TWI545764B - Semiconductor device and method for manufacturing the same - Google Patents

Semiconductor device and method for manufacturing the same Download PDF

Info

Publication number
TWI545764B
TWI545764B TW101133490A TW101133490A TWI545764B TW I545764 B TWI545764 B TW I545764B TW 101133490 A TW101133490 A TW 101133490A TW 101133490 A TW101133490 A TW 101133490A TW I545764 B TWI545764 B TW I545764B
Authority
TW
Taiwan
Prior art keywords
film
insulating film
electrode layer
oxide
transistor
Prior art date
Application number
TW101133490A
Other languages
Chinese (zh)
Other versions
TW201318172A (en
Inventor
齋藤利彥
磯部敦生
花岡一哉
肥塚純一
世川慎也
倉田求
石塚章廣
Original Assignee
半導體能源研究所股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 半導體能源研究所股份有限公司 filed Critical 半導體能源研究所股份有限公司
Publication of TW201318172A publication Critical patent/TW201318172A/en
Application granted granted Critical
Publication of TWI545764B publication Critical patent/TWI545764B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41733Source or drain electrodes for field effect devices for thin film transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Film Transistor (AREA)
  • Semiconductor Memories (AREA)
  • Liquid Crystal (AREA)
  • Electroluminescent Light Sources (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Non-Volatile Memory (AREA)

Description

半導體裝置及半導體裝置的製造方法 Semiconductor device and method of manufacturing semiconductor device

本發明係關於一種半導體裝置及半導體裝置的製造方法。 The present invention relates to a semiconductor device and a method of fabricating the same.

注意,在本說明書中,半導體裝置是指能夠藉由利用半導體特性而工作的所有裝置,因此電光裝置、半導體電路及電子裝置都是半導體裝置。 Note that in the present specification, a semiconductor device refers to all devices that can operate by utilizing semiconductor characteristics, and thus the electro-optical device, the semiconductor circuit, and the electronic device are all semiconductor devices.

藉由利用形成在具有絕緣表面的基板上的半導體薄膜來構成電晶體(也稱為薄膜電晶體(TFT))的技術受到關注。該電晶體被廣泛地應用於如積體電路(IC)及影像顯示裝置(顯示裝置)等的電子裝置。作為可以應用於電晶體的半導體薄膜,矽類半導體材料是眾所周知的。作為其他材料,氧化物半導體受到關注。 A technique of forming a transistor (also referred to as a thin film transistor (TFT)) by using a semiconductor thin film formed on a substrate having an insulating surface has been attracting attention. The transistor is widely used in electronic devices such as an integrated circuit (IC) and an image display device (display device). As a semiconductor thin film which can be applied to a transistor, a germanium-based semiconductor material is well known. As other materials, oxide semiconductors have attracted attention.

例如,公開了作為電晶體的活性層使用包含銦(In)、鎵(Ga)及鋅(Zn)的非晶氧化物的電晶體(參照專利文獻1)。 For example, a transistor in which an amorphous oxide containing indium (In), gallium (Ga), and zinc (Zn) is used as an active layer of a transistor is disclosed (see Patent Document 1).

[專利文獻1]日本專利申請公開第2006-165528號公報 [Patent Document 1] Japanese Patent Application Publication No. 2006-165528

為了實現電晶體的工作的高速化、電晶體的低耗電量化、高集體化等,必須要實現電晶體的微型化。 In order to achieve high speed operation of the transistor, low power consumption of the transistor, high collectivization, etc., it is necessary to achieve miniaturization of the transistor.

本發明的目的之一是提供如下結構及其製造方法,即,為了實現更高性能的半導體裝置,提高實現了微型化的電晶體的導通特性(例如,導通電流或場效應遷移率)來實現半導體裝置的高速回應、高速驅動。 It is an object of the present invention to provide a structure and a method of fabricating the same that, in order to realize a semiconductor device of higher performance, an on-state characteristic (for example, on-current or field-effect mobility) of a miniaturized transistor is improved. High-speed response and high-speed driving of semiconductor devices.

此外,伴隨電晶體的微型化,有製程中的良率的降低的憂慮。 Further, with the miniaturization of the transistor, there is a concern that the yield in the process is lowered.

本發明的目的之一是以高良率提供即使具有微型的結構也具有高電特性的電晶體。 One of the objects of the present invention is to provide a transistor having high electrical characteristics even with a micro structure even at a high yield.

另外,本發明的目的之一是在包括該電晶體的半導體裝置中也實現高性能化、高可靠性化及高生產化。 Further, one of the objects of the present invention is to achieve high performance, high reliability, and high productivity in a semiconductor device including the transistor.

在具有依次層疊有氧化物半導體膜、閘極絕緣膜及在側面設置有側壁絕緣層的閘極電極層的電晶體的半導體裝置中,以與氧化物半導體膜及側壁絕緣層接觸的方式設置源極電極層及汲極電極層。在該半導體裝置的製程中,以覆蓋氧化物半導體膜、側壁絕緣層及閘極電極層上的方式層疊導電膜及層間絕緣膜,藉由對層間絕緣膜及導電膜進行切削(研磨、拋光)製程去除閘極電極層上的導電膜,來形成源極電極層及汲極電極層。作為切削(研磨、拋光)方法,可以適當地利用化學機械拋光(Chemical Mechanical Polishing:CMP)法。 In a semiconductor device having a transistor in which an oxide semiconductor film, a gate insulating film, and a gate electrode layer provided with a sidewall insulating layer are laminated in this order, a source is provided in contact with the oxide semiconductor film and the sidewall insulating layer a pole electrode layer and a drain electrode layer. In the process of the semiconductor device, the conductive film and the interlayer insulating film are laminated so as to cover the oxide semiconductor film, the sidewall insulating layer, and the gate electrode layer, and the interlayer insulating film and the conductive film are cut (polished, polished). The process removes the conductive film on the gate electrode layer to form a source electrode layer and a drain electrode layer. As the cutting (polishing, polishing) method, a chemical mechanical polishing (CMP) method can be suitably used.

因為在形成源極電極層及汲極電極層的製程中的去除閘極電極層上的導電膜的製程中不利用使用光阻掩罩的蝕刻製程,所以可以準確地進行精密的加工。因此,在半導體裝置的製程中,可以以高良率製造形狀和特性的偏差少 的具有微型的結構的電晶體。 Since the etching process using the photoresist mask is not used in the process of removing the conductive film on the gate electrode layer in the process of forming the source electrode layer and the gate electrode layer, precise processing can be accurately performed. Therefore, in the manufacturing process of the semiconductor device, variations in shape and characteristics can be produced with high yield. A transistor having a miniature structure.

另外,較佳在閘極電極層上設置絕緣膜。在去除設置在絕緣膜上的用作源極電極層及汲極電極層的導電膜的製程中,可以去除該絕緣膜的一部分或整個部分。 Further, it is preferable to provide an insulating film on the gate electrode layer. In the process of removing the conductive film serving as the source electrode layer and the gate electrode layer provided on the insulating film, a part or the entire portion of the insulating film may be removed.

以閘極電極層為掩模將摻雜劑以自對準的方式引入到氧化物半導體膜中,在氧化物半導體膜中夾著通道形成區形成其電阻比通道形成區的電阻低且包含摻雜劑的低電阻區。摻雜劑是改變氧化物半導體膜的導電率的雜質。作為摻雜劑的引入方法,可以利用離子植入法、離子摻雜法、電漿浸沒式離子植入法(Plasma-immersion ion implantation method)等。 The dopant is introduced into the oxide semiconductor film in a self-aligned manner by using the gate electrode layer as a mask, and the oxide forming region is formed in the oxide semiconductor film with a lower resistance than the channel forming region and contains the doping. Low resistance zone of the dopant. The dopant is an impurity that changes the conductivity of the oxide semiconductor film. As a method of introducing the dopant, an ion implantation method, an ion doping method, a plasma immersion ion implantation method, or the like can be used.

藉由具有在通道長度方向上夾著通道形成區包括低電阻區的氧化物半導體膜,該電晶體具有高導通特性(例如,導通電流及場效應遷移率),並能夠進行高速工作及高速回應。 The oxide semiconductor film having a low resistance region sandwiching the channel formation region in the channel length direction has high conduction characteristics (for example, on current and field effect mobility), and is capable of high-speed operation and high-speed response. .

