WO2018147245A1 - 抗gprc5d抗体及び該抗体を含む分子 - Google Patents

抗gprc5d抗体及び該抗体を含む分子 Download PDF

Info

Publication number
WO2018147245A1
WO2018147245A1 PCT/JP2018/003888 JP2018003888W WO2018147245A1 WO 2018147245 A1 WO2018147245 A1 WO 2018147245A1 JP 2018003888 W JP2018003888 W JP 2018003888W WO 2018147245 A1 WO2018147245 A1 WO 2018147245A1
Authority
WO
WIPO (PCT)
Prior art keywords
amino acid
acid sequence
seq
antibody
sequence represented
Prior art date
Application number
PCT/JP2018/003888
Other languages
English (en)
French (fr)
Inventor
貴志 茶圓
敏明 大塚
飯田 謙二
健介 中村
隆秀 油谷
淳也 市川
翔太 工藤
リー ピスチテッリ チェイン
サンチェス マリオ
Original Assignee
第一三共株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to AU2018218753A priority Critical patent/AU2018218753A1/en
Priority to JP2018567427A priority patent/JPWO2018147245A1/ja
Application filed by 第一三共株式会社 filed Critical 第一三共株式会社
Priority to CN201880021882.6A priority patent/CN110462038A/zh
Priority to EP18750649.8A priority patent/EP3581651A4/en
Priority to CA3052938A priority patent/CA3052938A1/en
Priority to SG11201907321TA priority patent/SG11201907321TA/en
Priority to MX2019009358A priority patent/MX2019009358A/es
Priority to RU2019128134A priority patent/RU2019128134A/ru
Priority to BR112019016204-6A priority patent/BR112019016204A2/pt
Priority to KR1020197026251A priority patent/KR20190133160A/ko
Priority to US16/483,211 priority patent/US20190367612A1/en
Publication of WO2018147245A1 publication Critical patent/WO2018147245A1/ja
Priority to IL268588A priority patent/IL268588A/en
Priority to PH12019501824A priority patent/PH12019501824A1/en
Priority to CONC2019/0009680A priority patent/CO2019009680A2/es
Priority to ZA2019/05905A priority patent/ZA201905905B/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • C07K16/2809Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against the T-cell receptor (TcR)-CD3 complex
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/46Hybrid immunoglobulins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/21Immunoglobulins specific features characterized by taxonomic origin from primates, e.g. man
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/24Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/31Immunoglobulins specific features characterized by aspects of specificity or valency multispecific
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/33Crossreactivity, e.g. for species or epitope, or lack of said crossreactivity
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/54F(ab')2
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/55Fab or Fab'
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • C07K2317/565Complementarity determining region [CDR]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • C07K2317/569Single domain, e.g. dAb, sdAb, VHH, VNAR or nanobody®
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/60Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
    • C07K2317/62Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
    • C07K2317/622Single chain antibody (scFv)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/73Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/73Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
    • C07K2317/732Antibody-dependent cellular cytotoxicity [ADCC]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding

