の組み合わせ
WO2022153194A1 (en) 2021-01-13 2022-07-21 Memorial Sloan Kettering Cancer Center Antibody-pyrrolobenzodiazepine derivative conjugate
WO2022153195A1 (en) 2021-01-13 2022-07-21 Memorial Sloan Kettering Cancer Center Anti-dll3 antibody-drug conjugate
WO2022221304A1 (en) 2021-04-14 2022-10-20 Gilead Sciences, Inc. CO-INHIBITION OF CD47/SIRPα BINDING AND NEDD8-ACTIVATING ENZYME E1 REGULATORY SUBUNIT FOR THE TREATMENT OF CANCER
WO2022245671A1 (en) 2021-05-18 2022-11-24 Gilead Sciences, Inc. Methods of using flt3l-fc fusion proteins
WO2022271684A1 (en) 2021-06-23 2022-12-29 Gilead Sciences, Inc. Diacylglyercol kinase modulating compounds
WO2022271659A1 (en) 2021-06-23 2022-12-29 Gilead Sciences, Inc. Diacylglyercol kinase modulating compounds
WO2022271650A1 (en) 2021-06-23 2022-12-29 Gilead Sciences, Inc. Diacylglyercol kinase modulating compounds
WO2022271677A1 (en) 2021-06-23 2022-12-29 Gilead Sciences, Inc. Diacylglyercol kinase modulating compounds
WO2023278377A1 (en) 2021-06-29 2023-01-05 Seagen Inc. Methods of treating cancer with a combination of a nonfucosylated anti-cd70 antibody and a cd47 antagonist
US11572412B2 (en) 2021-06-04 2023-02-07 Boehringer Ingelheim International Gmbh Anti-SIRP-alpha antibodies
WO2023077030A1 (en) 2021-10-29 2023-05-04 Gilead Sciences, Inc. Cd73 compounds
WO2023076983A1 (en) 2021-10-28 2023-05-04 Gilead Sciences, Inc. Pyridizin-3(2h)-one derivatives
WO2023122615A1 (en) 2021-12-22 2023-06-29 Gilead Sciences, Inc. Ikaros zinc finger family degraders and uses thereof
WO2023122581A2 (en) 2021-12-22 2023-06-29 Gilead Sciences, Inc. Ikaros zinc finger family degraders and uses thereof
WO2023147418A1 (en) 2022-01-28 2023-08-03 Gilead Sciences, Inc. Parp7 inhibitors
EP4245756A1 (en) 2022-03-17 2023-09-20 Gilead Sciences, Inc. Ikaros zinc finger family degraders and uses thereof
WO2023183817A1 (en) 2022-03-24 2023-09-28 Gilead Sciences, Inc. Combination therapy for treating trop-2 expressing cancers
WO2023196784A1 (en) 2022-04-05 2023-10-12 Gilead Sciences, Inc. Combinations of antibody therapies for treating colorectal cancer
WO2023205719A1 (en) 2022-04-21 2023-10-26 Gilead Sciences, Inc. Kras g12d modulating compounds
WO2023219072A1 (ja) * 2022-05-10 2023-11-16 第一三共株式会社 抗体-薬物コンジュゲートと抗SIRPα抗体の組み合わせ
WO2024006929A1 (en) 2022-07-01 2024-01-04 Gilead Sciences, Inc. Cd73 compounds
WO2024064668A1 (en) 2022-09-21 2024-03-28 Gilead Sciences, Inc. FOCAL IONIZING RADIATION AND CD47/SIRPα DISRUPTION ANTICANCER COMBINATION THERAPY

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112574310B (zh) * 2020-12-11 2023-05-05 浙江博锐生物制药有限公司 抗SIRPα抗体及其用途