本說明書所公開的發明的結構的一個方式是一種半導體裝置,包括:設置在氧化物絕緣膜上的包括通道形成區的氧化物半導體膜;氧化物半導體膜上的閘極絕緣膜;閘極絕緣膜上的閘極電極層及絕緣膜的疊層;覆蓋閘極電極層的側面及絕緣膜的側面的側壁絕緣層;與氧化物半導體膜、閘極絕緣膜的側面和側壁絕緣層的側面接觸的源極電極層及汲極電極層;以及源極電極層及汲極電極層上的層間絕緣膜,其中,源極電極層及汲極電極層的上面的高度低於絕緣膜、側壁絕緣層及層間絕緣膜的上面的高度且高 於閘極電極層的上面的高度,並且,在氧化物半導體膜中,包括與閘極絕緣膜重疊的區域的不與閘極電極層重疊的區域包含摻雜劑。 One mode of the structure of the invention disclosed in the present specification is a semiconductor device comprising: an oxide semiconductor film including a channel formation region provided on an oxide insulating film; a gate insulating film on the oxide semiconductor film; gate insulating a stack of a gate electrode layer and an insulating film on the film; a sidewall insulating layer covering a side surface of the gate electrode layer and a side surface of the insulating film; and a side surface of the oxide semiconductor film, the side surface of the gate insulating film, and the sidewall insulating layer The source electrode layer and the drain electrode layer; and the interlayer insulating film on the source electrode layer and the drain electrode layer, wherein the upper surface of the source electrode layer and the drain electrode layer has a lower height than the insulating film and the sidewall insulating layer And the height and height of the upper layer of the interlayer insulating film In the upper surface of the gate electrode layer, and in the oxide semiconductor film, a region including a region overlapping the gate insulating film that does not overlap with the gate electrode layer contains a dopant.

在上述結構中,本說明書所公開的發明的結構的一個方式是一種半導體裝置,其中絕緣膜、側壁絕緣層及層間絕緣膜的上面的高度一致。 In the above configuration, one embodiment of the structure of the invention disclosed in the present specification is a semiconductor device in which the heights of the upper surfaces of the insulating film, the sidewall insulating layer, and the interlayer insulating film are uniform.

另外,在氧化物半導體膜中,不與源極電極層或汲極電極層重疊的區域也可以具有比與源極電極層或汲極電極層重疊的區域高的氧濃度。 Further, in the oxide semiconductor film, a region not overlapping the source electrode layer or the gate electrode layer may have a higher oxygen concentration than a region overlapping the source electrode layer or the gate electrode layer.

本說明書所公開的發明的結構的一個方式是一種半導體裝置的製造方法,包括如下步驟:形成氧化物絕緣膜;在氧化物絕緣膜上形成氧化物半導體膜;在氧化物半導體膜上形成閘極絕緣膜;在閘極絕緣膜上層疊與氧化物半導體膜重疊的閘極電極層及絕緣膜;以閘極電極層及絕緣膜為掩模將摻雜劑選擇性地引入到氧化物半導體膜中;在閘極絕緣膜上形成覆蓋閘極電極層的側面及絕緣膜的側面的側壁絕緣層;在氧化物半導體膜、閘極絕緣膜、閘極電極層、絕緣膜及側壁絕緣層上形成導電膜;在導電膜上形成層間絕緣膜;以及藉由化學機械拋光法,直到使閘極電極層上的絕緣膜露出去除層間絕緣膜及導電膜而分離導電膜,來形成源極電極層及汲極電極層。 One mode of the structure of the invention disclosed in the present specification is a method of manufacturing a semiconductor device, comprising the steps of: forming an oxide insulating film; forming an oxide semiconductor film on the oxide insulating film; and forming a gate on the oxide semiconductor film An insulating film; a gate electrode layer and an insulating film overlapping the oxide semiconductor film are stacked on the gate insulating film; and the dopant is selectively introduced into the oxide semiconductor film using the gate electrode layer and the insulating film as a mask Forming a sidewall insulating layer covering the side surface of the gate electrode layer and the side surface of the insulating film on the gate insulating film; forming a conductive layer on the oxide semiconductor film, the gate insulating film, the gate electrode layer, the insulating film, and the sidewall insulating layer a film; forming an interlayer insulating film on the conductive film; and forming a source electrode layer and a germanium by chemical mechanical polishing until the insulating film on the gate electrode layer is exposed to remove the interlayer insulating film and the conductive film to separate the conductive film Electrode layer.

在上述結構中,也可以在絕緣膜、源極電極層、汲極電極層、側壁絕緣層及層間絕緣膜上設置用作保護絕緣膜的緻密性高的無機絕緣膜(典型的是氧化鋁膜)。 In the above structure, a dense insulating inorganic insulating film (typically an aluminum oxide film) serving as a protective insulating film may be provided on the insulating film, the source electrode layer, the gate electrode layer, the sidewall insulating layer, and the interlayer insulating film. ).

在上述結構中,也可以在源極電極層及汲極電極層與層間絕緣膜之間設置用作保護絕緣膜的緻密性高的無機絕緣膜(典型的是氧化鋁膜)。 In the above configuration, an inorganic insulating film (typically an aluminum oxide film) having high density as a protective insulating film may be provided between the source electrode layer and the gate electrode layer and the interlayer insulating film.

另外,在去除閘極電極層上的導電膜的製程中,除了化學機械拋光法等切削(研磨、拋光)方法之外,還可以組合蝕刻(乾蝕刻、濕蝕刻)法或電漿處理等。例如,也可以在利用化學機械拋光法的去除製程之後進行乾蝕刻法或電漿處理,來實現處理表面的平坦性的提高。 Further, in the process of removing the conductive film on the gate electrode layer, in addition to the cutting (polishing, polishing) method such as chemical mechanical polishing, etching (dry etching, wet etching) or plasma treatment may be combined. For example, dry etching or plasma treatment may be performed after the removal process by the chemical mechanical polishing method to improve the flatness of the treated surface.

在上述結構中,也可以藉由平坦化處理使後面形成氧化物半導體膜的氧化物絕緣膜表面平坦化。由此,可以高覆蓋率地設置厚度薄的氧化物半導體膜。作為平坦化處理,可以單獨或組合利用化學機械拋光法、蝕刻法、電漿處理等。 In the above configuration, the surface of the oxide insulating film on which the oxide semiconductor film is formed later may be planarized by a planarization process. Thereby, the oxide semiconductor film having a small thickness can be provided with high coverage. As the planarization treatment, a chemical mechanical polishing method, an etching method, a plasma treatment, or the like can be used singly or in combination.

另外,也可以進行從氧化物半導體膜釋放氫或水分的加熱處理(脫水化處理或脫氫化處理)。此外,當作為氧化物半導體膜使用晶體氧化物半導體膜時,也可以進行用來晶化的加熱處理。 Further, heat treatment (dehydration treatment or dehydrogenation treatment) for releasing hydrogen or moisture from the oxide semiconductor film may be performed. Further, when a crystalline oxide semiconductor film is used as the oxide semiconductor film, heat treatment for crystallization can also be performed.

另外,也可以將氧供應到氧化物半導體膜中。由於脫水化處理或脫氫化處理,有可能構成氧化物半導體的主要成分材料的氧同時脫離而減少。在氧化物半導體膜中,脫離氧的部分存在有氧缺損,而起因於該氧缺損會產生導致電晶體的電特性變動的施體能階。 In addition, oxygen may also be supplied to the oxide semiconductor film. Owing to the dehydration treatment or the dehydrogenation treatment, oxygen which is a main component material constituting the oxide semiconductor may be simultaneously desorbed and reduced. In the oxide semiconductor film, oxygen depletion occurs in a portion where oxygen is removed, and a donor energy level due to fluctuation in electrical characteristics of the transistor occurs due to the oxygen deficiency.

因此,較佳對進行了脫水化處理或脫氫化處理的氧化物半導體膜供應氧。藉由對氧化物半導體膜供應氧,可以 填補膜中的氧缺損。 Therefore, it is preferred to supply oxygen to the oxide semiconductor film subjected to the dehydration treatment or the dehydrogenation treatment. By supplying oxygen to the oxide semiconductor film, Fill the oxygen deficiency in the membrane.