Definitions

  • the present invention relates to a novel anti-GPRC5D antibody and a molecule containing the antibody.
  • G-protein coupled receptor family C group 5 member D is one of G protein-coupled receptors discovered by homology search of EST database using amino acid sequences of a series of human GPCRs (Non-patent Document 1). ). There are four subtypes of GPRC5A, GPRC5B, GPRC5C, GPRC5D in GPCR family C group 5 receptor (GPRC5 receptor), and expression induction is performed by retinoic acid stimulation. Therefore, retinoic acid-induced orphan G It is also known as a protein-coupled receptor (RAIG) (Non-Patent Document 2). However, the physiological function and physiological ligand of GPRC5D, the subtype of G protein to be conjugated, etc. are not clear.
  • RAIG protein-coupled receptor
  • GPRC5D is highly expressed in multiple myeloma. Specifically, overexpression of GPRC5D correlates with poor prognosis in patients with multiple myeloma (Non-patent Document 3), and the proportion of cells expressing GPRC5D is reduced by drug treatment for patients with multiple myeloma Is known (Non-Patent Document 4). As described above, the relation between overexpression of GPRC5D and cancer suggests that GPRC5D may be an excellent target therapy for cancer.
  • the subject of the present invention is a polynucleotide comprising a nucleotide sequence encoding an amino acid sequence of the antibody, an antigen-binding fragment of the antibody, and the molecule, a vector into which the polynucleotide is inserted, and the polynucleotide
  • a cell into which a vector has been introduced, the antibody comprising a step of culturing the cell, an antigen-binding fragment of the antibody, and a method for producing the molecule are included.
  • another object of the present invention is to provide a method for treating cancer using the antibody, an antigen-binding fragment of the antibody, or the molecule.
  • the present invention (1) The following (I) to (III): (II) Heavy chain CDR1, consisting of the amino acid sequence shown in SEQ ID NO: 48, A heavy chain CDR2 consisting of the amino acid sequence set forth in SEQ ID NO: 49; and A heavy chain variable region comprising a heavy chain CDR3 consisting of the amino acid sequence shown in SEQ ID NO: 50, And A light chain CDR1 consisting of the amino acid sequence represented by SEQ ID NO: 57, A light chain CDR2 consisting of the amino acid sequence set forth in SEQ ID NO: 58, and A light chain variable region comprising the light chain CDR3 consisting of the amino acid sequence shown in SEQ ID NO: 59, (I) Heavy chain CDR1, consisting of the amino acid sequence shown in SEQ ID NO: 45, A heavy chain CDR2 consisting of the amino acid sequence
  • the antibody or antigen-binding fragment of the antibody according to any one of (1) to (4) which is a humanized antibody or an antigen-binding fragment of the antibody.
  • the antibody or antigen-binding fragment of the antibody according to any one of (1) to (4) which is a human antibody or an antigen-binding fragment of the antibody.
  • a heavy chain variable region comprising an amino acid sequence represented by amino acid residues 20 to 142 of the amino acid sequence represented by SEQ ID NO: 74, and amino acids 21 to 127 of the amino acid sequence represented by SEQ ID NO: 64
  • a light chain variable region comprising the amino acid sequence represented by the residues
  • a heavy chain variable region comprising an amino acid sequence represented by amino acid residues 20 to 142 of the amino acid sequence represented by SEQ ID NO: 74, and amino acid residues 21 to 127 of the amino acid sequence represented by SEQ ID NO: 66
  • a light chain variable region comprising the amino acid sequence shown
  • a heavy chain variable region comprising an amino acid sequence represented by amino acid residues 20 to 142 of the amino acid sequence represented by SEQ ID NO: 76, and amino acid residues 21 to 127 of the amino acid sequence represented by SEQ ID NO: 66
  • a light chain variable region comprising the amino acid sequence shown, A heavy chain variable region comprising an amino acid sequence represented by amino acid residues 20 to 142 of the amino acid sequence represented by S
  • a heavy chain variable region comprising an amino acid sequence represented by amino acid residues 20 to 142 of the amino acid sequence represented by SEQ ID NO: 86, and amino acids 21 to 126 of the amino acid sequence represented by SEQ ID NO: 84 A light chain variable region comprising the amino acid sequence represented by the residues, A heavy chain variable region comprising the amino acid sequence shown by the 20th to 142nd amino acid residues of the amino acid sequence shown in SEQ ID NO: 88 and the 21st to 126th amino acid residues of the amino acid sequence shown in SEQ ID NO: 84 A light chain variable region comprising the amino acid sequence shown, A heavy chain variable region comprising the amino acid sequence shown by the 20th to 142nd amino acid residues of the amino acid sequence shown in SEQ ID NO: 90, and the 21st to 126th amino acid residues of the amino acid sequence shown in SEQ ID NO: 82 A light chain variable region comprising the amino acid sequence shown, A heavy chain variable region comprising the amino acid sequence shown by the 20th to 142nd amino acid residues
  • the antibody according to any one of (1) to (11), comprising Fc. (13) binds to human GPRC5D and ⁇ 1> to ⁇ 4> an antibody comprising the heavy chain variable region and the light chain variable region according to any one of the above, or an antigen-binding fragment of the antibody;
  • the heavy chain variable region and the light chain variable region are The antibody or antigen-binding fragment of the antibody according to (13), which is the heavy chain variable region and the light chain variable region according to ⁇ 1>.
  • the heavy chain variable region and the light chain variable region are The antibody or antigen-binding fragment of the antibody according to (13), which is the heavy chain variable region and the light chain variable region according to ⁇ 2>.
  • the heavy chain variable region and the light chain variable region are The antibody or antigen-binding fragment of the antibody according to (13), which is the heavy chain variable region and the light chain variable region according to ⁇ 3>.
  • the heavy chain variable region and the light chain variable region are The antibody or antigen-binding fragment of the antibody according to (13), which is the heavy chain variable region and the light chain variable region according to ⁇ 4>.
  • the amino acid sequence represented by SEQ ID NO: 97 The amino acid sequence shown in SEQ ID NO: 101, The amino acid sequence set forth in SEQ ID NO: 105, and A heavy chain variable region comprising any one of the amino acid sequences set forth in SEQ ID NO: 109; And The amino acid sequence set forth in SEQ ID NO: 99; The amino acid sequence shown in SEQ ID NO: 103, The amino acid sequence set forth in SEQ ID NO: 107, and The light chain variable region comprising any one of the amino acid sequences shown in SEQ ID NO: 135
  • the antibody or antigen-binding fragment of the antibody according to any one of (13) to (17) comprising: (19) A heavy chain variable region comprising the amino acid sequence represented by SEQ ID NO: 97, and a light chain variable region comprising the amino acid sequence represented by S
  • a polynucleotide comprising a nucleotide sequence encoding an amino acid sequence contained in the antibody or antigen-binding fragment of the antibody according to any one of (8) to (12), (18) to (20)
  • An antibody that binds to human GPRC5D or an antigen-binding fragment thereof comprising an amino acid sequence encoded by a nucleotide sequence contained in a polynucleotide that hybridizes under stringent conditions with a complementary strand of
  • An amino acid sequence that is 90% or more identical to the amino acid sequence contained in the antibody or antigen-binding fragment of the antibody according to any one of (8) to (12), (18) to (20)
  • Light chain constant region comprising the amino acid sequence shown Or an antigen-binding fragment of the antibody that binds to human GPRC5D.
  • a heavy chain variable region comprising the amino acid sequence represented by amino acid residues 20 to 142 of the amino acid sequence represented by SEQ ID NO: 76, and the 21st to 127th amino acid residues of the amino acid sequence represented by SEQ ID NO: 72
  • a light chain variable region comprising the amino acid sequence represented by the group
  • i) a heavy chain constant region comprising the amino acid sequence represented by amino acid residues 147 to 475 of the amino acid sequence represented by SEQ ID NO: 199, and amino acid residues 131 to 237 of the amino acid sequence represented by SEQ ID NO: 203
  • a light chain constant region comprising the amino acid sequence shown, ii) a heavy chain constant region comprising an amino acid sequence represented by amino acid residues 147 to 475 of the amino acid sequence represented by SEQ ID NO: 201, and amino acid residues 131 to 237 of the amino acid
  • Light chain constant region comprising the amino acid sequence shown Or an antigen-binding fragment of the antibody that binds to human GPRC5D.
  • An antibody or antigen of the antibody that binds to human GPRC5D comprising the heavy chain variable region and the light chain variable region described in (2), (8), or (9) above, and a mutant Fc Binding fragment.
  • (31) a heavy chain variable region comprising the amino acid sequence represented by amino acid residues 20 to 142 of the amino acid sequence represented by SEQ ID NO: 76, and the 21st to 127th amino acid residues of the amino acid sequence represented by SEQ ID NO: 72;
  • An antibody or an antigen-binding fragment of the antibody that binds to a human GPRC5D comprising a light chain variable region comprising the amino acid sequence represented by the group and a mutant Fc.
  • (32) A polynucleotide encoding the antibody or the antigen-binding fragment of the antibody according to any one of (1) to (31).
  • a vector comprising any one of the polynucleotides according to (32)
  • an antibody that binds to human GPRC5D comprising the step of culturing the cell according to (34), and a step of recovering an antibody that binds to human GPRC5D or an antigen-binding fragment of the antibody from the culture; A method for producing an antigen-binding fragment of the antibody.
  • the antibody according to any one of (1) to (31) and (37) or the antigen-binding fragment of the antibody, the polynucleotide according to (32), the description according to (33) A pharmaceutical composition for treatment and / or prevention comprising a vector or the artificial immune cell according to (35) as an active ingredient.
  • (40) Breast cancer, endometrial cancer, ovarian cancer, lung cancer, stomach cancer, prostate cancer, kidney cancer, liver cancer, pancreatic cancer, colon cancer, esophageal cancer, bladder cancer, uterus in which GPRC5D protein is expressed
  • (41) The pharmaceutical composition according to the above (40), wherein the cancer is multiple myeloma expressing GPRC5D protein.
  • (42) A molecule having antigen-binding properties comprising the antibody or antigen-binding fragment of the antibody according to any one of (1) to (31) and (37). (43) The molecule according to (42), which is multispecific.
  • the antibody or antigen-binding fragment of the antibody that binds to human GPRC5D according to any one of (1) to (31), (37), The amino acid sequence of heavy chain CDR1 set forth in SEQ ID NO: 183; The amino acid sequence of heavy chain CDR2 set forth in SEQ ID NO: 184, and A heavy chain variable region comprising the amino acid sequence of heavy chain CDR3 shown in SEQ ID NO: 185; and The amino acid sequence of light chain CDR1 set forth in SEQ ID NO: 186, The amino acid sequence of the light chain CDR2 set forth in SEQ ID NO: 187, and A light chain variable region comprising the amino acid sequence of light chain CDR3 shown in SEQ ID NO: 188; The molecule according to any one of the above (42) to (44), which comprises an antibody that binds to human CD3 and cynomolgus CD3 or an antigen-binding fragment of the antibody.
  • the antibody or antigen-binding fragment of the antibody that binds to human CD3 and cynomolgus monkey CD3, a heavy chain variable region comprising the amino acid sequence represented by SEQ ID NO: 155, and any of SEQ ID NOS: 156, 158, and 160 The molecule according to the above (49), which is an antibody or an antigen-binding fragment of the antibody comprising a light chain variable region comprising the amino acid sequence shown in any one of the above.
  • Any one of (44) to (50), wherein the antigen-binding fragment of an antibody that binds to human CD3 and cynomolgus monkey CD3 is Fab, F (ab) ′, Fv, scFv, or sdAb.
  • An antibody or antigen of the antibody, wherein the antibody that binds to human CD3 and cynomolgus CD3 or the antigen-binding fragment of the antibody comprises the amino acid sequence shown in any one of SEQ ID NOs: 180, 181, and 182
  • the antibody or antigen-binding fragment of the antibody that binds to human CD3 and cynomolgus monkey CD3, the antibody according to any one of (1) to (31), (37) or the antigen-binding of the antibody The molecule according to any one of (40) to (44), wherein the molecule is bound by a linker or bound without a linker.
  • a heavy chain variable region comprising an amino acid sequence represented by amino acid residues 20 to 142 of the amino acid sequence represented by SEQ ID NO: 76, as the antibody that binds to human GPRC5D or an antigen-binding fragment thereof, and A light chain variable region comprising the amino acid sequence represented by amino acid residues 21 to 127 of the amino acid sequence represented by SEQ ID NO: 72, and i) a heavy chain constant region comprising the amino acid sequence represented by amino acid residues 147 to 475 of the amino acid sequence represented by SEQ ID NO: 199, and amino acid residues 131 to 237 of the amino acid sequence represented by SEQ ID NO: 203
  • a light chain constant region comprising the amino acid sequence shown, ii) a heavy chain constant region comprising an amino acid sequence represented by amino acid residues 147 to 475 of the amino acid sequence represented by SEQ ID NO: 201, and amino acid residues 131 to 237 of the amino acid sequence represented by SEQ ID NO: 205 A light chain constant region comprising the amino acid
  • Applicable forms include hybrid-type bispecific molecules.
  • a heavy chain variable region comprising an amino acid sequence represented by amino acid residues 20 to 142 of the amino acid sequence represented by SEQ ID NO: 76, wherein the antibody that binds to human GPRC5D or an antigen-binding fragment thereof, and A light chain variable region comprising the amino acid sequence represented by amino acid residues 21 to 127 of the amino acid sequence represented by SEQ ID NO: 72, and iii) a heavy chain constant region comprising an amino acid sequence represented by amino acid residues 147 to 475 of the amino acid sequence represented by SEQ ID NO: 215, and amino acid residues 131 to 237 of the amino acid sequence represented by SEQ ID NO: 217.
  • Light chain constant region comprising the amino acid sequence shown Or iv) a heavy chain constant region comprising the amino acid sequence represented by amino acid residues 147 to 476 of the amino acid sequence represented by SEQ ID NO: 237, and amino acid residues 131 to 237 of the amino acid sequence represented by SEQ ID NO: 217.
  • the molecule according to (55) above, wherein the antibody or antigen-binding fragment of the antibody comprising a light chain constant region comprising the amino acid sequence shown and which binds to human CD3 and cynomolgus CD3 further comprises a mutant Fc.
  • Applicable forms include hybrid-type bispecific molecules.
  • a heavy chain comprising the amino acid sequence represented by amino acid residues 24 to 475 of the amino acid sequence represented by SEQ ID NO: 215 and the amino acid residues 24 to 237 of the amino acid sequence represented by SEQ ID NO: 217
  • a heavy chain comprising an amino acid sequence represented by amino acid residues 24 to 475 of the amino acid sequence represented by SEQ ID NO: 215, and an amino acid sequence represented by amino acid residues 24 to 237 of the amino acid sequence represented by SEQ ID NO: 217
  • Applicable forms include hybrid-type bispecific molecules.
  • an antibody that binds to human GPRC5D or an antigen-binding fragment thereof comprising a heavy chain variable region comprising an amino acid sequence represented by amino acid residues 20 to 142 of the amino acid sequence represented by SEQ ID NO: 76; and A light chain variable region comprising the amino acid sequence represented by amino acid residues 21 to 127 of the amino acid sequence represented by SEQ ID NO: 72, and i) a heavy chain constant region comprising the amino acid sequence represented by amino acid residues 147 to 475 of the amino acid sequence represented by SEQ ID NO: 199, and amino acid residues 131 to 237 of the amino acid sequence represented by SEQ ID NO: 203
  • a light chain constant region comprising the amino acid sequence shown, ii) a heavy chain constant region comprising an amino acid sequence represented by amino acid residues 147 to 475 of the amino acid sequence represented by SEQ ID NO: 201, and amino acid residues 131 to 237 of the amino acid sequence represented by SEQ ID
  • An antibody or antigen-binding fragment of said antibody that comprises a light chain constant region comprising the amino acid sequence shown and that binds to human CD3 and cynomolgus CD3, v) a heavy chain constant region comprising the amino acid sequence represented by amino acid residues 143 to 471 of the amino acid sequence represented by SEQ ID NO: 207, and amino acid residues 133 to 238 of the amino acid sequence represented by SEQ ID NO: 209.
  • a light chain constant region comprising the amino acid sequence shown, or vi) a heavy chain constant region comprising the amino acid sequence represented by amino acid residues 143 to 471 of the amino acid sequence represented by SEQ ID NO: 211, and amino acid residues 131 to 236 of the amino acid sequence represented by SEQ ID NO: 213;
  • Applicable forms include bispecific molecules of the FSA type.
  • (61) a heavy chain variable region comprising an amino acid sequence represented by amino acid residues 20 to 142 of the amino acid sequence represented by SEQ ID NO: 76, wherein the antibody or antigen-binding fragment of the antibody that binds to human GPRC5D; and A light chain variable region comprising the amino acid sequence represented by amino acid residues 21 to 127 of the amino acid sequence represented by SEQ ID NO: 72, and iii) a heavy chain constant region comprising the amino acid sequence represented by amino acid residues 147 to 475 of the amino acid sequence represented by SEQ ID NO: 215, and amino acid residues 131 to 237 of the amino acid sequence represented by SEQ ID NO: 217
  • Light chain constant region comprising the amino acid sequence shown Or iv) a heavy chain constant region comprising the amino acid sequence represented by amino acid residues 147 to 476 of the amino acid sequence represented by SEQ ID NO: 237, and amino acid residues 131 to 237 of the amino acid sequence represented by SEQ ID NO: 217.
  • An antibody or antigen-binding fragment of said antibody that comprises a light chain constant region comprising the amino acid sequence shown and that binds to human CD3 and cynomolgus CD3, v) a heavy chain constant region comprising the amino acid sequence represented by amino acid residues 143 to 471 of the amino acid sequence represented by SEQ ID NO: 207, and amino acid residues 133 to 238 of the amino acid sequence represented by SEQ ID NO: 209.
  • a light chain constant region comprising the amino acid sequence shown, or vi) a heavy chain constant region comprising the amino acid sequence represented by amino acid residues 143 to 471 of the amino acid sequence represented by SEQ ID NO: 211, and amino acid residues 131 to 236 of the amino acid sequence represented by SEQ ID NO: 213;
  • Applicable forms include bispecific molecules of the FSA type.
  • Applicable forms include bispecific molecules of the FSA type. (63) an antibody that binds to human GPRC5D or an antigen-binding fragment thereof, comprising a heavy chain variable region comprising an amino acid sequence represented by amino acid residues 20 to 142 of the amino acid sequence represented by SEQ ID NO: 76; and An antibody that binds to human CD3 and cynomolgus monkey CD3, comprising a light chain variable region comprising the amino acid sequence represented by amino acid residues 21 to 127 of the amino acid sequence represented by SEQ ID NO: 72, and a mutant Fc;
  • the molecule according to (55) above, wherein the antigen-binding fragment further contains a mutant Fc.
  • Applicable forms include dual type bispecific molecules.
  • Applicable forms include dual type bispecific molecules.
  • (65) The antibody or antigen-binding fragment of the antibody that binds to the human CD3 and cynomolgus monkey CD3, and the antibody or antigen-binding fragment of the antibody according to (19) are bound by a linker, or The molecule according to (53), which is bound without a linker.
  • (66) The molecule that binds to human CD3 and cynomolgus CD3 and human GPRC5D according to (54) or (65) above, which has the amino acid sequence represented by any one of SEQ ID NOS: 171 to 179.
  • a human contained in the molecule according to any one of (50), (53), (58), (59), (62), (64), (65), and (66) Nucleotide sequence contained in a polynucleotide that hybridizes under stringent conditions with a complementary strand of a polynucleotide comprising an amino acid sequence contained in an antibody that binds to CD3 and cynomolgus monkey CD3 or an antigen-binding fragment of the antibody And a molecule that binds to human CD3 and cynomolgus monkey CD3, and human GPRC5D.
  • the human CD3 and cynomolgus monkey CD3 according to any one of (50), (53), (58), (59), (62), (64), (65), and (66) A molecule comprising an amino acid sequence 90% or more identical to an amino acid sequence contained in an antibody to be bound or an antigen-binding fragment of the antibody and binding to human CD3 and cynomolgus CD3, and human GPRC5D.
  • a polynucleotide comprising a nucleotide sequence encoding the amino acid sequence of the molecule according to (72).
  • a vector comprising the polynucleotide according to (73).
  • Human CD3 and cynomolgus CD3 comprising the steps of culturing the cell according to (75) and recovering human CD3 and cynomolgus monkey CD3 and / or molecules that bind to human GPRC5D from the culture.
  • a method for producing a molecule that binds to human GPRC5D (77) A molecule that binds to human CD3 and cynomolgus monkey CD3, and human GPRC5D, obtained by the method according to (76). (78) The molecule according to (77), which binds to cynomolgus monkey GPRC5D. (79) The molecule according to any one of (42) to (72), (77) and (78), the polynucleotide according to (73), or the vector according to (74) is effective. A pharmaceutical composition for treatment and / or prevention contained as an ingredient. (80) The pharmaceutical composition according to the above (79) for treating and / or preventing cancer.
  • the molecule according to any one of (42) to (72), (77) and (78), or the pharmaceutical composition according to any one of (79) to (82) A method for the treatment and / or prevention of cancer, comprising administering (84) The pharmaceutical composition according to any one of (79) to (82), wherein cytotoxicity to the cell is induced by T cell redirection to a cell expressing GPRC5D object. (85) The method according to (83), wherein cytotoxicity to the cell is induced by T cell redirection to a cell expressing GPRC5D.
  • a novel anti-GPRC5D antibody that binds to human GPRC5D or an antigen-binding fragment of the antibody, and a novel molecule that contains the antibody or the antigen-binding fragment of the antibody and has antigen-binding properties can be obtained.
  • the molecule can include an anti-CD3 antibody. Treatment or prevention of each cancer type expressing GPRC5D protein by using the antibody, antigen-binding fragment of the antibody and the molecule provided by the present invention, preferably treatment or prevention of multiple myeloma Is possible.
  • shaft shows the relative value of the average fluorescence intensity measured by the flow cytometry method. It is the figure which showed the amino terminal amino acid sequence of human GPRC5D (sequence number 1 of a sequence table). It is the figure which showed the amino terminal amino acid sequence of human GPRC5D (sequence number 2 of a sequence table). It is the figure which verified the binding property with respect to human GPRC5D of a rat anti- GPRC5D antibody (2A4, 2B1, 7B4) using the flow cytometer (FACS).
  • shaft shows the relative value of the average fluorescence intensity measured by the flow cytometry method.
  • the intramolecular disulfide bond of the peptide is with (A) or without (B) disulfide bond.
  • a rat anti- GPRC5D antibody (2A4, 2B1, 7B4) has ADCC activity.
  • the nucleotide sequence of the primer for amplifying the variable region cDNA of 2A4 heavy chain gene by PCR sequence number 3 of a sequence table
  • FIG. 3 shows the nucleotide sequence of human chimerized 2A4 (c2A4) heavy chain. (SEQ ID NO: 25 in the sequence listing) It is the figure which showed the amino acid sequence of human chimerized 2A4 (c2A4) heavy chain.
  • shaft shows the relative value of the average fluorescence intensity measured by the flow cytometry method. It is the figure which verified the binding property with respect to the cynomolgus monkey GPRC5D of the human chimerized antibody (c2A4, c2B1, c7B4) using the flow cytometer (FACS).
  • shaft shows the relative value of the average fluorescence intensity measured by the flow cytometry method.
  • FIG. 3 shows in vivo tumor growth inhibitory activity of human chimerized 2A4 (c2A4) in human multiple myeloma cell line KHM-1B transplanted BALB / c-nu / nu mice expressing GPRC5D.
  • FIG. 3 shows in vivo tumor growth inhibitory activity of human chimerized 2B1 (c2B1) in human multiple myeloma cell line KHM-1B transplanted BALB / c-nu / nu mice expressing GPRC5D.
  • FIG. 3 shows in vivo tumor growth inhibitory activity of human chimerized 2B1 (c2B1) in human multiple myeloma cell line KHM-1B transplanted BALB / c-nu / nu mice expressing GPRC5D.
  • shaft shows the relative value of the average fluorescence intensity measured by the flow cytometry method. It is the figure which verified the binding property with respect to human GPRC5D of humanized 7B4 using the flow cytometer (FACS).
  • shaft shows the relative value of the average fluorescence intensity measured by the flow cytometry method. It is the figure which showed that humanized 2B1 and humanized 7B4 have ADCC activity. It is the figure which showed the amino acid sequence of the cynomolgus monkey GPRC5D amino terminal peptide (sequence number 93) It is the figure which showed the nucleotide sequence of the primer A used for the sequence analysis of scFv (sequence number 94).
  • FIG. 3 is a view showing the IgG-modified body weight chain amino acid sequence of human antibody C2037 (signal sequence (1-19), variable region (20-134), constant region (135-464)) (SEQ ID NO: 144 in the sequence listing).
  • FIG. 2 is a view showing the IgG-modified light chain amino acid sequence of human antibody C2037 (signal sequence (1-20), variable region (21-130), constant region (131-236)) (SEQ ID NO: 145 in the sequence listing) .
  • FIG. 3 is a view showing the IgG-modified body weight chain amino acid sequence of human antibody C2037 (signal sequence (1-19), variable region (20-134), constant region (135-464)) (SEQ ID NO: 144 in the sequence listing).
  • FIG. 2 is a view showing the IgG-modified light chain amino acid sequence of human antibody C2037 (signal sequence (1-20), variable region (21-130), constant region (131-236)) (SEQ ID NO: 145 in the sequence listing) .
  • FIG. 2 is a view showing the IgG-modified body weight chain amino acid sequence of human antibody C3048 (signal sequence (1-19), variable region (20-142), constant region (143-472)) (SEQ ID NO: 146 in the Sequence Listing).
  • FIG. 2 is a view showing the IgG-modified light chain amino acid sequence of human antibody C3048 (signal sequence (1-20), variable region (21-130), constant region (131-236)) (SEQ ID NO: 147 in the Sequence Listing).
  • FIG. 2 is a view showing an IgG-modified body weight chain amino acid sequence of human antibody C3015 (signal sequence (1-19), variable region (20-140), constant region (141-470)) (SEQ ID NO: 148 in the sequence listing).
  • FIG. 2 is a view showing the IgG-modified light chain amino acid sequence of human antibody C3015 (signal sequence (1-20), variable region (21-126), constant region (127-232)) (SEQ ID NO: 149 in the sequence listing) .
  • FIG. 2 is a view showing an IgG-modified body weight chain amino acid sequence of human antibody C3022 (signal sequence (1-19), variable region (20-134), constant region (135-464)) (SEQ ID NO: 150 in the sequence listing).
  • FIG. 2 is a view showing the IgG-modified light chain amino acid sequence of human antibody C3022 (signal sequence (1-20), variable region (21-130), constant region (131-236)) (SEQ ID NO: 151 in the Sequence Listing) .
  • FIG. 52 shows the nucleotide sequence encoding the heavy chain variable region of the rat anti-CD3 antibody C3-147 (SEQ ID NO: 152).
  • FIG. 15 shows the nucleotide sequence encoding the light chain variable region of the rat anti-CD3 antibody C3-147 (SEQ ID NO: 153).
  • FIG. 7 shows a nucleotide sequence encoding C3E-7000 (58-867) (signal sequence (1-57), scFv (58-783), FLAG-His tag (793-867)) (SEQ ID NO: 154).
  • FIG. 15 shows the amino acid sequence of the heavy chain variable region of C3E-7034 (SEQ ID NO: 155).
  • FIG. 15 shows the amino acid sequence of the light chain variable region of C3E-7034 (SEQ ID NO: 156).
  • FIG. 2 shows a nucleotide sequence encoding C3E-7034 (58-864) (signal sequence (1-57), scFv (61-786), FLAG-His tag (790-864)) (SEQ ID NO: 157) .
  • FIG. 15 shows the amino acid sequence of the light chain variable region of C3E-7035 (SEQ ID NO: 158).
  • FIG. 2 shows a nucleotide sequence encoding C3E-7035 (58-864) (signal sequence (1-57), scFv (61-786), FLAG-His tag (790-864)) (SEQ ID NO: 159) .
  • FIG. 3 shows the amino acid sequence of the light chain variable region of C3E-7036 (SEQ ID NO: 160).
  • FIG. 16 shows the nucleotide sequence encoding the ORF of expression vector pC2037-C3E-7034 (SEQ ID NO: 162).
  • FIG. 16 shows the nucleotide sequence encoding the ORF of expression vector pC3048-C3E-7034 (SEQ ID NO: 163).
  • FIG. 18 shows the nucleotide sequence encoding the ORF of expression vector pC3022-C3E-7034 (SEQ ID NO: 164).
  • FIG. 15 shows the nucleotide sequence encoding the ORF of the expression vector pC2037-C3E-7035 (SEQ ID NO: 165).
  • FIG. 10 shows the nucleotide sequence encoding the ORF of expression vector pC3048-C3E-7035 (SEQ ID NO: 166).
  • FIG. 7 shows the nucleotide sequence encoding the ORF of expression vector pC3022-C3E-7035 (SEQ ID NO: 167).
  • FIG. 18 shows the nucleotide sequence encoding the ORF of expression vector pC2037-C3E-7036 (SEQ ID NO: 168).
  • FIG. 16 shows the nucleotide sequence encoding the ORF of the expression vector pC3048-C3E-7036 (SEQ ID NO: 169).
  • FIG. 10 shows the nucleotide sequence encoding the ORF of expression vector pC3022-C3E-7036 (SEQ ID NO: 170). It is a figure showing the amino acid sequence of C2037-C3E-7034 (signal sequence (1-19), C2037 (21-260), C3E-7034 (266-507)) (SEQ ID NO: 171). It is a figure showing the amino acid sequence of C3048-C3E-7034 (signal sequence (1-19), C3048 (21-268), C3E-7034 (274-515)) (SEQ ID NO: 172).
  • FIG. 4 shows that anti-GPRC5D-anti-CD3 bispecific molecule has cytotoxic activity against endogenous human GPRC5D-expressing cells (human lymphoma cell line A4 / FuK cells). It is the figure which verified the binding property with respect to cynomolgus monkey GPRC5D of humanized 2B1 using the flow cytometer (FACS).
  • shaft shows the relative value of the average fluorescence intensity measured by the flow cytometry method. It is the figure which verified the binding property with respect to humanized 7B4 cynomolgus monkey GPRC5D using the flow cytometer (FACS).
  • shaft shows the relative value of the average fluorescence intensity measured by the flow cytometry method. It is the figure which showed the amino acid sequence of C3E-7034 (1-269). VH (2-119), VL (135-243), FLAG-His tag (244-269). (SEQ ID NO: 180). It is the figure which showed the amino acid sequence of C3E-7035 (1-269).
  • FIG. 18 shows the amino acid sequence of heavy chain CDR1 of C3E-7000 (SEQ ID NO: 183).
  • FIG. 18 shows the amino acid sequence of heavy chain CDR2 of C3E-7000 (SEQ ID NO: 184).
  • FIG. 18 shows the amino acid sequence of heavy chain CDR3 of C3E-7000 (SEQ ID NO: 185).
  • FIG. 7 shows the amino acid sequence of the light chain CDR1 of C3E-7000 (SEQ ID NO: 186).
  • FIG. 7 shows the amino acid sequence of the light chain CDR2 of C3E-7000 (SEQ ID NO: 187).
  • FIG. 18 shows the amino acid sequence of the light chain CDR3 of C3E-7000 (SEQ ID NO: 188). It is the figure which showed the amino acid sequence of human CD3 (epsilon) (sequence number 189). It is the figure which showed the nucleotide sequence of the variable region of E1018 heavy chain (sequence number 190). It is the figure which showed the amino acid sequence of the variable region of E1018 heavy chain (sequence number 191).
  • FIG. 2 shows the amino acid sequence of h2B1_Fab_HC_1 (signal sequence (1-23), variable region (24-146), constant region (147-475)) (SEQ ID NO: 199). It is the figure which showed the nucleotide sequence of h2B1_Fab_HC_2 (sequence number 200).
  • FIG. 2 shows the amino acid sequence of h2B1_Fab_HC_2 (signal sequence (1-23), variable region (24-146), constant region (147-475)) (SEQ ID NO: 201). It is the figure which showed the nucleotide sequence of h2B1_Fab_LC_1. (SEQ ID NO: 202).
  • FIG. 3 shows the amino acid sequence of h2B1_Fab_LC_1 (signal sequence (1-23), variable region (24-130), constant region (131-237)) (SEQ ID NO: 203). It is the figure which showed the nucleotide sequence of h2B1_Fab_LC_2. (SEQ ID NO: 204).
  • FIG. 2 shows the amino acid sequence of h2B1_Fab_LC_2 (signal sequence (1-23), variable region (24-130), constant region (131-237)) (SEQ ID NO: 205). It is the figure which showed the nucleotide sequence of C3E-7034_Fab_HC. (SEQ ID NO: 206).
  • FIG. 3 shows the amino acid sequence of C3E-7034_Fab_HC (signal sequence (1-23), variable region (25-142), constant region (143-471)) (SEQ ID NO: 207).
  • FIG. 10 shows the nucleotide sequence of C3E-7034_Fab_LC (SEQ ID NO: 208).
  • FIG. 2 shows the amino acid sequence of C3E-7034_Fab_LC (signal sequence (1-23), variable region (24-132), constant region (133-238)) (SEQ ID NO: 209).
  • FIG. 10 shows the nucleotide sequence of C3E-7036_Fab_HC (SEQ ID NO: 210).
  • FIG. 3 shows the amino acid sequence of C3E-7036_Fab_HC (signal sequence (1-23), variable region (25-142), constant region (143-471)) (SEQ ID NO: 211).
  • FIG. 3 shows the nucleotide sequence of C3E-7036_Fab_LC (SEQ ID NO: 212).
  • FIG. 3 shows the amino acid sequence of C3E-7036_Fab_LC (signal sequence (1-23), variable region (24-130), constant region (131-236)) (SEQ ID NO: 213). It is the figure which showed the nucleotide sequence of h2B1_Fab_HC_3 (sequence number 214).
  • FIG. 2 shows the amino acid sequence of h2B1_Fab_HC_3 (signal sequence (1-23), variable region (24-146), constant region (147-475)) (SEQ ID NO: 215). It is the figure which showed the nucleotide sequence of h2B1_Fab_LC_3 (sequence number 216).
  • FIG. 1 shows the amino acid sequence of C3E-7036_Fab_LC (signal sequence (1-23), variable region (24-130), constant region (131-236)) (SEQ ID NO: 213). It is the figure which showed the nucleotide sequence of h2B1_Fab_HC_3 (se
  • FIG. 2 shows the amino acid sequence of h2B1_Fab_LC_3 (signal sequence (1-23), variable region (24-130), constant region (131-237)) (SEQ ID NO: 217).
  • FIG. 18 shows the nucleotide sequence of C3E-7034_scFv_Fc (SEQ ID NO: 218).
  • FIG. 3 shows the amino acid sequence of C3E-7034_scFv_Fc (signal sequence (1-23), scFv (24-266)) (SEQ ID NO: 219).
  • FIG. 22 shows the nucleotide sequence of C3E-7036_scFv_Fc (SEQ ID NO: 220).
  • FIG. 3 shows the nucleotide sequence of humanized 2B1_scFv_Fc (h2B1_scFv_Fc) (SEQ ID NO: 222).
  • FIG. 3 shows the amino acid sequence of humanized_2B1_scFv_Fc (h2B1_scFv_Fc) (signal sequence (1-23), scFv (24-271)) (SEQ ID NO: 223).
  • shaft shows the average fluorescence intensity measured by the flow cytometry method.
  • A is a diagram showing the binding activity of a bispecific molecule of FSA type, B is a hybrid type, and C is a dual type. It is the figure which verified the binding activity with respect to the cynomolgus GPRC5D expression cell of the anti-GPRC5D-anti-CD3 bispecific molecule with Fc by the flow cytometry method.
  • shaft shows the average fluorescence intensity measured by the flow cytometry method.
  • A is a diagram showing the binding activity of a bispecific molecule of FSA type, B is a hybrid type, and C is a dual type. It is the figure which verified the binding activity with respect to the human CD3 expression cell of the anti-GPRC5D-anti-CD3 bispecific molecule with Fc by the flow cytometry method.
  • shaft shows the average fluorescence intensity measured by the flow cytometry method.
  • A is a diagram showing the binding activity of a bispecific molecule of FSA type, B is a hybrid type, and C is a dual type.
  • FIG. 5 shows the cytotoxic activity of Fc-attached anti-GPRC5D-anti-CD3 bispecific molecule.
  • A is a graph showing the cell-killing activity of a bispecific molecule of FSA type and B of Hybrid type.
  • FIG. 5 shows the cytotoxic activity of Fc-attached anti-GPRC5D-anti-CD3 bispecific molecule.
  • C is a graph showing the cell-killing activity of a dual type bispecific molecule. It is the figure which showed the anti-tumor activity in the co-transplant model of human PBMC of the anti-GPRC5D-anti-CD3 bispecific molecule with Fc, and a cancer cell. It is the figure which showed the anti-tumor activity in the human PBMC transfer model of anti-GPRC5D-anti-CD3 bispecific molecule with Fc.
  • FIG. 3 shows the nucleotide sequence of C3E-8015 (SEQ ID NO: 224).
  • FIG. 3 shows the amino acid sequence of C3E-8015 (signal sequence (1-23), scFv (24-264)) (SEQ ID NO: 225).
  • FIG. 3 shows the nucleotide sequence of C3E-8017 (SEQ ID NO: 226).
  • FIG. 3 shows the amino acid sequence of C3E-8017 (signal sequence (1-23), scFv (24-266)) (SEQ ID NO: 227).
  • FIG. 3 shows the nucleotide sequence of C3E-8018 (SEQ ID NO: 228).
  • FIG. 3 shows the amino acid sequence of C3E-8018 (signal sequence (1-23), scFv (24-266)) (SEQ ID NO: 229).
  • FIG. 3 shows the nucleotide sequence of C3E-8025 (SEQ ID NO: 230).
  • FIG. 3 shows the amino acid sequence of C3E-8025 (signal sequence (1-23), scFv (24-264)) (SEQ ID NO: 231).
  • FIG. 3 shows the nucleotide sequence of C3E-8027 (SEQ ID NO: 232).
  • FIG. 3 shows the amino acid sequence of C3E-8027 (signal sequence (1-23), scFv (24-266)) (SEQ ID NO: 233).
  • FIG. 3 shows the nucleotide sequence of C3E-8028 (SEQ ID NO: 234).
  • FIG. 3 shows the amino acid sequence of C3E-8028 (signal sequence (1-23), scFv (24-266)) (SEQ ID NO: 235). It is the figure which showed the nucleotide sequence of h2B1_Fab_HC_4 (sequence number 236).
  • FIG. 4 shows the amino acid sequence of h2B1_Fab_HC_4 (signal sequence (1-23), variable region (24-146), constant region (147-476)) (SEQ ID NO: 237).
  • shaft shows the average fluorescence intensity measured by the flow cytometry method.
  • A shows the binding activity of C5D-0004 and C5D-0014
  • B shows the binding activity of C5D-0005 and C5D-0015
  • C shows the binding activity of C5D-0006 and C5D-0016.
  • FIG. 1 A vertical axis
  • shaft shows the average fluorescence intensity measured by the flow cytometry method.
  • A shows the binding activity of C5D-0004 and C5D-0014
  • B shows the binding activity of C5D-0005 and C5D-0015
  • C shows the binding activity of C5D-0006 and C5D-0016.
  • FIG. 4 is a diagram in which the binding activity of C-terminal Lys-added CDR-modified Hybrid type and CDR-modified Hybrid type anti-GPRC5D-anti-CD3 bispecific molecule to human CD3-expressing cells was verified by flow cytometry.
  • shaft shows the average fluorescence intensity measured by the flow cytometry method.
  • A shows the binding activity of C5D-0004 and C5D-0014
  • B shows the binding activity of C5D-0005 and C5D-0015
  • C shows the binding activity of C5D-0006 and C5D-0016.
  • FIG. 4 is a diagram in which the binding activity of C-terminal Lys-added CDR-modified Hybrid type and CDR-modified Hybrid type anti-GPRC5D-anti-CD3 bispecific molecule to human CD3-expressing cells was verified by flow cytometry.
  • shaft shows the average fluorescence intensity measured by the flow cytometry method.
  • A shows the binding activity of C5D-0004 and C5D-0014
  • B shows the binding activity of C5D-0005 and C5D-0015
  • C shows the binding activity of C5D-0006 and C5D-0016.
  • FIG. 3 is a graph showing the cytotoxic activity of C-terminal Lys-added CDR-modified Hybrid type and CDR-modified Hybrid type anti-GPRC5D-anti-CD3 bispecific molecule.
  • A shows the cell-killing activity of C5D-0004 and B shows the cell-killing activity of C5D-0014.
  • FIG. 3 is a graph showing the cytotoxic activity of C-terminal Lys-added CDR-modified Hybrid type and CDR-modified Hybrid type anti-GPRC5D-anti-CD3 bispecific molecule.
  • C shows the cell killing activity of C5D-0005, and D shows the cell killing activity of C5D-0015.
  • FIG. 3 is a graph showing the cytotoxic activity of C-terminal Lys-added CDR-modified Hybrid type and CDR-modified Hybrid type anti-GPRC5D-anti-CD3 bispecific molecule.
  • E shows the cell killing activity of C5D-0006 and F shows the cell killing activity of C5D-0016. It is the figure which showed the anti-tumor activity in a human PBMC and cancer cell co-transplant model of CDR modified Hybrid type anti-GPRC5D-anti-CD3 bispecific molecule.
  • FIG. 2 is a graph showing antitumor activity of a C-terminal Lys-added CDR-modified Hybrid type and CDR-modified Hybrid type anti-GPRC5D-anti-CD3 bispecific molecule in a human PBMC transfer model.
  • A shows the antitumor activity of C5D-0004, and B shows the antitumor activity of C5D-0014.
  • It is the amino acid sequence of heavy chain CDR2 of the CDR variant (SEQ ID NO: 238).
  • It is the amino acid sequence of light chain CDR2 of the CDR variant (SEQ ID NO: 239).
  • Amino acid sequence of heavy chain variable region of CDR variant of C3E-7034 (SEQ ID NO: 240).
  • “gene” means a nucleotide containing a nucleotide sequence encoding a protein amino acid or a complementary strand thereof, for example, a polynucleotide containing a nucleotide sequence encoding a protein amino acid or a complementary strand thereof. Polynucleotides, oligonucleotides, DNA, mRNA, cDNA, cRNA and the like that are included in the meaning of “gene”.
  • Such a gene is a single-stranded, double-stranded, or triple-stranded nucleotide, and an assembly of a DNA strand and an RNA strand, and ribonucleotide (RNA) and deoxyribonucleotide (DNA) are mixed on one nucleotide strand.
  • RNA ribonucleotide
  • DNA deoxyribonucleotide
  • gene also included within the meaning of “gene” are double-stranded or triple-stranded nucleotides comprising such nucleotide chains.
  • the base sequence and the nucleotide sequence are synonymous.
  • polynucleotide “nucleic acid” and “nucleic acid molecule” are synonymous, and for example, DNA, RNA, probe, oligonucleotide, primer and the like are also included in the meaning of “polynucleotide”.
  • a polynucleotide is a polynucleotide composed of a single strand, a double strand, or three or more strands.
  • RNA ribonucleotide
  • DNA deoxyribonucleotide
  • double-strand or triple-strand aggregates containing such polynucleotide strands are also included in the meaning of “polynucleotide”.
  • polypeptide peptide
  • protein protein
  • antigen is sometimes used to mean “immunogen”.
  • the “cell” includes various cells derived from individual animals, subculture cells, primary culture cells, cell lines, recombinant cells, microorganisms, and the like.
  • antibody is synonymous with immunoglobulin.
  • the “antibody” in the case of the anti-GPRC5D antibody of the present invention or the anti-CD3 antibody of the present invention is used to mean an immunoglobulin having a constant region and a variable region. It is not particularly limited whether the antibody is a natural antibody or an immunoglobulin produced by partial or complete synthesis.
  • the anti-GPRC5D antibody and / or anti-CD3 antibody of the present invention is included in “molecules” described later as parts.
  • the basic 4-chain antibody structure is composed of two identical light (L) chains and two identical heavy (H) chains.
  • the light chain is attached to the heavy chain by one covalent disulfide bond.
  • the two heavy chains are linked to each other by one or more disulfide bonds, depending on the heavy chain isotype.
  • Each light and heavy chain has intrachain disulfide bonds with regular intervals.
  • the heavy chain and the light chain there are a constant region having very high similarity in amino acid sequence and a variable region having low similarity in amino acid sequence.
  • the light chain has a variable region (VL) at the amino terminus followed by a constant region (CL).
  • the heavy chain has a variable region (VH) at the amino terminus followed by three constant regions (CH1 / CH2 / CH3).
  • VL and VH are paired, and CL is aligned with the first constant region (CH1) of the heavy chain. VL and VH pair to form a single antigen binding site.
  • the Fab consists of CH1 of the heavy chain followed by VH, and CL of the light chain followed by VL.
  • VH and VL contain complementarity determining regions (CDRs).
  • Fc is the carboxyl terminal region of the constant region of the heavy chain and contains CH2 and CH3 and is a dimer.
  • the Fc of the present invention may be a natural sequence Fc (also referred to as a natural Fc) or a mutant Fc obtained by adding a mutation to a natural sequence (also referred to as a mutant Fc).
  • the mutant Fc includes a modified Fc region (including a heterodimeric Fc region) contained in a heteromultimer having improved stability disclosed in WO2013 / 063702, and a heterologous multimer disclosed in WO96 / 27011.
  • variable region consists of a region having extreme variability called a hypervariable region (HVR) and a relatively invariant region called a framework region (FR) separated by the region. .
  • HVR hypervariable region
  • FR framework region
  • the natural heavy and light chain variable regions comprise four FRs connected by three hypervariable regions, each chain hypervariable region being held in close proximity with the other chain hypervariable regions by FRs, It contributes to the formation of the antigen binding site of the antibody.
  • CDRs complementarity determining regions
  • Complementarity-determining regions also called hypervariable regions, are sites in the variable regions of antibody heavy and light chains that have particularly high primary structure variability.
  • the complementarity-determining region of the antibody is divided into the heavy-chain complementarity-determining region from the amino terminal side of the heavy-chain amino acid sequence to the heavy-chain CDR1 (CDRH1), heavy-chain CDR2 (CDRH2), and heavy-chain CDR3 (CDRH3).
  • the light chain complementarity determining region is expressed as light chain CDR1 (CDRL1), light chain CDR2 (CDRL2), and light chain CDR3 (CDRL3) from the amino terminal side of the light chain amino acid sequence.
  • a framework region (FR) is a variable region other than CDR residues.
  • the variable region generally has four FRs, FR1, FR2, FR3, and FR4, and the heavy chain and light chain FRs are denoted as FRH1, FRH2, FRH3, and FRH4, and FRL1, FRL2, FRL3, and FRL4, respectively. .
  • CDRs and FRs contained in the heavy chain and the light chain are FRH1-CDRH1-FRH2-CDRH2-FRH3-CDRH3-FRH4 and FRL1-CDRL1-FRL2-CDRL2-FRL3-CDRL3-from the amino terminus toward the carboxyl terminus. These are arranged in the order of FRL4.
  • the positions of CDRs and FRs can be determined by various definitions well known in the art, for example, Kabat, Chothia, AbM, contact, etc. in addition to IMGT.
  • the “antigen-binding fragment of an antibody” means a partial fragment of an antibody having an antigen-binding activity, comprising a heavy chain variable region and a light chain variable region.
  • the “antigen-binding fragment of an antibody” include, for example, antigen-binding fragments such as Fab, F (ab ′) 2 , scFv, Fab ′, Fv, and single-domain antibody (sdAb). It is not limited.
  • antigen-binding fragments of antibodies include recombinant proteins produced in appropriate host cells using recombinant genes in addition to those obtained by treating full-length antibody protein molecules with enzymes such as papain and pepsin. It may be.
  • the “site” to which the antibody binds that is, the “site” recognized by the antibody means a partial peptide or a partial higher order structure on the antigen to which the antibody binds or recognizes. In the present invention, such a site is also referred to as an epitope or an antibody binding site.
  • an “antibody variant” is obtained by substituting, deleting, or adding an amino acid in the amino acid sequence of the original antibody (the addition includes an insertion) (hereinafter collectively referred to as “mutation”). It means a polypeptide having an amino acid sequence and binding to an antigen. The number of mutated amino acids in such antibody variants is 1 to 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 20, 25, 30, 40 or 50.
  • the “molecule” is a molecule containing the above-mentioned antibody or antigen-binding fragment of an antibody, and a multispecific molecule formed from an antibody or a plurality of antigen-binding fragments derived therefrom. It may be.
  • a molecule that is multispecific “a molecule that is multispecific” and “a multispecific molecule” are synonymous, and a plurality of different epitopes on one molecule, and / or The molecule is not particularly limited as long as it can bind to different epitopes on two or more molecules.
  • a molecule that is multispecific also includes an antibody comprising a heavy chain variable region (VH) and a light chain variable region (VL).
  • Such multispecific molecules include full-length antibody molecules having two or more different types of heavy and light chains, ie, IgG type multispecific molecules, and antigen-binding fragments having two or more types of VL and VH.
  • molecules generated by genetically or chemically linking proteins having antigen-binding properties without having an immunoglobulin skeleton to antigen-binding fragments are also included as multispecific molecules.
  • the activity / property possessed by the anti-CD3 antibody of the present invention or the antigen-binding fragment of the antibody or the multispecific molecule of the present invention include biological activity, physicochemical properties and the like. Specifically, various biological activities, binding activities against antigens and epitopes, stability during production and storage, thermal stability, and the like can be mentioned.
  • “hybridize under stringent conditions” means hybridization at 65 ° C.
  • SSC is an aqueous solution of 150 mM NaCl-15 mM sodium citrate, and nx SSC means n-fold concentration of SSC.
  • cytotoxicity refers to causing a pathological change in a cell in some form, and is not limited to direct trauma, but also includes DNA breakage, base dimer formation, chromosome breakage, It means any structural or functional damage of cells, such as damage to cell division apparatus or reduction of various enzyme activities.
  • cytotoxic activity means causing the above cytotoxicity.
  • antibody-dependent cytotoxic activity refers to “antibody dependent cellular toxicity (ADCC) activity”, and means an activity of NK cells damaging target cells such as tumor cells via antibodies.
  • cytotoxic activity by T cell redirection means that the cytotoxicity is caused through a multispecific molecule containing an anti-target antigen antibody such as an anti-tumor antigen and an anti-CD3 antibody.
  • an anti-target antigen antibody such as an anti-tumor antigen and an anti-CD3 antibody.
  • the anti-tumor antigen antibody binds to the target tumor cell
  • the anti-CD3 antibody binds to the T cell, thereby bringing the target tumor cell and the T cell closer to each other and inducing cytotoxicity through T cell activation.
  • the molecule can be included in a pharmaceutical composition.
  • “naturally occurring amino acid” and “naturally occurring amino acid residue” are Ala (A), Arg (R), Asn (N), Asp (D), Cys (C), Gln ( Q), Glu (E), Gly (G), His (H), Ile (I), Leu (L), Lys (K), Met (M), Phe (F), Pro (P), Ser ( S), Thr (T), Trp (W), Tyr (Y) and Val (V) and their residues, also referred to as “natural amino acid” or “natural amino acid residue”.
  • GPRC5D antigen is used in the same meaning as GPRC5D protein.
  • GPRC5D was newly discovered by homology search of EST database using amino acid sequences of a series of human GPCRs classified into the fifth group of metabotropic glutamate receptor-like family C (G-protein coupled receptor family C). It is one of human GPCR proteins (Non-patent Document 1). Registered in GenBank as accession numbers: AF209923, NM_018654, NP_0611124. However, the physiological function and physiological ligand of GPRC5D, the subtype of the G protein ( ⁇ subunit) to be conjugated, etc. have not been clarified.
  • CD3 antigen in the present invention, “CD3” is used in the same meaning as the CD3 protein.
  • CD3 is expressed on T cells as a part of a multimolecular T cell receptor complex, and is composed of five polypeptides of ⁇ chain, ⁇ chain, ⁇ chain, ⁇ chain, and ⁇ chain (molecular weights in order 25000-28000, 21000, 20000, 16000, 22000).
  • Examples of the CD3 complex include ⁇ , ⁇ , ⁇ , ⁇ , and ⁇ chains. These are also called subunits.
  • Anti-CD3 antibodies bind to T cells to induce cytotoxicity through T cell activation. Many anti-CD3 antibodies bind to CD3 ⁇ .
  • the nucleotide sequence of cDNA encoding human CD3 ⁇ is registered with GenBank under accession number: NM_000733.3.
  • the nucleotide sequence of cDNA encoding cynomolgus monkey CD3 is registered in GenBank with accession number: NM_0012833615.1.
  • the amino acid sequence of human CD3 ⁇ is set forth in SEQ ID NO: 189 in the sequence listing.
  • antigen protein used in the present invention
  • GPRC5D and CD3 include animal tissues (including body fluids), cells derived from the tissues or the cells It can be prepared by purification and isolation from culture, genetic recombination, in vitro translation, chemical synthesis, and the like.
  • the antigen protein cDNA can be obtained, for example, by using a cDNA library of an organ expressing the antigen protein mRNA as a template and a polymerase chain reaction (hereinafter referred to as “PCR”) using primers that specifically amplify the antigen protein cDNA.
  • PCR polymerase chain reaction
  • a protein that hybridizes under stringent conditions with a polynucleotide comprising a nucleotide sequence complementary to a nucleotide sequence encoding the antigen protein expressed in human or rat, and has a biological activity equivalent to that of the antigen protein.
  • the encoding polynucleotide is also included in the cDNA of the antigen protein. Furthermore, it is a splicing variant transcribed from the antigen protein locus expressed in human or rat, or a polynucleotide that hybridizes to this under stringent conditions, and has a biological activity equivalent to that of the antigen protein.
  • a polynucleotide encoding the protein is also included in the cDNA of the antigen protein.
  • a nucleotide sequence encoding a protein having the same biological activity is also included in the nucleotide sequence of the antigen protein gene.
  • An amino acid sequence encoded by a splicing variant transcribed from the locus of the antigen protein of human or rat, or an amino acid sequence in which one or several amino acids are substituted, deleted or added, and A protein having a biological activity equivalent to that of the antigen protein is also included in the antigen protein.
  • the anti-GPRC5D antibody of the present invention recognize human GPRC5D. That is, it binds to GPRC5D antigen, preferably binds to human GPRC5D and monkey GPRC5D, and more preferably binds to human and cynomolgus GPRC5D.
  • the humanized anti-GPRC5D antibody h2B1 and human antibody C3048 of the present invention described later bind to cynomolgus monkey GPRC5D in addition to human GPRC5D.
  • the anti-CD3 antibody and the antigen-binding fragment thereof contained in the multispecific molecule of the present invention recognize the CD3 antigen.
  • the anti-CD3 antibody and antigen-binding fragment thereof contained in the multispecific molecule of the present invention preferably bind to human CD3, monkey CD3, etc., more preferably bind to human CD3 and cynomolgus CD3. To do.
  • Antibodies and antigen-binding fragments that bind to human and cynomolgus monkey antigen proteins should be used in various tests related to the efficacy and safety of primates, particularly cynomolgus monkeys, useful for non-clinical development (preclinical development) of pharmaceuticals. This is preferable.
  • the anti-GPRC5D antibody of the present invention preferably does not bind to mouse and / or rat GPRC5D, a mouse cell, tissue, or individual (transgenic animal, knockout animal, knockin animal) into which the human GPRC5D gene has been introduced. And various assays using the antibody or the multispecific molecule of the present invention, immunohistochemistry, etc.
  • mice can be performed without the influence of GPRC5D of the mouse and / or rat as the host, This is preferable in research and non-clinical development using mice such as drugs, animal drugs or diagnostic drugs containing the multispecific molecule of the present invention.
  • the anti-CD3 antibody contained in the multispecific molecule of the present invention preferably does not bind to mouse and / or rat CD3, the mouse cell, tissue or individual into which the human CD3 gene has been introduced (trans (Including transgenic animals, knockout animals, knock-in animals) and various assays using the antibody or the multispecific molecule of the present invention, immunohistochemistry, etc. without the influence of CD3 of the host mouse and / or rat It is preferable in research and non-clinical development using mice such as drugs, animal drugs or diagnostic drugs containing the antibody or the multispecific molecule of the present invention.
  • “recognition”, that is, “binding” means binding that is not non-specific adsorption.
  • a dissociation constant hereinafter referred to as “KD”.
  • the KD value for CD3 of the preferred antibody of the present invention is 1 ⁇ 10 ⁇ 5 M or less, 5 ⁇ 10 ⁇ 6 M or less, 2 ⁇ 10 ⁇ 6 M or less, or 1 ⁇ 10 ⁇ 6 M or less.
  • the binding between the antigen and the antibody in the present invention can be measured or determined by a biomolecule interaction analysis system such as SPR method or BLI method, ELISA method, RIA method or the like.
  • the binding between the antigen expressed on the cell surface and the antibody can be measured by a flow cytometry method or the like.
  • the SPR method Surface Plasmon Resonance analysis method
  • KD dissociation constant
  • Biacore (trademark) (manufactured by GE Healthcare), ProteOn (trademark) (manufactured by BioRad), SPR-Navi (trademark) (manufactured by BioNavis), Spreeta (trademark) (Texas Instruments, Inc.) And SPRi-Plex II (trademark) (manufactured by Horiba), Autolab SPR (trademark) (manufactured by Metrohm), and the like.
  • the BLI method BioLayer Interferometry
  • BioLayer Interferometry is a method for measuring an interaction between biomolecules using biolayer interference.
  • an Octet system (manufactured by Pall ForteBio) can be exemplified.
  • the ELISA method is a method in which a target antigen or antibody contained in a sample solution is captured with a specific antibody or antigen, and detected and quantified using an enzyme reaction.
  • the enzyme activity is detected by incorporating an enzyme-labeled antigen or antibody into the reaction system.
  • a substrate whose absorption spectrum changes depending on the reaction is used, and it is digitized by measuring absorbance.
  • Cell-ELISA is a method of capturing and measuring a measurement target on the cell surface together with the cell, and detecting and quantifying it using an enzyme reaction.
  • the antibody in the RIA method (Radio Immunoassay method), can be quantified by labeling the antibody with a radioactive substance and measuring the radioactivity from the antibody.
  • Flow cytometry is a technique in which cells are dispersed in a fluid, the fluid is flowed finely, and individual cells are optically analyzed.
  • the antibody labeled with a fluorescent dye binds to a cell surface antigen by an antigen-antibody reaction, and the antigen binding property of the antibody is quantified by measuring the fluorescence intensity of the labeled antibody bound to the cell.
  • Anti-GPRC5D antibody 3-1 Types of anti-GPRC5D antibodies
  • the anti-GPRC5D antibodies of the present invention may be either polyclonal antibodies or monoclonal antibodies.
  • Examples of the polyclonal antibody include a mixture of a plurality of types of antibodies in which some or all of the CDR sets are different.
  • Examples of monoclonal antibodies include non-human animal-derived antibodies (non-human animal antibodies), human antibodies, chimerized antibodies, humanized antibodies, and the like.
  • Non-human animal antibodies include antibodies derived from vertebrates such as mammals and birds.
  • Examples of antibodies derived from mammals include antibodies derived from rodents such as mouse antibodies and rat antibodies.
  • Examples of avian-derived antibodies include chicken antibodies.
  • Examples of the anti-human GPRC5D rat monoclonal antibody include 2A4, 2B1, and 7B4 (Example 1) of the present invention.
  • the amino acid sequence of the variable region of the heavy chain of 2A4 is arranged in SEQ ID NO: 5 of the sequence listing
  • the amino acid sequence of the variable region of the heavy chain of 2B1 is arranged in SEQ ID NO: 7 of the sequence listing
  • the amino acid sequence of the variable region of the heavy chain of 7B4 is arranged.
  • Each is shown in SEQ ID NO: 9 in the column table.
  • the amino acid sequence of the variable region of the light chain of 2A4 is arranged in SEQ ID NO: 12 of the sequence listing
  • the amino acid sequence of the variable region of the light chain of 2B1 is arranged in SEQ ID NO: 14 of the sequence listing
  • the amino acid sequence of the variable region of the light chain of 7B4 is arranged.
  • Each is shown in SEQ ID NO: 16 in the column table.
  • 2A4, 2B1, and 7B4 have ADCC activity (Example 2).
  • Examples of the chimerized antibody include an antibody obtained by binding a variable region derived from a non-human animal antibody and a human antibody (human immunoglobulin) constant region.
  • the chimerized antibody derived from rat anti-human GPRC5D antibody 2A4 comprises a light chain comprising a light chain variable region consisting of amino acid residues 21 to 127 of SEQ ID NO: 22, and amino acid residues 20 to 141 of SEQ ID NO: 26.
  • the antibody which consists of a heavy chain containing the heavy chain variable region which can be mentioned.
  • an antibody comprising a light chain consisting of amino acid residues 21 to 234 of SEQ ID NO: 22 and a heavy chain consisting of amino acid residues 20 to 471 of SEQ ID NO: 26
  • the antibody is referred to as c2A4.
  • the chimerized antibody derived from rat anti-human GPRC5D antibody 2B1 comprises a light chain comprising a light chain variable region consisting of amino acid residues 21 to 127 of SEQ ID NO: 30 and amino acid residues 20 to 142 of SEQ ID NO: 34.
  • the antibody which consists of a heavy chain containing the heavy chain variable region which can be mentioned.
  • an antibody comprising a light chain consisting of amino acid residues 21 to 234 of SEQ ID NO: 30 and a heavy chain consisting of amino acid residues 20 to 472 of SEQ ID NO: 34
  • the antibody is referred to as c2B1.
  • the chimerized antibody derived from rat anti-human GPRC5D antibody 7B4 comprises a light chain comprising a light chain variable region consisting of amino acid residues 21 to 127 of SEQ ID NO: 38, and amino acid residues 20 to 142 of SEQ ID NO: 42.
  • the antibody which consists of a heavy chain containing the heavy chain variable region which can be mentioned.
  • an antibody comprising a light chain consisting of amino acid residues 21 to 233 of SEQ ID NO: 38 and a heavy chain consisting of amino acid residues 20 to 472 of SEQ ID NO: 42 Can be mentioned.
  • the antibody is referred to as c7B4.
  • humanized antibodies include antibodies in which only complementarity determining regions (CDRs) are incorporated into human-derived antibodies (Nature (1986) 321, 522-525), and some frameworks in addition to CDR sequences by CDR grafting.
  • An antibody grafted to a human antibody International Patent Publication No. WO1990 / 007861)
  • one or two or more amino acids derived from any of these non-human animal antibodies substituted with a human-type amino acid And so on.
  • the above-mentioned humanized antibody derived from the chimerized antibody retains all six CDR sequences derived from the above-mentioned chimerized antibody, and thus the rat antibody, and has ADCC activity.
  • the heavy chain variable region of the above-mentioned humanized antibody derived from 2A4 is Heavy chain CDR1 (GYTFTSYY) consisting of the amino acid sequence shown in SEQ ID NO: 45 Heavy chain CDR2 (VYPGYGGT) consisting of the amino acid sequence shown in SEQ ID NO: 46 Heavy chain CDR3 consisting of the amino acid sequence shown in SEQ ID NO: 47 (ARRKGIIIRGPGYFDY) And the light chain variable region is Light chain CDR1 (EGISNS) consisting of the amino acid sequence shown in SEQ ID NO: 54 Light chain CDR2 (GAS) consisting of the amino acid sequence shown in SEQ ID NO: 55 Light chain CDR3 (QQGYKYPPT) consisting of the amino acid sequence shown in SEQ ID NO: 56 Holding.
  • GYTFTSYY Heavy chain CDR1
  • VYPGYGGT Heavy chain CDR2
  • VYPGYGGT Heavy chain CDR3 consisting of the amino acid sequence shown in SEQ ID NO: 47
  • the heavy chain variable region of the humanized antibody derived from 2B1 described above is Heavy chain CDR1 (GFSLNTYDMG) consisting of the amino acid sequence shown in SEQ ID NO: 48 Heavy chain CDR2 (IWWDDDK) consisting of the amino acid sequence shown in SEQ ID NO: 49 Heavy chain CDR3 (ARIETVRVSRKGFAH) consisting of the amino acid sequence shown in SEQ ID NO: 50 And the light chain variable region is Light chain CDR1 (QSVGIN) consisting of the amino acid sequence shown in SEQ ID NO: 57 Light chain CDR2 (GAS) consisting of the amino acid sequence shown in SEQ ID NO: 58 Light chain CDR3 (LQHGSIPPT) consisting of the amino acid sequence shown in SEQ ID NO: 59 Holding.
  • GGS Light chain CDR2
  • LQHGSIPPT Light chain CDR3
  • the heavy chain variable region of the above-mentioned humanized antibody derived from 7B4 is Heavy chain CDR1 (GYTITSGYD) consisting of the amino acid sequence shown in SEQ ID NO: 51 Heavy chain CDR2 (MSYRGST) consisting of the amino acid sequence shown in SEQ ID NO: 52 Heavy chain CDR3 (ALTRTYWYNYYYVLDA) consisting of the amino acid sequence shown in SEQ ID NO: 53 And the light chain variable region is Light chain CDR1 (QNINKY) consisting of the amino acid sequence shown in SEQ ID NO: 60
  • Light chain CDR2 (NTN) consisting of the amino acid sequence shown in SEQ ID NO: 61
  • Light chain CDR3 (LQRNSWYT) consisting of the amino acid sequence shown in SEQ ID NO: 62 Holding.
  • the above-mentioned CDR amino acid sequences are also described in FIGS. In the present invention, the position and length of CDR were determined according to the definition of IMGT (Developmental
  • a light chain variable region comprising the amino acid sequence of 21 to 126 of the amino acid sequence shown in SEQ ID NO: 82 or the amino acid sequence of 21 to 126 of the amino acid sequence of SEQ ID NO: 84; and Amino acid residues 20 to 142 of the amino acid sequence shown in SEQ ID NO: 86; Amino acid residues 20 to 142 of the amino acid sequence shown in SEQ ID NO: 88; A heavy chain comprising an amino acid sequence represented by any one of amino acid residues 20 to 142 of the amino acid sequence represented by SEQ ID NO: 90 and amino acid residues 20 to 142 of the amino acid sequence represented by SEQ ID NO: 92 Mention may be made of antibodies comprising variable regions.
  • a heavy chain variable region comprising the amino acid sequence shown by the 20th to 142nd amino acid residues of the amino acid sequence shown in SEQ ID NO: 74, and the 21st to 127th amino acid residues of the amino acid sequence shown in SEQ ID NO: 64
  • a light chain variable region comprising the amino acid sequence shown
  • a heavy chain variable region comprising an amino acid sequence represented by amino acid residues 20 to 142 of the amino acid sequence represented by SEQ ID NO: 74, and amino acid residues 21 to 127 of the amino acid sequence represented by SEQ ID NO: 66
  • a light chain variable region comprising the amino acid sequence shown
  • a heavy chain variable region comprising an amino acid sequence represented by amino acid residues 20 to 142 of the amino acid sequence represented by SEQ ID NO: 76, and amino acid residues 21 to 127 of the amino acid sequence represented by SEQ ID NO: 66
  • a light chain variable region comprising the amino acid sequence shown,
  • a heavy chain variable region comprising an amino acid sequence represented by amino acid residues 20 to 142 of
  • specific preferred examples of other humanized antibodies include A heavy chain variable region comprising the amino acid sequence shown by the 20th to 142nd amino acid residues of the amino acid sequence shown in SEQ ID NO: 86, and the 21st to 126th amino acid residues of the amino acid sequence shown in SEQ ID NO: 84 A light chain variable region comprising the amino acid sequence shown, A heavy chain variable region comprising the amino acid sequence shown by the 20th to 142nd amino acid residues of the amino acid sequence shown in SEQ ID NO: 88 and the 21st to 126th amino acid residues of the amino acid sequence shown in SEQ ID NO: 84 A light chain variable region comprising the amino acid sequence shown, A heavy chain variable region comprising the amino acid sequence shown by the 20th to 142nd amino acid residues of the amino acid sequence shown in SEQ ID NO: 90, and the 21st to 126th amino acid residues of the amino acid sequence shown in SEQ ID NO: 82 A light chain variable region comprising the amino acid sequence shown, A heavy chain variable region comprising the amino acid
  • humanized antibodies include the heavy chain variable region and the light chain variable region described above, preferably the heavy chain variable region and the light chain variable region of a humanized antibody derived from 2B1, and i) a heavy chain constant region comprising the amino acid sequence represented by amino acid residues 147 to 475 of the amino acid sequence represented by SEQ ID NO: 199, and amino acid residues 131 to 237 of the amino acid sequence represented by SEQ ID NO: 203 A light chain constant region comprising the amino acid sequence shown, ii) a heavy chain constant region comprising an amino acid sequence represented by amino acid residues 147 to 475 of the amino acid sequence represented by SEQ ID NO: 201, and amino acid residues 131 to 237 of the amino acid sequence represented by SEQ ID NO: 205 A light chain constant region comprising the amino acid sequence shown, iii) a heavy chain constant region comprising the amino acid sequence represented by amino acid residues 147 to 475 of the amino acid sequence represented by SEQ ID NO: 215, and amino acid residues 131 to
  • antibodies comprising a light chain constant region comprising the amino acid sequence shown.
  • a heavy chain variable region comprising an amino acid sequence represented by amino acid residues 20 to 142 of the amino acid sequence represented by SEQ ID NO: 76, and an amino acid sequence represented by SEQ ID NO: 72
  • a light chain variable region comprising the amino acid sequence represented by amino acid residues 21 to 127 of i) a heavy chain constant region comprising the amino acid sequence represented by amino acid residues 147 to 475 of the amino acid sequence represented by SEQ ID NO: 199, and amino acid residues 131 to 237 of the amino acid sequence represented by SEQ ID NO: 203
  • a light chain constant region comprising the amino acid sequence shown, ii) a heavy chain constant region comprising an amino acid sequence represented by amino acid residues 147 to 475 of the amino acid sequence represented by SEQ ID NO: 201, and amino acid residues 131 to 237 of the amino acid sequence represented by SEQ ID NO: 205
  • a light chain constant region comprising the amino acid sequence shown,
  • antibodies comprising a light chain constant region comprising the amino acid sequence shown.
  • the heavy chain variable region containing the amino acid sequence represented by the 20th to 142nd amino acid residues of the amino acid sequence represented by SEQ ID NO: 76, and the 21st to 127th amino acids of the amino acid sequence represented by SEQ ID NO: 72
  • a light chain variable region comprising the amino acid sequence represented by the residues
  • iii) a heavy chain constant region comprising the amino acid sequence represented by amino acid residues 147 to 475 of the amino acid sequence represented by SEQ ID NO: 215, and amino acid residues 131 to 237 of the amino acid sequence represented by SEQ ID NO: 217
  • a light chain constant region comprising the amino acid sequence shown or iv) a heavy chain constant region comprising the amino acid sequence represented by amino acid residues 147 to 476 of the amino acid sequence represented by SEQ ID NO: 237, and amino acid residues 131 to 237 of the amino acid sequence represented by SEQ ID NO: 217.
  • antibodies include A heavy chain comprising an amino acid sequence represented by amino acid residues 24 to 475 of the amino acid sequence represented by SEQ ID NO: 215, and an amino acid sequence represented by amino acid residues 24 to 237 of the amino acid sequence represented by SEQ ID NO: 217 A heavy chain comprising an amino acid sequence represented by amino acid residues 24 to 476 of the amino acid sequence represented by SEQ ID NO: 237, and a residue of amino acids 24 to 237 of the amino acid sequence represented by SEQ ID NO: 217. A light chain comprising the amino acid sequence represented by the group, And antibodies that bind to human GPRC5D.
  • humanized antibodies include the heavy and light chain variable regions described above, preferably the heavy chain variable region and the light chain variable region of a humanized antibody derived from 2B1, and Mention may be made of antibodies that bind to human GPRC5D, including natural or mutant Fc.
  • Particularly preferred examples of such an antibody include a heavy chain variable region comprising the amino acid sequence represented by amino acid residues 20 to 142 of the amino acid sequence represented by SEQ ID NO: 76, and the amino acid represented by SEQ ID NO: 72 Examples thereof include a light chain variable region comprising an amino acid sequence represented by amino acid residues 21 to 127 of the sequence, and an antibody comprising a natural type or mutant Fc. More specifically, an antibody comprising an amino acid sequence represented by amino acid residues 24 to 271 of the amino acid sequence represented by SEQ ID NO: 223 and a natural type or mutant Fc can be mentioned.
  • the human antibody is not particularly limited as long as it is an antibody that binds to human GPRC5D.
  • Examples also include human antibodies that bind to the same site as the humanized antibody of the present invention.
  • a human antibody that binds to the same site as h2B1H2L5 is exemplified.
  • Examples of the human antibody of the present invention include antibodies comprising the heavy chain variable region described in any one of the following (1) to (4) and the light chain variable region; (1) Heavy chain CDR1, consisting of the amino acid sequence shown in SEQ ID NO: 111, A heavy chain variable region comprising a heavy chain CDR2 consisting of the amino acid sequence shown in SEQ ID NO: 112 and a heavy chain CDR3 consisting of the amino acid sequence shown in SEQ ID NO: 113; And A light chain CDR1 consisting of the amino acid sequence represented by SEQ ID NO: 114, A light chain variable region comprising a light chain CDR2 consisting of the amino acid sequence shown in SEQ ID NO: 115 and a light chain CDR3 consisting of the amino acid sequence shown in SEQ ID NO: 116; (2) heavy chain CDR1, consisting of the amino acid sequence shown in SEQ ID NO: 117, A heavy chain variable region comprising a heavy chain CDR2 consisting of the amino acid sequence shown in SEQ ID NO: 118 and a heavy chain CDR3
  • human antibodies include A heavy chain variable region comprising the amino acid sequence set forth in SEQ ID NO: 97 and a light chain variable region comprising the amino acid sequence set forth in SEQ ID NO: 99; A heavy chain variable region comprising the amino acid sequence shown in SEQ ID NO: 101, and a light chain variable region comprising the amino acid sequence shown in SEQ ID NO: 103, A heavy chain variable region comprising the amino acid sequence shown in SEQ ID NO: 105 and a light chain variable region comprising the amino acid sequence shown in SEQ ID NO: 107, or A combination of a heavy chain variable region and a light chain variable region comprising any one of a heavy chain variable region comprising the amino acid sequence represented by SEQ ID NO: 109 and a light chain variable region comprising the amino acid sequence represented by SEQ ID NO: 135 Mention may be made of antibodies. Such antibodies include single chain antibodies (also referred to as scFv) (Example 10) -4).
  • a human immunoglobulin heavy chain constant region (CH1 and Fc region) or a human immunoglobulin light chain constant region (CL) is linked to the light chain variable region and the heavy chain variable region described above.
  • Examples include IgG type antibodies.
  • the anti-GPRC5D antibody of the present invention may be an antibody composed of portions derived from a plurality of different antibodies as long as it binds to human GPRC5D.
  • a heavy chain and / or a light chain between a plurality of different antibodies Those in which the full length of the heavy chain and / or light chain is exchanged, those in which only the variable region or only the constant region is exchanged, those in which all or part of the CDR is exchanged, and the like.
  • the heavy chain variable region and the light chain variable region of the chimerized antibody may be derived from different anti-GPRC5D antibodies of the present invention.
  • the heavy chain CDR1 to heavy chain CDR3 and the light chain CDR1 to light chain CDR3 in the heavy and light chain variable regions of the humanized antibody may be derived from two or more anti-GPRC5D antibodies of the invention.
  • the heavy chain CDR1 to heavy chain CDR3 and the light chain CDR1 to light chain CDR3 in the heavy and light chain variable regions of the human antibody are combinations of CDRs possessed by two or more anti-GPRC5D antibodies of the present invention. Also good.
  • the anti-GPRC5D antibody of the present invention includes single chain immunoglobulin (Lee, HS, et. Al.) In which the full length sequences of the heavy and light chains of the antibody are linked using an appropriate linker.
  • the anti-GPRC5D antibody of the present invention or the antigen-binding fragment thereof includes a complementary strand of a polynucleotide containing a nucleotide sequence encoding the amino acid sequence contained in the anti-GPRC5D antibody of the present invention or the antigen-binding fragment of the antibody, and a string. Also included are antibodies or antigen-binding fragments of the antibodies that contain an amino acid sequence encoded by a nucleotide sequence contained in a polynucleotide that hybridizes under gentle conditions and that bind to human GPRC5D.
  • the anti-GPRC5D antibody of the present invention or the antigen-binding fragment of the antibody has the amino acid sequence of the heavy chain variable region and / or the amino acid sequence of the light chain variable region described in (8) to (12), (18) Or the amino acid sequence contained in the antibody or the antigen-binding fragment of the antibody according to any one of (20) to 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97 %, 98%, or 99% or more of the antibody that binds to human GPRC5D or an antigen-binding fragment thereof.
  • the position and length of the light chain variable region are determined using a definition different from IMGT, compared with the case where the light chain variable region is determined by the definition of IMGT.
  • one or more amino acids such as arginine (R) and glycine (G) may be included.
  • An antibody having such a light chain variable region or an antigen-binding fragment thereof is also encompassed in the antibody or antigen-binding fragment thereof of the present invention.
  • the antibody of the present invention may be one in which a mutation is introduced into the antigen-binding fragment of the anti-GPRC5D antibody of the present invention to optimize the binding ability of GPRC5D, particularly human and / or cynomolgus monkey GPRC5D. .
  • Specific methods for introducing mutations include random mutagenesis using error-prone PCR, site-specific amino acid mutagenesis using an NNK library, site-specific mutagenesis using structural information, and combinations thereof Can be mentioned.
  • Antibody variant of anti-GPRC5D antibody The antibody variant of the anti-GPRC5D antibody of the present invention preferably has reduced sensitivity to protein degradation or oxidation, maintenance of biological activity and function, improvement or suppression of reduction or change, antigen The binding ability can be improved or adjusted, or physicochemical properties or functional properties can be imparted. Proteins are known to change the function and activity of a specific amino acid side chain on the surface of the protein, such as deamidation of asparagine side chains, aspartic acid side chains. Isomerization and the like are included. Those substituted with other amino acids to prevent such amino acid side chain changes are also included in the scope of the antibody variants of the present invention.
  • Examples of the antibody variant of the present invention include an antibody having an amino acid sequence obtained by conservative amino acid substitution in the amino acid sequence of the antibody.
  • Conservative amino acid substitutions are those that take place within a group of amino acids that are related to an amino acid side chain.
  • the amino acid substitution in such an antibody variant is preferably performed within a range that does not reduce the antigen binding activity of the original antibody.
  • 2A4, 2B1, or 7B4, etc. which has an amino acid sequence in which a conservative amino acid substitution and / or other mutation has been made in the amino acid sequence of the antibody of the present invention, and which binds to human GPRC5D, Antigen-binding fragments, molecules containing them, etc .; conservative amino acid substitutions and / or others in any of the amino acid sequences of CDRH1 to CDRH3 and CDRL1 to CDRL3 derived from the antibody of the present invention, including 2A4, 2B1, or 7B4 A mouse antibody, a rat antibody, a chimerized antibody, a humanized antibody, a human antibody, an antigen-binding fragment thereof, a molecule containing them, etc., having the amino acid sequence mutated as described above and comprising the CDR that binds to human GPRC5D And the present invention such as C2037, C3048, C3015, or C3022 Antibody variants having conservative amino acid substitutions in the amino acid sequence of the antibody and binding
  • an antigen-binding fragment of the anti-GPRC5D antibody of the present invention is provided.
  • the antigen-binding fragment of the anti-GPRC5D antibody of the present invention includes a chimerized antibody, a humanized antibody, or an antigen-binding fragment of a human antibody.
  • the antigen-binding fragment of an antibody means a fragment that retains at least antigen-binding among the functions of the antibody or a modified product thereof.
  • Such antibody functions generally include antigen-binding activity, activity that regulates antigen activity (eg, agonist activity), activity that internalizes antigen into cells, and interaction with substances that interact with antigen. Examples thereof include activity to inhibit or promote.
  • the antigen-binding fragment of an antibody is not particularly limited as long as it is a fragment of the antibody that retains at least the antigen-binding property among the activities of the antibody.
  • an antigen-binding fragment of such an antibody for example, Fab, Fab ′, F (ab ′) 2 , a single chain in which the carboxyl terminus of the Fab light chain and the amino terminus of the Fab heavy chain are linked by an appropriate linker.
  • the present invention provides a modified form of antibody or antigen-binding fragment thereof.
  • the modified form of the antibody of the present invention or an antigen-binding fragment thereof means a product obtained by chemically or biologically modifying the antibody of the present invention or an antigen-binding fragment thereof.
  • Chemical modifications include chemical modifications to the amino acid backbone, chemical modifications of N-linked or O-linked carbohydrate chains, and the like.
  • Biological modifications include post-translational modifications (eg, glycosylation to N- or O-linkages, amino- or carboxyl-terminal processing, deamidation, isomerization of aspartic acid, methionine Oxidized ones, and those obtained by adding methionine residues to the amino terminus by expression using prokaryotic host cells are included.
  • post-translational modifications eg, glycosylation to N- or O-linkages, amino- or carboxyl-terminal processing, deamidation, isomerization of aspartic acid, methionine Oxidized ones, and those obtained by adding methionine residues to the amino terminus by expression using prokaryotic host cells are included.
  • those modified to allow detection or isolation of the antibody or antigen of the present invention for example, an enzyme label, a fluorescent label, and an affinity label are also included in the meaning of such a modified product.
  • Such a modified product of the antibody of the present invention or an antigen-binding fragment thereof is improved in stability and blood retention of the original antibody of the present invention or antigen-binding fragment thereof, reduced in antigenicity, such antibody or antigen. It is useful for the detection or isolation of.
  • the chemical moiety contained in the chemically modified product include water-soluble polymers such as polyethylene glycol (PEG), ethylene glycol / propylene glycol copolymer, carboxymethyl cellulose, dextran, and polyvinyl alcohol.
  • Biologically modified products include those modified by enzyme treatment or cell treatment, fusions to which other peptides such as tags have been added by genetic recombination, and endogenous or exogenous sugar chain-modifying enzymes.
  • modifications which are prepared using a cell that expresses as a host.
  • modifications may be made at any position in the antibody or antigen-binding fragment thereof, or at a desired position, and the same or two or more different modifications may be made at one or more positions.
  • deletion of these heavy chain sequences or modification of heavy or light chain sequences has little effect on the antigen-binding ability and effector functions (such as complement activation and antibody-dependent cytotoxicity) of antibodies. Does not affect. Accordingly, the present invention also includes antibodies that have undergone such deletion or modification.
  • the carboxyl-terminal deletions of the heavy chain and the light chain of the antibody according to the present invention are not limited to the above types.
  • the two or more chains are heavy chains selected from the group consisting of full length and the above-mentioned deletions. Any one of these may be used, or any two may be combined.
  • the amount ratio or molecular number ratio of each deletion may be affected by the type and culture conditions of cultured mammalian cells that produce the antibody according to the present invention, but two heavy chains are the main components of the antibody according to the present invention.
  • the antibody of the present invention or an antigen-binding fragment thereof is one or more derived from an expression vector and / or a signal sequence.
  • antibody or antigen-binding fragment thereof also includes “modified antibody or antigen-binding fragment thereof” in its meaning.
  • an antibody or an antigen-binding fragment thereof included in the molecule, multispecific molecule, bispecific molecule or the like of the present invention also includes such “an antibody or an antigen-binding fragment thereof” in its meaning. It is a waste.
  • modification of the sugar chain bound to the antibody of the present invention glycos, defucosylation, etc.
  • Known techniques for regulating antibody sugar chain modifications include, but are not limited to, International Patent Publication Nos. WO99 / 54342, WO00 / 61739, WO02 / 31140, and the like.
  • the present invention also includes a complex (Immunoconjugate) in which the above-described antibody and another molecule are connected by a linker.
  • a complex Immunoconjugate
  • ADC Antibody-Drug Conjugate
  • the present invention includes complexes in which these antibodies are linked to other functional polypeptides.
  • An example of such an antibody-peptide complex is a complex of the antibody with an albumin binding polypeptide (Protein Eng Des Sel. (2012) (2): 81-8).
  • modified antibodies antibodies with modified sugar chain modifications, and conjugates are included in the antibodies of the present invention, and the above-mentioned modified antibodies, antibodies with modified sugar chain modifications, and antigen binding properties of the conjugates. Fragments are encompassed by antigen-binding fragments of the antibodies of the present invention.
  • Antibodies that bind to the same site Antibodies that bind to a site on human GPRC5D to which the antibody provided by the present invention or an antigen-binding fragment of the antibody binds are also included in the antibody of the present invention or the antigen-binding fragment of the antibody.
  • An antibody and an antibody that binds to the same human GPRC5D antigen site mean another antibody that binds to the same site on the antigen molecule that the antibody recognizes. If the second antibody binds to the partial peptide or partial conformation on the antigen molecule to which the first antibody binds, it can be determined that the first antibody and the second antibody bind to the same site.
  • the second antibody competes for the binding of the first antibody to the antigen, that is, the second antibody prevents the binding between the first antibody and the antigen, the peptide sequence of the specific binding site or Even if the three-dimensional structure is not determined, it can be determined that the first antibody and the second antibody bind to the same site.
  • the probability that the second antibody has the same activity as the first antibody is extremely high.
  • the binding site of the antibody can be determined by methods well known to those skilled in the art such as immunoassay.
  • a series of peptides are prepared by appropriately trimming the amino acid sequence of the antigen from the carboxyl terminus or amino terminus, examining the reactivity of antibodies against them, determining a rough recognition site, and then synthesizing a shorter peptide. By examining the reactivity of antibodies to those peptides, the binding site can be determined.
  • Antigen fragment peptides can be prepared using techniques such as gene recombination and peptide synthesis.
  • the present invention is a nucleotide sequence encoding the amino acid sequence of the anti-GPRC5D antibody of the present invention or an antigen-binding fragment thereof (for example, SEQ ID NOs: 63, 65, 67, 69, 71, 73). , 75, 77, 79, 81, 83, 85, 87, 89, 91, etc.), a vector containing the polynucleotide, the polynucleotide or a cell containing the vector, the anti-GPRC5D antibody of the present invention or the same Cells that produce an antigen-binding fragment are also provided.
  • polynucleotides such as vectors (circular forms such as plasmids, and non-circular forms including those integrated into chromosomes) and cells are useful for the production of anti-GPRC5D antibodies or antigen-binding fragments thereof described later.
  • the polynucleotide of the present invention may contain any nucleotide sequence other than the nucleotide sequence encoding the amino acid sequence of the anti-GPRC5D antibody or antigen-binding fragment thereof.
  • nucleotide sequence (SEQ ID NO: 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83 in the sequence listing) encoding the amino acid sequence of the anti-GPRC5D antibody or antigen-binding fragment thereof of the present invention. , 85, 87, 89, 91, etc.) and a nucleotide sequence that encodes an amino acid sequence of a peptide that is an active signaling molecule and / or a nucleotide sequence that encodes an amino acid sequence of a costimulatory molecule , Part of an embodiment of a polynucleotide of the invention.
  • CAR is a scFv in which a light chain and a heavy chain derived from a monoclonal antibody recognizing a surface antigen of a tumor cell are connected in series, and an active signaling molecule such as T3 receptor CD3 ⁇ and an FcR ⁇ receptor for an immunoglobulin molecule.
  • the monoclonal antibody that recognizes the surface antigen of tumor cells is the anti-GPRC5D antibody of the present invention.
  • the immune cell of the present invention expressing CAR recognizes GPRC5D protein on the surface of the tumor via the anti-GPRC5D antibody of the present invention in the form of scFv, and activates the immune cell itself by an intracellular activity signal transduction molecule. To attack and attack tumor cells.
  • T cells When T cells are used as immune cells into which the polynucleotide of the present invention is introduced, cells expressing GPRC5D and T cells are expressed by chimeric antigen receptor (CAR) in which such polynucleotides are introduced into T cells and expressed on the cell surface.
  • CAR chimeric antigen receptor
  • T cell activation that is, to induce cytotoxicity by T cell redirection for cells expressing GPRC5D by reducing the distance between the cells.
  • T cells expressing such CAR hereinafter also referred to as T cells of the present invention
  • T cells of the present invention are also provided.
  • cytotoxicity can be induced in the tumor cells by redirecting the T cells of the present invention to tumor cells expressing GPRC5D.
  • Active signaling molecules are introduced into immune cells to transmit signals from immune cell receptors into the cells.
  • active signaling molecules include CD3 ⁇ , DAP12, FcR ⁇ , and the like.
  • Costimulatory molecules are introduced into immune cells to more strongly activate immune cells.
  • co-stimulatory molecules include CD2, CD27, CD28, CD49d, CD134, CD152, CD154, ICOS, 4-1BB, RANKL, and the like.
  • the molecule of the present invention includes the anti-GPRC5D antibody of the present invention or an antigen-binding fragment thereof. Furthermore, the molecule of the present invention includes a signal sequence, a tag for purification, an amino-terminal Gly, an ADC drug linker moiety, an albumin-binding polypeptide, a polymer such as PEG, an antibody other than an anti-GPRC5D antibody, An antigen-binding fragment, a protein having an antigen-binding property without an immunoglobulin skeleton, and the like can be included as a range. Examples of antibodies other than anti-GPRC5D antibodies include anti-CD3 antibodies. The scope of the molecules of the present invention includes multispecific molecules described below.
  • the multispecific molecule of the present invention is a molecule having two or more antigen-binding sites. That is, a molecule capable of binding to two or more different epitopes on one molecule or different epitopes on two or more molecules, and wraps a plurality of different antigen-binding fragments.
  • Such multispecific molecules include IgG type multispecific molecules, multispecific molecules having two or more variable regions, such as tandem scFv, single-chain diabody, diabody, and triabodies. It includes, but is not limited to, antibody fragments, antibody fragments linked by covalent or non-covalent bonds.
  • Multispecific molecules may include Fc.
  • the multispecific molecule of the invention includes an anti-GPRC5D antibody of the invention or an antigen-binding fragment of the antibody.
  • the multispecific molecule of the present invention comprises an anti-GPRC5D antibody of the present invention or an antigen-binding fragment thereof, and one or more anti-GPRC5Ds that bind to an epitope on other antigens without GPRC5D.
  • An antibody different from an antibody or an antigen-binding fragment of the antibody is included.
  • the antigen-binding fragment of the anti-GPRC5D antibody include Fab, F (ab) ′, Fv, scFv, and sdAb.
  • the multispecific molecules of the invention may specifically bind to GPRC5D or may further bind to a target such as an Fc receptor on effector cells.
  • antibodies different from anti-GPRC5D antibodies that can be included in the multispecific molecule of the present invention include anti-CD3 antibodies.
  • Preferred examples of the anti-CD3 antibody or antigen-binding fragment thereof that can be included in the multispecific molecule of the present invention include: Heavy chain CDR1 (GVTFNYYG) comprising the amino acid sequence set forth in SEQ ID NO: 183 (FIG. 206), Heavy chain CDR2 (ITX aa X aa GGRI) comprising the amino acid sequence shown in SEQ ID NO: 238 (FIG.
  • first X aa and the second X aa are any natural amino acid residues, respectively
  • first X aa of the heavy chain CDR2 is also referred to as X1
  • second X aa is also referred to as X 1 and X 2 , respectively.
  • CDRH3 TDGRDGWVAY
  • a light chain CDR1 comprising the amino acid sequence set forth in SEQ ID NO: 186 ( Figure 209)
  • Light chain CDR2 comprising the amino acid sequence shown in SEQ ID NO: 239 (FIG. 277) (where X aa is any natural amino acid residue.
  • X aa of light chain CDR2 is X 3 )
  • It possesses a light chain CDR3 (QSYSGSFI) containing the amino acid sequence shown in SEQ ID NO: 188 (FIG. 211).
  • X 1 is selected from the group consisting of (A, E, G, H, I, L, T, V, R, S), and X 2 is S; or X 1 is N and X 2 is selected from the group consisting of (E, R, F, Y, L, V, I, K, T);
  • X 3 is selected from the group consisting of (Q, A, G, S, N, D).
  • X 1 is selected from the group consisting of (R, S), and X 2 is S;
  • X 3 is selected from the group consisting of (Q, A, G, S, N, D).
  • Preferred examples of the multispecific molecule of the present invention include a heavy chain variable region comprising the amino acid sequence shown in SEQ ID NO: 240 (FIG. 278), SEQ ID NO: 241 (FIG. 279), 242 (FIGS. 280 and 243 ( A light chain variable region comprising the amino acid sequence shown in any one of FIGS.
  • the first X aa in the amino acid sequence shown in SEQ ID NO: 240 is selected from the group consisting of (A, E, G, H , I, L, T, V, R, S), and, second X aa is S or
  • the first X aa is N and the second X aa is selected from the group consisting of (E, R, F, Y, L, V, I, K, T);
  • Examples of the amino acid sequence Xaa shown in any one of SEQ ID NOs: 241, 242, and 243 include molecules selected from the group consisting of (Q, A, G, S, N, D).
  • multispecific anti-CD3 antibody may comprise a molecule, or antigen binding fragments thereof of the present invention
  • the first X aa SEQ ID NO: 240 is selected from the group consisting of (R, S)
  • the second X aa is S
  • the X aa of the amino acid sequence shown in any one of SEQ ID NOs: 241, 242, and 243 is (Q, A, G, S, N, D)
  • a suitable humanized anti-CD3 antibody of the present invention or an antigen-binding fragment of the antibody The amino acid sequence of the heavy chain CDR1 shown in SEQ ID NO: 183 (GVTNFNYYG), The amino acid sequence of the heavy chain CDR2 shown in SEQ ID NO: 184 (ITNSGGRI), and Amino acid sequence of heavy chain CDR3 shown in SEQ ID NO: 185 (TLDGRDGWVAY)
  • a heavy chain variable region comprising: and The amino acid sequence of light chain
  • the position and length of CDR of the anti-CD3 antibody was determined according to the definition of IMGT.
  • the anti-CD3 antibody, antigen-binding fragment thereof, and variable region thereof contained in the multispecific molecule of the present invention having the above-mentioned CDR are the ⁇ of the human CD3 complex. It binds to the Ig-like domain present in the extracellular region of the chain. It also binds to the Ig-like domain present in the extracellular region of the ⁇ chain of the cynomolgus monkey CD3 complex.
  • the epitope present in the extracellular region of the ⁇ chain of the human CD3 complex to which an anti-CD3 antibody or the like contained in the multispecific molecule of the present invention binds comprises the following amino acids; Ser55, Glu56, Leu58, Trp59, Asn65, Ile66, Ser77, Asp78, Arg101, Gly102, Ser103, Lys104, and Pro105.
  • the anti-CD3 antibody or the like contained in the multispecific molecule of the present invention preferably maintains binding to human CD3 by binding to an epitope region containing at least 7 amino acids selected from these 13 amino acids. can do.
  • an antibody When an antibody is adjacent to the above-mentioned amino acid within a distance of 4 mm or less, it is judged that such an antibody has the same epitope specificity as an anti-CD3 antibody or the like contained in the multispecific molecule of the present invention. Can do.
  • Arg101, Gly102, Ser103, Lys104, and Pro105 among the above-mentioned epitope amino acids are also epitope residues that interact with known anti-CD3 antibodies OKT3 and UCHT1 (Lars Kjer-Nielsen et al., PNAS ( 2004) (Kelly L Arnett et al., PNAS (2004))
  • OKT3 and UCHT1 bind to human CD3 but not to cynomolgus CD3.
  • Antibodies that bind to human CD3 and cynomolgus monkey CD3 and antigen-binding fragments of the antibodies contained in the multispecific molecule of the present invention are primates useful for non-clinical development (preclinical development) of pharmaceuticals, particularly It is preferable because it can be used in various tests regarding efficacy and safety using cynomolgus monkeys.
  • antibodies that bind to human CD3 and cynomolgus monkey CD3 have cytotoxic activity, and are useful alone or as a molecule of the present invention for the treatment or prevention of diseases such as cancer in cynomolgus monkeys.
  • the pharmaceutical composition will be described later.
  • the anti-CD3 antibody may be a non-human animal antibody, a chimerized antibody, a humanized antibody, or a human antibody.
  • a humanized antibody or a human antibody is preferable.
  • the antigen-binding fragment of the anti-CD3 antibody include Fab, F (ab) ′, Fv, scFv, and sdAb.
  • the anti-CD3 antibody containing CDR and the antigen-binding fragment thereof include a heavy chain variable region comprising the amino acid sequence shown in SEQ ID NO: 240 (FIG. 278), SEQ ID NO: 241 (FIG. 279), SEQ ID NO: 242 (FIG.
  • a light chain variable region comprising the amino acid sequence shown in any one of SEQ ID NO: 243 (FIG. 281), or an antigen-binding fragment of the antibody
  • a humanized antibody comprising a heavy chain variable region comprising the amino acid sequence represented by SEQ ID NO: 155 and a light chain variable region comprising the amino acid sequence represented by any one of SEQ ID NOS: 156, 158 and 160, or the antibody And antigen-binding fragments thereof.
  • Specific examples of the anti-CD3 antibody or the antigen-binding fragment of the antibody include an antibody comprising the amino acid sequences shown in SEQ ID NOs: 180, 181 and 182 or an antigen-binding fragment of the antibody.
  • the anti-CD3 antibody may be a humanized antibody or human antibody comprising a human immunoglobulin constant region or Fc.
  • Fc may be a mutant Fc.
  • the multispecific molecule of the present invention comprising an anti-GPRC5D antibody or an antigen-binding fragment of the antibody and an anti-CD3 antibody or an antigen-binding fragment of the antibody, humanized anti-GPRC5D derived from 2B1 described above
  • An antibody or an antigen-binding fragment of the antibody, and further, as an anti-CD3 antibody or an antigen-binding fragment of the antibody A heavy chain variable region containing the amino acid sequence shown by amino acid residues 25 to 142 of the amino acid sequence shown in SEQ ID NO: 207 and amino acid residues 24 to 132 of the amino acid sequence shown by SEQ ID NO: 209
  • a light chain variable region comprising an amino acid sequence
  • a heavy chain variable region comprising the amino acid sequence shown by the 25th to 142nd amino acid residues of the amino acid sequence shown in SEQ ID
  • a more preferred molecule is an amino acid sequence represented by the 20th to 142nd amino acid residues of the amino acid sequence represented by SEQ ID NO: 76, wherein the antibody that binds to human GPRC5D or the antigen-binding fragment of the antibody
  • a light chain variable region comprising the amino acid sequence represented by amino acid residues 21 to 127 of the amino acid sequence represented by SEQ ID NO: 72, and i) a heavy chain constant region comprising the amino acid sequence represented by amino acid residues 147 to 475 of the amino acid sequence represented by SEQ ID NO: 199, and amino acid residues 131 to 237 of the amino acid sequence represented by SEQ ID NO: 203
  • a light chain constant region comprising the amino acid sequence shown, ii) a heavy chain constant region comprising an amino acid sequence represented by amino acid residues 147 to 475 of the amino acid sequence represented by SEQ ID NO: 201, and amino acid residues 131 to 237 of the amino acid sequence represented by SEQ ID NO: 205
  • a light chain constant region comprising the amino acid sequence shown,
  • variant Fc can be mentioned.
  • an antibody that binds to human GPRC5D or an antigen-binding fragment of the antibody is an antibody that binds to human GPRC5D containing the constant region shown in iii) or iv) above, or an antigen-binding fragment of the antibody. Molecules are even more preferred.
  • a heavy chain comprising an amino acid sequence represented by amino acid residues 24 to 475 of the amino acid sequence represented by SEQ ID NO: 215, and an amino acid sequence represented by amino acid residues 24 to 237 of the amino acid sequence represented by SEQ ID NO: 217
  • An antigen-binding fragment of an antibody that binds to human GPRC5D comprising a light chain comprising, and human CD3 and cynomolgus CD3 comprising an amino acid sequence represented by amino acid residues 24 to 499 of the amino acid sequence represented by SEQ ID NO: 219
  • a heavy chain comprising an amino acid sequence represented by amino acid residues 24 to 475 of the amino acid sequence represented by SEQ ID NO: 215, and an amino acid sequence represented by amino acid residues 24 to 237 of the amino acid sequence represented by SEQ ID NO: 217
  • a heavy chain comprising an amino acid sequence represented by amino acid residues 24 to 475 of the amino acid sequence represented by SEQ ID NO: 215, and an amino acid sequence represented by amino acid residues 24 to 237 of the amino acid sequence represented by SEQ ID NO: 217
  • a heavy chain comprising an amino acid sequence represented by amino acid residues 24 to 475 of the amino acid sequence represented by SEQ ID NO: 215, and an amino acid sequence represented by amino acid residues 24 to 237 of the amino acid sequence represented by SEQ ID NO: 217
  • Examples of another more preferable molecule of the multispecific molecule of the present invention include an antibody that binds to human GPRC5D or an antigen-binding fragment of the antibody, the aforementioned humanized antibody derived from 2B1 or the antigen-binding property of the antibody.
  • the antigen-binding fragment of the antibody is further v) an amino acid sequence represented by amino acid residues 143 to 471 of the amino acid sequence represented by SEQ ID NO: 207
  • an antibody that binds to human GPRC5D or an antigen-binding fragment of the antibody is an antibody that binds to human GPRC5D containing the constant region shown in iii) or iv) above, or an antigen-binding fragment of the antibody Molecules are more preferred.
  • An antigen-binding fragment of an antibody that binds to human GPRC5D including a light chain comprising: a heavy chain comprising an amino acid sequence represented by amino acid residues 25 to 471 of the amino acid sequence represented by SEQ ID NO: 207; and SEQ ID NO:
  • An antigen-binding fragment of an antibody that binds to human CD3 and cynomolgus monkey CD3 comprising a light chain comprising the amino acid sequence represented by amino acid residues 24 to 238 of the amino acid sequence represented by 209, or
  • an antibody that binds to human GPRC5D or an antigen-binding fragment thereof has amino acid residues 20 to 142 in the amino acid sequence shown in SEQ ID NO: 76.
  • a heavy chain variable region comprising the amino acid sequence shown, a light chain variable region comprising the amino acid sequence shown by amino acid residues 21 to 127 of the amino acid sequence shown in SEQ ID NO: 72, and a mutant Fc,
  • the molecule according to claim 55, wherein the antibody or antigen-binding fragment of the antibody that binds to human CD3 and cynomolgus CD3 further contains a mutant Fc.
  • an antibody that binds to human GPRC5D containing the amino acid sequence shown by amino acid residues 24 to 271 of the amino acid sequence shown in SEQ ID NO: 223 and a mutant Fc, or an antigen-binding fragment thereof, and shown in SEQ ID NO: 219 An antibody that binds to human CD3 and cynomolgus monkey CD3 containing the amino acid sequence represented by amino acid residues 24 to 266 of the amino acid sequence and mutant Fc, or an antigen-binding fragment of the antibody, or An antibody that binds to human GPRC5D containing the amino acid sequence shown by amino acid residues 24 to 271 of the amino acid sequence shown in SEQ ID NO: 223 and a mutant Fc, or an antigen-binding fragment thereof, and shown in SEQ ID NO: 221
  • Examples thereof include an antibody that binds to human CD3 and cynomolgus monkey CD3 containing the amino acid sequence represented by amino acid
  • the molecule of the present invention includes a polynucleotide that hybridizes under stringent conditions with a complementary strand of a polynucleotide containing a nucleotide sequence encoding the amino acid sequence contained in the anti-CD3 antibody or antigen-binding fragment of the antibody.
  • molecules comprising a portion of an anti-GPRC5D antibody or antigen-binding fragment thereof are also included.
  • the molecule of the present invention includes the amino acid sequence of the heavy chain variable region and / or the amino acid sequence of the light chain variable region contained in the anti-CD3 antibody or the antigen-binding fragment of the antibody, 70%, 71% 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88 %, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% or more identical heavy chain variable region amino acid sequences, and / or A portion of an anti-CD3 antibody or antigen-binding fragment thereof comprising an amino acid sequence of a light chain variable region and binding to human CD3 and cynomolgus CD3; and anti-GPRC5D binding to human GPRC5D, preferably further binding to cynomolgus monkey GPRC5D Antibody or It encompasses molecules comprising a portion
  • the molecule of the present invention includes an anti-CD3 antibody having an amino acid sequence in which one to several amino acids are substituted, deleted or modified in the amino acid sequence contained in the anti-CD3 antibody or the antigen-binding fragment of the antibody. Also included are antigen-binding fragments of the antibody that bind to human CD3 and cynomolgus monkey CD3 and human GPRC5D, preferably further to cynomolgus GPRC5D.
  • anti-CD3 antibodies or antigen-binding fragments thereof include deletions in which one or two amino acids are deleted at the heavy chain carboxyl terminus (Journal of Chromatography A, 705: 129-134 (1995)), Deletion form in which two amino acid residues of glycine and lysine at the heavy chain carboxyl terminal are deleted, and a proline residue located at the carboxyl terminal is newly amidated (Analytical Biochemistry, 360: 75-83 (2007)) And antibodies in which the amino terminal glutamine or glutamic acid residue of the antibody heavy chain or light chain is pyroglutamyl-modified (International Patent Publication No. WO2013 / 147153) can be mentioned (collectively “deletants”) Called).
  • the carboxyl-terminal deletions of the heavy chain and light chain of the anti-CD3 antibody or antigen-binding fragment of the antibody contained in the molecule of the present invention are as described above. It is not limited to the kind of.
  • the two or more chains are selected from the group consisting of full length and the above-mentioned deletion body. Any one of these heavy chains may be used, or a combination of any two or more of them may be used.
  • the main component of the molecule of the present invention can include a case where one amino acid residue at the carboxyl terminus is deleted from both of the two heavy chains. .
  • Bispecific molecules of the invention Preferred examples of the multispecific molecule of the present invention include bispecific molecules. “Bispecific” means capable of binding to two different epitopes of the same molecule or different epitopes on two or more molecules, and has such bispecificity Includes antibodies or antigen-binding fragments.
  • the bispecific molecule of the invention binds to GPRC5D and does not have GPRC5D but binds to an epitope on other antigens. More specifically, such bispecific molecules are (i) bound to an epitope on GPRC5D (Epitope 1) and (ii) to an epitope different from Epitope 1 on GPRC5D (Epitope 2).
  • the linker binds to or binds to an epitope on an antigen other than GPRC5D (Epitope 3).
  • an antigen other than GPRC5D epitope 3
  • the antigen binding site of the heavy chain variable region of the first antibody and the antigen binding site of the light chain variable region of the first antibody are used as the linker.
  • first polypeptide and the second polypeptide are linked by a linker or a linker. Directly coupled without. Further, the first polypeptide and the second polypeptide may be bound via another molecule.
  • a diabody-type bispecific molecule the antigen-binding site of the heavy chain variable region of the first antibody and the antigen-binding site of the light chain variable region of the second antibody are linked by a linker or directly bonded without a linker.
  • the antigen binding site of the light chain variable region of the first antibody and the antigen binding site of the heavy chain variable region of the second antibody are linked by a linker or directly linked without a linker.
  • a bispecific molecule obtained by further dimerizing a diabody-type bispecific molecule can also be prepared.
  • a diabody-type bispecific molecule may be linked to only one chain of Fc or both chains with a linker (diabody-Fc type bispecific molecule).
  • dual scFv type bispecific molecule two types of scFv that bind to different epitopes are linked to one of the dimeric Fc's by a linker or directly linked without a linker.
  • two types of scFvs that bind to different epitopes are linked to CH and CL, respectively, and further linked to one of the dimeric Fc's via a linker.
  • the dual scFv type bispecific molecule is hereinafter also referred to as dual type bispecific molecule or simply dual type.
  • two Fabs that bind to different epitopes are linked to one of the dimeric Fc's by a linker or directly linked without a linker.
  • the IgG type bispecific molecule is hereinafter also referred to as a Full-Size Antibody (FSA) type bispecific molecule, or simply FSA type.
  • FSA Full-Size Antibody
  • it may be a bispecific molecule in which the Fab of the first antibody is linked to one of the dimeric Fc and the scFv of the second antibody is linked to the other with a linker or directly bonded without the linker.
  • Such a bispecific molecule is hereinafter also referred to as a hybrid type bispecific molecule or a hybrid type.
  • the scFv and Fab contained in the bispecific molecule of the present invention are preferably a humanized antibody or a human antibody scFv and Fab, and Fc is preferably a human antibody Fc.
  • the linker includes single-chain polypeptides or single-chain oligopeptides, or synthetic products such as PEG, nucleotides, sugar chains, and compounds. In addition, it will not specifically limit if two polypeptides are couple
  • the length of the linker is, for example, 5 to 30 amino acids in the case of a peptide linker.
  • the bispecific molecule includes a plurality of linkers, peptide linkers having the same length may be used, or peptide linkers having different lengths may be used. Examples of peptide linkers include repeating (Gly, Gly, Gly, Gly, Ser), but one to several amino acid residues different from Gly and Ser may be added thereto.
  • an antibody that binds to an epitope (epitope 3) in an antigen other than GPRC5D, or an antigen-binding fragment thereof, contained in the bispecific molecule of the present invention examples include the anti-CD3 antibody or antigen-binding property thereof. A fragment can be mentioned.
  • the bispecific molecule of the present invention the anti-CD3 antibody or the antigen-binding fragment of the antibody is bound to the anti-GPRC5D antibody of the present invention or the antigen-binding fragment of the antibody by a linker. Or a molecule formed by binding without a linker.
  • the anti-CD3 antibody or the antigen-binding fragment of the antibody and the anti-GPRC5D antibody of the present invention or the antigen-binding fragment of the antibody are each scFv and bound by a linker. Or a molecule bound without a linker.
  • Preferable specific examples of such molecules are those that bind to human CD3 and cynomolgus monkey CD3 and human GPRC5D, and preferably further to cynomolgus GPRC5D, having the amino acid sequences shown in SEQ ID NOs: 171 to 179. it can.
  • the anti-GPRC5D antibody of the present invention is obtained by immunizing an animal with any polypeptide selected from GPRC5D or an amino acid sequence of GPRC5D using a conventional method, and collecting and purifying the antibody produced in vivo. Can be obtained. Also, known methods (for example, Kohler and Milstein, Nature (1975) 256, p. 495-497, Kennet, R. ed., Monoclonal Antibodies, p. 365-367, Plenum Press, NY (1980). ), Hybridomas can be established by fusing antibody-producing cells that produce antibodies against GPRC5D and myeloma cells to obtain monoclonal antibodies.
  • GPRC5D as an antigen is not limited to humans, and GPRC5D derived from animals other than humans such as mice and rats can also be used to immunize animals.
  • an antibody applicable to a human disease can be selected by examining the cross-reactivity between the obtained antibody that binds to the heterologous GPRC5D and human GPRC5D.
  • the anti-CD3 antibody that can be contained in the molecule of the present invention is prepared by immunizing an animal with any polypeptide selected from the amino acid sequence of CD3 or CD3 using a conventional method, and It can be obtained by collecting and purifying.
  • a hybridoma can be established by fusing an antibody-producing cell that produces an antibody against CD3 and a myeloma cell to obtain a monoclonal antibody.
  • the biological species of CD3 serving as an antigen is not limited to humans, and it is also possible to immunize animals with CD3 derived from animals other than humans such as mice and rats. By testing for cross-ability, antibodies applicable to human disease can be screened.
  • the antibody can be prepared by the hybridoma method described above by using, as an immunogen, a cell expressing a natural antigen, a cell expressing a recombinant antigen or a fragment thereof, and the like.
  • Examples of cells expressing natural GPRC5D include human plasma cells, primary cultured cells derived from human multiple myeloma patients, and cultured cell lines derived from human multiple myeloma patients.
  • Examples of cells expressing natural CD3 include human thymocytes and T lymphocytes. Such cells have 1 ⁇ 10 5 to 1 ⁇ 10 9 cells, preferably 1 ⁇ 10 6 to 1 ⁇ 10 8 cells, more preferably 0.5 to 2 ⁇ 10 7 cells, and even more preferably 1 ⁇ .
  • 10 7 cells are used for one immunization, the number of cells subjected to immunization can be changed according to the expression level of the antigen.
  • Such an immunogen is generally administered intraperitoneally, but can also be administered intradermally or the like.
  • the anti-GPRC5D antibody of the present invention and the anti-CD3 antibody that can be included in the molecule of the present invention can also be obtained using a DNA immunization method.
  • An antigen expression plasmid is introduced into an animal individual such as a mouse or a rat, and the antigen is expressed in the individual to induce immunity to the antigen.
  • Gene transfer methods include direct injection of plasmids into muscles, intravenous injection of introduction reagents such as liposomes and polyethyleneimine, methods using viral vectors, and gold particles with plasmids attached to them by Gene Gun.
  • rat anti-human GPRC5D antibodies established in this way include 2A4, 2B1, and 7B4.
  • the amino acid sequence of the heavy chain variable region of 2A4 is shown in SEQ ID NO: 5 in the sequence listing.
  • the amino acid sequence of the light chain variable region of 2A4 is shown in SEQ ID NO: 12 in the sequence listing.
  • the amino acid sequence of the heavy chain variable region of 2B1 is shown in SEQ ID NO: 7 in the sequence listing.
  • the amino acid sequence of the light chain variable region of 2B1 is shown in SEQ ID NO: 14 in the sequence listing.
  • the amino acid sequence of the heavy chain variable region of 7B4 is shown in SEQ ID NO: 9 in the Sequence Listing.
  • the amino acid sequence of the light chain variable region of 7B4 is shown in SEQ ID NO: 16 in the sequence listing.
  • humanized antibodies As humanized antibodies, only CDRs of non-human animal antibodies are incorporated into human-derived antibodies (see Nature (1986) 321, p.522-525), and CDR sequences are obtained by CDR grafting. In addition, antibodies in which amino acid residues of some frameworks are also grafted to human antibodies (see WO 90/07861, US 6972323), and one or more amino acids of non-human animal antibodies in any of them are human type Examples thereof include, but are not limited to, antibodies that are substituted with amino acids.
  • human antibody means an antibody comprising the amino acid sequence of a human-derived antibody.
  • the human antibody is obtained by a method using a human antibody-producing mouse having a human genomic DNA fragment containing the heavy and light chain genes of human antibody (Tomizuka, K. et al., Nature Genetics (1997) 16, 133-143; Kuroiwa, Y. et.al., Nuc.Acids Res. (1998) 26, 3447-3448; Yoshida, H. et.al., Animal Cell Technology: Basic and Applied Aspects vol. Y., Matuda, T. and Iijima, S. eds.), Kluwer Academic Publishers, 1999.; Tomizuka, K.
  • Such a human antibody-producing animal specifically destroys the endogenous immunoglobulin heavy chain and light chain loci of a non-human mammal, and instead uses a yeast artificial chromosome (YAC) vector or the like. Through the introduction of human immunoglobulin heavy chain and light chain loci.
  • YAC yeast artificial chromosome
  • eukaryotic cells are transformed with cDNA encoding each of the heavy and light chains of such a human antibody, preferably a vector containing the cDNA, to produce a gene recombinant human monoclonal antibody.
  • This antibody can also be obtained from the culture supernatant by culturing the transformed cells.
  • eukaryotic cells preferably mammalian cells such as HEK293F cells and CHO cells can be used.
  • a method for obtaining a human antibody derived from phage display selected from a human antibody library is also known.
  • a phage display method can be used in which a variable region of a human antibody is expressed as scFv on the surface of a phage and a phage that binds to an antigen is selected. By analyzing the gene of the phage selected by binding to the antigen, the DNA sequence encoding the variable region of the human antibody that binds to the antigen can be determined.
  • an expression vector having the sequence is prepared, and introduced into a suitable host for expression to obtain a human antibody (WO92 / 01047, WO92 / 20791, WO93 / 06213, WO93 / 11236, WO93 / 19172, WO95 / 01438, WO95 / 15388, Annu. Rev. Immunol (1994) 12, 433-455).
  • a method for constructing a human antibody phage library is well known, and the gene of the human antibody variable region can be obtained from J Biol Chem, 274 (26), 18218-30, using cDNA collected from human blood, spleen, and lymph nodes as a template. (1999) and Methods Mol Biol, 178, 59-71, (2002), and the like.
  • the amplified variable region can be converted to scFv with reference to J Immunol Methods, 201 (1), 35-55 (1997).
  • Antigen-binding fragments of an antibody can be produced by modifying an antibody by genetic engineering techniques and expressing it in an appropriate cultured cell. Methods for making, for example, scFv as an antigen-binding fragment of an antibody are well known in the art (eg, US Pat. No. 4,946,778, US Pat. No. 5,260,203, US Pat. No. 5,091,513, U.S. Pat. No. 5,455,030).