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988007089A1 (en) 1987-03-18 1988-09-22 Medical Research Council Altered antibodies
US4946778A (en) 1987-09-21 1990-08-07 Genex Corporation Single polypeptide chain binding molecules
US5091513A (en) 1987-05-21 1992-02-25 Creative Biomolecules, Inc. Biosynthetic antibody binding sites
US5260203A (en) 1986-09-02 1993-11-09 Enzon, Inc. Single polypeptide chain binding molecules
WO1994028027A1 (en) 1993-06-01 1994-12-08 Arch Development Corporation Methods and materials for modulation of the immunosuppressive activity and toxicity of monoclonal antibodies
WO1994029351A2 (en) 1993-06-16 1994-12-22 Celltech Limited Antibodies
WO2004061104A2 (en) 2003-01-07 2004-07-22 Symphogen A/S Method for manufacturing recombinant polyclonal proteins
WO2014094122A1 (en) 2012-12-17 2014-06-26 Trillium Therapeutics Inc. Treatment of cd47+ disease cells with sirp alpha-fc fusions
JP2014525940A (ja) * 2011-08-26 2014-10-02 ザ・ユニヴァーシティ・オヴ・ノース・キャロライナ・アト・チャペル・ヒル インスリン様成長因子1による細胞の活性化を阻害するための方法
US20150183874A1 (en) 2010-05-14 2015-07-02 The Board Of Trustees Of The Leland Stanford Junior University Humanized and chimeric monoclonal antibodies to cd47
US20150337053A1 (en) * 2009-11-30 2015-11-26 Janssen Biotech, Inc. Antibody Fc Mutants with Ablated Effector Functions
JP2016169220A (ja) * 2007-09-26 2016-09-23 中外製薬株式会社 抗体定常領域改変体
JP2017510251A (ja) * 2014-03-11 2017-04-13 ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー 抗SIRPα抗体および二重特異性マクロファージ増強抗体
WO2017178653A2 (en) 2016-04-14 2017-10-19 Ose Immunotherapeutics NEW ANTI-SIRPa ANTIBODIES AND THEIR THERAPEUTIC APPLICATIONS
WO2018026600A1 (en) 2016-08-03 2018-02-08 The Board Of Trustees Of The Leland Stanford Junior University Disrupting fc receptor engagement on macrophages enhances efficacy of anti-sirpalpha antibody therapy
JP2018131116A (ja) 2017-02-17 2018-08-23 いすゞ自動車株式会社 ステップ取り付け構造
WO2018190719A2 (en) 2017-04-13 2018-10-18 Aduro Biotech Holdings, Europe B.V. Anti-sirp alpha antibodies

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003232456B2 (en) * 2002-05-30 2009-06-04 Macrogenics, Inc. CD16A binding proteins and use for the treatment of immune disorders
WO2007033221A2 (en) * 2005-09-13 2007-03-22 The General Hospital Corporation Methods and compositions for inhibition of immune responses
US8722587B2 (en) * 2008-04-09 2014-05-13 The Trustees Of The University Of Pennsylvania Single chain fragment variable antibody libraries and uses thereof
PT2703486T (pt) * 2011-04-25 2018-05-18 Daiichi Sankyo Co Ltd Anticorpo anti-b7-h3
WO2013056352A1 (en) * 2011-10-19 2013-04-25 University Health Network Antibodies and antibody fragments targeting sirp-alpha and their use in treating hematologic cancers
AP2014007941A0 (en) * 2012-03-13 2014-09-30 Du Pont Genetic reduction of male fertility in plants
BR112015013193A2 (pt) * 2012-12-07 2017-07-11 Solazyme Inc ácido nucleico recombinante, cassete de expressão, célula, método para obter óleo microbiano, óleo microbiano, e, método para obter óleo microbiano.
US20180312600A1 (en) * 2015-10-21 2018-11-01 Ose Immunotherapeutics Methods and compositions for modifying macrophage polarization into pro-inflammatory cells to treat cancer
US20190153095A1 (en) * 2016-07-05 2019-05-23 National University Corporation Kobe University Antitumor Agent
JOP20190009A1 (ar) * 2016-09-21 2019-01-27 Alx Oncology Inc أجسام مضادة ضد بروتين ألفا منظم للإشارات وطرق استخدامها
JP7173971B2 (ja) * 2016-12-09 2022-11-16 アレクトル エルエルシー 抗SIRP-α抗体及びその使用方法