例如,藉由以與氧化物半導體膜接觸的方式設置用作氧的供應源的含多量(過剩)的氧的氧化物絕緣膜,可以將氧從該氧化物絕緣膜供應到氧化物半導體膜中。在上述結構中,也可以藉由在作為脫水化處理或脫氫化處理進行了加熱處理的氧化物半導體膜與氧化物絕緣膜的至少一部分接觸的狀態下進行加熱處理,對氧化物半導體膜供應氧。 For example, oxygen can be supplied from the oxide insulating film to the oxide semiconductor film by providing an oxide insulating film containing a large amount (excess) of oxygen serving as a supply source of oxygen in contact with the oxide semiconductor film. . In the above configuration, the oxide semiconductor film which has been subjected to the heat treatment as the dehydration treatment or the dehydrogenation treatment is subjected to heat treatment in a state in which at least a part of the oxide insulating film is in contact with the oxide insulating film, and oxygen is supplied to the oxide semiconductor film. .

此外,也可以在進行了脫水化處理或脫氫化處理的氧化物半導體膜中引入氧(至少包含氧自由基、氧原子和氧離子中的任一種)而對膜中供應氧。作為氧的引入方法,可以使用離子植入法、離子摻雜法、電漿浸沒式離子植入法、電漿處理等。 Further, oxygen may be introduced into the oxide semiconductor film subjected to the dehydration treatment or the dehydrogenation treatment (including at least any one of an oxygen radical, an oxygen atom, and an oxygen ion) to supply oxygen to the film. As a method of introducing oxygen, an ion implantation method, an ion doping method, a plasma immersion ion implantation method, a plasma treatment, or the like can be used.

再者,較佳的是,使設置在電晶體中的氧化物半導體膜為如下膜,即氧化物半導體包括與氧化物半導體處於結晶狀態時的化學計量組成相比氧含量過剩的區域的膜。此時,氧含量超過氧化物半導體的化學計量組成。或者,氧含量超過單晶時的氧含量。有時氧存在於氧化物半導體的晶格之間。 Further, it is preferable that the oxide semiconductor film provided in the transistor is a film in which the oxide semiconductor includes a region having an excessive oxygen content as compared with a stoichiometric composition when the oxide semiconductor is in a crystalline state. At this time, the oxygen content exceeds the stoichiometric composition of the oxide semiconductor. Alternatively, the oxygen content exceeds the oxygen content of the single crystal. Oxygen is sometimes present between the crystal lattices of the oxide semiconductor.

藉由從氧化物半導體去除氫或水分,以儘量不包含雜質的方式進行高度純化且供應氧填補氧缺損,可以實現I型(本質)氧化物半導體或無限趨近於I型(本質)的氧化物半導體。由此,可以使氧化物半導體的費米能階(Ef)成為與本質費米能階(Ei)相同的程度。由此,藉 由將該氧化物半導體膜用於電晶體,可以降低因氧缺損而產生的電晶體的臨界電壓Vth的偏差、臨界電壓的漂移△Vth。 By removing hydrogen or moisture from an oxide semiconductor, highly purified without impurities, and supplying oxygen to fill oxygen defects, a type I (essential) oxide semiconductor or an infinitely close type I (essential) oxidation can be realized. Semiconductor. Thereby, the Fermi level (Ef) of the oxide semiconductor can be made to be the same as the essential Fermi level (Ei). Thus, borrow By using this oxide semiconductor film for a transistor, it is possible to reduce the variation of the threshold voltage Vth of the transistor due to the oxygen deficiency and the drift of the threshold voltage ΔVth.

本發明的一個方式關於一種半導體裝置,該半導體裝置具有電晶體或包括電晶體的電路。例如,本發明的一個方式關於一種半導體裝置,該半導體裝置具有其通道形成區由氧化物半導體形成的電晶體或包括電晶體的電路。例如,本發明關於:LSI;CPU;安裝在電源電路中的功率裝置;包括記憶體、閘流電晶體、轉換器以及影像感測器等的半導體積體電路;以及作為部件安裝有以液晶顯示面板為代表的電光學裝置或具有發光元件的發光顯示裝置的電子裝置。 One aspect of the present invention is directed to a semiconductor device having a transistor or a circuit including a transistor. For example, one aspect of the present invention relates to a semiconductor device having a transistor in which a channel formation region is formed of an oxide semiconductor or a circuit including a transistor. For example, the present invention relates to: an LSI; a CPU; a power device mounted in a power supply circuit; a semiconductor integrated circuit including a memory, a thyristor, a converter, and an image sensor; and a liquid crystal display mounted as a component The panel is a representative of an electro-optical device or an electronic device of a light-emitting display device having a light-emitting element.

本發明可以以高良率提供即使具有微型的結構也具有高電特性的電晶體。 The present invention can provide a transistor having high electrical characteristics even with a micro structure at a high yield.

另外,在包括該電晶體的半導體裝置中也可以實現高性能化、高可靠性化及高生產化。 Further, in the semiconductor device including the transistor, high performance, high reliability, and high productivity can be achieved.

下面,參照圖式詳細地說明本說明書所公開的發明的實施方式。但是,所屬技術領域的普通技術人員可以很容易地理解一個事實,就是本說明書所公開的發明的方式及詳細內容可以被變換為各種各樣的形式而不侷限於以下說明。另外,本說明書所公開的發明不應該被解釋為僅限定在以下所示的實施方式所記載的內容中。此外,為了方便 起見附加了“第一”、“第二”等序數詞,其並不表示製程順序或疊層順序。另外,該序數詞在本說明書中不表示用來特定發明的事項的固有名稱。 Hereinafter, embodiments of the invention disclosed in the present specification will be described in detail with reference to the drawings. However, those skilled in the art can easily understand the fact that the manner and details of the invention disclosed in the specification can be changed to various forms without being limited to the following description. In addition, the invention disclosed in the present specification should not be construed as being limited to the contents described in the embodiments described below. In addition, for convenience Ordinal numbers such as "first" and "second" are appended, and do not denote a process sequence or a stacking order. In addition, the ordinal number does not indicate the inherent name of the item used for the specific invention in this specification.

實施方式1 Embodiment 1

在本實施方式中,參照圖1A和圖1B等對半導體裝置及半導體裝置的製造方法的一個方式進行說明。在本實施方式中,作為半導體裝置的一個例子示出具有氧化物半導體膜的電晶體。 In the present embodiment, one embodiment of a semiconductor device and a method of manufacturing a semiconductor device will be described with reference to FIGS. 1A and 1B. In the present embodiment, a transistor having an oxide semiconductor film is shown as an example of a semiconductor device.

電晶體既可以採用形成一個通道形成區的單閘結構,又可以採用形成兩個通道形成區的雙閘結構(double-gate structure),還可以採用形成三個通道形成區的三閘結構。或者,也可以是具有隔著閘極絕緣膜配置在通道形成區上下的兩個閘極電極層的雙閘型(dual-gate type)。 The transistor may be of a single gate structure forming a channel formation region, a double-gate structure forming two channel formation regions, or a triple gate structure forming three channel formation regions. Alternatively, it may be a dual-gate type having two gate electrode layers disposed above and below the channel formation region via a gate insulating film.

圖1A和圖1B所示的電晶體440a是頂閘極結構的電晶體的一個例子。圖1A是平面圖,沿著圖1A中的點劃線X-Y切割的剖面相當於圖1B。 The transistor 440a shown in Figs. 1A and 1B is an example of a transistor of a top gate structure. 1A is a plan view, and a section cut along a chain line X-Y in FIG. 1A corresponds to FIG. 1B.

如作為通道長度方向的剖面圖的圖1B所示,包括電晶體440a的半導體裝置在設置有氧化物絕緣膜436的具有絕緣表面的基板400上包括:具有通道形成區409、低電阻區404a、404b的氧化物半導體膜403;源極電極層405a;汲極電極層405b;閘極絕緣膜402;閘極電極層401;設置在閘極電極層401的側面的側壁絕緣層412a、412b;設置在閘極電極層401上的絕緣膜413;設置在源 極電極層405a及汲極電極層405b上的層間絕緣膜415;覆蓋電晶體440a的絕緣膜407。 As shown in FIG. 1B as a cross-sectional view of the channel length direction, the semiconductor device including the transistor 440a includes a channel formation region 409, a low resistance region 404a, and a substrate 400 having an insulating surface provided with an oxide insulating film 436. 044b oxide semiconductor film 403; source electrode layer 405a; drain electrode layer 405b; gate insulating film 402; gate electrode layer 401; sidewall insulating layers 412a, 412b provided on the side surface of gate electrode layer 401; An insulating film 413 on the gate electrode layer 401; disposed at the source An interlayer insulating film 415 on the electrode layer 405a and the gate electrode layer 405b; and an insulating film 407 covering the transistor 440a.