  • the heavy chain variable region and the light chain variable region are linked via a linker that does not form a conjugate, preferably a polypeptide linker (Huston, JS et al., PNAS (1988), 85 , 5879-5883).
  • the heavy chain variable region and the light chain variable region in scFv may be derived from the same antibody or different antibodies.
  • the polypeptide linker that links the variable regions for example, any single chain peptide consisting of 5 to 30 residues is used.
  • the scFv-encoding DNA is a DNA encoding the heavy chain or heavy chain variable region of the antibody, and a DNA encoding the light chain or light chain variable region.
  • DNA encoding the entire scFv region may be obtained by total synthesis.
  • an expression vector containing the DNA and a host cell transformed with the expression vector can be prepared according to a conventional method, and by culturing the host cell, The scFv can be recovered from such culture according to the method.
  • Antigen-binding fragments of other antibodies can also be obtained by obtaining a gene encoding the antigen-binding fragment according to the above-described method and introducing the gene into the cell, and recovering the antigen-binding fragment from the culture of the cell, Obtainable.
  • the antibody of the present invention may be an antibody having increased affinity for an antigen by multimerization.
  • the antibody that multiplies may be one type of antibody or a plurality of antibodies that recognize multiple epitopes of the same antigen. Examples of the method for increasing the number of antibodies include binding of an IgG CH3 domain and two scFvs, binding to streptavidin, introduction of a helix-turn-helix motif, and the like.
  • the antibody of the present invention comprises a polynucleotide containing a nucleotide sequence encoding its heavy chain amino acid sequence (heavy chain nucleotide) and a polynucleotide containing a nucleotide sequence encoding its light chain amino acid sequence (light chain nucleotide).
  • it can be prepared by introducing a vector into which a heavy chain nucleotide is inserted and a vector into which a light chain nucleotide is inserted into a host cell, culturing the cell, and then recovering the antibody from the culture. .
  • a heavy chain nucleotide and a light chain nucleotide may be inserted into one vector.
  • Prokaryotic cells or eukaryotic cells can be used as host cells.
  • animal cells include mammal-derived cells, ie, human fetal kidney cells HEK293F cells (Subedi GP et al., J Vis Exp. (2015) 106) monkey kidney.
  • Derived COS cells Gluzman, Y. Cell (1981) 23, 175-182, ATCC CRL-1650
  • mouse fibroblasts NIH3T3 ATCC No.
  • cells modified so that the biological activity of the antibody can be increased by modifying the sugar chain structure can also be used as a host. For example, among N-glycoside-linked complex sugar chains that bind to the Fc region of an antibody, the sugar chain in which fucose is not bound to N-acetylglucosamine at the sugar chain reducing end has been modified to be 20% or more.
  • CHO cells By using CHO cells, it is possible to prepare an antibody with enhanced ADCC activity or CDC activity (International Patent Publication WO02 / 31140).
  • eukaryotic microorganisms include yeast.
  • prokaryotic cells include Escherichia coli and Bacillus subtilis.
  • the signal peptide for secreting the antibody of the present invention (monoclonal antibody derived from various animals, rat antibody, mouse antibody, chimerized antibody, humanized antibody, human antibody, etc.) is the same type, the same type and the same subtype as the antibody.
  • the secretion signal of the antibody of the type is not limited to the secretion signal of the antibody of the type, and the secretion signal of the antibody itself, but the secretion signal of other types or subtypes of antibodies, or of proteins from other eukaryotic species or prokaryotes Any secretory signal can be selected and used.
  • the signal peptide is usually not included in the nucleotide sequence and amino acid sequence of most mature light chains or mature heavy chains, respectively.
  • antibodies secreted by including the signal peptide include the antibodies of the present invention or the like. Included in the molecule. The obtained antibody, antibody antigen-binding fragment, and molecule can be uniformly purified so as not to contain other proteins.
  • separation and purification methods used for ordinary proteins may be used.
  • antibodies can be separated and purified by appropriately selecting and combining chromatography columns, filters, ultrafiltration, salting out, dialysis, preparative polyacrylamide gel electrophoresis, isoelectric focusing, etc. It is not limited to.
  • a suitable separation / purification method for example, an expression vector is prepared by adding a DNA sequence encoding a His tag or a FLAG tag to the carboxyl terminus of an antibody variable region, and cells are transformed with this vector.
  • the antibody and antigen-binding fragment of the antibody are expressed by culturing, and after culturing, the culture supernatant is extracted, metal affinity chromatography such as Ni, Co, etc., anti-FLAG tag antibody column, gel filtration, ion exchange chromatography Etc. and can be purified.
  • Antibodies and antigen-binding fragments of antibodies expressed including amino acid sequences of tags such as His tags and FLAG tags are also encompassed by the antibodies of the present invention, antigen-binding fragments of the antibodies, or molecules of the present invention. .
  • the antibody of the present invention may be a polyclonal antibody.
  • Polyclonal antibodies can be collected from mixed cultures of cells producing different antibodies and recovered from the culture (WO 2004/061104). It is also possible to mix separately prepared antibodies.
  • the antiserum which is one embodiment of the polyclonal antibody can be prepared by immunizing an animal with a desired antigen and collecting the serum from the animal according to a standard method.
  • T cells are obtained by collecting mononuclear cells collected from human peripheral blood by a method such as specific gravity centrifugation in the presence of anti-CD3 antibody, IL-2, IL-12, or further anti-IL-4 antibody or IFN- ⁇ . It can be induced by culturing in a medium.
  • a chimeric antigen receptor (CAR) gene having the anti-GPRC5D antibody gene of the present invention as a constituent element is introduced into the T cells.
  • a typical CAR gene includes a gene for an antibody that recognizes a surface antigen of a tumor cell (in the present invention, an anti-GPRC5D antibody), and a co-stimulatory molecule (for example, T cell receptor ⁇ chain and CD28 required for T cell activation). A co-stimulatory molecule).
  • the CAR gene containing the anti-GPRC5D antibody gene can be introduced into T cells using various viral vectors.
  • a recombinant virus can be prepared from a virus vector incorporating the anti-GPRC5D antibody gene and introduced into the above-described antigen-nonspecifically activated T cells. T cells after gene transfer can be cultured to obtain T cells imparted with specificity for tumor cells.
  • the antigen-positive tumor obtained by the method of the present invention which is capable of inducing cytotoxicity by redirection, is imparted with antigen specificity, and is known to express GPRC5D. This can be determined by measuring the amount of IFN- ⁇ or IL-2 in the culture supernatant after co-culture with cells inactivated by treatment with mitomycin C.
  • the multispecific molecules and bispecific molecules of the present invention can be produced by introducing an expression plasmid into a host cell and expressing it transiently.
  • scFv single-chain antibody
  • two scFvs are bound by a peptide linker
  • tandem scFv the two antibodies having different specificities are interchanged to form a dimer non-covalently
  • body domains of two antibodies with different specificities are exchanged to form a single chain (single-chain diabody), and a diabody is formed into a single chain and a dimer is formed non-covalently.
  • the present invention includes a gene encoding the antibody of the present invention or an antigen-binding fragment of the antibody, or a modified product such as an antigen, a recombinant vector into which the gene is inserted, a cell into which the gene or vector has been introduced, and other Also provided are cells that produce the antibodies of the invention.
  • compositions comprises an anti-GPRC5D antibody, an antigen-binding fragment thereof, a polynucleotide of the present invention, a vector, a cell, an artificial immune cell, and / or a molecule containing at least one of these as an active ingredient.
  • Product hereinafter also referred to as the pharmaceutical composition of the present invention.
  • the pharmaceutical composition of the present invention is used for various diseases related to GPRC5D signal abnormality or enhancement (hereinafter referred to as “diseases related to GPRC5D”) due to overexpression of GPRC5D or its ligand, or mutation or gene amplification of GPRC5D, particularly various cancers. It is useful for the treatment or prevention.
  • causes of the induction or exacerbation of cancer that is the target of treatment or prevention include high expression of GPRC5D, single base substitution (SNP) in the intron of GPRC5D gene, missense mutation that constantly activates GPRC5D, GPRC5D gene Amplification or overexpression of can be exemplified.
  • the molecule of the present invention or the pharmaceutical composition of the present invention can induce cytotoxicity to cells by redirection of immune cells such as T cells to cells expressing GPRC5D.
  • a method for inducing cytotoxicity to cells by immune cell redirection such as T cells to cells expressing GPRC5D comprising the step of administering the molecule of the present invention or the pharmaceutical composition of the present invention.
  • the present invention provides.
  • cancer types to be treated or prevented by the pharmaceutical composition of the present invention include cancers expressing GPRC5D protein, for example, lung cancer such as breast cancer, endometrial cancer, ovarian cancer, non-small cell lung cancer, gastric cancer, Prostate cancer, renal cancer, liver cancer, pancreatic cancer, colon cancer, esophageal cancer, bladder cancer, cervical cancer, hematological cancer, lymphoma, malignant melanoma, and the like.
  • lung cancer such as breast cancer, endometrial cancer, ovarian cancer, non-small cell lung cancer, gastric cancer, Prostate cancer, renal cancer, liver cancer, pancreatic cancer, colon cancer, esophageal cancer, bladder cancer, cervical cancer, hematological cancer, lymphoma, malignant melanoma, and the like.
  • GPRC5D protein is expressed. Multiple myeloma.
  • the pharmaceutical composition of the present invention contains a therapeutically or prophylactically effective amount of an anti-GPRC5D antibody, an antigen-binding fragment thereof, and / or a molecule containing at least one of these as an active ingredient, and is further pharmaceutically acceptable.
  • “Therapeutically effective amount” means an amount that exhibits a therapeutic or prophylactic effect for a specific disease, dosage form, and route of administration, and is synonymous with “pharmacologically effective amount”.
  • the pharmaceutical composition of the present invention includes pH, osmotic pressure, viscosity, transparency, color, isotonicity, sterility, stability of the composition or antibody contained therein, solubility, sustained release, absorbability, penetration. Substances for changing, maintaining, and maintaining properties, dosage forms, strength, properties, shapes, etc. (hereinafter referred to as “substances for formulation”) can be included.
  • the substance for the preparation is not particularly limited as long as it is a pharmacologically acceptable substance.
  • non-toxicity or low toxicity is a property that a drug substance preferably has.
  • the substance for formulation include, but are not limited to, the following: amino acids such as glycine, alanine, glutamine, asparagine, histidine, arginine or lysine, antibacterial agent, ascorbic acid Antioxidants such as sodium sulfate or sodium bisulfite, phosphoric acid, citric acid, boric acid buffer, sodium hydrogen carbonate, buffer such as tris-hydrochloric acid (Tris-Hcl) solution, filler such as mannitol and glycine, ethylenediamine Chelating agents such as tetraacetic acid (EDTA), caffeine, polyvinylpyrrolidine, complexing agents such as ⁇ -cyclodextrin and hydroxypropyl- ⁇ -cyclodextrin, bulking agents such as glucose, mannose or dex
  • the addition amount of the substance for these preparations is 0.001 to 1000 times, preferably 0.1 to the weight of the anti-GPRC5D antibody, the antigen-binding fragment thereof, and / or the molecule containing at least one of them. 01 to 100 times, more preferably 0.1 to 10 times.
  • An anti-GPRC5D antibody, an antigen-binding fragment thereof, and / or an immunoliposome containing a molecule containing at least one of these in a liposome, a modified antibody obtained by binding an antibody and a liposome (US Pat. No. 6,214,388) Etc.) are also included in the pharmaceutical composition of the present invention.
  • the excipient and carrier are usually liquid or solid, and are not particularly limited as long as they are water used for injection, physiological saline, artificial cerebrospinal fluid, and other substances used for oral or parenteral administration. .
  • physiological saline include neutral ones and those containing serum albumin.
  • buffer include Tris buffer prepared so that the final pH of the pharmaceutical composition is 7.0 to 8.5, acetate buffer prepared so as to be 4.0 to 5.5, and 5.
  • Examples thereof include a citrate buffer prepared to be 0 to 8.0, a histidine buffer prepared to be 5.0 to 8.0, and the like.
  • the pharmaceutical composition of the present invention is a solid, liquid, suspension or the like. Freeze-dried preparations can be mentioned.
  • the administration route of the pharmaceutical composition of the present invention may be enteral administration, topical administration or parenteral administration, for example, intravenous administration, intraarterial administration, intramuscular administration, intradermal administration, subcutaneous administration, intraperitoneal administration Administration, transdermal administration, intraosseous administration, intraarticular administration and the like can be mentioned.
  • the composition of such a pharmaceutical composition can be determined according to the administration method, the GPRC5D protein binding affinity of the antibody, and the like.
  • the dosage of the pharmaceutical composition of the present invention is not limited as long as it is a pharmacologically effective amount, and the species of the individual, the type of disease, symptoms, sex, age, chronicity, GPRC5D protein binding affinity of the antibody or Although it can be appropriately determined depending on its biological activity and other factors, it is usually 0.01 to 1000 mg / kg, preferably 0.1 to 100 mg / kg once every 1 to 180 days, or 1 It can be administered twice or more times a day.
  • the form of the pharmaceutical composition includes injections (including lyophilized preparations and infusions), suppositories, nasal absorption preparations, transdermal absorption preparations, sublingual preparations, capsules, tablets, ointments, granules, aerosols.
  • the pharmaceutical composition of the present invention can be administered simultaneously with other drugs or individually.
  • the pharmaceutical composition of the present invention is administered, or after administering such a pharmaceutical composition, another pharmaceutical agent is administered, or the pharmaceutical composition and another pharmaceutical agent are administered.
  • other medicaments include various anticancer agents such as chemotherapeutic agents and radiotherapy agents. These are collectively referred to as “the combined use of the antibody of the present invention with another drug”, and a pharmaceutical composition containing an additional drug in addition to the active ingredient of the pharmaceutical composition of the present invention is also included in the present invention.
  • the present invention relates to a method for treating or preventing a disease associated with GPRC5D such as cancer, use of the antibody of the present invention for preparing a pharmaceutical composition for treating or preventing the disease, and the present invention for treating or preventing the disease.
  • a disease associated with GPRC5D such as cancer
  • use of the antibody of the present invention for preparing a pharmaceutical composition for treating or preventing the disease and the present invention for treating or preventing the disease.
  • a therapeutic or prophylactic kit containing the antibody of the present invention is also included in the present invention.
  • Example 1 Production of rat anti-human GPRC5D antibody 1) -1 Immunization using human GPRC5D expression vector 1) -1-1 Construction of human GPRC5D expression vector (pcDNA3.1-DEST-hGPRC5D) pcDNA3.1 (+ ) was modified to Destination Vector by Gateway Vector Convection System (Thermo Fisher Science) to prepare pcDNA3.1-DEST. Using the Gateway LR Clonase Enzyme mix (Life Technologies), the cDNA encoding the human GPRC5D protein (NP_06124.1) was cloned into the pcDNA3.1-DEST vector, and the human GPRC5D expression vector pcDNA3.1-CEST-GPDhG did. Endofree Plasmid Giga Kit (QIAGEN) was used for large-scale preparation of human GPRC5D expression vector.
  • Endofree Plasmid Giga Kit QIAGEN
  • Hybridoma production lymph node cells or spleen cells and mouse myeloma SP2 / 0-ag14 cells were electrofused using LF301 Cell Fusion Unit (BEX), and ClonACell -Diluted in HY Selection Medium D (StemCell Technologies) and cultured. Monoclonal hybridomas were prepared by collecting the emerging hybridoma colonies. Each collected hybridoma colony was cultured using ClonCell-HY Selection Medium E (StemCell Technologies), and the resulting hybridoma culture supernatant was used to screen for anti-human GPRC5D antibody-producing hybridomas.
  • HEK293 ⁇ cell line stably transfected with integrin ⁇ v and integrin ⁇ 3 expression vectors into HEK293 cells contains 10% FBS. Adjusted to 5 ⁇ 10 5 cells / mL in DMEM medium.
  • pcDNA3.1-DEST-hGPRC5D or pcDNA3.1-DEST was introduced as a control according to the transfection procedure using Lipofectamine 2000 (Thermo Fisher Scientific), and 100 ⁇ L was dispensed into 96-well plate (Corning). Note that the cells were cultured overnight in a DMEM medium containing 10% FBS under conditions of 37 ° C. and 5% CO 2 . The obtained transfected cells were used for Cell-ELISA while still in an adherent state.
  • OPD coloring solution OPD solution (0.05 M trisodium citrate, 0.1 M disodium hydrogenphosphate.12 water, pH 4.5).
  • OPD coloring solution 0.05 M trisodium citrate, 0.1 M disodium hydrogenphosphate.12 water, pH 4.5.
  • -Phenylenediamine dihydrochloride Wako Pure Chemical Industries, Ltd.
  • H 2 O 2 dissolved in 0.4 mg / mL and 0.6% (v / v), respectively, were added at 100 ⁇ L / well.
  • the color development reaction was carried out with occasional stirring, 100 ⁇ L / well of 1M HCL was added to stop the color development reaction, and then the absorbance at 490 nm was measured with a plate reader (ENVISION: PerkinElmer).
  • pcDNA3.1-DEST-introduced HEK293 ⁇ cells in order to select hybridomas producing antibodies that specifically bind to human GPRC5D expressed on the cell membrane surface, pcDNA3.1-DEST-hGPRC5D expression vector-introduced HEK293 ⁇ cells The hybridoma producing a culture supernatant showing higher absorbance was selected as positive for anti-human GPRC5D antibody production.
  • HEK293T cells (Thermo Fisher Scientific) were placed in a 225 cm 2 flask at a concentration of 4 ⁇ 10 5 cells / mL. The seeds were seeded and cultured overnight in a DMEM medium containing 10% FBS under conditions of 37 ° C. and 5% CO 2 . The next day, pcDNA3.1-DEST-hGPRC5D and pcDNA3.1-DEST as controls were respectively introduced into HEK293T cells using Lipofectamine LTX (Thermo Fisher Scientific) and further overnight at 37 ° C., 5% CO 2. Cultured.
  • expression vector-introduced HEK293T cells were treated with TrypLE Express (Thermo Fisher Scientific), and the cells were washed with DMEM containing 10% FBS and then adjusted to a concentration of 5 ⁇ 10 6 cells / mL with PBS containing 5% FBS. . The resulting cell suspension was used for flow cytometry analysis.
  • Example 1 The binding specificity of the antibody produced by the hybridoma determined to be positive by the Cell-ELISA in Example 1) -3 to human GPRC5D was further confirmed by flow cytometry.
  • Example 1) The HEK293T cell suspension prepared in 4-1 was seeded on a 96-well U-bottom microplate at 100 ⁇ L / well, and the supernatant was removed after centrifugation. Hybridoma culture supernatant was added to each of pcDNA3.1-DEST-hGPRC5D-introduced HEK293T cells and pcDNA3.1-DEST-introduced HEK293T cells, and the cells were allowed to stand at 4 ° C. for 1 hour.
  • PE Goat Anti-Rat Ab diluted 100-fold with 5% FBS-containing PBS was added and suspended, and the mixture was allowed to stand at 4 ° C. for 30 minutes. After washing twice with 5% FBS-containing PBS, the suspension was resuspended in 5% FBS-containing PBS and detected with a flow cytometer (FACSCanto TM II: BD). Data analysis was performed with Flowjo (Treestar). A histogram of the PE fluorescence intensity of the cell fraction was created.
  • a stable expression strain of ⁇ -galactosidase was obtained.
  • ADCC activity was measured using HEK293T cells that stably express ⁇ -galactosidase (hereinafter referred to as “293T-lacZ cells”) as target cells.
  • the expression vector-transferred 293T-lacZ cells were treated with TrypLE Express (Thermo Fisher Scientific), and 5% FBS-containing phenol red-free RPMI 1640 medium (Thermo Fisher Scientific) (hereinafter abbreviated as “ADCC medium”). cells were washed twice, the number of viable cells were measured by trypan blue dye exclusion test, it was used resuspended so as to be 1 ⁇ 10 5 cells / mL in ADCC medium as target cells.
  • ADCC medium FBS-containing phenol red-free RPMI 1640 medium
  • PBMCs peripheral blood mononuclear cells collected from volunteer blood using Ficoll-Paque PLUS (GE Healthcare Bioscience) according to a conventional method are free of phenol red containing 10% FBS.
  • the suspension was suspended in RPMI 1640 medium (Thermo Fisher Scientific), resuspended after centrifugation, and the number of viable cells was counted by trypan blue dye exclusion test. After centrifugation, the medium was removed, suspended in ADCC medium, and adjusted to 2 ⁇ 10 6 cells / mL, and used as effector cells.
  • ADCC activity was calculated for pcDNA3.1-DEST-hGPRC5D-introduced 293T-lacZ cells and pcDNA3.1-DEST-introduced 293T-lacZ cells, respectively.
  • pcDNA3.1-DEST-hGPRC5D-introduced 293T-lacZ cells Hybridoma clones that produce an ADCC activity and that produce an ADCC activity equal to or greater than the positive control antibody were selected.
  • Rat anti-GPRC5D monoclonal antibody was purified from the hybridoma culture supernatant.
  • 2A4, 2B1 and 7B4-producing hybridomas were grown to a sufficient amount with ClonaCell-HY Selection Medium E (StemCell Technologies), and then Ultra Low IgG FBS (Thermo Fisher Scientific-added 20 ⁇ m) was added.
  • the medium was changed to Hybridoma SFM (Thermo Fisher Scientific) containing gentamicin (Thermo Fisher Scientific) and cultured for 5 days.
  • the main culture supernatant was collected and sterilized through a 0.45 ⁇ m filter.
  • the antibody was purified from the above hybridoma supernatant by Protein G affinity chromatography (under 4-6 ° C.) in one step.
  • the buffer replacement step after purification by Protein G affinity chromatography was performed at 4 to 6 ° C.
  • the culture supernatant of the hybridoma was applied to a column packed with Protein G (GE Healthcare Bioscience) equilibrated with PBS. After all of the culture supernatant liquid entered the column, the column was washed with PBS having a column volume of 2 times or more. Next, elution was performed with 0.1 M glycine / hydrochloric acid aqueous solution (pH 2.7), and fractions containing the antibody were collected.
  • the collected fraction was adjusted to pH 7.0 to 7.5 by adding 1 M Tris-HCl (ph 9.0), and then adjusted to Centrifugal UF Filter Device VIVASPIN 20 (fraction molecular weight UF30K, Sartorius, 4 to 6 ° C.). Then, buffer substitution with HBSor (25 mM histidine / 5% sorbitol, pH 6.0) was performed and concentration was performed to adjust the antibody concentration to 1 mg / ml or more. Finally, it was filtered through a Minisart-Plus filter (Sartorius) to obtain a purified sample.
  • HBSor 25 mM histidine / 5% sorbitol, pH 6.0
  • Example 2 In vitro evaluation of rat anti-GPRC5D antibody (2A4, 2B1, 7B4) 2) -1 Examination of binding of human anti-GPRC5D antibody (2A4, 2B1, 7B4) to human GPRC5D by flow cytometry GPRC5D
  • the expressed human multiple myeloma cell line KHM-1B cells (JCRB cell bank) is prepared with PBS containing 5% FBS to a concentration of 5 ⁇ 10 6 cells / mL, and 96-well U-bottom microbe at 100 ⁇ L / well. After seeding on a plate and centrifugation, the supernatant was removed.
  • the rat anti-GPRC5D antibody (2A4, 2B1, 7B4) prepared in Example 1) -7 was added at 0.32 ng / mL to 10 ⁇ g / mL at 100 ⁇ L / well and allowed to stand at 4 ° C. for 1 hour. After washing twice with 5% FBS-containing PBS, 100 ⁇ L / well of PE Goat Anti-Rat Ab (BD) diluted 100-fold with 5% FBS-containing PBS was added and allowed to stand at 4 ° C. for 1 hour. After washing twice with 5% FBS-containing PBS, the suspension was resuspended with 5% FBS-containing PBS, and detection was performed with a flow cytometer (FACSCanto TM II: BD).
  • FACSCanto TM II flow cytometer
  • the rat anti-GPRC5D antibody (2A4, 2B1, 7B4) prepared in Example 1) -7 diluted to 0.1 ng / mL-1 ⁇ g / mL with PBS was added and incubated at room temperature for 1 hour Left to stand.
  • Anti-Rat IgG, HRP-Linked Whole Ab Goat diluted 500-fold with PBS was added and allowed to stand at room temperature for 1 hour.
  • SuperSignal TM ELISA Pico Chemiluminescent Substrate (Thermo Fisher Scientific) was added, and luminescence was measured with a plate reader (ENVISION: PerkinElmer).
  • the 2B1 antibody bound to the amino terminal peptide sequence of human GPRC5D, but the 2A4 and 7B4 antibodies did not bind, regardless of the presence or absence of disulfide bonds. Therefore, it was suggested that the epitope of 2B1 antibody exists in the amino terminal region of human GPRC5D, while the epitopes of 2A4 and 7B4 antibodies exist in regions other than the amino terminus.
  • Rat anti-GPRC5D antibody (2A4, 2B1, 7B4) or Rat IgG2b isotype control antibody (MBL) prepared in Example 1) was added to 7.5 ⁇ g / mL at 100 ⁇ L / well, and Example 2) -2-
  • the two types of peptides used in 1 were prepared to 17 ng / mL to 34 ⁇ g / mL with PBS, 100 ⁇ L / well was added to a well containing an antibody diluted solution, and allowed to stand at 4 ° C. for 1 hour.
  • Example 2 2) -3-2 Preparation of effector cells
  • the PBMCs prepared in Example 1) -5-3 were differentiated into NK cells using BINKIT (Japan Biotherapy Laboratories). It was prepared to be 1 ⁇ 10 6 cells / mL with RPMI 1640 medium containing 10% FBS and used as effector cells.
  • Example 2 2) -3-3 ADCC assay KHM-1B cells prepared in Example 2) -3-1 were added to a 96-well U-bottom microplate at 50 ⁇ L / well.
  • the effector cells prepared in Example 2) -3-2 were added at 100 ⁇ L / well, centrifuged at 1200 rpm ⁇ 3 minutes at room temperature, and then cultured at 37 ° C. under 5% CO 2 for 4 hours.
  • Example 3 Determination of nucleotide sequence of cDNA encoding variable region of rat anti-GPRC5D antibody (2A4, 2B1, 7B4) 3) -1 Determination of nucleotide sequence of cDNA encoding variable region of 2A4 3) -1- 1. Preparation of total RNA from 2A4-producing hybridoma To amplify cDNA containing the variable region of 2A4, total RNA was prepared from 2A4-producing hybridoma using TRIzol Reagent (Ambion).
  • CDNA containing the variable region of the heavy chain of 2A4 was amplified by 5'-RACE PCR using the combination of this primer and the cDNA synthesized in Example 3) -1-2 (5'-RACE-Ready cDNA) as a template. . PCR was performed with a touchdown PCR program according to the manual of SMARTER RACE cDNA Amplification Kit (Clontech).
  • a cDNA containing a heavy chain variable region amplified by 5'-RACE PCR was purified using MinElute PCR Purification Kit (QIAGEN), cloned using Zero Blunt TOPO PCR Cloning Kit (Invitrogen), and cloned Sequence analysis of the nucleotide sequence of the cDNA containing the variable region of the strand was performed.
  • the nucleotide sequence of the cDNA encoding the determined variable region of the heavy chain of 2A4 is shown in SEQ ID NO: 4 (FIG. 8), and the amino acid sequence is shown in SEQ ID NO: 5 (FIG. 9).
  • CDNA containing the variable region of the light chain of 2A4 was amplified by 5′-RACE PCR using this primer combination and the cDNA synthesized in Example 3) -1-2 (5′-RACE-Ready cDNA) as a template. .
  • PCR was performed with a touchdown PCR program according to the manual of SMARTER RACE cDNA Amplification Kit (Clontech).
  • a cDNA containing a light chain variable region amplified by 5′-RACE PCR was purified using MinElute PCR Purification Kit (QIAGEN), cloned using Zero Blunt TOPO PCR Cloning Kit (Invitrogen), and cloned.
  • sequence analysis of the nucleotide sequence of the cDNA containing the variable region of the strand was performed.
  • the nucleotide sequence of the cDNA encoding the determined variable region of the light chain of 2A4 is shown in SEQ ID NO: 11 (FIG. 14), and the amino acid sequence is shown in SEQ ID NO: 12 (FIG. 15).
  • nucleotide sequence of cDNA encoding 2B1 variable region The sequence was determined in the same manner as in Example 3) -1.
  • the nucleotide sequence of the cDNA encoding the determined variable region of the heavy chain of 2B1 is shown in SEQ ID NO: 6 (FIG. 10), and the amino acid sequence is shown in SEQ ID NO: 7 (FIG. 11).
  • the nucleotide sequence of the cDNA encoding the light chain variable region is shown in SEQ ID NO: 13 (FIG. 16), and the amino acid sequence is shown in SEQ ID NO: 14 (FIG. 17).
  • nucleotide sequence of cDNA encoding 7B4 variable region The sequence was determined in the same manner as in Example 3) -1.
  • the nucleotide sequence of the cDNA encoding the determined variable region of the heavy chain of 7B4 is shown in SEQ ID NO: 8 (FIG. 12), and the amino acid sequence is shown in SEQ ID NO: 9 (FIG. 13).
  • the nucleotide sequence of cDNA encoding the variable region of the light chain is shown in SEQ ID NO: 15 (FIG. 18), and the amino acid sequence is shown in SEQ ID NO: 16 (FIG. 19).
  • Example 4 Production of human chimerized anti-GPRC5D antibody (c2A4, c2B1, c7B4) 4) -1 Construction of chimerized and humanized light chain expression vector pCMA-LK Plasmid pcDNA3.3-TOPO / LacZ (Invitrogen) was A DNA comprising a fragment of about 5.4 kb obtained by digestion with restriction enzymes XbaI and PmeI, and a DNA sequence encoding a human light chain secretion signal and a human ⁇ chain constant region shown in SEQ ID NO: 17 (FIG.
  • chimerized and humanized IgG1-type heavy chain expression vector pCMA-G1 A DNA fragment obtained by digesting pCMA-LK with XbaI and PmeI to remove the light chain secretion signal and the human ⁇ chain constant region, and a sequence listing A DNA fragment containing a human heavy chain signal sequence represented by SEQ ID NO: 20 (FIG. 23) and a DNA sequence encoding the amino acid of the human IgG1 constant region was ligated using an In-Fusion Advantage PCR cloning kit (CLONTECH). A chimerized and humanized IgG1-type heavy chain expression vector pCMA-G1 having a signal sequence, a cloning site, and a human IgG1-heavy chain constant region downstream of the CMV promoter was constructed.
  • c2A4 light chain expression vector Using the cDNA encoding the variable region of 2A4 light chain obtained in Example 3) as a template, the light chain variable region is encoded by performing PCR with the following primer set. By amplifying a DNA fragment containing the cDNA to be processed and inserting the chimerized and humanized antibody light chain expression vector pCMA-LK into the site cut with the restriction enzyme BsiWI using the In-Fusion HD PCR cloning kit (Clontech) C2A4 light chain expression vector was constructed. The obtained expression vector was designated as “pCMA-LK / c2A4”.
  • c2A4 light chain primer set 5′-ATCTCCGGCGCGTACCGGCGACATCCAGATGACACATCTCCAGC-3 ′
  • c2A4-LF SEQ ID NO: 23 in the sequence listing: FIG. 26
  • c2A4-LR SEQ ID NO: 24 in the sequence listing: FIG. 27
  • c2A4 heavy chain primer set 5'-CCAGATGGGTGCTGAGCCAGGTCCAGTTGCAGCAATCTGAGCTG-3 '(c2A4-HF: SEQ ID NO: 27 in the sequence listing: FIG. 30) 5′-CTTGGTGGAGGCTGAGCTGACTGTGACCATGAACTCCCTGGCCCCAG-3 ′ (c2A4-HR: SEQ ID NO: 28 in the Sequence Listing: FIG. 31)
  • c2B1 light chain expression vector Using the cDNA encoding the variable region of 2B1 light chain obtained in Example 3) as a template, the light chain variable region is encoded by performing PCR with the following primer set. A DNA fragment containing cDNA was amplified. A c2B1 light chain expression vector was constructed in the same manner as in Example 4) -3. The resulting expression vector was named “pCMA-LK / c2B1”. The nucleotide sequence of the c2B1 light chain and the amino acid sequence of the light chain are shown in SEQ ID NOs: 29 and 30 (FIGS. 32 and 33), respectively.
  • c2B1 light chain primer set 5'-ATCTCCGGCGCGTACCGGCGAAACTGTGATGACCCAGTCTCCCAC-3 '(c2B1-LF: SEQ ID NO: 31 in the sequence listing: FIG. 34) 5'-GGAGGGGGCGGGCCACAGCCCGTTTCAATTCCAGCTTGGTCCTC-3 '(c2B1-LR: SEQ ID NO: 32 in the sequence listing: FIG. 35)
  • c2B1 heavy chain expression vector Using the cDNA encoding the variable region of 2B1 heavy chain obtained in Example 3) as a template, PCR is performed with the following primer set to encode the heavy chain variable region. A DNA fragment containing the cDNA to be amplified was amplified. A c2B1 heavy chain expression vector was constructed in the same manner as in Example 4) -4. The obtained expression vector was designated as “pCMA-G1 / c2B1”. The nucleotide sequence encoding the c2B1 heavy chain and the amino acid sequence of the heavy chain are shown in SEQ ID NOs: 33 and 34 (FIGS. 36 and 37), respectively.
  • c2B1 heavy chain primer set 5′-CCAGATGGGTGCTGAGCCAGGTTACCTGAAAGAGTCTGCCCCTG-3 ′
  • c2B1-HF SEQ ID NO: 35 in the sequence listing: FIG. 38
  • c2B1-HR SEQ ID NO: 36 in the sequence listing: FIG. 39
  • c7B4 light chain expression vector Using the cDNA encoding the variable region of 7B4 light chain obtained in Example 3) as a template, the light chain variable region is encoded by performing PCR with the following primer set. A DNA fragment containing cDNA was amplified. A c7B4 light chain expression vector was constructed in the same manner as in Example 4) -3. The obtained expression vector was designated as “pCMA-LK / c7B4”. The nucleotide sequence of c7B4 light chain and the amino acid sequence of the light chain are shown in SEQ ID NOs: 37 and 38 (FIGS. 40 and 41), respectively.
  • c7B4 light chain primer set 5′-ATCTCCGGCGCGTACCGGCGACATCCAGATGACCCAGCTCTCTCTC-3 ′
  • c7B4-LF SEQ ID NO: 39 in the Sequence Listing: FIG. 42
  • c7B4-LR SEQ ID NO: 40 in the sequence listing: FIG. 43
  • c7B4 heavy chain expression vector Using the cDNA encoding the variable region of 7B4 heavy chain obtained in Example 3) as a template, PCR is performed with the following primer set to encode the heavy chain variable region. A DNA fragment containing the cDNA to be amplified was amplified. A c7B4 heavy chain expression vector was constructed in the same manner as in Example 4) -4. The obtained expression vector was designated as “pCMA-G1 / c7B4”. The nucleotide sequence of c7B4 heavy chain and the amino acid sequence of the heavy chain are shown in SEQ ID NOs: 41 and 42 (FIGS. 44 and 45), respectively.
  • c7B4 heavy chain primer set 5′-CCAGATGGGTGCTGAGCGATATACACCTGCAGGAGTCAGGACCTG-3 ′
  • c7B4-HF SEQ ID NO: 43 in the sequence listing: FIG. 46
  • c7B4-HR SEQ ID NO: 44 in the sequence listing: FIG. 47
  • FreeStyle 293F cells (Invitrogen) were subcultured and cultured according to the manual. Logarithmically growing 1.2 ⁇ 10 9 FreeStyle 293F cells (Invitrogen) were seeded in 3L Fernbach Erlenmeyer Flask (CORNING), FreeStyle 293 expression medium (Invitrogen 6 ) diluted with Invitrogen 2.0 / Ml, and cultured with shaking at 90 rpm in an 8% CO 2 incubator at 37 ° C. for 1 hour.
  • CORNING FreeStyle 293 expression medium
  • Human chimeric 2A4 obtained by the combination of pCMA-G1 / c2A4 and pCMA-LK / c2A4 is “c2A4”
  • human chimeric 2B1 obtained by the combination of pCMA-G1 / c2B1 and pCMA-LK / c2B1 is “c2B1”
  • the human chimerized 7B4 obtained by the combination of pCMA-G1 / c7B4 and pCMA-LK / c7B4 was named “c7B4”.
  • Example 4 -9-2 Purification of human chimerized anti-GPRC5D antibody
  • the antibody was purified from the culture supernatant obtained in Example 4) -9-1 by rProtein A affinity chromatography (under 4-6 ° C) in one step.
  • the buffer substitution step after purification of rProtein A affinity chromatography was performed at 4-6 ° C.
  • the culture supernatant was applied to a column filled with MabSelectSuRe (manufactured by GE Healthcare Bioscience) equilibrated with PBS. After all of the culture solution entered the column, the column was washed with PBS having a column volume of 2 times or more.
  • Example 5 In Vitro Activity 5 of Human Chimerized Anti-GPRC5D Antibodies (c2A4, c2B1, c7B4) -1 Investigation of the Binding of Human Chimerized Anti-GPRC5D Antibodies (c2A4, c2B1, c7B4) to Human GPRC5D by Flow Cytometry GPRC5D
  • Multiple human myeloma cell line expressing KHM-1B is prepared to a concentration of 5 ⁇ 10 6 cells / mL with PBS containing 5% FBS, and seeded on a 96-well U-bottom microplate at 100 ⁇ L / well. After centrifugation, the supernatant was removed.
  • the cynomolgus GPRC5D expression vector pcDNA3.1-DEST-cGPRC5D was constructed. Endofree Plasmid Giga Kit (QIAGEN) was used for large-scale preparation of the cynomolgus GPRC5D expression vector.
  • the cultured expression vector-introduced KMS-11 cells were cultured at a concentration of 1 ⁇ 10 6 cells / mL in RPMI 1640 medium containing 10% FBS containing 1 mg / mL Geneticin (Thermo Fisher Scientific). Bulk cells were single-cloned using ClonCell-HY Selection Medium E medium (StemCell Technologies) with 1 mg / mL Geneticin (Thermo Fisher Scientific), and cynomolgus monkey GPRC5D-expressing bone marrow GPRC5D Strain KMS-11_cGPRC5D was established.
  • KMS-11_cGPRC5D cells prepared in 2-2 were prepared with 5% FBS-containing PBS to a concentration of 5 ⁇ 10 6 cells / mL, seeded on a 96-well U-bottom microplate at 100 ⁇ L / well, After centrifugation, the supernatant was removed.
  • Antibodies that bind to human GPRC5D and cynomolgus monkey GPRC5D are preferred because they can be used in various tests relating to efficacy and safety using primates useful for non-clinical development (preclinical development) of pharmaceuticals, particularly cynomolgus monkeys.
  • antibodies that bind to human GPRC5D and cynomolgus monkey GPRC5D have cytotoxic activity, and are useful for the treatment or prevention of diseases such as cancer in cynomolgus monkeys alone or as a molecule of the present invention.
  • c2A4, c2B1 and c7B4 were all treated with rat GPRC5D and mouse GPRC5D. Did not combine.
  • Such c2A4, c2B1 and c7B4 are mouse and rat cells, tissues, individuals (including transgenic animals, knockout animals, knockin animals) into which the human GPRC5D gene has been introduced, various assays using the antibodies, and immunohistochemistry. Etc. can be carried out without the influence of GPRC5D of the mouse which is the host, which is preferable in research and non-clinical development using mice and rats such as pharmaceuticals, animal drugs or diagnostic drugs containing the antibody.
  • Example 5 -3 ADCC activity of human chimerized anti-GPRC5D antibodies (c2A4, c2B1, c7B4) KHM-1B cells obtained in Example 2) -3-1 were added to 96-well U-bottom microplates at 50 ⁇ L / well.
  • the purified human chimerized anti-GPRC5D antibody (c2A4, c2B1, c7B4) and human control antibody (hIgG1) (CALBIOCHEM) prepared in Example 4 prepared so as to have a final concentration of 0.64 ng / mL-2 ⁇ g / mL. It added by 50 microliter / well and left still at 4 degreeC for 30 minutes.
  • Example 1 100 ⁇ L / well of the effector cells prepared in Example 1) -5-3 (prepared to 3 ⁇ 10 6 cells / mL) was added, and after centrifugation at 1200 rpm ⁇ 3 minutes at room temperature, 37 ° C., 5% Cultivation was carried out for 4 hours under CO 2 conditions. 50 ⁇ L of the supernatant was collected on LumaPlate (PerkinElmer), dried at 50 ° C. overnight, and measured with a plate reader (TopCount: PerkinElmer). The cell lysis rate by ADCC activity was calculated according to Example 1) -5-5. As shown in FIG. 50, c2A4, c2B1 and c7B4 were shown to have ADCC activity.
  • the major axis and minor axis of the transplanted tumor were measured twice a week using an electronic digital caliper (manufactured by Mitutoyo Corporation), and the tumor volume was calculated by the following formula.
  • Tumor volume (mm 3 ) 1/2 ⁇ minor axis (mm) ⁇ minor axis (mm) ⁇ major axis (mm)
  • the results for the c2A4 antibody are shown in FIG.
  • the tumor growth inhibition rate 21 days after transplantation was 96%.
  • the results for the c2B1 antibody are shown in FIG.
  • the tumor growth inhibition rate 21 days after transplantation was 95%.
  • the results for the c7B4 antibody are shown in FIG.
  • the tumor growth inhibition rate 21 days after transplantation was 94%.
  • Example 7 Design of humanized version (h2B1, h7B4) of human chimerized anti-GPRC5D antibody (c2B1, c7B4) 7) -1 Humanized design of anti-GPRC5D antibody 2B1 7) -1-1 Variable region of 2B1 Molecular modeling Molecular modeling of the variable region of 2B1 was performed by a method known as homology modeling (Methods in Enzymology, 203, 121-153, (1991)). Primary sequence of variable region of human immunoglobulin registered in Protein Data Bank (Nuc. Acid Res. 35, D301-D303 (2007)) (three-dimensional structure derived from X-ray crystal structure is available) Were compared to the variable region of 2B1 determined above.
  • 3MBX was selected as having the highest sequence identity to the heavy and light chain variable regions of 2B1.
  • the three-dimensional structure of the framework region was created by combining the coordinates of 3MBX corresponding to the heavy and light chains of 2B1 to obtain a “framework model”. A representative conformation for each CDR was then incorporated into the framework model. Finally, in order to obtain a possible molecular model of the 2B1 variable region in terms of energy, an energy calculation was performed to eliminate adverse interatomic contact. The above procedure was performed using a commercially available protein tertiary structure analysis program BioLuminate (manufactured by Schrodinger).
  • the consensus sequence of human Germline sequences IGHV2_5x08 and IGHJ1x01 and human gamma chain subgroup 2 for the heavy chain, and the consensus sequence of human Germline sequences IGKV1_8x01, IGKJ4x01 and human kappa chain subgroup 4 for the light chain Selected as an acceptor due to having high sequence identity in the region.
  • the amino acid residues in the framework region for the acceptor were aligned with the amino acid residues for 2B1, and the positions where different amino acids were used were identified. The positions of these residues are analyzed using the 2B1 three-dimensional model constructed above, and the donor residues to be graphed on the acceptor are described by Queen et al. (Proc.
  • humanized h2B1 was constructed as described in the examples below by transferring several selected donor residues into the acceptor antibody.
  • the heavy chain not only the donor residue but also the residue of the consensus sequence of gamma chain subgroup 1 was transferred depending on the position.
  • the amino acid sequence of the humanized h2B1_H1 type heavy chain is set forth in SEQ ID NO: 74 (FIG. 83) in the Sequence Listing.
  • the nucleotide sequence encoding the amino acid sequence of SEQ ID NO: 74 is set forth in SEQ ID NO: 73 (FIG. 82) in the sequence listing.
  • the threonine of amino acid number 3 in the variable region is glutamine and the lysine of amino acid number 5 is valine.
  • the amino acid number 9 proline is glycine
  • the amino acid number 11 isoleucine is leucine
  • the amino acid number 12 leucine is valine
  • the amino acid number 13 glutamine is lysine
  • the amino acid number 43 serine is proline.
  • Leucine at amino acid number 50 is isoleucine
  • alanine at amino acid number 51 is glycine
  • arginine at amino acid number 66 is lysine
  • asparagine at amino acid number 67 is serine
  • leucine at amino acid number 69 is valine.
  • Amino acid number 81 phenylalanine to serine, amino No.
  • the humanized h2B1 heavy chain designed to replace threonine at amino acid number 94 with valine was named “humanized h2B1_H2 type heavy chain” (sometimes referred to as “h2B1_H2”).
  • the amino acid sequence of the humanized h2B1_H2 type heavy chain is set forth in SEQ ID NO: 76 (FIG. 85) in the Sequence Listing.
  • the nucleotide sequence encoding the amino acid sequence of SEQ ID NO: 76 is set forth in SEQ ID NO: 75 (FIG. 84) in the Sequence Listing.
  • threonine at amino acid number 3 in the variable region is glutamine
  • lysine at amino acid number 5 is valine.
  • the amino acid number 9 proline is glycine
  • the amino acid number 11 isoleucine is leucine
  • the amino acid number 12 leucine is valine
  • the amino acid number 13 glutamine is lysine
  • the amino acid number 43 serine is proline.
  • Leucine at amino acid number 50 is isoleucine
  • arginine at amino acid number 66 is lysine
  • asparagine at amino acid number 67 is serine
  • leucine at amino acid number 69 is valine
  • phenylalanine at amino acid number 81 is serine.
  • Isoleucine at amino acid number 84 to leucine The threonine of amino acid number 85 is serine
  • the asparagine of amino acid number 86 is serine
  • the aspartic acid of amino acid number 88 is threonine
  • the threonine of amino acid number 89 is alanine
  • the threonine of amino acid number 94 is valine.
  • humanized h2B1 heavy chain designed with replacement was named “humanized h2B1_H3 type heavy chain” (sometimes referred to as “h2B1_H3”).
  • the amino acid sequence of the humanized h2B1_H3 type heavy chain is set forth in SEQ ID NO: 78 (FIG. 87) in the Sequence Listing.
  • the nucleotide sequence encoding the amino acid sequence of SEQ ID NO: 78 is described in SEQ ID NO: 77 (FIG. 86) in the Sequence Listing.
  • glycine at amino acid number 10 in the variable region is alanine and isoleucine at amino acid number 11 is leucine.
  • Leucine at amino acid number 12 is valine
  • glutamine at amino acid number 13 is lysine
  • serine at amino acid number 15 is threonine
  • serine at amino acid number 19 is threonine
  • serine at amino acid number 43 is proline.
  • Asparagine at amino acid number 62 is serine
  • Arginine at amino acid number 66 is lysine
  • Asparagine at amino acid number 67 is serine
  • Serine at amino acid number 72 is threonine
  • Phenylalanine at amino acid number 81 is valine Lysine of amino acid number 83 to threonine
  • the h2B1 heavy chain was named “humanized h2B1_H4 type heavy chain” (sometimes referred to as “h2B1_H4”).
  • the amino acid sequence of the humanized h2B1_H4 type heavy chain is set forth in SEQ ID NO: 80 (FIG. 89) in the Sequence Listing.
  • the nucleotide sequence encoding the amino acid sequence of SEQ ID NO: 80 is set forth in SEQ ID NO: 79 ( Figure 88) in the Sequence Listing.
  • the amino acid sequence of the humanized h2B1_L1 type light chain is set forth in SEQ ID NO: 64 (FIG. 73) in the sequence listing.
  • the nucleotide sequence encoding the amino acid sequence of SEQ ID NO: 64 is set forth in SEQ ID NO: 63 (FIG. 72) in the sequence listing.
  • methionine at amino acid number 11 is leucine
  • serine at amino acid number 12 is alanine
  • threonine at amino acid number 13 is valine
  • isoleucine at amino acid number 15 is leucine
  • valine at amino acid number 19 is Alanine, leucine at amino acid number 21 to isoleucine, threonine at amino acid number 39 to lysine, serine at amino acid number 43 to proline, threonine at amino acid number 63 to serine, arginine at amino acid number 69
  • valine at amino acid number 78 is leucine
  • glutamic acid at amino acid number 79 is glutamine
  • leucine at amino acid number 83 is valine
  • glycine at amino acid number 100 is glutamine
  • leucine at amino acid number 104 Was designated as “humanized h2B1_L2 type light chain” (sometimes referred to as “h2B1_L2
  • the amino acid sequence of the humanized h2B1_L2 type light chain is set forth in SEQ ID NO: 66 (FIG. 75) in the Sequence Listing.
  • the nucleotide sequence encoding the amino acid sequence of SEQ ID NO: 66 is described in SEQ ID NO: 65 (FIG. 74) in the Sequence Listing.
  • methionine at amino acid number 11 is leucine
  • serine at amino acid number 12 is alanine
  • threonine at amino acid number 13 is valine
  • isoleucine at amino acid number 15 is leucine
  • valine at amino acid number 19 is Alanine, leucine at amino acid number 21 to isoleucine, threonine at amino acid number 39 to lysine, serine at amino acid number 43 to proline, threonine at amino acid number 63 to serine, asparagine at amino acid number 77 Serine and leucine with valine at amino acid number 78
  • glutamic acid at amino acid number 79 is glutamine
  • leucine at amino acid number 83 is valine
  • glycine at amino acid number 100 is glutamine
  • leucine at amino acid number 104 is valine
  • leucine at amino acid number 106 is The humanized h2B1 light chain designed to be replaced with isoleucine was named “humanized h2B1_L
  • the amino acid sequence of the humanized h2B1_L3 type light chain is set forth in SEQ ID NO: 68 (FIG. 77) in the sequence listing.
  • the nucleotide sequence encoding the amino acid sequence of SEQ ID NO: 68 is set forth in SEQ ID NO: 67 (FIG. 76) in the Sequence Listing.
  • methionine at amino acid number 11 is leucine
  • serine at amino acid number 12 is alanine
  • threonine at amino acid number 13 is valine
  • isoleucine at amino acid number 15 is leucine
  • valine at amino acid number 19 is Alanine
  • threonine at amino acid number 39 to lysine
  • threonine at amino acid number 63 to serine asparagine at amino acid number 77 to serine
  • valine at amino acid number 78 Glutamic acid with amino acid number 79 is added to leucine Designed to replace glutamine, leucine at amino acid number 83 with valine, glycine at amino acid number 100 with glutamine, leucine with amino acid number 104 with valine, and leucine with amino acid number 106 with isoleucine.
  • the humanized h2B1 light chain was named “humanized h2B1_L4 type light chain” (sometimes referred to as “h2B1_L4”).
  • the amino acid sequence of the humanized h2B1_L4 type light chain is set forth in SEQ ID NO: 70 (FIG. 79) in the Sequence Listing.
  • the nucleotide sequence encoding the amino acid sequence of SEQ ID NO: 70 is set forth in SEQ ID NO: 69 (FIG. 78) in the Sequence Listing.
  • h2B1_L5 type light chain The light chain glutamic acid of amino acid number 1 in the variable region of the light chain of chimeric c2B1 shown in SEQ ID NO: 30 is alanine, and valine of amino acid number 3 is arginine.
  • the threonine of amino acid number 9 is serine
  • the methionine of amino acid number 11 is phenylalanine
  • the threonine of amino acid number 13 is alanine
  • the isoleucine of amino acid number 15 is threonine
  • the glutamic acid of amino acid number 17 is aspartic acid.
  • leucine at amino acid number 21 is isoleucine
  • asparagine at amino acid number 22 is threonine
  • threonine at amino acid number 39 is lysine
  • glutamine at amino acid number 42 is lysine
  • aspartic acid at amino acid number 60 is Serine
  • amino acid number The third threonine is serine
  • the asparagine at amino acid number 77 is serine
  • the valine at amino acid number 78 is leucine
  • the glutamic acid at amino acid number 79 is glutamine
  • the alanine at amino acid number 80 is serine
  • amino acid 85 valine with threonine amino acid 104 leucine with valine
  • amino acid 106 leucine with isoleucine was named “humanized h2B1_L5 type light chain” (sometimes referred to as “h2B1_L5”).
  • the amino acid sequence of the humanized h2B1_L5 type light chain is set forth in SEQ ID NO: 72 (FIG. 81) in the Sequence Listing.
  • the nucleotide sequence encoding the amino acid sequence of SEQ ID NO: 72 is set forth in SEQ ID NO: 71 (FIG. 80) in the sequence listing.
  • variable region of 7B4 is a method known as homology modeling (Methods in Enzymology, 203, 121- 153, (1991)). Primary sequence of variable region of human immunoglobulin registered in Protein Data Bank (Nuc. Acid Res. 35, D301-D303 (2007)) (three-dimensional structure derived from X-ray crystal structure is available) was compared to the variable region of 7B4 determined above. As a result, 1BGX was selected as having the highest sequence identity to the heavy and light chain variable regions of 7B4.
  • the three-dimensional structure of the framework region was created by combining the coordinates of 1BGX corresponding to the heavy and light chains of 7B4 to obtain a “framework model”. A representative conformation for each CDR was then incorporated into the framework model. Finally, in order to obtain a possible molecular model of the 7B4 variable region in terms of energy, an energy calculation was performed to eliminate adverse interatomic contacts. The above procedure was performed using a commercially available protein tertiary structure analysis program BioLuminate (manufactured by Schrodinger).
  • humanized h7B4 The construction of humanized h7B4 is generally known as CDR grafting (Proc. Natl. Acad. Sci. USA 86, 1000029-10033 (1989)). Went by. Acceptor antibodies were selected based on amino acid identity within the framework regions. The sequence of the 7B4 framework region was determined according to KABAT et al. (Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service National Institutes of Health, Bethesda, MD. (1991)).
  • the sequence of humanized h7B4 was constructed as described in the examples below by transferring several selected donor residues into the acceptor antibody. Regarding the light chain, not only the donor residue but also the residue of the consensus sequence of kappa chain subgroup 1 was transferred depending on the position.
  • the humanized h7B4 heavy chain designed to replace serine at amino acid number 118 with leucine was named “humanized h7B4_H1 type heavy chain” (sometimes referred to as “h7B4_H1”).
  • the amino acid sequence of the humanized h7B4_H1 type heavy chain is set forth in SEQ ID NO: 86 (FIG. 95) in the sequence listing.
  • the nucleotide sequence encoding the amino acid sequence of SEQ ID NO: 86 is described in SEQ ID NO: 85 (FIG. 94) in the Sequence Listing.
  • h7B4_H2 type heavy chain Of the heavy chain of the chimeric c7B4 shown in SEQ ID NO: 42, histidine at amino acid number 3 in the variable region is glutamine and serine at amino acid number 17 is threonine.
  • the amino acid number 23 serine is threonine
  • the amino acid number 25 threonine is serine
  • the amino acid number 40 lysine is glutamine
  • the amino acid number 41 phenylalanine is proline
  • the amino acid number 44 asparagine is lysine.
  • Lysine at amino acid number 45 is glycine
  • methionine at amino acid number 46 is leucine
  • methionine at amino acid number 49 is isoleucine
  • alanine at amino acid number 50 is glycine
  • isoleucine at amino acid number 68 is valine.
  • Thread serine of amino acid number 69 Nine, amino acid number 71 threonine to serine, amino acid number 80 phenylalanine to serine, amino acid number 82 glutamine to lysine, amino acid number 84 asparagine to serine, amino acid number 88 to threonine Designed to replace alanine, glutamic acid at amino acid number 89 with alanine, threonine at amino acid number 93 with valine, alanine at amino acid number 117 with threonine, and serine at amino acid number 118 with leucine.
  • the humanized h7B4 heavy chain was named “humanized h7B4_H2 type heavy chain” (sometimes referred to as “h7B4_H2”).
  • the amino acid sequence of the humanized h7B4_H2 type heavy chain is set forth in SEQ ID NO: 88 (FIG. 97) in the Sequence Listing.
  • the nucleotide sequence encoding the amino acid sequence of SEQ ID NO: 88 is set forth in SEQ ID NO: 87 (FIG. 96) in the Sequence Listing.
  • h7B4_H3 type heavy chain Of the heavy chain of the chimeric c7B4 shown in SEQ ID NO: 42, histidine at amino acid number 3 in the variable region is glutamine and serine at amino acid number 17 is threonine.
  • the amino acid number 23 serine is threonine
  • the amino acid number 25 threonine is serine
  • the amino acid number 40 lysine is glutamine
  • the amino acid number 41 phenylalanine is proline
  • the amino acid number 44 asparagine is lysine.
  • Lysine at amino acid number 45 is glycine
  • methionine at amino acid number 46 is leucine
  • methionine at amino acid number 49 is isoleucine
  • isoleucine at amino acid number 68 is valine
  • serine at amino acid number 69 is threonine.
  • the humanized h7B4 heavy chain which was designed by replacing alanine with threonine at amino acid number 93 with valine, alanine at amino acid number 117 with threonine, and serine at amino acid number 118 with leucine, is designated as “humanized h7B4_H3”. Type heavy chain "(sometimes referred to as" h7B4_H3 ").
  • the amino acid sequence of the humanized h7B4_H3 type heavy chain is set forth in SEQ ID NO: 90 ( Figure 99) in the Sequence Listing.
  • the nucleotide sequence encoding the amino acid sequence of SEQ ID NO: 90 is set forth in SEQ ID NO: 89 (FIG. 98) in the Sequence Listing.
  • h7B4_H5 type heavy chain Of the heavy chain of the chimeric c7B4 shown in SEQ ID NO: 42, histidine at amino acid number 3 in the variable region is glutamine, and serine at amino acid number 17 is threonine.
  • the amino acid number 23 serine is threonine
  • the amino acid number 25 threonine is serine
  • the amino acid number 41 phenylalanine is proline
  • the amino acid number 49 methionine is isoleucine
  • the amino acid number 68 isoleucine is valine.
  • the serine at amino acid number 69 is threonine
  • the threonine at amino acid number 71 is serine
  • the phenylalanine at amino acid number 80 is serine
  • the glutamine at amino acid number 82 is lysine
  • the asparagine at amino acid number 84 is serine.
  • Threo of amino acid number 88 The amino acid number 89 glutamic acid is replaced by alanine
  • amino acid number 93 threonine is replaced by valine
  • amino acid number 117 alanine is replaced by threonine
  • amino acid number 118 serine is replaced by leucine.
  • the resulting humanized h7B4 heavy chain was named “humanized h7B4_H5 type heavy chain” (sometimes referred to as “h7B4_H5”).
  • the amino acid sequence of the humanized h7B4_H5 type heavy chain is set forth in SEQ ID NO: 92 (FIG. 101) in the Sequence Listing.
  • the nucleotide sequence encoding the amino acid sequence of SEQ ID NO: 92 is set forth in SEQ ID NO: 91 (FIG. 100) in the sequence listing.
  • h7B4_L1 The amino acid sequence of the humanized h7B4_L1 type light chain is set forth in SEQ ID NO: 82 (FIG. 91) in the sequence listing.
  • the nucleotide sequence encoding the amino acid sequence of SEQ ID NO: 82 is described in SEQ ID NO: 81 (FIG. 90) in the sequence listing.
  • h7B4_L2 type light chain Of the light chain of the chimeric c7B4 shown in SEQ ID NO: 38, phenylalanine at amino acid number 10 in the variable region is serine and alanine at amino acid number 13 is leucine. , Valine at amino acid number 15 is proline, valine at amino acid number 19 is alanine, leucine at amino acid number 40 is proline, glutamic acid at amino acid number 42 is glutamine, and lysine at amino acid number 45 is arginine.
  • Serine at amino acid number 60 is aspartic acid
  • glycine at amino acid number 77 is arginine
  • glutamine at amino acid number 79 is glutamic acid
  • valine at amino acid number 83 is phenylalanine
  • threonine at amino acid number 85 is valine.
  • amino acid number 87 A humanized h7B4 light chain designed to replace alanine with tyrosine, alanine at amino acid number 99 with glutamine, leucine with amino acid number 103 with valine, and leucine with amino acid number 105 with isoleucine is “human ”H7B4_L2 type light chain” (sometimes referred to as “h7B4_L2”).
  • the amino acid sequence of the humanized h7B4_L2 type light chain is set forth in SEQ ID NO: 84 (FIG. 93) in the Sequence Listing.
  • the nucleotide sequence encoding the amino acid sequence of SEQ ID NO: 84 is described in SEQ ID NO: 83 (FIG. 92) in the sequence listing.
  • Example 8 Construction of expression vector and preparation of antibody of humanized antibody (h2B1, h7B4) of rat anti-human GPRC5D antibody (2B1, 7B4) 8) -1 Construction of heavy chain expression vector of h2B1 8) -1- 1 Construction of h2B1_H1 Type Heavy Chain
  • a DNA fragment containing the DNA sequence encoding the variable region of h2B1_H1 shown in nucleotide numbers 58 to 426 of the nucleotide sequence of h2B1_H1 shown in SEQ ID NO: 73 was synthesized (GENEART Artificial Gene Synthesis Service).
  • h2B1_H2 type heavy chain A DNA fragment containing the DNA sequence encoding the variable region of h2B1_H2 shown in nucleotide numbers 58 to 426 of the nucleotide sequence of h2B1_H2 shown in SEQ ID NO: 75 was synthesized (GENEART artificial Gene synthesis service). The synthesized DNA fragment is amplified by PCR, and h2B1_H2 by inserting the chimeric and humanized antibody heavy chain expression vector pCMA-G1 into the site cleaved with the restriction enzyme BlpI using the In-Fusion HD PCR cloning kit (Clontech). An expression vector was constructed. The obtained expression vector was designated as “pCMA / h2B1_H2”.
  • h2B1_H3 type heavy chain A DNA fragment containing a DNA sequence encoding the variable region of h2B1_H3 shown in nucleotide numbers 58 to 426 of the nucleotide sequence of h2B1_H3 shown in SEQ ID NO: 77 was synthesized (GENEART artificial) Gene synthesis service).
  • h2B1_H4 type heavy chain A DNA fragment containing the DNA sequence encoding the variable region of h2B1_H4 shown in nucleotide numbers 58 to 426 of the nucleotide sequence of h2B1_H4 shown in SEQ ID NO: 79 was synthesized (GENEART, artificial) Gene synthesis service).
  • h2B1 light chain expression vector 8 -2 Construction of h2B1 light chain expression vector 8) -2-1 Construction of h2B1_L1 type light chain DNA encoding the variable region of h2B1_L1 shown in nucleotide numbers 61 to 381 of the nucleotide sequence of h2B1_L1 shown in SEQ ID NO: 63
  • a DNA fragment containing the sequence was synthesized (GENEART gene synthesis service). The synthesized DNA fragment is amplified by PCR, and h2B1_L1 by inserting the chimeric and humanized antibody light chain expression vector pCMA-LK into the site cleaved with the restriction enzyme BsiWI using In-Fusion HD PCR cloning kit (Clontech). An expression vector was constructed. The obtained expression vector was designated as “pCMA / h2B1_L1”.
  • h2B1_L2 type light chain A DNA fragment containing a DNA sequence encoding the variable region of h2B1_L2 shown in nucleotide numbers 61 to 381 of the nucleotide sequence of h2B1_L2 shown in SEQ ID NO: 65 was synthesized (gene of Geneart) Synthesis service).
  • h2B1_L3 type light chain A DNA fragment containing the DNA sequence encoding the variable region of h2B1_L3 shown in nucleotide numbers 61 to 381 of the nucleotide sequence of h2B1_L3 shown in SEQ ID NO: 67 was synthesized (geneart gene) Synthesis service).
  • h2B1_L4 type light chain A DNA fragment containing a DNA sequence encoding the variable region of h2B1_L4 shown in nucleotide numbers 61 to 381 of the nucleotide sequence of h2B1_L4 shown in SEQ ID NO: 69 was synthesized (gene art company Gene) Synthesis service).
  • h2B1_L5 type light chain A DNA fragment containing the DNA sequence encoding the variable region of h2B1_L5 shown in nucleotide numbers 61 to 381 of the nucleotide sequence of h2B1_L5 shown in SEQ ID NO: 71 was synthesized (geneart gene) Synthesis service).
  • h7B4 heavy chain expression vector 8-3-1 Construction of h7B4_H1 type heavy chain DNA encoding the variable region of h7B4_H1 shown in nucleotide numbers 58 to 426 of the nucleotide sequence of h7B4_H1 shown in SEQ ID NO: 85 A DNA fragment containing the sequence was synthesized (Geneart Artificial Gene Synthesis Service).
  • h7B4_H2 type heavy chain A DNA fragment containing a DNA sequence encoding the variable region of h7B4_H2 shown in nucleotide numbers 58 to 426 of the nucleotide sequence of h7B4_H2 shown in SEQ ID NO: 87 was synthesized (GENEART artificial) Gene synthesis service).
  • h7B4_H3 type heavy chain A DNA fragment containing a DNA sequence encoding the variable region of h7B4_H3 shown in nucleotide numbers 58 to 426 of the nucleotide sequence of h7B4_H3 shown in SEQ ID NO: 89 was synthesized (GENEART artificial Gene synthesis service).
  • h7B4_H5 type heavy chain A DNA fragment containing a DNA sequence encoding the variable region of h7B4_H5 shown in nucleotide numbers 58 to 426 of the nucleotide sequence of h7B4_H5 shown in SEQ ID NO: 91 was synthesized (GENEART artificial) Gene synthesis service).
  • Example 8 An h7B4_L1 expression vector was constructed in the same manner as in 2-1. The obtained expression vector was designated as “pCMA / h7B4_L1”.
  • h7B4_L2 type light chain A DNA fragment containing a DNA sequence encoding the variable region of h7B4_L2 shown in nucleotide numbers 61 to 378 of the nucleotide sequence of h7B4_L2 shown in SEQ ID NO: 92 was synthesized (gene gene from GENEART). Synthesis service).
  • h2B1_H1 / L1 was obtained by a combination of pCMA / h2B1_H1 and pCMA / h2B1_L1.
  • h2B1_H1 / L2 was obtained by a combination of pCMA / h2B1_H1 and pCMA / h2B1_L2.
  • h2B1_H2 / L2 was obtained by a combination of pCMA / h2B1_H2 and pCMA / h2B1_L2.
  • h2B1_H2 / L3 was obtained by a combination of pCMA / h2B1_H2 and pCMA / h2B1_L3.
  • h2B1_H2 / L4 was obtained by a combination of pCMA / h2B1_H2 and pCMA / h2B1_L4.
  • h2B1_H2 / L5 was obtained by a combination of pCMA / h2B1_H2 and pCMA / h2B1_L5.
  • h2B1_H3 / L3 was obtained by a combination of pCMA / h2B1_H3 and pCMA / h2B1_L3.
  • h2B1_H3 / L4 was obtained by a combination of pCMA / h2B1_H3 and pCMA / h2B1_L4.
  • h2B1_H3 / L5 was obtained by a combination of pCMA / h2B1_H3 and pCMA / h2B1_L5.
  • h2B1_H4 / L1 was obtained by a combination of pCMA / h2B1_H4 and pCMA / h2B1_L1.
  • h2B1_H4 / L3 was obtained by a combination of pCMA / h2B1_H4 and pCMA / h2B1_L3.
  • h2B1_H4 / L4 was obtained by a combination of pCMA / h2B1_H4 and pCMA / h2B1_L4.
  • h2B1_H4 / L5 was obtained by a combination of pCMA / h2B1_H4 and pCMA / h2B1_L5.
  • h7B4_H1 / L2 was obtained by a combination of pCMA / h7B4_H1 and pCMA / h7B4_L2.
  • h7B4_H2 / L2 was obtained by a combination of pCMA / h7B4_H2 and pCMA / h7B4_L2.
  • h7B4_H3 / L1 was obtained by a combination of pCMA / h7B4_H3 and pCMA / h7B4_L1.
  • h7B4_H3 / L2 was obtained by a combination of pCMA / h7B4_H3 and pCMA / h7B4_L2.
  • h7B4_H5 / L1 was obtained by a combination of pCMA / h7B4_H5 and pCMA / h7B4_L1.
  • h2B1_H1 / L1 was obtained by a combination of pCMA / h2B1_H1 and pCMA / h2B1_L1.
  • h2B1_H2 / L5 was obtained by a combination of pCMA / h2B1_H2 and pCMA / h2B1_L5.
  • h2B1_H4 / L5 was obtained by a combination of pCMA / h2B1_H4 and pCMA / h2B1_L5.
  • h7B4_H1 / L2 was obtained by a combination of pCMA / h7B4_H1 and pCMA / h7B4_L2.
  • h7B4_H3 / L1 was obtained by a combination of pCMA / h7B4_H3 and pCMA / h7B4_L1.
  • Example 8 -5-3 Purification of humanized antibody (h2B1, h7B4) From the culture supernatant obtained in Example 8) -5-2, the antibody was subjected to rProtein A affinity chromatography (under 4-6 ° C) and ceramic hydroxyapatite. Purified in a two-step process (under room temperature). The buffer substitution step after purification of rProtein A affinity chromatography and after purification of ceramic hydroxyapatite was carried out at 4-6 ° C. The culture supernatant was applied to MabSelectSuRe (GE Healthcare Bioscience, HiTrap column) equilibrated with PBS.
  • MabSelectSuRe GE Healthcare Bioscience, HiTrap column
  • the fraction was replaced with PBS by dialysis (Thermo Scientific, Slide-A-Lyzer Dialysis cassette), and then an antibody solution diluted 5-fold with a buffer of 5 mM sodium phosphate / 50 mM MES / pH 7.0 was diluted with 5 mM NaPi / This was applied to a ceramic hydroxyapatite column (Nippon Bio-Rad, Bio-Scale CHT Type-1 Hydroxyapatite Column) equilibrated with a buffer of 50 mM MES / 30 mM NaCl / pH 7.0. Linear gradient elution with sodium chloride was performed and the fractions containing antibody were collected.
  • the fraction was subjected to buffer replacement with HBSor (25 mM histidine / 5% sorbitol, pH 6.0) by dialysis (Thermo Scientificsha, Slide-A-Lyzer Dialysis cassette).
  • the IgG concentration was adjusted to 10 mg / ml or more by concentration with Centrifugal UF Filter Device VIVASPIN 20 (fractionated molecular weight UF10K, Sartorius, 4 ° C.). Finally, it was filtered through a Minisart-Plus filter (Sartorius) to obtain a purified sample.
  • Example 9 In vitro activity evaluation of humanized anti-GPRC5D antibody 9) -1 Humanized anti-GPRC5D antibody (h2B1_H1 / L1, to h2B1_H4 / L5 or h7B4_H1 / L2 to h7B4_H5 / L1) to human GPRC5D
  • the human multiple myeloma cell line KHM-1B expressing GPRC5D was prepared to a concentration of 2 ⁇ 10 6 cells / mL with PBS containing 5% FBS, and 96-well U bottom at 100 ⁇ L / well. After seeding on a microplate, the supernatant was removed after centrifugation.
  • Example 8 The culture supernatant of humanized anti-GPRC5D antibody obtained in 3-1 or Human IgG isotype control antibody (CALBIOCHEM) prepared at 14 ng / mL to 30 ⁇ g / mL was added at 100 ⁇ L / well, It left still at 4 degreeC for 1 hour. After washing twice with 5% FBS-containing PBS, R-Phycoerythrin AffiniPure F (ab ') 2 Fragment Goat Anti-Human IgG, Fc ⁇ Fragment Specific (Jackson Immun 100) Wells were added and left at 4 ° C. for 1 hour.
  • CABIOCHEM Human IgG isotype control antibody
  • FIG. 102 shows the results of the humanized anti-GPRC5D antibody h2B1_H1 / L1 to h2B1_H4 / L5, and FIG.
  • FIGS. 102 and 103 shows the results of the humanized anti-GPRC5D antibody h7B4_H1 / L2 to h7B4_H5 / L1. As shown in FIGS. 102 and 103, the humanized anti-GPRC5D antibody was shown to bind to human GPRC5D.
  • a humanized anti-GPRC5D antibody (h2B1_H1 / L1, h2B1_H2 / L5, h2B1_H4 / L5, h7B4_H1 / L2 and h7B4_H3 / L1) prepared at a final concentration of 0.15 ng / mL-15 ⁇ g / mL and a human control antibody ( hIgG1) (CALBIOCHEM) was added at 50 ⁇ L / well and allowed to stand at 4 ° C. for 30 minutes. Furthermore, 100 ⁇ L / well of the effector cells prepared in Example 1) -5-3 was added, centrifuged at 1200 rpm ⁇ 3 minutes at room temperature, and then cultured at 37 ° C.
  • h2B1_H1 / L1, h2B1_H2 / L5, h2B1_H4 / L5, h7B4_H1 / L2, and h7B4_H3 / L1 were shown to have ADCC activity.
  • Example 10 Acquisition of anti-GPRC5D antibody derived from human antibody phage library and evaluation of binding activity 10) -1 Isolation of scFv having GPRC5D binding activity From human antibody phage library, scFv that binds to human and cynomolgus monkey GPRC5D was isolated. Released. Dynabeads Streptavidin M-280 (Thermo Scientific) with the carboxyl terminal biotinylated and the human terminal (SEQ ID NO: 2 in the sequence listing) or cynomolgus GPRC5D amino terminal peptide (synthesized at Peptide Institute) immobilized on solid phase.
  • Phage was added, and unbound phage was removed by a washing operation using a magnet stand (DynaMag-2, Thermo Scientific).
  • the sequence of the amino terminal peptide of the cynomolgus monkey GPRC5D used is as follows. Amino-terminal peptide of cynomolgus monkey GPRC5D: MYKDCIESTGDYFLPCDSEGPWGIVLEK (Biotin) -NH 2 (SEQ ID NO: 93 of the Sequence Listing: FIG. 105) Thereafter, the phage bound to the amino terminal peptide of GPRC5D was infected with E.
  • coli (XL-1 Blue, Agilent Technologies), and the phage bound to the amino terminal peptide of GPRC5D was recovered and amplified.
  • GPRC5D expression vector prepared in 1) -1-1 and 5) -2-1, adding phage to Expi293F cells (Thermo Scientific) transiently expressing human or cynomolgus monkey GPRC5D, Unbound phages were removed by a washing operation. Subsequently, E. coli was infected with phages bound to the amino terminal peptide of GPRC5D, and phages binding to the amino terminal peptide of GPRC5D were recovered and amplified.
  • Expi293F cells transiently expressing a peptide or human or cynomolgus monkey GPRC5D, and an expression vector for E. coli that adds a FLAG tag and a His tag to the carboxyl terminus of scFv from a polyclonal phagemid.
  • E. coli was transformed, scFv was expressed in the presence of IPTG (Isopropyl- ⁇ -D-thiogalactopyroside) (Sigma-Aldrich), and subjected to screening by ELISA.
  • IPTG Isopropyl- ⁇ -D-thiogalactopyroside
  • HRP Horseradish peroxidase
  • ELISA buffer 50 ⁇ L of Horseradish peroxidase (HRP) -labeled anti-FLAG antibody (Sigma-Aldrich) diluted 5000-fold with ELISA buffer was added and reacted at room temperature for 1 hour.
  • HRP Horseradish peroxidase
  • SuperSignal Pico ELISA Chemiluminescent substrate (Thermo Scientific) was added, and chemiluminescence after 10 minutes was separated with a plate reader (Envision 2104 Multilabel Reader, PerkinD). .
  • nucleotide sequences of the variable regions of the genes of C2037 antibody, C3048 antibody, C3015 antibody, and C3022 antibody were determined.
  • the determined nucleotide sequence of the cDNA encoding the heavy chain variable region of C2037 is shown in SEQ ID NO: 96 (FIG. 108), and the amino acid sequence thereof is shown in SEQ ID NO: 97 (FIG. 109).
  • the determined nucleotide sequence of the cDNA encoding the light chain variable region of C2037 is shown in SEQ ID NO: 98 (FIG. 110), and the amino acid sequence thereof is shown in SEQ ID NO: 99 (FIG. 111).
  • the determined nucleotide sequence of cDNA encoding the variable region of the heavy chain of C3048 is shown in SEQ ID NO: 100 (FIG. 112), and the amino acid sequence thereof is shown in SEQ ID NO: 101 (FIG. 113).
  • the determined nucleotide sequence of cDNA encoding the variable region of the light chain of C3048 is shown in SEQ ID NO: 102 (FIG. 114), and the amino acid sequence is shown in SEQ ID NO: 103 (FIG. 115).
  • the determined nucleotide sequence of cDNA encoding the variable region of the heavy chain of C3015 is shown in SEQ ID NO: 104 (FIG. 116), and the amino acid sequence thereof is shown in SEQ ID NO: 105 (FIG.
  • the determined nucleotide sequence of cDNA encoding the variable region of the light chain of C3015 is shown in SEQ ID NO: 106 (FIG. 118), and the amino acid sequence thereof is shown in SEQ ID NO: 107 (FIG. 119).
  • the determined nucleotide sequence of cDNA encoding the variable region of the heavy chain of C3022 is shown in SEQ ID NO: 108 (FIG. 120), and the amino acid sequence is shown in SEQ ID NO: 109 (FIG. 121).
  • the determined nucleotide sequence of cDNA encoding the variable region of the light chain of C3022 is shown in SEQ ID NO: 110 (FIG. 122), and the amino acid sequence is shown in SEQ ID NO: 135 (FIG. 123).
  • the scFv of C2037 antibody, C3048 antibody, C3015 antibody or C3022 antibody was inserted into an expression vector for animal cells such as pcDNA3.1 (Thermo Scientific) to construct an scFv expression vector for animal cells. .
  • the above-mentioned scFv expression vector for animal cells is introduced into Expi293F cells (Thermo Scientific) and transiently expressed. If necessary, scFv is extracted from the culture supernatant into a His Trap column (GE Healthcare) and a gel filtration column ( The buffer solution in which the scFv was dissolved was replaced with PBS, and subjected to the following step “10) -6”.
  • a nucleotide sequence encoding the amino acid sequence 131 to 236) was inserted into an animal cell expression vector such as pcDNA3.1 (Thermo Scientific) to construct an animal cell IgG expression vector.
  • the nucleotide sequence of the constructed IgG expression vector was reanalyzed, and the nucleotide sequence of the full-length heavy chain of the C2037 antibody was the nucleotide sequence shown in SEQ ID NO: 136 (FIG. 148) in the sequence listing, and the nucleotide sequence of the light chain full-length was represented by the sequence listing.
  • SEQ ID NO: 137 FIG. 149
  • the nucleotide sequence of the full length of the heavy chain of the C3048 antibody is the nucleotide sequence shown in SEQ ID NO: 138 (FIG. 150) of the sequence listing, and the nucleotide sequence of the full length of the light chain is the nucleotide sequence shown in SEQ ID NO: 139 of FIG. It was confirmed.
  • the nucleotide sequence of the full length of the heavy chain of the C3015 antibody is the nucleotide sequence shown in SEQ ID NO: 140 (FIG. 152) in the sequence listing, and the nucleotide sequence of the full length of the light chain is the nucleotide sequence shown in SEQ ID NO: 141 of FIG. It was confirmed.
  • the nucleotide sequence of the full-length heavy chain of the C3022 antibody is the nucleotide sequence shown in SEQ ID NO: 142 (FIG. 154) in the sequence listing, and the nucleotide sequence of the full-length light chain is the nucleotide sequence shown in SEQ ID NO: 143 of the sequence listing. It was confirmed. Further, from the nucleotide sequence, the amino acid sequences of the heavy and light chain full lengths of the C2037, C3048, C3015 and C3022 antibodies encoded by the sequence were determined. The amino acid sequence of the heavy chain of the C2037 antibody is the amino acid sequence shown in SEQ ID NO: 144 (FIG.
  • the amino acid sequence of the heavy chain of the C3048 antibody is the amino acid sequence shown in SEQ ID NO: 146 (FIG. 158) in the sequence listing, and the amino acid sequence of the light chain is the amino acid sequence shown in SEQ ID NO: 147 (FIG. 159) in the sequence listing. It was.
  • the amino acid sequence of the heavy chain of the C3015 antibody is the amino acid sequence shown in SEQ ID NO: 148 (FIG. 160) in the sequence listing, and the amino acid sequence of the light chain is the amino acid sequence shown in SEQ ID NO: 149 (FIG.
  • the amino acid sequence of the heavy chain of the C3022 antibody is the amino acid sequence shown in SEQ ID NO: 150 (Fig. 162) in the sequence listing, and the amino acid sequence of the light chain is the amino acid sequence shown in SEQ ID NO: 151 (Fig. 163) of the sequence listing. It was.
  • the IgG forms of C2037, C3048, C3015 and C3022 antibodies are expressed transiently by inserting the above IgG expression vector for animal cells into FreeStyle 293F cells (Thermo Scientific), and if necessary, a Protein A Affinity column After purification with (HiTrap Mab Select SuRe, GE Healthcare), a buffer solution in which IgG is dissolved is replaced with PBS by Vivaspin 20 (7k MWCO, GE Healthcare), and the following step 10) -7-7 and 10) -9.
  • C2037, C3048, C3015, or C3022 scFv was added and reacted at room temperature for 2 hours.
  • 50 ⁇ L of Horseradish peroxidase (HRP) -labeled anti-FLAG antibody diluted 5000 times with ELISA buffer was added and reacted at room temperature for 1 hour.
  • HRP Horseradish peroxidase
  • SuperSignal Pico ELISA Chemiluminescent substrate was added, and chemiluminescence after 10 minutes was measured with a plate reader.
  • KMS-34 cells were collected by centrifugation and FACS buffer (PBS containing 0.5% BSA, 2 mM EDTA, pH 7.4) And washed twice in the same solution. C2037, C3048, C3015, or C3022 scFv was added to the obtained cell suspension and allowed to stand at 4 ° C. for 2 hours. After washing twice with FACS buffer, anti-FLAG antibody (Sigma-Aldrich) was added and suspended, and the mixture was further allowed to stand at 4 ° C. for 1 hour.
  • FACS buffer PBS containing 0.5% BSA, 2 mM EDTA, pH 7.4
  • the culture supernatant of the human anti-GPRC5D antibody (full-length IgG containing C2037, C3048, C3015, and C3022) obtained in Example 10) -5, or Human IgG isotype control antibody (CALBIOCHEM) was added at 14 ng / mL to 100 ⁇ L / well of what was adjusted to 30 ⁇ g / mL was added and allowed to stand at 4 ° C. for 1 hour. After washing twice with 5% FBS-containing PBS, R-Phycoerythrin AffiniPure F (ab ') 2 Fragment Goat Anti-Human IgG, Fc ⁇ Fragment Specific (Jackson Immun 100) Wells were added and left at 4 ° C.
  • the nucleotide sequence of the obtained cDNA encoding the variable region of the heavy chain of E1018 is shown in SEQ ID NO: 190 (FIG. 213), and the amino acid sequence is shown in SEQ ID NO: 191 (FIG. 214).
  • the nucleotide sequence of the obtained cDNA encoding the variable region of the light chain of E1018 is shown in SEQ ID NO: 192 (FIG. 215), and the amino acid sequence is shown in SEQ ID NO: 193 (FIG. 216).
  • the nucleotide sequence of the obtained cDNA encoding the variable region of the heavy chain of D1012 is shown in SEQ ID NO: 194 (FIG.
  • SEQ ID NO: 195 The amino acid sequence is shown in SEQ ID NO: 195 (FIG. 218).
  • the nucleotide sequence of the obtained cDNA encoding the variable region of the light chain of D1012 is shown in SEQ ID NO: 196 (FIG. 219), and the amino acid sequence is shown in SEQ ID NO: 197 (FIG. 220).
  • Example 11 Construction of anti-CD3 antibody expression vector 11) -1 Construction of rat anti-CD3 scFv antibody expression vector A rat anti-CD3 monoclonal antibody-producing hybridoma was prepared using a lymph node or spleen of a rat immunized by DNA immunization. The nucleotide sequence of cDNA encoding the monoclonal antibodies VH and VL was determined from the hybridoma, and a single chain antibody expression vector was prepared. That is, a DNA fragment obtained by PCR amplification of VH of SEQ ID NO: 152 (FIG.
  • the vector region excluding the scFv region was amplified by the PCR method to obtain a vector fragment.
  • the respective DNA fragments were ligated using an In-Fusion HD cloning kit (CLONTECH) to construct an expression vector containing the nucleotide sequence of SEQ ID NO: 157 (FIG. 173) in the ORF.
  • the obtained expression vector was designated as “pC3E-7034”.
  • Example 12 Production of anti-GPRC5D-anti-CD3 bispecific molecule 12) -1 Production of anti-GPRC5D-anti-CD3 bispecific molecule expression vector Template of scFv of C2037 antibody produced in Example 10) -4 As described above, a region added with a scFv of the C2037 antibody, a part of the human antibody heavy chain signal sequence, and a linker connecting the scFv was amplified using the PCR method to obtain an insert DNA.
  • the entire region of the vector containing CD3scFv was amplified by PCR using a signal sequence and a primer encoding the amino terminal sequence of the CD3scFv antibody.
  • a vector fragment was obtained.
  • Each DNA fragment was ligated using an In-Fusion HD cloning kit (CLONTECH) to construct an anti-GPRC5D-anti-CD3 bispecific molecule expression vector containing the nucleotide sequence of SEQ ID NO: 162 (FIG. 178) in the ORF. .
  • the resulting expression vector was designated as “pC2037-C3E-7034”.
  • An anti-GPRC5D-anti-CD3 bispecific molecule expression vector comprising the nucleotide sequence of SEQ ID NO: 163 (FIG. 179) in the ORF was constructed in the same manner as described above using the scFv of the C3048 antibody and pC3E-7034 as a template. The obtained expression vector was designated as "pC3048-C3E-7034".
  • An anti-GPRC5D-anti-CD3 bispecific molecule expression vector containing the nucleotide sequence of SEQ ID NO: 164 (FIG. 180) in the ORF was constructed in the same manner as described above using the scFv of the C3022 antibody and pC3E-7034 as a template.
  • the resulting expression vector was designated as “pC3022-C3E-7034”.
  • An anti-GPRC5D-anti-CD3 bispecific molecule expression vector comprising the nucleotide sequence of SEQ ID NO: 165 (FIG. 181) in the ORF was constructed in the same manner as described above using scFv of the C2037 antibody and pC3E-7035 as a template.
  • the obtained expression vector was designated as “pC2037-C3E-7035”.
  • An anti-GPRC5D-anti-CD3 bispecific molecule expression vector containing the nucleotide sequence of SEQ ID NO: 166 (FIG.
  • An anti-GPRC5D-anti-CD3 bispecific molecule expression vector containing the nucleotide sequence of SEQ ID NO: 168 (FIG. 184) in the ORF was constructed in the same manner as described above using the scFv of the C2037 antibody and pC3E-7036 as a template. The obtained expression vector was designated as “pC2037-C3E-7036”.
  • An anti-GPRC5D-anti-CD3 bispecific molecule expression vector comprising the nucleotide sequence of SEQ ID NO: 169 (FIG. 185) in the ORF was constructed in the same manner as described above using scFv of the C3048 antibody and pC3E-7036 as a template.
  • the obtained expression vector was designated as “pC3048-C3E-7036”.
  • an anti-GPRC5D-anti-CD3 bispecific molecule expression vector containing the nucleotide sequence of SEQ ID NO: 170 (FIG. 186) in the ORF was constructed using the scFv of the C3022 antibody and pC3E-7036 as a template.
  • the resulting expression vector was designated as “pC3022-C3E-7036”.
  • the amino acid sequence of C2037-C3E-7035 is set forth in SEQ ID NO: 174 ( Figure 190).
  • the amino acid sequence of C3048-C3E-7035 is set forth in SEQ ID NO: 175 (FIG. 191).
  • the amino acid sequence of C3022-C3E-7035 is set forth in SEQ ID NO: 176 ( Figure 192).
  • the amino acid sequence of C2037-C3E-7036 is set forth in SEQ ID NO: 177 ( Figure 193).
  • the amino acid sequence of C3048-C3E-7036 is set forth in SEQ ID NO: 178 ( Figure 194).
  • the amino acid sequence of C3022-C3E-7036 is set forth in SEQ ID NO: 179 ( Figure 195).
  • Example 13 Evaluation of in vitro activity of anti-GPRC5D-anti-CD3 bispecific molecule 13) -1 Evaluation of binding activity of anti-GPRC5D-anti-CD3 bispecific molecule by flow cytometry 13) -1-1 Anti-GPRC5D -Binding of anti-CD3 bispecific molecule to endogenous human GPRC5D expressing cells (A4 / Fuk) Lymphoma cell line A4 / Fuk cells (JCRB cell bank) were prepared in PBS containing 5% FBS to an appropriate concentration, and LIVE / DEAD Fixable Near-IR Dead Cell Stain Kit was added and allowed to stand at 4 ° C. for 30 minutes.
  • Example 13) -1-2 Binding of anti-GPRC5D-anti-CD3 bispecific molecule to cynomolgus GPRC5D expressing cells
  • Example 5 Using the KMS-11_cGPRC5D cells prepared in 2-2, Example 13) -1- Staining and analysis were performed in the same manner as in 1.
  • anti-GPRC5D-anti-CD3 bispecific molecule was shown to bind to cynomolgus GPRC5D expressing cells.
  • PBMC human CD3
  • DEAD Fixable Near-IR Dead Cell Stain Kit (Thermo Fisher Scientific) and anti-CD19 antibody (Beckman Coulter) were added and allowed to stand at 4 ° C. for 30 minutes. After washing twice with 5% FBS-containing PBS, the concentration is adjusted to 1 ⁇ 10 6 cells / mL with 5% FBS-containing PBS, seeded on a 96-well U-bottom microplate at 100 ⁇ L / well, and the supernatant after centrifugation is collected. Removed.
  • PBMC cynomolgus monkey CD3
  • Pmate STMCELL
  • Lymphocyte Separation Solution Nacalai
  • Example 13) -2-3 Cytotoxicity assay A4 / Fuk cells obtained in Example 13) -2-1 were added to a 96-well U-bottom microplate at 50 ⁇ L / well.
  • various anti-GPRC5D-anti-CD3 bispecific molecules prepared in Example 12 prepared at various concentrations were added at 50 ⁇ L / well, and effector cells prepared in Example 13) -2-2 were added at 100 ⁇ L / well. After centrifugation at 1000 rpm ⁇ 1 minute at room temperature, the cells were cultured at 37 ° C. under 5% CO 2 for 20-24 hours. 50 ⁇ L of the supernatant was collected on LumaPlate (PerkinElmer), dried at 50 ° C.
  • Cell lysis rate (%) (AB) / (CB) ⁇ 100
  • A Sample well count.
  • Example 14 Preparation of GPRC5D-anti-CD3 bispecific molecule with Fc 14) -1 Preparation of anti-GPRC5D-anti-CD3 bispecific molecule expression vector with Fc 14) -1-1 Full-Size Antibody (FSA) ) Preparation of type bispecific molecule expression vector Totally synthesized DNA encoding the humanized anti-GPRC5D antibody (h2B1) H2-type heavy chain variable region constructed in Example 8) -1-2 (Genescript, custom gene) Synthesis service).
  • PCL_ # 13540 and “pCL_ # 13543” are obtained from the heavy chain variable region and two types of human IgG-derived CH1, an Fc region in which a mutation that reduces effector function and forms a heteromultimer is introduced ( WO2014 / 190441) is introduced into an expression vector for mammalian cells pTT5 (National Research Council, WO2009 / 137911).
  • the humanized anti-GPRC5D antibody (h2B1) L5 type light chain variable region constructed in Example 8) -2-5 was fully synthesized.
  • PCL — # 12290 and “pCL — # 12313” are DNAs encoding the obtained light chain variable region and two types of human IgG-derived CL into the mammalian cell expression vector pTT5.
  • the DNA fragment encoding the heavy chain of humanized anti-CD3scFv (C3E-7034) constructed in Example 11) -2 was totally synthesized.
  • PCL — # 13552 introduces the obtained scFv heavy chain variable region, CH1 derived from human IgG, and the Fc region into which a mutation causing decreased effector function and formation of a heteromultimer is introduced into the expression vector pTT5 for mammalian cells It is a thing.
  • DNA fragment encoding the light chain of humanized anti-CD3scFv (C3E-7034) constructed in Example 11) -2 was completely synthesized.
  • “PCL — # 12287” is obtained by introducing the obtained scFv light chain variable region and CL derived from human IgG into an expression vector pTT5 for mammalian cells.
  • the DNA sequence encoding the heavy chain of the humanized anti-CD3scFv (C3E-7036) constructed in Example 11) -4 was completely synthesized.
  • PCL_ # 13541 is a DNA sequence encoding the obtained scFv heavy chain variable region, the human IgG-derived CH1, and the Fc region into which a mutation that reduces effector function and forms a heteromultimer is introduced for mammalian cells. This was introduced into the expression vector pTT5. In addition, the DNA fragment encoding the light chain of the humanized anti-CD3scFv (C3E-7036) constructed in Example 11) -4 was totally synthesized. “PCL — # 12321” is obtained by introducing the obtained scFv light chain and a DNA fragment encoding human IgG-derived CL into an expression vector pTT5 for mammalian cells.
  • Hybrid Type Bispecific Molecule Expression Vector Humanized anti-GPRC5D antibody (h2B1) H2 type heavy chain variable region, human IgG-derived CH1 region, and reduced effector function An expression vector for mammalian cells into which a DNA fragment encoding an Fc region into which a mutation that forms a body was introduced was prepared and named “pCL — # 13555”.
  • a mammalian cell expression vector incorporating a DNA fragment encoding a humanized anti-GPRC5D antibody (h2B1) L5-type light chain variable region and a human IgG-derived CL region was prepared and named “pCL_ # 12123”.
  • an expression vector for mammalian cells incorporating a humanized anti-CD3scFv (C3E-7034) and a DNA fragment encoding a Fc region into which a mutation causing reduced effector function and formation of a heteromultimer was introduced was prepared.
  • pCL_ # 13557 “.
  • an expression vector for mammalian cells “pCL_ # 13561” into which a humanized anti-CD3scFv (C3E-7036) and a DNA fragment encoding a Fc region into which a mutation that reduces effector function and forms a heteromultimer is introduced are incorporated.
  • the ORF sequences of pCL_ # 13555, pCL_ # 12123, pCL_ # 13557, and pCL_ # 13561 are respectively represented by SEQ ID NO: 214 (FIG. 238), SEQ ID NO: 216 (FIG. 240), SEQ ID NO: 218 (FIG. 242), and SEQ ID NO: 220. This is shown in FIG.
  • a DNA mixture prepared by mixing pAKT, pGFP (both National Research Council) and fragment-treated salmon sperm DNA (Sigma Aldrich) was added to another aliquoted F17 medium to obtain a DNA solution.
  • the PEImax solution, the vector mixture, and the DNA solution were mixed together, stirred gently, allowed to stand for 5 minutes, and then added to 2 L of CHO-3E7 cell culture solution. After culturing at 37 ° C. in a 5% CO 2 incubator for 1 day, 0.5 mM valproic acid (Sigma Aldrich), 0.1% (w / v) Tryptone N1 (organotechnie) was added, and further at 32 ° C. Cultured with shaking for 6 days.
  • PCL_ # 13552, pCL_ # 12287, pCL_ # 13540, and pCL_ # 12290 were used for the expression preparation of the FSA type bispecific molecule (v19159) between C3E-7034 and h2B1.
  • PCL_ # 13541, pCL_ # 12321, pCL_ # 13543, and pCL_ # 12313 were used for the expression preparation of the FSA type bispecific molecule (v19140) between C3E-7036 and h2B1.
  • amino acid sequences obtained by expressing each vector constituting v19159 are shown in SEQ ID NOs: 207 (FIG. 231), 209 (FIG. 233), 199 (FIG. 223) and 203 (FIG. 227) in the sequence listing.
  • sequences of amino acids constituting v19140 are shown in SEQ ID NOs: 211 (FIG. 235), 213 (FIG. 237), 201 (FIG. 225), and 205 (FIG. 229), respectively.
  • Hybrid-type Bispecific Molecules 8000 ⁇ g of Polyethyleneimine max (PEImax, Polyscience) was dissolved in a freestyle F17 medium dispensed to obtain a PEImax solution.
  • PEImax Polyethyleneimine max
  • a vector mixture obtained by mixing pCL_ # 13557, pCL_ # 13555, and pCL_ # 12123 at a ratio of 1: 1: 1.5, or pCL_ # 13561, pCL_ # 13555, pCL_ # 12123 in another F17 medium dispensed. 1000 ⁇ g of the vector mixture mixed at a ratio of 1: 1: 1.5 was added to obtain a vector mixture.
  • a DNA mixture prepared by mixing pAKT, pGFP (both National Research Council) and fragment-treated salmon sperm DNA (Sigma Aldrich) was added to another aliquoted F17 medium to obtain a DNA solution.
  • the PEImax solution, the vector mixture, and the DNA solution were mixed together, stirred gently, allowed to stand for 5 minutes, and then added to 2 L of CHO-3E7 cell culture solution. After culturing at 37 ° C. in a 5% CO 2 incubator for 1 day, 0.5 mM valproic acid (Sigma Aldrich), 0.1% (w / v) Tryptone N1 (organotechnie) was added, and further at 32 ° C. Cultured with shaking for 6 days.
  • PCL_ # 13557, pCL_ # 13555, and pCL_ # 12123 were used for the expression preparation of the hybrid bispecific molecule (v19126) between C3E-7034 and h2B1.
  • PCL_ # 13561, pCL_ # 13555, and pCL_ # 12123 were used for the expression preparation of the hybrid-type bispecific molecule (v19125) between C3E-7036 and h2B1.
  • the amino acid sequences obtained by expressing each vector constituting v19126 are shown in SEQ ID NOs: 219 (FIG.
  • Dual-type Bispecific Molecule 8000 ⁇ g of Polyethyleneimine max (PEImax, Polyscience) was dissolved in a freestyle F17 medium dispensed to prepare a PEImax solution. Also, 1000 ⁇ g of a vector mixture prepared by mixing CL_ # 13557 and pCL_ # 13563 in a ratio of 4: 3 in another dispensed F17 medium, or a vector mixture prepared by mixing pCL_ # 13561 and pCL_ # 13563 in a ratio of 1: 1. In addition, a vector mixture was obtained.
  • PEImax Polyethyleneimine max
  • a DNA mixture prepared by mixing pAKT, pGFP (both National Research Council) and fragment-treated salmon sperm DNA (Sigma Aldrich) was added to another aliquoted F17 medium to obtain a DNA solution.
  • the PEImax solution, the vector mixture, and the DNA solution were mixed together, stirred gently, allowed to stand for 5 minutes, and then added to 2 L of CHO-3E7 cell culture solution. After culturing at 37 ° C. in a 5% CO 2 incubator for 1 day, 0.5 mM valproic acid (Sigma Aldrich), 0.1% (w / v) Tryptone N1 (organotechnie) was added, and further at 32 ° C. Cultured with shaking for 6 days.
  • PCL_ # 13557 and pCL_ # 13563 were used for the expression preparation of dual-scFv (Dual) type bispecific molecule (v19122) between C3E-7034 and h2B1.
  • PCL_ # 13561 and pCL_ # 13563 were used for the expression preparation of dual type bispecific molecule (v19121) between C3E-7036 and h2B1.
  • the amino acid sequences obtained by expressing each vector constituting v19122 are shown in SEQ ID NOs: 219 (FIG. 243) and 223 (FIG. 247) in the sequence listing. Further, the sequences of amino acids constituting v19121 are shown in SEQ ID NOs: 221 (FIG. 245) and 223 (FIG. 247) in the sequence listing, respectively.
  • the elution fraction was adjusted to neutral pH with Tris buffer pH11, concentrated, and subjected to gel filtration column Superdex 200 10/300 (GE Healthcare Bioscience) pre-equilibrated with PBS (pH 7.4).
  • the peak fraction obtained by gel filtration chromatography was analyzed by SDS capillary electrophoresis (LabChip-Caliper), and the fraction corresponding to the target heterodimer was recovered.
  • the dual type bispecific molecule was further subjected to a desalting column HiPrep 26/10 Desalting (GE Healthcare Bioscience) pre-equilibrated with HBsor (25 mM histidine, 5% sorbitol) pH 6.0. The buffer was replaced with HBsor.
  • the collected fraction was filtered through a 0.2 ⁇ m filter to obtain a purified sample.
  • the purified sample was confirmed by mass spectrometry and SDS-polyacrylamide electrophoresis (SDS-PAGE) to ensure that the desired anti-GPRC5D-anti-CD3 bispecific molecule was formed.
  • Example 15 In vitro activity evaluation of anti-GPRC5D-anti-CD3 bispecific molecule with Fc 15) -1 Binding activity evaluation of anti-GPRC5D-anti-CD3 bispecific molecule with Fc by flow cytometry 15) -1 -1 Binding of anti-GPRC5D-anti-CD3 bispecific molecule with Fc to endogenous human GPRC5D expressing cells (KHM-1B) 5% FBS containing human multiple myeloma cell line KHM-1B expressing GPRC5D A suitable concentration was adjusted with PBS, LIVE / DEAD Fixable Near-IR Dead Cell Stain Kit was added, and the mixture was allowed to stand at 4 ° C. for 30 minutes.
  • the concentration is adjusted to 1 ⁇ 10 6 cells / mL with 5% FBS-containing PBS, seeded on a 96-well U-bottom microplate at 100 ⁇ L / well, and the supernatant after centrifugation is collected. Removed. 100 ⁇ L / well of the anti-GPRC5D-anti-CD3 bispecific molecule with Fc prepared in Example 14 diluted with PBS containing 5% FBS was added, and the mixture was allowed to stand at 4 ° C. for 60 minutes.
  • R-Phycoerythrin AffiniPure F (ab ') 2 Fragment Goat Anti-Human IgG, Fxgamma Fragment Specific (Jackson Immun / Lumun), washed 100% with 5% FBS-containing PBS Added and left at 4 ° C. for 1 hour. After washing twice with 5% FBS-containing PBS, the suspension was resuspended in PBS containing 5% FBS, and detection was performed with a flow cytometer (FACSCanto TM II). Data analysis was performed with Flowjo, a histogram of PE fluorescence intensity of the fraction from which dead cells were removed was created, and average fluorescence intensity (MFI) was calculated. As a result, it was shown that the anti-GPRC5D-anti-CD3 bispecific molecule with Fc binds to human GPRC5D-expressing cells (FIG. 248).
  • the concentration is adjusted to 1 ⁇ 10 6 cells / mL with 5% FBS-containing PBS, seeded on a 96-well U-bottom microplate at 100 ⁇ L / well, and the supernatant after centrifugation is collected. Removed. 100 ⁇ L / well of the anti-GPRC5D-anti-CD3 bispecific molecule with Fc prepared in Example 14 diluted with PBS containing 5% FBS was added, and the mixture was allowed to stand at 4 ° C. for 60 minutes.
  • R-Phycoerythrin AffiniPure F (ab ') 2 Fragment Goat Anti-Human IgG, Fxgamma Fragment Specific (Jackson Immun / Lumun), washed 100% with 5% FBS-containing PBS Added and left at 4 ° C. for 1 hour. After washing twice with 5% FBS-containing PBS, the suspension was resuspended in PBS containing 5% FBS, and detection was performed with a flow cytometer (FACSCanto TM II). Data analysis was performed with Flowjo, a histogram of PE fluorescence intensity of the fraction from which dead cells were removed was created, and average fluorescence intensity (MFI) was calculated. As a result, it was shown that the anti-GPRC5D-anti-CD3 bispecific molecule with Fc binds to human CD3-expressing cells (FIG. 250).
  • Example 15) -2-3 Cytotoxicity assay KHM-1B cells obtained in Example 15) -2-1 were added to a 96-well U-bottom microplate at 50 ⁇ L / well.
  • the anti-GPRC5D-anti-CD3 bispecific molecule with Fc prepared in Example 14 prepared in various concentrations was added at 50 ⁇ L / well, and the effector cells prepared in Example 15) -2-2 were added at 100 ⁇ L / well.
  • the mixture was added, centrifuged at 1000 rpm for 1 minute at room temperature, and cultured at 37 ° C. under 5% CO 2 for 24-48 hours. 50 ⁇ L of the supernatant was collected on LumaPlate (PerkinElmer), dried at 50 ° C.
  • Cell lysis rate (%) (AB) / (CB) ⁇ 100
  • A Sample well count.
  • Example 16 Evaluation of in vivo activity of anti-GPRC5D-anti-CD3 bispecific molecule with Fc 16) -1 Evaluation of in vivo activity in a co-transplant model of human PBMC and cancer cells
  • Human multiple myeloma cell line KHM- 1B (JCRB) and human PBMC (Cellular Technology Limited) were prepared in PBS containing 50% Matrigel (CORNING) to 5 ⁇ 10 7 cells / mL, respectively, NOD-Scid mice (female, 5 weeks old) 0.1 mL was co-transplanted subcutaneously. Grouping was performed after transplantation, and various anti-GPRC5D-anti-CD3 bispecific molecules were administered into the tail vein (0.1 mg / kg).
  • Example 17 Preparation of CDR-modified Hybrid anti-GPRC5D-anti-CD3 bispecific molecule 17) -1 Preparation of CDR-modified Hybrid anti-GPRC5D-anti-CD3 bispecific molecule expression vector 17) -1-1 CDR Production of Modified Hybrid Type Anti-GPRC5D-Anti-CD3 Bispecific Molecules (C5D-0004, C5D-0005, C5D-0006) Expression Vector Example 14) Hybrid Type Bispecific Molecules (v19125) ) Among the expression vectors, pCL_ # 13561 encoding humanized anti-CD3scFv-Fc was used as a template, and CDR-modified vector pC3E-8015 was prepared by changing Asn53 of H chain CDR2 to Arg by site-directed mutagenesis.
  • pCL_ # 13557 encoding humanized anti-CD3scFv-Fc is used as a template, and Asn53 of H chain CDR2 is converted to Arg by site-directed mutagenesis.
  • a CDR-modified vector pC3E-8017 in which the chain Asp52 was modified to Asn was prepared.
  • a CDR-modified vector pC3E-8018 in which Asn53 of H chain CDR2 was changed to Ser and L chain Asp52 was changed to Asn by site-directed mutagenesis using pCL_ # 13557 as a template was prepared.
  • K-added CDR modified vectors pC3E-8027 and pC3E-8028 in which Lys was inserted into the C-terminus of Fc by site-directed mutagenesis using pC3E-8017 and pC3E-8018 as templates were prepared.
  • Example 14 Among the hybrid-type bispecific molecule (v19125, v19126) expression vectors constructed in 1-2, pCL- # 13555 encoding anti-GPRC5DFab-Fc was used as a template and site-directed mutagenesis method Thus, a K-added vector pTAA- # 2 in which Lys was inserted into the C-terminus of Fc was prepared.
  • Hybrid Anti-GPRC5D-anti-CD3 Bispecific Molecules (C5D-0004, C5D-0005, C5D-0006)
  • Hybrid Anti-GPRC5D-anti-CD3 Bispecific Molecules C5D-0004 C5D-0005 and C5D-0006 were cultured using ExpiCHO-S cells as hosts. The method for transfection of the expression vector into cells and the culture conditions were all carried out according to the manual attached to the product (Thermo Fisher Scientific). Culture was performed on a 750 mL scale, and the conditions of Max titer protocol described in the manual were adopted for feed addition and culture temperature.
  • Hybrid bispecific molecule C5D-0004 is obtained from the combination of pC3E-8015, pCL_ # 13555 and pCL_ # 12123
  • Hybrid bispecific molecule C5D-0005 is obtained from the combination of pC3E-8017, pCL_ # 13555 and pCL_ # 12123
  • the hybrid bispecific molecule C5D-0006 was obtained from the combination of pC3E-8018, pCL_ # 13555, and pCL_ # 12123.
  • amino acid sequences obtained by expressing each vector constituting C5D-0004 are shown in SEQ ID NO: 225 (FIG. 256), 215 (FIG. 239), and 217 (FIG. 241) in the sequence listing.
  • the sequences are shown in SEQ ID NO: 227 (FIG. 258), 215 (FIG. 239), 217 (FIG. 241), and the amino acid sequence constituting C5D-0006 is shown in SEQ ID NO: 229 (FIG. 260), 215 (FIG. 239) and 217 (FIG. 241), respectively.
  • a vector mixture prepared by mixing pC3E-8025, pTAA_ # 2, and pCL_ # 12123 at a ratio of 1: 1: 1.5 in 3 mL of Opti-PRO SFM medium, pAKT, pGFP, and fragment-treated salmon sperm 100 ⁇ g of each DNA mixture mixed with DNA was added.
  • the PEImax solution, the vector mixture, and the DNA solution were mixed together, stirred gently, allowed to stand for 5 minutes, and then added to 200 mL of CHO-3E7 cell culture solution.
  • the amino acid sequences obtained by expressing each vector constituting C5D-0014 are shown in SEQ ID NO: 231 (FIG. 262), 237 (FIG. 268), and 217 (FIG. 241) of the sequence listing.
  • sequences are shown in SEQ ID NO: 233 (FIG. 264), 237 (FIG. 268), and 217 (FIG. 241) in the sequence listing, and the amino acid sequences constituting C5D-0016 are shown in SEQ ID NO: 235 (FIG. 266), 237 (FIG. 268) and 217 (FIG. 241), respectively.
  • the adsorbed components were eluted with 100 mM acetate buffer pH 3.5.
  • the elution fraction was immediately adjusted to neutral pH with Tris buffer pH 9.0, dialyzed against 50 mM HEPES, 10 mM potassium phosphate, 100 mM sodium chloride solution, and hydroxyapatite column Bio-Scale CHT Type-I ( BioRad Laboratories).
  • the adsorbed bispecific molecule of interest was eluted by changing the sodium chloride concentration in the solvent from 0.1 M to 1 M by a linear concentration gradient method.
  • the obtained peak fraction was analyzed by SDS-PAGE, and the fraction corresponding to the target bispecific molecule was recovered.
  • the buffer of the collected fraction was exchanged with a 50 mM HEPES pH 8.0, 20 mM sodium chloride solution and then applied to a cation exchange column Mono S (GE Healthcare Bioscience).
  • the adsorbed bispecific molecule of interest was eluted by changing the sodium chloride concentration in the solvent from 20 mM to 1 M by a linear concentration gradient method.
  • the obtained peak fraction was analyzed by SDS-PAGE, and the fraction corresponding to the target bispecific molecule was recovered.
  • the last collected fraction was dialyzed against HBsor (25 mM histidine, 5% sorbitol) pH 6.0, filtered and used as a purified sample.
  • the purified sample was confirmed to be the target anti-GPRC5D-anti-CD3 bispecific molecule by mass spectrometry, SDS-PAGE and SEC analysis.
  • the adsorbed components were eluted with 100 mM acetate buffer pH 3.0.
  • the elution fraction was immediately adjusted to neutral pH with Tris buffer pH 9.5, dialyzed against 50 mM HEPES, 10 mM potassium phosphate, 100 mM sodium chloride solution, and hydroxyapatite column Bio-Scale CHT Type-I ( BioRad Laboratories).
  • the adsorbed bispecific molecule of interest was eluted by changing the sodium chloride concentration in the solvent from 0.1 M to 1 M by a linear concentration gradient method.
  • the obtained peak fraction was analyzed by SDS-PAGE, and the fraction corresponding to the target bispecific molecule was recovered.
  • the last collected fraction was dialyzed against HBsor (25 mM histidine, 5% sorbitol) pH 6.0, filtered and used as a purified sample.
  • the purified sample was confirmed to be the target anti-GPRC5D-anti-CD3 bispecific molecule by mass spectrometry, SDS-PAGE and SEC analysis.
  • Example 18 Evaluation of in vitro activity of C-terminal Lys-added CDR-modified Hybrid type, CDR-modified Hybrid type anti-GPRC5D-anti-CD3 bispecific molecule 18) -1 C-terminal Lys-added CDR-modified Hybrid type, CDR-modified Hybrid type Evaluation of binding activity of anti-GPRC5D-anti-CD3 bispecific molecule by flow cytometry 18) -1-1 Endogenous of C-terminal Lys-added CDR-modified Hybrid type, CDR-modified Hybrid type anti-GPRC5D-anti-CD3 bispecific molecule Binding to human GPRC5D-expressing cells (KHM-1B) Cell preparation, staining and analysis were carried out in the same manner as in Example 15) -1-1. As a result, it was shown that the anti-GPRC5D-anti-CD3 bispecific molecule binds to human GPRC5D-expressing cells (FIG. 269).
  • Activity evaluation KHM-1B and human PBMC were prepared in PBS each containing 50% Matrigel to 5 ⁇ 10 7 cells / mL, and 0.1 mL co-transplanted subcutaneously into NOD-Scid mice (female, 5 weeks old) . Grouping was performed after transplantation, and various anti-GPRC5D-anti-CD3 bispecific molecules were administered into the tail vein (1 ⁇ g / kg).
  • Human PBMC were prepared to 5 ⁇ 10 7 cells / mL with PBS and transplanted into NOG mice (female, 6 weeks of age) in 0.2 mL tail vein ( Day-4).
  • the KHM-1B was prepared so as to be respectively 3 ⁇ 10 7 cells / mL in 50% Matrigel containing PBS to Day 0, and 0 ⁇ 1 mL subcutaneously transplanted to NOG mice.
  • grouping was performed according to tumor volume, and various anti-GPRC5D-anti-CD3 bispecific molecules were administered into the tail vein (1 mg / kg).
  • SEQ ID NO: 1 amino terminal sequence of human GPRC5D (FIG. 2)
  • SEQ ID NO: 2 amino terminal sequence of human GPRC5D (FIG. 3)
  • SEQ ID NO: 3 Primer for amplifying the variable region cDNA of the heavy chain gene of 2A4 by PCR
  • SEQ ID NO: 4 Nucleotide sequence of the cDNA encoding the variable region of the heavy chain of 2A4 (FIG. 8)
  • SEQ ID NO: 6 nucleotide sequence of cDNA encoding the variable region of the heavy chain of 2B1 (FIG.
  • SEQ ID NO: 7 amino acid sequence of the variable region of the heavy chain of 2B1 (FIG. 11)
  • SEQ ID NO: 8 Nucleotide sequence of cDNA encoding variable region of heavy chain of 7B4 ( Figure 12)
  • SEQ ID NO: 9 Amino acid sequence of variable region of heavy chain of 7B4 (FIG. 13)
  • SEQ ID NO: 10 primer for amplifying the variable region cDNA of the light chain gene of 2A4 by PCR
  • SEQ ID NO: 11 nucleotide sequence of the cDNA encoding the variable region of the light chain of 2A4
  • SEQ ID NO: 12 amino acid sequence of the variable region of the light chain of 2A4 (FIG.
  • SEQ ID NO: 13 nucleotide sequence of cDNA encoding the light chain variable region of 2B1 (FIG. 16)
  • SEQ ID NO: 14 amino acid sequence of the variable region of the light chain of 2B1
  • SEQ ID NO: 15 nucleotide sequence of the cDNA encoding the variable region of the light chain of 7B4
  • SEQ ID NO: 16 amino acid sequence of the variable region of the light chain of 7B4
  • SEQ ID NO: 17 DNA fragment containing a human ⁇ chain secretion signal sequence and a DNA sequence encoding the amino acid of the human ⁇ chain constant region (FIG.
  • SEQ ID NO: 18 light chain expression vector primer F
  • SEQ ID NO: 19 Light chain expression vector primer R
  • SEQ ID NO: 20 DNA fragment containing a DNA sequence encoding the amino acid sequence of human heavy chain signal sequence and human IgG1 constant region
  • SEQ ID NO: 21 nucleotide sequence of human chimerized 2A4 (c2A4) light chain
  • SEQ ID NO: 22 Amino acid sequence of human chimerized 2A4 (c2A4) light chain
  • SEQ ID NO: 23 Primer set F for human chimerized 2A4 light chain (FIG.
  • SEQ ID NO: 24 Primer set R for human chimerized 2A4 light chain
  • SEQ ID NO: 25 Nucleotide sequence of human chimerized 2A4 (c2A4) heavy chain
  • SEQ ID NO: 26 Amino acid sequence of human chimerized 2A4 (c2A4) heavy chain
  • SEQ ID NO: 27 Primer set F for human chimerized 2A4 heavy chain
  • SEQ ID NO: 28 Primer set R for human chimerized 2A4 heavy chain
  • SEQ ID NO: 29 nucleotide sequence of human chimerized 2B1 (c2B1) light chain
  • SEQ ID NO: 30 Amino acid sequence of human chimerized 2B1 (c2B1) light chain (FIG. 33)
  • SEQ ID NO: 31 Primer set F for human chimerized 2B1 light chain
  • SEQ ID NO: 32 Primer set R for human chimerized 2B1 light chain
  • SEQ ID NO: 33 Nucleotide sequence of human chimerized 2B1 (c2B1) heavy chain
  • SEQ ID NO: 34 Amino acid sequence of human chimerized 2B1 (c2B1) heavy chain
  • SEQ ID NO: 35 Primer set F for human chimerized 2B1 heavy chain (FIG.
  • SEQ ID NO: 36 Primer set R for human chimerized 2B1 heavy chain
  • SEQ ID NO: 37 nucleotide sequence of human chimerized 7B4 (c7B4) light chain
  • SEQ ID NO: 38 Amino acid sequence of human chimerized 7B4 (c7B4) light chain
  • SEQ ID NO: 39 Primer set F for human chimerized 7B4 light chain
  • SEQ ID NO: 40 Primer set R for human chimerized 7B4 light chain
  • SEQ ID NO: 41 nucleotide sequence of human chimerized 7B4 (c7B4) heavy chain
  • SEQ ID NO: 42 Amino acid sequence of human chimerized 7B4 (c7B4) heavy chain (FIG. 45)
  • SEQ ID NO: 43 Primer set F for human chimerized 7B4 heavy chain
  • SEQ ID NO: 44 Primer set R for human chimerized 7B4 heavy chain
  • SEQ ID NO: 45 amino acid sequence of heavy chain CDR1 of rat anti-GPRC5D antibody 2A4
  • SEQ ID NO: 46 amino acid sequence of heavy chain CDR2 of rat anti-GPRC5D antibody 2A4 (FIG.
  • SEQ ID NO: 47 amino acid sequence of heavy chain CDR3 of rat anti-GPRC5D antibody 2A4 (FIG. 56)
  • SEQ ID NO: 48 amino acid sequence of heavy chain CDR1 of rat anti-GPRC5D antibody 2B1 (FIG. 57)
  • SEQ ID NO: 49 amino acid sequence of heavy chain CDR2 of rat anti-GPRC5D antibody 2B1 (FIG. 58)
  • SEQ ID NO: 50 amino acid sequence of heavy chain CDR3 of rat anti-GPRC5D antibody 2B1 (FIG. 59)
  • SEQ ID NO: 52 amino acid sequence of heavy chain CDR2 of rat anti-GPRC5D antibody 7B4 (FIG. 61)
  • SEQ ID NO: 53 amino acid sequence of heavy chain CDR3 of rat anti-GPRC5D antibody 7B4 (FIG. 62)
  • SEQ ID NO: 54 amino acid sequence of light chain CDR1 of rat anti-GPRC5D antibody 2A4 (FIG. 63)
  • SEQ ID NO: 57 amino acid sequence of light chain CDR1 of rat anti-GPRC5D antibody 2B1 (FIG. 66)
  • SEQ ID NO: 58 amino acid sequence of light chain CDR2 of rat anti-GPRC5D antibody 2B1 (FIG. 67)
  • SEQ ID NO: 59 Amino acid sequence of light chain CDR3 of rat anti-GPRC5D antibody 2B1 (FIG. 68)
  • SEQ ID NO: 60 amino acid sequence of light chain CDR1 of rat anti-GPRC5D antibody 7B4 (FIG. 69)
  • SEQ ID NO: 62 amino acid sequence of light chain CDR3 of rat anti-GPRC5D antibody 7B4 (FIG. 71)
  • SEQ ID NO: 63 Nucleotide sequence of humanized 2B1 light chain (h2B1_L1) (FIG. 72), of which nucleotide numbers 1 to 60 are signal sequences and are usually not included in most mature h2B1_L1 nucleotide sequences.
  • SEQ ID NO: 64 amino acid sequence of humanized 2B1 light chain (h2B1_L1) (FIG. 73)
  • SEQ ID NO: 66 amino acid sequence of humanized 2B1 light chain (h2B1_L2) (FIG. 75)
  • SEQ ID NO: 67 nucleotide sequence of humanized 2B1 light chain (h2B1_L3) (FIG. 76)
  • SEQ ID NO: 68 amino acid sequence of humanized 2B1 light chain (h2B1_L3) (FIG. 77)
  • SEQ ID NO: 69 nucleotide sequence of humanized 2B1 light chain (h2B1_L4)
  • SEQ ID NO: 71 nucleotide sequence of humanized 2B1 light chain (h2B1_L5) (FIG. 80)
  • SEQ ID NO: 72 amino acid sequence of humanized 2B1 light chain (h2B1_L5)
  • SEQ ID NO: 73 nucleotide sequence of humanized 2B1 heavy chain (h2B1_H1)
  • SEQ ID NO: 74 amino acid sequence of humanized 2B1 heavy chain (h2B1_H1)
  • SEQ ID NO: 75 nucleotide sequence of humanized 2B1 heavy chain (h2B1_H2) (FIG.
  • SEQ ID NO: 76 amino acid sequence of humanized 2B1 heavy chain (h2B1_H2) (FIG. 85)
  • SEQ ID NO: 77 nucleotide sequence of humanized 2B1 heavy chain (h2B1_H3) (FIG. 86)
  • SEQ ID NO: 78 Amino acid sequence of humanized 2B1 heavy chain (h2B1_H3)
  • SEQ ID NO: 79 Nucleotide sequence of humanized 2B1 heavy chain (h2B1_H4)
  • SEQ ID NO: 80 amino acid sequence of humanized 2B1 heavy chain (h2B1_H4) (FIG.
  • SEQ ID NO: 81 nucleotide sequence of humanized 7B4 light chain (h7B4_L1) (FIG. 90)
  • SEQ ID NO: 82 Amino acid sequence of humanized 7B4 light chain (h7B4_L1) (FIG. 91)
  • SEQ ID NO: 83 Nucleotide sequence of humanized 7B4 light chain (h7B4_L2) (FIG. 92)
  • SEQ ID NO: 86 Amino acid sequence of humanized 7B4 heavy chain (h7B4_H1) (FIG. 95)
  • SEQ ID NO: 87 nucleotide sequence of humanized 7B4 heavy chain (h7B4_H2) (FIG. 96)
  • SEQ ID NO: 88 amino acid sequence of humanized 7B4 heavy chain (h7B4_H2) (FIG. 97)
  • SEQ ID NO: 91 Nucleotide sequence of humanized 7B4 heavy chain (h7B4_H5) (FIG. 100)
  • SEQ ID NO: 92 amino acid sequence of humanized 7B4 heavy chain (h7B4_H5) (FIG. 101)
  • SEQ ID NO: 93 amino acid sequence of cynomolgus GPRC5D amino terminal peptide (FIG. 105)
  • SEQ ID NO: 94 nucleotide sequence of primer A (FIG.
  • SEQ ID NO: 95 primer B used for scFv sequence analysis
  • nucleotide sequence SEQ ID NO: 96: nucleotide sequence of the variable region of the C2037 heavy chain (FIG. 108)
  • SEQ ID NO: 97: amino acid sequence of variable region of C2037 heavy chain SEQ ID NO: 98: nucleotide sequence of variable region of C2037 light chain (FIG. 110)
  • SEQ ID NO: 101 amino acid sequence of variable region of C3048 heavy chain (FIG. 113)
  • SEQ ID NO: 102 nucleotide sequence of variable region of C3048 light chain (FIG. 114)
  • SEQ ID NO: 103 Amino acid sequence of variable region of C3048 light chain (FIG. 115)
  • SEQ ID NO: 104 nucleotide sequence of variable region of C3015 heavy chain (FIG. 116)
  • SEQ ID NO: 105 amino acid sequence of variable region of C3015 heavy chain (FIG. 117)
  • SEQ ID NO: 106 nucleotide sequence of variable region of C3015 light chain (FIG.
  • SEQ ID NO: 107 amino acid sequence of variable region of C3015 light chain (FIG. 119)
  • SEQ ID NO: 108 Nucleotide sequence of variable region of C3022 heavy chain ( Figure 120)
  • SEQ ID NO: 109 amino acid sequence of variable region of C3022 heavy chain (FIG. 121)
  • SEQ ID NO: 110 nucleotide sequence of variable region of C3022 light chain (FIG. 122)
  • SEQ ID NO: 112 amino acid sequence of C2037 heavy chain CDR2 (FIG. 125)
  • SEQ ID NO: 113 Amino acid sequence of C2037 heavy chain CDR3 (FIG.
  • SEQ ID NO: 114 amino acid sequence of C2037 light chain CDR1 (FIG. 127)
  • SEQ ID NO: 115 amino acid sequence of C2037 light chain CDR2 (FIG. 128)
  • SEQ ID NO: 116 amino acid sequence of C2037 light chain CDR3 (FIG. 129)
  • SEQ ID NO: 117 amino acid sequence of C3048 heavy chain CDR1 (FIG. 130)
  • SEQ ID NO: 118: Amino acid sequence of C3048 heavy chain CDR2 (FIG. 131) SEQ ID NO: 119 amino acid sequence of C3048 heavy chain CDR3 ( Figure 132)
  • SEQ ID NO: 120 amino acid sequence of C3048 light chain CDR1 (FIG.
  • SEQ ID NO: 121 Amino acid sequence of C3048 light chain CDR2 (FIG. 134)
  • SEQ ID NO: 122 Amino acid sequence of C3048 light chain CDR3 ( Figure 135)
  • SEQ ID NO: 123 amino acid sequence of C3015 heavy chain CDR1 (FIG. 136)
  • SEQ ID NO: 124 amino acid sequence of C3015 heavy chain CDR2 (FIG. 137)
  • SEQ ID NO: 125 Amino acid sequence of C3015 heavy chain CDR3 ( Figure 138)
  • SEQ ID NO: 127 Amino acid sequence of C3015 light chain CDR2
  • SEQ ID NO: 128 Amino acid sequence of C3015 light chain CDR3
  • SEQ ID NO: 129 amino acid sequence of C3022 heavy chain CDR1
  • SEQ ID NO: 130 amino acid sequence of C3022 heavy chain CDR2
  • SEQ ID NO: 131 amino acid sequence of C3022 heavy chain CDR3
  • SEQ ID NO: 132 amino acid sequence of C3022 light chain CDR1 ( Figure 145)
  • SEQ ID NO: 134 amino acid sequence of C3022 light chain CDR3 (FIG. 147)
  • SEQ ID NO: 135 Amino acid sequence of variable region of C3022 light chain (FIG. 123)
  • SEQ ID NO: 136 IgGized weight chain nucleotide sequence of C2037 (FIG. 148)
  • SEQ ID NO: 137 IgGized light chain nucleotide sequence of C2037 (FIG. 149)
  • SEQ ID NO: 139 IgGized light chain nucleotide sequence of C3048 (FIG.
  • SEQ ID NO: 140 IgG30 weight chain nucleotide sequence of C3015 (FIG. 152)
  • SEQ ID NO: 141 IgG30 light chain nucleotide sequence of C3015 (FIG. 153)
  • SEQ ID NO: 142 IgG302 weight chain nucleotide sequence of C3022 (FIG. 154)
  • SEQ ID NO: 143 IgG variant light chain nucleotide sequence of C3022 (FIG. 155)
  • SEQ ID NO: 144 IgGized weight chain amino acid sequence of C2037 (FIG. 156)
  • SEQ ID NO: 145 IgG-modified light chain amino acid sequence of C2037 (FIG.
  • SEQ ID NO: 146 IgG30 weight chain amino acid sequence of C3048 ( Figure 158)
  • SEQ ID NO: 147 IgG-modified light chain amino acid sequence of C3048 (FIG. 159)
  • SEQ ID NO: 148 IgGized body weight chain amino acid sequence of C3015 (FIG. 160)
  • SEQ ID NO: 149 IgG variant light chain amino acid sequence of C3015 (FIG. 161)
  • SEQ ID NO: 150: IgG30 weight chain amino acid sequence of C3022 (FIG. 162)
  • SEQ ID NO: 151 IgG 30 light chain amino acid sequence of C3022 (FIG.
  • SEQ ID NO: 152 nucleotide sequence of rat anti-CD3 antibody heavy chain variable region (FIG. 168)
  • SEQ ID NO: 153 nucleotide sequence of rat anti-CD3 antibody light chain variable region (FIG. 169)
  • SEQ ID NO: 154 nucleotide sequence of C3E-7000 (FIG. 170)
  • SEQ ID NO: 155 amino acid sequence of heavy chain variable region of C3E-7034 (FIG. 171)
  • SEQ ID NO: 157 nucleotide sequence of C3E-7034 (FIG.
  • SEQ ID NO: 158 amino acid sequence of light chain variable region of C3E-7035 (FIG. 174)
  • SEQ ID NO: 159 nucleotide sequence of C3E-7035 (FIG. 175)
  • SEQ ID NO: 160 amino acid sequence of the light chain variable region of C3E-7036 (FIG. 176)
  • SEQ ID NO: 161 nucleotide sequence of C3E-7036 (FIG. 177)
  • SEQ ID NO: 162 nucleotide sequence of C2037-C3E-7034 (FIG. 178)
  • SEQ ID NO: 163 nucleotide sequence of C3048-C3E-7034 (FIG.
  • SEQ ID NO: 164 nucleotide sequence of C3022-C3E-7034 (FIG. 180)
  • SEQ ID NO: 165 nucleotide sequence of C2037-C3E-7035 (FIG. 181)
  • SEQ ID NO: 166 nucleotide sequence of C3048-C3E-7035 (FIG. 182)
  • SEQ ID NO: 167 nucleotide sequence of C3022-C3E-7035 (FIG. 183)
  • SEQ ID NO: 168 nucleotide sequence of C2037-C3E-7036 (FIG. 184)
  • SEQ ID NO: 170 nucleotide sequence of C3022-C3E-7036 (FIG. 186) SEQ ID NO: 171 amino acid sequence of C2037-C3E-7034 (FIG. 187) SEQ ID NO: 172: Amino acid sequence of C3048-C3E-7034 (FIG. 188) SEQ ID NO: 173: Amino acid sequence of C3022-C3E-7034 (FIG. 189) SEQ ID NO: 174: Amino acid sequence of C2037-C3E-7035 (FIG. 190) SEQ ID NO: 175: Amino acid sequence of C3048-C3E-7035 (FIG.
  • SEQ ID NO: 176 Amino acid sequence of C3022-C3E-7035 (FIG. 192)
  • SEQ ID NO: 177 Amino acid sequence of C2037-C3E-7036 (FIG. 193)
  • SEQ ID NO: 178 Amino acid sequence of C3048-C3E-7036 (FIG. 194)
  • SEQ ID NO: 179 Amino acid sequence of C3022-C3E-7036 (FIG. 195)
  • SEQ ID NO: 181 amino acid sequence of C3E-7035 (FIG. 204)
  • SEQ ID NO: 182 Amino acid sequence of C3E-7036 (FIG.
  • SEQ ID NO: 183 amino acid sequence of heavy chain CDR1 of C3E-7000 (FIG. 206) SEQ ID NO: 184 amino acid sequence of heavy chain CDR2 of C3E-7000 (FIG. 207) SEQ ID NO: 185 amino acid sequence of heavy chain CDR3 of C3E-7000 ( Figure 208) SEQ ID NO: 186: Amino acid sequence of light chain CDR1 of C3E-7000 (FIG. 209) SEQ ID NO: 187: amino acid sequence of light chain CDR2 of C3E-7000 (FIG. 210) SEQ ID NO: 188: amino acid sequence of light chain CDR3 of C3E-7000 (FIG.
  • SEQ ID NO: 189 amino acid sequence of human CD3 ⁇
  • SEQ ID NO: 190 nucleotide sequence of the variable region of the E1018 heavy chain
  • SEQ ID NO: 191 Amino acid sequence of the variable region of the E1018 heavy chain
  • SEQ ID NO: 192 nucleotide sequence of the variable region of the E1018 light chain
  • SEQ ID NO: 193 Amino acid sequence of variable region of E1018 light chain
  • SEQ ID NO: 194 nucleotide sequence of the variable region of the D1012 heavy chain
  • SEQ ID NO: 195 amino acid sequence of the variable region of the D1012 heavy chain (FIG. 218)
  • SEQ ID NO: 196 nucleotide sequence of the variable region of the D1012 light chain (FIG. 219)
  • SEQ ID NO: 197 Amino acid sequence of the variable region of the D1012 light chain (FIG. 220)
  • SEQ ID NO: 198 nucleotide sequence of h2B1 Fab HC_1 (FIG. 222)
  • SEQ ID NO: 200 nucleotide sequence of h2B1 Fab HC_2 (FIG.
  • SEQ ID NO: 201 amino acid sequence of h2B1 Fab HC_2 (FIG. 225)
  • SEQ ID NO: 202 nucleotide sequence of h2B1 Fab LC_1 (FIG. 226)
  • SEQ ID NO: 203 amino acid sequence of h2B1 Fab LC_1 (FIG. 227)
  • SEQ ID NO: 204 nucleotide sequence of h2B1 Fab LC_2 (FIG. 228)
  • SEQ ID NO: 207 Amino acid sequence of C3E-7034 Fab HC (FIG. 231)
  • SEQ ID NO: 208 Nucleotide sequence of C3E-7034 Fab LC ( Figure 232)
  • SEQ ID NO: 209 Amino acid sequence of C3E-7034 Fab LC (FIG. 233)
  • SEQ ID NO: 210 Nucleotide sequence of C3E-7036 Fab HC ( Figure 234)
  • SEQ ID NO: 212 Nucleotide sequence of C3E-7036 Fab LC (FIG.
  • SEQ ID NO: 213 Amino acid sequence of C3E-7036 Fab LC (FIG. 237)
  • SEQ ID NO: 219 amino acid sequence of C3E-7034 scFv Fc (FIG. 243)
  • SEQ ID NO: 220 nucleotide sequence of C3E-7036 scFv Fc (FIG. 244)
  • SEQ ID NO: 224 nucleotide sequence of C3E-8015 (FIG.
  • SEQ ID NO: 225 Amino acid sequence of C3E-8015 (FIG. 256)
  • SEQ ID NO: 226 nucleotide sequence of C3E-8017 (FIG. 257)
  • SEQ ID NO: 227 Amino acid sequence of C3E-8017 (FIG. 258)
  • SEQ ID NO: 228 nucleotide sequence of C3E-8018 (FIG. 259)
  • SEQ ID NO: 229 Amino acid sequence of C3E-8018 (FIG. 260)
  • SEQ ID NO: 232 nucleotide sequence of C3E-8027 (FIG. 263)
  • SEQ ID NO: 233 Amino acid sequence of C3E-8027 (FIG. 264)
  • SEQ ID NO: 234 nucleotide sequence of C3E-8028 (FIG. 265)
  • SEQ ID NO: 235 Amino acid sequence of C3E-8028 (FIG. 266)
  • SEQ ID NO: 236 nucleotide sequence of h2B1 Fab HC_4 (FIG. 267)
  • SEQ ID NO: 237 amino acid sequence of h2B1 Fab HC_4 (FIG.
  • SEQ ID NO: 238 amino acid sequence of heavy chain CDR2 of CDR variant (FIG. 276), X is any natural amino acid.
  • SEQ ID NO: 239 amino acid sequence of light chain CDR2 of CDR variant (FIG. 277), X is any natural amino acid.
  • SEQ ID NO: 240 Amino acid sequence of heavy chain variable region of CDR variant of C3E-7034 (FIG. 278), X is any natural amino acid.
  • SEQ ID NO: 241 Amino acid sequence of the light chain variable region of a CDR variant of C3E-7034 (FIG. 279), where X is any natural amino acid.
  • SEQ ID NO: 242 Amino acid sequence of the light chain variable region of a CDR variant of C3E-7035 (FIG. 280), where X is any natural amino acid.
  • SEQ ID NO: 243 Amino acid sequence of the light chain variable region of the CDR variant of C3E-7036 (FIG. 281), X is any natural amino acid.
  • SEQ ID NO: 244 Amino acid sequence of C3E-7078 (FIG. 282).
  • SEQ ID NO: 245 Amino acid sequence of C3E-7085 (FIG. 283).
  • SEQ ID NO: 246 amino acid sequence of C3E-7086 (FIG. 284).
  • SEQ ID NO: 247 Amino acid sequence of C3E-7087 (FIG. 285).
  • SEQ ID NO: 248 Amino acid sequence of C3E-7088 (FIG. 286).
  • SEQ ID NO: 249 amino acid sequence of C3E-7089 (FIG. 287).
  • SEQ ID NO: 250 amino acid sequence of C3E-7090 (FIG. 288).
  • SEQ ID NO: 251 Amino acid sequence of C3E-7091 (FIG. 289).
  • SEQ ID NO: 252 amino acid sequence of C3E-7092 (FIG. 290).
  • SEQ ID NO: 253 amino acid sequence of C3E-7093 (FIG. 291).
  • SEQ ID NO: 254 amino acid sequence of C3E-7094 (FIG. 292).
  • SEQ ID NO: 255 amino acid sequence of C3E-7095 ( Figure 293).