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5260203A (en) 1986-09-02 1993-11-09 Enzon, Inc. Single polypeptide chain binding molecules
US5455030A (en) 1986-09-02 1995-10-03 Enzon Labs, Inc. Immunotheraphy using single chain polypeptide binding molecules
WO1988007089A1 (en) 1987-03-18 1988-09-22 Medical Research Council Altered antibodies
US5091513A (en) 1987-05-21 1992-02-25 Creative Biomolecules, Inc. Biosynthetic antibody binding sites
US4946778A (en) 1987-09-21 1990-08-07 Genex Corporation Single polypeptide chain binding molecules
WO1994028027A1 (en) 1993-06-01 1994-12-08 Arch Development Corporation Methods and materials for modulation of the immunosuppressive activity and toxicity of monoclonal antibodies
WO1994029351A2 (en) 1993-06-16 1994-12-22 Celltech Limited Antibodies
WO2004061104A2 (en) 2003-01-07 2004-07-22 Symphogen A/S Method for manufacturing recombinant polyclonal proteins
JP2016169220A (ja) * 2007-09-26 2016-09-23 中外製薬株式会社 抗体定常領域改変体
US20150337053A1 (en) * 2009-11-30 2015-11-26 Janssen Biotech, Inc. Antibody Fc Mutants with Ablated Effector Functions
US20150183874A1 (en) 2010-05-14 2015-07-02 The Board Of Trustees Of The Leland Stanford Junior University Humanized and chimeric monoclonal antibodies to cd47
JP2014525940A (ja) * 2011-08-26 2014-10-02 ザ・ユニヴァーシティ・オヴ・ノース・キャロライナ・アト・チャペル・ヒル インスリン様成長因子1による細胞の活性化を阻害するための方法
WO2014094122A1 (en) 2012-12-17 2014-06-26 Trillium Therapeutics Inc. Treatment of cd47+ disease cells with sirp alpha-fc fusions
JP2017510251A (ja) * 2014-03-11 2017-04-13 ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー 抗SIRPα抗体および二重特異性マクロファージ増強抗体
WO2017178653A2 (en) 2016-04-14 2017-10-19 Ose Immunotherapeutics NEW ANTI-SIRPa ANTIBODIES AND THEIR THERAPEUTIC APPLICATIONS
WO2018026600A1 (en) 2016-08-03 2018-02-08 The Board Of Trustees Of The Leland Stanford Junior University Disrupting fc receptor engagement on macrophages enhances efficacy of anti-sirpalpha antibody therapy
JP2018131116A (ja) 2017-02-17 2018-08-23 いすゞ自動車株式会社 ステップ取り付け構造
WO2018190719A2 (en) 2017-04-13 2018-10-18 Aduro Biotech Holdings, Europe B.V. Anti-sirp alpha antibodies

Non-Patent Citations (30)

* Cited by examiner, † Cited by third party
Title
"GenBank", Database accession no. NP_001035 111
"NCBI", Database accession no. NP_001271679
ANGAL ET AL., MOLECULAR IMMUNOLOGY, 1993, pages 105 - 108
BRUGGEMANN ET AL., J. EXP. MED., 1987, pages 1351 - 1361
HAMERS-CASTERMAN C. ET AL., NATURE, vol. 363, no. 6428, 1993, pages 446 - 8
HUSTON, J. S. ET AL., PROC. NATL. ACAD. SCI. U.S.A., vol. 85, 1988, pages 5879 - 5883
IMMUNOLOGY, vol. 143, 2014, pages 61 - 67
KABAT ET AL.: "Sequences of Proteins of Immunological Interest", 1991, PUBLIC HEALTH SERVICE NATIONAL INSTITUTES OF HEALTH
LEE ET AL., THE ONCOLOGIST, vol. 22, no. 11, 2017, pages 1392 - 1399
LEE, H-S. ET AL., MOLECULAR IMMUNOLOGY, vol. 36, 1999, pages 61 - 71
LIU ET AL., NAT. MED., vol. 21, no. 10, 2015, pages 1209 - 1215
LIU ET AL., PLOS ONE, vol. 10, no. 9, 2015
MARTIN, A.C.R.CHEETHAM, J.C.REES, A.R., PROC. NATL. ACAD. SCI. USA., vol. 86, 1989, pages 10029 - 10033
MATOZAKI ET AL., TRENDS CELL BIOL, vol. 19, no. 2, 2009, pages 72 - 80
MATOZAKI ET AL., TRENDS IN CELL BIOL, vol. 19, no. 2, 2009, pages 72 - 80
METHODS IN ENZYMOLOGY, vol. 203, 1991, pages 121 - 153
MILLSTEIN ET AL., NATURE, vol. 305, 1983, pages 537 - 539
MUYLDEMANS S. ET AL., PROTEIN ENG, vol. 113, no. 9, 1994, pages 1129 - 315
NATURE BIOTECHNOLOGY, vol. 23, 2005, pages 1137 - 1146
NATURE IMMUNOLOGY, vol. 8, 2007, pages 1313 - 1323
PAREKH ET AL., MABS, 2012, pages 310 - 318
RING ET AL., PNAS, vol. 114, no. 49, 2017, pages E10578 - E10585
SAITO YASUYUKI; MURATA YOJI; MATOZAKI TAKASHI: "Regulation of the functions of dendritic cells by CD47/SIRP[alpha]", JOURNAL OF MOLECULAR TARGETED THERAPY FOR CANCER, vol. 15, no. 4, 2017, pages 62 (414) - 67 (419), XP009525988, ISSN: 1347-6955 *
SCHIRRMANN, T. ET AL., MABS, vol. 2, no. 1, 2010, pages 1 - 4
TAKENAKA ET AL., NAT. IMMUNOL., vol. 8, no. 12, 2007, pages 1313 - 1323
TSUBAKI ET AL., INT. J. BIOL. MACROMOL., 2013, pages 139 - 147
VAFA ET AL., METHODS, vol. 65, 2014, pages 114 - 126
WEINSTOCK ET AL., CLIN. CAN. RES., vol. 23, no. 16, 2017, pages 4534 - 4539
YANAGITA ET AL., JCI INSIGHT, vol. 2, no. 1, 2017, pages 1 - 15
YANAGITA ET AL., JCI, vol. 1, no. 2, 2017, pages 1 - 15