層間絕緣膜415以使電晶體440a的凹凸平坦化的方式設置,該上面的高度大致與側壁絕緣層412a、412b及絕緣膜413的高度相同。另外,源極電極層405a及汲極電極層405b的上面的高度低於層間絕緣膜415、側壁絕緣層412a、412b及絕緣膜413的上面的高度且高於閘極電極層401的上面的高度。另外,在此,高度是指從基板400上面的高度。 The interlayer insulating film 415 is provided to planarize the unevenness of the transistor 440a, and the height of the upper surface is substantially the same as the height of the sidewall insulating layers 412a, 412b and the insulating film 413. Further, the heights of the upper surfaces of the source electrode layer 405a and the drain electrode layer 405b are lower than the heights of the upper surfaces of the interlayer insulating film 415, the sidewall insulating layers 412a, 412b, and the insulating film 413 and higher than the upper surface of the gate electrode layer 401. . In addition, here, the height means the height from the upper surface of the substrate 400.

另外,在圖1A和圖1B中,絕緣膜407以與層間絕緣膜415、源極電極層405a、汲極電極層405b、側壁絕緣層412a、412b、絕緣膜413接觸的方式設置。 In addition, in FIG. 1A and FIG. 1B, the insulating film 407 is provided in contact with the interlayer insulating film 415, the source electrode layer 405a, the gate electrode layer 405b, the sidewall insulating layers 412a and 412b, and the insulating film 413.

另外,以閘極電極層401為掩模將摻雜劑以自對準的方式引入到氧化物半導體膜403中,在氧化物半導體膜403中夾著通道形成區409形成其電阻比通道形成區409的電阻低且包含摻雜劑的低電阻區404a、404b。摻雜劑是改變氧化物半導體膜403的導電率的雜質。作為摻雜劑的引入方法,可以利用離子植入法、離子摻雜法、電漿浸沒式離子植入法等。 In addition, the dopant is introduced into the oxide semiconductor film 403 in a self-aligned manner using the gate electrode layer 401 as a mask, and the resistance forming channel formation region is formed in the oxide semiconductor film 403 with the channel formation region 409 interposed therebetween. The low resistance region 404a, 404b of 409 is low and contains dopants. The dopant is an impurity that changes the conductivity of the oxide semiconductor film 403. As a method of introducing the dopant, an ion implantation method, an ion doping method, a plasma immersion ion implantation method, or the like can be used.

藉由具有在通道長度方向上夾著通道形成區409包括低電阻區404a、404b的氧化物半導體膜403,該電晶體440a具有高導通特性(例如,導通電流及場效應遷移率),並能夠進行高速工作及高速回應。 The oxide semiconductor film 403 having the low resistance regions 404a, 404b sandwiching the channel formation region 409 in the channel length direction has high on-characteristic characteristics (for example, on-current and field-effect mobility) and can High speed work and high speed response.

用於氧化物半導體膜403的氧化物半導體較佳至少包 含銦(In)或鋅(Zn)。尤其是,較佳為包含In和Zn。另外,作為降低使用該氧化物的電晶體的電特性的偏差的穩定劑(stabilizer),除了上述元素以外較佳還具有鎵(Ga)。另外,作為穩定劑較佳為具有錫(Sn)。另外,作為穩定劑較佳為具有鉿(Hf)。另外,作為穩定劑較佳為具有鋁(Al)。另外,作為穩定劑較佳為具有鋯(Zr)。 The oxide semiconductor used for the oxide semiconductor film 403 is preferably at least packaged Contains indium (In) or zinc (Zn). In particular, it is preferred to contain In and Zn. Further, as a stabilizer for reducing variations in electrical characteristics of a transistor using the oxide, gallium (Ga) is preferably contained in addition to the above elements. Further, it is preferable to have tin (Sn) as a stabilizer. Further, it is preferable to have hydrazine (Hf) as a stabilizer. Further, it is preferable to have aluminum (Al) as a stabilizer. Further, it is preferable to have zirconium (Zr) as a stabilizer.

另外,作為其他穩定劑,可以具有鑭系元素的鑭(La)、鈰(Ce)、鐠(Pr)、釹(Nd)、釤(Sm)、銪(Eu)、釓(Gd)、鋱(Tb)、鏑(Dy)、鈥(Ho)、鉺(Er)、銩(Tm)、鐿(Yb)、鑥(Lu)中的任一種或多種。 Further, as other stabilizers, lanthanum (La), cerium (Ce), strontium (Pr), cerium (Nd), strontium (Sm), cerium (Eu), cerium (Gd), cerium (which may have lanthanoid elements) Any one or more of Tb), Dy, Ho, Er, Tm, Yb, and Lu.

例如,作為氧化物半導體,可以使用:氧化銦、氧化錫、氧化鋅;二元金屬氧化物的In-Zn類氧化物、Sn-Zn類氧化物、Al-Zn類氧化物、Zn-Mg類氧化物、Sn-Mg類氧化物、In-Mg類氧化物、In-Ga類氧化物;三元金屬氧化物的In-Ga-Zn類氧化物(也稱為IGZO)、In-Al-Zn類氧化物、In-Sn-Zn類氧化物、Sn-Ga-Zn類氧化物、Al-Ga-Zn類氧化物、Sn-Al-Zn類氧化物、In-Hf-Zn類氧化物、In-La-Zn類氧化物、In-Ce-Zn類氧化物、In-Pr-Zn類氧化物、In-Nd-Zn類氧化物、In-Sm-Zn類氧化物、In-Eu-Zn類氧化物、In-Gd-Zn類氧化物、In-Tb-Zn類氧化物、In-Dy-Zn類氧化物、In-Ho-Zn類氧化物、In-Er-Zn類氧化物、In-Tm-Zn類氧化物、In-Yb-Zn類氧化物、In-Lu-Zn 類氧化物;以及四元金屬氧化物的In-Sn-Ga-Zn類氧化物、In-Hf-Ga-Zn類氧化物、In-Al-Ga-Zn類氧化物、In-Sn-Al-Zn類氧化物、In-Sn-Hf-Zn類氧化物、In-Hf-Al-Zn類氧化物。 For example, as the oxide semiconductor, indium oxide, tin oxide, zinc oxide, an In-Zn-based oxide of a binary metal oxide, an Sn-Zn-based oxide, an Al-Zn-based oxide, or a Zn-Mg can be used. Oxide, Sn-Mg-based oxide, In-Mg-based oxide, In-Ga-based oxide; ternary metal oxide-in-Ga-Zn-based oxide (also known as IGZO), In-Al-Zn Oxide-like, In-Sn-Zn-based oxide, Sn-Ga-Zn-based oxide, Al-Ga-Zn-based oxide, Sn-Al-Zn-based oxide, In-Hf-Zn-based oxide, In -La-Zn-based oxide, In-Ce-Zn-based oxide, In-Pr-Zn-based oxide, In-Nd-Zn-based oxide, In-Sm-Zn-based oxide, In-Eu-Zn Oxide, In-Gd-Zn-based oxide, In-Tb-Zn-based oxide, In-Dy-Zn-based oxide, In-Ho-Zn-based oxide, In-Er-Zn-based oxide, In- Tm-Zn-based oxide, In-Yb-Zn-based oxide, In-Lu-Zn Oxide-like; and In-Sn-Ga-Zn-based oxide of quaternary metal oxide, In-Hf-Ga-Zn-based oxide, In-Al-Ga-Zn-based oxide, In-Sn-Al- A Zn-based oxide, an In-Sn-Hf-Zn-based oxide, or an In-Hf-Al-Zn-based oxide.