Abstract

本発明は、ヒトGPRC5Dに結合する新規な抗体、あるいは、該抗体を含む抗原結合性を有する分子を提供する。 ヒトGPRC5Dに結合する新規な抗体、該抗体を含む抗原結合性を有する分子、該抗体又は該分子を有効成分として含む抗腫瘍医薬組成物の提供等。

Description

抗GPRC5D抗体及び該抗体を含む分子
本発明は、新規な抗GPRC5D抗体、及び、該抗体を含む分子に関する。
 G-protein coupled receptor family C group 5 member D(GPRC5D)は、一連のヒトGPCRのアミノ酸配列を用いたESTデータベースのホモロジー検索により発見されたGタンパク質共役受容体の1つである(非特許文献1)。GPCR family C group 5受容体(GPRC5受容体)には、GPRC5A、GPRC5B、GPRC5C、GPRC5Dの4つのサブタイプが存在し、レチノイン酸刺激により発現誘導が行われることから、レチノイン酸誘導性オーファンGタンパク質共役受容体(RAIG)としても知られている(非特許文献2)。しかしながら、GPRC5Dの生理機能や生理的リガンド、共役するGタンパク質のサブタイプ等については明らかになっていない。
 GPRC5D遺伝子と癌との関連性に関しては、GPRC5Dが多発性骨髄腫で高発現していることが知られている。具体的には、GPRC5Dの過剰発現が多発性骨髄腫患者の予後不良と相関すること(非特許文献3)、多発性骨髄腫患者への薬物治療によりGPRC5Dを発現している細胞の割合が減少することなどが知られている(非特許文献4)。 以上のように、GPRC5Dの過剰発現と癌との関連性から、GPRC5Dが癌に対する優れた標的治療となる可能性が示唆されている。そして、抗GPRC5D抗体、及び、該抗体と抗CD3抗体とを含み、GPRC5Dを外因的に発現させている3T3細胞に結合性を示す二重特異性抗体の報告もある(特許文献1)。しかし、GPRC5Dを標的とした医療用医薬品は開発されていない。
国際公開第2016/090329号
ブラウナー他(H Brauner-Osborne, et al.)、バイオキミカ・エト・バイオフィジカ・アクタ(Biochim Biophys Acta.)、2001年4月刊、1518巻(3号)、237乃至248頁 井上他(S Inoue, et al.)、ジャーナル・オブ・インベスティゲーティブ・デマトロジー(Journal of Investigative Dermatology.)、2004年3月刊、122巻(3号)、565乃至573頁 アタマニウク他(J Atamaniuk, et al.)、ヨーロピアン・ジャーナル・オブ・クリニカル・インベスティゲーション(European Journal of Clinical Investigation.)、2012年5月刊、42巻(9号)、953乃至960頁 コッヘン他(Y Cohen, et al.)、ヘマトロジー(Hematology)、2013年11月刊、18巻(6号)、348乃至351頁
本発明の1つの課題は、抗癌作用を有するGPRC5Dに対する抗体、該抗体の抗原結合性断片、及び、該抗体又は該抗体の抗原結合性断片を含有する分子を提供することである。
本発明の他の1つの課題は、該抗体、該抗体の抗原結合性断片、又は、該分子を含有する医薬組成物等を提供することである。
また、本発明の課題には、該抗体、該抗体の抗原結合性断片、及び、該分子の有するアミノ酸配列をコードするヌクレオチド配列を含むポリヌクレオチド、該ポリヌクレオチドが挿入されたベクター、該ポリヌクレオチド又はベクターが導入された細胞、該細胞を培養する工程を含む該抗体、該抗体の抗原結合性断片、及び、該分子の製造方法が含まれる。さらに、本発明の他の1つの課題は、該抗体、該抗体の抗原結合性断片、又は、該分子を用いた癌の治療方法を提供することである。
発明者らは上記課題を解決するために鋭意検討を行い、新規な抗GPRC5D抗体を創出し、該抗体が抗癌作用を有することを見出し、本発明を完成させた。
 本発明は、
(1) 下記(I)乃至(III):
(II)
配列番号48に示されるアミノ酸配列からなる重鎖CDR1、
配列番号49に示されるアミノ酸配列からなる重鎖CDR2、及び
配列番号50に示されるアミノ酸配列からなる重鎖CDR3を含む重鎖可変領域、
並びに、
配列番号57に示されるアミノ酸配列からなる軽鎖CDR1、
配列番号58に示されるアミノ酸配列からなる軽鎖CDR2、及び
配列番号59に示されるアミノ酸配列からなる軽鎖CDR3を含む軽鎖可変領域、
(I)
配列番号45に示されるアミノ酸配列からなる重鎖CDR1、
配列番号46に示されるアミノ酸配列からなる重鎖CDR2、及び
配列番号47に示されるアミノ酸配列からなる重鎖CDR3を含む重鎖可変領域、
並びに、
配列番号54に示されるアミノ酸配列からなる軽鎖CDR1、
配列番号55に示されるアミノ酸配列からなる軽鎖CDR2、及び
配列番号56に示されるアミノ酸配列からなる軽鎖CDR3を含む軽鎖可変領域、
(III) 
配列番号51に示されるアミノ酸配列からなる重鎖CDR1、
配列番号52に示されるアミノ酸配列からなる重鎖CDR2、及び
配列番号53に示されるアミノ酸配列からなる重鎖CDR3を含む重鎖可変領域、
並びに、
配列番号60に示されるアミノ酸配列からなる軽鎖CDR1、
配列番号61に示されるアミノ酸配列からなる軽鎖CDR2、及び
配列番号62に示されるアミノ酸配列からなる軽鎖CDR3を含む軽鎖可変領域
のいずれか1つに記載の重鎖可変領域並びに軽鎖可変領域を含み、ヒトGPRC5Dに結合する抗体又は該抗体の抗原結合性断片。
(2) 重鎖可変領域及び軽鎖可変領域が、(II)に記載の重鎖可変領域及び軽鎖可変領域である前記(1)に記載の抗体又は該抗体の抗原結合性断片。
(3) 重鎖可変領域及び軽鎖可変領域が、(I)に記載の重鎖可変領域及び軽鎖可変領域である前記(1)に記載の抗体又は該抗体の抗原結合性断片。
(4) 重鎖可変領域及び軽鎖可変領域が、(III)に記載の重鎖可変領域及び軽鎖可変領域である前記(1)に記載の抗体又は該抗体の抗原結合性断片。
(5) キメラ化抗体又は該抗体の抗原結合性断片である、前記(1)乃至(4)のいずれか1つに記載の抗体又は該抗体の抗原結合性断片。
(6) ヒト化抗体又は該抗体の抗原結合性断片である、前記(1)乃至(4)のいずれか1つに記載の抗体又は該抗体の抗原結合性断片。
(7) ヒト抗体又は該抗体の抗原結合性断片である、前記(1)乃至(4)のいずれか1つに記載の抗体又は該抗体の抗原結合性断片。
(8)配列番号64に示されるアミノ酸配列の21乃至127番目のアミノ酸残基、
配列番号66に示されるアミノ酸配列の21乃至127番目のアミノ酸残基、
配列番号68に示されるアミノ酸配列の21乃至127番目のアミノ酸残基、
配列番号70に示されるアミノ酸配列の21乃至127番目のアミノ酸残基、及び
配列番号72に示されるアミノ酸配列の21乃至127番目のアミノ酸残基のいずれか1つに示されるアミノ酸配列を含む軽鎖可変領域、並びに、
配列番号74に示されるアミノ酸配列の20乃至142番目のアミノ酸残基、
配列番号76に示されるアミノ酸配列の20乃至142番目のアミノ酸残基、
配列番号78に示されるアミノ酸配列の20乃至142番目のアミノ酸残基、及び
配列番号80に示されるアミノ酸配列の20乃至142番目のアミノ酸残基のいずれか1つで示されるアミノ酸配列を含む重鎖可変領域を含む前記(1)、(2)、又は(6)のいずれか1つに記載の抗体又は該抗体の抗原結合性断片。
(9)・配列番号74に示されるアミノ酸配列の20乃至142番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域、及び、配列番号64に示されるアミノ酸配列の21乃至127番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域、
・配列番号74に示されるアミノ酸配列の20乃至142番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域、及び、配列番号66に示されるアミノ酸配列の21乃至127番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域、
・配列番号76に示されるアミノ酸配列の20乃至142番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域、及び、配列番号66に示されるアミノ酸配列の21乃至127番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域、
・配列番号76に示されるアミノ酸配列の20乃至142番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域、及び、配列番号68に示されるアミノ酸配列の21乃至127番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域、
・配列番号76に示されるアミノ酸配列の20乃至142番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域、及び、配列番号70に示されるアミノ酸配列の21乃至127番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域、
・配列番号76に示されるアミノ酸配列の20乃至142番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域、及び、配列番号72に示されるアミノ酸配列の21乃至127番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域、
・配列番号78に示されるアミノ酸配列の20乃至142番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域、及び、配列番号68に示されるアミノ酸配列の21乃至127番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域、
・配列番号78に示されるアミノ酸配列の20乃至142番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域、及び、配列番号70に示されるアミノ酸配列の21乃至127番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域、
・配列番号78に示されるアミノ酸配列の20乃至142番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域、及び、配列番号72に示されるアミノ酸配列の21乃至127番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域、
・配列番号80に示されるアミノ酸配列の20乃至142番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域、及び、配列番号64に示されるアミノ酸配列の21乃至127番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域、
・配列番号80に示されるアミノ酸配列の20乃至142番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域、及び、配列番号68に示されるアミノ酸配列の21乃至127番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域、
・配列番号80に示されるアミノ酸配列の20乃至142番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域、及び、配列番号70に示されるアミノ酸配列の21乃至127番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域、又は、
・配列番号80に示されるアミノ酸配列の20乃至142番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域、及び、配列番号72に示されるアミノ酸配列の21乃至127番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域
のいずれか1つの重鎖可変領域及び軽鎖可変領域の組み合わせを含む、前記(1)、(2)、又は(6)又は(8)のいずれか1つに記載の抗体又は該抗体の抗原結合性断片。
(10)配列番号82に示されるアミノ酸配列の21乃至126番目のアミノ酸残基、又は
配列番号84に示されるアミノ酸配列の21乃至126番目のアミノ酸残基に示されるアミノ酸配列を含む軽鎖可変領域、並びに、
配列番号86に示されるアミノ酸配列の20乃至142番目のアミノ酸残基、
配列番号88に示されるアミノ酸配列の20乃至142番目のアミノ酸残基、
配列番号90に示されるアミノ酸配列の20乃至142番目のアミノ酸残基、及び
配列番号92に示されるアミノ酸配列の20乃至142番目のアミノ酸残基のいずれか1つで示されるアミノ酸配列を含む重鎖可変領域を含む前記(1)、(2)、又は(6)のいずれか1つに記載の抗体又は該抗体の抗原結合性断片。 
(11)・配列番号86に示されるアミノ酸配列の20乃至142番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域、及び、配列番号84に示されるアミノ酸配列の21乃至126番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域、
・配列番号88に示されるアミノ酸配列の20乃至142番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域、及び、配列番号84に示されるアミノ酸配列の21乃至126番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域、
・配列番号90に示されるアミノ酸配列の20乃至142番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域、及び、配列番号82に示されるアミノ酸配列の21乃至126番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域、
・配列番号90に示されるアミノ酸配列の20乃至142番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域、及び、配列番号84に示されるアミノ酸配列の21乃至126番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域、又は、
・配列番号92に示されるアミノ酸配列の20乃至142番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域、及び、配列番号82に示されるアミノ酸配列の21乃至126番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域
のいずれか1つの重鎖可変領域及び軽鎖可変領域の組み合わせを含む、前記(1)、(4)、(6)、又は(10)のいずれか1つに記載の抗体又は該抗体の抗原結合性断片。
(12) Fcを含む、前記(1)乃至(11)のいずれか1つに記載の抗体。 
(13) ヒトGPRC5Dに結合し、下記<1>乃至<4>のいずれか1つに記載の重鎖可変領域並びに軽鎖可変領域を含む抗体又は該抗体の抗原結合性断片;
<1> 
配列番号111に示されるアミノ酸配列からなる重鎖CDR1、
配列番号112に示されるアミノ酸配列からなる重鎖CDR2、及び
配列番号113に示されるアミノ酸配列からなる重鎖CDR3を含む重鎖可変領域、
並びに、
配列番号114に示されるアミノ酸配列からなる軽鎖CDR1、
配列番号115に示されるアミノ酸配列からなる軽鎖CDR2、及び
配列番号116に示されるアミノ酸配列からなる軽鎖CDR3を含む軽鎖可変領域、
<2>
配列番号117に示されるアミノ酸配列からなる重鎖CDR1、
配列番号118に示されるアミノ酸配列からなる重鎖CDR2、及び
配列番号119に示されるアミノ酸配列からなる重鎖CDR3を含む重鎖可変領域、
並びに、
配列番号120に示されるアミノ酸配列からなる軽鎖CDR1、
配列番号121に示されるアミノ酸配列からなる軽鎖CDR2、及び
配列番号122に示されるアミノ酸配列からなる軽鎖CDR3を含む軽鎖可変領域、
<3>
配列番号123に示されるアミノ酸配列からなる重鎖CDR1、
配列番号124に示されるアミノ酸配列からなる重鎖CDR2、及び
配列番号125に示されるアミノ酸配列からなる重鎖CDR3を含む重鎖可変領域、
並びに、
配列番号126に示されるアミノ酸配列からなる軽鎖CDR1、
配列番号127に示されるアミノ酸配列からなる軽鎖CDR2、及び
配列番号128に示されるアミノ酸配列からなる軽鎖CDR3を含む軽鎖可変領域、
<4>
配列番号129に示されるアミノ酸配列からなる重鎖CDR1、
配列番号130に示されるアミノ酸配列からなる重鎖CDR2、及び
配列番号131に示されるアミノ酸配列からなる重鎖CDR3を含む重鎖可変領域、
並びに、
配列番号132に示されるアミノ酸配列からなる軽鎖CDR1、
配列番号133に示されるアミノ酸配列からなる軽鎖CDR2、及び
配列番号134に示されるアミノ酸配列からなる軽鎖CDR3を含む軽鎖可変領域。
(14) 重鎖可変領域及び軽鎖可変領域が、<1>に記載の重鎖可変領域及び軽鎖可変領域である前記(13)に記載の抗体又は該抗体の抗原結合性断片。
(15) 重鎖可変領域及び軽鎖可変領域が、<2>に記載の重鎖可変領域及び軽鎖可変領域である前記(13)に記載の抗体又は該抗体の抗原結合性断片。
(16) 重鎖可変領域及び軽鎖可変領域が、<3>に記載の重鎖可変領域及び軽鎖可変領域である前記(13)に記載の抗体又は該抗体の抗原結合性断片。
(17) 重鎖可変領域及び軽鎖可変領域が、<4>に記載の重鎖可変領域及び軽鎖可変領域である前記(13)に記載の抗体又は該抗体の抗原結合性断片。
(18)配列番号97に示されるアミノ酸配列、
配列番号101に示されるアミノ酸配列、
配列番号105に示されるアミノ酸配列、及び
配列番号109に示されるアミノ酸配列のいずれか1つを含む重鎖可変領域、
並びに、
配列番号99に示されるアミノ酸配列、
配列番号103に示されるアミノ酸配列、
配列番号107に示されるアミノ酸配列、及び
配列番号135に示されるアミノ酸配列のいずれか1つを含む軽鎖可変領域
を含む前記(13)乃至(17)のいずれか1つに記載の抗体又は該抗体の抗原結合性断片。
(19)・配列番号97に示されるアミノ酸配列を含む重鎖可変領域、及び、配列番号99に示されるアミノ酸配列を含む軽鎖可変領域、
・配列番号101に示されるアミノ酸配列を含む重鎖可変領域、及び、配列番号103に示されるアミノ酸配列を含む軽鎖可変領域、
・配列番号105に示されるアミノ酸配列を含む重鎖可変領域、及び、配列番号107に示されるアミノ酸配列を含む軽鎖可変領域、又は、
・配列番号109に示されるアミノ酸配列を含む重鎖可変領域、及び、配列番号135に示されるアミノ酸配列を含む軽鎖可変領域
のいずれか1つの重鎖可変領域及び軽鎖可変領域の組み合わせを含む、前記(13)乃至(18)に記載の抗体又は該抗体の抗原結合性断片。
(20)・配列番号144に示されるアミノ酸配列を含む重鎖、及び、配列番号145に示されるアミノ酸配列を含む軽鎖、
・配列番号146に示されるアミノ酸配列を含む重鎖、及び、配列番号147に示されるアミノ酸配列を含む軽鎖、
・配列番号148に示されるアミノ酸配列を含む重鎖、及び、配列番号149に示されるアミノ酸配列を含む軽鎖、又は、
・配列番号150に示されるアミノ酸配列を含む重鎖、及び、配列番号151に示されるアミノ酸配列を含む軽鎖
のいずれか1つの重鎖及び軽鎖の組み合わせを含む抗体又は該抗体の抗原結合性断片。
(21) 前記(8)乃至(12)、(18)乃至(20)のいずれか1つに記載の抗体又は該抗体の抗原結合性断片に含まれるアミノ酸配列をコードするヌクレオチド配列を含むポリヌクレオチドの相補鎖とストリンジェントな条件下でハイブリダイズするポリヌクレオチドに含まれるヌクレオチド配列によりコードされるアミノ酸配列を含み、且つ、ヒトGPRC5Dに結合する抗体又は該抗体の抗原結合性断片。
(22) 前記(8)乃至(12)、(18)乃至(20)のいずれか1つに記載の抗体又は該抗体の抗原結合性断片に含まれるアミノ酸配列と90%以上同一なアミノ酸配列を含み、且つ、ヒトGPRC5Dに結合する抗体又は該抗体の抗原結合性断片。
(23) 前記(8)乃至(12)、(18)乃至(20)のいずれか1つに記載の抗体又は該抗体の抗原結合性断片に含まれるアミノ酸配列において1乃至数個のアミノ酸が置換、欠失又は付加されてなるアミノ酸配列を含み、且つ、ヒトGPRC5Dに結合する抗体又は該抗体の抗原結合性断片。
(24) 前記(1)乃至(20)のいずれか1つに記載の抗体又は該抗体の抗原結合性断片が結合するヒトGPRC5D上の部位に結合する抗体又は該抗体の抗原結合性断片。
(25) 前記(1)乃至(20)のいずれか1つに記載の抗体又は該抗体の抗原結合性断片とヒトGPRC5D上への結合において競合する抗体又は該抗体の抗原結合性断片。
(26) カニクイザルGPRC5Dに結合する、前記(1)乃至(25)のいずれか1つに記載の抗体又は抗原結合性断片。
(27) Fab、F(ab)’、Fv、scFv、又は、sdAbである前記(1)乃至(26)のいずれか1つに記載の抗体又は該抗体の抗原結合性断片。
(28) 前記(2)、(8)、又は、(9)に記載の重鎖可変領域、及び、軽鎖可変領域、並びに、
i)配列番号199に示されるアミノ酸配列の147乃至475番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖定常領域と、配列番号203に示されるアミノ酸配列の131乃至237番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖定常領域、
ii)配列番号201に示されるアミノ酸配列の147乃至475番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖定常領域と、配列番号205に示されるアミノ酸配列の131乃至237番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖定常領域、 
iii)配列番号215に示されるアミノ酸配列の147乃至475番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖定常領域と、配列番号217に示されるアミノ酸配列の131乃至237番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖定常領域 
又は、
iv)配列番号237に示されるアミノ酸配列の147乃至476番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖定常領域と、配列番号217に示されるアミノ酸配列の131乃至237番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖定常領域
を含むヒトGPRC5Dに結合する抗体又は該抗体の抗原結合性断片。
(29) 配列番号76に示されるアミノ酸配列の20乃至142番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域、及び、配列番号72に示されるアミノ酸配列の21乃至127番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域、並びに、
i)配列番号199に示されるアミノ酸配列の147乃至475番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖定常領域と、配列番号203に示されるアミノ酸配列の131乃至237番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖定常領域、
ii)配列番号201に示されるアミノ酸配列の147乃至475番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖定常領域と、配列番号205に示されるアミノ酸配列の131乃至237番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖定常領域、
iii)配列番号215に示されるアミノ酸配列の147乃至475番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖定常領域と、配列番号217に示されるアミノ酸配列の131乃至237番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖定常領域
又は、
iv)配列番号237に示されるアミノ酸配列の147乃至476番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖定常領域と、配列番号217に示されるアミノ酸配列の131乃至237番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖定常領域
を含むヒトGPRC5Dに結合する抗体又は該抗体の抗原結合性断片。 
(30) 前記(2)、(8)、又は、(9)に記載の重鎖可変領域、及び、軽鎖可変領域、並びに、変異型Fcを含むヒトGPRC5Dに結合する抗体又は該抗体の抗原結合性断片。
(31) 配列番号76に示されるアミノ酸配列の20乃至142番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域、及び、配列番号72に示されるアミノ酸配列の21乃至127番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域、並びに、変異型Fcを含むヒトGPRC5Dに結合する抗体又は該抗体の抗原結合性断片。
(32) 前記(1)乃至(31)のいずれか1つに記載の抗体又は該抗体の抗原結合性断片をコードするポリヌクレオチド。
(33) 前記(32)に記載のいずれか1つのポリヌクレオチドを含むベクター
(34) 前記(32)に記載のいずれか1つのポリヌクレオチド、又は、前記(33)に記載のベクターを含むか、又は、前記(1)乃至(31)のいずれか1つに記載の抗体又は該抗体の抗原結合性断片を産生する細胞。
(35) 前記(32)に記載のいずれか1つのポリヌクレオチド、又は、前記(33に記載のベクターを含むか、又は、前記(1)乃至(31)のいずれか1つに記載の抗体又は該抗体の抗原結合性断片を細胞表面上に発現する人工免疫細胞。
(36) 前記(34)に記載の細胞を培養する工程、及び、該培養物からヒトGPRC5Dに結合する抗体又は該抗体の抗原結合性断片を回収する工程を含む、ヒトGPRC5Dに結合する抗体又は該抗体の抗原結合性断片の製造方法。
(37) 前記(36)に記載の方法により得られる、ヒトGPRC5Dに結合する抗体又は該抗体の抗原結合性断片。
(38) 前記(1)乃至(31)、(37)のいずれか1つに記載の抗体又は該抗体の抗原結合性断片、前記(32)に記載のポリヌクレオチド、前記(33)に記載のベクター、又は、前記(35)に記載の人工免疫細胞を有効成分として含有する治療、及び/又は、予防のための医薬組成物。
(39)癌の治療、及び/又は、予防のための前記(38)に記載の医薬組成物。
(40) 癌が、GPRC5D蛋白質を発現している、乳癌、子宮内膜癌、卵巣癌、肺癌、胃癌、前立腺癌、腎癌、肝臓癌、膵臓癌、大腸癌、食道癌、膀胱癌、子宮頚癌、血液癌、リンパ腫、又は、悪性黒色腫である前記(39)に記載の医薬組成物。
(41) 癌が、GPRC5D蛋白質を発現している多発性骨髄腫である前記(40)に記載の医薬組成物。
(42) 前記(1)乃至(31)、(37)のいずれか1つに記載の抗体又は該抗体の抗原結合性断片を含む抗原結合性を有する分子。
(43) 多重特異的である前記(42)に記載の分子。
(44) 前記(1)乃至(31)、(37)のいずれか1つに記載のヒトGPRC5Dに結合する抗体又は該抗体の抗原結合性断片と、
配列番号183に示されるアミノ酸配列を含む重鎖CDR1、
配列番号238に示されるアミノ酸配列を含む重鎖CDR2、及び、
配列番号185に示されるアミノ酸配列を含む重鎖CDR3を含む重鎖可変領域;並びに、
配列番号186に示されるアミノ酸配列を含む軽鎖CDR1、
配列番号239に示されるアミノ酸配列を含む軽鎖CDR2、及び、
配列番号188に示されるアミノ酸配列を含む軽鎖CDR3を含む軽鎖可変領域;
を含み;且つヒトCD3及びカニクイザルCD3に結合する抗体又は該抗体の抗原結合性断片を含む前記(42)又は(43)に記載の分子。
(45)前記重鎖CDR2の
1番目のXaaは、(A、E、G、H、I、L、T、V、R、S)からなる群より選択され
且つ2番目のXaaはSであるか、又は、
1番目のXaaはNであり、
且つ2番目のXaaは、(E、R、F、Y、L、V、I、K、T)からなる群より選択され、
前記軽鎖CDR2の
aaは、(Q、A、G、S、N、D)からなる群より選択され、
ヒトCD3及びカニクイザルCD3に結合することを特徴とする前記(44)に記載の分子。
(46)前記重鎖CDR2の
1番目のXaaは、(R、S)からなる群より選択され、2番目のXaaはSであり、且つ
前記軽鎖CDR2の
aaは、(Q、A、G、S、N、D)からなる群より選択される、
ヒトCD3及びカニクイザルCD3に結合することを特徴とする前記(44)又は(45)に記載の分子。
(47) 配列番号240に示されるアミノ酸配列を含む重鎖可変領域と、配列番号241、242、及び243のいずれか1つに示されるアミノ酸配列を含む軽鎖可変領域を含み、
配列番号240で示されるアミノ酸配列の1番目のXaaは、(A、E、G、H、I、L、T、V、R、S)からなる群より選択され、且つ、2番目のXaaはSであるか、又は、
1番目のXaaはNであり、且つ、2番目のXaaは、(E、R、F、Y、L、V、I、K、T)からなる群より選択され、
配列番号241、242、及び、243のいずれか1つに示されるアミノ酸配列の
aaは、(Q、A、G、S、N、D)からなる群より選択される、
前記(42)乃至(45)のいずれか1つに記載の分子。
(48) 配列番号240の
1番目のXaaは、(R、S)からなる群より選択され、
2番目のXaaはSであり、且つ、
配列番号241、242、及び、243のいずれか1つに示されるアミノ酸配列の
aaは、(Q、A、G、S、N、D)からなる群より選択される、
前記(47)に記載の分子。
(49) 前記(1)乃至(31)、(37)のいずれか1つに記載のヒトGPRC5Dに結合する抗体又は該抗体の抗原結合性断片と、
配列番号183に示される重鎖CDR1のアミノ酸配列、
配列番号184に示される重鎖CDR2のアミノ酸配列、及び、
配列番号185に示される重鎖CDR3のアミノ酸配列を含む重鎖可変領域;並びに、
配列番号186に示される軽鎖CDR1のアミノ酸配列、
配列番号187に示される軽鎖CDR2のアミノ酸配列、及び、
配列番号188に示される軽鎖CDR3のアミノ酸配列を含む軽鎖可変領域;
を含み、且つヒトCD3及びカニクイザルCD3に結合する抗体又は該抗体の抗原結合性断片を含む前記(42)乃至(44)のいずれか1つに記載の分子。
(50) 前記ヒトCD3及びカニクイザルCD3に結合する抗体又は該抗体の抗原結合性断片が、配列番号155に示されるアミノ酸配列を含む重鎖可変領域と、配列番号156、158、及び、160のいずれか1つに示されるアミノ酸配列を含む軽鎖可変領域とを含む抗体又は該抗体の抗原結合性断片である、前記(49)に記載の分子。
(51) 前記ヒトCD3及びカニクイザルCD3に結合する抗体の抗原結合性断片が、Fab、F(ab)’、Fv、scFv、又は、sdAbである、前記(44)乃至(50)のいずれか1つに記載の分子。 
(52) 前記ヒトCD3及びカニクイザルCD3に結合する抗体が、ヒト免疫グロブリン定常領域又はFcもしくは変異型Fcを含むヒト化抗体又はヒト抗体である、前記(44)乃至(51)のいずれか1つに記載の分子。
(53) 前記ヒトCD3及びカニクイザルCD3に結合する抗体又は該抗体の抗原結合性断片が、配列番号180、181、及び、182のいずれか1つに示されるアミノ酸配列を含む抗体又は該抗体の抗原結合性断片でる前記(44)乃至(52)のいずれか1つに記載の分子。
(54) 前記ヒトCD3及びカニクイザルCD3に結合する抗体又は該抗体の抗原結合性断片と、前記(1)乃至(31)、(37)のいずれか1つに記載の抗体又は該抗体の抗原結合性断片とが、リンカーにより結合してなる、あるいはリンカーなしで結合してなる前記(40)乃至(44)のいずれか1つに記載の分子。
(55) 前記(2)、(8)、又は、(9)に記載のヒトGPRC5Dに結合する抗体又は該抗体の抗原結合性断片、及び、
・配列番号207に示されるアミノ酸配列の25乃至142番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域と、配列番号209に示されるアミノ酸配列の24乃至132番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域、
・配列番号211に示されるアミノ酸配列の25乃至142番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域と、配列番号213に示されるアミノ酸配列の24乃至130番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域、
・配列番号244の2乃至119のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域と、配列番号244の135乃至243のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域、
・配列番号245の2乃至119のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域と、配列番号245の135乃至241のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域、 
・配列番号246の2乃至119のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域と、配列番号246の135乃至243のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域、
・配列番号247の2乃至119のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域と、配列番号247の135乃至243のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域、
・配列番号248の2乃至119のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域と、配列番号248の135乃至243のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域、 
・配列番号249の2乃至119のアミノ酸残基を含む重鎖可変領域と、配列番号249の135乃至243のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域、
・配列番号250の2乃至119のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域と、配列番号250の135乃至243のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域、
・配列番号251の2乃至119のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域と、配列番号251の135乃至243のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域、
・配列番号252の2乃至119のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域と、配列番号252の135乃至243のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域、
・配列番号253の2乃至119のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域と、配列番号253の135乃至242のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域、
・配列番号254の2乃至119のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域と、配列番号254の135乃至243のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域、
又は、
・配列番号255の2乃至119のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域と、配列番号255の135乃至243のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域
を含み、且つヒトCD3及びカニクイザルCD3に結合する抗体又は該抗体の抗原結合性断片を含む前記(42)乃至(44)のいずれか1つに記載の分子。
(56) ヒトGPRC5Dに結合する抗体又は該抗体の抗原結合性断片が、配列番号76に示されるアミノ酸配列の20乃至142番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域、及び、配列番号72に示されるアミノ酸配列の21乃至127番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域、並びに、
i)配列番号199に示されるアミノ酸配列の147乃至475番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖定常領域と、配列番号203に示されるアミノ酸配列の131乃至237番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖定常領域、
ii)配列番号201に示されるアミノ酸配列の147乃至475番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖定常領域と、配列番号205に示されるアミノ酸配列の131乃至237番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖定常領域、
iii)配列番号215に示されるアミノ酸配列の147乃至475番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖定常領域と、配列番号217に示されるアミノ酸配列の131乃至237番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖定常領域
又は、
iv)配列番号237に示されるアミノ酸配列の147乃至476番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖定常領域と、配列番号217に示されるアミノ酸配列の131乃至237番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖定常領域を含み、ヒトCD3及びカニクイザルCD3に結合する抗体又は該抗体の抗原結合性断片が、さらに変異型Fcを含む、前記(55)に記載の分子。適用可能な形態には、Hybrid型の二重特異的分子が含まれる。
(57) ヒトGPRC5Dに結合する抗体又は該抗体の抗原結合性断片が、配列番号76に示されるアミノ酸配列の20乃至142番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域、及び、配列番号72に示されるアミノ酸配列の21乃至127番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域、並びに、
iii)配列番号215に示されるアミノ酸配列の147乃至475番目のアミノ酸残基で示されるアミノ配列を含む重鎖定常領域と、配列番号217に示されるアミノ酸配列の131乃至237番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖定常領域
又は、
iv)配列番号237に示されるアミノ酸配列の147乃至476番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖定常領域と、配列番号217に示されるアミノ酸配列の131乃至237番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖定常領域を含み、ヒトCD3及びカニクイザルCD3に結合する抗体又は該抗体の抗原結合性断片が、さらに変異型Fcを含む、前記(55)に記載の分子。適用可能な形態には、Hybrid型の二重特異的分子が含まれる。
(58) 配列番号215に示されるアミノ酸配列の24乃至475番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖と、配列番号217に示されるアミノ酸配列の24乃至237番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖を含むヒトGPRC5Dに結合する抗体又は該抗体の抗原結合性断片、及び、配列番号219に示されるアミノ酸配列の24乃至266番目のアミノ酸残基で示されるアミノ酸配列と変異型Fcを含むヒトCD3及びカニクイザルCD3に結合する抗体又は該抗体の抗原結合性断片、
 配列番号215に示されるアミノ酸配列の24乃至475番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖と、配列番号217に示されるアミノ酸配列の24乃至237番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖を含むヒトGPRC5Dに結合する抗体又は該抗体の抗原結合性断片、及び、配列番号221に示されるアミノ酸配列の24乃至264番目のアミノ酸残基で示されるアミノ酸配列と変異型Fcを含むヒトCD3及びカニクイザルCD3に結合する抗体又は該抗体の抗原結合性断片、
 配列番号215に示されるアミノ酸配列の24乃至475番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖と、配列番号217に示されるアミノ酸配列の24乃至237番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖を含むヒトGPRC5Dに結合する抗体又は該抗体の抗原結合性断片、及び、配列番号225に示されるアミノ酸配列の24乃至264番目のアミノ酸残基で示されるアミノ酸配列と変異型Fcを含むヒトCD3及びカニクイザルCD3に結合する抗体又は該抗体の抗原結合性断片、
 配列番号215に示されるアミノ酸配列の24乃至475番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖と、配列番号217に示されるアミノ酸配列の24乃至237番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖を含むヒトGPRC5Dに結合する抗体又は該抗体の抗原結合性断片、及び、配列番号227に示されるアミノ酸配列の24乃至266番目のアミノ酸残基で示されるアミノ酸配列と変異型Fcを含むヒトCD3及びカニクイザルCD3に結合する抗体又は該抗体の抗原結合性断片、
 配列番号215に示されるアミノ酸配列の24乃至475番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖と、配列番号217に示されるアミノ酸配列の24乃至237番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖を含むヒトGPRC5Dに結合する抗体又は該抗体の抗原結合性断片、及び、配列番号229に示されるアミノ酸配列の24乃至266番目のアミノ酸残基で示されるアミノ酸配列と変異型Fcを含むヒトCD3及びカニクイザルCD3に結合する抗体又は該抗体の抗原結合性断片、
 配列番号237に示されるアミノ酸配列の24乃至476番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖と、配列番号217に示されるアミノ酸配列の24乃至237番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖を含むヒトGPRC5Dに結合する抗体又は該抗体の抗原結合性断片、及び、配列番号231に示されるアミノ酸配列の24乃至264番目のアミノ酸残基で示されるアミノ酸配列と変異型Fcを含むヒトCD3及びカニクイザルCD3に結合する抗体又は該抗体の抗原結合性断片、
 配列番号237に示されるアミノ酸配列の24乃至476番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖と、配列番号217に示されるアミノ酸配列の24乃至237番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖を含むヒトGPRC5Dに結合する抗体又は該抗体の抗原結合性断片、及び、配列番号233に示されるアミノ酸配列の24乃至266番目のアミノ酸残基で示されるアミノ酸配列と変異型Fcを含むヒトCD3及びカニクイザルCD3に結合する抗体又は該抗体の抗原結合性断片、又は、
 配列番号237に示されるアミノ酸配列の24乃至476番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖と、配列番号217に示されるアミノ酸配列の24乃至237番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖を含むヒトGPRC5Dに結合する抗体又は該抗体の抗原結合性断片、及び、配列番号235に示されるアミノ酸配列の24乃至266番目のアミノ酸残基で示されるアミノ酸配列と変異型Fcを含むヒトCD3及びカニクイザルCD3に結合する抗体又は該抗体の抗原結合性断片を含む前記(55)に記載の分子。
(59) 配列番号215に示されるアミノ酸配列の24乃至475番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖と、配列番号217に示されるアミノ酸配列の24乃至237番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖を含むヒトGPRC5Dに結合する抗体又は該抗体の抗原結合性断片、及び、配列番号225に示されるアミノ酸配列の24乃至264番目のアミノ酸残基で示されるアミノ酸配列と変異型Fcを含むヒトCD3及びカニクイザルCD3に結合する抗体又は該抗体の抗原結合性断片、
 配列番号215に示されるアミノ酸配列の24乃至475番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖と、配列番号217に示されるアミノ酸配列の24乃至237番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖を含むヒトGPRC5Dに結合する抗体又は該抗体の抗原結合性断片、及び、配列番号227に示されるアミノ酸配列の24乃至266番目のアミノ酸残基で示されるアミノ酸配列と変異型Fcを含むヒトCD3及びカニクイザルCD3に結合する抗体又は該抗体の抗原結合性断片、
 配列番号215に示されるアミノ酸配列の24乃至475番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖と、配列番号217に示されるアミノ酸配列の24乃至237番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖を含むヒトGPRC5Dに結合する抗体又は該抗体の抗原結合性断片、及び、配列番号229に示されるアミノ酸配列の24乃至266番目のアミノ酸残基で示されるアミノ酸配列と変異型Fcを含むヒトCD3及びカニクイザルCD3に結合する抗体又は該抗体の抗原結合性断片、
 配列番号237に示されるアミノ酸配列の24乃至476番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖と、配列番号217に示されるアミノ酸配列の24乃至237番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖を含むヒトGPRC5Dに結合する抗体又は該抗体の抗原結合性断片、及び、配列番号231に示されるアミノ酸配列の24乃至264番目のアミノ酸残基で示されるアミノ酸配列と変異型Fcを含むヒトCD3及びカニクイザルCD3に結合する抗体又は該抗体の抗原結合性断片、
 配列番号237に示されるアミノ酸配列の24乃至476番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖と、配列番号217に示されるアミノ酸配列の24乃至237番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖を含むヒトGPRC5Dに結合する抗体又は該抗体の抗原結合性断片、及び、配列番号233に示されるアミノ酸配列の24乃至266番目のアミノ酸残基で示されるアミノ酸配列と変異型Fcを含むヒトCD3及びカニクイザルCD3に結合する抗体又は該抗体の抗原結合性断片、又は、
 配列番号237に示されるアミノ酸配列の24乃至476番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖と、配列番号217に示されるアミノ酸配列の24乃至237番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖を含むヒトGPRC5Dに結合する抗体又は該抗体の抗原結合性断片、及び、配列番号235に示されるアミノ酸配列の24乃至266番目のアミノ酸残基で示されるアミノ酸配列と変異型Fcを含むヒトCD3及びカニクイザルCD3に結合する抗体又は該抗体の抗原結合性断片を含む前記(55)に記載の分子。適用可能な形態には、Hybrid型の二重特異的分子が含まれる。
(60) ヒトGPRC5Dに結合する抗体又は該抗体の抗原結合性断片が、配列番号76に示されるアミノ酸配列の20乃至142番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域、及び、配列番号72に示されるアミノ酸配列の21乃至127番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域、並びに、
i)配列番号199に示されるアミノ酸配列の147乃至475番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖定常領域と、配列番号203に示されるアミノ酸配列の131乃至237番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖定常領域、
ii)配列番号201に示されるアミノ酸配列の147乃至475番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖定常領域と、配列番号205に示されるアミノ酸配列の131乃至237番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖定常領域、
iii)配列番号215に示されるアミノ酸配列の147乃至475番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖定常領域と、配列番号217に示されるアミノ酸配列の131乃至237番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖定常領域
又は、
iv)配列番号237に示されるアミノ酸配列の147乃至476番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖定常領域と、配列番号217に示されるアミノ酸配列の131乃至237番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖定常領域を含み、ヒトCD3及びカニクイザルCD3に結合する抗体又は該抗体の抗原結合性断片が、さらに、
v)配列番号207に示されるアミノ酸配列の143乃至471番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖定常領域と、配列番号209に示されるアミノ酸配列の133乃至238番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖定常領域、又は、
vi)配列番号211に示されるアミノ酸配列の143乃至471番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖定常領域と、配列番号213に示されるアミノ酸配列の131乃至236番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖定常領域を含む前記(55)に記載の分子。 適用可能な形態には、FSA型の二重特異的分子が含まれる。
(61) ヒトGPRC5Dに結合する抗体又は該抗体の抗原結合性断片が、配列番号76に示されるアミノ酸配列の20乃至142番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域、及び、配列番号72に示されるアミノ酸配列の21乃至127番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域、並びに、
iii)配列番号215に示されるアミノ酸配列の147乃至475番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖定常領域と、配列番号217に示されるアミノ酸配列の131乃至237番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖定常領域
又は、
iv)配列番号237に示されるアミノ酸配列の147乃至476番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖定常領域と、配列番号217に示されるアミノ酸配列の131乃至237番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖定常領域を含み、ヒトCD3及びカニクイザルCD3に結合する抗体又は該抗体の抗原結合性断片が、さらに、
v)配列番号207に示されるアミノ酸配列の143乃至471番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖定常領域と、配列番号209に示されるアミノ酸配列の133乃至238番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖定常領域、又は、
vi)配列番号211に示されるアミノ酸配列の143乃至471番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖定常領域と、配列番号213に示されるアミノ酸配列の131乃至236番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖定常領域を含む前記(55)に記載の分子。適用可能な形態には、FSA型の二重特異的分子が含まれる。
(62) 配列番号199に示されるアミノ酸配列の24乃至475番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖と、配列番号203に示されるアミノ酸配列の24乃至237番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖を含むヒトGPRC5Dに結合する抗体又は該抗体の抗原結合性断片、及び、配列番号207に示されるアミノ酸配列の25乃至471番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖と、配列番号209に示されるアミノ酸配列の24乃至238番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖を含むヒトCD3及びカニクイザルCD3に結合する抗体又は該抗体の抗原結合性断片
又は、
配列番号201に示されるアミノ酸配列の24乃至475番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖と、配列番号205に示されるアミノ酸配列の24乃至237番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖を含むヒトGPRC5Dに結合する抗体又は該抗体の抗原結合性断片、及び、配列番号211に示されるアミノ酸配列の25乃至471番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖と、配列番号213に示されるアミノ酸配列の24乃至236番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖を含むヒトCD3及びカニクイザルCD3に結合する抗体又は該抗体の抗原結合性断片を含む前記(55)に記載の分子。適用可能な形態には、FSA型の二重特異的分子が含まれる。
(63) ヒトGPRC5Dに結合する抗体又は該抗体の抗原結合性断片が、配列番号76に示されるアミノ酸配列の20乃至142番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域、及び、配列番号72に示されるアミノ酸配列の21乃至127番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域と、さらに変異型Fcを含み、ヒトCD3及びカニクイザルCD3に結合する抗体又は該抗体の抗原結合性断片が、さらに変異型Fcを含む、前記(55)に記載の分子。適用可能な形態には、Dual型の二重特異的分子が含まれる。
(64) 配列番号223に示されるアミノ酸配列の24乃至271番目のアミノ酸残基で示されるアミノ酸配列と変異型Fcを含むヒトGPRC5Dに結合する抗体又は該抗体の抗原結合性断片、及び、配列番号219に示されるアミノ酸配列の24乃至266番目のアミノ酸残基で示されるアミノ酸配列と変異型Fcを含むヒトCD3及びカニクイザルCD3に結合する抗体又は該抗体の抗原結合性断片
又は、
 配列番号223に示されるアミノ酸配列の24乃至271番目のアミノ酸残基で示されるアミノ酸配列と変異型Fcを含むヒトGPRC5Dに結合する抗体又は該抗体の抗原結合性断片、及び、配列番号221に示されるアミノ酸配列の24乃至264番目のアミノ酸残基で示されるアミノ酸配列と変異型Fcを含むヒトCD3及びカニクイザルCD3に結合する抗体又は該抗体の抗原結合性断片を含む前記(55)に記載の分子。適用可能な形態には、Dual型の二重特異的分子が含まれる。
(65) 前記ヒトCD3及びカニクイザルCD3に結合する抗体又は該抗体の抗原結合性断片と、前記(19)に記載の抗体又は該抗体の抗原結合性断片とが、リンカーにより結合してなる、あるいはリンカーなしで結合してなる前記(53)に記載の分子。
(66) 配列番号171乃至179のいずれか1つに示されるアミノ酸配列を有する、前記(54)又は(65)に記載の、ヒトCD3及びカニクイザルCD3、並びに、ヒトGPRC5Dに結合する分子。 
(67) 前記(50)、(53)、(58)、(59)、(62)、(64)、(65)、及び(66)のいずれか1つに記載の分子に含まれる、ヒトCD3及びカニクイザルCD3に結合する抗体又は該抗体の抗原結合性断片に含まれるアミノ酸配列をコードするヌクレオチド配列を含むポリヌクレオチドの相補鎖とストリンジェントな条件下でハイブリダイズするポリヌクレオチドに含まれるヌクレオチド配列によりコードされるアミノ酸配列を含み、且つ、ヒトCD3及びカニクイザルCD3、並びに、ヒトGPRC5Dに結合する分子。
(68) 前記(50)、(53)、(58)、(59)、(62)、(64)、(65)、及び(66)のいずれか1つに記載のヒトCD3及びカニクイザルCD3に結合する抗体又は該抗体の抗原結合性断片に含まれるアミノ酸配列と90%以上同一なアミノ酸配列を含み、且つ、ヒトCD3及びカニクイザルCD3、並びに、ヒトGPRC5Dに結合する分子。
(69) 前記(50)、(53)、(58)、(59)、(62)、(64)、(65)、及び(66)のいずれか1つに記載の分子に含まれるヒトCD3及びカニクイザルCD3に結合する抗体又は該抗体の抗原結合性断片に含まれるアミノ酸配列において1乃至数個のアミノ酸が置換、欠失又は付加されてなるアミノ酸配列を含み、且つ、ヒトCD3及びカニクイザルCD3、並びに、ヒトGPRC5Dに結合する分子。
(70) カニクイザルGPRC5Dに結合する、前記(42)乃至(69)のいずれか1つに記載の分子。
(71) 二重特異的である前記(43)乃至(70)のいずれか1つに記載の分子。
(72) ポリペプチドである前記(42)乃至(71)のいずれか1つに記載の分子。
(73) 前記(72)に記載の分子の有するアミノ酸配列をコードするヌクレオチド配列を含むポリヌクレオチド。
(74) 前記(73)に記載のポリヌクレオチドを含むベクター。
(75) 前記(73)に記載のポリヌクレオチド若しくは前記(74)に記載のベクター、又は、前記(71)に記載の分子を産生する細胞。
(76) 前記(75)に記載の細胞を培養する工程、及び、該培養物からヒトCD3及びカニクイザルCD3、並びに/又は、ヒトGPRC5Dに結合する分子を回収する工程を含む、ヒトCD3及びカニクイザルCD3、並びに、ヒトGPRC5Dに結合する分子の製造方法。
(77) 前記(76)に記載の方法により得られる、ヒトCD3及びカニクイザルCD3、並びに、ヒトGPRC5Dに結合する分子。
(78) カニクイザルGPRC5Dに結合する、前記(77)に記載の分子。
(79) 前記(42)乃至(72)、(77)及び(78)のいずれか1つに記載の分子、前記(73)に記載のポリヌクレオチド、又は前記(74)に記載のベクターを有効成分として含有する治療及び/又は予防のための医薬組成物。
(80) 癌の治療、及び/又は、予防のための前記(79)に記載の医薬組成物。
(81) 癌が、GPRC5D蛋白質を発現している、乳癌、子宮内膜癌、卵巣癌、肺癌、胃癌、前立腺癌、腎癌、肝臓癌、膵臓癌、大腸癌、食道癌、膀胱癌、子宮頚癌、血液癌、リンパ腫、又は、悪性黒色腫である前記(80)に記載の医薬組成物。
(82) 癌が、GPRC5D蛋白質を発現している多発性骨髄腫である前記(79)又は(80)に記載の医薬組成物。
(83) 前記(42)乃至(72)、(77)及び(78)のいずれか1つに記載の分子、又は、前記(79)乃至(82)のいずれか1つに記載の医薬組成物を投与することを特徴とする癌の治療及び/又は予防方法。
(84) GPRC5Dを発現している細胞へのT細胞リダイレクションによって、該細胞への細胞傷害を誘導することを特徴とする、前記(79)乃至(82)のいずれか1つに記載の医薬組成物。
(85) GPRC5Dを発現している細胞へのT細胞リダイレクションによって、該細胞への細胞傷害を誘導することを特徴とする、前記(83)に記載の方法。 
(86) 前記(42)乃至(72)、(77)及び(78)のいずれか1つに記載の分子、又は、前記(79)乃至(82)のいずれか1つに記載の医薬組成物を投与する工程を含む、GPRC5Dを発現している細胞へのT細胞リダイレクションによって該細胞への細胞傷害を誘導する方法、及び、
(87) 前記(42)乃至(72)、(77)及び(78)のいずれか1つに記載の分子、又は、前記(79)乃至(82)のいずれか1つに記載の医薬組成物を投与する工程を含む、GPRC5Dを発現している細胞へT細胞をリダイレクションする方法を提供する。
 本発明によれば、ヒトGPRC5Dに結合する新規な抗GPRC5D抗体又は該抗体の抗原結合性断片、及び、該抗体又は該抗体の抗原結合性断片を含み抗原結合性を有する新規な分子が得られる。該分子には、抗CD3抗体を含むことができる。
 本発明の提供する該抗体、該抗体の抗原結合性断片、及び、該分子を用いることによりGPRC5D蛋白質を発現している各癌種の治療又は予防、好適には多発性骨髄腫の治療又は予防が可能になる。 
ラット抗GPRC5D抗体(2A4、2B1、7B4)のヒトGPRC5Dに対する結合性をフローサイトメトリー法により検証した図である。縦軸はフローサイトメトリー法により測定された平均蛍光強度の相対値を示す。 ヒトGPRC5Dのアミノ末端アミノ酸配列を示した図である(配列表の配列番号1)。 ヒトGPRC5Dのアミノ末端アミノ酸配列を示した図である(配列表の配列番号2)。 ラット抗GPRC5D抗体(2A4、2B1、7B4)のヒトGPRC5Dに対する結合性を、フローサイトメーター(FACS)を用いて検証した図である。縦軸はフローサイトメトリー法により測定された平均蛍光強度の相対値を示す。ペプチドの分子内ジスルフィド結合については、ジスルフィド結合あり(A)、なし(B)である。 ラット抗GPRC5D抗体(2A4、2B1、7B4)がADCC活性を有することを示した図である。 2A4の重鎖遺伝子の可変領域のcDNAをPCRで増幅するためのプライマーのヌクレオチド配列を示した図である(配列表の配列番号3)。 2A4の軽鎖遺伝子の可変領域のcDNAをPCRで増幅するためのプライマーのヌクレオチド配列を示した図である(配列表の配列番号10)。 2A4の重鎖の可変領域をコードするcDNAのヌクレオチド配列を示した図である(配列表の配列番号4)。 2A4の重鎖の可変領域のアミノ酸配列を示した図である(配列表の配列番号5)。 2B1の重鎖の可変領域をコードするcDNAのヌクレオチド配列を示した図である(配列表の配列番号6)。 2B1の重鎖の可変領域のアミノ酸配列を示した図である(配列表の配列番号7)。 7B4の重鎖の可変領域をコードするcDNAのヌクレオチド配列を示した図である(配列表の配列番号8)。 7B4の重鎖の可変領域のアミノ酸配列を示した図である(配列表の配列番号9)。 2A4の軽鎖の可変領域をコードするcDNAのヌクレオチド配列を示した図である(配列表の配列番号11)。 2A4の軽鎖の可変領域のアミノ酸配列を示した図である(配列表の配列番号12)。 2B1の軽鎖の可変領域をコードするcDNAのヌクレオチド配列を示した図である(配列表の配列番号13)。 2B1の軽鎖の可変領域のアミノ酸配列を示した図である(配列表の配列番号14)。 7B4の軽鎖の可変領域をコードするcDNAのヌクレオチド配列を示した図である(配列表の配列番号15)。 7B4の軽鎖の可変領域のアミノ酸配列を示した図である(配列表の配列番号16)。 ヒトκ鎖分泌シグナル配列及びヒトκ鎖定常領域のアミノ酸をコードするDNA配列を含むDNA断片のヌクレオチド配列を示した図である(配列表の配列番号17)。 軽鎖発現ベクタープライマーFのヌクレオチド配列を示した図である(配列表の配列番号18)。 軽鎖発現ベクタープライマーRのヌクレオチド配列を示した図である(配列表の配列番号19)。 ヒト重鎖シグナル配列及びヒトIgG1定常領域のアミノ酸をコードするDNA配列を含むDNA断片のヌクレオチド配列を示した図である(配列表の配列番号20)。 ヒトキメラ化2A4(c2A4)軽鎖のヌクレオチド配列を示した図である。(配列表の配列番号21) ヒトキメラ化2A4(c2A4)軽鎖のアミノ酸配列を示した図である。(シグナル配列(1-20)、可変領域(21-127)、定常領域(128-234))(配列表の配列番号22) ヒトキメラ化2A4(c2A4)軽鎖用プライマーセットFのヌクレオチド配列を示した図である(配列表の配列番号23)。 ヒトキメラ化2A4(c2A4)軽鎖用プライマーセットRのヌクレオチド配列を示した図である(配列表の配列番号24)。 ヒトキメラ化2A4(c2A4)重鎖のヌクレオチド配列を示した図である。(配列表の配列番号25) ヒトキメラ化2A4(c2A4)重鎖のアミノ酸配列を示した図である。(シグナル配列(1-19)、可変領域(20-141)、定常領域(142-471))(配列表の配列番号26) ヒトキメラ化2A4(c2A4)重鎖用プライマーセットFのヌクレオチド配列を示した図である(配列表の配列番号27)。 ヒトキメラ化2A4(c2A4)重鎖用プライマーセットRのヌクレオチド配列を示した図である(配列表の配列番号28)。 ヒトキメラ化2B1(c2B1)軽鎖のヌクレオチド配列を示した図である。(配列表の配列番号29) ヒトキメラ化2B1(c2B1)軽鎖のアミノ酸配列を示した図である。(シグナル配列(1-20)、可変領域(21-127)、定常領域(128-234))(配列表の配列番号30) ヒトキメラ化2B1(c2B1)軽鎖用プライマーセットFのヌクレオチド配列を示した図である(配列表の配列番号31)。 ヒトキメラ化2B1(c2B1)軽鎖用プライマーセットRのヌクレオチド配列を示した図である(配列表の配列番号32)。 ヒトキメラ化2B1(c2B1)重鎖のヌクレオチド配列を示した図である。(配列表の配列番号33) ヒトキメラ化2B1(c2B1)重鎖のアミノ酸配列を示した図である。(シグナル配列(1-19)、可変領域(20-142)、定常領域(143-472))(配列表の配列番号34) ヒトキメラ化2B1(c2B1)重鎖用プライマーセットFのヌクレオチド配列を示した図である(配列表の配列番号35)。 ヒトキメラ化2B1(c2B1)重鎖用プライマーセットRのヌクレオチド配列を示した図である(配列表の配列番号36)。 ヒトキメラ化7B4(c7B4)軽鎖のヌクレオチド配列を示した図である。(配列表の配列番号37) ヒトキメラ化7B4(c7B4)軽鎖のアミノ酸配列を示した図である。(シグナル配列(1-20)、可変領域(21-126)、定常領域(127-233))(配列表の配列番号38) ヒトキメラ化7B4(c7B4)軽鎖用プライマーセットFのヌクレオチド配列を示した図である(配列表の配列番号39)。 ヒトキメラ化7B4(c7B4)軽鎖用プライマーセットRのヌクレオチド配列を示した図である(配列表の配列番号40)。 ヒトキメラ化7B4(c7B4)重鎖のヌクレオチド配列を示した図である。(配列表の配列番号41) ヒトキメラ化7B4(c7B4)重鎖のアミノ酸配列を示した図である。(シグナル配列(1-19)、可変領域(20-142)、定常領域(143-472))(配列表の配列番号42) ヒトキメラ化7B4(c7B4)重鎖用プライマーセットFのヌクレオチド配列を示した図である(配列表の配列番号43)。 ヒトキメラ化7B4(c7B4)重鎖用プライマーセットRのヌクレオチド配列を示した図である(配列表の配列番号44)。 ヒトキメラ化抗体(c2A4、c2B1、c7B4)のヒトGPRC5Dに対する結合性を、フローサイトメーター(FACS)を用いて検証した図である。縦軸はフローサイトメトリー法により測定された平均蛍光強度の相対値を示す。 ヒトキメラ化抗体(c2A4、c2B1、c7B4)のカニクイザルGPRC5Dに対する結合性を、フローサイトメーター(FACS)を用いて検証した図である。縦軸はフローサイトメトリー法により測定された平均蛍光強度の相対値を示す。 ヒトキメラ化抗体(c2A4、c2B1、c7B4)が、ヒトGPRC5Dに対して、ADCC活性を有することを示した図である。 ヒトキメラ化2A4(c2A4)の、GPRC5Dを発現しているヒト多発性骨髄腫細胞株KHM-1B移植BALB/c-nu/nuマウスにおけるin vivo腫瘍増殖抑制活性を示した図である。 ヒトキメラ化2B1(c2B1)の、GPRC5Dを発現しているヒト多発性骨髄腫細胞株KHM-1B移植BALB/c-nu/nuマウスにおけるin vivo腫瘍増殖抑制活性を示した図である。 ヒトキメラ化7B4(c7B4)の、GPRC5Dを発現しているヒト多発性骨髄腫細胞株KHM-1B移植BALB/c-nu/nuマウスにおけるin vivo腫瘍増殖抑制活性を示した図である。 ラット抗GPRC5D抗体2A4の重鎖CDR1のアミノ酸配列を示した図である(配列表の配列番号45)。 ラット抗GPRC5D抗体2A4の重鎖CDR2のアミノ酸配列を示した図である(配列表の配列番号46)。 ラット抗GPRC5D抗体2A4の重鎖CDR3のアミノ酸配列を示した図である(配列表の配列番号47)。 ラット抗GPRC5D抗体2B1の重鎖CDR1のアミノ酸配列を示した図である(配列表の配列番号48)。 ラット抗GPRC5D抗体2B1の重鎖CDR2のアミノ酸配列を示した図である(配列表の配列番号49)。 ラット抗GPRC5D抗体2B1の重鎖CDR3のアミノ酸配列を示した図である(配列表の配列番号50)。 ラット抗GPRC5D抗体7B4の重鎖CDR1のアミノ酸配列を示した図である(配列表の配列番号51)。 ラット抗GPRC5D抗体7B4の重鎖CDR2のアミノ酸配列を示した図である(配列表の配列番号52)。 ラット抗GPRC5D抗体7B4の重鎖CDR3のアミノ酸配列を示した図である(配列表の配列番号53)。 ラット抗GPRC5D抗体2A4の軽鎖CDR1のアミノ酸配列を示した図である(配列表の配列番号54)。 ラット抗GPRC5D抗体2A4の軽鎖CDR2のアミノ酸配列を示した図である(配列表の配列番号55)。 ラット抗GPRC5D抗体2A4の軽鎖CDR3のアミノ酸配列を示した図である(配列表の配列番号56)。 ラット抗GPRC5D抗体2B1の軽鎖CDR1のアミノ酸配列を示した図である(配列表の配列番号57)。 ラット抗GPRC5D抗体2B1の軽鎖CDR2のアミノ酸配列を示した図である(配列表の配列番号58)。 ラット抗GPRC5D抗体2B1の軽鎖CDR3のアミノ酸配列を示した図である(配列表の配列番号59)。 ラット抗GPRC5D抗体7B4の軽鎖CDR1のアミノ酸配列を示した図である(配列表の配列番号60)。 ラット抗GPRC5D抗体7B4の軽鎖CDR2のアミノ酸配列を示した図である(配列表の配列番号61)。 ラット抗GPRC5D抗体7B4の軽鎖CDR3のアミノ酸配列を示した図である(配列表の配列番号62)。 ヒト化2B1軽鎖(h2B1_L1)のヌクレオチド配列を示した図である。(配列表の配列番号63) ヒト化2B1軽鎖(h2B1_L1)のアミノ酸配列を示した図である。(シグナル配列(1-20)、可変領域(21-127)、定常領域(128-234))(配列表の配列番号64) ヒト化2B1軽鎖(h2B1_L2)のヌクレオチド配列を示した図である。(配列表の配列番号65) ヒト化2B1軽鎖(h2B1_L2)のアミノ酸配列を示した図である。(シグナル配列(1-20)、可変領域(21-127)、定常領域(128-234))(配列表の配列番号66) ヒト化2B1軽鎖(h2B1_L3)のヌクレオチド配列を示した図である。(配列表の配列番号67) ヒト化2B1軽鎖(h2B1_L3)のアミノ酸配列を示した図である。(シグナル配列(1-20)、可変領域(21-127)、定常領域(128-234))(配列表の配列番号68) ヒト化2B1軽鎖(h2B1_L4)のヌクレオチド配列を示した図である。(配列表の配列番号69) ヒト化2B1軽鎖(h2B1_L4)のアミノ酸配列を示した図である。(シグナル配列(1-20)、可変領域(21-127)、定常領域(128-234))(配列表の配列番号70) ヒト化2B1軽鎖(h2B1_L5)のヌクレオチド配列を示した図である。(配列表の配列番号71) ヒト化2B1軽鎖(h2B1_L5)のアミノ酸配列を示した図である。(シグナル配列(1-20)、可変領域(21-127)、定常領域(128-234))(配列表の配列番号72) ヒト化2B1重鎖(h2B1_H1)のヌクレオチド配列を示した図である。(配列表の配列番号73) ヒト化2B1重鎖(h2B1_H1)のアミノ酸配列を示した図である。(シグナル配列(1-19)、可変領域(20-142)、定常領域(143-472))(配列表の配列番号74) ヒト化2B1重鎖(h2B1_H2)のヌクレオチド配列を示した図である。(配列表の配列番号75) ヒト化2B1重鎖(h2B1_H2)のアミノ酸配列を示した図である。(シグナル配列(1-19)、可変領域(20-142)、定常領域(143-472))(配列表の配列番号76) ヒト化2B1重鎖(h2B1_H3)のヌクレオチド配列を示した図である。(配列表の配列番号77) ヒト化2B1重鎖(h2B1_H3)のアミノ酸配列を示した図である。(シグナル配列(1-19)、可変領域(20-142)、定常領域(143-472))(配列表の配列番号78) ヒト化2B1重鎖(h2B1_H4)のヌクレオチド配列を示した図である。(配列表の配列番号79) ヒト化2B1重鎖(h2B1_H4)のアミノ酸配列を示した図である。(シグナル配列(1-19)、可変領域(20-142)、定常領域(143-472))(配列表の配列番号80) ヒト化7B4軽鎖(h7B4_L1)のヌクレオチド配列を示した図である。(配列表の配列番号81) ヒト化7B4軽鎖(h7B4_L1)のアミノ酸配列を示した図である。(シグナル配列(1-20)、可変領域(21-126)、定常領域(127-233))(配列表の配列番号82) ヒト化7B4軽鎖(h7B4_L2)のヌクレオチド配列を示した図である。(配列表の配列番号83) ヒト化7B4軽鎖(h7B4_L2)のアミノ酸配列を示した図である。(シグナル配列(1-20)、可変領域(21-126)、定常領域(127-233))(配列表の配列番号84) ヒト化7B4重鎖(h7B4_H1)のヌクレオチド配列を示した図である。(配列表の配列番号85) ヒト化7B4重鎖(h7B4_H1)のアミノ酸配列を示した図である。(シグナル配列(1-19)、可変領域(20-142)、定常領域(143-472))(配列表の配列番号86) ヒト化7B4重鎖(h7B4_H2)のヌクレオチド配列を示した図である。(配列表の配列番号87) ヒト化7B4重鎖(h7B4_H2)のアミノ酸配列を示した図である。(シグナル配列(1-19)、可変領域(20-142)、定常領域(143-472))(配列表の配列番号88) ヒト化7B4重鎖(h7B4_H3)のヌクレオチド配列を示した図である。(配列表の配列番号89) ヒト化7B4重鎖(h7B4_H3)のアミノ酸配列を示した図である。(シグナル配列(1-19)、可変領域(20-142)、定常領域(143-472))(配列表の配列番号90) ヒト化7B4重鎖(h7B4_H5)のヌクレオチド配列を示した図である。(配列表の配列番号91) ヒト化7B4重鎖(h7B4_H5)のアミノ酸配列を示した図である。(シグナル配列(1-19)、可変領域(20-142)、定常領域(143-472))(配列表の配列番号92) ヒト化2B1のヒトGPRC5Dに対する結合性を、フローサイトメーター(FACS)を用いて検証した図である。縦軸はフローサイトメトリー法により測定された平均蛍光強度の相対値を示す。 ヒト化7B4のヒトGPRC5Dに対する結合性を、フローサイトメーター(FACS)を用いて検証した図である。縦軸はフローサイトメトリー法により測定された平均蛍光強度の相対値を示す。 ヒト化2B1、ヒト化7B4がADCC活性を有することを示した図である。 カニクイザルGPRC5D アミノ末端ペプチドのアミノ酸配列を示した図である(配列番号93) scFvの配列解析に用いたプライマーAのヌクレオチド配列を示した図である(配列番号94)。 scFvの配列解析に用いたプライマーBのヌクレオチド配列を示した図である(配列番号95)。 ヒト抗体C2037重鎖の可変領域のヌクレオチド配列を示した図である(配列表の配列番号96)。 ヒト抗体C2037重鎖の可変領域のアミノ酸配列を示した図である(配列表の配列番号97)。 ヒト抗体C2037軽鎖の可変領域のヌクレオチド配列を示した図である(配列表の配列番号98)。 ヒト抗体C2037軽鎖の可変領域のアミノ酸配列を示した図である(配列表の配列番号99)。 ヒト抗体C3048重鎖の可変領域のヌクレオチド配列を示した図である(配列表の配列番号100)。 ヒト抗体C3048重鎖の可変領域のアミノ酸配列を示した図である(配列表の配列番号101)。 ヒト抗体C3048軽鎖の可変領域のヌクレオチド配列を示した図である(配列表の配列番号102)。 ヒト抗体C3048軽鎖の可変領域のアミノ酸配列示した図である(配列表の配列番号103)。 ヒト抗体C3015重鎖の可変領域のヌクレオチド配列を示した図である(配列表の配列番号104)。 ヒト抗体C3015重鎖の可変領域のアミノ酸配列を示した図である(配列表の配列番号105)。 ヒト抗体C3015軽鎖の可変領域のヌクレオチド配列示した図である(配列表の配列番号106)。 ヒト抗体C3015軽鎖の可変領域のアミノ酸配列を示した図である(配列表の配列番号107)。 ヒト抗体C3022重鎖の可変領域のヌクレオチド配列を示した図である(配列表の配列番号108)。 ヒト抗体C3022重鎖の可変領域のアミノ酸配列を示した図である(配列表の配列番号109)。 ヒト抗体C3022軽鎖の可変領域のヌクレオチド配列示した図である(配列表の配列番号110)。 ヒト抗体C3022軽鎖の可変領域のアミノ酸配列を示した図である(配列表の配列番号135)。 ヒト抗体C2037重鎖CDR1のアミノ酸配列を示した図である(配列表の配列番号111)。 ヒト抗体C2037重鎖CDR2のアミノ酸配列を示した図である(配列表の配列番号112)。 ヒト抗体C2037重鎖CDR3のアミノ酸配列を示した図である(配列表の配列番号113)。 ヒト抗体C2037軽鎖CDR1のアミノ酸配列を示した図である(配列表の配列番号114)。 ヒト抗体C2037軽鎖CDR2のアミノ酸配列を示した図である(配列表の配列番号115)。 ヒト抗体C2037軽鎖CDR3のアミノ酸配列を示した図である(配列表の配列番号116)。 ヒト抗体C3048重鎖CDR1のアミノ酸配列を示した図である(配列表の配列番号117)。 ヒト抗体C3048重鎖CDR2のアミノ酸配列を示した図である(配列表の配列番号118)。 ヒト抗体C3048重鎖CDR3のアミノ酸配列を示した図である(配列表の配列番号119)。 ヒト抗体C3048軽鎖CDR1のアミノ酸配列を示した図である(配列表の配列番号120)。 ヒト抗体C3048軽鎖CDR2のアミノ酸配列を示した図である(配列表の配列番号121)。 ヒト抗体C3048軽鎖CDR3のアミノ酸配列を示した図である(配列表の配列番号122)。 ヒト抗体C3015重鎖CDR1のアミノ酸配列を示した図である(配列表の配列番号123)。 ヒト抗体C3015重鎖CDR2のアミノ酸配列を示した図である(配列表の配列番号124)。 ヒト抗体C3015重鎖CDR3のアミノ酸配列を示した図である(配列表の配列番号125)。 ヒト抗体C3015軽鎖CDR1のアミノ酸配列を示した図である(配列表の配列番号126)。 ヒト抗体C3015軽鎖CDR2のアミノ酸配列を示した図である(配列表の配列番号127)。 ヒト抗体C3015軽鎖CDR3のアミノ酸配列を示した図である(配列表の配列番号128)。 ヒト抗体C3022重鎖CDR1のアミノ酸配列を示した図である(配列表の配列番号129)。 ヒト抗体C3022重鎖CDR2のアミノ酸配列を示した図である(配列表の配列番号130)。 ヒト抗体C3022重鎖CDR3のアミノ酸配列を示した図である(配列表の配列番号131)。 ヒト抗体C3022軽鎖CDR1のアミノ酸配列を示した図である(配列表の配列番号132)。 ヒト抗体C3022軽鎖CDR2のアミノ酸配列を示した図である(配列表の配列番号133)。 ヒト抗体C3022軽鎖CDR3のアミノ酸配列を示した図である(配列表の配列番号134)。 ヒト抗体C2037のIgG化体重鎖ヌクレオチド配列を示した図である(配列表の配列番号136)。 ヒト抗体C2037のIgG化体軽鎖ヌクレオチド配列を示した図である(配列表の配列番号137)。 ヒト抗体C3048のIgG化体重鎖ヌクレオチド配列を示した図である(配列表の配列番号138)。 ヒト抗体C3048のIgG化体軽鎖ヌクレオチド配列を示した図である(配列表の配列番号139) ヒト抗体C3015のIgG化体重鎖ヌクレオチド配列を示した図である(配列表の配列番号140) ヒト抗体C3015のIgG化体軽鎖ヌクレオチド配列を示した図である。(配列表の配列番号141)。 ヒト抗体C3022のIgG化体重鎖ヌクレオチド配列を示した図である(配列表の配列番号142)。 ヒト抗体C3022のIgG化体軽鎖ヌクレオチド配列を示した図である(配列表の配列番号143)。 ヒト抗体C2037のIgG化体重鎖アミノ酸配列を示した図である(シグナル配列(1-19)、可変領域(20-134)、定常領域(135-464))(配列表の配列番号144)。 ヒト抗体C2037のIgG化体軽鎖アミノ酸配列を示した図である(シグナル配列(1-20)、可変領域(21-130)、定常領域(131-236))(配列表の配列番号145)。 ヒト抗体C3048のIgG化体重鎖アミノ酸配列を示した図である(シグナル配列(1-19)、可変領域(20-142)、定常領域(143-472))(配列表の配列番号146)。 ヒト抗体C3048のIgG化体軽鎖アミノ酸配列を示した図である(シグナル配列(1-20)、可変領域(21-130)、定常領域(131-236))(配列表の配列番号147)。 ヒト抗体C3015のIgG化体重鎖アミノ酸配列を示した図である(シグナル配列(1-19)、可変領域(20-140)、定常領域(141-470))(配列表の配列番号148)。 ヒト抗体C3015のIgG化体軽鎖アミノ酸配列を示した図である(シグナル配列(1-20)、可変領域(21-126)、定常領域(127-232))(配列表の配列番号149)。 ヒト抗体C3022のIgG化体重鎖アミノ酸配列を示した図である(シグナル配列(1-19)、可変領域(20-134)、定常領域(135-464))(配列表の配列番号150)。 ヒト抗体C3022のIgG化体軽鎖アミノ酸配列を示した図である(シグナル配列(1-20)、可変領域(21-130)、定常領域(131-236))(配列表の配列番号151)。 ヒト抗体scFvのヒト(A)、カニクイザル(B)ビオチン化GPRC5D アミノ末端に対する結合性を、ELISA法により検証した図である。縦軸はELISA法により測定された発光強度を示す。 ヒト抗体IgG化体の、ヒト又はカニクイザル ビオチン化GPRC5D アミノ末端に対する結合性を、ELISA法により検証した図である。縦軸はELISA法により測定された発光強度を示す。 ヒト抗体scFvの、ヒトGPRC5D発現癌細胞株に対する結合性を、フローサイトメーター(FACS)を用いて検証した図である。縦軸はフローサイトメトリー法により測定された平均蛍光強度の相対値を示す。 ヒト抗体IgG化体の、ヒトGPRC5D発現癌細胞株に対する結合性を、フローサイトメーター(FACS)を用いて検証した図である。縦軸はフローサイトメトリー法により測定された平均蛍光強度の相対値を示す。 ラット抗CD3抗体C3-147の重鎖可変領域をコードするヌクレオチド配列を示した図である(配列番号152)。 ラット抗CD3抗体C3-147の軽鎖可変領域をコードするヌクレオチド配列を示した図である(配列番号153)。 C3E-7000(58-867)をコードするヌクレオチド配列を示した図である(シグナル配列(1-57)、scFv(58-783)、FLAG-Hisタグ(793-867))(配列番号154)。 C3E-7034の重鎖可変領域のアミノ酸配列を示した図である(配列番号155)。 C3E-7034の軽鎖可変領域のアミノ酸配列を示した図である(配列番号156)。 C3E-7034(58-864)をコードするヌクレオチド配列を示した図である(シグナル配列(1-57)、scFv(61-786)、FLAG-Hisタグ(790-864))(配列番号157)。 C3E-7035の軽鎖可変領域のアミノ酸配列を示した図である(配列番号158)。 C3E-7035(58-864)をコードするヌクレオチド配列を示した図である(シグナル配列(1-57)、scFv(61-786)、FLAG-Hisタグ(790-864))(配列番号159)。 C3E-7036の軽鎖可変領域のアミノ酸配列を示した図である(配列番号160)。 C3E-7036(58-858)をコードするヌクレオチド配列を示した図である(シグナル配列(1-57)、scFv(61-780)、FLAG-Hisタグ(784-858))(配列番号161)。 発現ベクターpC2037-C3E-7034のORFをコードするヌクレオチド配列を示した図である(配列番号162)。 発現ベクターpC3048-C3E-7034のORFをコードするヌクレオチド配列を示した図である(配列番号163)。 発現ベクターpC3022-C3E-7034のORFをコードするヌクレオチド配列を示した図である(配列番号164)。 発現ベクターpC2037-C3E-7035のORFをコードするヌクレオチド配列を示した図である(配列番号165)。 発現ベクターpC3048-C3E-7035のORFをコードするヌクレオチド配列を示した図である(配列番号166)。 発現ベクターpC3022-C3E-7035のORFをコードするヌクレオチド配列を示した図である(配列番号167)。 発現ベクターpC2037-C3E-7036のORFをコードするヌクレオチド配列を示した図である(配列番号168)。 発現ベクターpC3048-C3E-7036のORFをコードするヌクレオチド配列を示した図である(配列番号169)。 発現ベクターpC3022-C3E-7036のORFをコードするヌクレオチド配列を示した図である(配列番号170)。 C2037-C3E-7034のアミノ酸配列を示した図である(シグナル配列(1-19)、C2037(21-260)、C3E-7034(266-507))(配列番号171)。 C3048-C3E-7034のアミノ酸配列を示した図である(シグナル配列(1-19)、C3048(21-268)、C3E-7034(274-515))(配列番号172)。 C3022-C3E-7034のアミノ酸配列を示した図である(シグナル配列(1-19)、C3022(21-260)、C3E-7034(266-507))(配列番号173)。 C2037-C3E-7035のアミノ酸配列を示した図である(シグナル配列(1-19)、C2037(21-260)、C3E-7035(266-507))(配列番号174)。 C3048-C3E-7035のアミノ酸配列を示した図である(シグナル配列(1-19)、C3048(21-268)、C3E-7035(274-515))(配列番号175)。 C3022-C3E-7035のアミノ酸配列を示した図である(シグナル配列(1-19)、C3022(21-260)、C3E-7035(266-507))(配列番号176)。 C2037-C3E-7036のアミノ酸配列を示した図である(シグナル配列(1-19)、C2037(21-260)、C3E-7036(266-505))(配列番号177)。 C3048-C3E-7036のアミノ酸配列を示した図である(シグナル配列(1-19)、C3048(21-268)、C3E-7036(274-513))(配列番号178)。 C3022-C3E-7036のアミノ酸配列を示した図である(シグナル配列(1-19)、C3022(21-260)、C3E-7036(266-505))(配列番号179)。 抗GPRC5D-抗CD3二重特異性分子の内因性ヒトGPRC5D発現細胞(ヒトリンパ細胞株A4/FuK細胞)に対する結合性を、フローサイトメーター(FACS)を用いて検証した図である。縦軸はフローサイトメトリー法により測定された平均蛍光強度の相対値を示す。 抗GPRC5D-抗CD3二重特異性分子のカニクイザルGPRC5D発現細胞に対する結合性を、フローサイトメーター(FACS)を用いて検証した図である。縦軸はフローサイトメトリー法により測定された平均蛍光強度の相対値を示す。 抗GPRC5D-抗CD3二重特異性分子のヒトCD3(PBMC)に対する結合性を、フローサイトメーター(FACS)を用いて検証した図である。縦軸はフローサイトメトリー法により測定された平均蛍光強度の相対値を示す。 抗GPRC5D-抗CD3二重特異性分子のカニクイザルCD3(PBMC)に対する結合性を、フローサイトメーター(FACS)を用いて検証した図である。縦軸はフローサイトメトリー法により測定された平均蛍光強度の相対値を示す。 抗GPRC5D-抗CD3二重特異性分子が、内因性ヒトGPRC5D発現細胞(ヒトリンパ腫細胞株A4/FuK細胞)に対して細胞傷害活性を有することを示した図である。 ヒト化2B1のカニクイザルGPRC5Dに対する結合性を、フローサイトメーター(FACS)を用いて検証した図である。縦軸はフローサイトメトリー法により測定された平均蛍光強度の相対値を示す。 ヒト化7B4カニクイザルGPRC5Dに対する結合性を、フローサイトメーター(FACS)を用いて検証した図である。縦軸はフローサイトメトリー法により測定された平均蛍光強度の相対値を示す。 C3E-7034(1-269)のアミノ酸配列を示した図である。VH(2-119)、VL(135-243)、FLAG-Hisタグ(244-269)。(配列番号180)。 C3E-7035(1-269)のアミノ酸配列を示した図である。VH(2-119)、VL(135-243)、FLAG-Hisタグ(244-269)。(配列番号181)。 C3E-7036(1-267)のアミノ酸配列を示した図である。VH(2-119)、VL(135-241)、FLAG-Hisタグ(242-267)。(配列番号182)。 C3E-7000の重鎖CDR1のアミノ酸配列を示した図である(配列番号183)。 C3E-7000の重鎖CDR2のアミノ酸配列を示した図である(配列番号184)。 C3E-7000の重鎖CDR3のアミノ酸配列を示した図である(配列番号185)。 C3E-7000の軽鎖CDR1のアミノ酸配列を示した図である(配列番号186)。 C3E-7000の軽鎖CDR2のアミノ酸配列を示した図である(配列番号187)。 C3E-7000の軽鎖CDR3のアミノ酸配列を示した図である(配列番号188)。 ヒトCD3εのアミノ酸配列を示した図である(配列番号189)。 E1018重鎖の可変領域のヌクレオチド配列を示した図である(配列番号190)。 E1018重鎖の可変領域のアミノ酸配列を示した図である(配列番号191)。 E1018軽鎖の可変領域のヌクレオチド配列を示した図である(配列番号192)。 E1018軽鎖の可変領域のアミノ酸配列を示した図である(配列番号193)。 D1012重鎖の可変領域のヌクレオチド配列を示した図である(配列番号194)。 D1012重鎖の可変領域のアミノ酸配列を示した図である(配列番号195)。 D1012軽鎖の可変領域のヌクレオチド配列を示した図である(配列番号196)。 D1012軽鎖の可変領域のアミノ酸配列を示した図である(配列番号197)。 抗GPRC5D抗体(C3022、E1018、C3048、D1012)のヒトGPRC5Dに対する結合活性をSPR法で測定し、結合解離定数を示した図である。 h2B1_Fab_HC_1のヌクレオチド配列を示した図である(配列番号198)。 h2B1_Fab_HC_1のアミノ酸配列を示した図である(シグナル配列(1-23)、可変領域(24-146)、定常領域(147-475))(配列番号199)。 h2B1_Fab_HC_2のヌクレオチド配列を示した図である(配列番号200)。 h2B1_Fab_HC_2のアミノ酸配列を示した図である(シグナル配列(1-23)、可変領域(24-146)、定常領域(147-475))(配列番号201)。 h2B1_Fab_LC_1のヌクレオチド配列を示した図である。(配列番号202)。 h2B1_Fab_LC_1のアミノ酸配列を示した図である(シグナル配列(1-23)、可変領域(24-130)、定常領域(131-237))(配列番号203)。 h2B1_Fab_LC_2のヌクレオチド配列を示した図である。(配列番号204)。 h2B1_Fab_LC_2のアミノ酸配列を示した図である(シグナル配列(1-23)、可変領域(24-130)、定常領域(131-237))(配列番号205)。 C3E-7034_Fab_HCのヌクレオチド配列を示した図である。(配列番号206)。 C3E-7034_Fab_HCのアミノ酸配列を示した図である(シグナル配列(1-23)、可変領域(25-142)、定常領域(143-471))(配列番号207)。 C3E-7034_Fab_LCのヌクレオチド配列を示した図である(配列番号208)。 C3E-7034_Fab_LCのアミノ酸配列を示した図である(シグナル配列(1-23)、可変領域(24-132)、定常領域(133-238))(配列番号209)。 C3E-7036_Fab_HCのヌクレオチド配列を示した図である(配列番号210)。 C3E-7036_Fab_HCのアミノ酸配列を示した図である(シグナル配列(1-23)、可変領域(25-142)、定常領域(143-471))(配列番号211)。 C3E-7036_Fab_LCのヌクレオチド配列を示した図である(配列番号212)。 C3E-7036_Fab_LCのアミノ酸配列を示した図である(シグナル配列(1-23)、可変領域(24-130)、定常領域(131-236))(配列番号213)。 h2B1_Fab_HC_3のヌクレオチド配列を示した図である(配列番号214)。 h2B1_Fab_HC_3のアミノ酸配列を示した図である(シグナル配列(1-23)、可変領域(24-146)、定常領域(147-475))(配列番号215)。 h2B1_Fab_LC_3のヌクレオチド配列を示した図である(配列番号216)。 h2B1_Fab_LC_3のアミノ酸配列を示した図である(シグナル配列(1-23)、可変領域(24-130)、定常領域(131-237))(配列番号217)。 C3E-7034_scFv_Fcのヌクレオチド配列を示した図である(配列番号218)。 C3E-7034_scFv_Fcのアミノ酸配列を示した図である(シグナル配列(1-23)、scFv(24-266))(配列番号219)。 C3E-7036_scFv_Fcのヌクレオチド配列を示した図である(配列番号220)。 C3E-7036_scFv_Fcのアミノ酸配列を示した図である(シグナル配列(1-23)、scFv(24-264))(配列番号221)。 ヒト化2B1_scFv_Fc(h2B1_scFv_Fc)のヌクレオチド配列を示した図である(配列番号222)。 ヒト化_2B1_scFv_Fc(h2B1_scFv_Fc)のアミノ酸配列を示した図である(シグナル配列(1-23)、scFv(24-271))(配列番号223)。 Fc付き抗GPRC5D-抗CD3二重特異性分子の内因性ヒトGPRC5D発現細胞に対する結合活性をフローサイトメトリー法により検証した図である。縦軸はフローサイトメトリー法により測定された平均蛍光強度を示す。AはFSA型、BはHybrid型、CはDual型の二重特異性分子の結合活性を示した図である。 Fc付き抗GPRC5D-抗CD3二重特異性分子のカニクイザルGPRC5D発現細胞に対する結合活性をフローサイトメトリー法により検証した図である。縦軸はフローサイトメトリー法により測定された平均蛍光強度を示す。AはFSA型、BはHybrid型、CはDual型の二重特異性分子の結合活性を示した図である。 Fc付き抗GPRC5D-抗CD3二重特異性分子のヒトCD3発現細胞に対する結合活性をフローサイトメトリー法により検証した図である。縦軸はフローサイトメトリー法により測定された平均蛍光強度を示す。AはFSA型、BはHybrid型、CはDual型の二重特異性分子の結合活性を示した図である。 Fc付き抗GPRC5D-抗CD3二重特異性分子のカニクイザルCD3発現細胞に対する結合活性をフローサイトメトリー法により検証した図である。縦軸はフローサイトメトリー法により測定された平均蛍光強度を示す。AはFSA型、BはHybrid型、CはDual型の二重特異性分子の結合活性を示した図である。 Fc付き抗GPRC5D-抗CD3二重特異性分子の細胞障害活性を示した図である。AはFSA型、BはHybrid型の二重特異性分子の殺細胞活性を示した図である。 Fc付き抗GPRC5D-抗CD3二重特異性分子の細胞障害活性を示した図である。CはDual型の二重特異性分子の殺細胞活性を示した図である。 Fc付き抗GPRC5D-抗CD3二重特異性分子のヒトPBMCとがん細胞の共移植モデルにおける抗腫瘍活性を示した図である。 Fc付き抗GPRC5D-抗CD3二重特異性分子のヒトPBMC移入モデルにおける抗腫瘍活性を示した図である。 C3E-8015のヌクレオチド配列を示した図である(配列番号224)。 C3E-8015のアミノ酸配列を示した図である(シグナル配列(1-23)、scFv(24-264))(配列番号225)。 C3E-8017のヌクレオチド配列を示した図である(配列番号226)。 C3E-8017のアミノ酸配列を示した図である(シグナル配列(1-23)、scFv(24-266))(配列番号227)。 C3E-8018のヌクレオチド配列を示した図である(配列番号228)。 C3E-8018のアミノ酸配列を示した図である(シグナル配列(1-23)、scFv(24-266))(配列番号229)。 C3E-8025のヌクレオチド配列を示した図である(配列番号230)。 C3E-8025のアミノ酸配列を示した図である(シグナル配列(1-23)、scFv(24-264))(配列番号231)。 C3E-8027のヌクレオチド配列を示した図である(配列番号232)。 C3E-8027のアミノ酸配列を示した図である(シグナル配列(1-23)、scFv(24-266))(配列番号233)。 C3E-8028のヌクレオチド配列を示した図である(配列番号234)。 C3E-8028のアミノ酸配列を示した図である(シグナル配列(1-23)、scFv(24-266))(配列番号235)。 h2B1_Fab_HC_4のヌクレオチド配列を示した図である(配列番号236)。 h2B1_Fab_HC_4のアミノ酸配列を示した図である(シグナル配列(1-23)、可変領域(24-146)、定常領域(147-476))(配列番号237)。 C末端Lys付加CDR改変Hybrid型、CDR改変Hybrid型抗GPRC5D-抗CD3二重特異性分子の内因性ヒトGPRC5D発現細胞に対する結合活性をフローサイトメトリー法により検証した図である。縦軸はフローサイトメトリー法により測定された平均蛍光強度を示す。AはC5D-0004とC5D-0014、BはC5D-0005とC5D-0015、CはC5D-0006とC5D-0016の結合活性を示した図である。 C末端Lys付加CDR改変Hybrid型、CDR改変Hybrid型抗GPRC5D-抗CD3二重特異性分子のカニクイザルGPRC5D発現細胞に対する結合活性をフローサイトメトリー法により検証した図である。縦軸はフローサイトメトリー法により測定された平均蛍光強度を示す。AはC5D-0004とC5D-0014、BはC5D-0005とC5D-0015、CはC5D-0006とC5D-0016の結合活性を示した図である。 C末端Lys付加CDR改変Hybrid型、CDR改変Hybrid型抗GPRC5D-抗CD3二重特異性分子のヒトCD3発現細胞に対する結合活性をフローサイトメトリー法により検証した図である。縦軸はフローサイトメトリー法により測定された平均蛍光強度を示す。AはC5D-0004とC5D-0014、BはC5D-0005とC5D-0015、CはC5D-0006とC5D-0016の結合活性を示した図である。 C末端Lys付加CDR改変Hybrid型、CDR改変Hybrid型抗GPRC5D-抗CD3二重特異性分子のヒトCD3発現細胞に対する結合活性をフローサイトメトリー法により検証した図である。縦軸はフローサイトメトリー法により測定された平均蛍光強度を示す。AはC5D-0004とC5D-0014,BはC5D-0005とC5D-0015,CはC5D-0006とC5D-0016の結合活性を示した図である。 C末端Lys付加CDR改変Hybrid型、CDR改変Hybrid型抗GPRC5D-抗CD3二重特異性分子の細胞障害活性を示した図である。AはC5D-0004、BはC5D-0014の殺細胞活性を示した図である。 C末端Lys付加CDR改変Hybrid型、CDR改変Hybrid型抗GPRC5D-抗CD3二重特異性分子の細胞障害活性を示した図である。CはC5D-0005、DはC5D-0015の殺細胞活性を示した図である。 C末端Lys付加CDR改変Hybrid型、CDR改変Hybrid型抗GPRC5D-抗CD3二重特異性分子の細胞障害活性を示した図である。EはC5D-0006、FはC5D-0016の殺細胞活性を示した図である。 CDR改変Hybrid型抗GPRC5D-抗CD3二重特異性分子のヒトPBMCとがん細胞の共移植モデルにおける抗腫瘍活性を示した図である。 C末端Lys付加CDR改変Hybrid型、CDR改変Hybrid型抗GPRC5D-抗CD3二重特異性分子のヒトPBMC移入モデルにおける抗腫瘍活性を示した図である。AはC5D-0004、BはC5D-0014の抗腫瘍活性を示した図である。 CDR改変体の重鎖CDR2のアミノ酸配列である(配列番号238)。 CDR改変体の軽鎖CDR2のアミノ酸配列である(配列番号239)。 C3E-7034のCDR改変体の重鎖可変領域のアミノ酸配列である(配列番号240)。 C3E-7034のCDR改変体の軽鎖可変領域のアミノ酸配列である(配列番号241)。 C3E-7035のCDR改変体の軽鎖可変領域のアミノ酸配列である(配列番号242)。 C3E-7036のCDR改変体の軽鎖可変領域のアミノ酸配列である(配列番号243)。 C3E-7078(1-269)のアミノ酸配列を示した図である。VH(2-119)、VL(135-243)、FLAG-Hisタグ(244-269)。(配列番号244) C3E-7085(1-267)のアミノ酸配列を示した図である。VH(2-119)、VL(135-241)、FLAG-Hisタグ(242-267)。(配列番号245)。 C3E-7086(1-269)のアミノ酸配列を示した図である。VH(2-119)、VL(135-243)、FLAG-Hisタグ(244-269)。(配列番号246)。 C3E-7087(1-269)のアミノ酸配列を示した図である。VH(2-119)、VL(135-243)、FLAG-Hisタグ(244-269)。(配列番号247)。 C3E-7088(1-269)のアミノ酸配列を示した図である。VH(2-119)、VL(135-243)、FLAG-Hisタグ(244-269)。(配列番号248)。 C3E-7089(1-269)のアミノ酸配列を示した図である。VH(2-119)、VL(135-243)、FLAG-Hisタグ(244-269)。(配列番号249)。 C3E-7090(1-269)のアミノ酸配列を示した図である。VH(2-119)、VL(135-243)、FLAG-Hisタグ(244-269)。(配列番号250)。 C3E-7091(1-269)のアミノ酸配列を示した図である。VH(2-119)、VL(135-243)、FLAG-Hisタグ(244-269)。(配列番号251)。 C3E-7092(1-269)のアミノ酸配列を示した図である。VH(2-119)、VL(135-243)、FLAG-Hisタグ(244-269)。(配列番号252)。 C3E-7093(1-269)のアミノ酸配列を示した図である。VH(2-119)、VL(135-243)、FLAG-Hisタグ(244-269)。(配列番号253)。 C3E-7094(1-269)のアミノ酸配列を示した図である。VH(2-119)、VL(135-243)、FLAG-Hisタグ(244-269)。(配列番号254)。 C3E-7095(1-269)のアミノ酸配列を示した図である。VH(2-119)、VL(135-243)、FLAG-Hisタグ(244-269)。(配列番号255)。