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11242404B2 (en) 2016-09-21 2022-02-08 ALX Oncology Inc. Antibodies against signal-regulatory protein alpha and methods of use
US11401338B2 (en) 2016-09-21 2022-08-02 ALX Oncology Inc. Antibodies against signal-regulatory protein alpha and methods of use
US11939393B2 (en) 2018-03-21 2024-03-26 ALX Oncology Inc. Antibodies against signal-regulatory protein alpha and methods of use
US11292850B2 (en) 2018-03-21 2022-04-05 ALX Oncology Inc. Antibodies against signal-regulatory protein α and methods of use
WO2020263830A1 (en) 2019-06-25 2020-12-30 Gilead Sciences, Inc. Flt3l-fc fusion proteins and methods of use
WO2021076908A1 (en) 2019-10-18 2021-04-22 Forty Seven, Inc. Combination therapies for treating myelodysplastic syndromes and acute myeloid leukemia
EP4349413A2 (en) 2019-10-18 2024-04-10 Forty Seven, Inc. Combination therapies for treating myelodysplastic syndromes and acute myeloid leukemia
WO2021087064A1 (en) 2019-10-31 2021-05-06 Forty Seven, Inc. Anti-cd47 and anti-cd20 based treatment of blood cancer
WO2021130638A1 (en) 2019-12-24 2021-07-01 Carna Biosciences, Inc. Diacylglycerol kinase modulating compounds
US11692038B2 (en) 2020-02-14 2023-07-04 Gilead Sciences, Inc. Antibodies that bind chemokine (C-C motif) receptor 8 (CCR8)
WO2021163064A2 (en) 2020-02-14 2021-08-19 Jounce Therapeutics, Inc. Antibodies and fusion proteins that bind to ccr8 and uses thereof
WO2022102634A1 (ja) 2020-11-11 2022-05-19 第一三共株式会社 抗体-薬物コンジュゲートと抗SIRPα抗体の組み合わせ
KR20230106645A (ko) 2020-11-11 2023-07-13 다이이찌 산쿄 가부시키가이샤 항체-약물 콘주게이트와 항 SIRPα 항체의 조합
WO2022153194A1 (en) 2021-01-13 2022-07-21 Memorial Sloan Kettering Cancer Center Antibody-pyrrolobenzodiazepine derivative conjugate
WO2022153195A1 (en) 2021-01-13 2022-07-21 Memorial Sloan Kettering Cancer Center Anti-dll3 antibody-drug conjugate
WO2022221304A1 (en) 2021-04-14 2022-10-20 Gilead Sciences, Inc. CO-INHIBITION OF CD47/SIRPα BINDING AND NEDD8-ACTIVATING ENZYME E1 REGULATORY SUBUNIT FOR THE TREATMENT OF CANCER
WO2022245671A1 (en) 2021-05-18 2022-11-24 Gilead Sciences, Inc. Methods of using flt3l-fc fusion proteins
US11572412B2 (en) 2021-06-04 2023-02-07 Boehringer Ingelheim International Gmbh Anti-SIRP-alpha antibodies
WO2022271659A1 (en) 2021-06-23 2022-12-29 Gilead Sciences, Inc. Diacylglyercol kinase modulating compounds
WO2022271677A1 (en) 2021-06-23 2022-12-29 Gilead Sciences, Inc. Diacylglyercol kinase modulating compounds
WO2022271650A1 (en) 2021-06-23 2022-12-29 Gilead Sciences, Inc. Diacylglyercol kinase modulating compounds
WO2022271684A1 (en) 2021-06-23 2022-12-29 Gilead Sciences, Inc. Diacylglyercol kinase modulating compounds
WO2023278377A1 (en) 2021-06-29 2023-01-05 Seagen Inc. Methods of treating cancer with a combination of a nonfucosylated anti-cd70 antibody and a cd47 antagonist
WO2023076983A1 (en) 2021-10-28 2023-05-04 Gilead Sciences, Inc. Pyridizin-3(2h)-one derivatives
WO2023077030A1 (en) 2021-10-29 2023-05-04 Gilead Sciences, Inc. Cd73 compounds
WO2023122615A1 (en) 2021-12-22 2023-06-29 Gilead Sciences, Inc. Ikaros zinc finger family degraders and uses thereof
WO2023122581A2 (en) 2021-12-22 2023-06-29 Gilead Sciences, Inc. Ikaros zinc finger family degraders and uses thereof
WO2023147418A1 (en) 2022-01-28 2023-08-03 Gilead Sciences, Inc. Parp7 inhibitors
EP4245756A1 (en) 2022-03-17 2023-09-20 Gilead Sciences, Inc. Ikaros zinc finger family degraders and uses thereof
WO2023178181A1 (en) 2022-03-17 2023-09-21 Gilead Sciences, Inc. Ikaros zinc finger family degraders and uses thereof
WO2023183817A1 (en) 2022-03-24 2023-09-28 Gilead Sciences, Inc. Combination therapy for treating trop-2 expressing cancers
WO2023196784A1 (en) 2022-04-05 2023-10-12 Gilead Sciences, Inc. Combinations of antibody therapies for treating colorectal cancer
WO2023205719A1 (en) 2022-04-21 2023-10-26 Gilead Sciences, Inc. Kras g12d modulating compounds
WO2023219072A1 (ja) * 2022-05-10 2023-11-16 第一三共株式会社 抗体-薬物コンジュゲートと抗SIRPα抗体の組み合わせ
WO2024006929A1 (en) 2022-07-01 2024-01-04 Gilead Sciences, Inc. Cd73 compounds
WO2024064668A1 (en) 2022-09-21 2024-03-28 Gilead Sciences, Inc. FOCAL IONIZING RADIATION AND CD47/SIRPα DISRUPTION ANTICANCER COMBINATION THERAPY