注意,在此,例如In-Ga-Zn類氧化物是指作為主要成分具有In、Ga和Zn的氧化物,對In、Ga、Zn的比率沒有限制。另外,也可以包含In、Ga、Zn以外的金屬元素。 Note that, for example, the In—Ga—Zn-based oxide refers to an oxide having In, Ga, and Zn as a main component, and the ratio of In, Ga, and Zn is not limited. Further, a metal element other than In, Ga, or Zn may be contained.

另外,作為氧化物半導體,也可以使用以InMO3(ZnO)m(m>0,且m不是整數)表示的材料。這裏,M表示選自Ga、Fe、Mn和Co中的一種金屬元素或多種金屬元素。另外,作為氧化物半導體,也可以使用以In2SnO5(ZnO)n(n>0,且n是整數)表示的材料。 Further, as the oxide semiconductor, a material represented by InMO 3 (ZnO) m (m>0, and m is not an integer) may be used. Here, M represents a metal element or a plurality of metal elements selected from the group consisting of Ga, Fe, Mn, and Co. Further, as the oxide semiconductor, a material represented by In 2 SnO 5 (ZnO) n (n>0, and n is an integer) may be used.

例如,可以使用其原子數比為In:Ga:Zn=1:1:1(=1/3:1/3:1/3)、In:Ga:Zn=2:2:1(=2/5:2/5:1/5)或In:Ga:Zn=3:1:2(=1/2:1/6:1/3)的In-Ga-Zn類氧化物或其組成附近的氧化物。或者,也可以使用其原子數比為In:Sn:Zn=1:1:1(=1/3:1/3:1/3)、In:Sn:Zn=2:1:3(=1/3:1/6:1/2)或In:Sn:Zn=2:1:5(=1/4:1/8:5/8)的In-Sn-Zn類氧化物或其組成附近的氧化物。 For example, it is possible to use an atomic ratio of In:Ga:Zn=1:1:1 (=1/3:1/3:1/3), In:Ga:Zn=2:2:1 (=2/ 5:2/5:1/5) or In:Ga:Zn=3:1:2 (=1/2:1/6:1/3) of In-Ga-Zn-based oxide or its composition Oxide. Alternatively, it is also possible to use an atomic ratio of In:Sn:Zn=1:1:1 (=1/3:1/3:1/3), In:Sn:Zn=2:1:3 (=1) /3:1/6:1/2) or In:Sn:Zn=2:1:5 (=1/4:1/8:5/8) of In-Sn-Zn-based oxide or its composition Oxide.

但是,不侷限於上述材料,根據所需要的半導體特性(遷移率、閾值、偏差等)可以使用適當的組成的材料。另外,為了獲得所需要的半導體特性,較佳適當地設定載子濃度、雜質濃度、缺陷密度、金屬元素與氧的原子數 比、原子間距離、密度等的條件。 However, it is not limited to the above materials, and a material having an appropriate composition can be used depending on the required semiconductor characteristics (mobility, threshold, variation, etc.). Further, in order to obtain desired semiconductor characteristics, it is preferred to appropriately set carrier concentration, impurity concentration, defect density, atomic number of metal elements and oxygen Conditions such as ratio, distance between atoms, density, etc.

例如,使用In-Sn-Zn類氧化物可以較容易獲得較高的遷移率。但是,當使用In-Ga-Zn類氧化物時也可以藉由減小塊(bulk)內缺陷密度提高遷移率。 For example, higher mobility can be easily obtained using an In-Sn-Zn-based oxide. However, when an In-Ga-Zn-based oxide is used, the mobility can also be improved by reducing the defect density in the bulk.

在此,例如In、Ga、Zn的原子數比為In:Ga:Zn=a:b:c(a+b+c=1)的氧化物的組成在原子數比為In:Ga:Zn=A:B:C(A+B+C=1)的氧化物的組成的附近是指a、b、c滿足(a-A)2+(b-B)2+(c-C)2 r2的關係。r例如可以為0.05。其他氧化物也是同樣的。 Here, for example, the composition of an oxide having an atomic ratio of In, Ga, and Zn of In:Ga:Zn=a:b:c(a+b+c=1) is in the atomic ratio of In:Ga:Zn= A: B: The vicinity of the composition of the oxide of C(A+B+C=1) means that a, b, and c satisfy (aA) 2 + (bB) 2 + (cC) 2 The relationship of r 2 . r can be, for example, 0.05. The same is true for other oxides.

氧化物半導體膜403處於單晶、多晶(polycrystal)或非晶等的狀態。 The oxide semiconductor film 403 is in a state of single crystal, polycrystal, or amorphous.

較佳氧化物半導體膜是CAAC-OS(C Axis Aligned Crystalline Oxide Semiconductor:c軸配向結晶氧化物半導體)膜。 A preferred oxide semiconductor film is a CAAC-OS (C Axis Aligned Crystalline Oxide Semiconductor) film.

CAAC-OS膜不是完全的單晶,也不是完全的非晶。CAAC-OS膜是在非晶相中具有結晶部的結晶-非晶混合相結構的氧化物半導體膜。另外,在很多情況下,該結晶部的尺寸為能夠容納在一邊短於100nm的立方體內的尺寸。另外,在使用透射電子顯微鏡(TEM:Transmission Electron Microscope)觀察時的影像中,包括在CAAC-OS膜中的非晶部與結晶部的邊界不明確。另外,利用TEM在CAAC-OS膜中觀察不到晶界(grain boundary)。因此,在CAAC-OS膜中,起因於晶界的電子遷移率的降低得到抑制。 The CAAC-OS film is not a complete single crystal, nor is it completely amorphous. The CAAC-OS film is an oxide semiconductor film having a crystal-amorphous mixed phase structure of a crystal portion in an amorphous phase. Further, in many cases, the size of the crystal portion is a size that can be accommodated in a cube shorter than one side of 100 nm. Further, in the image observed by a transmission electron microscope (TEM), the boundary between the amorphous portion and the crystal portion included in the CAAC-OS film is not clear. In addition, no grain boundary was observed in the CAAC-OS film by TEM. Therefore, in the CAAC-OS film, the decrease in electron mobility due to the grain boundary is suppressed.

包括在CAAC-OS膜中的結晶部的c軸在垂直於CAAC-OS膜的被形成面或表面的方向上一致,在從垂直於ab面的方向看時具有三角形狀或六角形狀的原子排列,且分別具有金屬原子及氧原子的層彼此重疊。另外,層的法線向量的方向為c軸方向。此外,不同結晶部的a軸及b軸的方向也可以彼此不同。在本說明書中,在只記載“垂直”時,也包括85°以上且95°以下的範圍。 The c-axis of the crystal portion included in the CAAC-OS film is uniform in a direction perpendicular to the surface or surface on which the CAAC-OS film is formed, and has an atomic arrangement having a triangular shape or a hexagonal shape when viewed from a direction perpendicular to the ab plane. And layers each having a metal atom and an oxygen atom overlap each other. In addition, the direction of the normal vector of the layer is the c-axis direction. Further, the directions of the a-axis and the b-axis of the different crystal portions may be different from each other. In the present specification, when only "vertical" is described, a range of 85° or more and 95° or less is also included.

另外,在CAAC-OS膜中,結晶部的分佈也可以不均勻。例如,在CAAC-OS膜的形成過程中,在從氧化物半導體膜的表面一側進行結晶生長時,與被形成面附近相比,有時在表面附近結晶部所占的比例高。另外,藉由對CAAC-OS膜添加雜質,有時在該雜質添加區中結晶部產生非晶化。 Further, in the CAAC-OS film, the distribution of the crystal portion may be uneven. For example, in the formation of the CAAC-OS film, when crystal growth is performed from the surface side of the oxide semiconductor film, the proportion of the crystal portion in the vicinity of the surface may be higher than in the vicinity of the surface to be formed. Further, by adding an impurity to the CAAC-OS film, the crystal portion may be amorphized in the impurity addition region.

因為包括在CAAC-OS膜中的結晶部的c軸在垂直於CAAC-OS膜的被形成面或表面的方向上一致,所以有時根據CAAC-OS膜的形狀(被形成面的剖面形狀或表面的剖面形狀)朝向彼此不同的方向。另外,結晶部的c軸方向是垂直於形成CAAC-OS膜時的被形成面或表面的方向。藉由進行成膜或在成膜之後進行加熱處理等的晶化處理來形成結晶部。 Since the c-axis of the crystal portion included in the CAAC-OS film is uniform in the direction perpendicular to the surface or surface on which the CAAC-OS film is formed, there are cases depending on the shape of the CAAC-OS film (the cross-sectional shape of the formed surface or The cross-sectional shape of the surface) faces different directions from each other. Further, the c-axis direction of the crystal portion is a direction perpendicular to the surface or surface to be formed when the CAAC-OS film is formed. The crystal portion is formed by performing a film formation or a crystallization treatment such as heat treatment after film formation.