1.定義
 本発明において、「遺伝子」とは、蛋白質のアミノ酸をコードするヌクレオチド配列が含まれるヌクレオチド又はその相補鎖を意味し、例えば、蛋白質のアミノ酸をコードするヌクレオチド配列が含まれるポリヌクレオチド又はその相補鎖であるポリヌクレオチド、オリゴヌクレオチド、DNA、mRNA、cDNA、cRNA等は「遺伝子」の意味に含まれる。かかる遺伝子は一本鎖、二本鎖又は三本鎖以上のヌクレオチドであり、DNA鎖とRNA鎖の会合体、一本のヌクレオチド鎖上にリボヌクレオチド(RNA)とデオキシリボヌクレオチド(DNA)が混在するもの及びそのようなヌクレオチド鎖を含む二本鎖又は三本鎖以上のヌクレオチドも「遺伝子」の意味に含まれる。本発明において塩基配列とヌクレオチド配列は同義である。 
 本発明において、「ポリヌクレオチド」、「核酸」及び「核酸分子」は同義であり、例えば、DNA、RNA、プローブ、オリゴヌクレオチド、プライマー等も「ポリヌクレオチド」の意味に含まれる。かかるポリヌクレオチドは一本鎖、二本鎖又は三本以上の鎖からなるポリヌクレオチドであり、DNA鎖とRNA鎖の会合体、一本のポリヌクレオチド鎖上にリボヌクレオチド(RNA)とデオキシリボヌクレオチド(DNA)が混在するもの及びそのようなポリヌクレオチド鎖を含む二本鎖又は三本以上の鎖の会合体も「ポリヌクレオチド」の意味に含まれる。 
 本発明において、「ポリペプチド」、「ペプチド」及び「蛋白質」は同義である。 
 本発明において、「抗原」を「免疫原」の意味に用いることがある。 
 本発明において、「細胞」には、動物個体に由来する各種細胞、継代培養細胞、初代培養細胞、細胞株、組換え細胞及び微生物等も含まれる。 
 本発明において、「抗体」は免疫グロブリンと同義である。ただし、本発明の抗GPRC5D抗体、あるいは、本発明の抗CD3抗体という場合の「抗体」は、定常領域と可変領域とを有する免疫グロブリンの意味で用いる。抗体は、天然のものであるか、又は、部分的もしくは完全合成により製造された免疫グロブリンであるかは特に限定されない。本発明の抗GPRC5D抗体、及び/又は、抗CD3抗体は、部品(parts)として後述の「分子」に含まれる。   
 基本的な4鎖抗体の構造は、2つの同一な軽(L)鎖、及び、2つの同一な重(H)鎖から構成される。軽鎖は1つの共有ジスルフィド結合により重鎖に結合する。2つの重鎖は、重鎖のアイソタイプに応じて1つ又は複数のジスルフィド結合により互いに結合している。それぞれの軽鎖、重鎖は規則的な間隔を持つ鎖内ジスルフィド結合を持つ。重鎖と軽鎖には、アミノ酸配列が非常に高い類似性を示す定常領域とアミノ酸配列の類似性が低い可変領域とが存在する。軽鎖は、定常領域(CL)が続く可変領域(VL)をアミノ末端に有する。重鎖は3つの定常領域(CH1/CH2/CH3)が続く可変領域(VH)をアミノ末端に有する。VLとVHは対となり、CLは重鎖の第一定常領域(CH1)と並んでいる。VLとVHは対となって、単一の抗原結合部位を形成する。 
 Fabは、重鎖のCH1とそれに続くVH、及び、軽鎖のCLとそれに続くVLからなる。VHとVLは、相補性決定領域(CDR)を含む。 
 Fcは、重鎖の定常領域のカルボキシル末端領域であって、CH2とCH3を含み、二量体である。本発明のFcは、天然の配列のFc(天然型Fcとも記す)であっても、天然の配列に変異が加わった変異型のFc(変異型Fcとも記す)であってもよい。
 変異型Fcとしては、WO2013/063702に開示される、向上した安定性を有するヘテロ多量体に含まれる改変Fc領域(ヘテロ二量体Fc領域を含む)、WO96/27011に開示される異種多量体に含まれる、「突起」及び「空隙」を有するIgG抗体から誘導されるイムノグロブリンのCH3領域を含むFc、WO2009/089004に開示される、1以上のアミノ酸残基を荷電アミノ酸に置換することで静電的に有利であるヘテロ二量体に含まれるCH3ドメインを含むFc、WO2014/110601に開示される、立体構造変異及び/又はpI(等電点)変異を用いた異種二量体に含まれる異種二量体Fc領域、WO2010/151792に開示される、プロテインAへの結合を無くすかまたは減少させる改変を含むCH3ドメインを含む、ヘテロ二量体のFc等が例示されるが、これらに限定されるものではない。
 可変領域は、超可変領域(HVR:hypervariable region)と称される極度の可変性を有する領域と、その領域により分離されたフレームワークリージョン(FR:Framework region)と呼ばれる比較的不変の領域からなる。天然の重鎖と軽鎖の可変領域は、3つの超可変領域により接続される4つのFRを含み、各鎖の超可変領域はFRにより他の鎖の超可変領域とともに極近傍に保持され、抗体の抗原結合部位の形成に寄与している。
 抗体分子の重鎖及び軽鎖にはそれぞれ3箇所の相補性決定領域(CDR:Complemetarity determining region)があることが知られている。相補性決定領域は、超可変領域とも呼ばれ、抗体の重鎖及び軽鎖の可変領域内にあって、一次構造の変異性が特に高い部位であり、重鎖及び軽鎖のポリペプチド鎖の一次構造上において、通常、それぞれ3ヶ所に分離している。本発明においては、抗体の相補性決定領域について、重鎖の相補性決定領域を重鎖アミノ酸配列のアミノ末端側から重鎖CDR1(CDRH1)、重鎖CDR2(CDRH2)、重鎖CDR3(CDRH3)と表記し、軽鎖の相補性決定領域を軽鎖アミノ酸配列のアミノ末端側から軽鎖CDR1(CDRL1)、軽鎖CDR2(CDRL2)、軽鎖CDR3(CDRL3)と表記する。これらの部位は立体構造の上で相互に近接し、結合する抗原に対する特異性を決定している。
 本発明において、CDRの位置と長さは、IMGTの定義(Developmental and Comparative Immunology 27 (2003) 55-77)により決定した。
 フレームワークリージョン(FR)は、CDR残基以外の可変領域である。可変領域は、一般にFR1、FR2、FR3、FR4の4つのFRを持ち、重鎖並びに軽鎖のFRを、そFRH1、FRH2、FRH3及びFRH4、並びに、FRL1、FRL2、FRL3及びFRL4とそれぞれ表記する。 
 重鎖並びに軽鎖に含まれるCDRとFRは、アミノ末端からカルボキシル末端に向かって、FRH1-CDRH1-FRH2-CDRH2-FRH3-CDRH3-FRH4、並びに、FRL1-CDRL1-FRL2-CDRL2-FRL3-CDRL3-FRL4、の順にそれぞれ配置される。 
 CDRとFRの位置は、当技術分野で周知の様々な定義、例えば、IMGT以外にも、Kabat、Chothia、AbM、contact等の定義により決定することもできる。
 本発明において、「抗体の抗原結合性断片」とは、重鎖可変領域及び軽鎖可変領域から構成される、抗原との結合活性を有する抗体の部分断片を意味する。「抗体の抗原結合性断片」としては、例えば、Fab、F(ab’)、scFv、Fab’、Fv、single-domain antibody(sdAb)等の抗原結合断片を挙げることができるが、それらに限定されるものではない。かかる抗体の抗原結合性断片は、抗体蛋白質の全長分子をパパイン、ペプシン等の酵素で処理することによって得られたものに加え、組換え遺伝子を用いて適当な宿主細胞において産生された組換え蛋白質であってもよい。
 本発明において、抗体が結合する「部位」、すなわち抗体が認識する「部位」とは、抗体が結合又は認識する抗原上の部分ペプチド又は部分高次構造を意味する。
 本発明においては、かかる部位のことをエピトープ、抗体の結合部位とも呼ぶ。
 本発明において、「抗体変異体」とは、元の抗体が有するアミノ酸配列においてアミノ酸が置換、欠失、付加(付加には挿入が含まれる)(以下、「変異」と総称する)してなるアミノ酸配列を有し、且つ抗原に結合するポリペプチドを意味する。かかる抗体変異体における変異アミノ酸の数は、1乃至2、3、4、5、6、7、8、9、10、12、15、20、25、30、40又は50個である。かかる抗体変異体も本発明の「抗体」に包含される。 
 本発明において、「1乃至数個」における「数個」とは、2乃至10個を指す。
 本明細書中において、「分子」は、上述の抗体、抗体の抗原結合性断片を含む分子であり、さらに抗体又はそれらに由来する複数の抗原結合性断片より形成された多重特異的である分子であってもよい。
 本明細書中において、「多重特異的である分子」「多重特異的(な)分子」及び「多重特異性分子」は同義であり、1つの分子上の複数の互いに異なるエピトープ、及び/又は、2つ以上の分子上の互いに異なるエピトープに結合することが可能な分子であれば特に限定されない。多重特異的である分子としては、重鎖可変領域(VH)及び軽鎖可変領域(VL)を含む抗体も含まれる。このような多重特異的な分子には、異なる2種類以上の重鎖及び軽鎖を有する完全長抗体分子、すなわちIgG型多重特異性分子、及び2種類以上のVL及びVHを有する抗原結合性断片からなる分子、すなわち、Fab、Fab’、Fv、scFv、sdAb等を組み合わせて派生する分子、すなわちタンデムscFv、ダイアボディ、一本鎖ダイアボディ、トリアボディ等を含むが、これらに限定されない。その他抗原結合性断片に免疫グロブリン骨格を有さないで抗原結合性を有する蛋白質を遺伝子的、あるいは化学的に連結させることにより生じる分子も多重特異性分子として含まれる。
 本発明の抗CD3抗体又は該抗体の抗原結合性断片、あるいは、本発明の多重特異的である分子が有する活性・性質としては、例えば、生物学的活性、理化学的性質等を挙げることができ、具体的には、各種生物活性、抗原やエピトープに対する結合活性、製造や保存時における安定性、熱安定性等をあげることができる。
 本発明において、「ストリンジェントな条件下でハイブリダイズする」とは、5×SSCを含む溶液中で65℃にてハイブリダイゼーションを行い、ついで2×SSC-0.1%SDSを含む水溶液中で65℃にて20分間、0.5×SSC-0.1%SDSを含む水溶液中で65℃にて20分間、ならびに、0.2×SSC-0.1%SDSを含む水溶液中で65℃にて20分間、それぞれ洗浄する条件又はそれと同等の条件でハイブリダイズすることを意味する。SSCとは150mMNaCl-15mMクエン酸ナトリウムの水溶液であり、n×SSCはn倍濃度のSSCを意味する。
 本発明において「細胞傷害」とは、何らかの形で、細胞に病理的な変化をもたらすことを指し、直接的な外傷にとどまらず、DNAの切断や塩基の二量体の形成、染色体の切断、細胞分裂装置の損傷、各種酵素活性の低下などあらゆる細胞の構造や機能上の損傷を意味する。
本発明において「細胞傷害活性」とは上記細胞傷害を引き起こすことを意味する。
 本発明において「抗体依存性細胞傷害活性」とは、「antibody dependent cellular cutotoxicity(ADCC)活性」を指し、NK細胞が抗体を介して腫瘍細胞等の標的細胞を傷害する作用活性を意味する。
 本発明において「T細胞リダイレクションによる細胞傷害活性」とは抗腫瘍抗原等の抗標的抗原抗体と抗CD3抗体とを含む多重特異的な分子を介して上記細胞傷害を引き起こすことを意味する。好適には、抗腫瘍抗原抗体が標的腫瘍細胞と結合し、抗CD3抗体がT細胞に結合することにより標的腫瘍細胞とT細胞の距離を近づけ、T細胞活性化を介して細胞傷害を誘導することを意味する。該分子は、医薬組成物に含めることができる。
 本発明において「天然に存在するアミノ酸」及び「天然に存在するアミノ酸残基」とは、Ala(A)、Arg(R)、Asn(N)、Asp(D)、Cys(C)、Gln(Q)、Glu(E)、Gly(G)、His(H)、Ile(I)、Leu(L)、Lys(K)、Met(M)、Phe(F)、Pro(P)、Ser(S)、Thr(T)、Trp(W)、Tyr(Y)及びVal(V)及びそれらの残基を意味し、「天然のアミノ酸」又は「天然のアミノ酸残基」ともいう。
2.抗原蛋白質
2-1.GPRC5D抗原 
 本発明において、「GPRC5D」は、GPRC5D蛋白質と同じ意味で用いている。
 GPRC5Dは、代謝型グルタミン酸レセプター様ファミリーC(G-protein coupled receptor family C)の第5群に分類される一連のヒトGPCRのアミノ酸配列を用いたESTデータベースのホモロジー検索により新たに見出された、ヒトGPCR蛋白質の1つである(非特許文献1)。GenBankに受託番号:AF209923、NM_018654、NP_0611124として登録されている。しかしながら、GPRC5Dの生理機能や生理的リガンド、共役するG蛋白質(αサブユニット)のサブタイプ等については明らかになっていない。
2-2.CD3抗原
 本発明において、「CD3」は、CD3蛋白質と同じ意味で用いている。
 CD3は、多分子T細胞レセプター複合体の一部分としてT細胞上に発現され、γ鎖、δ鎖、ε鎖、ζ鎖、η鎖の5種類のポリペプチド(分子量は順に25000-28000、21000、20000、16000、22000)の複合体である。
 CD3複合体としては、γ、δ、ε、ζ、η鎖が挙げられる。これらはサブユニットとも称される。抗CD3抗体がT細胞に結合することにより、T細胞活性化を介して細胞傷害を誘導する。多くの抗CD3抗体は、CD3εに結合する。
 ヒトCD3εをコードするcDNAのヌクレオチド配列は、GenBankにアクセッション番号:NM_000733.3で登録されている。カニクイザルCD3をコードするcDNAのヌクレオチド配列は、GenBankにアクセッション番号:NM_001283615.1で登録されている。ヒトCD3εのアミノ酸配列は配列表の配列番号189に記載されている。
2-3.抗原蛋白質の調製
 本発明で用いる上述の抗原蛋白質;GPRC5D、CD3(以下、GPRC5D、CD3をまとめて、該抗原蛋白質とも記す)は、動物組織(体液を含む)、該組織由来の細胞もしくは該細胞培養物からの精製及び単離、遺伝子組換え、インビトロ翻訳、化学合成等により調製することができる。
 該抗原蛋白質のcDNAは、例えば、該抗原蛋白質のmRNAを発現している臓器のcDNAライブラリーを鋳型として、該抗原蛋白質のcDNAを特異的に増幅するプライマーを用いてポリメラーゼ連鎖反応(以下「PCR」という)(Saiki,R. K.,et al.,Science(1988)239,487-49)を行なう、いわゆるPCR法により取得することができる。
 ヒト又はラットに発現している該抗原蛋白質をコードするヌクレオチド配列と相補的なヌクレオチド配列からなるポリヌクレオチドとストリンジェントな条件でハイブリダイズし、且つ、該抗原蛋白質と同等の生物活性を有する蛋白質をコードするポリヌクレオチドも該抗原蛋白質のcDNAに含まれる。
 さらに、ヒト又はラットに発現している該抗原蛋白質遺伝子座から転写されるスプライシングバリアント又はこれにストリンジェントな条件でハイブリダイズするポリヌクレオチドであって、且つ、該抗原蛋白質と同等の生物活性を有する蛋白質をコードするポリヌクレオチドも該抗原蛋白質のcDNAに含まれる。
 ヒト又はラットの該抗原蛋白質のアミノ酸配列、又はこれらの配列からシグナル配列が除かれたアミノ酸配列において、1乃至数個のアミノ酸が、置換、欠失又は付加されたアミノ酸配列からなり、該抗原蛋白質と同等の生物活性を有する蛋白質をコードするヌクレオチド配列も、該抗原蛋白質遺伝子のヌクレオチド配列に含まれる。
 ヒト又はラットの該抗原蛋白質の遺伝子座から転写されるスプライシングバリアントにコードされるアミノ酸配列又は該アミノ酸配列において、1又は数個のアミノ酸が、置換、欠失又は付加されたアミノ酸配列からなり、且つ、該抗原蛋白質と同等の生物活性を有する蛋白質も該抗原蛋白質に含まれる。
2-4 抗原蛋白質への結合特異性
 本発明の抗GPRC5D抗体、及び、その抗原結合性断片等は、ヒトGPRC5Dをに認識する。すなわち、GPRC5D抗原に結合し、好適にはヒトGPRC5D及びサルGPRC5Dに結合し、より好適にはヒト及びカニクイザルGPRC5Dに結合する。後述する本発明のヒト化抗GPRC5D抗体のh2B1抗体及び、ヒト抗体のC3048は、ヒトGPRC5Dに加え、さらにカニクイザルGPRC5Dにも結合する。
 本発明の多重特異的分子に含まれる抗CD3抗体、及び、その抗原結合性断片等は、CD3抗原を認識する。すなわち、結合する。本発明の多重特異的分子に含まれる抗CD3抗体、及び、その抗原結合性断片等は、好適には、ヒトCD3、サルCD3等に結合し、より好適には、ヒトCD3及びカニクイザルCD3に結合する。
 ヒト及びカニクイザルの抗原蛋白質に結合する抗体やその抗原結合性断片は、医薬品の非臨床開発(前臨床開発)に有用な霊長類、特にカニクイザルを用いた有効性や安全性に関する各種試験に供することができ好ましい。
 一方、本発明の抗GPRC5D抗体は、好適にはマウス及び/又はラットのGPRC5Dには結合しないので、ヒトGPRC5D遺伝子が導入されたマウスの細胞、組織、個体(トランスジェニック動物、ノックアウト動物、ノックイン動物を含む)及び該抗体又は本発明の多重特異的分子等を用いた各種アッセイ、免疫組織化学等を、宿主であるマウス及び/又はラットのGPRC5Dによる影響無しに実施することができ、該抗体又は本発明の多重特異的分子等を含む医薬、動物薬又は診断薬等のマウスを用いた研究及び非臨床開発上好ましい。
 同様に、本発明の多重特異的分子に含まれる抗CD3抗体は、好適にはマウス及び/又はラットのCD3には結合しないので、ヒトCD3遺伝子が導入されたマウスの細胞、組織、個体(トランスジェニック動物、ノックアウト動物、ノックイン動物を含む)及び該抗体又は本発明の多重特異的分子等を用いた各種アッセイ、免疫組織化学等を、宿主であるマウス及び/又はラットのCD3による影響無しに実施することができ、該抗体又は本発明の多重特異的分子等を含む医薬、動物薬又は診断薬等のマウスを用いた研究及び非臨床開発上好ましい。
 本発明において「認識」、すなわち「結合」とは、非特異的な吸着ではない結合を意味する。認識しているか否か、すなわち、結合しているか否の判定基準としては、例えば、解離定数(Dissociation Constant:以下、「KDという」)を挙げることができる。本発明の好適な抗体等のCD3に対するKD値は1×10-5M以下、5×10-6M以下、2×10-6M以下又は1×10-6M以下である。
 本発明における抗原と抗体の結合は、SPR法、BLI法等の生体分子間相互作用解析システム、あるいはELISA法、RIA法等により測定又は判定することができる。細胞表面上の発現している抗原と抗体との結合は、フローサートメトリー法等により測定することができる。
 SPR法(Surface Plasmon Resonance解析法)は、反応速度論的(カイネティクス)解析により結合速度定数(Ka値)と解離速度定数(Kd値)を計測することによりアフィニティーの指標となる解離定数(KD値)等を求める分析手法として用いられている。SPR解析に用いる機器としては、Biacore(商標)(GEヘルスケア社製)、ProteOn(商標)(BioRad社製)、SPR-Navi(商標)(BioNavis社製)、Spreeta(商標)(Texas Instruments社製)、SPRi-PlexII(商標)(ホリバ社製)、Autolab SPR(商標)(Metrohm社製)等を例示することができる。 
 BLI法(BioLayer Interferometry)は、バイオレイヤー干渉を用いた生体分子間相互作用を計測する方法である。BLI法を用いた相互作用解析に用いる機器としては、Octetシステム(Pall ForteBio社製)等を例示することができる。
 ELISA法は、試料溶液中に含まれる目的の抗原あるいは抗体を、特異抗体あるいは抗原で捕捉するとともに、酵素反応を利用して検出・定量する方法である。酵素標識した抗原あるいは抗体を反応系に組込んで、酵素活性を検出する。酵素活性の検出には、反応によって吸光スペクトルが変化する基質が用いられ、吸光度測定で数値化する。
 Cell-ELISAでは、細胞表面にある測定対象を細胞ごと捕捉するとともに、酵素反応を利用して検出・定量する方法である。
 RIA法(Radio Immunoassay法)では、放射性物質を使って抗体を標識し、抗体からの放射能を測定することで、抗体の定量をすることができる。
 フローサイトメトリーは、細胞を流体中に分散させ、その流体を細く流して、個々の細胞を光学的に分析する手法である。蛍光色素で標識された抗体が、抗原抗体反応により細胞表面抗原に結合し、細胞に結合した標識された抗体による蛍光強度を測定することにより、抗体の抗原結合性を定量する。
3.抗GPRC5D抗体
3-1.抗GPRC5D抗体の種類
 本発明の抗GPRC5D抗体は、ポリクローナル抗体及びモノクローナル抗体のいずれであってもよい。ポリクローナル抗体としては、CDRセットの一部又は全部が異なる複数種類の抗体の混合物を挙げることができる。モノクローナル抗体としては、非ヒト動物由来の抗体(非ヒト動物抗体)、ヒト抗体、キメラ化抗体、ヒト化抗体等を挙げることができる。
 非ヒト動物抗体としては、哺乳類、鳥類等の脊椎動物に由来する抗体などを挙げることができる。哺乳類由来の抗体としては、マウス抗体、ラット抗体などのげっ歯類由来の抗体などを挙げることができる。鳥類由来の抗体としては、ニワトリ抗体等を挙げることができる。抗ヒトGPRC5Dラットモノクローナル抗体としては、本発明の2A4、2B1、7B4(実施例1)等を挙げることができる。
 2A4の重鎖の可変領域のアミノ酸配列は配列表の配列番号5に、2B1の重鎖の可変領域のアミノ酸配列は配列表の配列番号7に、7B4の重鎖の可変領域のアミノ酸配列は配列表の配列番号9に、それぞれ示されている。
 2A4の軽鎖の可変領域のアミノ酸配列は配列表の配列番号12に、2B1の軽鎖の可変領域のアミノ酸配列は配列表の配列番号14に、7B4の軽鎖の可変領域のアミノ酸配列は配列表の配列番号16に、それぞれ示されている。 
 2A4、2B1、7B4は、ADCC活性を有している(実施例2)。
 キメラ化抗体としては、非ヒト動物抗体由来の可変領域とヒト抗体(ヒト免疫グロブリン)定常領域とを結合してなる抗体などを挙げることができる。
 ラット抗ヒトGPRC5D抗体2A4由来のキメラ化抗体は、配列番号22の21乃至127番目のアミノ酸残基からなる軽鎖可変領域を含む軽鎖と、配列番号26の20乃至141番目のアミノ酸残基からなる重鎖可変領域を含む重鎖からなる抗体を挙げることができる。このような2A4由来のキメラ化抗体の一例として、配列番号22の21乃至234番目のアミノ酸残基からなる軽鎖と、配列番号26の20乃至471番目のアミノ酸残基からなる重鎖からなる抗体を挙げることができる。本明細書において、該抗体をc2A4と呼ぶ。
 ラット抗ヒトGPRC5D抗体2B1由来のキメラ化抗体は、配列番号30の21乃至127番目のアミノ酸残基からなる軽鎖可変領域を含む軽鎖と、配列番号34の20乃至142番目のアミノ酸残基からなる重鎖可変領域を含む重鎖からなる抗体を挙げることができる。このような2B1由来のキメラ化抗体の一例として、配列番号30の21乃至234番目のアミノ酸残基からなる軽鎖と、配列番号34の20乃至472番目のアミノ酸残基からなる重鎖からなる抗体を挙げることができる。本明細書において、該抗体をc2B1と呼ぶ。
 ラット抗ヒトGPRC5D抗体7B4由来のキメラ化抗体は、配列番号38の21乃至127番目のアミノ酸残基からなる軽鎖可変領域を含む軽鎖と、配列番号42の20乃至142番目のアミノ酸残基からなる重鎖可変領域を含む重鎖からなる抗体を挙げることができる。このような7B4由来のキメラ化抗体の一例として、配列番号38の21乃至233番目のアミノ酸残基からなる軽鎖と、配列番号42の20乃至472番目のアミノ酸残基からなる重鎖からなる抗体を挙げることができる。本明細書において、該抗体をc7B4と呼ぶ。
 ヒト化抗体としては、相補性決定領域(CDR)のみをヒト由来の抗体に組み込んだ抗体(Nature(1986)321,522-525)、CDR移植法によって、CDRの配列に加え一部のフレームワークのアミノ酸残基もヒト抗体に移植した抗体(国際特許公開WO1990/007861号))、それらのいずれかの非ヒト動物抗体由来の1つ又は2つ以上のアミノ酸をヒト型のアミノ酸で置換したものなどを挙げることができる。
 上述のキメラ化抗体由来のヒト化抗体は、上述のキメラ化抗体、ひいてはラット抗体に由来する6種全てのCDR配列を保持し、ADCC活性を有している。したがって、以下に示す6種全てのCDR配列を保持する抗体としては、ラット抗体、キメラ化抗体、あるいは、ヒト化抗体が例示される。
 上述の2A4由来のヒト化抗体の重鎖可変領域は、
配列番号45に示されるアミノ酸配列からなる重鎖CDR1(GYTFTSYY)
配列番号46に示されるアミノ酸配列からなる重鎖CDR2(VYPGYGGT)
配列番号47に示されるアミノ酸配列からなる重鎖CDR3(ARRKGIIRGPGYFDY)
を保持しており、軽鎖可変領域は、
配列番号54に示されるアミノ酸配列からなる軽鎖CDR1(EGISNS)
配列番号55に示されるアミノ酸配列からなる軽鎖CDR2(GAS)
配列番号56に示されるアミノ酸配列からなる軽鎖CDR3(QQGYKYPPT)
を保持している。
 上述の2B1由来のヒト化抗体の重鎖可変領域は、
配列番号48に示されるアミノ酸配列からなる重鎖CDR1(GFSLNTYDMG)
配列番号49に示されるアミノ酸配列からなる重鎖CDR2(IWWDDDK)
配列番号50に示されるアミノ酸配列からなる重鎖CDR3(ARIETVRVSRKGFAH)
を保持しており、軽鎖可変領域は、
配列番号57に示されるアミノ酸配列からなる軽鎖CDR1(QSVGIN)
配列番号58に示されるアミノ酸配列からなる軽鎖CDR2(GAS)
配列番号59に示されるアミノ酸配列からなる軽鎖CDR3(LQHGSIPPT)
を保持している。
 上述の7B4由来のヒト化抗体の重鎖可変領域は、
配列番号51に示されるアミノ酸配列からなる重鎖CDR1(GYTITSGYD)
配列番号52に示されるアミノ酸配列からなる重鎖CDR2(MSYRGST)
配列番号53に示されるアミノ酸配列からなる重鎖CDR3(ALTRTYWYNYYYVLDA)
を保持しており、軽鎖可変領域は、
配列番号60に示されるアミノ酸配列からなる軽鎖CDR1(QNINKY)
配列番号61に示されるアミノ酸配列からなる軽鎖CDR2(NTN)
配列番号62に示されるアミノ酸配列からなる軽鎖CDR3(LQRNSWYT)
を保持している。
 上述のCDRのアミノ酸配列は、図54乃至71にも記載されている。
 本発明において、CDRの位置と長さは、IMGTの定義(Developmental and Comparative Immunology 27 (2003) 55-77)により決定した。
 ヒト化抗体の好適例としては、
配列番号64に示されるアミノ酸配列の21乃至127番目のアミノ酸残基、
配列番号66に示されるアミノ酸配列の21乃至127番目のアミノ酸残基、
配列番号68に示されるアミノ酸配列の21乃至127番目のアミノ酸残基、
配列番号70に示されるアミノ酸配列の21乃至127番目のアミノ酸残基、及び
配列番号72に示されるアミノ酸配列の21乃至127番目のアミノ酸残基のいずれか1つに示されるアミノ酸配列を含む軽鎖可変領域、並びに、
配列番号74に示されるアミノ酸配列の20乃至142番目のアミノ酸残基、
配列番号76に示されるアミノ酸配列の20乃至142番目のアミノ酸残基、
配列番号78に示されるアミノ酸配列の20乃至142番目のアミノ酸残基、及び
配列番号80に示されるアミノ酸配列の20乃至142番目のアミノ酸残基のいずれか1つで示されるアミノ酸配列を含む重鎖可変領域を含む抗体を挙げることができる。
 また、他のヒト化抗体の好適例としては、
配列番号82に示されるアミノ酸配列の21乃至126番目のアミノ酸残基、又は
配列番号84に示されるアミノ酸配列の21乃至126番目のアミノ酸残基に示されるアミノ酸配列を含む軽鎖可変領域、並びに、
配列番号86に示されるアミノ酸配列の20乃至142番目のアミノ酸残基、
配列番号88に示されるアミノ酸配列の20乃至142番目のアミノ酸残基、
配列番号90に示されるアミノ酸配列の20乃至142番目のアミノ酸残基、及び
配列番号92に示されるアミノ酸配列の20乃至142番目のアミノ酸残基のいずれか1つで示されるアミノ酸配列を含む重鎖可変領域を含む抗体を挙げることができる。
 ヒト化抗体の具体的な好適例としては、
・配列番号74に示されるアミノ酸配列の20乃至142番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域、及び、配列番号64に示されるアミノ酸配列の21乃至127番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域、
・配列番号74に示されるアミノ酸配列の20乃至142番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域、及び、配列番号66に示されるアミノ酸配列の21乃至127番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域、
・配列番号76に示されるアミノ酸配列の20乃至142番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域、及び、配列番号66に示されるアミノ酸配列の21乃至127番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域、
・配列番号76に示されるアミノ酸配列の20乃至142番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域、及び、配列番号68に示されるアミノ酸配列の21乃至127番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域、
・配列番号76に示されるアミノ酸配列の20乃至142番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域、及び、配列番号70に示されるアミノ酸配列の21乃至127番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域、
・配列番号76に示されるアミノ酸配列の20乃至142番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域、及び、配列番号72に示されるアミノ酸配列の21乃至127番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域、
・配列番号78に示されるアミノ酸配列の20乃至142番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域、及び、配列番号68に示されるアミノ酸配列の21乃至127番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域、
・配列番号78に示されるアミノ酸配列の20乃至142番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域、及び、配列番号70に示されるアミノ酸配列の21乃至127番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域、
・配列番号78に示されるアミノ酸配列の20乃至142番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域、及び、配列番号72に示されるアミノ酸配列の21乃至127番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域、
・配列番号80に示されるアミノ酸配列の20乃至142番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域、及び、配列番号64に示されるアミノ酸配列の21乃至127番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域、
・配列番号80に示されるアミノ酸配列の20乃至142番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域、及び、配列番号68に示されるアミノ酸配列の21乃至127番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域、
・配列番号80に示されるアミノ酸配列の20乃至142番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域、及び、配列番号70に示されるアミノ酸配列の21乃至127番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域、又は、
・配列番号80に示されるアミノ酸配列の20乃至142番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域、及び、配列番号72に示されるアミノ酸配列の21乃至127番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域
のいずれか1つの、重鎖可変領域及び軽鎖可変領域の組み合わせを含む抗体を挙げることができる。
 また、他のヒト化抗体の具体的な好適な例としては、
・配列番号86に示されるアミノ酸配列の20乃至142番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域、及び、配列番号84に示されるアミノ酸配列の21乃至126番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域、
・配列番号88に示されるアミノ酸配列の20乃至142番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域、及び、配列番号84に示されるアミノ酸配列の21乃至126番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域、
・配列番号90に示されるアミノ酸配列の20乃至142番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域、及び、配列番号82に示されるアミノ酸配列の21乃至126番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域、
・配列番号90に示されるアミノ酸配列の20乃至142番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域、及び、配列番号84に示されるアミノ酸配列の21乃至126番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域、又は、
・配列番号92に示されるアミノ酸配列の20乃至142番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域、及び、配列番号82に示されるアミノ酸配列の21乃至126番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域
のいずれか1つの、重鎖可変領域及び軽鎖可変領域の組み合わせを含む抗体を挙げることができる。
 ヒト化抗体のさらに好適な具体例としては、
・配列番号74に示されるアミノ酸配列の20乃至472番目のアミノ酸残基を含む重鎖、及び、配列番号64に示されるアミノ酸配列の21乃至234番目のアミノ酸残基を含む軽鎖、
・配列番号74に示されるアミノ酸配列の20乃至472番目のアミノ酸残基を含む重鎖、及び、配列番号66に示されるアミノ酸配列の21乃至234番目のアミノ酸残基を含む軽鎖、
・配列番号76に示されるアミノ酸配列の20乃至472番目のアミノ酸残基を含む重鎖、及び、配列番号66に示されるアミノ酸配列の21乃至234番目のアミノ酸残基を含む軽鎖、
・配列番号76に示されるアミノ酸配列の20乃至472番目のアミノ酸残基を含む重鎖、及び、配列番号68に示されるアミノ酸配列の21乃至234番目のアミノ酸残基を含む軽鎖、
・配列番号76に示されるアミノ酸配列の20乃至472番目のアミノ酸残基を含む重鎖、及び、配列番号70に示されるアミノ酸配列の21乃至234番目のアミノ酸残基を含む軽鎖、
・配列番号76に示されるアミノ酸配列の20乃至472番目のアミノ酸残基を含む重鎖、及び、配列番号72に示されるアミノ酸配列の21乃至234番目のアミノ酸残基を含む軽鎖、
・配列番号78に示されるアミノ酸配列の20乃至472番目のアミノ酸残基を含む重鎖、及び、配列番号68に示されるアミノ酸配列の21乃至234番目のアミノ酸残基を含む軽鎖、
・配列番号78に示されるアミノ酸配列の20乃至472番目のアミノ酸残基を含む重鎖、及び、配列番号70に示されるアミノ酸配列の21乃至234番目のアミノ酸残基を含む軽鎖、
・配列番号78に示されるアミノ酸配列の20乃至472番目のアミノ酸残基を含む重鎖、及び、配列番号72に示されるアミノ酸配列の21乃至234番目のアミノ酸残基を含む軽鎖、
・配列番号80に示されるアミノ酸配列の20乃至472番目のアミノ酸残基を含む重鎖、及び、配列番号64に示されるアミノ酸配列の21乃至234番目のアミノ酸残基を含む軽鎖、
・配列番号80に示されるアミノ酸配列の20乃至472番目のアミノ酸残基を含む重鎖、及び、配列番号68に示されるアミノ酸配列の21乃至234番目のアミノ酸残基を含む軽鎖、
・配列番号80に示されるアミノ酸配列の20乃至472番目のアミノ酸残基を含む重鎖、又は、配列番号70に示されるアミノ酸配列の21乃至234番目のアミノ酸残基を含む軽鎖、及び、 
・配列番号80に示されるアミノ酸配列の20乃至472番目のアミノ酸残基を含む重鎖、及び、配列番号72に示されるアミノ酸配列の21乃至234番目のアミノ酸残基を含む軽鎖
のいずれか1つの、重鎖及び軽鎖の組み合わせを含む抗体を挙げることができる。
 また、他のヒト化抗体のさらに好適な具体例としては、
・配列番号86に示されるアミノ酸配列の20乃至472番目のアミノ酸残基を含む重鎖、及び、配列番号84に示されるアミノ酸配列の21乃至233番目のアミノ酸残基を含む軽鎖、
・配列番号88に示されるアミノ酸配列の20乃至472番目のアミノ酸残基を含む重鎖、及び、配列番号84に示されるアミノ酸配列の21乃至233番目のアミノ酸残基を含む軽鎖、
・配列番号90に示されるアミノ酸配列の20乃至472番目のアミノ酸残基を含む重鎖、及び、配列番号82に示されるアミノ酸配列の21乃至233番目のアミノ酸残基を含む軽鎖、
・配列番号90に示されるアミノ酸配列の20乃至472番目のアミノ酸残基を含む重鎖、及び、配列番号84に示されるアミノ酸配列の21乃至233番目のアミノ酸残基を含む軽鎖、又は、
・配列番号92に示されるアミノ酸配列の20乃至472番目のアミノ酸残基を含む重鎖、及び、配列番号82に示されるアミノ酸配列の21乃至233番目のアミノ酸残基を含む軽鎖のいずれか1つの、重鎖及び軽鎖の組み合わせを含む抗体を挙げることができる。
 上述のラット抗体、キメラ化抗体、ヒト化抗体は、Fcを含んでいてもよい。
 また、上述のラット抗体、キメラ化抗体、ヒト化抗体は、ヒト免疫グロブリン重鎖定常領域を含んでいてもよい。
 ヒト化抗体のよりさらに好適な例としては、上述の重鎖可変領域と軽鎖可変領域、好ましくは、2B1由来のヒト化抗体の重鎖可変領域、及び、軽鎖可変領域、並びに、
i)配列番号199に示されるアミノ酸配列の147乃至475番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖定常領域と、配列番号203に示されるアミノ酸配列の131乃至237番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖定常領域、
ii)配列番号201に示されるアミノ酸配列の147乃至475番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖定常領域と、配列番号205に示されるアミノ酸配列の131乃至237番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖定常領域、 
iii)配列番号215に示されるアミノ酸配列の147乃至475番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖定常領域と、配列番号217に示されるアミノ酸配列の131乃至237番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖定常領域 
又は、
iv)配列番号237に示されるアミノ酸配列の147乃至476番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖定常領域と、配列番号217に示されるアミノ酸配列の131乃至237番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖定常領域
を含む抗体を挙げることができる。
 ヒト化抗体の特に好適な例としては、配列番号76に示されるアミノ酸配列の20乃至142番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域、及び、配列番号72に示されるアミノ酸配列の21乃至127番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域、並びに、
i)配列番号199に示されるアミノ酸配列の147乃至475番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖定常領域と、配列番号203に示されるアミノ酸配列の131乃至237番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖定常領域、
ii)配列番号201に示されるアミノ酸配列の147乃至475番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖定常領域と、配列番号205に示されるアミノ酸配列の131乃至237番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖定常領域、
iii)配列番号215に示されるアミノ酸配列の147乃至475番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖定常領域と、配列番号217に示されるアミノ酸配列の131乃至237番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖定常領域
又は、
iv)配列番号237に示されるアミノ酸配列の147乃至476番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖定常領域と、配列番号217に示されるアミノ酸配列の131乃至237番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖定常領域
を含む抗体を挙げることができる。 
 これらの中でも、配列番号76に示されるアミノ酸配列の20乃至142番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域、及び、配列番号72に示されるアミノ酸配列の21乃至127番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域、並びに、
iii)配列番号215に示されるアミノ酸配列の147乃至475番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖定常領域と、配列番号217に示されるアミノ酸配列の131乃至237番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖定常領域
又は、
iv)配列番号237に示されるアミノ酸配列の147乃至476番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖定常領域と、配列番号217に示されるアミノ酸配列の131乃至237番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖定常領域
を含む抗体がより好ましい。
 このような抗体の具体的な例としては、 
 配列番号215に示されるアミノ酸配列の24乃至475番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖と、配列番号217に示されるアミノ酸配列の24乃至237番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖、又は
 配列番号237に示されるアミノ酸配列の24乃至476番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖と、配列番号217に示されるアミノ酸配列の24乃至237番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖、
を含むヒトGPRC5Dに結合する抗体を挙げることができる。
 ヒト化抗体の他のよりさらに好適な例としては、上述の重鎖可変領域と軽鎖可変領域、好ましくは、2B1由来のヒト化抗体の重鎖可変領域、及び、軽鎖可変領域、並びに、天然型又は変異型Fcを含むヒトGPRC5Dに結合する抗体を挙げることができる。
 このような抗体の特に好適な例としては、配列番号76に示されるアミノ酸配列の20乃至142番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域、及び、配列番号72に示されるアミノ酸配列の21乃至127番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域、並びに、天然型又は変異型Fcを含む抗体を挙げることができる。より具体的には、配列番号223に示されるアミノ酸配列の24乃至271番目のアミノ酸残基で示されるアミノ酸配列と天然型又は変異型Fcを含む抗体を挙げることができる。
 ヒト抗体としては、ヒトGPRC5Dに結合する抗体であれば特に限定されるものではない。本発明のヒト化抗体と同一の部位に結合するヒト抗体等も例示することができる。たとえば、h2B1H2L5と同一の部位に結合するヒト抗体が例示される。
 本発明のヒト抗体としては、下記(1)乃至(4)のいずれか1つに記載の重鎖可変領域、並びに、軽鎖可変領域を含む抗体が例示される;
(1)
配列番号111に示されるアミノ酸配列からなる重鎖CDR1、
配列番号112に示されるアミノ酸配列からなる重鎖CDR2、及び
配列番号113に示されるアミノ酸配列からなる重鎖CDR3を含む重鎖可変領域、
並びに、
配列番号114に示されるアミノ酸配列からなる軽鎖CDR1、
配列番号115に示されるアミノ酸配列からなる軽鎖CDR2、及び
配列番号116に示されるアミノ酸配列からなる軽鎖CDR3を含む軽鎖可変領域、
(2)配列番号117に示されるアミノ酸配列からなる重鎖CDR1、
配列番号118に示されるアミノ酸配列からなる重鎖CDR2、及び
配列番号119に示されるアミノ酸配列からなる重鎖CDR3を含む重鎖可変領域、
並びに、
配列番号120に示されるアミノ酸配列からなる軽鎖CDR1、
配列番号121に示されるアミノ酸配列からなる軽鎖CDR2、及び
配列番号122に示されるアミノ酸配列からなる軽鎖CDR3を含む軽鎖可変領域、
(3)
配列番号123に示されるアミノ酸配列からなる重鎖CDR1、
配列番号124に示されるアミノ酸配列からなる重鎖CDR2、及び
配列番号125に示されるアミノ酸配列からなる重鎖CDR3を含む重鎖可変領域、
並びに、
配列番号126に示されるアミノ酸配列からなる軽鎖CDR1、
配列番号127に示されるアミノ酸配列からなる軽鎖CDR2、及び
配列番号128に示されるアミノ酸配列からなる軽鎖CDR3を含む軽鎖可変領域、
(4)
配列番号129に示されるアミノ酸配列からなる重鎖CDR1、
配列番号130に示されるアミノ酸配列からなる重鎖CDR2、及び
配列番号131に示されるアミノ酸配列からなる重鎖CDR3を含む重鎖可変領域、
並びに、
配列番号132に示されるアミノ酸配列からなる軽鎖CDR1、
配列番号133に示されるアミノ酸配列からなる軽鎖CDR2、及び
配列番号134に示されるアミノ酸配列からなる軽鎖CDR3を含む軽鎖可変領域。
 なお、上述のCDRのアミノ酸配列は、図124乃至147にも記載されている。
 ヒト抗体の好適例としては、
配列番号97に示されるアミノ酸配列、
配列番号101に示されるアミノ酸配列、
配列番号105に示されるアミノ酸配列、及び
配列番号109に示されるアミノ酸配列のいずれか1つを含む重鎖可変領域、
並びに、
配列番号99に示されるアミノ酸配列、
配列番号103に示されるアミノ酸配列、
配列番号107に示されるアミノ酸配列、及び
配列番号135に示されるアミノ酸配列のいずれか1つを含む軽鎖可変領域
を含む抗体又は該抗体の抗原結合性断片を挙げることができる。
 ヒト抗体の具体的な好適な例としては、
・配列番号97に示されるアミノ酸配列を含む重鎖可変領域、及び、配列番号99に示されるアミノ酸配列を含む軽鎖可変領域、
・配列番号101に示されるアミノ酸配列を含む重鎖可変領域、及び、配列番号103に示されるアミノ酸配列を含む軽鎖可変領域、
・配列番号105に示されるアミノ酸配列を含む重鎖可変領域、及び、配列番号107に示されるアミノ酸配列を含む軽鎖可変領域、又は、
・配列番号109に示されるアミノ酸配列を含む重鎖可変領域、及び、配列番号135に示されるアミノ酸配列を含む軽鎖可変領域
のいずれか1つの重鎖可変領域及び軽鎖可変領域の組み合わせを含む抗体を挙げることができる。このような抗体としては、1本鎖抗体(scFvとも記載する)が含まれる(実施例10)-4)。
 また、ヒト抗体としては、上述の軽鎖可変領域と重鎖可変領域に、ヒト免疫グロブリン重鎖定常領域(CH1とFc領域)、若しくは、ヒト免疫グロブリン軽鎖定常領域(CL)が連結されたIgG型の抗体が挙げられる。このようなIgG型のヒト抗体としては、
・配列番号144に示されるアミノ酸配列を含む重鎖、及び、配列番号145に示されるアミノ酸配列を含む軽鎖、
・配列番号146に示されるアミノ酸配列を含む重鎖、及び、配列番号147に示されるアミノ酸配列を含む軽鎖、
・配列番号148に示されるアミノ酸配列を含む重鎖、及び、配列番号149に示されるアミノ酸配列を含む軽鎖、又は、
・配列番号150に示されるアミノ酸配列を含む重鎖、及び、配列番号151に示されるアミノ酸配列を含む軽鎖
のいずれか1つの重鎖及び軽鎖の組み合わせを含む抗体が挙げられる。
 本発明の抗GPRC5D抗体は、ヒトGPRC5Dに結合するならば、複数の異なる抗体に由来する部分から構成される抗体であってもよく、例えば、複数の異なる抗体間で重鎖及び/又は軽鎖を交換したもの、重鎖及び/又は軽鎖の全長を交換したもの、可変領域のみ又は定常領域のみを交換したもの、CDRの全部又は一部のみを交換したもの等を挙げることができる。キメラ化抗体の重鎖可変領域と軽鎖可変領域は、異なる本発明の抗GPRC5D抗体に由来してもよい。ヒト化抗体の重鎖及び軽鎖の可変領域中の重鎖CDR1乃至重鎖CDR3並びに軽鎖CDR1乃至軽鎖CDR3は、2種又はそれ以上の本発明の抗GPRC5D抗体に由来してもよい。ヒト抗体の重鎖及び軽鎖の可変領域中の重鎖CDR1乃至重鎖CDR3並びに軽鎖CDR1乃至軽鎖CDR3は、2種又はそれ以上の本発明の抗GPRC5D抗体が有するCDRの組合せであってもよい。
 本発明の抗GPRC5D抗体には、抗体の重鎖及び軽鎖の全長配列を適切なリンカーを用いて連結した一本鎖イムノグロブリン(single chain immunoglobulin)が含まれる(Lee,H-S,et.al.,Molecular Immunology(1999)36,61-71;Shirrmann,T.et.al.,mAbs(2010),2(1),1-4)。このような一本鎖イムノグロブリンは二量体化することによって、本来は四量体である抗体と類似した構造と活性を保持することが可能である。
 本発明の抗GPRC5D抗体又は該抗体の抗原結合性断片には、本発明の抗GPRC5D抗体又は該抗体の抗原結合性断片に含まれるアミノ酸配列をコードするヌクレオチド配列を含むポリヌクレオチドの相補鎖とストリンジェントな条件下でハイブリダイズするポリヌクレオチドに含まれるヌクレオチド配列によりコードされるアミノ酸配列を含み、且つ、ヒトGPRC5Dに結合する抗体又は該抗体の抗原結合性断片も含まれる。
本発明の抗GPRC5D抗体又は該抗体の抗原結合性断片としては、重鎖可変領域のアミノ酸配列、及び/又は、軽鎖可変領域のアミノ酸配列が、前記(8)乃至(12)、(18)乃至(20)のいずれか1つに記載の抗体又は該抗体の抗原結合性断片に含まれるアミノ酸配列と、90%、91%、92%、93%、94%、95%、96%、97%、98%、又は99%以上同一であって、且つヒトGPRC5Dに結合する抗体又は該抗体の抗原結合性断片であってもよい。
 軽鎖可変領域の位置と長さは、IMGTの定義により決定する場合と比べ、IMGTとは異なる定義を用いて決定した場合、IMGTの定義により決定した該軽鎖可変領域アミノ酸配列のカルボキシル末端に、さらに、1つ又は2つ以上のアミノ酸、例えば、アルギニン(R)やグリシン(G)が含まれることがある。このような軽鎖可変領域を有する抗体又はその抗原結合性断片も本発明の抗体又はその抗原結合性断片に包含される。
 本発明の抗体等としては、本発明の抗GPRC5D抗体の抗原結合性断片に変異を導入して、GPRC5D、特にヒト及び/又はカニクイザルのGPRC5Dに対する結合能を最適化させたものであっても良い。変異を導入する具体的な方法として、エラープローンPCR法を用いたランダム突然変異誘発法、NNKライブラリーを用いた部位特異的アミノ酸変異導入、構造情報を利用した部位特異的変異導入、及びそれら組み合わせを挙げることができる。
3-2.抗GPRC5D抗体の抗体変異体
 本発明の抗GPRC5D抗体の抗体変異体には、好適には、蛋白質の分解もしくは酸化に対する感受性の低下、生物活性や機能の維持、改善もしくは低下や変化の抑制、抗原結合能の改善もしくは調節、又は理化学的性質もしくは機能的性質の付与等がなされ得る。蛋白質は、その表面にある特定のアミノ酸側鎖が変化して当該蛋白質の機能や活性が変化することが知られ、そのような例には、アスパラギン側鎖の脱アミド化、アスパラギン酸側鎖の異性化等が含まれる。そのようなアミノ酸側鎖の変化を防ぐために別のアミノ酸に置き換えたものも、本発明の抗体変異体の範囲に含まれる。
本発明の抗体変異体の例として、抗体の有するアミノ酸配列において保存的アミノ酸置換されてなるアミノ酸配列を有する抗体を挙げることができる。保存的アミノ酸置換とは、アミノ酸側鎖に関連のあるアミノ酸グループ内で生じる置換である。
 好適なアミノ酸グループは、以下のとおりである:酸性グループ=アスパラギン酸、グルタミン酸;塩基性グループ=リジン、アルギニン、ヒスチジン;非極性グループ=アラニン、バリン、ロイシン、イソロイシン、プロリン、フェニルアラニン、メチオニン、トリプトファン;及び非帯電極性ファミリー=グリシン、アスパラギン、グルタミン、システイン、セリン、スレオニン、チロシン。他の好適なアミノ酸グループは次のとおりである:脂肪族ヒドロキシグループ=セリン及びスレオニン;アミド含有グループ=アスパラギン及びグルタミン;脂肪族グループ=アラニン、バリン、ロイシン及びイソロイシン;並びに芳香族グループ=フェニルアラニン、トリプトファン及びチロシン。かかる抗体変異体におけるアミノ酸置換は、元の抗体が有する抗原結合活性を低下させない範囲で行うのが好ましい。
 2A4、2B1、あるいは、7B4等の本発明の抗体が有するアミノ酸配列において保存的アミノ酸置換及び/又はその他の変異がなされたアミノ酸配列を有し、且つ、ヒトGPRC5Dに結合する抗体変異体、それらの抗原結合断片、それらを含む分子等;2A4、2B1、あるいは、7B4等を含む本発明の抗体由来のCDRH1乃至CDRH3及びCDRL1乃至CDRL3のいずれかのアミノ酸配列において保存的アミノ酸置換及び/又はそも他の変異がなされたアミノ酸配列を有し、且つ、ヒトGPRC5Dに結合する該CDRを含むマウス抗体、ラット抗体、キメラ化抗体、ヒト化抗体、ヒト抗体、それらの抗原結合断片、それらを含む分子等;並びに、C2037、C3048、C3015、あるいは、C3022等の本発明の抗体が有するアミノ酸配列において保存的アミノ酸置換がなされたアミノ酸配列を有し、且つ、ヒトGPRC5Dに結合する抗体変異体、それらの結合断片、それらを含む分子等;C2037、C3048、C3015、あるいは、3022等の本発明の抗体由来のCDRH1乃至CDRH3及びCDRL1乃至CDRL3のいずれかのアミノ酸配列において保存的アミノ酸変異がなされたアミノ酸配列を有し、且つ、ヒトGPRC5Dに結合する該CDRを含むキメラ抗体、ヒト抗体、それらの抗原結合断片、それらを含む分子等も本発明の抗GPRC5D抗体、その抗原結合断片、その変異体、又は本発明の分子に包含される。
3-3.抗GPRC5D抗体の抗原結合性断片 
 本発明の一つの態様として、本発明の抗GPRC5D抗体の抗原結合性断片を提供する。本発明の抗GPRC5D抗体の抗原結合性断片には、キメラ化抗体、ヒト化抗体、又は、ヒト抗体の抗原結合性断片が包含される。抗体の抗原結合性断片とは、該抗体の有する機能のうち少なくとも抗原結合性を保持する断片又はその修飾物を意味する。かかる抗体の機能としては、一般的には、抗原結合活性、抗原の活性を調節する活性(例えばアゴニスト活性)、抗原を細胞内に内在化させる活性、抗原と相互作用する物質との相互作用を阻害もしくは促進する活性等を挙げることができる。
 抗体の抗原結合性断片としては、該抗体の有する活性のうち少なくとも抗原結合性を保持している該抗体の断片であれば特に限定されない。このような抗体の抗原結合性断片として、例えば、Fab、Fab’、F(ab’)、Fab軽鎖のカルボキシル末端とFab重鎖のアミノ末端とが適当なリンカーで連結された一本鎖Fab(scFab)、Fv、重鎖及び軽鎖のFvが適当なリンカーで連結された一本鎖Fv(scFv)、単一の重鎖可変領域を有し軽鎖配列を有さない単一ドメイン抗体{(sdAb)、又はナノボディ(nanobody)とも呼ばれる。(Muyldemans S.et.al.,Protein Eng.,(1994)7(9),1129-35,Hamers-Casterman C.et.al.,Nature(1993)363(6428),446-448)]等を挙げることができるが、それらに限定されるものではない。リンカー部分を保有するscFab、scFvのように、本発明の抗体の抗原結合性断片以外の部分を含む分子も、本発明の抗体の抗原結合性断片の意味に包含される。
3-4 抗GPRC5D抗体又はその抗原結合性断片の修飾体、複合体
 本発明は、抗体又はその抗原結合性断片の修飾体を提供する。本発明の抗体又はその抗原結合性断片の修飾体とは、本発明の抗体又はその抗原結合性断片に化学的又は生物学的な修飾が施されてなるものを意味する。化学的な修飾体には、アミノ酸骨格への化学部分の結合、N-結合又はO-結合炭水化物鎖の化学修飾体等が含まれる。生物学的な修飾体には、翻訳後修飾(例えば、N-結合又はO-結合への糖鎖付加、アミノ末端領域又はカルボキシル末端領域のプロセッシング、脱アミド化、アスパラギン酸の異性化、メチオニンの酸化)されたもの、原核生物宿主細胞を用いて発現させることによりアミノ末端にメチオニン残基が付加したもの等が含まれる。また、本発明の抗体又は抗原の検出又は単離を可能にするために標識されたもの、例えば、酵素標識体、蛍光標識体、アフィニティー標識体もかかる修飾物の意味に含まれる。このような本発明の抗体又はその抗原結合性断片の修飾物は、元の本発明の抗体又はその抗原結合性断片の安定性及び血中滞留性の改善、抗原性の低減、かかる抗体又は抗原の検出又は単離等に有用である。 
 化学的修飾体に含まれる化学部分としては、ポリエチレングリコール(PEG)、エチレングリコール/プロピレングリコールコポリマー、カルボキシメチルセルロース、デキストラン、ポリビニルアルコール等の水溶性ポリマーを例示することができる。 
 生物学的な修飾物としては、酵素処理や細胞処理等により修飾が施されたもの、遺伝子組換えによりタグ等他のペプチドが付加された融合体、ならびに内因性又は外来性の糖鎖修飾酵素を発現する細胞を宿主として調製されたもの等を挙げることができる。
 かかる修飾は、抗体又はその抗原結合性断片における任意の位置に、又は所望の位置において施されてもよく、1つ又は2つ以上の位置に同一又は2種以上の異なる修飾がなされてもよい。
 しかし、これらの重鎖配列の欠失、或いは、重鎖又は軽鎖配列の修飾は、抗体の抗原結合能及びエフェクター機能(補体の活性化や抗体依存性細胞傷害作用など)にはあまり影響を及ぼさない。
 従って、本発明には当該欠失又は修飾を受けた抗体も含まれる。例えば、重鎖カルボキシル末端において1又は2つのアミノ酸が欠失した欠失体(Journal of Chromatography A,705:129-134(1995))、重鎖カルボキシル末端のグリシン、リジンの2アミノ酸残基が欠失し、新たにカルボキシル末端に位置するプロリン残基がアミド化された当該欠失体(Analytical Biochemistry,360:75-83(2007))、抗体の重鎖又は軽鎖のアミノ末端のグルタミン又はグルタミン酸残基がピログルタミル化修飾された抗体(国際特許公開WO2013/147153号)等を挙げることができる(それらをまとめて「欠失体」と呼ぶ)。但し、抗原結合能及びエフェクター機能が保たれている限り、本発明に係る抗体の重鎖及び軽鎖のカルボキシル末端の欠失体は上記の種類に限定されない。本発明に係る抗体が2本以上の鎖(例えば重鎖)を含む場合、当該2本以上の鎖(例えば重鎖)は、完全長及び上記の欠失体からなる群から選択される重鎖のいずれか一種であっても良いし、いずれか二種を組み合わせたものであっても良い。各欠失体の量比又は分子数比は本発明に係る抗体を産生する哺乳類培養細胞の種類及び培養条件に影響を受け得るが、本発明に係る抗体の主成分としては2本の重鎖の双方でカルボキシル末端の1つのアミノ酸残基が欠失している場合を挙げることができる。
 さらに、本発明の抗体又はその抗原結合断片(本発明の分子、多重特異的分子、二重特異的分子等に含まれるもの等)に、発現ベクター及び/又はシグナル配列等に由来する1乃至数個のアミノ酸がアミノ末端及び/又はカルボキシル末端に付加され(且つその一部又は全部が前記のように修飾され)ていても、所望の抗原結合活性が維持されていれば、本発明の抗体の修飾体又はその抗原結合断片の修飾体の範囲に包含され、そのような抗体又は抗原結合断片の修飾体を含む分子も本発明の分子の範囲に包含される。
 本発明において「抗体又はその抗原結合性断片」は「抗体又はその抗原結合断片の修飾体」もその意味に含むものである。また、本発明のの分子、多重特異的な分子、二重特異的な分子等に含まれる「抗体又はその抗原結合断片」はかかる「抗体又はその抗原結合断片の修飾体」もその意味に含むものである。
 また、本発明の抗体に結合している糖鎖修飾を調節すること(グリコシル化、脱フコース化等)によって、抗体依存性細胞傷害活性を増強することが可能である。抗体の糖鎖修飾の調節技術としては、国際特許公開WO99/54342号、WO00/61739号、WO02/31140号等が知られているが、これらに限定されるものではない。
 本発明には、上述の抗体と他の分子がリンカーでつながれた複合体(Immunoconjugate)も含まれる。該抗体が放射性物質や薬理作用を有する化合物(薬物)と結合している抗体-薬物複合体の例としては、ADC(Antibody-Drug Conjugate)を挙げることができ([Methods Mol Biol.(2013)1045:1-27;Nature Biotechnology(2005)23,p.1137-1146))。
 更に本発明には、これらの抗体と他の機能性ポリペプチドを繋げた複合体も含まれる。このような抗体-ペプチド複合体の例としては、該抗体がアルブミン結合ポリペプチドと複合体を挙げることができる(Protein Eng Des Sel. (2012)(2):81-8)。
 上述の抗体の修飾体、糖鎖修飾を調節された抗体、複合体は、本発明の抗体に包含され、上述の抗体の修飾体、糖鎖修飾を調節された抗体、複合体の抗原結合性断片は、本発明の抗体の抗原結合性断片に包含される。
3-5.同一の部位に結合する抗体
 本発明の提供する抗体又は該抗体の抗原結合性断片が結合するヒトGPRC5D上の部位に結合する抗体も本発明の抗体又は該抗体の抗原結合性断片に含まれる。ある抗体と、同じヒトGPRC5D抗原の部位に結合する抗体とは、該抗体が認識する抗原分子上の同一の部位に結合する他の抗体を意味する。第一抗体が結合する抗原分子上の部分ペプチド又は部分立体構造に第二抗体が結合すれば、第一抗体と第二抗体は同一の部位に結合すると判定することができる。
 また、第一抗体の抗原に対する結合に対して第二抗体が競合する、すなわち、第二抗体が第一抗体と抗原の結合を妨げることを確認することによって、具体的な結合部位のペプチド配列又は立体構造が決定されていなくても、第一抗体と第二抗体が同一の部位に結合すると判定することができる。
 第一抗体と第二抗体が同一の部位に結合する場合、第二抗体は第一抗体と同様の活性を有する蓋然性は極めて高い。 
 抗体の結合部位は、免疫アッセイ法など当業者に周知の方法により決定することができる。例えば、抗原のアミノ酸配列をカルボキシル末端又はアミノ末端から適宜削ってなる一連のペプチドを作製し、それらに対する抗体の反応性を検討し、大まかな認識部位を決定した後に、さらに短いペプチドを合成してそれらのペプチドへの抗体の反応性を検討することにより、結合部位を決定することができる。抗原断片ペプチドは、遺伝子組換、ペプチド合成等の技術を用いて調製することができる。
3-6.本発明のポリヌクレオチド、ベクター、細胞
 本発明は、本発明の抗GPRC5D抗体又はその抗原結合性断片の有するアミノ酸配列をコードするヌクレオチド配列(例えば、配列番号63、65、67、69、71、73、75、77、79、81、83、85、87、89、91等)を含むポリヌクレオチド、該ポリヌクレオチドを含むベクター、該ポリヌクレオチド又は該ベクターを含む細胞、本発明の抗GPRC5D抗体又はその抗原結合性断片を産生する細胞等も提供する。かかるポリヌクレオチド、ベクター(プラスミド等の環状の形態、並びに、染色体にインテグレートされた場合を含めた非環状の形態)及び細胞は、後述する抗GPRC5D抗体又はその抗原結合性断片の製造に有用である。
 本発明のポリヌクレオチドは、抗GPRC5D抗体又はその抗原結合性断片の有するアミノ酸配列をコードするヌクレオチド配列以外に、任意のヌクレオチド配列を含んでいてよい。例えば、本発明の抗GPRC5D抗体又はその抗原結合性断片の有するアミノ酸配列をコードするヌクレオチド配列(配列表の配列番号63、65、67、69、71、73、75、77、79、81、83、85、87、89、91等)に加え、活性シグナル伝達分子であるペプチドの有するアミノ酸配列をコードするヌクレオチド配列、及び/又は、補助刺激分子の有するアミノ酸配列をコードするヌクレオチド配列を含むものは、本発明のポリヌクレオチドの態様の一部である。かかるポリヌクレオチドを免疫細胞(例えば、T細胞、NK細胞、モノサイト等)に導入して発現したキメラ抗原受容体(CAR)により、腫瘍細胞に対する結合活性を有する人工免疫細胞(以下、本発明の人工免疫細胞とも記す)も提供する。
 CARとは、腫瘍細胞の表面抗原を認識するモノクローナル抗体由来の軽鎖と重鎖と直列に結合させたscFvと、T細胞受容体のCD3ζや免疫グロブリン分子に対する受容体のFcRγ等活性シグナル伝達分子を、それぞれアミノ末端とカルボキシル末端にもつキメラ蛋白質で、その間に細胞外ヒンジドメイン、膜貫通ドメイン、免疫細胞を活性化させる補助刺激分子等が連結されている。本発明の細胞では、腫瘍細胞の表面抗原を認識するモノクローナル抗体は、本発明の抗GPRC5D抗体である。CARを発現した本発明の免疫細胞は、scFvの形状をとる本発明の抗GPRC5D抗体を介して腫瘍の表面のGPRC5D蛋白質を認識するとともに、細胞内の活性シグナル伝達分子により免疫細胞自体の活性化を誘導し、腫瘍細胞を攻撃する。 
 本発明のポリヌクレオチドを導入する免疫細胞としてT細胞を用いた場合、かかるポリヌクレオチドをT細胞に導入して細胞表面に発現させたキメラ抗原受容体(CAR)により、GPRC5Dを発現する細胞とT細胞の距離を近づけ、GPRC5Dを発現する細胞に対し、T細胞活性化を介して細胞傷害を誘導すること、すなわちT細胞リダイレクションにより細胞傷害を誘導することができる。そのようなCARを発現するT細胞(以下、本発明のT細胞とも記す)も提供する。
 言い換えれば、本発明のT細胞を、GPRC5Dを発現している腫瘍細胞にリダイレクションすることにより、該腫瘍細胞に細胞傷害を誘導することができる。
 活性シグナル伝達分子は、免疫細胞レセプターからのシグナルを細胞内に伝達するために免疫細胞内に導入される。免疫細胞として、例えば、T細胞を用いる場合、活性シグナル伝達分子としては、CD3ζ、DAP12、FcRγ等が挙げられる。
 補助刺激分子は、免疫細胞をより強く活性化させるために免疫細胞内に導入される。免疫細胞として、例えば、T細胞を用いる場合、補助刺激分子としては、CD2、CD27、CD28、CD49d、CD134、CD152、CD154、ICOS、4-1BB、RANKL等が挙げられる。
4.抗原結合性を有する分子
 本発明の分子は、本発明の抗GPRC5D抗体又はその抗原結合性断片を含む。
 さらに、本発明の分子は、後述する、シグナル配列、精製等のためのタグ、アミノ末端のGly、ADCのドラッグリンカー部分、アルブミン結合ポリペプチド、PEG等のポリマー、抗GPRC5D抗体以外の抗体、その抗原結合性断片、免疫グロブリン骨格を有さないで抗原結合性を有する蛋白質等を範囲として含むことができる。抗GPRC5D抗体以外の抗体として、抗CD3抗体が挙げられる。本発明の分子の範囲には、後述する多重特異的な分子が含まれる。 
4-1.多重特異的な分子
 本発明の多重特異的な分子は、2つ以上の抗原結合部位を持つ分子である。すなわち、1つの分子上の2つ以上の互いに異なるエピトープ又は2つ以上の分子上の互いに異なるエピトープに結合することが可能な分子であり、複数の互いに異なる抗原結合性断片を包む。このような多重特異的な分子には、IgG型多重特異性分子、2種類以上の可変領域を有する多重特異性分子、例えばタンデムscFv、一本鎖ダイアボディ、ダイアボディ、及びトリアボディのような抗体断片、共有結合又は非共有結合して連結されている抗体断片を含むが、これらに限定されない。多重特異的な分子はFcを含んでいてもよい。 
 本発明の多重特異的な分子は、本発明の抗GPRC5D抗体又は該抗体の抗原結合性断片を含む。本発明の多重特異的な分子は、本発明の抗GPRC5D抗体又はその抗原結合性断片、及び、1つ又は2つ以上の、GPRC5Dは有さず他の抗原にあるエピトープに結合する、抗GPRC5D抗体とは異なる抗体又は該抗体の抗原結合性断片を含む。
抗GPRC5D抗体の抗原結合性断片としては、例えば、Fab、F(ab)’、Fv、scFv、sdAbを挙げることができる。
 本発明の多重特異的な分子は、GPRC5Dに特異的に結合し、あるいは更に、エフェクター細胞上のFc受容体といった標的に結合してもよい。
 本発明の多重特異的な分子に含みうる、抗GPRC5D抗体とは異なる抗体としては、例えば抗CD3抗体が挙げられる。
 本発明の多重特異的な分子に含みうる抗CD3抗体、又はその抗原結合性断片の好ましい例としては、
配列番号183(図206)に示されるアミノ酸配列を含む重鎖CDR1(GVTFNYYG)、
配列番号238(図276)に示されるアミノ酸配列を含む重鎖CDR2(ITXaaaaGGRI)(ここで、1番目のXaaと2番目のXaaは、それぞれ、任意の天然のアミノ酸残基である。以下、重鎖CDR2の1番目のXaaをX1、2番目のXaaを、それぞれX、Xとも記す。)、
及び、
配列番号185(図208)に示されるアミノ酸配列を含むCDRH3(TLDGRDGWVAY)を保有している。 
 また、本発明の好適なヒト化抗CD3抗体又は該抗体の抗原結合性断片に含まれる軽鎖可変領域は、
配列番号186(図209)に示されるアミノ酸配列を含む軽鎖CDR1(TGNIGSNY)、
配列番号239(図277)に示されるアミノ酸配列を含む軽鎖CDR2(RXaaD)(ここで、Xaaは、任意の天然のアミノ酸残基である。以下、軽鎖CDR2のXaaをXとも記す。)、 
及び、
配列番号188(図211)に示されるアミノ酸配列を含む軽鎖CDR3(QSYSSGFI)を保有している。
 上述の重鎖CDR2(ITXGGRI)において、好ましくは、Xは、(A、E、G、H、I、L、T、V、R、S)からなる群より選択され、且つ、XはSであるか;又は、XはNであり、且つXは、(E、R、F、Y、L、V、I、K、T)からなる群より選択され、
 上述の軽鎖CDR2(RXD)において、好ましくは、Xは、(Q、A、G、S、N、D)からなる群より選択される。
 上述の重鎖CDR2(ITXGGRI)において、更に好ましくは、Xは、(R、S)からなる群より選択され、且つ、XはSであり、
 上述の軽鎖CDR2(RXD)において、更に好ましくは、Xは、(Q、A、G、S、N、D)からなる群より選択される。  
  本発明の多重特異的な分子の好ましい例としては、配列番号240(図278)に示されるアミノ酸配列を含む重鎖可変領域と、配列番号241(図279)、242(図280、及び243(図281)のいずれか1つに示されるアミノ酸配列を含む軽鎖可変領域を含み、
配列番号240で示されるアミノ酸配列の1番目のXaaは、(A、E、G、H、I、L、T、V、R、S)からなる群より選択され、且つ、2番目のXaaはSであるか、又は、
1番目のXaaはNであり、且つ、2番目のXaaは、(E、R、F、Y、L、V、I、K、T)からなる群より選択され、
配列番号241、242、及び、243のいずれか1つに示されるアミノ酸配列のXaaは、(Q、A、G、S、N、D)からなる群より選択される分子が挙げられる。
 本発明の多重特異的な分子に含みうる抗CD3抗体、又はその抗原結合性断片のより好ましい例としては、配列番号240の1番目のXaaは、(R、S)からなる群より選択され、
2番目のXaaはSであり、且つ、配列番号241、242、及び、243のいずれか1つに示されるアミノ酸配列のXaaは、(Q、A、G、S、N、D)からなる群より選択される
分子が挙げられる。
 本発明の好適なヒト化抗CD3抗体又は該抗体の抗原結合性断片の具体例として、
配列番号183に示される重鎖CDR1のアミノ酸配列(GVTFNYYG)、
配列番号184に示される重鎖CDR2のアミノ酸配列(ITNSGGRI)、及び、
配列番号185に示される重鎖CDR3のアミノ酸配列(TLDGRDGWVAY)
を含む重鎖可変領域;並びに、
配列番号186に示される軽鎖CDR1のアミノ酸配列(TGNIGSNY)、
配列番号187に示される軽鎖CDR2のアミノ酸配列(RDD)、及び、
配列番号188に示される軽鎖CDR3のアミノ酸配列(QSYSSGFI)
を含む軽鎖可変領域;
を含み、且つヒトCD3及びカニクイザルCD3に結合する抗体又は該抗体の抗原結合性断片が挙げられる。上記抗CD3抗体のCDRの位置と長さは、IMGTの定義により決定した。
 上述のCDRを有する本発明の多重特異的な分子に含まれる抗CD3抗体、その抗原結合性断片及びその可変領域(以下、本発明の抗CD3抗体等とも記す)は、ヒトCD3複合体のε鎖の細胞外領域に存在するIg-likeドメインに結合する。さらにカニクイザルCD3複合体のε鎖の細胞外領域に存在するIg-likeドメインにも結合する。
 本発明の多重特異的な分子に含まれる抗CD3抗体等が結合するヒトCD3複合体のε鎖の細胞外領域に存在するエピトープは、次のアミノ酸を含む;
Ser55、Glu56、Leu58、Trp59、Asn65、Ile66、Ser77、Asp78、Arg101、Gly102、Ser103、Lys104、及びPro105。
 本発明の多重特異的な分子に含まれる抗CD3抗体等は、好ましくは、これらの13個のアミノ酸から選択される少なくとも7個のアミノ酸を含むエピトープ領域に結合することでヒトCD3と結合を維持することができる。
 抗体が、上述のアミノ酸と4Å以内の距離で隣接している場合、そのような抗体は本発明の多重特異的な分子に含まれる抗CD3抗体等と同一のエピトープ特異性を有すると判断することができる。一方、上述のエピトープのアミノ酸のうち、Arg101、Gly102、Ser103、Lys104、及びPro105は、公知の抗CD3抗体OKT3やUCHT1と相互作用するエピトープ残基でもある(Lars Kjer-Nielsen et al.,PNAS(2004)(Kelly L Arnett et al.,PNAS(2004))。しかし、OKT3とUCHT1はヒトCD3に結合するが、カニクイザルCD3には結合しない。
 このような本発明の多重特異的な分子に含まれるヒトCD3及びカニクイザルCD3に結合する抗体及び該抗体の抗原結合性断片は、医薬品の非臨床開発(前臨床開発)に有用な霊長類、特にカニクイザルを用いた有効性や安全性に関する各種試験に供することができ好ましい。また、ヒトCD3及びカニクイザルCD3に結合する抗体等は、細胞傷害活性を有し、単独で又は本発明の分子として、カニクイザルにおける癌等の疾患の治療又は予防に有用である。医薬組成物については後述する。
 上記抗CD3抗体は、非ヒト動物抗体、キメラ化抗体、ヒト化抗体、あるいはヒト抗体であってもよい。好ましくは、ヒト化抗体又はヒト抗体である。
 上記抗CD3抗体の抗原結合性断片としては、Fab、F(ab)’、Fv、scFv、又は、sdAbが例示される。
 上記CDRを含む抗CD3抗体又は該抗体の抗原結合性断片の例としては、配列番号240(図278)に示されるアミノ酸配列を含む重鎖可変領域と、配列番号241(図279)、配列番号242(図280)、配列番号243(図281)のいずれか1つに示されるアミノ酸配列を含む軽鎖可変領域とを含むヒト化抗体又は該抗体の抗原結合性断片、具体的には、たとえば、配列番号155に示されるアミノ酸配列を含む重鎖可変領域と、配列番号156、158、及び、160のいずれか1つに示されるアミノ酸配列を含む軽鎖可変領域を含むヒト化抗体又は該抗体の抗原結合性断片が挙げられる。
 上記抗CD3抗体又は該抗体の抗原結合性断片の具体例としては、配列番号180、181、及び、182に示されるアミノ酸配列を含む抗体又は該抗体の抗原結合性断片が挙げられる。より詳細には、
配列番号180の2乃至243番目のアミノ酸残基を含む抗体又は該抗体の抗原結合性断片、
配列番号181の2乃至243番目のアミノ酸残基を含む抗体又は該抗体の抗原結合性断片、
配列番号182の2乃至241番目のアミノ酸残基を含む抗体又は該抗体の抗原結合性断片
に示されるアミノ酸配列を含む抗体又は該抗体の抗原結合性断片が挙げられる。
 上記抗CD3抗体は、ヒト免疫グロブリン定常領域又はFcを含むヒト化抗体又はヒト抗体であってもよい。Fcは変異型Fcであってもよい。
 本発明の多重特異的な分子で、抗GPRC5D抗体又は該抗体の抗原結合性断片と抗CD3抗体又は該抗体の抗原結合性断片を含む分子の好適例として、前述の2B1由来のヒト化抗GPRC5D抗体又は該抗体の抗原結合性断片と、さらに、抗CD3抗体又は該抗体の抗原結合性断片として、
・配列番号207に示されるアミノ酸配列の25乃至142番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域と、配列番号209に示されるアミノ酸配列の24乃至132番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域、
・配列番号211に示されるアミノ酸配列の25乃至142番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域と、配列番号213に示されるアミノ酸配列の24乃至130番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域、
・配列番号244の2乃至119のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域と、配列番号244の135乃至243のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域、
・配列番号245の2乃至119のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域と、配列番号245の135乃至241のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域、 
・配列番号246の2乃至119のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域と、配列番号246の135乃至243のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域、
・配列番号247の2乃至119のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域と、配列番号247の135乃至243のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域、
・配列番号248の2乃至119のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域と、配列番号248の135乃至243のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域、 
・配列番号249の2乃至119のアミノ酸残基を含む重鎖可変領域と、配列番号249の135乃至243のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域、
・配列番号250の2乃至119のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域と、配列番号250の135乃至243のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域、
・配列番号251の2乃至119のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域と、配列番号251の135乃至243のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域、
・配列番号252の2乃至119のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域と、配列番号252の135乃至243のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域、
・配列番号253の2乃至119のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域と、配列番号253の135乃至242のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域、
・配列番号254の2乃至119のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域と、配列番号254の135乃至243のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域、
又は、
・配列番号255の2乃至119のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域と、配列番号255の135乃至243のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域
を含み、且つヒトCD3及びカニクイザルCD3に結合する抗体又は該抗体の抗原結合性断片を含む分子を挙げることができる。 
 これらの分子の中でも、より好ましい分子としては、ヒトGPRC5Dに結合する抗体又は該抗体の抗原結合性断片が、配列番号76に示されるアミノ酸配列の20乃至142番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域、及び、配列番号72に示されるアミノ酸配列の21乃至127番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域、並びに、
i)配列番号199に示されるアミノ酸配列の147乃至475番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖定常領域と、配列番号203に示されるアミノ酸配列の131乃至237番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖定常領域、
ii)配列番号201に示されるアミノ酸配列の147乃至475番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖定常領域と、配列番号205に示されるアミノ酸配列の131乃至237番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖定常領域、
iii)配列番号215に示されるアミノ酸配列の147乃至475番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖定常領域と、配列番号217に示されるアミノ酸配列の131乃至237番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖定常領域
又は、
iv)配列番号237に示されるアミノ酸配列の147乃至476番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖定常領域と、配列番号217に示されるアミノ酸配列の131乃至237番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖定常領域を含み、
ヒトCD3及びカニクイザルCD3に結合する抗体又は該抗体の抗原結合性断片が、さらに変異型Fcを含む分子を挙げることができる。
 これらの分子の中でも、ヒトGPRC5Dに結合する抗体又は該抗体の抗原結合性断片が、上記iii)又はiv)に示す定常領域を含むヒトGPRC5Dに結合する抗体又は該抗体の抗原結合性断片である分子が、より更に好ましい。
 かかる本発明の多重特異的な分子の具体的な好適例として、
 配列番号215に示されるアミノ酸配列の24乃至475番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖と、配列番号217に示されるアミノ酸配列の24乃至237番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖を含むヒトGPRC5Dに結合する抗体の抗原結合性断片、及び、配列番号219に示されるアミノ酸配列の24乃至499番目のアミノ酸残基で示されるアミノ酸配列を含むヒトCD3及びカニクイザルCD3に結合する抗体の抗原結合性断片、
 配列番号215に示されるアミノ酸配列の24乃至475番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖と、配列番号217に示されるアミノ酸配列の24乃至237番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖を含むヒトGPRC5Dに結合する抗体の抗原結合性断片、及び、配列番号221に示されるアミノ酸配列の24乃至497番目のアミノ酸残基で示されるアミノ酸配列を含むヒトCD3及びカニクイザルCD3に結合する抗体の抗原結合性断片、
 配列番号215に示されるアミノ酸配列の24乃至475番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖と、配列番号217に示されるアミノ酸配列の24乃至237番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖を含むヒトGPRC5Dに結合する抗体の抗原結合性断片、及び、配列番号225に示されるアミノ酸配列の24乃至497番目のアミノ酸残基で示されるアミノ酸配列を含むヒトCD3及びカニクイザルCD3に結合する抗体の抗原結合性断片、
 配列番号215に示されるアミノ酸配列の24乃至475番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖と、配列番号217に示されるアミノ酸配列の24乃至237番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖を含むヒトGPRC5Dに結合する抗体の抗原結合性断片、及び、配列番号227に示されるアミノ酸配列の24乃至499番目のアミノ酸残基で示されるアミノ酸配列を含むヒトCD3及びカニクイザルCD3に結合する抗体の抗原結合性断片、
 配列番号215に示されるアミノ酸配列の24乃至475番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖と、配列番号217に示されるアミノ酸配列の24乃至237番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖を含むヒトGPRC5Dに結合する抗体の抗原結合性断片、及び、配列番号229に示されるアミノ酸配列の24乃至499番目のアミノ酸残基で示されるアミノ酸配列を含むヒトCD3及びカニクイザルCD3に結合する抗体の抗原結合性断片、
 配列番号237に示されるアミノ酸配列の24乃至476番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖と、配列番号217に示されるアミノ酸配列の24乃至237番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖を含むヒトGPRC5Dに結合する抗体の抗原結合性断片、及び、配列番号231に示されるアミノ酸配列の24乃至498番目のアミノ酸残基で示されるアミノ酸配列を含むヒトCD3及びカニクイザルCD3に結合する抗体の抗原結合性断片、
 配列番号237に示されるアミノ酸配列の24乃至476番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖と、配列番号217に示されるアミノ酸配列の24乃至237番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖を含むヒトGPRC5Dに結合する抗体の抗原結合性断片、及び、配列番号233に示されるアミノ酸配列の24乃至500番目のアミノ酸残基で示されるアミノ酸配列を含むヒトCD3及びカニクイザルCD3に結合する抗体の抗原結合性断片、又は、
 配列番号237に示されるアミノ酸配列の24乃至476番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖と、配列番号217に示されるアミノ酸配列の24乃至237番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖を含むヒトGPRC5Dに結合する抗体の抗原結合性断片、及び、配列番号235に示されるアミノ酸配列の24乃至500番目のアミノ酸残基で示されるアミノ酸配列を含むヒトCD3及びカニクイザルCD3に結合する抗体の抗原結合性断片を含む分子を挙げることができる。
 これらの中でも、より好適な具体例としては、
 配列番号215に示されるアミノ酸配列の24乃至475番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖と、配列番号217に示されるアミノ酸配列の24乃至237番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖を含むヒトGPRC5Dに結合する抗体の抗原結合性断片、及び、配列番号225に示されるアミノ酸配列の24乃至497番目のアミノ酸残基で示されるアミノ酸配列を含むヒトCD3及びカニクイザルCD3に結合する抗体の抗原結合性断片、
 配列番号215に示されるアミノ酸配列の24乃至475番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖と、配列番号217に示されるアミノ酸配列の24乃至237番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖を含むヒトGPRC5Dに結合する抗体の抗原結合性断片、及び、配列番号227に示されるアミノ酸配列の24乃至499番目のアミノ酸残基で示されるアミノ酸配列を含むヒトCD3及びカニクイザルCD3に結合する抗体の抗原結合性断片、
 配列番号215に示されるアミノ酸配列の24乃至475番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖と、配列番号217に示されるアミノ酸配列の24乃至237番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖を含むヒトGPRC5Dに結合する抗体の抗原結合性断片、及び、配列番号229に示されるアミノ酸配列の24乃至499番目のアミノ酸残基で示されるアミノ酸配列を含むヒトCD3及びカニクイザルCD3に結合する抗体の抗原結合性断片、
 配列番号237に示されるアミノ酸配列の24乃至476番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖と、配列番号217に示されるアミノ酸配列の24乃至237番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖を含むヒトGPRC5Dに結合する抗体の抗原結合性断片、及び、配列番号231に示されるアミノ酸配列の24乃至498番目のアミノ酸残基で示されるアミノ酸配列を含むヒトCD3及びカニクイザルCD3に結合する抗体の抗原結合性断片、
 配列番号237に示されるアミノ酸配列の24乃至476番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖と、配列番号217に示されるアミノ酸配列の24乃至237番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖を含むヒトGPRC5Dに結合する抗体の抗原結合性断片、及び、配列番号233に示されるアミノ酸配列の24乃至500番目のアミノ酸残基で示されるアミノ酸配列を含むヒトCD3及びカニクイザルCD3に結合する抗体の抗原結合性断片、又は、
 配列番号237に示されるアミノ酸配列の24乃至476番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖と、配列番号217に示されるアミノ酸配列の24乃至237番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖を含むヒトGPRC5Dに結合する抗体の抗原結合性断片、及び、配列番号235に示されるアミノ酸配列の24乃至500番目のアミノ酸残基で示されるアミノ酸配列を含むヒトCD3及びカニクイザルCD3に結合する抗体の抗原結合性断片を含む分子を挙げることができる。
 これらの分子の適用可能な形態には、後述するHybrid型の二重特異的な分子が含まれる。
 本発明の多重特異的な分子の別のより好ましい分子の例としては、ヒトGPRC5Dに結合する抗体又は該抗体の抗原結合性断片が、前述の2B1由来のヒト化抗体又は該抗体の抗原結合性断片、好ましくは、配列番号76に示されるアミノ酸配列の20乃至142番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域、及び、配列番号72に示されるアミノ酸配列の21乃至127番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域を含み、さらに前述のi)、ii)、iii)又はiv)に記載の定常領域を含み、ヒトCD3及びカニクイザルCD3に結合する抗体又は該抗体の抗原結合性断片が、さらに
v)配列番号207に示されるアミノ酸配列の143乃至471番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖定常領域と、配列番号209に示されるアミノ酸配列の24乃至132番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖定常領域、又は、
vi)配列番号211に示されるアミノ酸配列の143乃至471番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖定常領域と、配列番号213に示されるアミノ酸配列の131乃至236番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖定常領域を含む分子を挙げることができる。
 これらの分子の中でも、ヒトGPRC5Dに結合する抗体又は該抗体の抗原結合性断片が、上記iii)又はiv)に示す定常領域を含むヒトGPRC5Dに結合する抗体又は該抗体の抗原結合性断片である分子が、より好ましい。
 かかる本発明の多重特異的な分子の具体的な好適例として、
 配列番号199に示されるアミノ酸配列の24乃至475番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖と、配列番号203に示されるアミノ酸配列の24乃至237番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖を含むヒトGPRC5Dに結合する抗体の抗原結合性断片、及び、配列番号207に示されるアミノ酸配列の25乃至471番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖と、配列番号209に示されるアミノ酸配列の24乃至238番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖を含むヒトCD3及びカニクイザルCD3に結合する抗体の抗原結合性断片
又は、
配列番号201に示されるアミノ酸配列の24乃至475番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖と、配列番号205に示されるアミノ酸配列の24乃至237番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖を含むヒトGPRC5Dに結合する抗体の抗原結合性断片、及び、配列番号211に示されるアミノ酸配列の25乃至471番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖と、配列番号213に示されるアミノ酸配列の24乃至236番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖を含むヒトCD3及びカニクイザルCD3に結合する抗体の抗原結合性断片
を含む分子を挙げることができる。
 これらの分子の適用可能な形態には、後述するFSA型の二重特異的な分子が含まれる。
 本発明の多重特異的な分子のさらに別の好適例として、ヒトGPRC5Dに結合する抗体又は該抗体の抗原結合性断片が、配列番号76に示されるアミノ酸配列の20乃至142番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域、及び、配列番号72に示されるアミノ酸配列の21乃至127番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域と、さらに変異型Fcを含み、ヒトCD3及びカニクイザルCD3に結合する抗体又は該抗体の抗原結合性断片が、さらに変異型Fcを含む、請求項55に記載の分子を挙げることができる。
 かかる本発明の多重特異的な分子の具体的な好適例として、
配列番号223に示されるアミノ酸配列の24乃至271番目のアミノ酸残基で示されるアミノ酸配列と変異型Fcを含むヒトGPRC5Dに結合する抗体又は該抗体の抗原結合性断片、及び、配列番号219に示されるアミノ酸配列の24乃至266番目のアミノ酸残基で示されるアミノ酸配列と変異型Fcを含むヒトCD3及びカニクイザルCD3に結合する抗体又は該抗体の抗原結合性断片
又は、
 配列番号223に示されるアミノ酸配列の24乃至271番目のアミノ酸残基で示されるアミノ酸配列と変異型Fcを含むヒトGPRC5Dに結合する抗体又は該抗体の抗原結合性断片、及び、配列番号221に示されるアミノ酸配列の24乃至264番目のアミノ酸残基で示されるアミノ酸配列と変異型Fcを含むヒトCD3及びカニクイザルCD3に結合する抗体又は該抗体の抗原結合性断片を含む分子を挙げることができる。
 これらの分子の適用可能な形態には、後述するDual型の二重特異的な分子が含まれる。
 本発明の分子には、上記抗CD3抗体又は該抗体の抗原結合性断片に含まれるアミノ酸配列をコードするヌクレオチド配列を含むポリヌクレオチドの相補鎖とストリンジェントな条件下でハイブリダイズするポリヌクレオチドに含まれるヌクレオチド配列によりコードされるアミノ酸配列を含み、且つ、ヒトCD3及びカニクイザルCD3に結合する抗CD3抗体又はその抗原下都合断片の部分、並びに、ヒトGPRC5Dに結合し、好ましくは、さらにカニクイザルGPRC5Dに結合する抗GPRC5D抗体又はその抗原結合断片の部分を含む分子も包含する。
 また、本発明の分子には、上記抗CD3抗体又は該抗体の抗原結合性断片に含まれる重鎖可変領域のアミノ酸配列、及び/又は、軽鎖可変領域のアミノ酸配列と、70%、71%、72%、73%、74%、75%、76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、又は99%以上同一な重鎖可変領域のアミノ酸配列、及び/又は、軽鎖可変領域のアミノ酸配列を含み、且つ、ヒトCD3及びカニクイザルCD3に結合する抗CD3抗体又はその抗原結合断片の部分、並びに、ヒトGPRC5Dに結合し、好ましくは、さらにカニクイザルGPRC5Dに結合する抗GPRC5D抗体又はその抗原結合断片の部分を含む分子も包含する。
 本発明の分子には、上記抗CD3抗体又は該抗体の抗原結合性断片に含まれるアミノ酸配列において1乃至数個のアミノ酸が置換、欠失又は修飾を受けているアミノ酸配列を有する抗CD3抗体又は該抗体の抗原結合性断片であって、且つ、ヒトCD3及びカニクイザルCD3、並びに、ヒトGPRC5Dに結合し、好ましくは、さらにカニクイザルGPRC5Dに結合する分子も包含する。かかる抗CD3抗体又は該抗体の抗原結合性断片の例としては、重鎖カルボキシル末端において1又は2つのアミノ酸が欠失した欠失体(Journal of Chromatography A,705:129-134(1995))、重鎖カルボキシル末端のグリシン、リジンの2アミノ酸残基が欠失し、新たにカルボキシル末端に位置するプロリン残基がアミド化された当該欠失体(Analytical Biochemistry,360:75-83(2007))、抗体の重鎖又は軽鎖のアミノ末端のグルタミン又はグルタミン酸残基がピログルタミル化修飾された抗体(国際特許公開WO2013/147153号)等を挙げることができる(それらをまとめて「欠失体」と呼ぶ)。但し、抗原結合能及びエフェクター機能が保たれている限り、本発明の分子に含まれる抗CD3抗体又は該抗体の抗原結合性断片の重鎖及び軽鎖のカルボキシル末端の欠失体としては、上記の種類に限定されない。本発明の分子に含まれる抗体が2本以上の鎖(たとえば重鎖をを含む場合、当該2本以上の鎖(例えば重鎖)は、完全長及び上記の欠失体からなる群から選択される重鎖のいずれか一種であっても良いし、いずれか2種以上を組み合わせたものであっても良い。各欠失体の量比又は分子数比は本発明の分子を産生する哺乳類培養細胞の種類及び培養条件に影響を受け得るが、本発明の分子の主成分としては2本の重鎖の双方でカルボキシル末端の1つのアミノ酸残基が欠失している場合を挙げることができる。
4-2. 本発明の二重特異的な分子 
 本発明の多重特異的な分子の好適な例として、二重特異的な分子を挙げることができる。
「二重特異的」とは、同一分子の2つの互いに異なるエピトープ又は2つ以上の分子上の互いに異なるエピトープに結合することが可能であることを意味し、このような二重特異性を有する抗体又は抗原結合性断片を包含する。 
 本発明の二重特異的な分子は、GPRC5Dに結合し、且つGPRC5Dは有さず他の抗原にあるエピトープに結合する。より具体的には、かかる二重特異的な分子は、(i)GPRC5D上のあるエピトープ(エピトープ1)に結合し、且つ、(ii)GPRC5Dにあるエピトープ1とは異なるエピトープ(エピトープ2)に結合するか、又は、GPRC5D以外の抗原にあるエピトープ(エピトープ3)に結合する。 
 たとえばBiTEに代表されるタンデムscFv型の二重特異性分子では、第一の抗体の重鎖可変領域の抗原結合部位と、第一の抗体の軽鎖可変領域の抗原結合部位とが、リンカーにて連結され又はリンカーなしで直接結合されて第一のポリペプチドを形成しており、また、第二の抗体の重鎖可変領域の抗原結合部位と、第二の抗体の軽鎖可変領域の抗原結合部位とが、リンカーにて連結され又はリンカーなしで直接結合されて第二のポリペプチドを形成しており、第一のポリペプチドと第二のポリペプチドとが、リンカーにて連結され又はリンカーなしで直接結合されている。また、第一のポリペプチドと第二のポリペプチドが別の分子を介して結合されていても良い。