Also Published As

Publication number Publication date
JP7368809B2 (ja) 2023-10-25
PH12021500002A1 (en) 2021-09-13
EP3822289A1 (en) 2021-05-19
TW202035449A (zh) 2020-10-01
CA3104462C (en) 2023-12-19
EP3822289A4 (en) 2022-04-13
CA3219158A1 (en) 2020-01-16
BR112020023322A2 (pt) 2021-02-02
US20210155707A1 (en) 2021-05-27
IL279321A (en) 2021-01-31
CA3104462A1 (en) 2020-01-16
AU2019302152A1 (en) 2021-01-07
JPWO2020013170A1 (ja) 2021-07-15
CN117024593A (zh) 2023-11-10
CN112673023A (zh) 2021-04-16
CO2020014727A2 (es) 2020-12-21
JP2023168526A (ja) 2023-11-24
MX2020013068A (es) 2021-03-02
SG11202012338QA (en) 2021-01-28
KR20210030267A (ko) 2021-03-17
CN112673023B (zh) 2023-09-12

Similar Documents

Publication Publication Date Title
JP7368809B2 (ja) 抗SIRPα抗体
US11613575B2 (en) Humanized or chimeric CD3 antibodies
US11186637B2 (en) Anti-PD1 antibodies and their use as therapeutics and diagnostics
WO2018147245A1 (ja) 抗gprc5d抗体及び該抗体を含む分子
AU2011321374B2 (en) Novel anti-DR5 antibody
JP2019520308A (ja) 新規のb7‐h3結合分子、その抗体薬物コンジュゲート、及びその使用方法
US20230012428A1 (en) Bifunctional fusion protein and pharmaceutical use thereof
US20220041744A1 (en) Cd73 blocking antibodies
US20220324995A1 (en) ADAM9-Binding Molecules, and Methods of Use Thereof
WO2019022187A1 (ja) 抗cd147抗体
TW202304988A (zh) 靶向CD79b、CD20、及CD3之三特異性抗體
TW202144418A (zh) 唾液酸結合Ig樣凝集素結合的材料及方法
RU2791002C2 (ru) АНТИТЕЛО ПРОТИВ SIRPα
WO2023040940A1 (zh) Pvrig/tigit结合蛋白联合免疫检查点抑制剂用于治疗癌症
JP7384668B2 (ja) 細胞傷害性t細胞枯渇用組成物
RU2783619C2 (ru) Молекулы, связывающие adam9, и способы их применения
RU2771964C2 (ru) Антитела против сигнал-регуляторного белка альфа и способы их применения

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19833586

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020023322

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2020530192

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3104462

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2019302152

Country of ref document: AU

Date of ref document: 20190709

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112020023322

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20201116

ENP Entry into the national phase

Ref document number: 2019833586

Country of ref document: EP

Effective date: 20210210