使用CAAC-OS膜的電晶體可以降低因照射可見光或紫外光而產生的電特性變動。因此,該電晶體的可靠性高。 A transistor using a CAAC-OS film can reduce variations in electrical characteristics caused by irradiation of visible light or ultraviolet light. Therefore, the reliability of the transistor is high.

另外,構成氧化物半導體膜的氧的一部分也可以用氮 取代。 Further, a part of oxygen constituting the oxide semiconductor film may also be nitrogen. Replace.

另外,如CAAC-OS那樣的具有結晶部的氧化物半導體可以進一步降低塊體內缺陷,藉由提高表面的平坦性,可以獲得處於非晶狀態的氧化物半導體的遷移率以上的遷移率。為了提高表面的平坦性,較佳在平坦的表面上形成氧化物半導體,具體地,較佳在平均面粗糙度(Ra)為1nm以下,較佳為0.3nm以下,更佳為0.1nm以下的表面上形成氧化物半導體。 Further, an oxide semiconductor having a crystal portion such as CAAC-OS can further reduce defects in the bulk, and by improving the flatness of the surface, a mobility higher than the mobility of the oxide semiconductor in an amorphous state can be obtained. In order to improve the flatness of the surface, it is preferred to form an oxide semiconductor on a flat surface. Specifically, the average surface roughness (Ra) is preferably 1 nm or less, preferably 0.3 nm or less, more preferably 0.1 nm or less. An oxide semiconductor is formed on the surface.

Ra是指將JIS B0601:2001(ISO4287:1997)中定義的算術平均粗糙度擴大為三維以使其能夠應用於曲面,可以用“將從基準面到指定面的偏差的絕對值平均而得到的值”表示,以如下算式定義。 Ra means that the arithmetic mean roughness defined in JIS B0601:2001 (ISO4287:1997) is expanded to three dimensions so that it can be applied to a curved surface, and can be obtained by averaging the absolute values of deviations from the reference plane to the designated plane. The value "represents" is defined by the following formula.

這裏,指定面是指成為測量粗糙度對象的面,並且是以座標((x1,y1,f(x1,y1))(x1,y2,f(x1,y2))(x2,y1,f(x2,y1))(x2,y2,f(x2,y2))的四點表示的四角形的區域,指定面投影在xy平面的長方形的面積為S0,基準面的高度(指定面的平均高度)為Z0。可以利用原子力顯微鏡(AFM:Atomic Force Microscope)測定Ra。 Here, the designated face refers to the face that becomes the object of measuring roughness, and is a coordinate ((x 1 , y 1 , f(x 1 , y 1 ))) (x 1 , y 2 , f(x 1 , y 2 ) a region of a quadrangle represented by four points of (x 2 , y 1 , f(x 2 , y 1 )) (x 2 , y 2 , f(x 2 , y 2 )), a rectangle of a specified plane projected on the xy plane The area is S 0 , and the height of the reference surface (the average height of the designated surface) is Z 0 . Ra can be measured by an atomic force microscope (AFM: Atomic Force Microscope).

將氧化物半導體膜403的厚度設定為1nm以上且 30nm以下(較佳為5nm以上且10nm以下),可以適當地利用濺射法、MBE(Molecular Beam Epitaxy:分子束外延)法、CVD法、脈衝雷射沉積法、ALD(Atomic Layer Deposition:原子層沉積)法等。此外,氧化物半導體膜403也可以使用在以大致垂直於濺射靶材表面的方式設置有多個基板表面的狀態下進行成膜的濺射裝置形成。 The thickness of the oxide semiconductor film 403 is set to 1 nm or more and 30 nm or less (preferably 5 nm or more and 10 nm or less), a sputtering method, an MBE (Molecular Beam Epitaxy) method, a CVD method, a pulsed laser deposition method, or an ALD (Atomic Layer Deposition) can be suitably used. Sedimentation method, etc. Further, the oxide semiconductor film 403 can also be formed by using a sputtering apparatus which performs film formation in a state in which a plurality of substrate surfaces are provided substantially perpendicular to the surface of the sputtering target.

CAAC-OS膜例如使用作為多晶的氧化物半導體濺射靶材,且利用濺射法形成。當離子碰撞到該濺射靶材時,有時包含在濺射靶材中的結晶區域從ab面劈開,即具有平行於ab面的面的平板狀或顆粒狀的濺射粒子剝離。此時,藉由該平板狀的濺射粒子保持結晶狀態到達基板,可以形成CAAC-OS膜。 The CAAC-OS film is used, for example, as a polycrystalline oxide semiconductor sputtering target, and is formed by a sputtering method. When ions collide with the sputtering target, the crystal region included in the sputtering target may be peeled off from the ab surface, that is, the flat or granular sputtering particles having a surface parallel to the ab surface. At this time, the CAAC-OS film can be formed by the flat sputtered particles remaining in a crystalline state and reaching the substrate.

另外,為了形成CAAC-OS膜,較佳為應用如下條件。 Further, in order to form a CAAC-OS film, the following conditions are preferably applied.

藉由降低成膜時的雜質的混入,可以抑制因雜質導致的結晶狀態的破壞。例如,可以降低存在於沉積室內的雜質濃度(氫、水、二氧化碳及氮等)。另外,可以降低成膜氣體中的雜質濃度。明確而言,使用露點為-80℃以下,較佳為-100℃以下的成膜氣體。 By reducing the incorporation of impurities during film formation, it is possible to suppress the destruction of the crystal state due to impurities. For example, the concentration of impurities (hydrogen, water, carbon dioxide, nitrogen, etc.) present in the deposition chamber can be reduced. In addition, the concentration of impurities in the film forming gas can be lowered. Specifically, a film forming gas having a dew point of -80 ° C or lower, preferably -100 ° C or lower is used.

另外,藉由增高成膜時的基板加熱溫度,在濺射粒子到達基板之後發生濺射粒子的遷移。明確而言,在將基板加熱溫度設定為100℃以上且740℃以下,較佳為200℃以上且500℃以下的狀態下進行成膜。藉由增高成膜時的基 板加熱溫度,當平板狀的濺射粒子到達基板時,在基板上發生遷移,濺射粒子的平坦的面附著到基板。 Further, by increasing the substrate heating temperature at the time of film formation, migration of sputtered particles occurs after the sputtered particles reach the substrate. Specifically, the film formation temperature is set in a state where the substrate heating temperature is set to 100° C. or higher and 740° C. or lower, preferably 200° C. or higher and 500° C. or lower. By increasing the base of the film formation At the plate heating temperature, when the plate-shaped sputtered particles reach the substrate, migration occurs on the substrate, and the flat surface of the sputtered particles adheres to the substrate.

另外,較佳的是,藉由增高成膜氣體中的氧比例並對電力進行最優化,減輕成膜時的電漿損傷。將成膜氣體中的氧比例設定為30vol.%以上,較佳為100vol.%。 Further, it is preferable to reduce the plasma damage at the time of film formation by increasing the proportion of oxygen in the film forming gas and optimizing the electric power. The proportion of oxygen in the film forming gas is set to 30 vol.% or more, preferably 100 vol.%.

以下,作為濺射靶材的一個例子示出In-Ga-Zn-O化合物靶材。 Hereinafter, an In-Ga-Zn-O compound target is shown as an example of a sputtering target.