 ダイアボディ型の二重特異性分子では、第一の抗体の重鎖可変領域の抗原結合部位と第二の抗体の軽鎖可変領域の抗原結合部位がリンカーにて連結され又はリンカーなしで直接結合されており、また、第一の抗体の軽鎖可変領域の抗原結合部位と第二の抗体の重鎖可変領域の抗原結合部位とが、リンカーにて連結され又はリンカーなしで直接結合されている。またダイアボディ型二重特異性分子をさらに二量体化させた二重特異性分子も作製しうる。その他ダイアボディ型二重特異性分子をFcの一方の単鎖のみあるいは両鎖とリンカーにて連結させても良い(ダイアボディ-Fc型二重特異性分子)。
 デュアルscFv型の二重特異性分子では、異なるエピトープに結合する2種のscFvが、二量体のFcの一方とそれぞれリンカーにて連結され又はリンカーなしで直接結合されている。あるいは、異なるエピトープに結合する2種類のscFvがそれぞれCH、CLにリンカーにて連結され、さらに二量体のFcの一方とそれぞれリンカーにて連結されている。デュアルscFv型の二重特異性分子を、以下Dual型二重特異性分子、又は単にDual型とも記す。
IgG型の二重特異性分子では、異なるエピトープに結合する2種のFabが、二量体のFcの一方とそれぞれリンカーにて連結され又はリンカーなしで直接結合されている。IgG型の二重特異性分子を、以下、Full-Size Antibody(FSA)型二重特異性分子、又は単にFSA型とも記す。
あるいは二量体のFcの一方に第一の抗体のFab,もう一方に第二の抗体のscFvをリンカーにて連結され又はリンカーなしで直接結合させた二重特異性分子であっても良い。このような二重特異性分子を、以下Hybrid型二重特異性分子、又はHybrid型とも記す。
 本発明の二重特異性分子に含まれるscFv及びFabは、好ましくは、ヒト化抗体又はヒト抗体のscFv及びFabであり、Fcは、好ましくは、ヒト抗体のFcである。
 リンカーは、一本鎖ポリペプチド又は一本鎖オリゴペプチド、あるいは、PEG、ヌクレオチド、糖鎖、化合物等の合成品も含まれる。その他、二つのポリペプチドを結合するものであれば特に限定されず、公知のリンカーを使用することが可能である。
 リンカーの長さとしては、たとえばペプチドリンカーの場合5~30アミノ酸である。二重特異性分子に複数のリンカーが含まれる場合、すべて同じ長さのペプチドリンカーを用いてもよいし、異なる長さのペプチドリンカーを用いてもよい。
 ペプチドリンカーとしては、たとえば、(Gly・Gly・Gly・Gly・Ser)の繰り返しが例示されるが、これらに1乃至数個のGly、Serとは異なるアミノ酸残基が付加していてもよい。
 本発明の二重特異的な分子に含まれる、GPRC5D以外の抗原にあるエピトープ(エピトープ3)に結合する抗体、又はその抗原結合性断片の例としては、上記抗CD3抗体、又はその抗原結合性断片を挙げることができる。
 本発明の二重特異的な分子の例として、上記抗CD3抗体又は該抗体の抗原結合性断片と、本発明の抗GPRC5D抗体又は該抗体の抗原結合性断片とが、リンカーにより結合してなる、あるいはリンカーなしで結合してなる分子を示すことができる。このような分子の好ましい例としては、上記抗CD3抗体又は該抗体の抗原結合性断片と、本発明の抗GPRC5D抗体又は該抗体の抗原結合性断片とが、おのおのscFvであり、リンカーにより結合してなる、あるいはリンカーなしで結合してなる分子を示すことができる。
 かかる分子の好適な具体例として、配列番号171乃至179に示されるアミノ酸配列を有する、ヒトCD3及びカニクイザルCD3、並びに、ヒトGPRC5Dに結合し、好ましくは、さらにカニクイザルGPRC5Dに結合する分子を示すことができる。
5.抗体及び分子の製造
5-1.ハイブリドーマを用いる方法
 本発明の抗GPRC5D抗体は、常法を用いて、GPRC5D又はGPRC5Dのアミノ酸配列から選択される任意のポリペプチドを動物に免疫し、生体内に産生される抗体を採取、精製することによって得ることができる。また、公知の方法(例えば、Kohler and Milstein,Nature (1975)256,p.495-497、Kennet,R.ed.,Monoclonal Antibodies,p.365-367,Plenum Press,N.Y.(1980))に従って、GPRC5Dに対する抗体を産生する抗体産生細胞とミエローマ細胞とを融合させることによりハイブリドーマを樹立し、モノクローナル抗体を得ることもできる。このような方法の具体的な例は、国際公開第WO09/48072号パンフレット(2009年4月16日公開)等に記載されている。
 抗原となるGPRC5Dの生物種はヒトに限定されず、マウス、ラット等のヒト以外の動物に由来するGPRC5Dを動物に免疫することもできる。この場合には、取得された異種GPRC5Dに結合する抗体とヒトGPRC5Dとの交差性を試験することによって、ヒトの疾患に適用可能な抗体を選別できる。
 本発明の分子に含まれうる抗CD3抗体も、同様に、常法を用いて、CD3又はCD3のアミノ酸配列から選択される任意のポリペプチドを動物に免疫し、生体内に産生される抗体を採取、精製することによって得ることができる。また、公知の方法に従って、CD3に対する抗体を産生する抗体産生細胞とミエローマ細胞とを融合させることによりハイブリドーマを樹立し、モノクローナル抗体を得ることもできる。
 抗原となるCD3の生物種もヒトに限定されず、マウス、ラット等のヒト以外の動物に由来するCD3を動物に免疫することもでき、取得された異種CD3に結合する抗体とヒトCD3との交差性を試験することによって、ヒトの疾患に適用可能な抗体を選別できる。
5-2.細胞免疫法
 天然型の抗原を発現する細胞、組換え型抗原又はその断片を発現する細胞等を免疫原として使用することにより、前記のハイブリドーマ法により抗体を調製することができる。  
 天然型のGPRC5Dを発現する細胞としては、ヒト形質細胞、ヒト多発性骨髄腫患者由来初代培養細胞、ヒト多発性骨髄腫患者由来培養細胞株等を挙げることができる。天然型のCD3を発現する細胞としては、ヒト胸腺細胞、Tリンパ球等を挙げることができる。
 かかる細胞は、1×10乃至1×10個、好適には1×10乃至1×10個、より好適には0.5乃至2×10個、より一層好適には1×10個を1回の免疫に用いるが、抗原の発現量に応じて免疫に供する細胞数を変えることができる。かかる免疫源は、一般的には腹腔内に投与するが、皮内等に投与することもできる。
5-3.DNA免疫法
 本発明の抗GPRC5D抗体、及び、本発明の分子に含まれ得る抗CD3抗体(以下、まとめて本発明の抗体とも記す)は、DNA免疫法を使用して得ることもできる。抗原発現プラスミドをマウスやラットなどの動物個体に遺伝子導入し、抗原を個体内で発現させることによって、抗原に対する免疫を誘導する。遺伝子導入の手法には、直接プラスミドを筋肉に注射する方法や、リポソームやポリエチレンイミンなどの導入試薬を静脈注射する方法、ウイルスベクターを用いる手法、プラスミドを付着させた金粒子をGene Gunにより射ち込む手法、急速に大量のプラスミド溶液を静脈注射するHydrodynamic法などが存在する。 
 このようにして樹立されたラット抗ヒトGPRC5D抗体の実例として、2A4、2B1、及び、7B4を挙げることができる。2A4の重鎖可変領域のアミノ酸配列は、配列表の配列番号5に示されている。また2A4の軽鎖可変領域のアミノ酸配列は、配列表の配列番号12に示されている。2B1の重鎖可変領域のアミノ酸配列は、配列表の配列番号7に示されている。また2B1の軽鎖可変領域のアミノ酸配列は、配列表の配列番号14に示されている。7B4の重鎖可変領域のアミノ酸配列は、配列表の配列番号9に示されている。また7B4の軽鎖可変領域のアミノ酸配列は、配列表の配列番号16に示されている。 
5-4.ヒト化抗体のデザイン
 ヒト化抗体としては、非ヒト動物抗体のCDRのみがヒト由来の抗体に組込まれ抗体(Nature(1986)321,p.522-525参照)、CDR移植法によりCDRの配列に加え一部のフレームワークのアミノ酸残基もヒト抗体に移植した抗体(WO90/07861号、US6972323号公報参照)、それらのいずれかにおける非ヒト動物抗体の1つ又は2つ以上のアミノ酸がヒト型のアミノ酸で置換されてなる抗体等を挙げることができるが、それらに限定されるものではない。
5-5.ヒト抗体のデザイン
 ヒト抗体とは、ヒト由来の抗体のアミノ酸配列からなる抗体を意味する。ヒト抗体は、ヒト抗体の重鎖と軽鎖の遺伝子を含むヒトゲノムDNA断片を有するヒト抗体産生マウスを用いた方法(Tomizuka,K.et al.,Nature Genetics(1997)16,133-143,; Kuroiwa,Y.et.al.,Nuc.Acids Res.(1998)26,3447-3448;Yoshida, H.et.al.,Animal Cell Technology:Basic and Applied Aspects vol.10,69-73(Kitagawa, Y.,Matuda,T.and Iijima,S.eds.),Kluwer Academic Publishers,1999.;Tomizuka,K.et.al.,Proc.Natl.Acad.Sci.USA(2000)97,722-727等を参照。)によって取得することができる。
 このようなヒト抗体産生動物は、具体的には、非ヒト哺乳動物の内在性免疫グロブリン重鎖及び軽鎖の遺伝子座を破壊し、代わりに酵母人工染色体(Yeast artificial chromosome,YAC)ベクターなどを介してヒト免疫グロブリン重鎖及び軽鎖の遺伝子座が導入することによって作製することができる。また、遺伝子組換え技術により、そのようなヒト抗体の重鎖及び軽鎖の各々をコードするcDNA、好ましくは該cDNAを含むベクターにより真核細胞を形質転換し、遺伝子組換えヒトモノクローナル抗体を産生する形質転換細胞を培養することにより、この抗体を培養上清中から得ることもできる。
 ここで、宿主としては例えば真核細胞、好ましくはHEK293F細胞、CHO細胞等の哺乳動物細胞を用いることができる。
 また、ヒト抗体ライブラリーより選別したファージディスプレイ由来のヒト抗体を取得する方法も知られている。例えば、ヒト抗体の可変領域をscFvとしてファージ表面に発現させて、抗原に結合するファージを選択するファージディスプレイ法を用いることができる。抗原に結合することで選択されたファージの遺伝子を解析することによって、抗原に結合するヒト抗体の可変領域をコードするDNA配列を決定することができる。抗原に結合するscFvのDNA配列が明らかになれば、当該配列を有する発現ベクターを作製し、適当な宿主に導入して発現させることによりヒト抗体を取得することができる(WO92/01047,WO92/20791,WO93/06213,WO93/11236,WO93/19172,WO95/01438,WO95/15388、Annu.Rev.Immunol(1994)12,433-455)。
 ヒト抗体ファージライブラリーの構築方法は周知であり、ヒト抗体可変領域の遺伝子は、ヒト血液、脾臓、リンパ節から採取されたcDNAをテンプレートとして、J Biol Chem,274(26),18218-30,(1999)やMethods Mol Biol,178,59-71,(2002)などを参考にしたプライマーを用いて増幅する。増幅した可変領域は、J Immunol Methods,201(1),35-55(1997)を参考にしてscFvにすることができる。
5-6.抗体の抗原結合性断片の製造
 抗体の抗原結合性断片は、抗体を遺伝子工学的な手法によって改変し適当な培養細胞において発現させることによって製造することができる。
 抗体の抗原結合性断片として、例えば、scFvを作成する方法は当技術分野において周知である(例えば、米国特許第4,946,778号、米国特許第5,260,203号、米国特許第5,091,513号、米国特許第5,455,030号等を参照)。scFvにおいて、重鎖可変領域と軽鎖可変領域は、コンジュゲートを作らないようなリンカー、好ましくはポリペプチドリンカーを介して連結される(Huston,J.S.et al.,PNAS(1988),85,5879-5883)。scFvにおける重鎖可変領域及び軽鎖可変領域は、同一の抗体に由来してもよく、別々の抗体に由来してもよい。
 可変領域を連結するポリペプチドリンカーとしては、例えば5乃至30残基からなる任意の一本鎖ペプチドが用いられる。
 scFvをコードするDNAは、前記抗体の重鎖又は重鎖可変領域をコードするDNA、及び軽鎖又は軽鎖可変領域をコードするDNAのうち、それらの配列のうちの全部又は所望のアミノ酸配列をコードするDNA部分を鋳型とし、その両端を規定するプライマー対を用いてPCR法により増幅し、次いで、さらにポリペプチドリンカー部分をコードするDNA、及びその両端が各々重鎖、軽鎖と連結されるように規定するプライマー対を組み合わせて増幅することにより得られる。あるいは、scFv全領域をコードするDNAを全合成で得ることもある。
 scFvをコードするDNAを用いて、該DNAを含有する発現ベクター、及び該発現ベクターにより形質転換された宿主細胞を常法に従って調製することができ、また、その宿主細胞を培養することにより、常法に従ってかかる培養物から該scFvを回収することができる。
 その他の抗体の抗原結合性断片も、上述の方法に準じて抗原結合性断片をコードする遺伝子を取得して細胞に導入し、該細胞の培養物から該抗原結合性断片を回収することにより、得ることができる。
 本発明の抗体は、多量化して抗原に対する親和性を高めたものであってもよい。多量化する抗体としては、1種類の抗体であっても、同一の抗原の複数のエピトープを認識する複数の抗体であってもよい。抗体を多量化する方法としては、IgG CH3ドメインと2つのscFvとの結合、ストレプトアビジンとの結合、へリックス-ターン-へリックスモチーフの導入等を挙げることができる。
5-7.遺伝子組換え
 本発明の抗体は、その重鎖アミノ酸配列をコードするヌクレオチド配列が含まれるポリヌクレオチド(重鎖ヌクレオチド)及びその軽鎖アミノ酸配列をコードするヌクレオチド配列が含まれるポリヌクレオチド(軽鎖ヌクレオチド)、又は、かかる重鎖ヌクレオチドが挿入されたベクター及び軽鎖ヌクレオチドが挿入されたベクターを宿主細胞に導入し、該細胞を培養した後その培養物からかかる抗体を回収することにより調製することができる。一つのベクターに重鎖ヌクレオチド及び軽鎖ヌクレオチドが挿入されていてもよい。
 宿主細胞としては、原核細胞又は真核細胞を用いることができる。真核細胞を宿主として使用する場合、動物細胞、植物細胞、真核微生物を用いることができる。
 動物細胞としては、例えば、哺乳類由来の細胞、すなわち、ヒト胎児由来腎臓細胞HEK293F細胞(Subedi GP et al.、J Vis Exp.(2015)106)ザル腎. 由来のCOS細胞(Gluzman, Y. Cell(1981)23,175-182、ATCC CRL-1650)、マウス繊維芽細胞NIH3T3(ATCC No.CRL-1658)、チャイニーズ・ハムスター卵巣細胞(CHO細胞、ATCC CCL-61)、そのジヒドロ葉酸還元酵素欠損株(CHOdhfr-:Urlaub,G.and Chasin,L.A. PNAS(1980)77,4126-4220)、ニワトリ等鳥類由来の細胞、昆虫由来の細胞等を挙げることができる。
 また、糖鎖構造の改変により、抗体の生物活性を高められるよう改変された細胞も宿主として用いることができる。例えば、抗体のFc領域に結合するN-グリコシド結合複合型糖鎖のうち、糖鎖還元末端のN-アセチルグルコサミンにフコースが結合していない糖鎖の割合が20%以上になるよう改変されたCHO細胞を用いることにより、ADCC活性やCDC活性が高められた抗体を調製することが可能である(国際特許公開WO02/31140号)。
 真核微生物としては、例えば、酵母等を挙げることができる。原核細胞としては、例えば、大腸菌、枯草菌等を挙げることができる。
 本発明の抗体(各種動物由来のモノクローナル抗体、ラット抗体、マウス抗体、キメラ化抗体、ヒト化抗体、ヒト抗体等)を分泌させるためのシグナルペプチドとしては、当該抗体と同種、同タイプ及び同サブタイプの抗体の分泌シグナル、ならびに、当該抗体自体の分泌シグナルに限定されるものではなく、他のタイプもしくはサブタイプの抗体の分泌シグナル、又は、他の真核生物種もしくは原核生物由来の蛋白質の分泌シグナルであれば、任意のものを選択して利用することができる。シグナルペプチドは、通常大部分の成熟軽鎖又は成熟重鎖のヌクレオチド配列およびアミノ酸配列にはそれぞれ含まれないが、シグナルペプチドを含んで分泌された抗体等も、本発明の抗体等又は本発明の分子に包含される。
 得られた抗体、抗体の抗原結合性断片、分子は、他の蛋白質を含まないよう均一に精製することができる。抗体、抗体の抗原結合性断片、分子の分離、精製は通常の蛋白質で使用されている分離、精製方法を使用すればよい。 
 例えばクロマトグラフィーカラム、フィルター、限外濾過、塩析、透析、調製用ポリアクリルアミドゲル電気泳動、等電点電気泳動等を適宜選択、組み合わせれば、抗体を分離、精製することができるが、これらに限定されるものではない。
 好適な分離・精製法としては、たとえば、HisタグやFLAGタグをコードするDNA配列を抗体可変領域のカルボキシル末端に付加させて発現ベクターを作製し、このベクターで細胞を形質転換させ、さらに細胞を培養することで当該抗体及び抗体の抗原結合性断片発現させ、培養終了後、培養上清を抽出し、Ni、Co等の金属アフィニティークロマトグラフィー、抗FLAGタグ抗体カラム、ゲルろ過、イオン交換クロマトグラフィー等で精製することができる。
 HisタグやFLAGタグ等のタグのアミノ酸配列を含んで発現された抗体及び抗体の抗原結合性断片も、本発明の抗体、該抗体の抗原結合性断片、又は、本発明の分子に包含される。
5-8.ポリクローナル抗体の製造
 本発明の抗体は、ポリクローナル抗体であってもよい。ポリクローナル抗体は、異なる抗体の産生細胞を混合培養し、該培養物から回収することができる(WO2004/061104号)。また、別個に調製した抗体を混合することも可能である。さらに、ポリクローナル抗体の一つの態様である抗血清は、動物を所望の抗原で免疫し、定法に従って、該動物から血清を回収することにより調製することができる。
5-9.腫瘍細胞に対する結合特異性を付与された人工免疫細胞の製造
 腫瘍細胞に対する結合特異性を付与された人工免疫細胞は、免疫細胞に本発明の抗GPRC5D抗体の遺伝子等を導入して抗原特異性を付与することにより製造することができる。免疫細胞としては、T細胞、NK細胞、モノサイト等が例示される。
 免疫細胞としてT細胞を用いる場合を例示する。T細胞は、ヒトの末梢血から比重遠心法等の方法により回収した単核球を、抗CD3抗体、IL-2、IL-12、あるいは更に抗IL-4抗体やIFN-γの存在下に、培地で培養して誘導することができる。 
次に、このT細胞に対して本発明の抗GPRC5D抗体の遺伝子を構成要素とするキメラ抗原受容体(CAR)遺伝子を導入する。代表的なCAR遺伝子は、腫瘍細胞の表面抗原を認識する抗体(本発明では抗GPRC5D抗体)の遺伝子と、T細胞活性化に必要な補助刺激分子(例えば、T細胞受容体ζ鎖とCD28などの共刺激分子)をコードする遺伝子から構成される。抗GPRC5D抗体の遺伝子を含むCAR遺伝子は、種々のウイルスベクターを用いてT細胞に導入することができる。このようなベクターとしては、レンチウイルスベクター、レトロウイルスベクター、アデノウイルスベクター、アデノ随伴ウイルスベクター、センダイウイルスベクター、リポソーム等が挙げられる。抗GPRC5D抗体の遺伝子を組み込んだウイルスベクターから組み換えウイルスを調製し、上述の抗原非特異的に活性化したT細胞に導入することができる。遺伝子導入後のT細胞を培養して、腫瘍細胞に対する特異性を付与されたT細胞を得ることができる。
 本発明の方法により得られた、リダイレクションにより細胞傷害を誘導し得る本発明のT細胞が抗原特異性を付与されたことは、T細胞を、GPRC5Dを発現することが知られている抗原陽性腫瘍細胞をマイトマイシンC処理して不活性化したものと共培養した後、培養上清中のIFN-γまたはIL-2の量を測定することにより、判定することができる。
5-10.多重特異的な分子、二重特異的な分子の製造
 本発明の多重特異的な分子、二重特異的な分子は、宿主細胞へ発現プラスミドを導入し、一過性で発現させる方法、宿主細胞にプラスミドを導入後、薬剤選択により安定発現細胞株選び、恒常的に発現させる方法、それぞれの抗体あるいは抗原結合性断片を上記の方法で作製後、合成ペプチドリンカーを用いて化学的に結合させる方法が挙げられる。
 1本鎖抗体(scFv)では、2つのscFvをペプチドリンカーで結合させる(タンデムscFv)、特異性の異なる2つの抗体におけるお互いのドメインを入れ替えて非共有結合的に二量体を形成する(ダイアボディ)、特異性の異なる2つの抗体におけるお互いのドメインを入れ替え、一本鎖化する(一本鎖ダイアボディ)、ダイアボディを1本鎖化した上で非共有結合的に二量体を形成する(TandAb、米国特許 US7129330)等の方法がある。
 本発明は、本発明の抗体若しくは該抗体の抗原結合性断片、又は抗原等の修飾物をコードする遺伝子、該遺伝子が挿入された組換えベクター、該遺伝子又はベクターが導入された細胞、その他本発明の抗体を産生する細胞をも提供する。
6.医薬組成物
 本発明は、抗GPRC5D抗体、その抗原結合性断片、本発明のポリヌクレオチド、ベクター、細胞、人工免疫細胞、及び/又は、これらの少なくとも1つを含む分子を有効成分として含む医薬組成物(以下、本発明の医薬組成物とも記す)を提供する。
 本発明の医薬組成物は、GPRC5D若しくはそのリガンドの過剰発現、又は、GPRC5Dの変異若しくは遺伝子増幅による、GPRC5Dシグナル異常又は亢進に関わる各種疾患(以下、「GPRC5Dに関わる疾患」という)、とりわけ各種癌の治療又は予防に有用である。
 かかる治療又は予防の対象となる癌の惹起又は増悪化の原因としては、GPRC5Dの高発現、GPRC5D遺伝子のイントロン内の一塩基置換(SNP)、GPRC5Dを恒常的に活性化するミスセンス変異、GPRC5D遺伝子の増幅又は過剰発現等を例示することができる。
 また、本発明の分子、又は、本発明の医薬組成物は、GPRC5Dを発現している細胞へのT細胞等の免疫細胞のリダイレクションによって、該細胞への細胞傷害を誘導することができ、そのため、本発明の分子、又は、本発明の医薬組成物を投与する工程を含む、GPRC5Dを発現している細胞へのT細胞等の免疫細胞リダイレクションによって該細胞への細胞傷害を誘導する方法を、本発明は提供する。
本発明の医薬組成物の治療又は予防の対象となる癌種としては、GPRC5D蛋白質を発現している癌、例えば、乳癌、子宮内膜癌、卵巣癌、非小細胞肺癌などの肺癌、胃癌、前立腺癌、腎癌、肝臓癌、膵臓癌、大腸癌、食道癌、膀胱癌、子宮頚癌、血液癌、リンパ腫、悪性黒色腫等を挙げることができ、好適には、GPRC5D蛋白質を発現している多発性骨髄腫を挙げることができる。
 GPRC5Dに関わる疾患の治療又は予防には、GPRC5D蛋白質を発現している個体におけるかかる疾患の発症の予防、増悪化若しくは進行の抑制、又は、阻害;かかる疾患に罹患した個体が呈する1つ又は2つ以上の症状の軽減、増悪化若しくは進行の抑制、又は、寛解;かかる疾患に罹患した個体における二次性疾患の治療又は予防等が含まれるが、それらに限定されるものではない。
 本発明の医薬組成物には、治療又は予防に有効な量の抗GPRC5D抗体、その抗原結合性断片、及び/又は、これらの少なくとも1つを含む分子を有効成分として含み、さらに、薬学上許容される希釈剤、担体、可溶化剤、乳化剤、保存剤及び/又は補助剤を含有せしめることができる。
 「治療又は予防に有効な量」とは、特定の疾患、投与形態および投与径路につき治療又は予防効果を奏する量を意味し、「薬理学的に有効な量」と同義である。
 本発明の医薬組成物には、pH、浸透圧、粘度、透明度、色、等張性、無菌性、該組成物又はそれに含まれる抗体の安定性、溶解性、徐放性、吸収性、浸透性、剤型、強度、性状、形状等を変化させたり、維持したり、保持したりするための物質(以下、「製剤用の物質」という)を含有せしめることができる。製剤用の物質としては、薬理学的に許容される物質であれば特に限定されるものではない。例えば、非毒性又は低毒性であることは、製剤用の物質が好適に具備する性質である。
 製剤用の物質として、例えば、以下のものをあげることができるが、これらに限定されるものではない;グリシン、アラニン、グルタミン、アスパラギン、ヒスチジン、アルギニン又はリジン等のアミノ酸類、抗菌剤、アスコルビン酸、硫酸ナトリウム又は亜硫酸水素ナトリウム等の抗酸化剤、リン酸、クエン酸、ホウ酸バッファー、炭酸水素ナトリウム、トリス-塩酸(Tris-Hcl)溶液等の緩衝剤、マンニトールやグリシン等の充填剤、エチレンジアミン四酢酸(EDTA)等のキレート剤、カフェイン、ポリビニルピロリジン、β-シクロデキストリンやヒドロキシプロピル-β-シクロデキストリン等の錯化剤、グルコース、マンノース又はデキストリン等の増量剤、単糖類、二糖類やグルコース、マンノースやデキストリン等の他の炭水化物、着色剤、香味剤、希釈剤、乳化剤やポリビニルピロリジン等の親水ポリマー、低分子量ポリペプチド、塩形成対イオン、塩化ベンズアルコニウム、安息香酸、サリチル酸、チメロサール、フェネチルアルコール、メチルパラベン、プロピルパラベン、クロレキシジン、ソルビン酸又は過酸化水素等の防腐剤、グリセリン、プロピレングリコール又はポリエチレングリコール等の溶媒、マンニトール又はソルビトール等の糖アルコール、懸濁剤、PEG、ソルビタンエステル、ポリソルビテート20やポリソルビテート80等ポリソルビテート、トリトン(triton)、トロメタミン(tromethamine)、レシチン又はコレステロール等の界面活性剤、スクロースやソルビトール等の安定化増強剤、塩化ナトリウム、塩化カリウム、マンニトールやソルビトール等の弾性増強剤、輸送剤、希釈剤、賦形剤、及び/又は薬学上の補助剤。
 これらの製剤用の物質の添加量は、抗GPRC5D抗体、その抗原結合性断片、及び/又は、これらの少なくとも1つを含む分子の重量に対して0.001乃至1000倍、好適には0.01乃至100倍、より好適には0.1乃至10倍である。
 抗GPRC5D抗体、その抗原結合性断片、及び/又は、これらの少なくとも1つを含む分子をリポソーム中に含有せしめたイムノリポソーム、抗体とリポソームとが結合してなる抗体修飾体(米国特許第6214388号等)を含有する医薬組成物も、本発明の医薬組成物に含まれる。
 賦形剤や担体は、通常液体又は固体であり、注射用の水、生理食塩水、人工脳脊髄液、その他の、経口投与又は非経口投与用の製剤に用いられる物質であれば特に限定されない。生理食塩水としては、中性のもの、血清アルブミンを含むもの等をあげることができる。
 緩衝剤としては、医薬組成物の最終pHが7.0乃至8.5になるように調製されたTrisバッファー、同じく4.0乃至5.5になるように調製された酢酸バッファー、同じく5.0乃至8.0になるように調製されたクエン酸バッファー、同じく5.0乃至8.0になるように調製されたヒスチジンバッファー等を例示することができる。
 本発明の医薬組成物は、固体、液体、懸濁液等である。凍結乾燥製剤をあげることができる。凍結乾燥製剤を成型するには、スクロース等の賦形剤を用いることができる。
 本発明の医薬組成物の投与径路としては、経腸投与、局所投与及び非経口投与のいずれでもよく、例えば、静脈内投与、動脈内投与、筋肉内投与、皮内投与、皮下投与、腹腔内投与、経皮投与、骨内投与、関節内投与等をあげることができる。
 かかる医薬組成物の組成は、投与方法、抗体のGPRC5D蛋白質結合親和性等に応じて決定することができる。 
本発明の医薬組成物の投与量は、薬理学的に有効な量であれば限定されず、個体の種、疾患の種類、症状、性別、年齢、持病、該抗体のGPRC5D蛋白質結合親和性又はその生物活性、その他の要素に応じて適宜決定することができるが、通常、0.01乃至1000mg/kg、好適には0.1乃至100mg/kgを、1乃至180日間に1回、又は1日2回若しくは3回以上投与することができる。
 医薬組成物の形態としては、注射剤(凍結乾燥製剤、点滴剤を含む)、坐剤、経鼻型吸収製剤、経皮型吸収製剤、舌下剤、カプセル、錠剤、軟膏剤、顆粒剤、エアーゾル剤、丸剤、散剤、懸濁剤、乳剤、点眼剤、生体埋め込み型製剤等を例示することができる。
 本発明の医薬組成物は、他の医薬と同時にあるいは個々に投与することができる。例えば、他の医薬を投与した後に、本発明の医薬組成物を投与するか、かかる医薬組成物を投与した後に、他の医薬を投与するか、又は、当該医薬組成物と他の医薬とを同時に投与してもよい。他の医薬としては、化学療法剤、放射線療法剤など各種抗癌剤等をあげることができる。それらをまとめて本発明の抗体と「他の薬剤との併用」と呼び、本発明の医薬組成物の有効成分に加えてさらなる薬剤を含む医薬組成物も本発明に含まれる。
 本発明は癌などGPRC5Dに関わる疾患の治療方法又は予防方法、該疾患の治療用又は予防用医薬組成物を調製するための本発明の抗体の使用、該疾患の治療又は予防のための本発明の抗体の使用、をも提供する。本発明の抗体を含む治療用又は予防用キットも本発明に含まれる。
 以下、実施例において本発明を更に詳細に説明するが、本発明はこれらに限定されない。
 なお、下記実施例において遺伝子操作に関する各操作は特に明示がない限り、「モレキュラークローニング(Molecular Cloning)」(Sambrook,J.,Fritsch,E.F.及びManiatis,T.著,Cold SpringHarbor Laboratory Pressより1989年発行)に記載の方法及びその他の当業者が使用する実験書に記載の方法により行うか、または、市販の試薬やキットを用いる場合には市販品の指示書に従って行った。
(実施例1) ラット抗ヒトGPRC5D抗体の作製
1)-1 ヒトGPRC5D発現ベクターを用いた免疫
1)-1-1 ヒトGPRC5D発現ベクター(pcDNA3.1-DEST-hGPRC5D)の構築
 pcDNA3.1(+)をGateway Vector Convension System(Thermo Fisher Scienftific社)によりDestination Vectorに改変したpcDNA3.1-DESTを作製した。Gataway LR Clonase Enzyme mix(Life Technologies社)を用いて、ヒトGPRC5D蛋白質(NP_061124.1)をコードするcDNAをpcDNA3.1-DESTベクターにクローニングし、ヒトGPRC5D発現ベクターpcDNA3.1-DEST-hGPRC5Dを構築した。ヒトGPRC5D発現ベクターの大量調製には、Endofree Plasmid Giga Kit(QIAGEN社)を用いた。
1)-1-2 ラット免疫
免疫にはWKY/Izmラットの雌(日本エスエルシー社)を使用した。まずラット両足下腿部をHyaluronidase(SIGMA-ALDRICH社)にて前処理後、同部位にpcDNA3.1-DEST-hGPRC5Dを筋注した。続けて、ECM830(BTX社)を使用し、ニードル電極を用いて、同部位にインビボエレクトロポレーションを実施した。約2週間に1度、同様のインビボエレクトロポレーションを繰り返した後、ラットのリンパ節又は脾臓を採取しハイブリドーマ作製に用いた。
1)-2 ハイブリドーマ作製
リンパ節細胞あるいは脾臓細胞とマウスミエローマSP2/0-ag14細胞(ATCC, No.CRL-1 581)とをLF301 Cell Fusion Unit(BEX社)を用いて電気細胞融合し、ClonaCell-HY Selection Medium D(StemCell Technologies社)に希釈して培養した。出現したハイブリドーマコロニーを回収することでモノクローンハイブリドーマを作製した。回収された各ハイブリドーマコロニーをClonaCell-HY Selection Medium E(StemCell Technologies社)を用いて培養し、得られたハイブリドーマ培養上清を用いて抗ヒトGPRC5D抗体産生ハイブリドーマのスクリーニングを行った。
1)-3 Cell-ELISA法による抗体スクリーニング
1)-3-1 Cell-ELISA法による一次スクリーニング
 インテグリンαv及びインテグリンβ3発現ベクターをHEK293細胞内に安定形質移入した細胞株HEK293α細胞を、10%FBS含有DMEM培地中5×10細胞/mLになるよう調整した。それに対し、Lipofectamine 2000(Thermo Fisher Scientific社)を用いた形質移入手順に従い、pcDNA3.1-DEST-hGPRC5DもしくはコントロールとしてpcDNA3.1-DESTを導入し、96-well plate(Corning社)に100μLずつ分注し、10%FBS含有DMEM培地中で37℃、5%COの条件下で一晩培養した。得られた導入細胞を接着状態のまま、Cell-ELISAに使用した。
1)-3-2 Cell-ELISA
 実施例1)-1-1で調製した発現ベクター導入HEK293α細胞の培養上清を除去後、pcDNA3.1-DEST-hGPRC5DまたはpcDNA3.1-DEST導入HEK293α細胞のそれぞれに対しハイブリドーマ培養上清を添加し、4℃で1時間静置した。well中の細胞を5%FBS含有PBSで1回洗浄後、5%FBS含有PBSで500倍に希釈したAnti-Rat IgG, HRP-
Linked Whole Ab Goat(GE Healthcare Bioscience社)を加えて、4℃で1時間静置した。well中の細胞を5%FBS含有PBSで2回洗浄した後、OPD発色液(OPD溶解液(0.05M クエン酸3ナトリウム、0.1M リン酸水素2ナトリウム・12水 pH4.5)にo-フェニレンジアミン二塩酸塩(和光純薬社)、Hをそれぞれ0.4mg/mL、0.6%(v/v)になるように溶解)を100μL/wellで添加した。時々攪拌しながら発色反応を行い、1M HCLを100μL/wellを添加して発色反応を停止させた後、プレートリーダー(ENVISION:PerkinElmer社)で490nmの吸光度を測定した。細胞膜表面上に発現するヒトGPRC5Dに特異的に結合する抗体を産生するハイブリドーマを選択するため、コントロールのpcDNA3.1-DEST導入HEK293α細胞と比較し、pcDNA3.1-DEST-hGPRC5D発現ベクター導入HEK293α細胞の方でより高い吸光度を示す培養上清を産生するハイブリドーマを抗ヒトGPRC5D抗体産生陽性として選択した。
1)-4 フローサイトメトリーによる抗体スクリーニング
1)-4-1 フローサイトメトリー解析用抗原遺伝子発現細胞の調製
 HEK293T細胞(Thermo Fisher Scientific社)を4×10細胞/mLの濃度で225cmフラスコに播種し、10%FBS含有DMEM培地中で37℃、5%COの条件下で一晩培養した。翌日、pcDNA3.1-DEST-hGPRC5DとコントロールとしてpcDNA3.1-DESTをそれぞれHEK293T細胞にLipofectamine LTX(Thermo Fisher Scientific社)を用いて導入し、37℃、5%COの条件下でさらに一晩培養した。翌日、発現ベクター導入HEK293T細胞をTrypLE Express(Thermo Fisher Scienftific社)で処理し、10%FBS含有DMEMで細胞を洗浄した後、5%FBS含有PBSで5×10細胞/mLの濃度に調製した。得られた細胞懸濁液をフローサイトメトリー解析に使用した。
1)-4-2 フローサイトメトリー解析
実施例1)-3のCell-ELISAで陽性と判定されたハイブリドーマが産生する抗体のヒトGPRC5Dに対する結合特異性をフローサイトメトリー法によりさらに確認した。実施例1)-4-1で調製したHEK293T細胞懸濁液を100μL/wellで96-well U底マイクロプレートに播種し、遠心後上清を除去した。pcDNA3.1-DEST-hGPRC5D導入HEK293T細胞及びpcDNA3.1-DEST導入HEK293T細胞のそれぞれに対しハイブリドーマ培養上清を加えて懸濁し、4℃で1時間静置した。5%FBS含有PBSで1回洗浄した後、5%FBS含有PBSで100倍に希釈したPE Goat Anti-Rat Ab(BD社)を加えて懸濁し、4℃で30分静置した。5%FBS含有PBSで2回洗浄した後、5%FBS含有PBSに再懸濁し、フローサイトメーター(FACSCanto(商標)II:BD社)で検出を行った。データ解析はFlowjo(Treestar社)で行った。細胞画分のPE蛍光強度のヒストグラムを作成した。コントロールであるpcDNA3.1-DEST導入HEK293T細胞の蛍光強度ヒストグラムに対しpcDNA3.1-DEST-hGPRC5D導入HEK293T細胞のヒストグラムが強蛍光強度側にシフトしているサンプルを産生するハイブリドーマを抗ヒトGPRC5D抗体産生ハイブリドーマとして取得した。
1)-5 ADCCアッセイによる抗体スクリーニング
1)-5-1 β―ガラクトシダーゼ安定発現細胞の作製
 pLenti6/V5-GW/LacZ、及びViraPower(商標)Packaging Mix(Thermo Fisher Scientific社)を添付プロトコールに従ってHEK293FT細胞(Thermo Fisher Scientific社)にトランスフェクションすることにより、β-ガラクトシダーゼ遺伝子を発現する組換えレンチウイルスを作製した。得られた組換えレンチウイルスをViraPower Lentiviral Expression Systems(Thermo Fisher Scientific社)のプロトコールに従ってHEK293T細胞に感染させ、10μg/mLのブラストサイジン(Thermo Fisher Scientific社)でウイルス感染細胞を選択することにより、β-ガラクトシダーゼの安定発現株を取得した。このβ-ガラクトシダーゼを安定発現するHEK293T細胞(以下「293T-lacZ細胞」と表記)を標的細胞としてADCC活性を測定した。
1)-5-2 標的細胞の調製
 実施例1)-5-1で取得した293T-lacZ細胞を5×10細胞/mLの濃度で75cmフラスコに播種し、10%FBS含有DMEM培地中で37℃、5%COの条件下で一晩培養した。翌日、pcDNA3.1-DEST-hGPRC5DとコントロールとしてpcDNA3.1-DESTをそれぞれ293T-lacZ細胞にLipofectamine LTX(Thermo Fisher Scientific社)を用いて導入し、37℃、5%COの条件下でさらに一晩培養した。翌日、発現ベクター導入293T-lacZ細胞をTrypLE Express(Thermo Fisher Scienftific社)で処理し、5%FBS含有フェノールレッド不含RPMI1640培地(Thermo Fisher Scientific社)(以下「ADCC用培地」と略す)にて細胞を2回洗浄し、生細胞数をトリパンブルー色素排除試験にて計測し、ADCC用培地で1×10細胞/mLになるよう再懸濁したものを標的細胞として用いた。
1)-5-3 エフェクター細胞の調製
 ボランティアの血液からFicoll-Paque PLUS(GE Healthcare Bioscience社)を使用して定法に従い採取したヒト末梢血単核細胞(PBMC)を10%FBS含有フェノールレッド不含RPMI1640培地(Thermo Fisher Scientific社)に懸濁し、遠心後再懸濁して生細胞数をトリパンブルー色素排除試験にて計測した。遠心後培地を除去し、ADCC用培地に懸濁し、2×10細胞/mLになるよう調製し、エフェクター細胞とした。
1)-5-4 ハイブリドーマ培養上清の調製
 実施例1)-4で取得したラット抗GPRC5D抗体産生ハイブリドーマ培養上清の濃度をFastELISA IgG ELISA Quantification Kit(RD-Biotech社)を用いて測定し、終濃度で10μg/mLになるようClonaCell-HY Selection Medium E(StemCell Technologies社)で調製した。
1)-5-5 ADCCアッセイ
 実施例1)-5-2で取得した293T-lacZ細胞を50μL/wellで96-well U底マイクロプレートに添加した。そこに実施例1)-5-4で調製したハイブリドーマ培養上清、または終濃度で10μg/mLになるよう調製したポジティブコントロール用のマウス抗GPRC5D IgG2b抗体(R&D Systems社)またはネガティブコントロール用マウスコントロール抗体(mIgG2b)(R&D Systems社)を50μL/wellで添加し、4℃で1時間静置した。さらに、実施例1)-5-3で調製したエフェクター細胞を50μL/well添加し、室温で1200rpm×5分間遠心の後、37℃、5%COの条件下で18時間培養した。上清50μLを白色プレート(Corning社)に回収し、β-Gloアッセイシステム(Promega社)溶液50μLを添加し、発光量をプレートリーダー(ENVISION:PerkinElmer社)で測定した。ADCC活性による細胞溶解率は次式で算出した。
 細胞溶解率(%)=(A-B)/(C-B)×100
 A:サンプルウェルのカウント。
 B:自然放出(抗体・エフェクター細胞非添加ウェル)カウントの平均値(n=3)。
ハイブリドーマ培養上清添加時とエフェクター細胞添加時にADCC用培地を50μL添加した。それ以外はサンプルウェルと同様の操作を行った。
 C:最大放出(標的細胞を界面活性剤で溶解させたウェル)カウントの平均値(n=3)。ハイブリドーマ培養上清添加時とエフェクター細胞添加時にADCC用培地を50μL添加した。測定時には、細胞を含むウェルに150μLのβ-Gloアッセイシステム溶液を添加して混和し、そのうち100μL分を白色プレートに加えて測定を実施した。
 上記の方法に従ってpcDNA3.1-DEST-hGPRC5D導入293T-lacZ細胞とpcDNA3.1-DEST導入293T-lacZ細胞に対するADCC活性をそれぞれ算出し、pcDNA3.1-DEST-hGPRC5D導入293T-lacZ細胞特異的にADCC活性を示し、且つポジティブコントロール抗体以上のADCC活性を示す抗体を産生するハイブリドーマクローンを選択した。
1)-6 抗体のアイソタイプ決定
 実施例1)-4で取得したラット抗GPRC5D抗体産生ハイブリドーマの中から、強くヒトGPRC5Dに結合し、かつ実施例1)-5から高いADCC活性を有することが示唆された2A4、2B1及び7B4を選抜し、抗体アイソタイプを同定した。アイソタイプは、Rat monoclonal isotyping test kit(AbD Serotec社)により決定された。その結果、ラット抗GPRC5Dモノクローナル抗体2A4、2B1及び7B4のアイソタイプはどれもIgG2b、κ鎖であることが確認された。
1)-7 モノクローナル抗体の調製
 ラット抗GPRC5Dモノクローナル抗体は、ハイブリドーマ培養上清から精製した。まず、2A4、2B1及び7B4産生ハイブリドーマをClonaCell-HY Selection Medium E(StemCell Technologies社)で十分量まで増殖させた後、Ultra Low IgG FBS(Thermo Fisher Scientific社)を20%添加した、5μg/mLのゲンタマイシン(Thermo Fisher Scientific社)入りHybridoma SFM(Thermo Fisher Scientific社)に培地交換し、5日間培養した。本培養上清を回収し、0.45μmのフィルターを通して滅菌した。
 抗体は、上記のハイブリドーマ上清からProtein Gアフィニティークロマトグラフィー(4~6℃下)1段階工程で精製した。Protein Gアフィニティークロマトグラフィー精製後のバッファー置換工程は4~6℃下で実施した。最初に、PBSで平衡化したProtein G(GE Healthcare Bioscience社)が充填されたカラムにハイブリドーマの培養上清をアプライした。培養上清液がカラムに全て入ったのち、カラム容量2倍以上のPBSでカラムを洗浄した。次に0.1Mグリシン/塩酸水溶液(pH2.7)で溶出し、抗体の含まれる画分を集めた。集めた画分に1M Tris-HCl(ph9.0)を加えてpH7.0~7.5に調製した後に、Centrifugal UF Filter Device VIVASPIN20(分画分子量UF30K、Sartorius社,4~6℃下)にてHBSor(25mM ヒスチジン/5%ソルビトール、pH6.0)へのバッファー置換を行うとともに濃縮を行い、抗体濃度を1mg/ml以上に調製した。最後にMinisart-Plus filter(Sartorius社)でろ過し、精製サンプルとした。
(実施例2) ラット抗GPRC5D抗体(2A4、2B1、7B4)のin vitro評価
2)-1 取得ラット抗GPRC5D抗体(2A4、2B1、7B4)のフローサイトメトリーによるヒトGPRC5Dへの結合性検討
 GPRC5Dを発現しているヒト多発性骨髄腫細胞株KHM-1B細胞(JCRB細胞バンク)を5%FBS含有PBSで5×10細胞/mLの濃度に調製し、100μL/wellで96-well U底マイクロプレートに播種し、遠心後上清を除去した。0.32ng/mL~10μg/mLに実施例1)-7で調製したラット抗GPRC5D抗体(2A4、2B1、7B4)を100μL/well添加し、4℃で1時間静置した。5%FBS含有PBSで2回洗浄した後、5%FBS含有PBSで100倍希釈したPE Goat Anti-Rat Ab(BD社)を100μL/well添加し、4℃で1時間静置した。5%FBS含有PBSで2回洗浄した後、5%FBS含有PBSで再懸濁し、フローサイトメーター(FACSCanto(商標)II:BD社)で検出を行った。データ解析はFlowjo(Treestar社)で行った。細胞画分のPE蛍光強度のヒストグラムを作成し、平均蛍光強度(MFI)を算出した。図1に示すとおり、2A4、2B1及び7B4はヒトGPRC5Dに結合することが示された(2A4MFI(max):1153、 2A4Kd:0.5nM、2B1MFI(max):2386、2B1Kd:14.8nM、 7B4MFI(max):2492、7B4Kd:1.3nM)。GPRC5Dを発現しているヒト多発性骨髄腫細胞株KMS-34細胞(JCRB細胞バンク)でもフローサイトメトリーを実施し、同様の結果を得た(2A4MFI(max):2064、2A4Kd:1.4nM、2B1MFI(max):3157、2B1Kd:12.7nM、7B4MFI(max):4471、7B4Kd:2.1nM)。
2)-2 取得ラット抗GPRC5D抗体(2A4、2B1、7B4)のエピトープの同定
2)-2-1 ELISAによるエピトープの同定
 カルボキシル末端側のペプチドをビオチン化し、分子内でジスルフィド結合を形成していないヒトGPRC5D アミノ末端ペプチドMYKDCIESTGDYFLLCDAEGPWGIILE(Biotin)-NH(SIGMA-ALDRICH社)(配列表の配列番号1:図2)と、カルボキシル末端にリジンを入れてビオチン化し、分子内でジスルフィド結合を形成させたヒトGPRC5D アミノ末端ペプチドMYKDCIESTGDYFLLCDAEGPWGIILE-K(Biotin)-NH(ペプチド研究所)(配列表の配列番号2:図3)を用いて、取得ラット抗GPRC5D抗体(2A4、2B1、7B4)が結合するエピトープを同定した。PBSで希釈したペプチドをNunc Immobilizer(Thermo Fisher Scientific社)に添加し、室温で1時間静置した。PBSTで3回洗浄した後、1%BSA含有FBSを添加し、室温で1時間静置した。PBSTで3回洗浄した後、PBSで0.1ng/mL-1μg/mLに希釈した実施例1)-7で調製したラット抗GPRC5D抗体(2A4、2B1、7B4)を添加し、室温で1時間静置した。PBSTで3回洗浄した後、PBSで500倍に希釈したAnti-Rat IgG, HRP-Linked Whole Ab Goat(GE Healthcare Bioscience社)を添加し、室温で1時間静置した。PBSTで3回洗浄した後、SuperSignal(商標)ELISA Pico Chemiluminescent Substrate(Thermo Fisher Scientific社)を添加し、プレートリーダー(ENVISION:PerkinElmer社)で発光を測定した。その結果、ジスルフィド結合の有無に関わらず、2B1抗体はヒトGPRC5Dのアミノ末端ペプチド配列に結合したが、2A4及び7B4抗体は結合しなかった。従って、2B1抗体のエピトープはヒトGPRC5Dのアミノ末端領域に存在し、一方、2A4及び7B4抗体のエピトープはアミノ末端以外の領域に存在することが示唆された。
2)-2-2 フローサイトメトリーによるエピトープの同定
 GPRC5Dを発現しているヒト多発性骨髄腫細胞株KMS-34細胞を5%FBS含有PBSで2×10細胞/mLの濃度に調製し、100μL/wellで96-well U底マイクロプレートに播種し、遠心後上清を除去した。7.5μg/mLに実施例1)-7で調製したラット抗GPRC5D抗体(2A4、2B1、7B4)またはRat IgG2b isotype control抗体(MBL社)を100μL/well添加し、実施例2)-2-1で使用した2種類のペプチドをPBSで17ng/mL~34μg/mLに調製し、抗体希釈液の入ったwellに100μL/well添加して、4℃で1時間静置した。5%FBS含有PBSで2回洗浄した後、5%FBS含有PBSで100倍希釈したPE Goat Anti-Rat Ab(BD社)を100μL/well添加し、4℃で1時間静置した。5%FBS含有PBSで2回洗浄した後、5%FBS含有PBSで再懸濁し、フローサイトメーター(FACSCanto(商標)II:BD社)で検出を行った。データ解析はFlowjo(Treestar社)で行った。細胞画分のPE蛍光強度のヒストグラムを作成し、平均蛍光強度(MFI)を算出し、GPRC5D抗体のMFI値からcontrol抗体のMFI値を引いて、MFIの相対値(rMFI)を算出した。図4(分子内ジスルフィド結合あり(A)、なし(B))に示すとおり、ジスルフィド結合の有無に関わらず、2B1はヒトGPRC5D アミノ末端ペプチドを添加すると結合が阻害されることが示された。一方、2A4及び7B4抗体はヒトGPRC5Dのアミノ末端ペプチドの添加では結合が阻害されないことが示された。以上の結果から、2B1抗体のエピトープはヒトGPRC5Dのアミノ末端領域に存在し、2A4及び7B4抗体のエピトープはアミノ末端以外の領域に存在することが示唆された。
2)-3 取得ラット抗GPRC5D抗体(2A4、2B1、7B4)のADCC活性評価
2)-3-1 標的細胞の調製
 ヒト多発性骨髄腫細胞株KHM-1B細胞を10%FBS含有RPMI1640培地(Thermo Fisher Scientific社)で2×10細胞/mLの濃度に調製し、細胞懸濁液1mLあたり100μLのChromium-51 Radionuclide(PerkinElmer社)を添加し、37℃、5%COの条件下で2時間培養した。10%FBS含有RPMI1640培地で3回洗浄した後、10%FBS含有RPMI1640培地で2×10細胞/mLになるよう再懸濁したものを標的細胞として用いた。
2)-3-2 エフェクター細胞の調製
 実施例1)-5-3で調製したPBMCを、BINKIT(日本バイオセラピー研究所社)を用いてNK細胞に分化させた。10%FBS含有RPMI1640培地で1×10細胞/mLになるよう調製し、エフェクター細胞とした。
2)-3-3 ADCCアッセイ
実施例2)-3-1で調製したKHM-1B細胞を50μL/wellで96-well U底マイクロプレートに添加した。そこに終濃度で0.5081ng/mL-10μg/mLになるよう調製した取得ラット抗GPRC5D抗体(2A4、2B1、7B4)及びラットコントロール抗体(rIgG2b)を50μL/wellで添加し、4℃で30分静置した。さらに、実施例2)-3-2で調製したエフェクター細胞を100μL/well添加し、室温で1200rpm×3分間遠心の後、37℃、5%COの条件下で4時間培養した。上清50μLをLumaPlate(PerkinElmer社)に回収し、50℃で一晩乾燥させ、プレートリーダー(TopCount:PerkinElmer社)で測定した。ADCC活性による細胞溶解率は実施例1)-5-5 に倣って算出した。図5に示すとおり、2A4、2B1及び7B4はADCC活性を有することが示された。
(実施例3) ラット抗GPRC5D抗体(2A4、2B1、7B4)の可変領域をコードするcDNAのヌクレオチド配列の決定
3)-1 2A4の可変領域をコードするcDNAのヌクレオチド配列の決定
3)-1-1 2A4産生ハイブリドーマからのtotal RNAの調製
 2A4の可変領域を含むcDNAを増幅するため、2A4産生ハイブリドーマよりTRIzol Reagent(Ambion社)を用いてtotal RNAを調製した。
3)-1-2 cDNA(5’-RACE-Ready cDNA)の合成
 cDNA(5’-RACE-Ready cDNA)の合成は実施例3)-1-1で調製したtotal RNAの約1μgを用い、SMARTer RACE cDNA Amplification Kit(Clontech社)を用いて実施した。
3)-1-3 5’-RACE PCRによる2A4の重鎖可変領域を含むcDNAの増幅と配列の決定
 2A4の重鎖遺伝子の可変領域のcDNAをPCRで増幅するためのプライマーとして、UPM (Universal Primer A Mix:SMARTer RACE cDNA Amplification Kitに付属)、及び、5’-CTCCAGAGTTCCAGGTCACGGTGACTGGC-3’(RG2AR3;配列番号3(図6))の配列を有するオリゴヌクレオチドを用いた。UPMはSMARTer RACE cDNA Amplification Kit(Clontech社)に付属のものを使用し、RG2AR3はデータベースのラット重鎖の定常領域の配列から設計した。
 このプライマーの組み合わせと、実施例3)-1-2で合成したcDNA(5’-RACE-Ready cDNA)を鋳型とした5’-RACE PCRにより2A4の重鎖の可変領域を含むcDNAを増幅した。PCRはSMARTer RACE cDNA Amplification Kit(Clontech社)のマニュアルに従い、タッチダウンPCRプログラムで実施した。
 5’-RACE PCRで増幅した重鎖の可変領域を含むcDNAをMinElute PCR Purification Kit(QIAGEN社)を用いて精製後、Zero Blunt TOPO PCR Cloning Kit(Invitrogen社)を用いてクローニングし、クローニングした重鎖の可変領域を含むcDNAのヌクレオチド配列のシークエンス解析を実施した。
 決定された2A4の重鎖の可変領域をコードするcDNAのヌクレオチド配列を配列番号4(図8)に示し、アミノ酸配列を配列番号5(図9)に示した。
3)-1-4 5’-RACE PCRによる2A4の軽鎖可変領域を含むcDNAの増幅と配列の決定
 2A4の軽鎖遺伝子の可変領域のcDNAをPCRで増幅するためのプライマーとして、UPM(Universal Primer A Mix:SMARTer RACE cDNA Amplification Kitに付属)、及び、5’-TCAGTAACACTGTCCAGGACACCATCTC-3’(RKR5;配列番号10(図7))の配列を有するオリゴヌクレオチドを用いた。UPMはSMARTer RACE cDNA Amplification Kit(Clontech社)に付属のものを使用し、RKR5はデータベースのラット軽鎖の定常領域の配列から設計した。
 このプライマーの組み合わせと、実施例3)-1-2で合成したcDNA(5’-RACE-Ready cDNA)を鋳型とした5’-RACE PCRにより2A4の軽鎖の可変領域を含むcDNAを増幅した。PCRはSMARTer RACE cDNA Amplification Kit(Clontech社)のマニュアルに従い、タッチダウンPCRプログラムで実施した。
 5’-RACE PCRで増幅した軽鎖の可変領域を含むcDNAをMinElute PCR Purification Kit(QIAGEN社)を用いて精製後、Zero Blunt TOPO PCR Cloning Kit(Invitrogen社)を用いてクローニングし、クローニングした軽鎖の可変領域を含むcDNAのヌクレオチド配列のシークエンス解析を実施した。
 決定された2A4の軽鎖の可変領域をコードするcDNAのヌクレオチド配列を配列番号11(図14)に示し、アミノ酸配列を配列番号12(図15)に示した。
3)-2 2B1の可変領域をコードするcDNAのヌクレオチド配列の決定
 実施例3)-1と同様の方法で配列を決定した。
 決定された2B1の重鎖の可変領域をコードするcDNAのヌクレオチド配列を配列番号6(図10)に示し、アミノ酸配列を配列番号7(図11)に示した。軽鎖の可変領域をコードするcDNAのヌクレオチド配列を配列番号13(図16)に示し、アミノ酸配列を配列番号14(図17)に示した。
3)-3 7B4の可変領域をコードするcDNAのヌクレオチド配列の決定
 実施例3)-1と同様の方法で配列を決定した。
 決定された7B4の重鎖の可変領域をコードするcDNAのヌクレオチド配列を配列番号8(図12)に示し、アミノ酸配列を配列番号9(図13)に示した。軽鎖の可変領域をコードするcDNAのヌクレオチド配列を配列番号15(図18)に示し、アミノ酸配列を配列番号16(図19)に示した。
(実施例4) ヒトキメラ化抗GPRC5D抗体(c2A4、c2B1、c7B4)の作製
4)-1 キメラ化及びヒト化軽鎖発現ベクターpCMA-LKの構築
 プラスミドpcDNA3.3-TOPO/LacZ(Invitrogen社)を制限酵素XbaI及びPmeIで消化して得られる約5.4kbのフラグメントと、配列表の配列番号17(図20)に示すヒト軽鎖分泌シグナル及びヒトκ鎖定常領域をコードするDNA配列を含むDNA断片をIn-Fusion Advantage PCRクローニングキット(CLONTECH社)を用いて結合して、pcDNA3.3/LKを作製した。
 pcDNA3.3/LKを鋳型として、下記プライマーセットでPCRを行い、得られた約3.8kbのフラグメントをリン酸化後セルフライゲーションすることによりCMVプロモーターの下流にシグナル配列、クローニングサイト、及びヒトκ鎖定常領域を持つ、キメラ化及びヒト化軽鎖発現ベクターpCMA-LKを構築した。
プライマーセット
5’-TATACCGTCGACCTCTAGCTAGAGCTTGGC-3’(3.3-F1:配列表の配列番号18:図21)
5’-GCTATGGCAGGGCCTGCCGCCCCGACGTTG-3’(3.3-R1:配列表の配列番号19:図22)
4)-2 キメラ化及びヒト化IgG1タイプ重鎖発現ベクターpCMA-G1の構築
 pCMA-LKをXbaI及びPmeIで消化して軽鎖分泌シグナル及びヒトκ鎖定常領域を取り除いたDNA断片と、配列表の配列番号20(図23)で示されるヒト重鎖シグナル配列及びヒトIgG1定常領域のアミノ酸をコードするDNA配列を含むDNA断片をIn-Fusion Advantage PCRクローニングキット(CLONTECH社)を用いて結合して、CMVプロモーターの下流にシグナル配列、クローニングサイト、ヒトIgG1重鎖定常領域を持つキメラ化及びヒト化IgG1タイプ重鎖発現ベクターpCMA-G1を構築した。
4)-3 c2A4軽鎖発現ベクターの構築
 実施例3)で得られた2A4軽鎖の可変領域をコードするcDNAをテンプレートとして、下記のプライマーセットでPCRを行うことにより軽鎖の可変領域をコードするcDNAを含むDNA断片を増幅し、キメラ化及びヒト化抗体軽鎖発現ベクターpCMA-LKを制限酵素BsiWIで切断した箇所にIn-Fusion HD PCRクローニングキット(Clontech社)を用いて挿入することにより、c2A4軽鎖発現ベクターを構築した。得られた発現ベクターを「pCMA-LK/c2A4」と命名した。c2A4軽鎖のヌクレオチド配列及び該軽鎖のアミノ酸配列を、配列表の配列番号21及び22(図24及び25)にそれぞれ示す。
c2A4軽鎖用プライマーセット
5’-ATCTCCGGCGCGTACGGCGACATCCAGATGACACAGTCTCCAGC-3’(c2A4-LF:配列表の配列番号23:図26)
5’-GGAGGGGGCGGCCACAGCCCGTTTCAATTCCAGCTTGGTGCCTC-3’(c2A4-LR:配列表の配列番号24:図27)
4)-4 c2A4重鎖発現ベクターの構築
 実施例3)で得られた2A4重鎖の可変領域をコードするcDNAをテンプレートとして、下記プライマーセットでPCRを行うことにより重鎖の可変領域をコードするcDNAを含むDNA断片を増幅し、キメラ化及びヒト化抗体重鎖発現ベクターpCMA-G1を制限酵素BIpIで切断した箇所にIn-Fusion HD PCRクローニングキット(Clontech社)を用いて挿入することにより、c2A4重鎖発現ベクターを構築した。得られた発現ベクターを「pCMA-G1/c2A4」と命名した。c2A4重鎖のヌクレオチド配列及び該重鎖のアミノ酸配列を、配列表の配列番号25及び26(図28及び29)にそれぞれ示す。
c2A4重鎖用プライマーセット
5’-CCAGATGGGTGCTGAGCCAGGTCCAGTTGCAGCAATCTGGAGCTG-3’(c2A4-HF:配列表の配列番号27:図30)
5’-CTTGGTGGAGGCTGAGCTGACTGTGACCATGACTCCTTGGCCCCAG-3’(c2A4-HR:配列表の配列番号28:図31
4)-5 c2B1軽鎖発現ベクターの構築
 実施例3)で得られた2B1軽鎖の可変領域をコードするcDNAをテンプレートとして、下記プライマーセットでPCRを行うことにより軽鎖の可変領域をコードするcDNAを含むDNA断片を増幅した。実施例4)-3と同様の方法でc2B1軽鎖発現ベクターを構築した。得られた発現ベクターを「pCMA-LK/c2B1」と命名した。c2B1軽鎖のヌクレオチド配列及び該軽鎖のアミノ酸配列を、配列表の配列番号29及び30(図32及び33)にそれぞれ示す。
c2B1軽鎖用プライマーセット
5’-ATCTCCGGCGCGTACGGCGAAACTGTGATGACCCAGTCTCCCAC-3’(c2B1-LF:配列表の配列番号31:図34)
5’-GGAGGGGGCGGCCACAGCCCGTTTCAATTCCAGCTTGGTGCCTC-3’(c2B1-LR:配列表の配列番号32:図35)
4)-6 c2B1重鎖発現ベクターの構築
 実施例3)で得られた2B1重鎖の可変領域をコードするcDNAをテンプレートとして、下記のプライマーセットでPCRを行うことにより重鎖の可変領域をコードするcDNAを含むDNA断片を増幅した。実施例4)-4と同様の方法でc2B1重鎖発現ベクターを構築した。得られた発現ベクターを「pCMA-G1/c2B1」と命名した。c2B1重鎖をコードするヌクレオチド配列及び該重鎖のアミノ酸配列を、配列表の配列番号33及び34(図36及び37)にそれぞれ示す。
c2B1重鎖用プライマーセット
5’-CCAGATGGGTGCTGAGCCAGGTTACTCTGAAAGAGTCTGGCCCTG-3’(c2B1-HF:配列表の配列番号35:図38)
5’-CTTGGTGGAGGCTGAGCTGACAGTGACCAGAGTGCCTTGGCCCCAG-3’(c2B1-HR:配列表の配列番号36:図39)
4)-7 c7B4軽鎖発現ベクターの構築
 実施例3)で得られた7B4軽鎖の可変領域をコードするcDNAをテンプレートとして、下記プライマーセットでPCRを行うことにより軽鎖の可変領域をコードするcDNAを含むDNA断片を増幅した。実施例4)-3と同様の方法でc7B4軽鎖発現ベクターを構築した。得られた発現ベクターを「pCMA-LK/c7B4」と命名した。c7B4軽鎖のヌクレオチド配列及び該軽鎖のアミノ酸配列を、配列表の配列番号37及び38(図40及び41)にそれぞれ示す。
c7B4軽鎖用プライマーセット
5’-ATCTCCGGCGCGTACGGCGACATCCAGATGACCCAGTCTCCTTC-3’(c7B4-LF:配列表の配列番号39:図42)
5’-GGAGGGGGCGGCCACAGCCCGTTTCAGTTCCAGCTTGGTCCCAG-3’(c7B4-LR:配列表の配列番号40:図43)
4)-8 c7B4重鎖発現ベクターの構築
 実施例3)で得られた7B4重鎖の可変領域をコードするcDNAをテンプレートとして、下記のプライマーセットでPCRを行うことにより重鎖の可変領域をコードするcDNAを含むDNA断片を増幅した。実施例4)-4と同様の方法でc7B4重鎖発現ベクターを構築した。得られた発現ベクターを「pCMA-G1/c7B4」と命名した。c7B4重鎖のヌクレオチド配列及び該重鎖のアミノ酸配列を、配列表の配列番号41及び42(図44及び45)にそれぞれ示す。
c7B4重鎖用プライマーセット
5’-CCAGATGGGTGCTGAGCGAGATACACCTGCAGGAGTCAGGACCTG-3’(c7B4-HF:配列表の配列番号43:図46)
5’-CTTGGTGGAGGCTGAGCTGACAGTGACTGAAGCTCCTTGACCCCAG-3’(c7B4-HR:配列表の配列番号44:図47)
4)-9 ヒトキメラ化抗GPRC5D抗体の調製
4)-9-1 ヒトキメラ化抗GPRC5D抗体の産生
 FreeStyle 293F細胞(Invitrogen社)はマニュアルに従い、継代、培養をおこなった。対数増殖期の1.2×10個のFreeStyle 293F細胞(Invitrogen社)を3L Fernbach Erlenmeyer Flask(CORNING社)に播種し、FreeStyle293 expression medium(Invitrogen社)で希釈して2.0×10細胞/mlに調製したのちに、37℃、8%COインキュベーター内で90rpmで1時間振とう培養した。Polyethyleneimine(Polyscience #24765)1.8mgをOpti-Pro SFM培地(Invitrogen社)20mlに溶解し、次にNucleoBond Xtra(TaKaRa社)を用いて調製した重鎖発現ベクター(0.24mg)及び軽鎖発現ベクター(0.36mg)を20mlのOpti-Pro SFM培地(Invitrogen社)に添加した。Polyethyleneimine/Opti-Pro SFM混合液20mlに、発現ベクター/Opti-Pro SFM混合液20mlを加え穏やかに攪拌し、さらに5分間放置した後にFreeStyle 293F細胞に添加した。37℃、8%COインキュベーターで4時間、90rpmで振とう培養後に600mlのEX-CELL VPRO培地(SAFC Biosciences社)、18mlのGlutaMAX I(GIBCO社)、及び30mlのYeastolate Ultrafiltrate(GIBCO社)を添加し、37℃、8%COインキュベーターで7日間、90rpmで振とう培養して得られた培養上清をDisposable Capsule Filter(Advantec #CCS-045-E1H)でろ過した。
 pCMA-G1/c2A4とpCMA-LK/c2A4との組合せによって取得されたヒトキメラ化2A4を「c2A4」、pCMA-G1/c2B1とpCMA-LK/c2B1との組合せによって取得されたヒトキメラ化2B1を「c2B1」、pCMA-G1/c7B4とpCMA-LK/c7B4との組合せによって取得されたヒトキメラ化7B4を「c7B4」と命名した。
4)-9-2 ヒトキメラ化抗GPRC5D抗体の精製
 実施例4)-9-1で得られた培養上清から抗体をrProtein Aアフィニティークロマトグラフィー(4-6℃下)1段階工程で精製した。rProtein Aアフィニティークロマトグラフィー精製後のバッファー置換工程は4-6℃下で実施した。培養上清をPBSで平衡化したMabSelectSuRe(GE Healthcare Bioscience社製)が充填されたカラムにアプライした。培養液がカラムに全て入ったのち、カラム容量2倍以上のPBSでカラムを洗浄した。次に2Mアルギニン塩酸塩溶液(pH4.0)で溶出し、抗体の含まれる画分を集めた。その画分を透析(Thermo Scientific社、Slide-A-Lyzer Dialysis Cassette)によりHBSor(25mM ヒスチジン/5%ソルビトール、pH6.0)へのバッファー置換を行った。Centrifugal UF Filter Device VIVASPIN20(分画分子量UF10K,Sartorius社,4℃下)にて濃縮し、IgG濃度を10mg/ml以上に調製し精製サンプルとした。最後にMinisart-Plus filter(Sartorius社)でろ過し、精製サンプルとした。
(実施例5) ヒトキメラ化抗GPRC5D抗体(c2A4、c2B1、c7B4)のin vitro活性
5)-1 ヒトキメラ化抗GPRC5D抗体(c2A4、c2B1、c7B4)のフローサイトメトリーによるヒトGPRC5Dへの結合性検討
 GPRC5Dを発現しているヒト多発性骨髄腫細胞株KHM-1B細胞を5%FBS含有PBSで5×10細胞/mLの濃度に調製し、100μL/wellで96-well U底マイクロプレートに播種し、遠心後上清を除去した。1.2ng/mL~40μg/mLに調製したヒトキメラ化抗GPRC5D抗体(c2A4、c2B1、c7B4)またはHuman IgG isotype control抗体(CALBIOCHEM社)を100μL/well添加し、4℃で1時間静置した。5%FBS含有PBSで2回洗浄した後、5%FBS含有PBSで100倍希釈したR-Phycoerythrin AffiniPure F(ab’)2 Fragment Goat Anti-Human IgG、Fcγ Fragment Specific(Jackson ImmunoResearch社)を100μL/well添加し、4℃で1時間静置した。5%FBS含有PBSで2回洗浄した後、5%FBS含有PBSで再懸濁し、フローサイトメーター(FACSCanto(商標)II:BD社)で検出を行った。データ解析はFlowjo(Treestar社)で行った。細胞画分のPE蛍光強度のヒストグラムを作成し、平均蛍光強度(MFI)を算出し、GPRC5D抗体のMFI値からcontrol抗体のMFI値を引いて、MFI値の相対値(rFMI)を算出した。図48に示すとおり、c2A4、c2B1及びc7B4はヒトGPRC5Dに結合することが示された。
5)-2 ヒトキメラ化抗GPRC5D抗体(c2A4、c2B1、c7B4)のカニクイザルGPRC5Dへの交差性検討
5)-2-1 カニクイザルGPRC5D発現ベクター(pcDNA3.1-DEST-cGPRC5D)の構築
 実施例1)-1-1で調製したpcDNA3.1-DESTに、Gataway LR Clonase Enzyme mix(Life Technologies社)を用いて、カニクイザルGPRC5D蛋白質(XP_005570249.1)をコードするcDNAをpcDNA3.1-DESTベクターにクローニングし、カニクイザルGPRC5D発現ベクターpcDNA3.1-DEST-cGPRC5Dを構築した。カニクイザルGPRC5D発現ベクターの大量調製には、Endofree Plasmid Giga Kit(QIAGEN社)を用いた。
5)-2-2 カニクイザルGPRC5D発現細胞株の作製
 ヒトGPRC5Dを発現していない多発性骨髄腫細胞株KMS-11(JCRB細胞バンク)を10%FBS含有RPMI1640培地を使用して3.7×10細胞/mLの濃度で75cmフラスコに播種し、pcDNA3.1-DEST-cGPRC5DをKMS-11細胞にLipofectamine 2000(Thermo Fisher Scientific社)を用いて導入し、37℃、5%COの条件下で2日間培養した。培養した発現ベクター導入KMS-11細胞を、1mg/mLのジェネティシン(Thermo Fisher Scientific社)入り10%FBS含有RPMI1640培地で1×10細胞/mLの濃度で培養し、薬剤スクリーニングを行った。バルクの細胞を1mg/mLのジェネティシン(Thermo Fisher Scientific社)入りClonaCell-HY Selection Medium E培地(StemCell Technologies社)を使用して限界希釈法を用いてシングルクローン化し、カニクイザルGPRC5D発現多発性骨髄腫細胞株KMS-11_cGPRC5Dを樹立した。
5)-2-3 ヒトキメラ化抗GPRC5D抗体(c2A4、c2B1、c7B4)のフローサイトメトリーによるカニクイザルGPRC5Dへの結合性検討 
 実施例5)-2-2で作製したKMS-11_cGPRC5D細胞を5%FBS含有PBSで5×10細胞/mLの濃度に調製し、100μL/wellで96-well U底マイクロプレートに播種し、遠心後上清を除去した。1.2ng/mL~40μg/mLに調製したヒトキメラ化抗GPRC5D抗体(c2A4、c2B1、c7B4)またはHuman IgG isotype control抗体(CALBIOCHEM社)を100μL/well添加し、4℃で1時間静置した。5%FBS含有PBSで2回洗浄した後、5%FBS含有PBSで100倍希釈したR-Phycoerythrin AffiniPure F(ab’)2 Fragment Goat Anti-Human IgG, Fcγ Fragment Specific(Jackson ImmunoResearch社)を100μL/well添加し、4℃で1時間静置した。5%FBS含有PBSで2回洗浄した後、5%FBS含有PBSで再懸濁し、フローサイトメーター(FACSCanto(商標)II:BD社)で検出を行った。データ解析はFlowjo(Treestar社)で行った。細胞画分のPE蛍光強度のヒストグラムを作成し、平均蛍光強度(MFI)を算出し、GPRC5D抗体のMFI値からcontrol抗体のMFI値を引いて、MFI値の相対値(rFMI)を算出した。図49に示す通り、c2A4、c2B1及びc7B4はカニクイザルGPRC5Dに結合することが示された。ヒトGPRC5D及びカニクイザルGPRC5Dに結合する抗体等は、医薬品の非臨床開発(前臨床開発)に有用な霊長類、特にカニクイザルを用いた有効性や安全性に関する各種試験に供することができ好ましい。また、ヒトGPRC5D及びカニクイザルGPRC5Dに結合する抗体等は、細胞傷害活性を有し、単独で又は本発明の分子として、カニクイザルにおける癌等の疾患の治療又は予防に有用である。
 なお、5)-2と同様の方法で、c2A4、c2B1及びc7B4のラットGPRC5D、及び、マウスGPRC5Dへの交差性を検討したところ、c2A4、c2B1及びc7B4はいずれもラットGPRC5D、及び、マウスGPRC5Dに結合しなかった。かかるc2A4、c2B1及びc7B4は、ヒトGPRC5D遺伝子が導入されたマウスやラットの細胞、組織、個体(トランスジェニック動物、ノックアウト動物、ノックイン動物を含む)及び該抗体等を用いた各種アッセイ、免疫組織化学等を、宿主であるマウスのGPRC5Dによる影響無しに実施することができ、該抗体等を含む医薬、動物薬又は診断薬等のマウスやラットを用いた研究及び非臨床開発上好ましい。
5)-3 ヒトキメラ化抗GPRC5D抗体(c2A4、c2B1、c7B4)のADCC活性
 実施例2)-3-1で取得したKHM-1B細胞を50μL/wellで96-well U底マイクロプレートに添加した。そこに終濃度で0.64ng/mL-2μg/mLになるよう調製した実施例4で調製した精製ヒトキメラ化抗GPRC5D抗体(c2A4、c2B1、c7B4)及びヒトコントロール抗体(hIgG1)(CALBIOCHEM社)を50μL/wellで添加し、4℃で30分静置した。さらに、実施例1)-5-3で調製(3×10細胞/mLになるよう調製)したエフェクター細胞を100μL/well添加し、室温で1200rpm×3分間遠心の後、37℃、5%COの条件下で4時間培養した。上清50μLをLumaPlate(PerkinElmer社)に回収し、50℃で一晩乾燥させ、プレートリーダー(TopCount:PerkinElmer社)で測定した。ADCC活性による細胞溶解率は実施例1)-5-5 に倣って算出した。図50に示すとおり、c2A4、c2B1及びc7B4はADCC活性を有することが示された。
(実施例6) ヒトキメラ化抗GPRC5D抗体(c2A4、c2B1、c7B4)のin vivo活性
 1×10細胞のヒト多発性骨髄腫細胞株KHM-1B細胞を100%マトリゲル(BD社)で懸濁し、BALB/c-nu/nuマウス(CanN.Cg-Foxn1nu/CrlCrlj、日本チャールズリバー社より購入)の腋窩部皮下に移植した。移植の3、10日後にヒトキメラ化抗GPRC5D抗体(c2A4、c2B1、c7B4)を10mg/kgで担癌マウスの尾静脈に投与した(n=12または11)。移植腫瘍の長径及び短径を週2回、電子デジタルノギス(株式会社ミツトヨ製)を用いて測定し、以下に示す計算式により腫瘍体積を算出した。
 腫瘍体積(mm)=1/2×短径(mm)×短径(mm)×長径(mm)
 c2A4抗体の結果を図51に示した。移植21日後における腫瘍増殖抑制率は96%であった。
 c2B1抗体の結果を図52に示した。移植21日後における腫瘍増殖抑制率は95%であった。
 c7B4抗体の結果を図53に示した。移植21日後における腫瘍増殖抑制率は94%であった。
(実施例7) ヒトキメラ化抗GPRC5D抗体(c2B1、c7B4)のヒト化バージョン(h2B1、h7B4)の設計
7)-1 抗GPRC5D抗体2B1のヒト化体デザイン
7)-1-1 2B1の可変領域の分子モデリング
 2B1の可変領域の分子モデリングは、ホモロジーモデリングとして公知の方法(Methods in Enzymology,203,121-153,(1991))によって実行された。Protein Data Bank(Nuc.Acid Res.35,D301-D303(2007))に登録されるヒト免疫グロブリンの可変領域の1次配列(X線結晶構造から誘導される三次元構造が入手可能である)を、上で決定された2B1の可変領域と比較した。結果として3MBXが2B1の重鎖と軽鎖の可変領域に対して最も高い配列同一性を有するとして選択された。フレームワーク領域の三次元構造は、2B1の重鎖及び軽鎖に対応する3MBXの座標を組み合わせて、「フレームワークモデル」を得ることによって作製された。次いで、それぞれのCDRについての代表的なコンホメーションがフレームワークモデルに組み込まれた。最後に、エネルギーの点で2B1の可変領域の可能性のある分子モデルを得るために、不利な原子間接触を除くためのエネルギー計算を行った。上記手順を、市販のタンパク質立体構造解析プログラムBioLuminate(Schrodinger社製)を用いて行った。
7)-1-2 ヒト化h2B1に対するアミノ酸配列の設計
 ヒト化h2B1の構築を、CDRグラフティング(Proc.Natl.Acad.Sci.USA 86,10029-10033(1989))として一般的に公知の方法によって行った。アクセプター抗体は、フレームワーク領域内のアミノ酸同一性に基づいて選択された。
 2B1のフレームワーク領域の配列を、KABAT et al. (Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service National Institutes of Health, Bethesda,MD.(1991))において既定されるヒトのサブグループ・コンセンサス配列やGermline配列のフレームワーク領域と比較した。結果として、重鎖についてはヒトGermline配列IGHV2_5x08とIGHJ1x01とヒトgamma鎖サブグループ2のコンセンサス配列が、軽鎖についてはヒトGermline配列IGKV1_8x01とIGKJ4x01とヒトkappa鎖サブグループ4のコンセンサス配列が、そのフレームワーク領域において高い配列同一性に有することに起因して、アクセプターとして選択された。アクセプターについてのフレームワーク領域のアミノ酸残基を、2B1についてのアミノ酸残基と整列させ、異なるアミノ酸が使用される位置を同定した。これらの残基の位置は、上で構築された2B1の三次元モデルを使用して分析され、そしてアクセプター上にグラフティングされるべきドナー残基が、Queen et al.(Proc.Natl.Acad.Sci.USA 86,10029-10033(1989))によって与えられる基準によって選択された。選択された幾つかのドナー残基をアクセプター抗体に移入することによって、ヒト化h2B1の配列を以下の実施例に記載されるように構築した。なお、重鎖に関してはドナー残基に限らず、箇所によってはgamma鎖サブグループ1のコンセンサス配列の残基を移入した。
7)-1-3 2B1重鎖のヒト化
7)-1-3-1 ヒト化h2B1_H1タイプ重鎖
 配列番号34に示されるキメラc2B1の重鎖のうち可変領域部分のアミノ酸番号3目のスレオニンをグルタミンに、アミノ酸番号5目のリジンをバリンに、アミノ酸番号9目のプロリンをグリシンに、アミノ酸番号11目のイソロイシンをロイシンに、アミノ酸番号12目のロイシンをバリンに、アミノ酸番号13目のグルタミンをリジンに、アミノ酸番号43目のセリンをプロリンに、アミノ酸番号50目のロイシンをイソロイシンに、アミノ酸番号51目のアラニンをグリシンに、アミノ酸番号66目のアルギニンをリジンに、アミノ酸番号67目のアスパラギンをセリンに、アミノ酸番号69目のロイシンをバリンに、アミノ酸番号73目のリジンをバリンに、アミノ酸番号77目のアスパラギンをリジンに、アミノ酸番号81目のフェニルアラニンをセリンに、アミノ酸番号84目のイソロイシンをロイシンに、アミノ酸番号85目のスレオニンをセリンに、アミノ酸番号86目のアスパラギンをセリンに、アミノ酸番号88目のアスパラギン酸をスレオニンに、アミノ酸番号89目のスレオニンをアラニンに、アミノ酸番号94目のスレオニンをバリンに、置き換えることを伴い設計されたヒト化h2B1重鎖を「ヒト化h2B1_H1タイプ重鎖」(「h2B1_H1」と呼ぶこともある)と命名した。
 ヒト化h2B1_H1タイプ重鎖のアミノ酸配列は、配列表の配列番号74(図83)に記載されている。配列番号74のアミノ酸配列をコードするヌクレオチド配列は、配列表の配列番号73(図82)に記載されている。
7)-1-3-2 ヒト化h2B1_H2タイプ重鎖
 配列番号34に示されるキメラc2B1の重鎖のうち可変領域部分のアミノ酸番号3目のスレオニンをグルタミンに、アミノ酸番号5目のリジンをバリンに、アミノ酸番号9目のプロリンをグリシンに、アミノ酸番号11目のイソロイシンをロイシンに、アミノ酸番号12目のロイシンをバリンに、アミノ酸番号13目のグルタミンをリジンに、アミノ酸番号43目のセリンをプロリンに、アミノ酸番号50目のロイシンをイソロイシンに、アミノ酸番号51目のアラニンをグリシンに、アミノ酸番号66目のアルギニンをリジンに、アミノ酸番号67目のアスパラギンをセリンに、アミノ酸番号69目のロイシンをバリンに、アミノ酸番号81目のフェニルアラニンをセリンに、アミノ酸番号84目のイソロイシンをロイシンに、アミノ酸番号85目のスレオニンをセリンに、アミノ酸番号86目のアスパラギンをセリンに、アミノ酸番号88目のアスパラギン酸をスレオニンに、アミノ酸番号89目のスレオニンをアラニンに、アミノ酸番号94目のスレオニンをバリンに、置き換えることを伴い設計されたヒト化h2B1重鎖を「ヒト化h2B1_H2タイプ重鎖」(「h2B1_H2」と呼ぶこともある)と命名した。
 ヒト化h2B1_H2タイプ重鎖のアミノ酸配列は、配列表の配列番号76(図85)に記載されている。配列番号76のアミノ酸配列をコードするヌクレオチド配列は、配列表の配列番号75(図84)に記載されている。
7)-1-3-3 ヒト化h2B1_H3タイプ重鎖
 配列番号34に示されるキメラc2B1の重鎖のうち可変領域部分のアミノ酸番号3目のスレオニンをグルタミンに、アミノ酸番号5目のリジンをバリンに、アミノ酸番号9目のプロリンをグリシンに、アミノ酸番号11目のイソロイシンをロイシンに、アミノ酸番号12目のロイシンをバリンに、アミノ酸番号13目のグルタミンをリジンに、アミノ酸番号43目のセリンをプロリンに、アミノ酸番号50目のロイシンをイソロイシンに、アミノ酸番号66目のアルギニンをリジンに、アミノ酸番号67目のアスパラギンをセリンに、アミノ酸番号69目のロイシンをバリンに、アミノ酸番号81目のフェニルアラニンをセリンに、アミノ酸番号84目のイソロイシンをロイシンに、アミノ酸番号85目のスレオニンをセリンに、アミノ酸番号86目のアスパラギンをセリンに、アミノ酸番号88目のアスパラギン酸をスレオニンに、アミノ酸番号89目のスレオニンをアラニンに、アミノ酸番号94目のスレオニンをバリンに、置き換えることを伴い設計されたヒト化h2B1重鎖を「ヒト化h2B1_H3タイプ重鎖」(「h2B1_H3」と呼ぶこともある)と命名した。
 ヒト化h2B1_H3タイプ重鎖のアミノ酸配列は、配列表の配列番号78(図87)に記載されている。配列番号78のアミノ酸配列をコードするヌクレオチド配列は、配列表の配列番号77(図86)に記載されている。
7)-1-3-4 ヒト化h2B1_H4タイプ重鎖
 配列番号34に示されるキメラc2B1の重鎖のうち可変領域部分のアミノ酸番号10目のグリシンをアラニンに、アミノ酸番号11目のイソロイシンをロイシンに、アミノ酸番号12目のロイシンをバリンに、アミノ酸番号13目のグルタミンをリジンに、アミノ酸番号15目のセリンをスレオニンに、アミノ酸番号19目のセリンをスレオニンに、アミノ酸番号43目のセリンをプロリンに、アミノ酸番号62目のアスパラギンをセリンに、アミノ酸番号66目のアルギニンをリジンに、アミノ酸番号67目のアスパラギンをセリンに、アミノ酸番号72目のセリンをスレオニンに、アミノ酸番号81目のフェニルアラニンをバリンに、アミノ酸番号83目のリジンをスレオニンに、アミノ酸番号84目のイソロイシンをメチオニンに、アミノ酸番号87目のバリンをメチオニンに、アミノ酸番号89目のスレオニンをプロリンに、アミノ酸番号90目のアラニンをバリンに、置き換えることを伴い設計されたヒト化h2B1重鎖を「ヒト化h2B1_H4タイプ重鎖」(「h2B1_H4」と呼ぶこともある)と命名した。
 ヒト化h2B1_H4タイプ重鎖のアミノ酸配列は、配列表の配列番号80(図89)に記載されている。配列番号80のアミノ酸配列をコードするヌクレオチド配列は、配列表の配列番号79(図88)に記載されている。
7)-1-4 2B1軽鎖のヒト化
7)-1-4-1 ヒト化h2B1_L1タイプ軽鎖
 配列番号30に示されるキメラc2B1の軽鎖のうち可変領域部分のアミノ酸番号1目のグルタミン酸をアスパラギン酸に、アミノ酸番号9目のスレオニンをアスパラギン酸に、アミノ酸番号11目のメチオニンをロイシンに、アミノ酸番号12目のセリンをアラニンに、アミノ酸番号13目のスレオニンをバリンに、アミノ酸番号15目のイソロイシンをロイシンに、アミノ酸番号19目のバリンをアラニンに、アミノ酸番号21目のロイシンをイソロイシンに、アミノ酸番号39目のスレオニンをリジンに、アミノ酸番号43目のセリンをプロリンに、アミノ酸番号63目のスレオニンをセリンに、アミノ酸番号67目のフェニルアラニンをセリンに、アミノ酸番号77目のアスパラギンをセリンに、アミノ酸番号78目のバリンをロイシンに、アミノ酸番号79目のグルタミン酸をグルタミンに、アミノ酸番号83目のロイシンをバリンに、アミノ酸番号100目のグリシンをグルタミンに、アミノ酸番号104目のロイシンをバリンに、アミノ酸番号106目のロイシンをイソロイシンに、置き換えることを伴い設計されたヒト化h2B1軽鎖を「ヒト化h2B1_L1タイプ軽鎖」(「h2B1_L1」と呼ぶこともある)と命名した。
 ヒト化h2B1_L1タイプ軽鎖のアミノ酸配列は、配列表の配列番号64(図73)に記載されている。配列番号64のアミノ酸配列をコードするヌクレオチド配列は、配列表の配列番号63(図72)に記載されている。
7)-1-4-2 ヒト化h2B1_L2タイプ軽鎖
 配列番号30に示されるキメラc2B1の軽鎖のうち可変領域部分のアミノ酸番号1目のグルタミン酸をアスパラギン酸に、アミノ酸番号9目のスレオニンをアスパラギン酸に、アミノ酸番号11目のメチオニンをロイシンに、アミノ酸番号12目のセリンをアラニンに、アミノ酸番号13目のスレオニンをバリンに、アミノ酸番号15目のイソロイシンをロイシンに、アミノ酸番号19目のバリンをアラニンに、アミノ酸番号21目のロイシンをイソロイシンに、アミノ酸番号39目のスレオニンをリジンに、アミノ酸番号43目のセリンをプロリンに、アミノ酸番号63目のスレオニンをセリンに、アミノ酸番号69目のアルギニンをスレオニンに、アミノ酸番号77目のアスパラギンをセリンに、アミノ酸番号78目のバリンをロイシンに、アミノ酸番号79目のグルタミン酸をグルタミンに、アミノ酸番号83目のロイシンをバリンに、アミノ酸番号100目のグリシンをグルタミンに、アミノ酸番号104目のロイシンをバリンに、アミノ酸番号106目のロイシンをイソロイシンに、置き換えることを伴い設計されたヒト化h2B1軽鎖を「ヒト化h2B1_L2タイプ軽鎖」(「h2B1_L2」と呼ぶこともある)と命名した。
 ヒト化h2B1_L2タイプ軽鎖のアミノ酸配列は、配列表の配列番号66(図75)に記載されている。配列番号66のアミノ酸配列をコードするヌクレオチド配列は、配列表の配列番号65(図74)に記載されている。
7)-1-4-3 ヒト化h2B1_L3タイプ軽鎖
 配列番号30に示されるキメラc2B1の軽鎖のうち可変領域部分のアミノ酸番号1目のグルタミン酸をアスパラギン酸に、アミノ酸番号9目のスレオニンをアスパラギン酸に、アミノ酸番号11目のメチオニンをロイシンに、アミノ酸番号12目のセリンをアラニンに、アミノ酸番号13目のスレオニンをバリンに、アミノ酸番号15目のイソロイシンをロイシンに、アミノ酸番号19目のバリンをアラニンに、アミノ酸番号21目のロイシンをイソロイシンに、アミノ酸番号39目のスレオニンをリジンに、アミノ酸番号43目のセリンをプロリンに、アミノ酸番号63目のスレオニンをセリンに、アミノ酸番号77目のアスパラギンをセリンに、アミノ酸番号78目のバリンをロイシンに、アミノ酸番号79目のグルタミン酸をグルタミンに、アミノ酸番号83目のロイシンをバリンに、アミノ酸番号100目のグリシンをグルタミンに、アミノ酸番号104目のロイシンをバリンに、アミノ酸番号106目のロイシンをイソロイシンに、置き換えることを伴い設計されたヒト化h2B1軽鎖を「ヒト化h2B1_L3タイプ軽鎖」(「h2B1_L3」と呼ぶこともある)と命名した。
 ヒト化h2B1_L3タイプ軽鎖のアミノ酸配列は、配列表の配列番号68(図77)に記載されている。配列番号68のアミノ酸配列をコードするヌクレオチド配列は、配列表の配列番号67(図76)に記載されている。
7)-1-4-4 ヒト化h2B1_L4タイプ軽鎖
 配列番号30に示されるキメラc2B1の軽鎖のうち可変領域部分のアミノ酸番号1目のグルタミン酸をアスパラギン酸に、アミノ酸番号9目のスレオニンをアスパラギン酸に、アミノ酸番号11目のメチオニンをロイシンに、アミノ酸番号12目のセリンをアラニンに、アミノ酸番号13目のスレオニンをバリンに、アミノ酸番号15目のイソロイシンをロイシンに、アミノ酸番号19目のバリンをアラニンに、アミノ酸番号21目のロイシンをイソロイシンに、アミノ酸番号39目のスレオニンをリジンに、アミノ酸番号63目のスレオニンをセリンに、アミノ酸番号77目のアスパラギンをセリンに、アミノ酸番号78目のバリンをロイシンに、アミノ酸番号79目のグルタミン酸をグルタミンに、アミノ酸番号83目のロイシンをバリンに、アミノ酸番号100目のグリシンをグルタミンに、アミノ酸番号104目のロイシンをバリンに、アミノ酸番号106目のロイシンをイソロイシンに、置き換えることを伴い設計されたヒト化h2B1軽鎖を「ヒト化h2B1_L4タイプ軽鎖」(「h2B1_L4」と呼ぶこともある)と命名した。
 ヒト化h2B1_L4タイプ軽鎖のアミノ酸配列は、配列表の配列番号70(図79)に記載されている。配列番号70のアミノ酸配列をコードするヌクレオチド配列は、配列表の配列番号69(図78)に記載されている。
7)-1-4-5 ヒト化h2B1_L5タイプ軽鎖
 配列番号30に示されるキメラc2B1の軽鎖のうち可変領域部分のアミノ酸番号1目のグルタミン酸をアラニンに、アミノ酸番号3目のバリンをアルギニンに、アミノ酸番号9目のスレオニンをセリンに、アミノ酸番号11目のメチオニンをフェニルアラニンに、アミノ酸番号13目のスレオニンをアラニンに、アミノ酸番号15目のイソロイシンをスレオニンに、アミノ酸番号17目のグルタミン酸をアスパラギン酸に、アミノ酸番号21目のロイシンをイソロイシンに、アミノ酸番号22目のアスパラギンをスレオニンに、アミノ酸番号39目のスレオニンをリジンに、アミノ酸番号42目のグルタミンをリジンに、アミノ酸番号60目のアスパラギン酸をセリンに、アミノ酸番号63目のスレオニンをセリンに、アミノ酸番号77目のアスパラギンをセリンに、アミノ酸番号78目のバリンをロイシンに、アミノ酸番号79目のグルタミン酸をグルタミンに、アミノ酸番号80目のアラニンをセリンに、アミノ酸番号83目のロイシンをフェニルアラニンに、アミノ酸番号85目のバリンをスレオニンに、アミノ酸番号104目のロイシンをバリンに、アミノ酸番号106目のロイシンをイソロイシンに、置き換えることを伴い設計されたヒト化h2B1軽鎖を「ヒト化h2B1_L5タイプ軽鎖」(「h2B1_L5」と呼ぶこともある)と命名した。
 ヒト化h2B1_L5タイプ軽鎖のアミノ酸配列は、配列表の配列番号72(図81)に記載されている。配列番号72のアミノ酸配列をコードするヌクレオチド配列は、配列表の配列番号71(図80)に記載されている。
7)-2 抗GPRC5D抗体7B4のヒト化体デザイン
7)-2-1 7B4の可変領域の分子モデリング
 7B4の可変領域の分子モデリングは、ホモロジーモデリングとして公知の方法(Methods in Enzymology,203,121-153,(1991))によって実行された。Protein Data Bank(Nuc.Acid Res.35,D301-D303(2007))に登録されるヒト免疫グロブリンの可変領域の1次配列(X線結晶構造から誘導される三次元構造が入手可能である)を、上で決定された7B4の可変領域と比較した。結果として1BGXが7B4の重鎖と軽鎖の可変領域に対して最も高い配列同一性を有するとして選択された。フレームワーク領域の三次元構造は、7B4の重鎖及び軽鎖に対応する1BGXの座標を組み合わせて、「フレームワークモデル」を得ることによって作製された。次いで、それぞれのCDRについての代表的なコンホメーションがフレームワークモデルに組み込まれた。最後に、エネルギーの点で7B4の可変領域の可能性のある分子モデルを得るために、不利な原子間接触を除くためのエネルギー計算を行った。上記手順を、市販のタンパク質立体構造解析プログラムBioLuminate(Schrodinger社製)を用いて行った。
7)-2-2 ヒト化h7B4に対するアミノ酸配列の設計
 ヒト化h7B4の構築を、CDRグラフティング(Proc.Natl.Acad.Sci.USA 86,10029-10033(1989))として一般的に公知の方法によって行った。アクセプター抗体は、フレームワーク領域内のアミノ酸同一性に基づいて選択された。
 7B4のフレームワーク領域の配列を、KABAT et al. (Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service National Institutes of Health, Bethesda,MD.(1991))において既定されるヒトのサブグループ・コンセンサス配列やGermline配列のフレームワーク領域と比較した。結果として、重鎖についてはヒトgamma鎖サブグループ2のコンセンサス配列が、軽鎖についてはヒトkappa鎖サブグループ3のコンセンサス配列が、そのフレームワーク領域において高い配列同一性に有することに起因して、アクセプターとして選択された。アクセプターについてのフレームワーク領域のアミノ酸残基を、7B4についてのアミノ酸残基と整列させ、異なるアミノ酸が使用される位置を同定した。これらの残基の位置は、上で構築された7B4の三次元モデルを使用して分析され、そしてアクセプター上にグラフティングされるべきドナー残基が、Queen et al.(Proc.Natl.Acad.Sci.USA 86,10029-10033(1989))によって与えられる基準によって選択された。選択された幾つかのドナー残基をアクセプター抗体に移入することによって、ヒト化h7B4の配列を以下の実施例に記載されるように構築した。なお、軽鎖に関してはドナー残基に限らず、箇所によってはkappa鎖サブグループ1のコンセンサス配列の残基を移入した。
7)-2-3 7B4重鎖のヒト化
7)-2-3-1 ヒト化h7B4_H1タイプ重鎖
 配列番号42に示されるキメラc7B4の重鎖のうち可変領域部分のアミノ酸番号1目のグルタミン酸をグルタミンに、アミノ酸番号2目のイソロイシンをバリンに、アミノ酸番号3目のヒスチジンをグルタミンに、アミノ酸番号17目のセリンをスレオニンに、アミノ酸番号23目のセリンをスレオニンに、アミノ酸番号25目のスレオニンをセリンに、アミノ酸番号40目のリジンをグルタミンに、アミノ酸番号41目のフェニルアラニンをプロリンに、アミノ酸番号44目のアスパラギンをリジンに、アミノ酸番号45目のリジンをグリシンに、アミノ酸番号46目のメチオニンをロイシンに、アミノ酸番号49目のメチオニンをイソロイシンに、アミノ酸番号68目のイソロイシンをバリンに、アミノ酸番号69目のセリンをスレオニンに、アミノ酸番号71目のスレオニンをセリンに、アミノ酸番号80目のフェニルアラニンをセリンに、アミノ酸番号82目のグルタミンをリジンに、アミノ酸番号84目のアスパラギンをセリンに、アミノ酸番号88目のスレオニンをアラニンに、アミノ酸番号89目のグルタミン酸をアラニンに、アミノ酸番号93目のスレオニンをバリンに、アミノ酸番号117目のアラニンをスレオニンに、アミノ酸番号118目のセリンをロイシンに、置き換えることを伴い設計されたヒト化h7B4重鎖を「ヒト化h7B4_H1タイプ重鎖」(「h7B4_H1」と呼ぶこともある)と命名した。
 ヒト化h7B4_H1タイプ重鎖のアミノ酸配列は、配列表の配列番号86(図95)に記載されている。配列番号86のアミノ酸配列をコードするヌクレオチド配列は、配列表の配列番号85(図94)に記載されている。
7)-2-3-2 ヒト化h7B4_H2タイプ重鎖
 配列番号42に示されるキメラc7B4の重鎖のうち可変領域部分のアミノ酸番号3目のヒスチジンをグルタミンに、アミノ酸番号17目のセリンをスレオニンに、アミノ酸番号23目のセリンをスレオニンに、アミノ酸番号25目のスレオニンをセリンに、アミノ酸番号40目のリジンをグルタミンに、アミノ酸番号41目のフェニルアラニンをプロリンに、アミノ酸番号44目のアスパラギンをリジンに、アミノ酸番号45目のリジンをグリシンに、アミノ酸番号46目のメチオニンをロイシンに、アミノ酸番号49目のメチオニンをイソロイシンに、アミノ酸番号50目のアラニンをグリシンに、アミノ酸番号68目のイソロイシンをバリンに、アミノ酸番号69目のセリンをスレオニンに、アミノ酸番号71目のスレオニンをセリンに、アミノ酸番号80目のフェニルアラニンをセリンに、アミノ酸番号82目のグルタミンをリジンに、アミノ酸番号84目のアスパラギンをセリンに、アミノ酸番号88目のスレオニンをアラニンに、アミノ酸番号89目のグルタミン酸をアラニンに、アミノ酸番号93目のスレオニンをバリンに、アミノ酸番号117目のアラニンをスレオニンに、アミノ酸番号118目のセリンをロイシンに、置き換えることを伴い設計されたヒト化h7B4重鎖を「ヒト化h7B4_H2タイプ重鎖」(「h7B4_H2」と呼ぶこともある)と命名した。
 ヒト化h7B4_H2タイプ重鎖のアミノ酸配列は、配列表の配列番号88(図97)に記載されている。配列番号88のアミノ酸配列をコードするヌクレオチド配列は、配列表の配列番号87(図96)に記載されている。
7)-2-3-3 ヒト化h7B4_H3タイプ重鎖
 配列番号42に示されるキメラc7B4の重鎖のうち可変領域部分のアミノ酸番号3目のヒスチジンをグルタミンに、アミノ酸番号17目のセリンをスレオニンに、アミノ酸番号23目のセリンをスレオニンに、アミノ酸番号25目のスレオニンをセリンに、アミノ酸番号40目のリジンをグルタミンに、アミノ酸番号41目のフェニルアラニンをプロリンに、アミノ酸番号44目のアスパラギンをリジンに、アミノ酸番号45目のリジンをグリシンに、アミノ酸番号46目のメチオニンをロイシンに、アミノ酸番号49目のメチオニンをイソロイシンに、アミノ酸番号68目のイソロイシンをバリンに、アミノ酸番号69目のセリンをスレオニンに、アミノ酸番号71目のスレオニンをセリンに、アミノ酸番号80目のフェニルアラニンをセリンに、アミノ酸番号82目のグルタミンをリジンに、アミノ酸番号84目のアスパラギンをセリンに、アミノ酸番号88目のスレオニンをアラニンに、アミノ酸番号89目のグルタミン酸をアラニンに、アミノ酸番号93目のスレオニンをバリンに、アミノ酸番号117目のアラニンをスレオニンに、アミノ酸番号118目のセリンをロイシンに、置き換えることを伴い設計されたヒト化h7B4重鎖を「ヒト化h7B4_H3タイプ重鎖」(「h7B4_H3」と呼ぶこともある)と命名した。
 ヒト化h7B4_H3タイプ重鎖のアミノ酸配列は、配列表の配列番号90(図99)に記載されている。配列番号90のアミノ酸配列をコードするヌクレオチド配列は、配列表の配列番号89(図98)に記載されている。
7)-2-3-4 ヒト化h7B4_H5タイプ重鎖
 配列番号42に示されるキメラc7B4の重鎖のうち可変領域部分のアミノ酸番号3目のヒスチジンをグルタミンに、アミノ酸番号17目のセリンをスレオニンに、アミノ酸番号23目のセリンをスレオニンに、アミノ酸番号25目のスレオニンをセリンに、アミノ酸番号41目のフェニルアラニンをプロリンに、アミノ酸番号49目のメチオニンをイソロイシンに、アミノ酸番号68目のイソロイシンをバリンに、アミノ酸番号69目のセリンをスレオニンに、アミノ酸番号71目のスレオニンをセリンに、アミノ酸番号80目のフェニルアラニンをセリンに、アミノ酸番号82目のグルタミンをリジンに、アミノ酸番号84目のアスパラギンをセリンに、アミノ酸番号88目のスレオニンをアラニンに、アミノ酸番号89目のグルタミン酸をアラニンに、アミノ酸番号93目のスレオニンをバリンに、アミノ酸番号117目のアラニンをスレオニンに、アミノ酸番号118目のセリンをロイシンに、置き換えることを伴い設計されたヒト化h7B4重鎖を「ヒト化h7B4_H5タイプ重鎖」(「h7B4_H5」と呼ぶこともある)と命名した。
 ヒト化h7B4_H5タイプ重鎖のアミノ酸配列は、配列表の配列番号92(図101)に記載されている。配列番号92のアミノ酸配列をコードするヌクレオチド配列は、配列表の配列番号91(図100)に記載されている。
7)-2-4 7B4軽鎖のヒト化
7)-2-4-1 ヒト化h7B4_L1タイプ軽鎖
 配列番号38に示されるキメラc7B4の軽鎖のうち可変領域部分のアミノ酸番号1目のアスパラギン酸をグルタミン酸に、アミノ酸番号3目のグルタミンをバリンに、アミノ酸番号4目のメチオニンをロイシンに、アミノ酸番号9目のセリンをグリシンに、アミノ酸番号10目のフェニルアラニンをスレオニンに、アミノ酸番号13目のアラニンをロイシンに、アミノ酸番号15目のバリンをプロリンに、アミノ酸番号19目のバリンをアラニンに、アミノ酸番号40目のロイシンをプロリンに、アミノ酸番号42目のグルタミン酸をグルタミンに、アミノ酸番号45目のリジンをアルギニンに、アミノ酸番号60目のセリンをアスパラギン酸に、アミノ酸番号77目のグリシンをアルギニンに、アミノ酸番号79目のグルタミンをグルタミン酸に、アミノ酸番号83目のバリンをフェニルアラニンに、アミノ酸番号85目のスレオニンをバリンに、アミノ酸番号87目のフェニルアラニンをチロシンに、アミノ酸番号99目のアラニンをグルタミンに、アミノ酸番号103目のロイシンをバリンに、アミノ酸番号105目のロイシンをイソロイシンに、置き換えることを伴い設計されたヒト化h7B4軽鎖を「ヒト化h7B4_L1タイプ軽鎖」(「h7B4_L1」と呼ぶこともある)と命名した。
 ヒト化h7B4_L1タイプ軽鎖のアミノ酸配列は、配列表の配列番号82(図91)に記載されている。配列番号82のアミノ酸配列をコードするヌクレオチド配列は、配列表の配列番号81(図90)に記載されている。
7)-2-4-2 ヒト化h7B4_L2タイプ軽鎖
 配列番号38に示されるキメラc7B4の軽鎖のうち可変領域部分のアミノ酸番号10目のフェニルアラニンをセリンに、アミノ酸番号13目のアラニンをロイシンに、アミノ酸番号15目のバリンをプロリンに、アミノ酸番号19目のバリンをアラニンに、アミノ酸番号40目のロイシンをプロリンに、アミノ酸番号42目のグルタミン酸をグルタミンに、アミノ酸番号45目のリジンをアルギニンに、アミノ酸番号60目のセリンをアスパラギン酸に、アミノ酸番号77目のグリシンをアルギニンに、アミノ酸番号79目のグルタミンをグルタミン酸に、アミノ酸番号83目のバリンをフェニルアラニンに、アミノ酸番号85目のスレオニンをバリンに、アミノ酸番号87目のフェニルアラニンをチロシンに、アミノ酸番号99目のアラニンをグルタミンに、アミノ酸番号103目のロイシンをバリンに、アミノ酸番号105目のロイシンをイソロイシンに、置き換えることを伴い設計されたヒト化h7B4軽鎖を「ヒト化h7B4_L2タイプ軽鎖」(「h7B4_L2」と呼ぶこともある)と命名した。
 ヒト化h7B4_L2タイプ軽鎖のアミノ酸配列は、配列表の配列番号84(図93)に記載されている。配列番号84のアミノ酸配列をコードするヌクレオチド配列は、配列表の配列番号83(図92)に記載されている。
(実施例8) ラット抗ヒトGPRC5D抗体(2B1、7B4)のヒト化抗体(h2B1、h7B4)の発現ベクターの構築と抗体の調製
8)-1 h2B1の重鎖発現ベクターの構築
8)-1-1 h2B1_H1タイプ重鎖の構築
 配列番号73に示すh2B1_H1のヌクレオチド配列のヌクレオチド番号58乃至426に示されるh2B1_H1の可変領域をコードするDNA配列を含むDNA断片を合成した(GENEART社 人工遺伝子合成サービス)。実施例8)-1-1と同様の方法でh2B1_H1発現ベクターを構築した。得られた発現ベクターを「pCMA/h2B1_H1」と命名した。
8)-1-2 h2B1_H2タイプ重鎖の構築
 配列番号75に示すh2B1_H2のヌクレオチド配列のヌクレオチド番号58乃至426に示されるh2B1_H2の可変領域をコードするDNA配列を含むDNA断片を合成した(GENEART社 人工遺伝子合成サービス)。合成したDNA断片をPCRにより増幅し、キメラ及びヒト化抗体重鎖発現ベクターpCMA-G1を制限酵素BlpIで切断した箇所にIn-Fusion HD PCRクローニングキット(Clontech社)を用いて挿入することによりh2B1_H2発現ベクターを構築した。得られた発現ベクターを「pCMA/h2B1_H2」と命名した。
8)-1-3 h2B1_H3タイプ重鎖の構築