將InOX粉末、GaOY粉末及ZnOZ粉末以規定的莫耳數比混合,進行加壓處理,然後在1000℃以上且1500℃以下的溫度下進行加熱處理,由此得到作為多晶的In-Ga-Zn-O化合物靶材。另外,X、Y及Z為任意正數。在此,InOX粉末、GaOY粉末及ZnOZ粉末的規定的莫耳數比例如為2:2:1、8:4:3、3:1:1、1:1:1、4:2:3或3:1:2。另外,粉末的種類及其混合的莫耳數比可以根據所製造的濺射靶材適當地改變。 The InO X powder, the GaO Y powder, and the ZnO Z powder are mixed at a predetermined molar ratio, subjected to a pressure treatment, and then heat-treated at a temperature of 1000 ° C or higher and 1500 ° C or lower to obtain a poly indium. -Ga-Zn-O compound target. In addition, X, Y and Z are arbitrary positive numbers. Here, the predetermined molar ratio of the InO X powder, the GaO Y powder, and the ZnO Z powder is, for example, 2:2:1, 8:4:3, 3:1:1, 1:1:1, 4:2 :3 or 3:1:2. Further, the kind of the powder and the molar ratio of the mixture thereof may be appropriately changed depending on the sputtering target to be produced.

圖2A至圖2D及圖3A至圖3D示出具有電晶體440a的半導體裝置的製造方法的一個例子。 2A to 2D and 3A to 3D show an example of a method of manufacturing a semiconductor device having a transistor 440a.

首先,在具有絕緣表面的基板400上形成氧化物絕緣膜436。 First, an oxide insulating film 436 is formed on a substrate 400 having an insulating surface.

對能夠用於具有絕緣表面的基板400的基板沒有特別的限制,但是基板400需要至少具有能夠承受後面進行的熱處理的程度的耐熱性。例如,可以使用玻璃基板如硼矽酸鋇玻璃和硼矽酸鋁玻璃等、陶瓷基板、石英基板、藍寶石基板等。另外,作為基板400,也可以採用:以矽、碳 化矽等為材料的單晶半導體基板或多晶半導體基板;以矽鍺等為材料的化合物半導體基板;或SOI基板等,並且也可以在這些基板上設置有半導體元件。 The substrate that can be used for the substrate 400 having an insulating surface is not particularly limited, but the substrate 400 needs to have at least heat resistance capable of withstanding heat treatment performed later. For example, a glass substrate such as bismuth borosilicate glass or aluminum borosilicate glass, a ceramic substrate, a quartz substrate, a sapphire substrate or the like can be used. In addition, as the substrate 400, it is also possible to adopt: germanium, carbon A single crystal semiconductor substrate or a polycrystalline semiconductor substrate which is a material such as ruthenium or the like; a compound semiconductor substrate made of ruthenium or the like; or an SOI substrate or the like, and a semiconductor element may be provided on these substrates.

此外,也可以作為基板400使用撓性基板製造半導體裝置。在製造具有撓性的半導體裝置時,既可以在撓性基板上直接形成包括氧化物半導體膜403的電晶體440a,又可以在其他製造基板上形成包括氧化物半導體膜403的電晶體440a並然後從製造基板將其剝離並轉置到撓性基板上。另外,為了從製造基板剝離並轉置到撓性基板上,較佳在製造基板與具有氧化物半導體膜的電晶體440a之間設置剝離層。 Further, a semiconductor device can be manufactured using the flexible substrate as the substrate 400. When manufacturing a flexible semiconductor device, the transistor 440a including the oxide semiconductor film 403 may be directly formed on the flexible substrate, and the transistor 440a including the oxide semiconductor film 403 may be formed on other fabrication substrates and then It is peeled off from the manufacturing substrate and transferred onto a flexible substrate. Further, in order to peel off from the manufacturing substrate and transfer it onto the flexible substrate, it is preferable to provide a peeling layer between the manufacturing substrate and the transistor 440a having the oxide semiconductor film.

氧化物絕緣膜436可以藉由電漿CVD法或濺射法等,使用氧化矽、氧氮化矽、氧化鋁、氧氮化鋁、氧化鉿、氧化鎵或這些材料的混合材料形成。 The oxide insulating film 436 can be formed by a plasma CVD method, a sputtering method, or the like using cerium oxide, cerium oxynitride, aluminum oxide, aluminum oxynitride, cerium oxide, gallium oxide, or a mixed material of these materials.

氧化物絕緣膜436可以為單層或疊層。例如,既可以在基板400上依次層疊氧化矽膜、In-Hf-Zn類氧化物膜、氧化物半導體膜403,又可以在基板400上依次層疊氧化矽膜、其原子數比為In:Zr:Zn=1:1:1的In-Zr-Zn類氧化物膜、氧化物半導體膜403,還可以在基板400上依次層疊氧化矽膜、其原子數比為In:Gd:Zn=1:1:1的In-Gd-Zn類氧化物膜、氧化物半導體膜403。 The oxide insulating film 436 may be a single layer or a laminate. For example, a ruthenium oxide film, an In-Hf-Zn-based oxide film, or an oxide semiconductor film 403 may be sequentially laminated on the substrate 400, or a ruthenium oxide film may be sequentially laminated on the substrate 400, and the atomic ratio thereof may be In:Zr. : an In—Zr—Zn-based oxide film or an oxide semiconductor film 403 having Zn=1:1:1, or a tantalum oxide film may be sequentially laminated on the substrate 400, and the atomic ratio thereof is In:Gd:Zn=1: 1:1 In-Gd-Zn-based oxide film or oxide semiconductor film 403.

在本實施方式中,作為氧化物絕緣膜436藉由濺射法形成氧化矽膜。 In the present embodiment, a ruthenium oxide film is formed as a oxide insulating film 436 by a sputtering method.

另外,也可以在氧化物絕緣膜436與基板400之間設 置氮化物絕緣膜。氮化物絕緣膜可以藉由電漿CVD法或濺射法等並使用氮化矽、氮氧化矽、氮化鋁、氮氧化鋁或這些材料的混合材料形成。 In addition, it is also possible to provide between the oxide insulating film 436 and the substrate 400. A nitride insulating film is placed. The nitride insulating film can be formed by a plasma CVD method, a sputtering method, or the like using a tantalum nitride, hafnium oxynitride, aluminum nitride, aluminum oxynitride, or a mixed material of these materials.

接著,在氧化物絕緣膜436上形成氧化物半導體膜403(參照圖2A)。 Next, an oxide semiconductor film 403 is formed over the oxide insulating film 436 (see FIG. 2A).

由於氧化物絕緣膜436與氧化物半導體膜403接觸,因此較佳在膜中(塊中)至少有超過化學計量的量的氧。例如,當作為氧化物絕緣膜436使用氧化矽膜時,使用SiO2+α(注意,α>0)的膜。藉由使用這種氧化物絕緣膜436,可以對氧化物半導體膜403供應氧,從而可以提高特性。藉由對氧化物半導體膜403供應氧,可以填補膜中的氧缺損。 Since the oxide insulating film 436 is in contact with the oxide semiconductor film 403, it is preferable that at least a stoichiometric amount of oxygen is present in the film (in the block). For example, when a hafnium oxide film is used as the oxide insulating film 436, a film of SiO 2+α (note that α>0) is used. By using such an oxide insulating film 436, oxygen can be supplied to the oxide semiconductor film 403, so that characteristics can be improved. By supplying oxygen to the oxide semiconductor film 403, oxygen deficiency in the film can be filled.

例如,藉由以與氧化物半導體膜403接觸的方式設置用作氧的供應源的含多量(過剩)的氧的氧化物絕緣膜436,可以將氧從該氧化物絕緣膜436供應到氧化物半導體膜403中。也可以藉由在氧化物半導體膜403與氧化物絕緣膜436的至少一部分接觸的狀態下進行加熱處理,對氧化物半導體膜403供應氧。 For example, by providing an oxide insulating film 436 containing a large amount (excess) of oxygen serving as a supply source of oxygen in contact with the oxide semiconductor film 403, oxygen can be supplied from the oxide insulating film 436 to the oxide. In the semiconductor film 403. Oxygen may be supplied to the oxide semiconductor film 403 by performing heat treatment in a state where the oxide semiconductor film 403 is in contact with at least a part of the oxide insulating film 436.

在形成氧化物半導體膜403的製程中,為了在氧化物半導體膜403中儘量不包含氫或水,較佳作為形成氧化物半導體膜403的預處理,在濺射裝置的預熱室中對形成有氧化物絕緣膜436的基板進行預熱,使附著在基板及氧化物絕緣膜436的氫或水分等雜質脫離而排出。另外,作為設置在預熱室中的排氣單元較佳為使用低溫泵。 In the process of forming the oxide semiconductor film 403, in order to prevent hydrogen or water from being contained in the oxide semiconductor film 403 as much as possible, it is preferable to form a pretreatment in the preheating chamber of the sputtering apparatus as a pretreatment for forming the oxide semiconductor film 403. The substrate having the oxide insulating film 436 is preheated, and impurities such as hydrogen or moisture adhering to the substrate and the oxide insulating film 436 are removed and discharged. Further, as the exhaust unit provided in the preheating chamber, a cryopump is preferably used.