 配列番号77に示すh2B1_H3のヌクレオチド配列のヌクレオチド番号58乃至426に示されるh2B1_H3の可変領域をコードするDNA配列を含むDNA断片を合成した(GENEART社 人工遺伝子合成サービス)。実施例8)-1-1と同様の方法でh2B1_H3発現ベクターを構築した。得られた発現ベクターを「pCMA/h2B1_H3」と命名した。
8)-1-4 h2B1_H4タイプ重鎖の構築
 配列番号79に示すh2B1_H4のヌクレオチド配列のヌクレオチド番号58乃至426に示されるh2B1_H4の可変領域をコードするDNA配列を含むDNA断片を合成した(GENEART社 人工遺伝子合成サービス)。実施例8)-1-1と同様の方法でh2B1_H4発現ベクターを構築した。得られた発現ベクターを「pCMA/h2B1_H4」と命名した。
8)-2 h2B1の軽鎖発現ベクターの構築
8)-2-1 h2B1_L1タイプ軽鎖の構築
 配列番号63に示すh2B1_L1のヌクレオチド配列のヌクレオチド番号61乃至381に示されるh2B1_L1の可変領域をコードするDNA配列を含むDNA断片を合成した(GENEART社 遺伝子合成サービス)。合成したDNA断片をPCRにより増幅し、キメラ及びヒト化抗体軽鎖発現ベクターpCMA-LKを制限酵素BsiWIで切断した箇所にIn-Fusion HD PCRクローニングキット(Clontech社)を用いて挿入することによりh2B1_L1発現ベクターを構築した。得られた発現ベクターを「pCMA/h2B1_L1」と命名した。
8)-2-2 h2B1_L2タイプ軽鎖の構築
 配列番号65に示すh2B1_L2のヌクレオチド配列のヌクレオチド番号61乃至381に示されるh2B1_L2の可変領域をコードするDNA配列を含むDNA断片を合成した(GENEART社 遺伝子合成サービス)。実施例8)-2-1と同様の方法でh2B1_L2発現ベクターを構築した。得られた発現ベクターを「pCMA/h2B1_L2」と命名した。
8)-2-3 h2B1_L3タイプ軽鎖の構築
 配列番号67に示すh2B1_L3のヌクレオチド配列のヌクレオチド番号61乃至381に示されるh2B1_L3の可変領域をコードするDNA配列を含むDNA断片を合成した(GENEART社 遺伝子合成サービス)。実施例8)-2-1と同様の方法でh2B1_L3発現ベクターを構築した。得られた発現ベクターを「pCMA/h2B1_L3」と命名した。
8)-2-4 h2B1_L4タイプ軽鎖の構築
 配列番号69に示すh2B1_L4のヌクレオチド配列のヌクレオチド番号61乃至381に示されるh2B1_L4の可変領域をコードするDNA配列を含むDNA断片を合成した(GENEART社 遺伝子合成サービス)。実施例8)-2-1と同様の方法でh2B1_L4発現ベクターを構築した。得られた発現ベクターを「pCMA/h2B1_L4」と命名した。
8)-2-5 h2B1_L5タイプ軽鎖の構築
 配列番号71に示すh2B1_L5のヌクレオチド配列のヌクレオチド番号61乃至381に示されるh2B1_L5の可変領域をコードするDNA配列を含むDNA断片を合成した(GENEART社 遺伝子合成サービス)。実施例8)-2-1と同様の方法でh2B1_L5発現ベクターを構築した。得られた発現ベクターを「pCMA/h2B1_L5」と命名した。
8)-3 h7B4の重鎖発現ベクターの構築
8)-3-1 h7B4_H1タイプ重鎖の構築
 配列番号85に示すh7B4_H1のヌクレオチド配列のヌクレオチド番号58乃至426に示されるh7B4_H1の可変領域をコードするDNA配列を含むDNA断片を合成した(GENEART社 人工遺伝子合成サービス)。実施例8)-1-1と同様の方法でh7B4_H1発現ベクターを構築した。得られた発現ベクターを「pCMA/h7B4_H1」と命名した。
8)-3-2 h7B4_H2タイプ重鎖の構築
 配列番号87に示すh7B4_H2のヌクレオチド配列のヌクレオチド番号58乃至426に示されるh7B4_H2の可変領域をコードするDNA配列を含むDNA断片を合成した(GENEART社 人工遺伝子合成サービス)。実施例8)-1-1と同様の方法でh7B4_H2発現ベクターを構築した。得られた発現ベクターを「pCMA/h7B4_H2」と命名した。
8)-3-3 h7B4_H3タイプ重鎖の構築
 配列番号89に示すh7B4_H3のヌクレオチド配列のヌクレオチド番号58乃至426に示されるh7B4_H3の可変領域をコードするDNA配列を含むDNA断片を合成した(GENEART社 人工遺伝子合成サービス)。実施例8)-1-1と同様の方法でh7B4_H3発現ベクターを構築した。得られた発現ベクターを「pCMA/h7B4_H3」と命名した。
8)-3-4 h7B4_H5タイプ重鎖の構築
 配列番号91に示すh7B4_H5のヌクレオチド配列のヌクレオチド番号58乃至426に示されるh7B4_H5の可変領域をコードするDNA配列を含むDNA断片を合成した(GENEART社 人工遺伝子合成サービス)。実施例8)-1-1と同様の方法でh7B4_H5発現ベクターを構築した。得られた発現ベクターを「pCMA/h7B4_H5」と命名した。
8)-4 h7B4の軽鎖発現ベクターの構築
8)-4-1 h7B4_L1タイプ軽鎖の構築
 配列番号90に示すh7B4_L1のヌクレオチド配列のヌクレオチド番号61乃至378に示されるh7B4_L1の可変領域をコードするDNA配列を含むDNA断片を合成した(GENEART社 遺伝子合成サービス)。実施例8)-2-1と同様の方法でh7B4_L1発現ベクターを構築した。得られた発現ベクターを「pCMA/h7B4_L1」と命名した。
8)-4-2 h7B4_L2タイプ軽鎖の構築
 配列番号92に示すh7B4_L2のヌクレオチド配列のヌクレオチド番号61乃至378に示されるh7B4_L2の可変領域をコードするDNA配列を含むDNA断片を合成した(GENEART社 遺伝子合成サービス)。実施例8)-2-1と同様の方法でh7B4_L2発現ベクターを構築した。得られた発現ベクターを「pCMA/h7B4_L2」と命名した。
8)-5 ヒト化抗体(h2B1、h7B4)の調製(FreeStyle 293F細胞)
8)-5-1 ヒト化抗体(h2B1、h7B4)の小スケール生産
 FreeStyle 293F細胞(Invitrogen社)はマニュアルに従い、継代、培養をおこなった。
 対数増殖期の1×10個のFreeStyle 293F細胞(Invitrogen社)をFreeStyle293 expression medium (Invitrogen社)で9.6mLに希釈した後に、30mL Square Storage Bottle(Nalgene社)に播種し、37℃、8%COインキュベーター内で90rpmで一時間振とう培養した。Polyethyleneimine(Polyscience #24765)30μgをOpti-Pro SFM(Invitrogen社)200μLに溶解し、次にPureLink HiPure Plasmidキット(Invitrogen社)を用いて調製した重鎖発現ベクター(4μg)及び軽鎖発現ベクター(6μg)をOpti-Pro SFM(Invitrogen社)200μLに添加した。Polyethyleneimine/Opti-Pro SFM混合液200μLに、発現ベクター/Opti-Pro SFM混合液200μLを加え穏やかに攪拌し、さらに5分間放置した後にFreeStyle 293F細胞に添加した。37℃、8%COインキュベーターで7日間、90rpmで振とう培養して得られた培養上清をMinisart-Plus filter(Sartorius社)でろ過して評価用のサンプルとした。
 pCMA/h2B1_H1とpCMA/h2B1_L1の組み合わせでh2B1_H1/L1を取得した。pCMA/h2B1_H1とpCMA/h2B1_L2の組み合わせでh2B1_H1/L2を取得した。pCMA/h2B1_H2とpCMA/h2B1_L2の組み合わせでh2B1_H2/L2を取得した。pCMA/h2B1_H2とpCMA/h2B1_L3の組み合わせでh2B1_H2/L3を取得した。pCMA/h2B1_H2とpCMA/h2B1_L4の組み合わせでh2B1_H2/L4を取得した。pCMA/h2B1_H2とpCMA/h2B1_L5の組み合わせでh2B1_H2/L5を取得した。pCMA/h2B1_H3とpCMA/h2B1_L3の組み合わせでh2B1_H3/L3を取得した。pCMA/h2B1_H3とpCMA/h2B1_L4の組み合わせでh2B1_H3/L4を取得した。pCMA/h2B1_H3とpCMA/h2B1_L5の組み合わせでh2B1_H3/L5を取得した。pCMA/h2B1_H4とpCMA/h2B1_L1の組み合わせでh2B1_H4/L1を取得した。pCMA/h2B1_H4とpCMA/h2B1_L3の組み合わせでh2B1_H4/L3を取得した。pCMA/h2B1_H4とpCMA/h2B1_L4の組み合わせでh2B1_H4/L4を取得した。pCMA/h2B1_H4とpCMA/h2B1_L5の組み合わせでh2B1_H4/L5を取得した。pCMA/h7B4_H1とpCMA/h7B4_L2の組み合わせでh7B4_H1/L2を取得した。pCMA/h7B4_H2とpCMA/h7B4_L2の組み合わせでh7B4_H2/L2を取得した。pCMA/h7B4_H3とpCMA/h7B4_L1の組み合わせでh7B4_H3/L1を取得した。pCMA/h7B4_H3とpCMA/h7B4_L2の組み合わせでh7B4_H3/L2を取得した。pCMA/h7B4_H5とpCMA/h7B4_L1の組み合わせでh7B4_H5/L1を取得した。
8)-5-2 ヒト化抗体(h2B1、h7B4)の生産
 実施例4)-9-1と同様の方法で生産した。すなわち、pCMA/h2B1_H1とpCMA/h2B1_L1の組み合わせでh2B1_H1/L1を取得した。pCMA/h2B1_H2とpCMA/h2B1_L5の組み合わせでh2B1_H2/L5を取得した。pCMA/h2B1_H4とpCMA/h2B1_L5の組み合わせでh2B1_H4/L5を取得した。pCMA/h7B4_H1とpCMA/h7B4_L2の組み合わせでh7B4_H1/L2を取得した。pCMA/h7B4_H3とpCMA/h7B4_L1の組み合わせでh7B4_H3/L1を取得した。
8)-5-3 ヒト化抗体(h2B1、h7B4)の精製
 実施例8)-5-2で得られた培養上清から抗体をrProtein Aアフィニティークロマトグラフィー(4-6℃下)とセラミックハイドロキシアパタイト(室温下)の2段階工程で精製した。rProtein Aアフィニティークロマトグラフィー精製後とセラミックハイドロキシアパタイト精製後のバッファー置換工程は4-6℃下で実施した。PBSで平衡化したMabSelectSuRe(GE Healthcare Bioscience社製、HiTrapカラム)に培養上清をアプライした。培養上清がカラムに全て入ったのち、カラム容量2倍以上のPBSでカラムを洗浄した。次に2Mアルギニン塩酸塩溶液(pH4.0)で溶出し、抗体の含まれる画分を集めた。その画分を透析(Thermo Scientific社、Slide-A-Lyzer Dialysis Cassette)によりPBSに置換した後、5mMリン酸ナトリウム/50mM MES/pH7.0のバッファーで5倍希釈した抗体溶液を、5mM NaPi/50mM MES/30mM NaCl/pH7.0のバッファーで平衡化されたセラミックハイドロキシアパタイトカラム(日本バイオラッド、Bio-Scale CHT Type―1 Hydroxyapatite Column)にアプライした。塩化ナトリウムによる直線的濃度勾配溶出を実施し、抗体の含まれる画分を集めた。その画分を透析(Thermo Scientificsha,Slide-A-Lyzer Dialysis Cassette)によりHBSor(25mM ヒスチジン/5%ソルビトール、pH6.0)へのバッファー置換を行った。Centrifugal UF Filter Device VIVASPIN20(分画分子量UF10K,Sartorius社、4℃下)にて濃縮し、IgG濃度を10mg/ml以上に調製した。最後にMinisart-Plus filter(Sartorius社)でろ過し、精製サンプルとした。
(実施例9) ヒト化抗GPRC5D抗体のin vitro活性評価
9)-1 ヒト化抗GPRC5D抗体(h2B1_H1/L1、乃至h2B1_H4/L5またはh7B4_H1/L2乃至h7B4_H5/L1)のフローサイトメトリーによるヒトGPRC5Dへの結合性評価
 GPRC5Dを発現しているヒト多発性骨髄腫細胞株KHM-1B細胞を5%FBS含有PBSで2×10細胞/mLの濃度に調製し、100μL/wellで96-well U底マイクロプレートに播種し、遠心後上清を除去した。実施例8)-3-1で得られたヒト化抗GPRC5D抗体の培養上清またはHuman IgG isotype control抗体(CALBIOCHEM社)を14ng/mL~30μg/mLに調製したものを100μL/well添加し、4℃で1時間静置した。5%FBS含有PBSで2回洗浄した後、5%FBS含有PBSで100倍希釈したR-Phycoerythrin AffiniPure F(ab’)2 Fragment Goat Anti-Human IgG, Fcγ Fragment Specific(Jackson ImmunoResearch社)を100μL/well添加し、4℃で1時間静置した。5%FBS含有PBSで2回洗浄した後、5%FBS含有PBSで再懸濁し、フローサイトメーター(FACSCanto(商標)II:BD社)で検出を行った。データ解析はFlowjo(Treestar社)で行った。細胞画分のPE蛍光強度のヒストグラムを作成し、平均蛍光強度(MFI)を算出し、GPRC5D抗体のMFI値からcontrol抗体のMFI値を引いて、MFI値の相対値(rFMI)を算出した。図102がヒト化抗GPRC5D抗体h2B1_H1/L1乃至h2B1_H4/L5、図103がヒト化抗GPRC5D抗体h7B4_H1/L2乃至h7B4_H5/L1の結果である。図102と図103に示すとおり、ヒト化抗GPRC5D抗体はヒトGPRC5Dに結合することが示された。
9)-2 ヒト化抗GPRC5D抗体(h2B1_H1/L1、乃至h2B1_H4/L5またはh7B4_H1/L2乃至h7B4_H5/L1)のフローサイトメトリーによるカニクイザルGPRC5Dへの結合性評価
実施例5)-2-2で作製したKMS-11_cGPRC5D細胞を用いて、実施例9)-1と同様の方法で染色・解析を実施した。図201と図202に示すとおり、ヒト化抗GPRC5D抗体はカニクイザルGPRC5Dに結合することが示された。9)-3 ヒト化抗GPRC5D抗体(h2B1_H1/L1、h2B1_H2/L5、h2B1_H4/L5、h7B4_H1/L2及びh7B4_H3/L1)のADCC活性評価
実施例2)-3-1で取得したKHM-1B細胞を50μL/wellで96-well U底マイクロプレートに添加した。そこに終濃度で0.15ng/mL-15μg/mLになるよう調製したヒト化抗GPRC5D抗体(h2B1_H1/L1、h2B1_H2/L5、h2B1_H4/L5、h7B4_H1/L2及びh7B4_H3/L1)及びヒトコントロール抗体(hIgG1)(CALBIOCHEM社)を50μL/wellで添加し、4℃で30分静置した。さらに、実施例1)-5-3で調製したエフェクター細胞を100μL/well添加し、室温で1200rpm×3分間遠心の後、37℃、5%COの条件下で4時間培養した。上清50μLをLumaPlate(PerkinElmer社)に回収し、50℃で一晩乾燥させ、プレートリーダー(TopCount:PerkinElmer社)で測定した。ADCC活性による細胞溶解率は実施例1)-5-5 に倣って算出した。図104に示すとおり、h2B1_H1/L1、h2B1_H2/L5、h2B1_H4/L5、h7B4_H1/L2及びh7B4_H3/L1はADCC活性を有することが示された。
(実施例10) ヒト抗体ファージライブラリー由来抗GPRC5D抗体の取得、結合活性評価
10)-1 GPRC5D結合活性を有するscFvの単離
 ヒト抗体ファージライブラリーから、ヒト及びカニクイザルGPRC5Dに結合するscFvを単離した。カルボキシル末端をビオチン化した、ヒト(配列表の配列番号2:図3)またはカニクイザルGPRC5Dのアミノ末端ペプチド(ペプチド研究所にて合成)を固相化したDynabeads Streptavidin M-280(Thermo Scientific社)にファージを添加し、結合しないファージをマグネットスタンド(DynaMag‐2、Thermo Scientific社)を用いた洗浄操作により除去した。用いたカニクイザルGPRC5Dのアミノ末端ペプチドの配列は以下のとおりである。
カニクイザルGPRC5Dのアミノ末端ペプチド: MYKDCIESTGDYFLPCDSEGPWGIVLEK(Biotin)-NH(配列表の配列番号93:図105)
その後、GPRC5Dのアミノ末端ペプチドに結合したファージを大腸菌 (XL‐1 Blue、アジレント・テクノロジー社)に感染させ、GPRC5Dのアミノ末端ペプチドに結合するファージを回収・増幅した。もしくは、1)-1-1および5)-2-1で調製したGPRC5D発現ベクターを用いて、ヒトまたはカニクイザルGPRC5Dを一過性に発現させたExpi293F細胞(Thermo Scientific社)にファージを添加し、結合しないファージを洗浄操作により除去した。その後、GPRC5Dのアミノ末端ペプチドに結合したファージを大腸菌に感染させ、GPRC5Dのアミノ末端ペプチドに結合するファージを回収・増幅した。ペプチドまたはヒトまたはカニクイザルGPRC5Dを一過性に発現させたExpi293F細胞に対する計3回のパニングを実施し、ポリクローナルなファージミドから、scFvのカルボキシル末端にFLAGタグ、Hisタグを付加する大腸菌用の発現ベクターに載せ換えた後、大腸菌を形質転換し、IPTG(Isopropyl-β-D-thiogalactopyranoside)(Sigma-Aldrich社)存在下でscFvを発現させ、ELISAによるスクリーニングに供した。
10)-2 ELISAによるGPRC5D結合scFvのスクリーニング
 384ウェルMaxi-sorp plate(Black、Nunc社)にPBS(0.138M塩化ナトリウム、0.0027M塩化カリウムを含有する0.01Mリン酸緩衝生理食塩水(pH7.4)、Sigma-Aldrich社)で1μg/mLに希釈したNeutrAvidin(Life Technologies社)を50μLずつ添加し、4℃で一晩静置し固相化した。Tween‐20(バイオ・ラッド社)を0.05%含むPBS(ELISAバッファー)で3回洗浄後、PBSで1μg/mLに希釈した、実施例10)-1でも用いたヒトまたはカニクイザル ビオチン化GPRC5Dのアミノ末端ペプチドを添加して1時間室温で振とうした。ELISAバッファーで3回洗浄後、Blocker Casein(Thermo Scientific社)でブロッキングし、ELISAバッファーで3回洗浄した。その後、scFvを発現させた大腸菌の培養液を添加し、室温にて2時間反応させた。ELISAバッファーで3回洗浄後、ELISAバッファーで5000倍に希釈したHorseradish peroxidase(HRP)標識抗FLAG抗体(Sigma-Aldrich社)を50μL添加し、室温で1時間反応させた。ELISAバッファーで5回洗浄後、SuperSignal Pico ELISA Chemiluminescent substrate(Thermo Scientific社)を添加し、10分後の化学発光をプレートリーダー(Envision 2104 Multilabel Reader、Perkin Elmer)で測定し、GPRC5D結合scFvを分離した。
10)-3 ELISA陽性クローンのヌクレオチド配列の決定
 ELISA陽性クローン(C2037、C3048、C3015、C3022)の重鎖及び軽鎖可変領域のヌクレオチド配列の解析は、Dye Terminator法(BigDye(登録商標)Terminator v3.1、Thermo Scientific社)で実施した。配列解析に用いたプライマー配列は、以下の通りである。
Primer A:5’-CTCTTCGCTATTACGCCAGCTGGCGA-3’(配列表の配列番号94:図106)
Primer B:5’-ATAACAATTTCACACAGGAAACAGCTATGA-3’(配列表の配列番号95:図107)
上記解析により、C2037抗体、C3048抗体、C3015抗体、及びC3022抗体の遺伝子の可変領域のヌクレオチド配列を決定した。
 決定されたC2037の重鎖の可変領域をコードするcDNAのヌクレオチド配列を配列番号96(図108)に示し、アミノ酸配列を配列番号97(図109)に示した。
 決定されたC2037の軽鎖の可変領域をコードするcDNAのヌクレオチド配列を配列番号98(図110)に示し、アミノ酸配列を配列番号99(図111)に示した。
 決定されたC3048の重鎖の可変領域をコードするcDNAのヌクレオチド配列を配列番号100(図112)に示し、アミノ酸配列を配列番号101(図113)に示した。
 決定されたC3048の軽鎖の可変領域をコードするcDNAのヌクレオチド配列を配列番号102(図114)に示し、アミノ酸配列を配列番号103(図115)に示した。
 決定されたC3015の重鎖の可変領域をコードするcDNAのヌクレオチド配列を配列番号104(図116)に示し、アミノ酸配列を配列番号105(図117)に示した。
 決定されたC3015の軽鎖の可変領域をコードするcDNAのヌクレオチド配列を配列番号106(図118)に示し、アミノ酸配列を配列番号107(図119)に示した。
 決定されたC3022の重鎖の可変領域をコードするcDNAのヌクレオチド配列を配列番号108(図120)に示し、アミノ酸配列を配列番号109(図121)に示した。
 決定されたC3022の軽鎖の可変領域をコードするcDNAのヌクレオチド配列を配列番号110(図122)に示し、アミノ酸配列を配列番号135(図123)に示した。
10)-4 scFvの発現精製
 C2037抗体、C3048抗体、C3015抗体またはC3022抗体のscFvをpcDNA3.1(Thermo Scientific社)等の動物細胞用発現ベクターに挿入し、動物細胞用scFv発現ベクターを構築した。Expi293F細胞(Thermo Scientific社)に上記の動物細胞用scFv発現ベクターを導入して一過性発現させ、必要に応じて培養上清からscFvをHis Trapカラム(GE Healthcare社)及び、ゲルろ過カラム(Superdex 200 Increase、GE Healthcare社)で精製し、scFvが溶解している緩衝液をPBSに置換し、以下の工程「10)-6」に供した。
10)-5 完全長IgG化とIgGの発現精製
 C2037、C3048、C3015及びC3022を含む完全長IgG化体の作製は以下の方法で実施した。
 上記10)-3で特定した各抗体の重鎖及び軽鎖の可変領域に相当するヌクレオチド配列を、常法により、ヒトIgGの重鎖の定常領域(CH1+Fc領域:配列表の配列番号144(図156)に示されるアミノ酸配列の135から464番目のアミノ酸配列)をコードするヌクレオチド配列、もしくは、ヒトIgGの軽鎖の定常領域(CL:配列表の配列番号145(図157)に示されるアミノ酸配列の131から236番目のアミノ酸配列)をコードするヌクレオチド配列と連結し、pcDNA3.1(Thermo Scientific社)等の動物細胞用発現ベクターに挿入し、動物細胞用IgG発現ベクターを構築した。
 構築したIgG発現ベクターのヌクレオチド配列を再解析し、C2037抗体の重鎖全長のヌクレオチド配列は配列表の配列番号136(図148)に示されるヌクレオチド配列であり、軽鎖全長のヌクレオチド配列は配列表の配列番号137(図149)に示されるヌクレオチド配列であることを確認した。
 C3048抗体の重鎖全長のヌクレオチド配列は配列表の配列番号138(図150)に示されるヌクレオチド配列であり、軽鎖全長のヌクレオチド配列は配列表の配列番号139図151に示されるヌクレオチド配列であることを確認した。
 C3015抗体の重鎖全長のヌクレオチド配列は配列表の配列番号140(図152)に示されるヌクレオチド配列であり、軽鎖全長のヌクレオチド配列は配列表の配列番号141図153に示されるヌクレオチド配列であることを確認した。
 C3022抗体の重鎖全長のヌクレオチド配列は配列表の配列番号142(図154)に示されるヌクレオチド配列であり、軽鎖全長のヌクレオチド配列は配列表の配列番号143図155に示されるヌクレオチド配列であることを確認した。
 また、上記ヌクレオチド配列から、当該配列がコードするC2037、C3048、C3015及びC3022抗体の重鎖及び軽鎖全長のアミノ酸配列を決定した。
 C2037抗体の重鎖のアミノ酸配列は配列表の配列番号144(図156)に示されるアミノ酸配列であり、軽鎖のアミノ酸配列は配列表の配列番号145(図157)に示されるアミノ酸配列であった。
 C3048抗体の重鎖のアミノ酸配列は配列表の配列番号146(図158)に示されるアミノ酸配列であり、軽鎖のアミノ酸配列は配列表の配列番号147(図159)に示されるアミノ酸配列であった。
 C3015抗体の重鎖のアミノ酸配列は配列表の配列番号148(図160)に示されるアミノ酸配列であり、軽鎖のアミノ酸配列は配列表の配列番号149(図161)に示されるアミノ酸配列であった。
 C3022抗体の重鎖のアミノ酸配列は配列表の配列番号150(図162)に示されるアミノ酸配列であり、軽鎖のアミノ酸配列は配列表の配列番号151(図163)に示されるアミノ酸配列であった。
 C2037、C3048、C3015及びC3022抗体のIgG化体は、FreeStyle 293F細胞(Thermo Scientific社)に上記の動物細胞用IgG発現ベクターを挿入することにより一過性発現させ、必要に応じてProtein A Affinityカラム(HiTrap Mab Select SuRe、GE Healthcare社)で精製後、Vivaspin 20(7k MWCO、GE Healthcare社)により、IgGが溶解している緩衝液をPBSに置換し、以下の工程10)-7-7および10)-9に供した。
10)-6 scFvを用いたELISAによるGPRC5Dへの結合確認
 96ウェルMaxi-sorp plate (Black、Nunc社)に、PBSで1μg/mLに希釈したNeutrAvidinを50μLずつ添加し、4℃で一晩静置し固相化した。ELISAバッファーで3回洗浄後、PBSで1μg/mLに希釈した、実施例10)-1で用いたヒトまたはカニクイザル ビオチン化GPRC5Dのアミノ末端ペプチドを添加して1時間室温で振とうした。ELISAバッファーで3回洗浄後、Blocker Caseinでブロッキングし、ELISAバッファーで3回洗浄した。その後、C2037、C3048、C3015又はC3022 scFvを添加し、室温にて2時間反応させた。ELISAバッファーで3回洗浄後、ELISAバッファーで5000倍に希釈したHorseradish peroxidase(HRP)標識抗FLAG抗体を50μL添加し、室温で1時間反応させた。ELISAバッファーで5回洗浄後、SuperSignal Pico ELISA Chemiluminescent substrateを添加し、10分後の化学発光をプレートリーダーで測定した。
その結果、C2037、C3048、C3015及びC3022 scFvは、ヒトGPRC5D(図164A)、カニクイザルGPRC5D(図164B)のアミノ末端ペプチドに結合することが示された。
10)-7 IgGを用いたELISAによるGPRC5Dへの結合確認
 96ウェルMaxi-sorp plateに、PBSで1μg/mLに希釈したNeutrAvidinを50μLずつ添加し、4℃で一晩静置し固相化した。ELISAバッファーで3回洗浄後、PBSで1μg/mLに希釈した、実施例10)-1で用いたヒトまたはカニクイザル ビオチン化GPRC5Dのアミノ末端ペプチドを添加して1時間室温で振とうした。ELISAバッファーで3回洗浄後、Blocker Caseinでブロッキングし、ELISAバッファーで3回洗浄した。その後、IgGを発現させたFreeStyle 293F細胞の培養液を添加し、室温にて2時間反応させた。ELISAバッファーで3回洗浄後、ELISAバッファーで2500倍に希釈したHorseradish peroxidase(HRP)標識抗ヒトFab抗体(Jackson ImmunoResearch社)を50μL添加し、室温で1時間反応させた。ELISAバッファーで5回洗浄後、SuperSignal Pico ELISA Chemiluminescent substrateを添加し、10分後の化学発光をプレートリーダーで測定した。
その結果、C2037、C3048、C3015及びC3022 IgGは、ヒト及びカニクイザルGPRC5Dのアミノ末端ペプチドに結合することが示された(図165)。
10)-8 scFvの内因性ヒトGPRC5D発現細胞(KMS-34)への結合
 KMS-34細胞を遠心分離により回収し、FACSバッファー(0.5%BSA、2mM EDTAを含むPBS、pH7.4)で2回洗浄後、同溶液に懸濁した。得られた細胞懸濁液へ、C2037、C3048、C3015またはC3022 scFvを添加し、4℃で2時間静置した。FACSバッファーで2回洗浄後、抗FLAG抗体(Sigma-Aldrich社)を加えて懸濁し、さらに4℃で1時間静置した。FACSバッファーで2回洗浄後、Alexa488標識抗マウスIgG抗体(Jackson ImmunoResearch社)を加えて懸濁し、さらに4℃で1時間静置した。FACSバッファーで2回洗浄後、1%PFA(Paraformaldehyde 32%溶液(ELECTRON MICROSCOPY SCIENCES社)より調製)で細胞を固定し、フローサイトメーター(FACSCanto(商標)II:BD社)を用いて検出を行った。データ解析はFlowjo(TreeStar社)で行った。
 その結果、C2037、C3048、C3015及びC3022 scFvは、ヒトGPRC5D発現細胞に結合することが示された(図166)。
10)-9 IgGの内因性ヒトGPRC5D発現細胞(KHM-1B)への結合
GPRC5Dを発現しているヒト多発性骨髄腫細胞株KHM-1B細胞を5%FBS含有PBSで2×10細胞/mLの濃度に調製し、100μL/wellで96-well U底マイクロプレートに播種し、遠心後上清を除去した。実施例10)-5で得られたヒト抗GPRC5D抗体(C2037、C3048、C3015及びC3022を含む完全長IgG化体)の培養上清、またはHuman IgG isotype control抗体(CALBIOCHEM社)を14ng/mL~30μg/mLに調製したものを100μL/well添加し、4℃で1時間静置した。5%FBS含有PBSで2回洗浄した後、5%FBS含有PBSで100倍希釈したR-Phycoerythrin AffiniPure F(ab’)2 Fragment Goat Anti-Human IgG, Fcγ Fragment Specific(Jackson ImmunoResearch社)を100μL/well添加し、4℃で1時間静置した。5%FBS含有PBSで2回洗浄した後、5%FBS含有PBSで再懸濁し、フローサイトメーター(FACSCanto(商標)II:BD社)で検出を行った。データ解析はFlowjo(Treestar社)で行った。細胞画分のPE蛍光強度のヒストグラムを作成し、平均蛍光強度(MFI)を算出し、GPRC5D抗体のMFI値からcontrol抗体のMFI値を引いて、MFI値の相対値(rFMI)を算出した。その結果、C2037、C3048、C3015及びC3022 IgGは、ヒトGPRC5D発現細胞に結合することが示された(図167)。
10)-10 C3022およびC3048改変体の作製および評価
10)-10-1  改変体の取得
C3022およびC3048遺伝子を鋳型として、PCRを利用して変異を導入する方法(Zaccolo,et al.,J.Mol.Biol.(1996)255,589-603)または、CDRの全残基について、各残基毎に、野生型のアミノ酸以外の19種類のアミノ酸に変異させたオリゴマーを合成し、ライブラリーを構築する方法(oligo‐basedライブラリー)を用いてライブラリーを構築し、高結合能クローンのスクリーニングを行い、ヌクレオチド配列を決定した。同定した高結合性変異を組合せ、C3022の高結合性変異体E1018、C3048の高結合性変異体D1012を取得した。
取得したE1018の重鎖の可変領域をコードするcDNAのヌクレオチド配列を配列番号190(図213)に示し、アミノ酸配列を配列番号191(図214)に示した。
取得したE1018の軽鎖の可変領域をコードするcDNAのヌクレオチド配列を配列番号192(図215)に示し、アミノ酸配列を配列番号193(図216)に示した。
取得したD1012の重鎖の可変領域をコードするcDNAのヌクレオチド配列を配列番号194(図217)に示し、アミノ酸配列を配列番号195(図218)に示した。
取得したD1012の軽鎖の可変領域をコードするcDNAのヌクレオチド配列を配列番号196(図219)に示し、アミノ酸配列を配列番号197(図220)に示した。
10)-10-2 BiacoreによるGPRC5Dへの結合確認
 Biacore T200を用い、抗GPRC5D抗体のヒトGPRC5Dのアミノ末端ペプチドへの結合活性を、SPR法で検証した。Sensor Chip CAP(GEヘルスケア社製)に、HBS-EP+(GEヘルスケア社製)で2nMに希釈したヒト ビオチン化GPRC5Dのアミノ末端ペプチドを10μL/minで180秒間接触させて固定化した。その後、HBS-EP+で希釈した複数濃度のscFvをアナライトとしてカイネティクス解析によりKdを算出した。その結果、E1018、D1012 scFvは、それぞれC3022、C3048よりも、ヒトGPRC5Dのアミノ末端ペプチドに対する結合が強くなっていることが示された。(図221)
(実施例11) 抗CD3抗体発現ベクターの構築
11)-1 ラット抗CD3scFv抗体発現ベクターの構築
 DNA免疫法により免疫したラットのリンパ節又は脾臓を使ってラット抗CD3モノクローナル抗体産生ハイブリドーマを作製した。そのハイブリドーマからモノクローナル抗体のVH、VLをコードするcDNAのヌクレオチド配列を決定し、一本鎖抗体発現ベクターを作製した。すなわち、配列番号152(図168)のVHをPCRで増幅したDNA断片、VHとVLの間に挿入するリンカー断片、配列番号153(図169)のVLを含む領域にFLAG-HisタグをコードするDNA配列をカルボキシル末端に付加させPCRで増幅したDNA断片をIn-Fusion HD クローニングキット(CLONTECH社)を用いて結合させ、配列番号154(図170)のヌクレオチド配列をORFに含む一本鎖抗体発現ベクターpC3E-7000を作製した。
11)-2 ヒト化抗CD3scFv抗体発現ベクターpC3E-7034の構築
配列番号155(図171)のカルボキシル末端に15アミノ酸フレキシブルリンカーを介して配列番号156(図172)を含む領域をつなげたscFvDNA配列、及び前後15塩基の付加配列を含むDNA断片を合成した(GENEART社 人工遺伝子合成サービス)。これを鋳型としてC3E-7034と前後の付加配列を含む領域をPCR法を用いて増幅し、インサートDNA断片を得た。また実施例11)-1で作製した発現ベクターpC3E-7000を鋳型として、scFv領域を除いたベクター領域をPCR法を用いて増幅し、ベクター断片を得た。それぞれのDNA断片をIn-Fusion HD クローニングキット(CLONTECH社)を用いて結合させ、配列番号157(図173)のヌクレオチド配列をORFに含む発現ベクターを構築した。得られた発現ベクターを「pC3E-7034」と命名した。
11)-3 ヒト化抗CD3scFv抗体発現ベクターpC3E-7035の構築
 配列番号155(図171)のカルボキシル末端に17アミノ酸から成るフレキシブルリンカーを介して配列番号158(図174)をつなげたscFvDNA配列及び前後15塩基の付加配列を含むDNA断片を合成した(GENEART社 人工遺伝子合成サービス)。実施例11)-2と同様の方法で配列番号159(図175)のヌクレオチド配列をORFに含む発現ベクターを構築した。得られた発現ベクターを「pC3E-7035」と命名した。
11)-4 ヒト化抗CD3scFv抗体発現ベクターpC3E-7036の構築
配列番号155(図171)のカルボキシル末端に15アミノ酸から成るフレキシブルリンカーを介して配列番号160(図176)をつなげたscFvDNA配列及び前後15塩基の付加配列を含むDNA断片を合成した(GENEART社 人工遺伝子合成サービス)。実施例11)-2と同様の方法で配列番号161(図177)のヌクレオチド配列をORFに含むC3E-7036発現ベクターを構築した。得られた発現ベクターを「pC3E-7036」と命名した。
(実施例12) 抗GPRC5D-抗CD3二重特異性分子の作製
12)-1 抗GPRC5D-抗CD3二重特異性分子発現ベクターの作製
実施例10)-4で作製したC2037抗体のscFvを鋳型としてC2037抗体のscFvとヒト抗体重鎖シグナル配列の一部、scFv間を繋ぐリンカーを付加させた領域をPCR法を用いて増幅し、インサートDNAを得た。また実施例11)-2で作製した発現ベクターpC3E-7034を鋳型として、シグナル配列、及びCD3scFv抗体のアミノ末端配列をコードするプライマーを用いてCD3scFvを含むベクター全領域をPCR法を用いて増幅し、ベクター断片を得た。それぞれのDNA断片をIn-Fusion HD クローニングキット(CLONTECH社)を用いて結合させ、配列番号162(図178)のヌクレオチド配列をORFに含む抗GPRC5D-抗CD3二重特異性分子発現ベクターを構築した。得られた発現ベクターを「pC2037-C3E-7034」と命名した。
 上記と同様の方法でC3048抗体のscFvとpC3E-7034を鋳型として、配列番号163(図179)のヌクレオチド配列をORFに含む抗GPRC5D-抗CD3二重特異性分子発現ベクターを構築した。得られた発現ベクターを「pC3048-C3E-7034」と命名した。
 上記と同様の方法でC3022抗体のscFvとpC3E-7034を鋳型として、配列番号164(図180)のヌクレオチド配列をORFに含む抗GPRC5D-抗CD3二重特異性分子発現ベクターを構築した。得られた発現ベクターを「pC3022-C3E-7034」と命名した。
 上記と同様の方法でC2037抗体のscFvとpC3E-7035を鋳型として、配列番号165(図181)のヌクレオチド配列をORFに含む抗GPRC5D-抗CD3二重特異性分子発現ベクターを構築した。得られた発現ベクターを「pC2037-C3E-7035」と命名した。
 上記と同様の方法でC3048抗体のscFvとpC3E-7035を鋳型として、配列番号166(図182)のヌクレオチド配列をORFに含む抗GPRC5D-抗CD3二重特異性分子発現ベクターを構築した。得られた発現ベクターを「pC3048-C3E-7035」と命名した。
 上記と同様の方法でC3022抗体のscFvとpC3E-7035を鋳型として、配列番号167(図183)のヌクレオチド配列をORFに含む抗GPRC5D-抗CD3二重特異性分子発現ベクターを構築した。得られた発現ベクターを「pC3022-C3E-7035」と命名した。
 上記と同様の方法でC2037抗体のscFvとpC3E-7036を鋳型として、配列番号168(図184)のヌクレオチド配列をORFに含む抗GPRC5D-抗CD3二重特異性分子発現ベクターを構築した。得られた発現ベクターを「pC2037-C3E-7036」と命名した。
 上記と同様の方法でC3048抗体のscFvとpC3E-7036を鋳型として、配列番号169(図185)のヌクレオチド配列をORFに含む抗GPRC5D-抗CD3二重特異性分子発現ベクターを構築した。得られた発現ベクターを「pC3048-C3E-7036」と命名した。
 上記と同様の方法でC3022抗体のscFvとpC3E-7036を鋳型として、配列番号170(図186)のヌクレオチド配列をORFに含む抗GPRC5D-抗CD3二重特異性分子発現ベクターを構築した。得られた発現ベクターを「pC3022-C3E-7036」と命名した。
12)-2 抗GPRC5D-抗CD3二重特異性分子の発現・精製
 C2037-C3E-7034乃至C3022-C3E-7036の発現・精製は実施例10)-4と同様の方法で行った。C2037-C3E-7034のアミノ酸配列は配列番号171(図187)に記載されている。C3048-C3E-7034のアミノ酸配列は配列番号172(図188)に記載されている。C3022-C3E-7034のアミノ酸配列は配列番号173(図189)に記載されている。C2037-C3E-7035のアミノ酸配列は配列番号174(図190)に記載されている。C3048-C3E-7035のアミノ酸配列は配列番号175(図191)に記載されている。C3022-C3E-7035のアミノ酸配列は配列番号176(図192)に記載されている。C2037-C3E-7036のアミノ酸配列は配列番号177(図193)に記載されている。C3048-C3E-7036のアミノ酸配列は配列番号178(図194)に記載されている。C3022-C3E-7036のアミノ酸配列は配列番号179(図195)に記載されている。
(実施例13) 抗GPRC5D-抗CD3二重特異性分子のin vitro活性評価
13)-1 抗GPRC5D-抗CD3二重特異性分子のフローサイトメトリーによる結合活性評価
13)-1-1 抗GPRC5D-抗CD3二重特異性分子の内因性ヒトGPRC5D発現細胞(A4/Fuk)への結合
 リンパ腫細胞株A4/Fuk細胞(JCRB細胞バンク)を5%FBS含有PBSで適当な濃度に調製し、LIVE/DEAD Fixable Near-IR Dead Cell Stain Kitを添加し、4℃で30分静置した。5%FBS含有PBSで2回洗浄後、5%FBS含有PBSで1×10細胞/mLの濃度に調製し、100μL/wellで96-well U底マイクロプレートに播種し、遠心後上清を除去した。5%FBS含有PBSで希釈した実施例12で調製した抗GPRC5D-抗CD3二重特異性分子C2037-C3E-7034乃至C3022-C3E-7036を100μL/well添加し、4℃で60分静置した。5%FBS含有PBSで2回洗浄後、5%FBS含有PBSで希釈したPenta-His Alexa Fluor 488を30μL/well添加し、4℃で30分静置した。5%FBS含有PBSで2回洗浄後、5%FBS含有PBSで再懸濁し、フローサイトメーター(FACSCanto(商標)II)で検出を行った。データ解析はFlowjoで行い、死細胞を除去した画分のAlexa Fluor 488の平均蛍光強度(MFI)を算出し、抗体添加サンプルのMFI値から抗体未添加サンプルのMFI値を引いて、MFI値の相対値(rFMI)を計算した。図196に示す通り、抗GPRC5D-抗CD3二重特異性分子は内因性ヒトGPRC5D発現細胞に結合することが示された。
13)-1-2 抗GPRC5D-抗CD3二重特異性分子のカニクイザルGPRC5D発現細胞への結合
 実施例5)-2-2で作製したKMS-11_cGPRC5D細胞を用いて、実施例13)-1-1と同様の方法で染色・解析を実施した。図197に示す通り、抗GPRC5D-抗CD3二重特異性分子はカニクイザルGPRC5D発現細胞に結合することが示された。
13)-1-3 抗GPRC5D-抗CD3二重特異性分子のヒトCD3(PBMC)への結合
 市販ヒトPBMC(Cellular Technology Limited社)を5%FBS含有PBSで適当な濃度に調製し、LIVE/DEAD Fixable Near-IR Dead Cell Stain Kit(Thermo Fisher Scientific社)と抗CD19抗体(Beckman Coulter社)を添加し、4℃で30分静置した。5%FBS含有PBSで2回洗浄後、5%FBS含有PBSで1×10細胞/mLの濃度に調製し、100μL/wellで96-well U底マイクロプレートに播種し、遠心後上清を除去した。5%FBS含有PBSで希釈した実施例12で調製した抗GPRC5D-抗CD3二重特異性分子C2037-C3E-7034乃至C3022-C3E-7036を100μL/well添加し、4℃で60分静置した。5%FBS含有PBSで2回洗浄後、5%FBS含有PBSで希釈したPenta-His Alexa Fluor 488(QIAGEN社)を30μL/well添加し、4℃で30分静置した。5%FBS含有PBSで2回洗浄後、5%FBS含有PBSで再懸濁し、フローサイトメーター(FACSCanto(商標)II:BD社)で検出を行った。データ解析はFlowjo(Treestar社)で行い、死細胞とCD19陽性細胞を除去した画分のAlexa Fluor 488の平均蛍光強度(MFI)を算出し、抗体添加サンプルのMFI値から抗体未添加サンプルのMFI値を引いて、MFI値の相対値(rFMI)を計算した。図198に示す通り、抗GPRC5D-抗CD3二重特異性分子はヒトCD3発現細胞に結合することが示された。
13)-1-4 抗GPRC5D-抗CD3二重特異性分子のカニクイザルCD3(PBMC)への結合
 SepMate(STEMCELL社)とLymphocyte Separation Solution(ナカライ社)を使用して、カニクイザルの血液からPBMCを定法に従い採取した。採取したカニクイザルPBMCを用いて、実施例13)-1-3と同様の方法で染色・解析を実施した。図199に示す通り、抗GPRC5D-抗CD3二重特異性分子はカニクイザルCD3発現細胞に結合することが示された。
13)-2 抗GPRC5D-抗CD3二重特異性分子の細胞障害活性評価
13)-2-1 標的細胞の調製
 A4/Fuk細胞を10%FBS含有RPMI1640培地(Thermo Fisher Scientific社)で1×10細胞/mLの濃度に調製し、細胞懸濁液1mLあたり100μLのChromium-51 Radionuclide(PerkinElmer社)を添加し、37℃、5%COの条件下で2時間培養した。10%FBS含有RPMI1640培地で2回洗浄した後、10%FBS含有RPMI1640培地で1×10細胞/mLになるよう再懸濁したものを標的細胞として用いた。
13)-2-2 エフェクター細胞の調製
市販の凍結PBMC(Cellular Technology Limited社)を37℃で解凍し、10%FBS含有RPMI1640培地にAnti-aggregate Wash試薬(Cellular Technology Limited社)を添加した溶液に移して2回洗浄した後に10%FBS含有RPMI1640培地で1×10細胞/mLになるよう調製し、エフェクター細胞とした。
13)-2-3 細胞障害アッセイ
 実施例13)-2-1で取得したA4/Fuk細胞を50μL/wellで96-well U底マイクロプレートに添加した。そこに各種濃度に調製した実施例12で調製した各種抗GPRC5D-抗CD3二重特異性分子を50μL/wellで添加し、実施例13)-2-2で調製したエフェクター細胞を100μL/well添加し、室温で1000rpm×1分間遠心後、37℃、5%COの条件下で20-24時間培養した。上清50μLをLumaPlate(PerkinElmer社)に回収し、50℃で約2時間乾燥させた後、プレートリーダー(TopCount:PerkinElmer社)で測定した。細胞溶解率は次式で算出した。細胞溶解率(%)=(A-B)/(C-B)×100
A:サンプルウェルのカウント。
B:バックグラウンド(抗体非添加ウェル)カウントの平均値(n=3)。抗体添加時にアッセイ用培地を50μL添加した。それ以外はサンプルウェルと同様の操作を行った。
C:最大放出(標的細胞を界面活性剤で溶解させたウェル)カウントの平均値(n=3)。抗体添加時にアッセイ培地を50μL添加した。界面活性剤は100μL添加し、サンプルウェルと同様に50μL分をLumaPlateに移して測定を実施した。
図200に示す通り、A4/Fuk細胞に対する各種抗GPRC5D-抗CD3二重特異性分子の細胞障害活性が示された。
(実施例14) Fc付きGPRC5D-抗CD3二重特異性分子の作製
14)-1 Fc付き抗GPRC5D-抗CD3二重特異性分子発現ベクターの作製
14)-1-1 Full-Size Antibody(FSA)型二重特異性分子発現ベクターの作製
実施例8)-1-2において構築したヒト化抗GPRC5D抗体(h2B1)H2タイプ重鎖可変領域をコードするDNAを全合成した(Genescript社、カスタム遺伝子合成サービス)。「pCL_#13540」、「pCL_#13543」は、得られた重鎖可変領域、および2種類のヒトIgG由来CH1、エフェクター機能を低下させ、かつヘテロ多量体を形成させる変異を導入したFc領域(WO2014/190441)を哺乳類細胞用発現ベクターpTT5(National Research Council,WO2009/137911)に導入したものである。また実施例8)-2-5において構築したヒト化抗GPRC5D抗体(h2B1)L5タイプ軽鎖可変領域を全合成した。「pCL_#12290」、「pCL_#12313」は、得られた軽鎖可変領域、および2種類のヒトIgG由来CLをコードするDNAを哺乳類細胞用発現ベクターpTT5に導入したものである。
次に実施例11)-2において構築したヒト化抗CD3scFv(C3E-7034)の重鎖をコードするDNA断片を全合成した。「pCL_#13552」は得られたscFv重鎖可変領域、およびヒトIgG由来のCH1、およびエフェクター機能を低下させ、ヘテロ多量体を形成させる変異を導入したFc領域を哺乳類細胞用発現ベクターpTT5に導入したものである。また、実施例11)-2において構築したヒト化抗CD3scFv(C3E-7034)の軽鎖をコードするDNA断片を全合成した。「pCL_#12287」は、得られたscFv軽鎖可変領域、およびヒトIgG由来のCLを哺乳類細胞用発現ベクターpTT5に導入したものである。同様に実施例11)-4において構築したヒト化抗CD3scFv(C3E-7036)の重鎖をコードするDNA配列を全合成した。「pCL_#13541」は得られたscFv重鎖可変領域、およびヒトIgG由来のCH1、およびエフェクター機能を低下させ、ヘテロ多量体を形成させる変異を導入したFc領域をコードするDNA配列を哺乳類細胞用発現ベクターpTT5に導入したものである。また、実施例11)-4において構築したヒト化抗CD3scFv(C3E-7036)の軽鎖をコードするDNA断片を全合成した。「pCL_#12321」は得られたscFv軽鎖、およびヒトIgG由来のCLをコードするDNA断片を哺乳類細胞用発現ベクターpTT5に導入したものである。
pCL_#13540、pCL_#13543、pCL_#12290、pCL_#12313、pCL_#13552、pCL_#12287、pCL_#13541、pCL_#12321のORF配列をそれぞれ配列表の配列番号198(図222)、配列番号200(図224)、配列番号202(図226)配列番号204(図228)、配列番号206(図230)、配列番号208(図232)、配列番号210(図234)、配列番号212(図236)に示す。
14)-1-2 Hybrid型二重特異性分子発現ベクターの作製
ヒト化抗GPRC5D抗体(h2B1)H2タイプの重鎖可変領域、およびヒトIgG由来CH1領域、およびエフェクター機能を低下させ、かつヘテロ多量体を形成させる変異を導入したFc領域をコードするDNA断片が組み込まれた哺乳類細胞用発現ベクターを作製し、「pCL_#13555」と命名した。またヒト化抗GPRC5D抗体(h2B1)L5タイプ軽鎖可変領域、ヒトIgG由来CL領域をコードするDNA断片が組み込まれた哺乳類細胞用発現ベクターを作製し、「pCL_#12123」と命名した。
次にヒト化抗CD3scFv(C3E-7034)、およびエフェクター機能を低下させ、かつヘテロ多量体を形成させる変異を導入したFc領域をコードするDNA断片を組み込んだ哺乳類細胞用発現ベクターを作製し、「pCL_#13557」と命名した。また、ヒト化抗CD3scFv(C3E-7036)、およびエフェクター機能を低下させ、ヘテロ多量体を形成させる変異を導入したFc領域をコードするDNA断片が組み込まれた哺乳類細胞用発現ベクター「pCL_#13561」を作製した。
pCL_#13555、pCL_#12123、pCL_#13557、pCL_#13561のORF配列をそれぞれ配列表の配列番号214(図238)、配列番号216(図240)、配列番号218(図242)、配列番号220(図244)に示す。
14)-1-3 Dual型二重特異性分子発現ベクターの作製
実施例8)-1-2において構築したヒト化抗GPRC5D抗体(h2B1)H2タイプの重鎖可変領域とL5タイプの軽鎖可変領域をGGGGSの3回繰り返し配列から成るフレキシブルリンカーで連結し一本鎖抗体(scFv)とした。「pCL_#13563」はこの抗GPRC5DscFvと、エフェクター機能を低下させ、かつヘテロ多量体を形成させる変異を導入したFc領域をコードするDNA断片を哺乳類細胞用発現ベクターpTT5に導入したものである。pCL_#13563のORF配列を配列表の配列番号222(図246)に示す。
14)-2 Fc付き抗GPRC5D-抗CD3二重特異性分子の生産
CHO-3E7細胞はマニュアルに従い、継代、培養を行った(National Research Council Canada, Raymond C. et al., Methods(2011) 55(1), 44-51)。対数増殖期にあるCHO-3E7細胞培養液を2×10 cells/mL になるよう4 mM グルタミン、0.1% Kolliphor (SigmaAldrich社)含有FreeStyle F17培地(Invitrogen社)で希釈し、各種二重特異性分子の生産に用いた。
14)-2-1 Full-Size Antibody(FSA)型二重特異性分子の生産
分注したFreeStyle F17培地にPolyethyleneimine max(PEImax、Polyscience社)8000 μgを溶解し、PEImax溶液とした。また分注した別のF17培地にベクターpCL_#13552、pCL_#12287、pCL_#13540、pCL_#12290を15:15:53:17の比率で混合したベクター混合物、あるいはベクターpCL_#13541、pCL_#12321、pCL_#13543、pCL_#12313を22:8:17:53の比率で混合したベクター混合物を1000 μg加え、ベクター混合物とした。さらに分注した別のF17培地に、pAKT、pGFP(共にNational Research Council)、断片処理済みのサケ精子DNA(SigmaAldrich社)を混合したDNA混合物を1000 μgを添加し、DNA溶液とした。PEImax溶液とベクター混合物、DNA溶液を合わせて穏やかに攪拌し、5分間放置した後に2LのCHO-3E7細胞培養液に添加した。37℃、5%CO2インキュベーター内で1日振とう培養したのち、0.5 mM valproic acid(SigmaAldrich社)、0.1% (w/v) Tryptone N1(organotechnie社)を加え、32℃でさらに6日間振とう培養した。培養開始後7日目に培養上清を回収し、0.2μm filter(Sartorius社)でろ過して評価用のサンプルとした。
C3E-7034とh2B1とのFSA型二重特異性分子(v19159)の発現調製には、pCL_#13552、pCL_#12287、pCL_#13540、pCL_#12290を用いた。C3E-7036とh2B1とのFSA型二重特異性分子(v19140)の発現調製には、pCL_#13541、pCL_#12321、pCL_#13543、pCL_#12313を用いた。
v19159を構成する各ベクターを発現させて得られるアミノ酸の配列を配列表の配列番号207(図231)、209(図233)、199(図223)、203(図227)に示す。また、v19140を構成するアミノ酸の配列を配列表の配列番号211(図235)、213(図237)、201(図225)、205(図229)にそれぞれ示す。
14)-2-2  Hybrid型二重特異性分子の生産
分注したFreeStyle F17培地にPolyethyleneimine max(PEImax、Polyscience社)8000 μgを溶解し、PEImax溶液とした。また分注した別のF17培地にpCL_#13557、pCL_#13555、およびpCL_#12123を1:1:1.5の比率で混合したベクター混合物、あるいはpCL_#13561、pCL_#13555、pCL_#12123を1:1:1.5の比率で混合したベクター混合物を1000 μg加え、ベクター混合物とした。さらに分注した別のF17培地にpAKT、pGFP(共にNational Research Council)、断片処理済みのサケ精子DNA(SigmaAldrich社)を混合したDNA混合物を1000 μgを添加し、DNA溶液とした。PEImax溶液とベクター混合物、DNA溶液を合わせて穏やかに攪拌し、5分間放置した後に2LのCHO-3E7細胞培養液に添加した。37℃、5%CO2インキュベーター内で1日振とう培養したのち、0.5 mM valproic acid(SigmaAldrich社)、0.1% (w/v) Tryptone N1(organotechnie社)を加え、32℃でさらに6日間振とう培養した。培養開始後7日目に培養上清を回収し、0.2μm filter(Sartorius社)でろ過して評価用のサンプルとした。
C3E-7034とh2B1とのHybrid型二重特異性分子(v19126)の発現調製には、pCL_#13557、pCL_#13555、pCL_#12123を用いた。C3E-7036とh2B1とのHybrid型二重特異性分子(v19125)の発現調製には、pCL_#13561、pCL_#13555、pCL_#12123を用いた。
v19126を構成する各ベクターを発現させて得られるアミノ酸の配列を配列表の配列番号219(図243)、215(図239)、217(図241)に示す。また、v19125を構成するアミノ酸の配列を配列表の配列番号221(図245)、215(図239)、217(図241)にそれぞれ示す。
14)-2-3  Dual型二重特異性分子の生産
分注したFreeStyle F17培地にPolyethyleneimine max(PEImax、Polyscience社)8000 μgを溶解し、PEImax溶液とした。また分注した別のF17培地にCL_#13557、pCL_#13563を4:3の比率で混合したベクター混合物、あるいはpCL_#13561とpCL_#13563を1:1の比率で混合したベクター混合物を1000 μg加え、ベクター混合物とした。さらに分注した別のF17培地にpAKT、pGFP(共にNational Research Council)、断片処理済みのサケ精子DNA(SigmaAldrich社)を混合したDNA混合物を1000 μg添加し、DNA溶液とした。PEImax溶液とベクター混合物、DNA溶液を合わせて穏やかに攪拌し、5分間放置した後に2 LのCHO-3E7細胞培養液に添加した。37℃、5%CO2インキュベーター内で1日振とう培養したのち、0.5 mM valproic acid(SigmaAldrich社)、0.1% (w/v) Tryptone N1(organotechnie社)を加え、32℃でさらに6日間振とう培養した。培養開始後7日目に培養上清を回収し、0.2μm filter(Sartorius社)でろ過して評価用のサンプルとした。
C3E-7034とh2B1とのDual―scFv(Dual)型二重特異性分子(v19122)の発現調製には、pCL_#13557とpCL_#13563を用いた。C3E-7036とh2B1とのDual型二重特異性分子(v19121)の発現調製には、pCL_#13561とpCL_#13563を用いた。
v19122を構成する各ベクターを発現させて得られるアミノ酸の配列を配列表の配列番号219(図243)、223(図247)に示す。また、v19121を構成するアミノ酸の配列を配列表の配列番号221(図245)、223(図247)にそれぞれ示す。
14)-3 Fc付き抗GPRC5D-抗CD3二重特異性分子の精製
14)-2で得られた培養上清から各種二重特異性分子をProteinAアフィニティクロマトグラフィーとゲルろ過クロマトグラフィーの2段階工程で精製した。
PBS pH7.4で平衡化したMabSelectSuReカラム(GE Healthcare Bioscience社)に培養上清をアプライし、目的の二重特異性分子を吸着させた。非吸着成分をPBSで除去したのち、酢酸バッファ pH3.6で吸着成分を溶出した。溶出画分はTrisバッファpH11でpHを中性に調製したのち、濃縮し、予めPBS(pH7.4)で平衡化したゲルろ過カラム Superdex 200 10/300(GE Healthcare Bioscience社)に供した。ゲルろ過クロマトグラフィーで得られたピーク画分をSDSキャピラリー電気泳動(LabChip-Caliper)で解析し、目的のヘテロダイマーに相当する画分を回収した。Dual型二重特異性分子は、回収した画分をさらにHBsor(25 mM ヒスチジン, 5% ソルビトール)pH6.0で予め平衡化した脱塩カラムHiPrep 26/10 Desalting(GE Healthcare Bioscience社)に供し、バッファをHBsorに交換した。最後に回収した画分を0.2 μmのフィルターでろ過し、精製サンプルとした。精製サンプルは質量分析とSDS-ポリアクリルアミド電気泳動(SDS-PAGE)によって、目的の抗GPRC5D-抗CD3二重特異性分子が間違いなく形成されていることを確認した。
(実施例15) Fc付き抗GPRC5D-抗CD3二重特異性分子のin vitro活性評価
15)-1 Fc付き抗GPRC5D-抗CD3二重特異性分子のフローサイトメトリーによる結合活性評価
15)-1-1 Fc付き抗GPRC5D-抗CD3二重特異性分子の内因性ヒトGPRC5D発現細胞(KHM-1B)への結合
GPRC5Dを発現しているヒト多発性骨髄腫細胞株KHM-1Bを5%FBS含有PBSで適当な濃度に調製し、LIVE/DEAD Fixable Near-IR Dead Cell Stain Kitを添加し、4℃で30分静置した。5%FBS含有PBSで2回洗浄後、5%FBS含有PBSで1×10細胞/mLの濃度に調製し、100μL/wellで96-well U底マイクロプレートに播種し、遠心後上清を除去した。5%FBS含有PBSで希釈した実施例14で調製したFc付き抗GPRC5D-抗CD3二重特異性分子を100μL/well添加し、4℃で60分静置した。5%FBS含有PBSで2回洗浄後、5%FBS含有PBSで100倍希釈したR-Phycoerythrin AffiniPure F(ab’)2 Fragment Goat Anti-Human IgG, Fcγ Fragment Specific(Jackson ImmunoResearch社)を100μL/well添加し、4℃で1時間静置した。5%FBS含有PBSで2回洗浄後、5%FBS含有PBSで再懸濁し、フローサイトメーター(FACSCanto(商標)II)で検出を行った。データ解析はFlowjoで行い、死細胞を除去した画分のPE蛍光強度のヒストグラムを作成し、平均蛍光強度(MFI)を算出した。その結果、Fc付き抗GPRC5D-抗CD3二重特異性分子は、ヒトGPRC5D発現細胞に結合することが示された(図248)。
15)-1-2 Fc付き抗GPRC5D-抗CD3二重特異性分子のカニクイザルGPRC5D発現細胞への結合
 実施例5)-2-2で作製したKMS-11_cGPRC5D細胞を用いて、実施例15)-1-1と同様の方法で染色・解析を実施した。図249に示す通り、Fc付き抗GPRC5D-抗CD3二重特異性分子はカニクイザルGPRC5D発現細胞に結合することが示された。
15)-1-3 Fc付き抗GPRC5D-抗CD3二重特異性分子のヒトCD3(PBMC)への結合
 市販ヒトPBMC(Cellular Technology Limited社)を5%FBS含有PBSで適当な濃度に調製し、LIVE/DEAD Fixable Near-IR Dead Cell Stain Kit(Thermo Fisher Scientific社)と抗CD19抗体(Beckman Coulter社)を添加し、4℃で30分静置した。5%FBS含有PBSで2回洗浄後、5%FBS含有PBSで1×10細胞/mLの濃度に調製し、100μL/wellで96-well U底マイクロプレートに播種し、遠心後上清を除去した。5%FBS含有PBSで希釈した実施例14で調製したFc付き抗GPRC5D-抗CD3二重特異性分子を100μL/well添加し、4℃で60分静置した。5%FBS含有PBSで2回洗浄後、5%FBS含有PBSで100倍希釈したR-Phycoerythrin AffiniPure F(ab’)2 Fragment Goat Anti-Human IgG, Fcγ Fragment Specific(Jackson ImmunoResearch社)を100μL/well添加し、4℃で1時間静置した。5%FBS含有PBSで2回洗浄後、5%FBS含有PBSで再懸濁し、フローサイトメーター(FACSCanto(商標)II)で検出を行った。データ解析はFlowjoで行い、死細胞を除去した画分のPE蛍光強度のヒストグラムを作成し、平均蛍光強度(MFI)を算出した。その結果、Fc付き抗GPRC5D-抗CD3二重特異性分子は、ヒトCD3発現細胞に結合することが示された(図250)。
15)-1-4 Fc付き抗GPRC5D-抗CD3二重特異性分子のカニクイザルCD3(PBMC)への結合
実施例13)-1-4と同様の方法で採取したカニクイザルPBMCを用いて、実施例15)-1-3と同様の方法で染色・解析を実施した。図251に示す通り、Fc付き抗GPRC5D-抗CD3二重特異性分子はカニクイザルCD3発現細胞に結合することが示された。
15)-2 Fc付き抗GPRC5D-抗CD3二重特異性分子の細胞障害活性評価
15)-2-1 標的細胞の調製
KHM-1B細胞を実施例13)-2-1と同様の方法で調製したものを標的細胞として用いた。
15)-2-2 エフェクター細胞の調製
市販の凍結PBMC(Cellular Technology Limited社)を37℃で解凍し、10%FBS含有RPMI1640培地にAnti-aggregate Wash試薬(Cellular Technology Limited社)を添加した溶液に移して2回洗浄した後に10%FBS含有RPMI1640培地で1.5×105細胞/mLになるよう調製し、エフェクター細胞とした。
15)-2-3 細胞障害アッセイ
 実施例15)-2-1で取得したKHM-1B細胞を50μL/wellで96-well U底マイクロプレートに添加した。そこに各種濃度に調製した実施例14で調製したFc付き抗GPRC5D-抗CD3二重特異性分子を50μL/wellで添加し、実施例15)-2-2で調製したエフェクター細胞を100μL/well添加し、室温で1000rpm×1分間遠心後、37℃、5%COの条件下で24-48時間培養した。上清50μLをLumaPlate(PerkinElmer社)に回収し、50℃で約2時間乾燥させた後、プレートリーダー(TopCount:PerkinElmer社)で測定した。細胞溶解率は次式で算出した。細胞溶解率(%)=(A-B)/(C-B)×100
A:サンプルウェルのカウント。
B:バックグラウンド(抗体非添加ウェル)カウントの平均値(n=3)。抗体添加時にアッセイ用培地を50μL添加した。それ以外はサンプルウェルと同様の操作を行った。
C:最大放出(標的細胞を界面活性剤で溶解させたウェル)カウントの平均値(n=3)。抗体添加時にアッセイ培地を50μL添加した。界面活性剤は100μL添加し、サンプルウェルと同様に50μL分をLumaPlateに移して測定を実施した。
図252に示す通り、KHM-1B細胞に対するFc付き抗GPRC5D-抗CD3二重特異性分子の細胞障害活性が示された。
(実施例16) Fc付き抗GPRC5D-抗CD3二重特異性分子のin vivo活性評価
16)-1 ヒトPBMCとがん細胞の共移植モデルにおけるin vivo活性評価
ヒト多発性骨髄腫細胞株KHM-1B(JCRB)、及びヒトPBMC(Cellular Technology Limited社)を50%Matrigel(CORNING社)含有PBSでそれぞれ5×10細胞/mLになるよう調製し、NOD-Scidマウス(雌性、5週齢)の皮下に0.1mL共移植した。移植後に群分けを実施し、各種抗GPRC5D-抗CD3二重特異性分子を尾静脈内投与(0.1mg/kg)した。投与は移植日(Day0)からDay2まで毎日3回実施した。1週間後(Day7)より経時的に腫瘍の長径(mm)及び短径(mm)を電子デジタルノギスで計測し、以下に示す計算式により推定腫瘍体積を算出した。
Estimated Tumor Volume(mm)=各個体の推定腫瘍体積の平均値
       各個体の推定腫瘍体積=長径×短径/2
各種抗GPRC5D-抗CD3二重特異性分子投与群において抗腫瘍効果が確認された。(図253)。
16)-2 ヒトPBMC移入モデルにおけるin vivo活性評価
ヒトPBMCをPBSで5×10細胞/mLになるよう調製し、NOGマウス(雌性、6週齢)に0.2mL尾静脈内移植した(Day-4)。Day0にKHM-1Bを50%Matrigel含有PBSでそれぞれ3×10細胞/mLになるよう調製し、NOGマウスの皮下に0.1mL移植した。マウスの推定腫瘍体積が約200mmに達した時点(Day12)で腫瘍体積による群分けを実施し、各種抗GPRC5D-抗CD3二重特異性分子を尾静脈内投与(1mg/kg)した。投与はDay12、Day15、Day18に実施し、経時的に腫瘍の長径(mm)及び短径(mm)を電子デジタルノギスで計測し、推定腫瘍体積を算出した。図に示す通り、各種抗GPRC5D-抗CD3二重特異性分子投与群において腫瘍の退縮が確認された。特にv19125処置群で強い腫瘍退縮効果が確認された(図254)。
(実施例17) CDR改変Hybrid型抗GPRC5D-抗CD3二重特異性分子の作製
17)-1 CDR改変Hybrid型抗GPRC5D-抗CD3二重特異性分子発現ベクターの作製
17)-1-1 CDR改変Hybrid型抗GPRC5D-抗CD3二重特異性分子(C5D-0004、C5D-0005、C5D-0006)発現ベクターの作製
実施例14)-1-2において構築したHybrid型二重特異性分子(v19125)発現ベクターのうち、ヒト化抗CD3scFv-FcをコードするpCL_#13561を鋳型にし、部位特異的変異導入法によりH鎖CDR2のAsn53をArgに改変したCDR改変ベクターpC3E-8015を作製した。同様にHybrid型二重特異性分子(v19126)発現ベクターのうち、ヒト化抗CD3scFv-FcをコードするpCL_#13557を鋳型にし、部位特異的変異導入法によりH鎖CDR2のAsn53をArgに、L鎖Asp52をAsnに改変したCDR改変ベクターpC3E-8017を作製した。同じく、pCL_#13557を鋳型にし、部位特異的変異導入法によりH鎖CDR2のAsn53をSerに、L鎖Asp52をAsnに改変したCDR改変ベクターpC3E-8018を作製した。
pC3E-8015、pC3E-8017、pC3E-8018のORF配列をそれぞれ配列表の配列番号224(図255)、配列番号226(図257)、配列番号228(図259)に示す。
17)-1-2 C末端Lys付加CDR改変Hybrid型抗GPRC5D-抗CD3二重特異性分子(C5D-0014、C5D-0015、C5D-0016)発現ベクターの作製
実施例17)-1-1にて構築したHybrid型二重特異性分子(C5D-0004)発現ベクターのうち、CDR改変型ヒト化抗CD3scFv―FcをコードするpC3E-8015を鋳型にし、部位特異的変異導入法によりFcのC末端にLysを挿入したK付加型CDR改変ベクターpC3E-8025を作製した。同様にpC3E-8017、pC3E-8018を鋳型にし、部位特異的変異導入法によりFcのC末端にLysを挿入したK付加型CDR改変ベクターpC3E-8027、pC3E-8028を作製した。
実施例14)-1-2にて構築したHybrid型二重特異性分子(v19125、v19126)発現ベクターのうち、抗GPRC5DFab-FcをコードするpCL-#13555を鋳型にし、部位特異的変異導入法によりFcのC末端にLysを挿入したK付加型ベクターpTAA-#2を作製した。
pC3E-8025、pC3E-8027、pC3E-8028、pTAA-#2のORF配列をそれぞれ配列表の配列番号230(図261)、配列番号232(図263)、配列番号234(図265)、配列番号236(図267)に示す。
17)-2 CDR改変Hybrid型抗GPRC5D-抗CD3二重特異性分子の生産
CHO-3E7細胞はマニュアルに従い、継代、培養を行った(National Research Council Canada, Raymond C. et al., Methods(2011) 55(1), 44-51)。対数増殖期にあるCHO-3E7細胞培養液を2×10^6 cells/mL になるよう、4mM Glutamine含有BalanCD Transfectory CHO(Irvine Scientific社)で希釈し、各種二重特異性分子の生産に用いた。
ExpiCHO-S細胞はマニュアルに従い継代、培養を行った(Thermo Fisher Scientific社)。対数増殖期にあるExpiCHO-S細胞培養液を6×10^6 cells/mL になるようExpiCHO Expression Medium(Thermo Fisher Scientific社)で希釈し、各種二重特異性分子の生産に用いた。
17)-2-1 CDR改変Hybrid型抗GPRC5D-抗CD3二重特異性分子(C5D-0004、C5D-0005、C5D-0006)の生産
Hybrid型抗GPRC5D-抗CD3二重特異性分子C5D-0004、C5D-0005、C5D-0006の発現培養はExpiCHO-S細胞を宿主として行った。細胞への発現ベクターのトランスフェクション方法、培養条件は全て製品に付随するマニュアル従って実施した(Thermo Fisher Scientific社)。培養は750 mLスケールで行い、フィード添加と培養温度はマニュアルに記載のMax titer protocolの条件を採用した。培養開始後13日目に培養上清を回収し、0.2μm filter(Sartorius社)でろ過して評価用のサンプルとした。
pC3E-8015、pCL_#13555、pCL_#12123の組み合わせからHybrid型二重特異性分子C5D-0004を、pC3E-8017、pCL_#13555、pCL_#12123の組み合わせからHybrid型二重特異性分子C5D-0005を、pC3E-8018、pCL_#13555、pCL_#12123の組み合わせからHybrid型二重特異性分子C5D-0006を取得した。
C5D-0004を構成する各ベクターを発現させて得られるアミノ酸の配列を配列表の配列番号225(図256)、215(図239)、217(図241)に、C5D-0005を構成するアミノ酸の配列を配列表の配列番号227(図258)、215(図239)、217(図241)に、C5D-0006を構成するアミノ酸の配列を配列表の配列番号229(図260)、215(図239)、217(図241)にそれぞれ示す。
17)-2-2 C末端Lys付加CDR改変Hybrid型抗GPRC5D-抗CD3二重特異性分子(C5D-0014、C5D-0015、C5D-0016)の生産
Opti-PRO SFM培地(Thermo Fisher Scientific社)3 mLにPEImax(Polyscience社)800μgを溶解し、PEImax溶液とした。またOpti-PRO SFM培地 3 mLにpC3E-8025、pTAA_#2、およびpCL_#12123を1:1:1.5の比率で混合したベクター混合物を100 μg、pAKT、pGFP、断片処理済みのサケ精子DNAを混合したDNA混合物を100 μgをそれぞれ添加した。PEImax溶液とベクター混合物、DNA溶液を合わせて穏やかに攪拌し、5分間放置した後に200 mLのCHO-3E7細胞培養液に添加した。37℃、5%CO2インキュベーター内で1日振とう培養したのち、Transfectory Supplement(Irvine Scientific社)22 mL, Anti clumping suppliment(Thermo Fisher Scientific社) 480 μL, valproic acid(SigmaAldrich社)500 μLを加え、32℃でさらに9日間振とう培養した。培養開始後10日目に培養上清を回収し、0.2μm filter(Sartorius社)でろ過して評価用のサンプルとした。
pC3E-8025、pTAA_#2、pCL_12123の組み合わせからHybrid型二重特異性分子C5D-0014を、pC3E-8027、pTAA_#2、pCL_#12123の組み合わせからHybrid型二重特異性分子C5D-0015を、pC3E-8028、pTAA_#2、pCL_#12123の組み合わせからHybrid型二重特異性分子C5D-0016を取得した。
C5D-0014を構成する各ベクターを発現させて得られるアミノ酸の配列を配列表の配列番号231(図262)、237(図268)、217(図241)に、C5D-0015を構成するアミノ酸の配列を配列表の配列番号233(図264)、237(図268)、217(図241)に、C5D-0016を構成するアミノ酸の配列を配列表の配列番号235(図266)、237(図268)、217(図241)にそれぞれ示す。
17)-3 CDR改変Hybrid型抗GPRC5D-抗CD3二重特異性分子の精製
17)-3-1 CDR改変Hybrid型抗GPRC5D-抗CD3二重特異性分子(C5D-0004、C5D-0005、C5D-0006)の精製
17)-2-1で得られた培養上清から各種二重特異性分子をProteinAアフィニティクロマトグラフィー、ヒドロキシアパタイトクロマトグラフィー、陽イオン交換クロマトグラフィーの3段階工程で精製した。詳細には、PBS pH7.4で平衡化したMabSelectSuReカラム(GE Healthcare Bioscience社)に培養上清をアプライし、目的の二重特異性分子を吸着させた。非吸着成分をPBSで除去したのち、100 mM 酢酸バッファ pH3.5で吸着成分を溶出した。溶出画分は直ちにTrisバッファpH9.0でpHを中性に調製したのち、50 mM HEPES, 10 mM リン酸カリウム, 100 mM 塩化ナトリウム溶液に透析し、ヒドロキシアパタイトカラム Bio-Scale CHT Type-I(BioRad Laboratories社)にアプライした。直線的濃度勾配法により溶媒中の塩化ナトリウム濃度を0.1 Mから1 Mまで変化させることにより、吸着した目的の二重特異性分子を溶出した。得られたピーク画分をSDS-PAGEで解析し、目的の二重特異性分子に相当する画分を回収した。次に回収した画分のバッファを50 mM HEPES pH8.0,20 mM 塩化ナトリウム溶液に交換したのち、陽イオン交換カラム Mono S(GE Healthcare Bioscience社)にアプライした。直線的濃度勾配法により溶媒中の塩化ナトリウム濃度を20 mMから1 Mまで変化させることにより、吸着した目的の二重特異性分子を溶出した。得られたピーク画分をSDS-PAGEで解析し、目的の二重特異性分子に相当する画分を回収した。最後に回収した画分をHBsor(25 mM ヒスチジン, 5% ソルビトール)pH6.0で透析し、フィルターろ過したのち、精製サンプルとした。精製サンプルは質量分析とSDS-PAGE、SEC分析によって、目的の抗GPRC5D-抗CD3二重特異性分子に間違いないことを確認した。
17)-3-2 C末端Lys付加CDR改変Hybrid型抗GPRC5D-抗CD3二重特異性分子(C5D-0014、C5D-0015、C5D-0016)の精製
 17)-2-2で得られた培養上清から各種二重特異性分子をProteinAアフィニティクロマトグラフィー、ヒドロキシアパタイトクロマトグラフィーの2段階工程で精製した。詳細には、PBS pH7.4で平衡化したMabSelectSuReカラム(GE Healthcare Bioscience社)に培養上清をアプライし、目的の二重特異性分子を吸着させた。非吸着成分をPBSで除去したのち、100 mM 酢酸バッファ pH3.0で吸着成分を溶出した。溶出画分は直ちにTrisバッファpH9.5でpHを中性に調製したのち、50 mM HEPES, 10 mM リン酸カリウム, 100 mM 塩化ナトリウム溶液に透析し、ヒドロキシアパタイトカラム Bio-Scale CHT Type-I(BioRad Laboratories社)にアプライした。直線的濃度勾配法により溶媒中の塩化ナトリウム濃度を0.1 Mから1 Mまで変化させることにより、吸着した目的の二重特異性分子を溶出した。得られたピーク画分をSDS-PAGEで解析し、目的の二重特異性分子に相当する画分を回収した。最後に回収した画分をHBsor(25 mM ヒスチジン, 5% ソルビトール)pH6.0で透析し、フィルターろ過したのち、精製サンプルとした。精製サンプルは質量分析とSDS-PAGE、SEC分析によって、目的の抗GPRC5D-抗CD3二重特異性分子に間違いないことを確認した。
(実施例18) C末端Lys付加CDR改変Hybrid型、CDR改変Hybrid型抗GPRC5D-抗CD3二重特異性分子のin vitro活性評価
18)-1 C末端Lys付加CDR改変Hybrid型、CDR改変Hybrid型抗GPRC5D-抗CD3二重特異性分子のフローサイトメトリーによる結合活性評価
18)-1-1 C末端Lys付加CDR改変Hybrid型、CDR改変Hybrid型抗GPRC5D-抗CD3二重特異性分子の内因性ヒトGPRC5D発現細胞(KHM-1B)への結合
実施例15)-1-1と同様の方法で細胞調製・染色・解析を実施した。その結果、抗GPRC5D-抗CD3二重特異性分子は、ヒトGPRC5D発現細胞に結合することが示された(図269)。
18)-1-2-2 C末端Lys付加CDR改変Hybrid型、CDR改変Hybrid型抗GPRC5D-抗CD3二重特異性分子のカニクイザルGPRC5D発現細胞への結合
実施例15)-1-2と同様の方法で細胞調製・染色・解析を実施した。図270に示す通り、抗GPRC5D-抗CD3二重特異性分子はカニクイザルGPRC5D発現細胞に結合することが示された。
18)-1-3 C末端Lys付加CDR改変Hybrid型、CDR改変Hybrid型抗GPRC5D-抗CD3二重特異性分子のヒトCD3(PBMC)への結合
実施例15)-1-3と同様の方法で細胞調製・染色・解析を実施した。その結果、抗GPRC5D-抗CD3二重特異性分子は、ヒトCD3発現細胞に結合することが示された(図271)。
18)-1-4 C末端Lys付加CDR改変Hybrid型、CDR改変Hybrid型抗GPRC5D-抗CD3二重特異性分子のカニクイザルCD3(PBMC)への結合
実施例15)-1-4と同様の方法で細胞調製・染色・解析を実施した。図272に示す通り、抗GPRC5D-抗CD3二重特異性分子はカニクイザルCD3発現細胞に結合することが示された。
18)-2 C末端Lys付加CDR改変Hybrid型、CDR改変Hybrid型抗GPRC5D-抗CD3二重特異性分子の細胞障害活性評価
実施例15)-2-3と同様の方法で細胞障害活性の測定を実施した。ただし、培養時間は24-72時間である。図273に示す通り、KHM-1B細胞に対する抗GPRC5D-抗CD3二重特異性分子の細胞障害活性が示された。
(実施例19) CDR改変Hybrid型、C末端Lys付加CDR改変Hybrid型抗GPRC5D-抗CD3二重特異性分子のin vivo活性評価
19)-1 ヒトPBMCとがん細胞の共移植モデルにおけるin vivo活性評価
KHM-1B、及びヒトPBMCを50%Matrigel含有PBSでそれぞれ5×10細胞/mLになるよう調製し、NOD-Scidマウス(雌性、5週齢)の皮下に0・1mL共移植した。移植後に群分けを実施し、各種抗GPRC5D-抗CD3二重特異性分子を尾静脈内投与(1μg/kg)した。投与は移植日(Day0)からDay2まで毎日3回実施した。1週間後(Day7)より経時的に腫瘍の長径(mm)及び短径(mm)を電子デジタルノギスで計測し、以下に示す計算式により推定腫瘍体積を算出した。
Estimated Tumor Volume(mm)=各個体の推定腫瘍体積の平均値
       各個体の推定腫瘍体積=長径×短径/2
各種抗GPRC5D-抗CD3二重特異性分子投与群において抗腫瘍効果が確認された。(図274)。
19)-2 ヒトPBMC移入モデルにおけるin vivo活性評価
ヒトPBMCをPBSで5×10細胞/mLになるよう調製し、NOGマウス(雌性、6週齢)に0・2mL尾静脈内移植した(Day-4)。Day0にKHM-1Bを50%Matrigel含有PBSでそれぞれ3×10細胞/mLになるよう調製し、NOGマウスの皮下に0・1mL移植した。マウスの推定腫瘍体積が約200mmに達した時点(Day11)で腫瘍体積による群分けを実施し、各種抗GPRC5D-抗CD3二重特異性分子を尾静脈内投与(1mg/kg)した。投与はDay11、Day14、Day17に実施し、経時的に腫瘍の長径(mm)及び短径(mm)を電子デジタルノギスで計測し、推定腫瘍体積を算出した。図に示す通り、C5D-0004投与群(図275A)、及びC5D-0014投与群(図275B)において腫瘍の退縮が確認された。
配列番号1:ヒトGPRC5Dのアミノ末端配列(図2)
配列番号2:ヒトGPRC5Dのアミノ末端配列(図3)
配列番号3:2A4の重鎖遺伝子の可変領域のcDNAをPCRで増幅するためのプライマー
配列番号4:2A4の重鎖の可変領域をコードするcDNAのヌクレオチド配列(図8)
配列番号5:2A4の重鎖の可変領域のアミノ酸配列(図9)。
配列番号6:2B1の重鎖の可変領域をコードするcDNAのヌクレオチド配列(図10)
配列番号7:2B1の重鎖の可変領域のアミノ酸配列(図11)
配列番号8:7B4の重鎖の可変領域をコードするcDNAのヌクレオチド配列(図12)
配列番号9:7B4の重鎖の可変領域のアミノ酸配列(図13)
配列番号10:2A4の軽鎖遺伝子の可変領域のcDNAをPCRで増幅するためのプライマー
配列番号11:2A4の軽鎖の可変領域をコードするcDNAのヌクレオチド配列(図14)
配列番号12:2A4の軽鎖の可変領域のアミノ酸配列(図15)
配列番号13:2B1の軽鎖の可変領域をコードするcDNAのヌクレオチド配列(図16)
配列番号14:2B1の軽鎖の可変領域のアミノ酸配列(図17)
配列番号15:7B4の軽鎖の可変領域をコードするcDNAのヌクレオチド配列(図18)
配列番号16:7B4の軽鎖の可変領域のアミノ酸配列(図19)
配列番号17:ヒトκ鎖分泌シグナル配列及びヒトκ鎖定常領域のアミノ酸をコードするDNA配列を含むDNA断片(図20)
配列番号18:軽鎖発現ベクタープライマーF(図21)
配列番号19:軽鎖発現ベクタープライマーR(図22)
配列番号20:ヒト重鎖シグナル配列及びヒトIgG1定常領域のアミノ酸をコードするDNA配列を含むDNA断片(図23)
配列番号21:ヒトキメラ化2A4(c2A4)軽鎖のヌクレオチド配列(図24)
配列番号22:ヒトキメラ化2A4(c2A4)軽鎖のアミノ酸配列(図25。
配列番号23:ヒトキメラ化2A4軽鎖用プライマーセットF(図26)
配列番号24:ヒトキメラ化2A4軽鎖用プライマーセットR(図27)
配列番号25:ヒトキメラ化2A4(c2A4)重鎖のヌクレオチド配列(図28)
配列番号26:ヒトキメラ化2A4(c2A4)重鎖のアミノ酸配列(図29)
配列番号27:ヒトキメラ化2A4重鎖用プライマーセットF(図30)
配列番号28:ヒトキメラ化2A4重鎖用プライマーセットR(図31)
配列番号29:ヒトキメラ化2B1(c2B1)軽鎖のヌクレオチド配列(図32)
配列番号30:ヒトキメラ化2B1(c2B1)軽鎖のアミノ酸配列(図33)
配列番号31:ヒトキメラ化2B1軽鎖用プライマーセットF(図34)
配列番号32:ヒトキメラ化2B1軽鎖用プライマーセットR(図35)
配列番号33:ヒトキメラ化2B1(c2B1)重鎖のヌクレオチド配列(図36)
配列番号34:ヒトキメラ化2B1(c2B1)重鎖のアミノ酸配列(図37)
配列番号35:ヒトキメラ化2B1重鎖用プライマーセットF(図38)
配列番号36:ヒトキメラ化2B1重鎖用プライマーセットR(図39)
配列番号37:ヒトキメラ化7B4(c7B4)軽鎖のヌクレオチド配列(図40)
配列番号38:ヒトキメラ化7B4(c7B4)軽鎖のアミノ酸配列(図41)
配列番号39:ヒトキメラ化7B4軽鎖用プライマーセットF(図42)
配列番号40:ヒトキメラ化7B4軽鎖用プライマーセットR(図43)
配列番号41:ヒトキメラ化7B4(c7B4)重鎖のヌクレオチド配列(図44)
配列番号42:ヒトキメラ化7B4(c7B4)重鎖のアミノ酸配列(図45)
配列番号43:ヒトキメラ化7B4重鎖用プライマーセットF(図46)
配列番号44:ヒトキメラ化7B4重鎖用プライマーセットR(図47)
配列番号45:ラット抗GPRC5D抗体2A4の重鎖CDR1のアミノ酸配列(図54)
配列番号46:ラット抗GPRC5D抗体2A4の重鎖CDR2のアミノ酸配列(図55)
配列番号47:ラット抗GPRC5D抗体2A4の重鎖CDR3のアミノ酸配列(図56)
配列番号48:ラット抗GPRC5D抗体2B1の重鎖CDR1のアミノ酸配列(図57)
配列番号49:ラット抗GPRC5D抗体2B1の重鎖CDR2のアミノ酸配列(図58)
配列番号50:ラット抗GPRC5D抗体2B1の重鎖CDR3のアミノ酸配列(図59)
配列番号51:ラット抗GPRC5D抗体7B4の重鎖CDR1のアミノ酸配列(図60)
配列番号52:ラット抗GPRC5D抗体7B4の重鎖CDR2のアミノ酸配列(図61)
配列番号53:ラット抗GPRC5D抗体7B4の重鎖CDR3のアミノ酸配列(図62)
配列番号54:ラット抗GPRC5D抗体2A4の軽鎖CDR1のアミノ酸配列(図63)
配列番号55:ラット抗GPRC5D抗体2A4の軽鎖CDR2のアミノ酸配列(図64)
配列番号56:ラット抗GPRC5D抗体2A4の軽鎖CDR3のアミノ酸配列(図65)
配列番号57:ラット抗GPRC5D抗体2B1の軽鎖CDR1のアミノ酸配列(図66)
配列番号58:ラット抗GPRC5D抗体2B1の軽鎖CDR2のアミノ酸配列(図67)
配列番号59:ラット抗GPRC5D抗体2B1の軽鎖CDR3のアミノ酸配列(図68)
配列番号60:ラット抗GPRC5D抗体7B4の軽鎖CDR1のアミノ酸配列(図69)
配列番号61:ラット抗GPRC5D抗体7B4の軽鎖CDR2のアミノ酸配列(図70)
配列番号62:ラット抗GPRC5D抗体7B4の軽鎖CDR3のアミノ酸配列(図71)
配列番号63:ヒト化2B1軽鎖(h2B1_L1)のヌクレオチド配列(図72)、うちヌクレオチド番号1乃至60はシグナル配列であり、通常大部分の成熟h2B1_L1のヌクレオチド配列には含まれない。
配列番号64:ヒト化2B1軽鎖(h2B1_L1)のアミノ酸配列(図73)
配列番号65:ヒト化2B1軽鎖(h2B1_L2)のヌクレオチド配列(図74)
配列番号66:ヒト化2B1軽鎖(h2B1_L2)のアミノ酸配列(図75)
配列番号67:ヒト化2B1軽鎖(h2B1_L3)のヌクレオチド配列(図76)
配列番号68:ヒト化2B1軽鎖(h2B1_L3)のアミノ酸配列(図77)
配列番号69:ヒト化2B1軽鎖(h2B1_L4)のヌクレオチド配列(図78)
配列番号70:ヒト化2B1軽鎖(h2B1_L4)のアミノ酸配列(図79)
配列番号71:ヒト化2B1軽鎖(h2B1_L5)のヌクレオチド配列(図80)
配列番号72:ヒト化2B1軽鎖(h2B1_L5)のアミノ酸配列(図81)
配列番号73:ヒト化2B1重鎖(h2B1_H1)のヌクレオチド配列(図82)
配列番号74:ヒト化2B1重鎖(h2B1_H1)のアミノ酸配列(図83)
配列番号75:ヒト化2B1重鎖(h2B1_H2)のヌクレオチド配列(図84)
配列番号76:ヒト化2B1重鎖(h2B1_H2)のアミノ酸配列(図85)
配列番号77:ヒト化2B1重鎖(h2B1_H3)のヌクレオチド配列(図86)
配列番号78:ヒト化2B1重鎖(h2B1_H3)のアミノ酸配列(図87)
配列番号79:ヒト化2B1重鎖(h2B1_H4)のヌクレオチド配列(図88)
配列番号80:ヒト化2B1重鎖(h2B1_H4)のアミノ酸配列(図89)
配列番号81:ヒト化7B4軽鎖(h7B4_L1)のヌクレオチド配列(図90
配列番号82:ヒト化7B4軽鎖(h7B4_L1)のアミノ酸配列(図91)
配列番号83:ヒト化7B4軽鎖(h7B4_L2)のヌクレオチド配列(図92)
配列番号84:ヒト化7B4軽鎖(h7B4_L2)のアミノ酸配列(図93)
配列番号85:ヒト化7B4重鎖(h7B4_H1)のヌクレオチド配列(図94)
配列番号86:ヒト化7B4重鎖(h7B4_H1)のアミノ酸配列(図95)
配列番号87:ヒト化7B4重鎖(h7B4_H2)のヌクレオチド配列(図96)
配列番号88:ヒト化7B4重鎖(h7B4_H2)のアミノ酸配列(図97)
配列番号89:ヒト化7B4重鎖(h7B4_H3)のヌクレオチド配列(図98)
配列番号90:ヒト化7B4重鎖(h7B4_H3)のアミノ酸配列(図99)
配列番号91:ヒト化7B4重鎖(h7B4_H5)のヌクレオチド配列(図100)
配列番号92:ヒト化7B4重鎖(h7B4_H5)のアミノ酸配列(図101)
配列番号93:カニクイザルGPRC5D アミノ末端ペプチド(図105)のアミノ酸配列
配列番号94:scFvの配列解析に用いたプライマーA(図106)のヌクレオチド配列
配列番号95:scFvの配列解析に用いたプライマーB(図107)のヌクレオチド配列
配列番号96:C2037重鎖の可変領域のヌクレオチド配列(図108)
配列番号97:C2037重鎖の可変領域のアミノ酸配列(図109)
配列番号98:C2037軽鎖の可変領域のヌクレオチド配列(図110)
配列番号99:C2037軽鎖の可変領域のアミノ酸配列(図111)
配列番号100:C3048重鎖の可変領域のヌクレオチド配列(図112)
配列番号101:C3048重鎖の可変領域のアミノ酸配列(図113)
配列番号102:C3048軽鎖の可変領域のヌクレオチド配列(図114)
配列番号103:C3048軽鎖の可変領域のアミノ酸配列(図115)
配列番号104:C3015重鎖の可変領域のヌクレオチド配列(図116)
配列番号105:C3015重鎖の可変領域のアミノ酸配列(図117)
配列番号106:C3015軽鎖の可変領域のヌクレオチド配列(図118)
配列番号107:C3015軽鎖の可変領域のアミノ酸配列(図119)
配列番号108:C3022重鎖の可変領域のヌクレオチド配列(図120)
配列番号109:C3022重鎖の可変領域のアミノ酸配列(図121)
配列番号110:C3022軽鎖の可変領域のヌクレオチド配列(図122)
配列番号111:C2037重鎖CDR1のアミノ酸配列(図124)
配列番号112:C2037重鎖CDR2のアミノ酸配列(図125)
配列番号113:C2037重鎖CDR3のアミノ酸配列(図126)
配列番号114:C2037軽鎖CDR1のアミノ酸配列(図127)
配列番号115:C2037軽鎖CDR2のアミノ酸配列(図128)
配列番号116:C2037軽鎖CDR3のアミノ酸配列(図129)
配列番号117:C3048重鎖CDR1のアミノ酸配列(図130)
配列番号118:C3048重鎖CDR2のアミノ酸配列(図131)
配列番号119:C3048重鎖CDR3のアミノ酸配列(図132)
配列番号120:C3048軽鎖CDR1のアミノ酸配列(図133)
配列番号121:C3048軽鎖CDR2のアミノ酸配列(図134)
配列番号122:C3048軽鎖CDR3のアミノ酸配列(図135)
配列番号123:C3015重鎖CDR1のアミノ酸配列(図136)
配列番号124:C3015重鎖CDR2のアミノ酸配列(図137)
配列番号125:C3015重鎖CDR3のアミノ酸配列(図138)
配列番号126:C3015軽鎖CDR1のアミノ酸配列(図139)
配列番号127:C3015軽鎖CDR2のアミノ酸配列(図140)
配列番号128:C3015軽鎖CDR3のアミノ酸配列(図141)
配列番号129:C3022重鎖CDR1のアミノ酸配列(図142)
配列番号130:C3022重鎖CDR2のアミノ酸配列(図143)
配列番号131:C3022重鎖CDR3のアミノ酸配列(図144)
配列番号132:C3022軽鎖CDR1のアミノ酸配列(図145)
配列番号133:C3022軽鎖CDR2のアミノ酸配列(図146)
配列番号134:C3022軽鎖CDR3のアミノ酸配列(図147)
配列番号135:C3022軽鎖の可変領域のアミノ酸配列(図123)
配列番号136:C2037のIgG化体重鎖ヌクレオチド配列(図148)
配列番号137:C2037のIgG化体軽鎖ヌクレオチド配列(図149)
配列番号138:C3048のIgG化体重鎖ヌクレオチド配列(図150)
配列番号139:C3048のIgG化体軽鎖ヌクレオチド配列(図151)
配列番号140:C3015のIgG化体重鎖ヌクレオチド配列(図152)
配列番号141:C3015のIgG化体軽鎖ヌクレオチド配列(図153)
配列番号142:C3022のIgG化体重鎖ヌクレオチド配列(図154)
配列番号143:C3022のIgG化体軽鎖ヌクレオチド配列(図155)
配列番号144:C2037のIgG化体重鎖アミノ酸配列(図156)
配列番号145:C2037のIgG化体軽鎖アミノ酸配列(図157)
配列番号146:C3048のIgG化体重鎖アミノ酸配列(図158)
配列番号147:C3048のIgG化体軽鎖アミノ酸配列(図159)
配列番号148:C3015のIgG化体重鎖アミノ酸配列(図160)
配列番号149:C3015のIgG化体軽鎖アミノ酸配列(図161)
配列番号150:C3022のIgG化体重鎖アミノ酸配列(図162)
配列番号151:C3022のIgG化体軽鎖アミノ酸配列(図163)
配列番号152:ラット抗CD3抗体重鎖可変領域のヌクレオチド配列(図168)
配列番号153:ラット抗CD3抗体軽鎖可変領域のヌクレオチド配列(図169)
配列番号154: C3E-7000のヌクレオチド配列(図170)
配列番号155: C3E-7034の重鎖可変領域のアミノ酸配列(図171)
配列番号156: C3E-7034の軽鎖可変領域のアミノ酸配列(図172)
配列番号157: C3E-7034のヌクレオチド配列(図173)
配列番号158: C3E-7035の軽鎖可変領域のアミノ酸配列(図174)
配列番号159: C3E-7035のヌクレオチド配列(図175)
配列番号160: C3E-7036の軽鎖可変領域のアミノ酸配列(図176)
配列番号161: C3E-7036のヌクレオチド配列 (図177)
配列番号162:C2037-C3E-7034のヌクレオチド配列(図178)
配列番号163:C3048-C3E-7034のヌクレオチド配列(図179)
配列番号164:C3022-C3E-7034のヌクレオチド配列(図180)
配列番号165:C2037-C3E-7035のヌクレオチド配列(図181)
配列番号166:C3048-C3E-7035のヌクレオチド配列(図182)
配列番号167:C3022-C3E-7035のヌクレオチド配列(図183)
配列番号168:C2037-C3E-7036のヌクレオチド配列(図184)
配列番号169:C3048-C3E-7036のヌクレオチド配列(図185)
配列番号170:C3022-C3E-7036のヌクレオチド配列(図186)
配列番号171:C2037-C3E-7034のアミノ酸配列(図187)
配列番号172:C3048-C3E-7034のアミノ酸配列(図188)
配列番号173:C3022-C3E-7034のアミノ酸配列(図189)
配列番号174:C2037-C3E-7035のアミノ酸配列(図190)
配列番号175:C3048-C3E-7035のアミノ酸配列(図191)
配列番号176:C3022-C3E-7035のアミノ酸配列(図192)
配列番号177:C2037-C3E-7036のアミノ酸配列(図193)
配列番号178:C3048-C3E-7036のアミノ酸配列(図194)
配列番号179:C3022-C3E-7036のアミノ酸配列(図195)
配列番号180:C3E-7034のアミノ酸配列(図203)
配列番号181:C3E-7035のアミノ酸配列(図204)
配列番号182:C3E-7036のアミノ酸配列(図205)
配列番号183:C3E-7000の重鎖CDR1のアミノ酸配列(図206)
配列番号184:C3E-7000の重鎖CDR2のアミノ酸配列(図207)
配列番号185:C3E-7000の重鎖CDR3のアミノ酸配列(図208)
配列番号186:C3E-7000の軽鎖CDR1のアミノ酸配列(図209)
配列番号187:C3E-7000の軽鎖CDR2のアミノ酸配列(図210)
配列番号188:C3E-7000の軽鎖CDR3のアミノ酸配列(図211)
配列番号189:ヒトCD3εのアミノ酸配列(図212)
配列番号190:E1018重鎖の可変領域のヌクレオチド配列(図213)
配列番号191:E1018重鎖の可変領域のアミノ酸配列(図214)
配列番号192:E1018軽鎖の可変領域のヌクレオチド配列(図215)
配列番号193:E1018軽鎖の可変領域のアミノ酸配列(図216)
配列番号194:D1012重鎖の可変領域のヌクレオチド配列(図217)
配列番号195:D1012重鎖の可変領域のアミノ酸配列(図218)
配列番号196:D1012軽鎖の可変領域のヌクレオチド配列(図219)
配列番号197:D1012軽鎖の可変領域のアミノ酸配列(図220)
配列番号198:h2B1 Fab HC_1のヌクレオチド配列(図222)
配列番号199:h2B1 Fab HC_1のアミノ酸配列(図223)
配列番号200:h2B1 Fab HC_2のヌクレオチド配列(図224)
配列番号201:h2B1 Fab HC_2のアミノ酸配列(図225)
配列番号202:h2B1 Fab LC_1のヌクレオチド配列(図226)
配列番号203:h2B1 Fab LC_1のアミノ酸配列(図227)
配列番号204:h2B1 Fab LC_2のヌクレオチド配列(図228)
配列番号205:h2B1 Fab LC_2のアミノ酸配列(図229)
配列番号206:C3E-7034 Fab HCのヌクレオチド配列(図230)
配列番号207:C3E-7034 Fab HCのアミノ酸配列(図231)
配列番号208:C3E-7034 Fab LCのヌクレオチド配列(図232)
配列番号209:C3E-7034 Fab LCのアミノ酸配列(図233)
配列番号210:C3E-7036 Fab HCのヌクレオチド配列(図234)
配列番号211:C3E-7036 Fab HCのアミノ酸配列(図235)
配列番号212:C3E-7036 Fab LCのヌクレオチド配列(図236)
配列番号213:C3E-7036 Fab LCのアミノ酸配列(図237)
配列番号214:h2B1 Fab HC_3のヌクレオチド配列(図238)
配列番号215:h2B1 Fab HC_3のアミノ酸配列(図239)
配列番号216:h2B1 Fab LC_3のヌクレオチド配列(図240)
配列番号217:h2B1 Fab LC_3のアミノ酸配列(図241)
配列番号218:C3E-7034 scFv Fcのヌクレオチド配列(図242)
配列番号219:C3E-7034 scFv Fcのアミノ酸配列(図243)
配列番号220:C3E-7036 scFv Fcのヌクレオチド配列(図244)
配列番号221:C3E-7036 scFv Fcのアミノ酸配列(図245)
配列番号222:h2B1 scFv Fcのヌクレオチド配列(図246)
配列番号223:h2B1 scFv Fcのアミノ酸配列(図247)
配列番号224:C3E-8015のヌクレオチド配列(図255)
配列番号225:C3E-8015のアミノ酸配列(図256)
配列番号226:C3E-8017のヌクレオチド配列(図257)
配列番号227:C3E-8017のアミノ酸配列(図258)
配列番号228:C3E-8018のヌクレオチド配列(図259)
配列番号229:C3E-8018のアミノ酸配列(図260)
配列番号230:C3E-8025のヌクレオチド配列(図261)
配列番号231:C3E-8025のアミノ酸配列(図262)
配列番号232:C3E-8027のヌクレオチド配列(図263)
配列番号233:C3E-8027のアミノ酸配列(図264)
配列番号234:C3E-8028のヌクレオチド配列(図265)
配列番号235:C3E-8028のアミノ酸配列(図266)
配列番号236:h2B1 Fab HC_4のヌクレオチド配列(図267)
配列番号237:h2B1 Fab HC_4のアミノ酸配列(図268)
配列番号238:CDR改変体の重鎖CDR2のアミノ酸配列(図276)、Xは任意の天然のアミノ酸である。
配列番号239:CDR改変体の軽鎖CDR2のアミノ酸配列(図277)、Xは任意の天然のアミノ酸である。
配列番号240:C3E-7034のCDR改変体の重鎖可変領域のアミノ酸配列(図278)、Xは任意の天然のアミノ酸である。
配列番号241:C3E-7034のCDR改変体の軽鎖可変領域のアミノ酸配列(図279)、Xは任意の天然のアミノ酸である。
配列番号242:C3E-7035のCDR改変体の軽鎖可変領域のアミノ酸配列(図280)、Xは任意の天然のアミノ酸である。
配列番号243:C3E-7036のCDR改変体の軽鎖可変領域のアミノ酸配列(図281)、Xは任意の天然のアミノ酸である。
配列番号244:C3E-7078のアミノ酸配列(図282)。
配列番号245:C3E-7085のアミノ酸配列(図283)。
配列番号246:C3E-7086のアミノ酸配列(図284)。
配列番号247:C3E-7087のアミノ酸配列(図285)。
配列番号248:C3E-7088のアミノ酸配列(図286)。
配列番号249:C3E-7089のアミノ酸配列(図287)。
配列番号250:C3E-7090のアミノ酸配列(図288)。
配列番号251:C3E-7091のアミノ酸配列(図289)。
配列番号252:C3E-7092のアミノ酸配列(図290)。
配列番号253:C3E-7093のアミノ酸配列(図291)。
配列番号254:C3E-7094のアミノ酸配列(図292)。
配列番号255:C3E-7095のアミノ酸配列(図293)。

Claims (87)

  1.  下記(I)乃至(III):
    (II)
    配列番号48に示されるアミノ酸配列からなる重鎖CDR1、
    配列番号49に示されるアミノ酸配列からなる重鎖CDR2、及び
    配列番号50に示されるアミノ酸配列からなる重鎖CDR3を含む重鎖可変領域、
    並びに、
    配列番号57に示されるアミノ酸配列からなる軽鎖CDR1、
    配列番号58に示されるアミノ酸配列からなる軽鎖CDR2、及び
    配列番号59に示されるアミノ酸配列からなる軽鎖CDR3を含む軽鎖可変領域、
    (I)
    配列番号45に示されるアミノ酸配列からなる重鎖CDR1、
    配列番号46に示されるアミノ酸配列からなる重鎖CDR2、及び
    配列番号47に示されるアミノ酸配列からなる重鎖CDR3を含む重鎖可変領域、
    並びに、
    配列番号54に示されるアミノ酸配列からなる軽鎖CDR1、
    配列番号55に示されるアミノ酸配列からなる軽鎖CDR2、及び
    配列番号56に示されるアミノ酸配列からなる軽鎖CDR3を含む軽鎖可変領域、
    (III) 
    配列番号51に示されるアミノ酸配列からなる重鎖CDR1、
    配列番号52に示されるアミノ酸配列からなる重鎖CDR2、及び
    配列番号53に示されるアミノ酸配列からなる重鎖CDR3を含む重鎖可変領域、
    並びに、
    配列番号60に示されるアミノ酸配列からなる軽鎖CDR1、
    配列番号61に示されるアミノ酸配列からなる軽鎖CDR2、及び
    配列番号62に示されるアミノ酸配列からなる軽鎖CDR3を含む軽鎖可変領域
    のいずれか1つに記載の重鎖可変領域並びに軽鎖可変領域を含み、ヒトGPRC5Dに結合する抗体又は該抗体の抗原結合性断片。
  2.  重鎖可変領域及び軽鎖可変領域が、(II)に記載の重鎖可変領域及び軽鎖可変領域である請求項1に記載の抗体又は該抗体の抗原結合性断片。
  3.  重鎖可変領域及び軽鎖可変領域が、(I)に記載の重鎖可変領域及び軽鎖可変領域である請求項1に記載の抗体又は該抗体の抗原結合性断片。
  4.  重鎖可変領域及び軽鎖可変領域が、(III)に記載の重鎖可変領域及び軽鎖可変領域である請求項1に記載の抗体又は該抗体の抗原結合性断片。
  5.  キメラ化抗体又は該抗体の抗原結合性断片である、請求項1乃至4のいずれか1つに記載の抗体又は該抗体の抗原結合性断片。
  6.  ヒト化抗体又は該抗体の抗原結合性断片である、請求項1乃至4のいずれか1つに記載の抗体又は該抗体の抗原結合性断片。
  7.  ヒト抗体又は該抗体の抗原結合性断片である、請求項1乃至4のいずれか1つに記載の抗体又は該抗体の抗原結合性断片。
  8. 配列番号64に示されるアミノ酸配列の21乃至127番目のアミノ酸残基、
    配列番号66に示されるアミノ酸配列の21乃至127番目のアミノ酸残基、
    配列番号68に示されるアミノ酸配列の21乃至127番目のアミノ酸残基、
    配列番号70に示されるアミノ酸配列の21乃至127番目のアミノ酸残基、及び
    配列番号72に示されるアミノ酸配列の21乃至127番目のアミノ酸残基のいずれか1つに示されるアミノ酸配列を含む軽鎖可変領域、並びに、
    配列番号74に示されるアミノ酸配列の20乃至142番目のアミノ酸残基、
    配列番号76に示されるアミノ酸配列の20乃至142番目のアミノ酸残基、
    配列番号78に示されるアミノ酸配列の20乃至142番目のアミノ酸残基、及び
    配列番号80に示されるアミノ酸配列の20乃至142番目のアミノ酸残基のいずれか1つで示されるアミノ酸配列を含む重鎖可変領域を含む請求項1、2、又は6のいずれか1つに記載の抗体又は該抗体の抗原結合性断片。
  9. ・配列番号74に示されるアミノ酸配列の20乃至142番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域、及び、配列番号64に示されるアミノ酸配列の21乃至127番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域、
    ・配列番号74に示されるアミノ酸配列の20乃至142番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域、及び、配列番号66に示されるアミノ酸配列の21乃至127番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域、
    ・配列番号76に示されるアミノ酸配列の20乃至142番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域、及び、配列番号66に示されるアミノ酸配列の21乃至127番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域、
    ・配列番号76に示されるアミノ酸配列の20乃至142番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域、及び、配列番号68に示されるアミノ酸配列の21乃至127番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域、
    ・配列番号76に示されるアミノ酸配列の20乃至142番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域、及び、配列番号70に示されるアミノ酸配列の21乃至127番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域、
    ・配列番号76に示されるアミノ酸配列の20乃至142番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域、及び、配列番号72に示されるアミノ酸配列の21乃至127番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域、
    ・配列番号78に示されるアミノ酸配列の20乃至142番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域、及び、配列番号68に示されるアミノ酸配列の21乃至127番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域、
    ・配列番号78に示されるアミノ酸配列の20乃至142番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域、及び、配列番号70に示されるアミノ酸配列の21乃至127番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域、
    ・配列番号78に示されるアミノ酸配列の20乃至142番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域、及び、配列番号72に示されるアミノ酸配列の21乃至127番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域、
    ・配列番号80に示されるアミノ酸配列の20乃至142番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域、及び、配列番号64に示されるアミノ酸配列の21乃至127番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域、
    ・配列番号80に示されるアミノ酸配列の20乃至142番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域、及び、配列番号68に示されるアミノ酸配列の21乃至127番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域、
    ・配列番号80に示されるアミノ酸配列の20乃至142番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域、及び、配列番号70に示されるアミノ酸配列の21乃至127番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域、又は、
    ・配列番号80に示されるアミノ酸配列の20乃至142番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域、及び、配列番号72に示されるアミノ酸配列の21乃至127番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域
    のいずれか1つの重鎖可変領域及び軽鎖可変領域の組み合わせを含む、請求項1、2、6、又は8のいずれか1つに記載の抗体又は該抗体の抗原結合性断片。
  10. 配列番号82に示されるアミノ酸配列の21乃至126番目のアミノ酸残基、又は
    配列番号84に示されるアミノ酸配列の21乃至126番目のアミノ酸残基に示されるアミノ酸配列を含む軽鎖可変領域、並びに、
    配列番号86に示されるアミノ酸配列の20乃至142番目のアミノ酸残基、
    配列番号88に示されるアミノ酸配列の20乃至142番目のアミノ酸残基、
    配列番号90に示されるアミノ酸配列の20乃至142番目のアミノ酸残基、及び
    配列番号92に示されるアミノ酸配列の20乃至142番目のアミノ酸残基のいずれか1つで示されるアミノ酸配列を含む重鎖可変領域を含む請求項1、4、又は6のいずれか1つに記載の抗体又は該抗体の抗原結合性断片。 
  11. ・配列番号86に示されるアミノ酸配列の20乃至142番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域、及び、配列番号84に示されるアミノ酸配列の21乃至126番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域、
    ・配列番号88に示されるアミノ酸配列の20乃至142番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域、及び、配列番号84に示されるアミノ酸配列の21乃至126番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域、
    ・配列番号90に示されるアミノ酸配列の20乃至142番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域、及び、配列番号82に示されるアミノ酸配列の21乃至126番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域、
    ・配列番号90に示されるアミノ酸配列の20乃至142番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域、及び、配列番号84に示されるアミノ酸配列の21乃至126番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域、又は、
    ・配列番号92に示されるアミノ酸配列の20乃至142番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域、及び、配列番号82に示されるアミノ酸配列の21乃至126番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域
    のいずれか1つの重鎖可変領域及び軽鎖可変領域の組み合わせを含む、請求項1、4、6、又は10のいずれか1つに記載の抗体又は該抗体の抗原結合性断片。
  12.  Fcを含む、請求項1乃至11のいずれか1つに記載の抗体。 
  13.  ヒトGPRC5Dに結合し、下記<1>乃至<4>のいずれか1つに記載の重鎖可変領域並びに軽鎖可変領域を含む抗体又は該抗体の抗原結合性断片;
    <1> 
    配列番号111に示されるアミノ酸配列からなる重鎖CDR1、
    配列番号112に示されるアミノ酸配列からなる重鎖CDR2、及び
    配列番号113に示されるアミノ酸配列からなる重鎖CDR3を含む重鎖可変領域、
    並びに、
    配列番号114に示されるアミノ酸配列からなる軽鎖CDR1、
    配列番号115に示されるアミノ酸配列からなる軽鎖CDR2、及び
    配列番号116に示されるアミノ酸配列からなる軽鎖CDR3を含む軽鎖可変領域、
    <2>
    配列番号117に示されるアミノ酸配列からなる重鎖CDR1、
    配列番号118に示されるアミノ酸配列からなる重鎖CDR2、及び
    配列番号119に示されるアミノ酸配列からなる重鎖CDR3を含む重鎖可変領域、
    並びに、
    配列番号120に示されるアミノ酸配列からなる軽鎖CDR1、
    配列番号121に示されるアミノ酸配列からなる軽鎖CDR2、及び
    配列番号122に示されるアミノ酸配列からなる軽鎖CDR3を含む軽鎖可変領域、
    <3>
    配列番号123に示されるアミノ酸配列からなる重鎖CDR1、
    配列番号124に示されるアミノ酸配列からなる重鎖CDR2、及び
    配列番号125に示されるアミノ酸配列からなる重鎖CDR3を含む重鎖可変領域、
    並びに、
    配列番号126に示されるアミノ酸配列からなる軽鎖CDR1、
    配列番号127に示されるアミノ酸配列からなる軽鎖CDR2、及び
    配列番号128に示されるアミノ酸配列からなる軽鎖CDR3を含む軽鎖可変領域、
    <4>
    配列番号129に示されるアミノ酸配列からなる重鎖CDR1、
    配列番号130に示されるアミノ酸配列からなる重鎖CDR2、及び
    配列番号131に示されるアミノ酸配列からなる重鎖CDR3を含む重鎖可変領域、
    並びに、
    配列番号132に示されるアミノ酸配列からなる軽鎖CDR1、
    配列番号133に示されるアミノ酸配列からなる軽鎖CDR2、及び
    配列番号134に示されるアミノ酸配列からなる軽鎖CDR3を含む軽鎖可変領域。
  14.  重鎖可変領域及び軽鎖可変領域が、<1>に記載の重鎖可変領域及び軽鎖可変領域である請求項13に記載の抗体又は該抗体の抗原結合性断片。
  15.  重鎖可変領域及び軽鎖可変領域が、<2>に記載の重鎖可変領域及び軽鎖可変領域である請求項13に記載の抗体又は該抗体の抗原結合性断片。
  16.  重鎖可変領域及び軽鎖可変領域が、<3>に記載の重鎖可変領域及び軽鎖可変領域である請求項13に記載の抗体又は該抗体の抗原結合性断片。
  17.  重鎖可変領域及び軽鎖可変領域が、<4>に記載の重鎖可変領域及び軽鎖可変領域である請求項13に記載の抗体又は該抗体の抗原結合性断片。
  18. 配列番号97に示されるアミノ酸配列、
    配列番号101に示されるアミノ酸配列、
    配列番号105に示されるアミノ酸配列、及び
    配列番号109に示されるアミノ酸配列のいずれか1つを含む重鎖可変領域、
    並びに、
    配列番号99に示されるアミノ酸配列、
    配列番号103に示されるアミノ酸配列、
    配列番号107に示されるアミノ酸配列、及び
    配列番号135に示されるアミノ酸配列のいずれか1つを含む軽鎖可変領域
    を含む請求項13乃至17のいずれか1つに記載の抗体又は該抗体の抗原結合性断片。
  19. ・配列番号97に示されるアミノ酸配列を含む重鎖可変領域、及び、配列番号99に示されるアミノ酸配列を含む軽鎖可変領域、
    ・配列番号101に示されるアミノ酸配列を含む重鎖可変領域、及び、配列番号103に示されるアミノ酸配列を含む軽鎖可変領域、
    ・配列番号105に示されるアミノ酸配列を含む重鎖可変領域、及び、配列番号107に示されるアミノ酸配列を含む軽鎖可変領域、又は、
    ・配列番号109に示されるアミノ酸配列を含む重鎖可変領域、及び、配列番号135に示されるアミノ酸配列を含む軽鎖可変領域
    のいずれか1つの重鎖可変領域及び軽鎖可変領域の組み合わせを含む、請求項13乃至18に記載の抗体又は該抗体の抗原結合性断片。
  20. ・配列番号144に示されるアミノ酸配列を含む重鎖、及び、配列番号145に示されるアミノ酸配列を含む軽鎖、
    ・配列番号146に示されるアミノ酸配列を含む重鎖、及び、配列番号147に示されるアミノ酸配列を含む軽鎖、
    ・配列番号148に示されるアミノ酸配列を含む重鎖、及び、配列番号149に示されるアミノ酸配列を含む軽鎖、又は、
    ・配列番号150に示されるアミノ酸配列を含む重鎖、及び、配列番号151に示されるアミノ酸配列を含む軽鎖
    のいずれか1つの重鎖及び軽鎖の組み合わせを含む抗体又は該抗体の抗原結合性断片。
  21.  請求項8乃至12、18乃至20のいずれか1つに記載の抗体又は該抗体の抗原結合性断片に含まれるアミノ酸配列をコードするヌクレオチド配列を含むポリヌクレオチドの相補鎖とストリンジェントな条件下でハイブリダイズするポリヌクレオチドに含まれるヌクレオチド配列によりコードされるアミノ酸配列を含み、且つ、ヒトGPRC5Dに結合する抗体又は該抗体の抗原結合性断片。
  22.  請求項8乃至12、18乃至20のいずれか1つに記載の抗体又は該抗体の抗原結合性断片に含まれるアミノ酸配列と90%以上同一なアミノ酸配列を含み、且つ、ヒトGPRC5Dに結合する抗体又は該抗体の抗原結合性断片。
  23.  請求項8乃至12、18乃至20のいずれか1つに記載の抗体又は該抗体の抗原結合性断片に含まれるアミノ酸配列において1乃至数個のアミノ酸が置換、欠失又は付加されてなるアミノ酸配列を含み、且つ、ヒトGPRC5Dに結合する抗体又は該抗体の抗原結合性断片。
  24.  請求項1乃至20のいずれか1つに記載の抗体又は該抗体の抗原結合性断片が結合するヒトGPRC5D上の部位に結合する抗体又は該抗体の抗原結合性断片。
  25.  請求項1乃至20のいずれか1つに記載の抗体又は該抗体の抗原結合性断片とヒトGPRC5D上への結合において競合する抗体又は該抗体の抗原結合性断片。
  26.  カニクイザルGPRC5Dに結合する、請求項1乃至25のいずれか1つに記載の抗体又は抗原結合性断片。
  27.  Fab、F(ab)’、Fv、scFv、又は、sdAbである請求項1乃至26のいずれか1つに記載の抗体又は該抗体の抗原結合性断片。
  28.  請求項2、8、又は、9に記載の重鎖可変領域、及び、軽鎖可変領域、並びに、
    i)配列番号199に示されるアミノ酸配列の147乃至475番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖定常領域と、配列番号203に示されるアミノ酸配列の131乃至237番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖定常領域、
    ii)配列番号201に示されるアミノ酸配列の147乃至475番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖定常領域と、配列番号205に示されるアミノ酸配列の131乃至237番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖定常領域、 
    iii)配列番号215に示されるアミノ酸配列の147乃至475番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖定常領域と、配列番号217に示されるアミノ酸配列の131乃至237番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖定常領域 
    又は、
    iv)配列番号237に示されるアミノ酸配列の147乃至476番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖定常領域と、配列番号217に示されるアミノ酸配列の131乃至237番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖定常領域
    を含むヒトGPRC5Dに結合する抗体又は該抗体の抗原結合性断片。
  29.  配列番号76に示されるアミノ酸配列の20乃至142番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域、及び、配列番号72に示されるアミノ酸配列の21乃至127番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域、並びに、
    i)配列番号199に示されるアミノ酸配列の147乃至475番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖定常領域と、配列番号203に示されるアミノ酸配列の131乃至237番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖定常領域、
    ii)配列番号201に示されるアミノ酸配列の147乃至475番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖定常領域と、配列番号205に示されるアミノ酸配列の131乃至237番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖定常領域、
    iii)配列番号215に示されるアミノ酸配列の147乃至475番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖定常領域と、配列番号217に示されるアミノ酸配列の131乃至237番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖定常領域
    又は、
    iv)配列番号237に示されるアミノ酸配列の147乃至476番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖定常領域と、配列番号217に示されるアミノ酸配列の131乃至237番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖定常領域
    を含むヒトGPRC5Dに結合する抗体又は該抗体の抗原結合性断片。 
  30.  請求項2、8、又は、9に記載の重鎖可変領域、及び、軽鎖可変領域、並びに、変異型Fcを含むヒトGPRC5Dに結合する抗体又は該抗体の抗原結合性断片。
  31.  配列番号76に示されるアミノ酸配列の20乃至142番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域、及び、配列番号72に示されるアミノ酸配列の21乃至127番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域、並びに、変異型Fcを含むヒトGPRC5Dに結合する抗体又は該抗体の抗原結合性断片。
  32.  請求項1乃至31のいずれか1つに記載の抗体又は該抗体の抗原結合性断片をコードするポリヌクレオチド。
  33.  請求項32に記載のいずれか1つのポリヌクレオチドを含むベクター
  34.  請求項32に記載のいずれか1つのポリヌクレオチド、又は、請求項33に記載のベクターを含むか、又は、請求項1乃至31のいずれか1つに記載の抗体又は該抗体の抗原結合性断片を産生する細胞。
  35.  請求項32に記載のいずれか1つのポリヌクレオチド、又は、請求項33に記載のベクターを含むか、又は、請求項1乃至31のいずれか1つに記載の抗体又は該抗体の抗原結合性断片を細胞表面上に発現する人工免疫細胞。
  36.  請求項34に記載の細胞を培養する工程、及び、該培養物からヒトGPRC5Dに結合する抗体又は該抗体の抗原結合性断片を回収する工程を含む、ヒトGPRC5Dに結合する抗体又は該抗体の抗原結合性断片の製造方法。
  37.  請求項36に記載の方法により得られる、ヒトGPRC5Dに結合する抗体又は該抗体の抗原結合性断片。
  38.  請求項1乃至31、37のいずれか1つに記載の抗体又は該抗体の抗原結合性断片、請求項32に記載のポリヌクレオチド、請求項33に記載のベクター、又は、請求項35に記載の人工免疫細胞を有効成分として含有する治療、及び/又は、予防のための医薬組成物。
  39.  癌の治療、及び/又は、予防のための請求項38に記載の医薬組成物。
  40.  癌が、GPRC5D蛋白質を発現している、乳癌、子宮内膜癌、卵巣癌、肺癌、胃癌、前立腺癌、腎癌、肝臓癌、膵臓癌、大腸癌、食道癌、膀胱癌、子宮頚癌、血液癌、リンパ腫、又は、悪性黒色腫である請求項39に記載の医薬組成物。
  41.  癌が、GPRC5D蛋白質を発現している多発性骨髄腫である請求項40に記載の医薬組成物。
  42.  請求項1乃至31、37のいずれか1つに記載の抗体又は該抗体の抗原結合性断片を含む抗原結合性を有する分子。
  43.  多重特異的である請求項42に記載の分子。
  44.  請求項1乃至31、37のいずれか1つに記載のヒトGPRC5Dに結合する抗体又は該抗体の抗原結合性断片と、
    配列番号183に示されるアミノ酸配列を含む重鎖CDR1、
    配列番号238に示されるアミノ酸配列を含む重鎖CDR2、及び、
    配列番号185に示されるアミノ酸配列を含む重鎖CDR3を含む重鎖可変領域;並びに、
    配列番号186に示されるアミノ酸配列を含む軽鎖CDR1、
    配列番号239に示されるアミノ酸配列を含む軽鎖CDR2、及び、
    配列番号188に示されるアミノ酸配列を含む軽鎖CDR3を含む軽鎖可変領域;
    を含み;且つヒトCD3及びカニクイザルCD3に結合する抗体又は該抗体の抗原結合性断片を含む請求項42又は43に記載の分子。
  45. 前記重鎖CDR2の
    1番目のXaaは、(A、E、G、H、I、L、T、V、R、S)からなる群より選択され
    且つ2番目のXaaはSであるか、又は、
    1番目のXaaはNであり、
    且つ2番目のXaaは、(E、R、F、Y、L、V、I、K、T)からなる群より選択され、
    前記軽鎖CDR2の
    aaは、(Q、A、G、S、N、D)からなる群より選択され、
    ヒトCD3及びカニクイザルCD3に結合することを特徴とする請求項44に記載の分子。
  46. 前記重鎖CDR2の
    1番目のXaaは、(R、S)からなる群より選択され、2番目のXaaはSであり、且つ
    前記軽鎖CDR2の
    aaは、(Q、A、G、S、N、D)からなる群より選択される、
    ヒトCD3及びカニクイザルCD3に結合することを特徴とする請求項44又は45に記載の分子。
  47.  配列番号240に示されるアミノ酸配列を含む重鎖可変領域と、配列番号241、242、及び243のいずれか1つに示されるアミノ酸配列を含む軽鎖可変領域を含み、
    配列番号240で示されるアミノ酸配列の1番目のXaaは、(A、E、G、H、I、L、T、V、R、S)からなる群より選択され、且つ、2番目のXaaはSであるか、又は、
    1番目のXaaはNであり、且つ、2番目のXaaは、(E、R、F、Y、L、V、I、K、T)からなる群より選択され、
    配列番号241、242、及び、243のいずれか1つに示されるアミノ酸配列の
    aaは、(Q、A、G、S、N、D)からなる群より選択される、
    請求項42乃至45のいずれか1つに記載の分子。
  48.  配列番号240の
    1番目のXaaは、(R、S)からなる群より選択され、
    2番目のXaaはSであり、且つ、
    配列番号241、242、及び、243のいずれか1つに示されるアミノ酸配列の
    aaは、(Q、A、G、S、N、D)からなる群より選択される、
    請求項47に記載の分子。
  49.  請求項1乃至31、37のいずれか1つに記載のヒトGPRC5Dに結合する抗体又は該抗体の抗原結合性断片と、
    配列番号183に示される重鎖CDR1のアミノ酸配列、
    配列番号184に示される重鎖CDR2のアミノ酸配列、及び、
    配列番号185に示される重鎖CDR3のアミノ酸配列を含む重鎖可変領域;並びに、
    配列番号186に示される軽鎖CDR1のアミノ酸配列、
    配列番号187に示される軽鎖CDR2のアミノ酸配列、及び、
    配列番号188に示される軽鎖CDR3のアミノ酸配列を含む軽鎖可変領域;
    を含み、且つヒトCD3及びカニクイザルCD3に結合する抗体又は該抗体の抗原結合性断片を含む請求項42乃至44のいずれか1つに記載の分子。
  50.  前記ヒトCD3及びカニクイザルCD3に結合する抗体又は該抗体の抗原結合性断片が、配列番号155に示されるアミノ酸配列を含む重鎖可変領域と、配列番号156、158、及び、160のいずれか1つに示されるアミノ酸配列を含む軽鎖可変領域とを含む抗体又は該抗体の抗原結合性断片である、請求項49に記載の分子。
  51.  前記ヒトCD3及びカニクイザルCD3に結合する抗体の抗原結合性断片が、Fab、F(ab)’、Fv、scFv、又は、sdAbである、請求項44乃至50のいずれか1つに記載の分子。 
  52.  前記ヒトCD3及びカニクイザルCD3に結合する抗体が、ヒト免疫グロブリン定常領域又はFcもしくは変異型Fcを含むヒト化抗体又はヒト抗体である、請求項44乃至51のいずれか1つに記載の分子。
  53.  前記ヒトCD3及びカニクイザルCD3に結合する抗体又は該抗体の抗原結合性断片が、配列番号180、181、及び、182のいずれか1つに示されるアミノ酸配列を含む抗体又は該抗体の抗原結合性断片である請求項44乃至52のいずれか1つに記載の分子。
  54.  前記ヒトCD3及びカニクイザルCD3に結合する抗体又は該抗体の抗原結合性断片と、請求項1乃至31、37のいずれか1つに記載の抗体又は該抗体の抗原結合性断片とが、リンカーにより結合してなる、あるいはリンカーなしで結合してなる請求項40乃至44のいずれか1つに記載の分子。
  55.  請求項2、8、又は、9に記載のヒトGPRC5Dに結合する抗体又は該抗体の抗原結合性断片、及び、以下に示す群から選ばれるいずれかひとつの重鎖可変領域と軽鎖可変領域との組合せを含むヒトCD3及びカニクイザルCD3に結合する抗体又は該抗体の抗原結合性断片を含む請求項42乃至44のいずれか1つに記載の分子:
    ・配列番号207に示されるアミノ酸配列の25乃至142番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域と、配列番号209に示されるアミノ酸配列の24乃至132番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域、
    ・配列番号211に示されるアミノ酸配列の25乃至142番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域と、配列番号213に示されるアミノ酸配列の24乃至130番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域、
    ・配列番号244の2乃至119のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域と、配列番号244の135乃至243のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域、
    ・配列番号245の2乃至119のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域と、配列番号245の135乃至241のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域、 
    ・配列番号246の2乃至119のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域と、配列番号246の135乃至243のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域、
    ・配列番号247の2乃至119のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域と、配列番号247の135乃至243のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域、
    ・配列番号248の2乃至119のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域と、配列番号248の135乃至243のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域、 
    ・配列番号249の2乃至119のアミノ酸残基を含む重鎖可変領域と、配列番号249の135乃至243のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域、
    ・配列番号250の2乃至119のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域と、配列番号250の135乃至243のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域、
    ・配列番号251の2乃至119のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域と、配列番号251の135乃至243のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域、
    ・配列番号252の2乃至119のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域と、配列番号252の135乃至243のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域、
    ・配列番号253の2乃至119のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域と、配列番号253の135乃至242のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域、
    ・配列番号254の2乃至119のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域と、配列番号254の135乃至243のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域、
    又は、
    ・配列番号255の2乃至119のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域と、配列番号255の135乃至243のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域
    を含み、且つヒトCD3及びカニクイザルCD3に結合する抗体又は該抗体の抗原結合性断片を含む請求項42乃至44のいずれか1つに記載の分子。
  56.  ヒトGPRC5Dに結合する抗体又は該抗体の抗原結合性断片が、配列番号76に示されるアミノ酸配列の20乃至142番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域、及び、配列番号72に示されるアミノ酸配列の21乃至127番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域、並びに、
    i)配列番号199に示されるアミノ酸配列の147乃至475番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖定常領域と、配列番号203に示されるアミノ酸配列の131乃至237番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖定常領域、
    ii)配列番号201に示されるアミノ酸配列の147乃至475番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖定常領域と、配列番号205に示されるアミノ酸配列の131乃至237番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖定常領域、
    iii)配列番号215に示されるアミノ酸配列の147乃至475番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖定常領域と、配列番号217に示されるアミノ酸配列の131乃至237番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖定常領域
    又は、
    iv)配列番号237に示されるアミノ酸配列の147乃至476番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖定常領域と、配列番号217に示されるアミノ酸配列の131乃至237番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖定常領域を含み、
    ヒトCD3及びカニクイザルCD3に結合する抗体又は該抗体の抗原結合性断片が、さらに変異型Fcを含む、請求項55に記載の分子。
  57.  ヒトGPRC5Dに結合する抗体又は該抗体の抗原結合性断片が、配列番号76に示されるアミノ酸配列の20乃至142番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域、及び、配列番号72に示されるアミノ酸配列の21乃至127番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域、並びに、
    iii)配列番号215に示されるアミノ酸配列の147乃至475番目のアミノ酸残基で示されるアミノ配列を含む重鎖定常領域と、配列番号217に示されるアミノ酸配列の131乃至237番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖定常領域
    又は、
    iv)配列番号237に示されるアミノ酸配列の147乃至476番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖定常領域と、配列番号217に示されるアミノ酸配列の131乃至237番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖定常領域を含み、
    ヒトCD3及びカニクイザルCD3に結合する抗体又は該抗体の抗原結合性断片が、さらに変異型Fcを含む、請求項55に記載の分子。
  58.  配列番号215に示されるアミノ酸配列の24乃至475番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖と、配列番号217に示されるアミノ酸配列の24乃至237番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖を含むヒトGPRC5Dに結合する抗体又は該抗体の抗原結合性断片、及び、配列番号219に示されるアミノ酸配列の24乃至266番目のアミノ酸残基で示されるアミノ酸配列と変異型Fcを含むヒトCD3及びカニクイザルCD3に結合する抗体又は該抗体の抗原結合性断片、
     配列番号215に示されるアミノ酸配列の24乃至475番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖と、配列番号217に示されるアミノ酸配列の24乃至237番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖を含むヒトGPRC5Dに結合する抗体又は該抗体の抗原結合性断片、及び、配列番号221に示されるアミノ酸配列の24乃至264番目のアミノ酸残基で示されるアミノ酸配列と変異型Fcを含むヒトCD3及びカニクイザルCD3に結合する抗体又は該抗体の抗原結合性断片、
     配列番号215に示されるアミノ酸配列の24乃至475番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖と、配列番号217に示されるアミノ酸配列の24乃至237番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖を含むヒトGPRC5Dに結合する抗体又は該抗体の抗原結合性断片、及び、配列番号225に示されるアミノ酸配列の24乃至264番目のアミノ酸残基で示されるアミノ酸配列と変異型Fcを含むヒトCD3及びカニクイザルCD3に結合する抗体又は該抗体の抗原結合性断片、
     配列番号215に示されるアミノ酸配列の24乃至475番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖と、配列番号217に示されるアミノ酸配列の24乃至237番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖を含むヒトGPRC5Dに結合する抗体又は該抗体の抗原結合性断片、及び、配列番号227に示されるアミノ酸配列の24乃至266番目のアミノ酸残基で示されるアミノ酸配列と変異型Fcを含むヒトCD3及びカニクイザルCD3に結合する抗体又は該抗体の抗原結合性断片、
     配列番号215に示されるアミノ酸配列の24乃至475番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖と、配列番号217に示されるアミノ酸配列の24乃至237番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖を含むヒトGPRC5Dに結合する抗体又は該抗体の抗原結合性断片、及び、配列番号229に示されるアミノ酸配列の24乃至266番目のアミノ酸残基で示されるアミノ酸配列と変異型Fcを含むヒトCD3及びカニクイザルCD3に結合する抗体又は該抗体の抗原結合性断片、
     配列番号237に示されるアミノ酸配列の24乃至476番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖と、配列番号217に示されるアミノ酸配列の24乃至237番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖を含むヒトGPRC5Dに結合する抗体又は該抗体の抗原結合性断片、及び、配列番号231に示されるアミノ酸配列の24乃至264番目のアミノ酸残基で示されるアミノ酸配列と変異型Fcを含むヒトCD3及びカニクイザルCD3に結合する抗体又は該抗体の抗原結合性断片、
     配列番号237に示されるアミノ酸配列の24乃至476番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖と、配列番号217に示されるアミノ酸配列の24乃至237番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖を含むヒトGPRC5Dに結合する抗体又は該抗体の抗原結合性断片、及び、配列番号233に示されるアミノ酸配列の24乃至266番目のアミノ酸残基で示されるアミノ酸配列と変異型Fcを含むヒトCD3及びカニクイザルCD3に結合する抗体又は該抗体の抗原結合性断片、又は、
     配列番号237に示されるアミノ酸配列の24乃至476番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖と、配列番号217に示されるアミノ酸配列の24乃至237番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖を含むヒトGPRC5Dに結合する抗体又は該抗体の抗原結合性断片、及び、配列番号235に示されるアミノ酸配列の24乃至266番目のアミノ酸残基で示されるアミノ酸配列と変異型Fcを含むヒトCD3及びカニクイザルCD3に結合する抗体又は該抗体の抗原結合性断片を含む請求項55に記載の分子。
  59.  配列番号215に示されるアミノ酸配列の24乃至475番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖と、配列番号217に示されるアミノ酸配列の24乃至237番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖を含むヒトGPRC5Dに結合する抗体又は該抗体の抗原結合性断片、及び、配列番号225に示されるアミノ酸配列の24乃至264番目のアミノ酸残基で示されるアミノ酸配列と変異型Fcを含むヒトCD3及びカニクイザルCD3に結合する抗体又は該抗体の抗原結合性断片、
     配列番号215に示されるアミノ酸配列の24乃至475番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖と、配列番号217に示されるアミノ酸配列の24乃至237番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖を含むヒトGPRC5Dに結合する抗体又は該抗体の抗原結合性断片、及び、配列番号227に示されるアミノ酸配列の24乃至266番目のアミノ酸残基で示されるアミノ酸配列と変異型Fcを含むヒトCD3及びカニクイザルCD3に結合する抗体又は該抗体の抗原結合性断片、
     配列番号215に示されるアミノ酸配列の24乃至475番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖と、配列番号217に示されるアミノ酸配列の24乃至237番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖を含むヒトGPRC5Dに結合する抗体又は該抗体の抗原結合性断片、及び、配列番号229に示されるアミノ酸配列の24乃至266番目のアミノ酸残基で示されるアミノ酸配列と変異型Fcを含むヒトCD3及びカニクイザルCD3に結合する抗体又は該抗体の抗原結合性断片、
     配列番号237に示されるアミノ酸配列の24乃至476番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖と、配列番号217に示されるアミノ酸配列の24乃至237番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖を含むヒトGPRC5Dに結合する抗体又は該抗体の抗原結合性断片、及び、配列番号231に示されるアミノ酸配列の24乃至264番目のアミノ酸残基で示されるアミノ酸配列と変異型Fcを含むヒトCD3及びカニクイザルCD3に結合する抗体又は該抗体の抗原結合性断片、
     配列番号237に示されるアミノ酸配列の24乃至476番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖と、配列番号217に示されるアミノ酸配列の24乃至237番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖を含むヒトGPRC5Dに結合する抗体又は該抗体の抗原結合性断片、及び、配列番号233に示されるアミノ酸配列の24乃至266番目のアミノ酸残基で示されるアミノ酸配列と変異型Fcを含むヒトCD3及びカニクイザルCD3に結合する抗体又は該抗体の抗原結合性断片、又は、
     配列番号237に示されるアミノ酸配列の24乃至476番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖と、配列番号217に示されるアミノ酸配列の24乃至237番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖を含むヒトGPRC5Dに結合する抗体又は該抗体の抗原結合性断片、及び、配列番号235に示されるアミノ酸配列の24乃至266番目のアミノ酸残基で示されるアミノ酸配列と変異型Fcを含むヒトCD3及びカニクイザルCD3に結合する抗体又は該抗体の抗原結合性断片を含む請求項55に記載の分子。
  60.  ヒトGPRC5Dに結合する抗体又は該抗体の抗原結合性断片が、配列番号76に示されるアミノ酸配列の20乃至142番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域、及び、配列番号72に示されるアミノ酸配列の21乃至127番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域、並びに、
    i)配列番号199に示されるアミノ酸配列の147乃至475番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖定常領域と、配列番号203に示されるアミノ酸配列の131乃至237番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖定常領域、
    ii)配列番号201に示されるアミノ酸配列の147乃至475番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖定常領域と、配列番号205に示されるアミノ酸配列の131乃至237番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖定常領域、
    iii)配列番号215に示されるアミノ酸配列の147乃至475番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖定常領域と、配列番号217に示されるアミノ酸配列の131乃至237番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖定常領域
    又は、
    iv)配列番号237に示されるアミノ酸配列の147乃至476番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖定常領域と、配列番号217に示されるアミノ酸配列の131乃至237番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖定常領域を含み、ヒトCD3及びカニクイザルCD3に結合する抗体又は該抗体の抗原結合性断片が、さらに、
    v)配列番号207に示されるアミノ酸配列の143乃至471番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖定常領域と、配列番号209に示されるアミノ酸配列の133乃至238番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖定常領域、又は、
    vi)配列番号211に示されるアミノ酸配列の143乃至471番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖定常領域と、配列番号213に示されるアミノ酸配列の131乃至236番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖定常領域を含む請求項55に記載の分子。 
  61.  ヒトGPRC5Dに結合する抗体又は該抗体の抗原結合性断片が、配列番号76に示されるアミノ酸配列の20乃至142番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域、及び、配列番号72に示されるアミノ酸配列の21乃至127番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域、並びに、
    iii)配列番号215に示されるアミノ酸配列の147乃至475番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖定常領域と、配列番号217に示されるアミノ酸配列の131乃至237番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖定常領域
    又は、
    iv)配列番号237に示されるアミノ酸配列の147乃至476番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖定常領域と、配列番号217に示されるアミノ酸配列の131乃至237番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖定常領域を含み、ヒトCD3及びカニクイザルCD3に結合する抗体又は該抗体の抗原結合性断片が、さらに、
    v)配列番号207に示されるアミノ酸配列の143乃至471番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖定常領域と、配列番号209に示されるアミノ酸配列の133乃至238番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖定常領域、又は、
    vi)配列番号211に示されるアミノ酸配列の143乃至471番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖定常領域と、配列番号213に示されるアミノ酸配列の131乃至236番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖定常領域を含む、請求項55に記載の分子。
  62.  配列番号199に示されるアミノ酸配列の24乃至475番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖と、配列番号203に示されるアミノ酸配列の24乃至237番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖を含むヒトGPRC5Dに結合する抗体又は該抗体の抗原結合性断片、及び、配列番号207に示されるアミノ酸配列の25乃至471番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖と、配列番号209に示されるアミノ酸配列の24乃至238番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖を含むヒトCD3及びカニクイザルCD3に結合する抗体又は該抗体の抗原結合性断片
    又は、
    配列番号201に示されるアミノ酸配列の24乃至475番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖と、配列番号205に示されるアミノ酸配列の24乃至237番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖を含むヒトGPRC5Dに結合する抗体又は該抗体の抗原結合性断片、及び、配列番号211に示されるアミノ酸配列の25乃至471番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖と、配列番号213に示されるアミノ酸配列の24乃至236番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖を含むヒトCD3及びカニクイザルCD3に結合する抗体又は該抗体の抗原結合性断片を含む請求項55に記載の分子。
  63.  ヒトGPRC5Dに結合する抗体又は該抗体の抗原結合性断片が、配列番号76に示されるアミノ酸配列の20乃至142番目のアミノ酸残基で示されるアミノ酸配列を含む重鎖可変領域、及び、配列番号72に示されるアミノ酸配列の21乃至127番目のアミノ酸残基で示されるアミノ酸配列を含む軽鎖可変領域と、さらに変異型Fcを含み、ヒトCD3及びカニクイザルCD3に結合する抗体又は該抗体の抗原結合性断片が、さらに変異型Fcを含む、請求項55に記載の分子。
  64.  配列番号223に示されるアミノ酸配列の24乃至271番目のアミノ酸残基で示されるアミノ酸配列と変異型Fcを含むヒトGPRC5Dに結合する抗体又は該抗体の抗原結合性断片、及び、配列番号219に示されるアミノ酸配列の24乃至266番目のアミノ酸残基で示されるアミノ酸配列と変異型Fcを含むヒトCD3及びカニクイザルCD3に結合する抗体又は該抗体の抗原結合性断片
    又は、
     配列番号223に示されるアミノ酸配列の24乃至271番目のアミノ酸残基で示されるアミノ酸配列と変異型Fcを含むヒトGPRC5Dに結合する抗体又は該抗体の抗原結合性断片、及び、配列番号221に示されるアミノ酸配列の24乃至264番目のアミノ酸残基で示されるアミノ酸配列と変異型Fcを含むヒトCD3及びカニクイザルCD3に結合する抗体又は該抗体の抗原結合性断片を含む請求項55に記載の分子。
  65.  前記ヒトCD3及びカニクイザルCD3に結合する抗体又は該抗体の抗原結合性断片と、請求項19に記載の抗体又は該抗体の抗原結合性断片とが、リンカーにより結合してなる、あるいはリンカーなしで結合してなる請求項53に記載の分子。
  66.  配列番号171乃至179のいずれか1つに示されるアミノ酸配列を有する、請求項54又は65に記載の、ヒトCD3及びカニクイザルCD3、並びに、ヒトGPRC5Dに結合する分子。 
  67.  請求項50、53、58、59、62、64、65、及び66のいずれか1つに記載の分子に含まれる、ヒトCD3及びカニクイザルCD3に結合する抗体又は該抗体の抗原結合性断片に含まれるアミノ酸配列をコードするヌクレオチド配列を含むポリヌクレオチドの相補鎖とストリンジェントな条件下でハイブリダイズするポリヌクレオチドに含まれるヌクレオチド配列によりコードされるアミノ酸配列を含み、且つ、ヒトCD3及びカニクイザルCD3、並びに、ヒトGPRC5Dに結合する分子。
  68.  請求項50、53、58、59、62、64、65、及び66のいずれか1つに記載のヒトCD3及びカニクイザルCD3に結合する抗体又は該抗体の抗原結合性断片に含まれるアミノ酸配列と90%以上同一なアミノ酸配列を含み、且つ、ヒトCD3及びカニクイザルCD3、並びに、ヒトGPRC5Dに結合する分子。
  69.  請求項50、53、58、59、62、64、65、及び66のいずれか1つに記載の分子に含まれるヒトCD3及びカニクイザルCD3に結合する抗体又は該抗体の抗原結合性断片に含まれるアミノ酸配列において1乃至数個のアミノ酸が置換、欠失又は付加されてなるアミノ酸配列を含み、且つ、ヒトCD3及びカニクイザルCD3、並びに、ヒトGPRC5Dに結合する分子。
  70.  カニクイザルGPRC5Dに結合する、請求項42乃至69のいずれか1つに記載の分子。
  71.  二重特異的である請求項43乃至70のいずれか1つに記載の分子。
  72.  ポリペプチドである請求項42乃至71のいずれか1つに記載の分子。
  73.  請求項72に記載の分子の有するアミノ酸配列をコードするヌクレオチド配列を含むポリヌクレオチド。
  74.  請求項73に記載のポリヌクレオチドを含むベクター。
  75.  請求項73に記載のポリヌクレオチド若しくは請求項74に記載のベクター、又は、請求項71に記載の分子を産生する細胞。
  76.  請求項75に記載の細胞を培養する工程、及び、該培養物からヒトCD3及びカニクイザルCD3、並びに/又は、ヒトGPRC5Dに結合する分子を回収する工程を含む、ヒトCD3及びカニクイザルCD3、並びに、ヒトGPRC5Dに結合する分子の製造方法。
  77.  請求項76に記載の方法により得られる、ヒトCD3及びカニクイザルCD3、並びに、ヒトGPRC5Dに結合する分子。
  78.  カニクイザルGPRC5Dに結合する、請求項77に記載の分子。
  79.  請求項42乃至72、77及び78のいずれか1つに記載の分子、請求項73に記載のポリヌクレオチド、又は請求項74に記載のベクターを有効成分として含有する治療及び/又は予防のための医薬組成物。
  80.  癌の治療、及び/又は、予防のための請求項79に記載の医薬組成物。
  81.  癌が、GPRC5D蛋白質を発現している、乳癌、子宮内膜癌、卵巣癌、肺癌、胃癌、前立腺癌、腎癌、肝臓癌、膵臓癌、大腸癌、食道癌、膀胱癌、子宮頚癌、血液癌、リンパ腫、又は、悪性黒色腫である請求項80に記載の医薬組成物。
  82.  癌が、GPRC5D蛋白質を発現している多発性骨髄腫である請求項79又は80に記載の医薬組成物。
  83.  請求項42乃至72、77及び78のいずれか1つに記載の分子、又は、請求項79乃至82のいずれか1つに記載の医薬組成物を投与することを特徴とする癌の治療及び/又は予防方法。
  84.  GPRC5Dを発現している細胞へのT細胞リダイレクションによって、該細胞への細胞傷害を誘導することを特徴とする、請求項79乃至82のいずれか1つに記載の医薬組成物。
  85.  GPRC5Dを発現している細胞へのT細胞リダイレクションによって、該細胞への細胞傷害を誘導することを特徴とする、請求項83に記載の方法。 
  86.  請求項42乃至72、77及び78のいずれか1つに記載の分子、又は、請求項79乃至82のいずれか1つに記載の医薬組成物を投与する工程を含む、GPRC5Dを発現している細胞へのT細胞リダイレクションによって該細胞への細胞傷害を誘導する方法。
  87.  請求項42乃至72、77及び78のいずれか1つに記載の分子、又は、請求項79乃至82のいずれか1つに記載の医薬組成物を投与する工程を含む、GPRC5Dを発現している細胞へT細胞をリダイレクションする方法。
PCT/JP2018/003888 2017-02-07 2018-02-06 抗gprc5d抗体及び該抗体を含む分子 WO2018147245A1 (ja)

Priority Applications (15)

Application Number Priority Date Filing Date Title
BR112019016204-6A BR112019016204A2 (pt) 2017-02-07 2018-02-06 anticorpo ou fragmento de ligação a antígeno do anticorpo, polinucleotídeo, vetor, célula, imunócito artificial, métodos para produzir um anticorpo ou um fragmento de ligação a antígeno do anticorpo, para produzir uma molécula que se liga ao cd3 humano e cd3 de macaco cinomolgo e ao gprc5d humano, composição medicinal para tratamento e/ou prevenção, moléculas tendo atividade de ligação a antígeno e que se ligam ao cd3 humano e cd3 de macaco cinomolgo e ao gprc5d humano, e, usos para preparar um medicamento para tratar e/ou prevenir um câncer, para induzir citotoxicidade para as células expressando gprc5d e para redirecionamento de células t para as células expressando gprc5d
RU2019128134A RU2019128134A (ru) 2017-02-07 2018-02-06 Антитело против gprc5d и молекула, содержащая антитело
CN201880021882.6A CN110462038A (zh) 2017-02-07 2018-02-06 抗gprc5d抗体和包含所述抗体的分子
JP2018567427A JPWO2018147245A1 (ja) 2017-02-07 2018-02-06 抗gprc5d抗体及び該抗体を含む分子
CA3052938A CA3052938A1 (en) 2017-02-07 2018-02-06 Anti-gprc5d antibody and molecule comprising the antibody
SG11201907321TA SG11201907321TA (en) 2017-02-07 2018-02-06 Anti-gprc5d antibody and molecule comprising the antibody
KR1020197026251A KR20190133160A (ko) 2017-02-07 2018-02-06 항-gprc5d 항체 및 항-gprc5d 항체를 포함하는 분자
AU2018218753A AU2018218753A1 (en) 2017-02-07 2018-02-06 Anti-GPRC5D antibody and molecule containing same
EP18750649.8A EP3581651A4 (en) 2017-02-07 2018-02-06 ANTI-GPRC5D ANTIBODY AND MOLECULE WITH IT
MX2019009358A MX2019009358A (es) 2017-02-07 2018-02-06 Anticuerpo anti-gprc5d y molecula que comprende el anticuerpo.
US16/483,211 US20190367612A1 (en) 2017-02-07 2018-06-02 Anti-gprc5d antibody and molecule containing same
IL268588A IL268588A (en) 2017-02-07 2019-08-07 Anti-gprc5d antibodies, compositions comprising same and uses thereof
PH12019501824A PH12019501824A1 (en) 2017-02-07 2019-08-07 Anti-gprc5d antibody and molecule comprising the antibody
CONC2019/0009680A CO2019009680A2 (es) 2017-02-07 2019-09-06 Anticuerpo anti-gprc5d y molécula que comprende el anticuerpo
ZA2019/05905A ZA201905905B (en) 2017-02-07 2019-09-06 Anti-gprc5d antibody and molecule comprising the antibody

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017020220 2017-02-07
JP2017-020220 2017-02-07

Publications (1)

Publication Number Publication Date
WO2018147245A1 true WO2018147245A1 (ja) 2018-08-16

Family

ID=63108300

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/003888 WO2018147245A1 (ja) 2017-02-07 2018-02-06 抗gprc5d抗体及び該抗体を含む分子

Country Status (17)

Country Link
US (1) US20190367612A1 (ja)
EP (1) EP3581651A4 (ja)
JP (1) JPWO2018147245A1 (ja)
KR (1) KR20190133160A (ja)
CN (1) CN110462038A (ja)
AU (1) AU2018218753A1 (ja)
BR (1) BR112019016204A2 (ja)
CA (1) CA3052938A1 (ja)
CO (1) CO2019009680A2 (ja)
IL (1) IL268588A (ja)
MX (1) MX2019009358A (ja)
PH (1) PH12019501824A1 (ja)
RU (1) RU2019128134A (ja)
SG (2) SG11201907321TA (ja)
TW (1) TW201837174A (ja)
WO (1) WO2018147245A1 (ja)
ZA (1) ZA201905905B (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019220368A1 (en) 2018-05-16 2019-11-21 Janssen Biotech, Inc. Bcma/cd3 and gprdc5d/cd3 bispecific antibodies for use in cancer therapy
WO2019244107A1 (en) * 2018-06-21 2019-12-26 Daiichi Sankyo Company, Limited Compositions including cd3 antigen binding fragments and uses thereof
WO2020148677A1 (en) * 2019-01-18 2020-07-23 Janssen Biotech, Inc. Gprc5d chimeric antigen receptors and cells expressing the same
WO2021018859A3 (en) * 2019-07-31 2021-05-14 F. Hoffmann-La Roche Ag Antibodies binding to gprc5d
WO2022148370A1 (en) * 2021-01-05 2022-07-14 Lanova Medicines Development Co., Ltd. Anti-gprc5d monoclonal antibodies and uses thereof
WO2022175255A2 (en) 2021-02-16 2022-08-25 Janssen Pharmaceutica Nv Trispecific antibody targeting bcma, gprc5d, and cd3
WO2022210485A1 (ja) 2021-03-29 2022-10-06 第一三共株式会社 安定な多重特異性分子及びその利用
US11485783B2 (en) 2021-01-05 2022-11-01 Lanova Medicines Development Co., Ltd. Anti-GPRC5D monoclonal antibodies and uses thereof
US11685777B2 (en) 2016-07-20 2023-06-27 Janssen Pharmaceutica Nv Anti-GPRC5D antibodies, bispecific antigen binding molecules that bind GPRC5D and CD3, and uses thereof
WO2023174238A1 (zh) * 2022-03-14 2023-09-21 江苏恒瑞医药股份有限公司 特异性结合gprc5d和cd3的抗原结合分子及其医药用途
WO2024031091A2 (en) 2022-08-05 2024-02-08 Juno Therapeutics, Inc. Chimeric antigen receptors specific for gprc5d and bcma

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3858365B1 (en) 2016-09-01 2024-01-31 Chimera Bioengineering Inc. Gold optimized car t-cells
CN111989108A (zh) 2018-02-13 2020-11-24 嵌合体生物工程公司 利用rna去稳定元件协调基因表达
EP4004045A1 (en) * 2019-07-31 2022-06-01 F. Hoffmann-La Roche AG Antibodies binding to gprc5d
US20210046117A1 (en) 2019-08-18 2021-02-18 Chimera Bioengineering, Inc. Combination Therapy with Gold Controlled Transgenes
WO2022125392A1 (en) * 2020-12-09 2022-06-16 Chimera Bioengineering, Inc. Compositions and methods for activating t-cells
WO2022247804A1 (zh) * 2021-05-23 2022-12-01 上海祥耀生物科技有限责任公司 抗gprc5d抗体、其制备方法与用途
WO2022247756A1 (zh) * 2021-05-23 2022-12-01 上海邦耀生物科技有限公司 靶向gprc5d的嵌合抗原受体及其用途
WO2022260968A1 (en) * 2021-06-10 2022-12-15 Chimera Bioengineering, Inc. Compositions and methods for activating natural killer cells
CN116063500A (zh) * 2021-08-30 2023-05-05 原启生物科技(上海)有限责任公司 抗gprc5d抗原结合蛋白及其用途
WO2023078382A1 (zh) * 2021-11-05 2023-05-11 正大天晴药业集团股份有限公司 结合gprc5d的抗体及其用途
WO2023115347A1 (zh) * 2021-12-21 2023-06-29 上海驯鹿生物技术有限公司 靶向gprc5d的全人源抗体
WO2023173272A1 (zh) * 2022-03-15 2023-09-21 上海驯鹿生物技术有限公司 靶向gprc5d的全人源嵌合抗原受体(car)及其应用
WO2023125729A1 (zh) * 2021-12-31 2023-07-06 康源博创生物科技(北京)有限公司 一种抗cd3的人源化抗体及其在制备双特异性抗体中的应用
WO2023125728A1 (zh) * 2021-12-31 2023-07-06 康源博创生物科技(北京)有限公司 抗gprc5d抗体及其应用
WO2023125888A1 (zh) * 2021-12-31 2023-07-06 山东先声生物制药有限公司 一种gprc5d抗体及其应用
WO2023143537A1 (zh) * 2022-01-29 2023-08-03 恺兴生命科技(上海)有限公司 Gprc5d抗体及其应用
WO2023227062A1 (en) * 2022-05-27 2023-11-30 Antengene (Hangzhou) Biologics Co., Ltd. Novel anti-gprc5d antibodies, bispecific antigen binding molecules that bind gprc5d and cd3, and uses thereof
WO2024002308A1 (zh) * 2022-06-30 2024-01-04 康诺亚生物医药科技(成都)有限公司 一种新型多特异肿瘤抑制剂的开发和应用
CN116003598B (zh) * 2022-08-30 2024-04-26 苏州缔码生物科技有限公司 靶向人gprc5d的重组人源化单克隆抗体及其应用

Citations (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990007861A1 (en) 1988-12-28 1990-07-26 Protein Design Labs, Inc. CHIMERIC IMMUNOGLOBULINS SPECIFIC FOR p55 TAC PROTEIN OF THE IL-2 RECEPTOR
US4946778A (en) 1987-09-21 1990-08-07 Genex Corporation Single polypeptide chain binding molecules
WO1992001047A1 (en) 1990-07-10 1992-01-23 Cambridge Antibody Technology Limited Methods for producing members of specific binding pairs
US5091513A (en) 1987-05-21 1992-02-25 Creative Biomolecules, Inc. Biosynthetic antibody binding sites
WO1992020791A1 (en) 1990-07-10 1992-11-26 Cambridge Antibody Technology Limited Methods for producing members of specific binding pairs
WO1993006213A1 (en) 1991-09-23 1993-04-01 Medical Research Council Production of chimeric antibodies - a combinatorial approach
WO1993011236A1 (en) 1991-12-02 1993-06-10 Medical Research Council Production of anti-self antibodies from antibody segment repertoires and displayed on phage
WO1993019172A1 (en) 1992-03-24 1993-09-30 Cambridge Antibody Technology Limited Methods for producing members of specific binding pairs
US5260203A (en) 1986-09-02 1993-11-09 Enzon, Inc. Single polypeptide chain binding molecules
WO1995001438A1 (en) 1993-06-30 1995-01-12 Medical Research Council Sbp members with a chemical moiety covalently bound within the binding site; production and selection thereof
WO1995015388A1 (en) 1993-12-03 1995-06-08 Medical Research Council Recombinant binding proteins and peptides
WO1996027011A1 (en) 1995-03-01 1996-09-06 Genentech, Inc. A method for making heteromultimeric polypeptides
WO1999005432A1 (de) 1997-07-25 1999-02-04 Zf Friedrichshafen Ag Stufenloses reibradgetriebe
WO2000061739A1 (en) 1999-04-09 2000-10-19 Kyowa Hakko Kogyo Co., Ltd. Method for controlling the activity of immunologically functional molecule
US6214388B1 (en) 1994-11-09 2001-04-10 The Regents Of The University Of California Immunoliposomes that optimize internalization into target cells
WO2002031140A1 (fr) 2000-10-06 2002-04-18 Kyowa Hakko Kogyo Co., Ltd. Cellules produisant des compositions d'anticorps
WO2004061104A2 (en) 2003-01-07 2004-07-22 Symphogen A/S Method for manufacturing recombinant polyclonal proteins
US6972323B1 (en) 1997-04-01 2005-12-06 Sankyo Company, Limited Anti-Fas antibodies
US7129330B1 (en) 1998-05-05 2006-10-31 Deutsches Krebsforschungszentrum Stiftung Des Offentlichen Rechts Multivalent antibody constructs
WO2009048072A1 (ja) 2007-10-11 2009-04-16 Daiichi Sankyo Company, Limited 破骨細胞関連蛋白質Siglec-15を標的とした抗体
WO2009089004A1 (en) 2008-01-07 2009-07-16 Amgen Inc. Method for making antibody fc-heterodimeric molecules using electrostatic steering effects
WO2009137911A1 (en) 2008-05-15 2009-11-19 National Research Counsil Of Canada Process, vectors and engineered cell lines for enhanced large-scale transfection
WO2010151792A1 (en) 2009-06-26 2010-12-29 Regeneron Pharmaceuticals, Inc. Readily isolated bispecific antibodies with native immunoglobulin format
WO2013063702A1 (en) 2011-11-04 2013-05-10 Zymeworks Inc. Stable heterodimeric antibody design with mutations in the fc domain
WO2013147153A1 (ja) 2012-03-29 2013-10-03 株式会社未来創薬研究所 抗lamp5抗体およびその利用
WO2014110601A1 (en) 2013-01-14 2014-07-17 Xencor, Inc. Novel heterodimeric proteins
WO2014190441A1 (en) 2013-05-31 2014-12-04 Zymeworks Inc. Heteromultimers with reduced or silenced effector function
WO2016090329A2 (en) 2014-12-05 2016-06-09 Memorial Sloan-Kettering Cancer Center Antibodies targeting g-protein coupled receptor and methods of use
WO2016090312A1 (en) * 2014-12-05 2016-06-09 Memorial Sloan-Kettering Cancer Center Chimeric antigen receptors targeting g-protein coupled receptor and uses thereof
WO2018017786A2 (en) * 2016-07-20 2018-01-25 Janssen Pharmaceutica Nv Anti- gprc5d antibodies, bispecific antigen binding molecules that bind gprc5d and cd3, and uses thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2939760T3 (es) * 2014-03-15 2023-04-26 Novartis Ag Tratamiento de cáncer utilizando un receptor quimérico para antígenos
TW202130662A (zh) * 2015-01-23 2021-08-16 法商賽諾菲公司 特異性結合cd3及/或cd123之抗—cd3抗體,抗—cd123抗體及雙特異性抗體

Patent Citations (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5260203A (en) 1986-09-02 1993-11-09 Enzon, Inc. Single polypeptide chain binding molecules
US5455030A (en) 1986-09-02 1995-10-03 Enzon Labs, Inc. Immunotheraphy using single chain polypeptide binding molecules
US5091513A (en) 1987-05-21 1992-02-25 Creative Biomolecules, Inc. Biosynthetic antibody binding sites
US4946778A (en) 1987-09-21 1990-08-07 Genex Corporation Single polypeptide chain binding molecules
WO1990007861A1 (en) 1988-12-28 1990-07-26 Protein Design Labs, Inc. CHIMERIC IMMUNOGLOBULINS SPECIFIC FOR p55 TAC PROTEIN OF THE IL-2 RECEPTOR
WO1992020791A1 (en) 1990-07-10 1992-11-26 Cambridge Antibody Technology Limited Methods for producing members of specific binding pairs
WO1992001047A1 (en) 1990-07-10 1992-01-23 Cambridge Antibody Technology Limited Methods for producing members of specific binding pairs
WO1993006213A1 (en) 1991-09-23 1993-04-01 Medical Research Council Production of chimeric antibodies - a combinatorial approach
WO1993011236A1 (en) 1991-12-02 1993-06-10 Medical Research Council Production of anti-self antibodies from antibody segment repertoires and displayed on phage
WO1993019172A1 (en) 1992-03-24 1993-09-30 Cambridge Antibody Technology Limited Methods for producing members of specific binding pairs
WO1995001438A1 (en) 1993-06-30 1995-01-12 Medical Research Council Sbp members with a chemical moiety covalently bound within the binding site; production and selection thereof
WO1995015388A1 (en) 1993-12-03 1995-06-08 Medical Research Council Recombinant binding proteins and peptides
US6214388B1 (en) 1994-11-09 2001-04-10 The Regents Of The University Of California Immunoliposomes that optimize internalization into target cells
WO1996027011A1 (en) 1995-03-01 1996-09-06 Genentech, Inc. A method for making heteromultimeric polypeptides
US6972323B1 (en) 1997-04-01 2005-12-06 Sankyo Company, Limited Anti-Fas antibodies
WO1999005432A1 (de) 1997-07-25 1999-02-04 Zf Friedrichshafen Ag Stufenloses reibradgetriebe
US7129330B1 (en) 1998-05-05 2006-10-31 Deutsches Krebsforschungszentrum Stiftung Des Offentlichen Rechts Multivalent antibody constructs
WO2000061739A1 (en) 1999-04-09 2000-10-19 Kyowa Hakko Kogyo Co., Ltd. Method for controlling the activity of immunologically functional molecule
WO2002031140A1 (fr) 2000-10-06 2002-04-18 Kyowa Hakko Kogyo Co., Ltd. Cellules produisant des compositions d'anticorps
WO2004061104A2 (en) 2003-01-07 2004-07-22 Symphogen A/S Method for manufacturing recombinant polyclonal proteins
WO2009048072A1 (ja) 2007-10-11 2009-04-16 Daiichi Sankyo Company, Limited 破骨細胞関連蛋白質Siglec-15を標的とした抗体
WO2009089004A1 (en) 2008-01-07 2009-07-16 Amgen Inc. Method for making antibody fc-heterodimeric molecules using electrostatic steering effects
WO2009137911A1 (en) 2008-05-15 2009-11-19 National Research Counsil Of Canada Process, vectors and engineered cell lines for enhanced large-scale transfection
WO2010151792A1 (en) 2009-06-26 2010-12-29 Regeneron Pharmaceuticals, Inc. Readily isolated bispecific antibodies with native immunoglobulin format
WO2013063702A1 (en) 2011-11-04 2013-05-10 Zymeworks Inc. Stable heterodimeric antibody design with mutations in the fc domain
WO2013147153A1 (ja) 2012-03-29 2013-10-03 株式会社未来創薬研究所 抗lamp5抗体およびその利用
WO2014110601A1 (en) 2013-01-14 2014-07-17 Xencor, Inc. Novel heterodimeric proteins
WO2014190441A1 (en) 2013-05-31 2014-12-04 Zymeworks Inc. Heteromultimers with reduced or silenced effector function
WO2016090329A2 (en) 2014-12-05 2016-06-09 Memorial Sloan-Kettering Cancer Center Antibodies targeting g-protein coupled receptor and methods of use
WO2016090312A1 (en) * 2014-12-05 2016-06-09 Memorial Sloan-Kettering Cancer Center Chimeric antigen receptors targeting g-protein coupled receptor and uses thereof
WO2018017786A2 (en) * 2016-07-20 2018-01-25 Janssen Pharmaceutica Nv Anti- gprc5d antibodies, bispecific antigen binding molecules that bind gprc5d and cd3, and uses thereof

Non-Patent Citations (36)

* Cited by examiner, † Cited by third party
Title
ANALYTICAL BIOCHEMISTRY, vol. 360, 2007, pages 75 - 83
ANNU. REV. IMMUNOL, vol. 12, 1994, pages 433 - 455
DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY, vol. 27, 2003, pages 55 - 77
GLUZMAN, Y., CELL, vol. 23, 1981, pages 175 - 182
H BRAUNER-OSBORNE ET AL., BIOCHIM BIOPHYS ACTA, vol. 1518, no. 3, April 2001 (2001-04-01), pages 237 - 248
HAMERS-CASTERMAN C. ET AL., NATURE, vol. 363, no. 6428, 1993, pages 446 - 448
HUSTON, J.S. ET AL., PNAS, vol. 85, 1988, pages 5879 - 5883
J ATAMANIUK ET AL., EUROPEAN JOURNAL OF CLINICAL INVESTIGATION, vol. 42, no. 9, May 2012 (2012-05-01), pages 953 - 960
J BIOL CHEM, vol. 274, no. 26, 1999, pages 18218 - 30
J IMMUNOL METHODS, vol. 201, no. 1, 1997, pages 35 - 55
JOURNAL OF CHROMATOGRAPHY A, vol. 705, 1995, pages 129 - 134
KABAT ET AL.: "Sequences of Proteins of Immunological Interest", 1991, PUBLIC HEALTH SERVICE NATIONAL INSTITUTES OF HEALTH
KOHLERMILSTEIN, NATURE, vol. 256, 1975, pages 495 - 497
KUROIWA, Y., NUC. ACIDS RES., vol. 26, 1998, pages 3447 - 3448
LARS KJER-NIELSEN ET AL., PNAS, 2004
LEE, H-S ET AL., MOLECULAR IMMUNOLOGY, vol. 36, 1999, pages 61 - 71
METHODS IN ENZYMOLOGY, vol. 203, 1991, pages 121 - 153
METHODS MOL BIOL, vol. 178, 2002, pages 59 - 71
METHODS MOL BIOL., vol. 1045, 2013, pages 1 - 27
MUYLDEMANS S. ET AL., PROTEIN ENG., vol. 7, no. 9, 1994, pages 1129 - 35
NATURE BIOTECHNOLOGY, vol. 23, 2005, pages 1137 - 1146
NATURE, vol. 321, 1986, pages 522 - 525
NUC. ACID RES., vol. 35, 2007, pages D301 - D303
PROTEIN ENG DES SEL., vol. 2, 2012, pages 81 - 8
QUEEN ET AL., PROC. NATL. ACAD. SCI. USA, vol. 86, 1989, pages 10029 - 10033
RAYMOND C. ET AL.: "Methods", vol. 55, 2011, NATIONAL RESEARCH COUNCIL CANADA, pages: 44 - 51
S INOUE ET AL., JOURNAL OF INVESTIGATIVE DERMATOLOGY, vol. 122, no. 3, March 2004 (2004-03-01), pages 565 - 573
SAIKI, R.K. ET AL., SCIENCE, vol. 239, 1988, pages 487 - 489
See also references of EP3581651A4
SHIRRMANN, T. ET AL., MABS, vol. 2, no. 1, 2010, pages 1 - 4
SUBEDI GP ET AL., J VIS EXP., vol. 106, 2015
TOMIZUKA, K., PROC. NATL. ACAD. SCI. USA, vol. 97, 2000, pages 722 - 727
TOMIZUKA, NATURE GENETICS, vol. 16, 1997, pages 133 - 143
URLAUB, G.CHASIN, L.A., PNAS, vol. 77, 1980, pages 4126 - 4220
Y COHEN ET AL., HEMATOLOGY, vol. 18, no. 6, November 2013 (2013-11-01), pages 348 - 351
ZACCOLO ET AL., J. MOL. BIOL., vol. 255, 1996, pages 589 - 603

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11884722B2 (en) 2016-07-20 2024-01-30 Janssen Biotech, Inc. Anti-GPRC5D antibodies, bispecific antigen binding molecules that bind GPRC5D and CD3, and uses thereof
US11685777B2 (en) 2016-07-20 2023-06-27 Janssen Pharmaceutica Nv Anti-GPRC5D antibodies, bispecific antigen binding molecules that bind GPRC5D and CD3, and uses thereof
WO2019220368A1 (en) 2018-05-16 2019-11-21 Janssen Biotech, Inc. Bcma/cd3 and gprdc5d/cd3 bispecific antibodies for use in cancer therapy
WO2019244107A1 (en) * 2018-06-21 2019-12-26 Daiichi Sankyo Company, Limited Compositions including cd3 antigen binding fragments and uses thereof
WO2020148677A1 (en) * 2019-01-18 2020-07-23 Janssen Biotech, Inc. Gprc5d chimeric antigen receptors and cells expressing the same
JP2022543553A (ja) * 2019-07-31 2022-10-13 エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト Gprc5dに結合する抗体
WO2021018859A3 (en) * 2019-07-31 2021-05-14 F. Hoffmann-La Roche Ag Antibodies binding to gprc5d
CN114174342A (zh) * 2019-07-31 2022-03-11 豪夫迈·罗氏有限公司 与gprc5d结合的抗体
US11485783B2 (en) 2021-01-05 2022-11-01 Lanova Medicines Development Co., Ltd. Anti-GPRC5D monoclonal antibodies and uses thereof
WO2022148370A1 (en) * 2021-01-05 2022-07-14 Lanova Medicines Development Co., Ltd. Anti-gprc5d monoclonal antibodies and uses thereof
WO2022175255A2 (en) 2021-02-16 2022-08-25 Janssen Pharmaceutica Nv Trispecific antibody targeting bcma, gprc5d, and cd3
WO2022210485A1 (ja) 2021-03-29 2022-10-06 第一三共株式会社 安定な多重特異性分子及びその利用
KR20230162597A (ko) 2021-03-29 2023-11-28 다이이찌 산쿄 가부시키가이샤 안정적인 다중 특이성 분자 및 그 이용
WO2023174238A1 (zh) * 2022-03-14 2023-09-21 江苏恒瑞医药股份有限公司 特异性结合gprc5d和cd3的抗原结合分子及其医药用途
WO2024031091A2 (en) 2022-08-05 2024-02-08 Juno Therapeutics, Inc. Chimeric antigen receptors specific for gprc5d and bcma

Also Published As

Publication number Publication date
CN110462038A (zh) 2019-11-15
CA3052938A1 (en) 2018-08-16
SG10201912368XA (en) 2020-02-27
EP3581651A4 (en) 2021-05-12
MX2019009358A (es) 2019-12-02
US20190367612A1 (en) 2019-12-05
AU2018218753A1 (en) 2019-09-26
RU2019128134A3 (ja) 2021-12-27
PH12019501824A1 (en) 2020-09-14
ZA201905905B (en) 2022-05-25
IL268588A (en) 2019-09-26
TW201837174A (zh) 2018-10-16
BR112019016204A2 (pt) 2020-07-07
EP3581651A1 (en) 2019-12-18
SG11201907321TA (en) 2019-09-27
CO2019009680A2 (es) 2020-02-07
RU2019128134A (ru) 2021-03-09
KR20190133160A (ko) 2019-12-02
JPWO2018147245A1 (ja) 2019-11-21

Similar Documents

Publication Publication Date Title
WO2018147245A1 (ja) 抗gprc5d抗体及び該抗体を含む分子
US11753473B2 (en) Anti-PD-L1 antibodies
JP7202185B2 (ja) 抗cd3抗体及び該抗体を含む分子
CN117024593A (zh) 抗SIRPα抗体
US11952423B2 (en) Bispecific antibody
CN114728065A (zh) 针对cd3和bcma的抗体和自其制备的双特异性结合蛋白
KR20230132544A (ko) 신규한 항-그렘린1 항체
US20230357398A1 (en) Novel human antibodies binding to human cd3 epsilon
JP2022537703A (ja) 抗体および使用方法
TW202340250A (zh) 標靶cd25的抗體及其製備方法和應用
TW202313699A (zh) 新型抗sirpa抗體
TW202241956A (zh) 新穎抗cd24抗體
KR20220131527A (ko) 상피 카드헤린-특이적 항체

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18750649

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018567427

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3052938

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019016204

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20197026251

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018750649

Country of ref document: EP

Effective date: 20190909

ENP Entry into the national phase

Ref document number: 2018218753

Country of ref document: AU

Date of ref document: 20180206

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112019016204

Country of ref document: BR

Free format text: APRESENTE NOVA FOLHA 1 DO RELATORIO DESCRITIVO MODIFICADO, TENDO EM VISTA QUE O APRESENTADO NA PETICAO NO 870200003877 ENCONTRA-SE EM DESACORDO COM A FORMA PREVISTA NO ART. 39 DA INSTRUCAO NORMATIVA NO 31/2013 NO QUE TANGE A NUMERACAO DE PAGINAS.

ENP Entry into the national phase

Ref document number: 112019016204

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190805