也可以對在氧化物絕緣膜436中以與氧化物半導體膜403接觸的方式形成的區域進行平坦化處理。對平坦化處理沒有特別的限制,而可以使用拋光處理(例如,化學機械拋光法)、乾蝕刻處理及電漿處理。 A region formed in the oxide insulating film 436 so as to be in contact with the oxide semiconductor film 403 may be planarized. The planarization treatment is not particularly limited, and a polishing treatment (for example, chemical mechanical polishing), a dry etching treatment, and a plasma treatment may be used.

作為電漿處理,例如可以進行引入氬氣來產生電漿的反濺射。反濺射是指使用RF電源在氬氛圍下對基板一側施加電壓,來在基板附近形成電漿以進行表面改性的方法。另外,也可以使用氮、氦、氧等代替氬氛圍。藉由進行反濺射,可以去除附著在氧化物絕緣膜436表面的粉狀物質(也稱為微粒、塵屑)。 As the plasma treatment, for example, reverse sputtering in which argon gas is introduced to generate a plasma can be performed. Reverse sputtering refers to a method of applying a voltage to a substrate side under an argon atmosphere using an RF power source to form a plasma in the vicinity of the substrate for surface modification. Further, nitrogen, helium, oxygen, or the like may be used instead of the argon atmosphere. By performing reverse sputtering, powdery substances (also referred to as fine particles and dust) adhering to the surface of the oxide insulating film 436 can be removed.

作為平坦化處理,既可以多次進行拋光處理、乾蝕刻處理及電漿處理,又可以組合它們而進行。此外,當組合它們而進行時,對製程順序也沒有特別的限制,可以根據氧化物絕緣膜436表面的凹凸狀態適當地設定。 As the planarization treatment, the polishing treatment, the dry etching treatment, and the plasma treatment may be performed a plurality of times, or they may be combined. Further, when these are combined, the order of the process is not particularly limited, and can be appropriately set depending on the unevenness of the surface of the oxide insulating film 436.

作為平坦化處理,例如可以藉由化學機械拋光法對用作氧化物絕緣膜436的氧化矽膜表面進行拋光處理(拋光條件:聚氨酯拋光布(polyurethane-based polishing cloth),矽基漿料(silica-based slurry),漿料溫度(slurry temperature)為室溫,拋光壓力為0.001MPa,拋光時旋轉數(桌台/主軸)為60rpm/56rpm,拋光時間為0.5分鐘),將氧化矽膜表面的平均面粗糙度(Ra)設定為0.15nm左右。 As the planarization treatment, for example, the surface of the ruthenium oxide film used as the oxide insulating film 436 can be polished by a chemical mechanical polishing method (polishing conditions: polyurethane-based polishing cloth, silica-based slurry) -based slurry), the slurry temperature is room temperature, the polishing pressure is 0.001 MPa, the number of rotations during polishing (table/spindle) is 60 rpm/56 rpm, and the polishing time is 0.5 minutes), which will oxidize the surface of the ruthenium film. The average surface roughness (Ra) was set to about 0.15 nm.

此外,較佳在成膜時包含多量氧的條件(例如,在氧為100%的氛圍下利用濺射法進行成膜等)下形成膜,使 氧化物半導體膜403為包含多量的氧(較佳為包括與氧化物半導體處於結晶狀態時的化學計量組成相比氧含量過剩的區域)的膜。 Further, it is preferred to form a film under conditions in which a large amount of oxygen is contained during film formation (for example, film formation by sputtering in an atmosphere of 100% oxygen). The oxide semiconductor film 403 is a film containing a large amount of oxygen (preferably including a region having an excessive oxygen content as compared with a stoichiometric composition when the oxide semiconductor is in a crystalline state).

另外,在本實施方式中,作為用來藉由濺射法形成氧化物半導體膜403的靶材,使用In:Ga:Zn=3:1:2[原子數比]的氧化物靶材,來形成In-Ga-Zn類氧化物膜(IGZO膜)。 In the present embodiment, an oxide target of In:Ga:Zn=3:1:2 [atomic ratio] is used as a target for forming the oxide semiconductor film 403 by a sputtering method. An In-Ga-Zn-based oxide film (IGZO film) was formed.

此外,金屬氧化物靶材的相對密度(填充率)為90%以上且100%以下,較佳為95%以上且99.9%以下。藉由使用高相對密度的金屬氧化物靶材,可以形成緻密的氧化物半導體膜。 Further, the relative density (filling ratio) of the metal oxide target is 90% or more and 100% or less, preferably 95% or more and 99.9% or less. A dense oxide semiconductor film can be formed by using a metal oxide target having a high relative density.

作為在形成氧化物半導體膜403時使用的濺射氣體,較佳為使用去除了氫、水、羥基或氫化物等雜質的高純度氣體。 As the sputtering gas used in forming the oxide semiconductor film 403, a high-purity gas from which impurities such as hydrogen, water, a hydroxyl group, or a hydride are removed is preferably used.

在保持為減壓狀態的沉積室中保持基板。然後,在去除沉積室內的殘留水分的同時引入去除了氫和水分的濺射氣體,使用上述靶材在基板400上形成氧化物半導體膜403。為了去除沉積室內的殘留水分,較佳為使用吸附型的真空泵,例如低溫泵、離子泵、鈦昇華泵。此外,作為排氣單元,也可以使用添加有冷阱的渦輪分子泵。因為在使用低溫泵進行排氣的沉積室中,例如對氫原子、水(H2O)等包含氫原子的化合物(更佳的是,還對包含碳原子的化合物)等進行排氣,所以可以降低在該沉積室中形成的氧化物半導體膜403所包含的雜質的濃度。 The substrate is held in a deposition chamber maintained in a reduced pressure state. Then, a sputtering gas from which hydrogen and moisture are removed is introduced while removing residual moisture in the deposition chamber, and an oxide semiconductor film 403 is formed on the substrate 400 using the above target. In order to remove residual moisture in the deposition chamber, it is preferred to use an adsorption type vacuum pump such as a cryopump, an ion pump, or a titanium sublimation pump. Further, as the exhaust unit, a turbo molecular pump to which a cold trap is added may be used. In a deposition chamber using a cryopump for exhausting, for example, a compound containing a hydrogen atom such as a hydrogen atom or water (H 2 O) (more preferably, a compound containing a carbon atom) is exhausted, The concentration of impurities contained in the oxide semiconductor film 403 formed in the deposition chamber can be lowered.

另外,較佳以不暴露於大氣的方式連續形成氧化物絕緣膜436和氧化物半導體膜403。藉由以不暴露於大氣的方式連續形成氧化物絕緣膜436和氧化物半導體膜403,可以防止氫或水分等雜質附著於氧化物絕緣膜436表面。 Further, it is preferable to continuously form the oxide insulating film 436 and the oxide semiconductor film 403 so as not to be exposed to the atmosphere. By continuously forming the oxide insulating film 436 and the oxide semiconductor film 403 without being exposed to the atmosphere, impurities such as hydrogen or moisture can be prevented from adhering to the surface of the oxide insulating film 436.

氧化物半導體膜403可以藉由對膜狀氧化物半導體膜進行光微影製程而將其加工為島狀氧化物半導體膜來形成。 The oxide semiconductor film 403 can be formed by processing the film-shaped oxide semiconductor film into an island-shaped oxide semiconductor film by photolithography.

另外,也可以藉由噴墨法形成用來形成島狀氧化物半導體膜403的光阻掩罩。在藉由噴墨法形成光阻掩罩時不需要光掩模,由此可以降低製造成本。 Further, a photoresist mask for forming the island-shaped oxide semiconductor film 403 may be formed by an inkjet method. A photomask is not required when the photoresist mask is formed by an inkjet method, whereby the manufacturing cost can be reduced.

另外,氧化物半導體膜的蝕刻可以採用乾蝕刻和濕蝕刻中的一者或兩者。例如,作為用於氧化物半導體膜的濕蝕刻的蝕刻劑,可以使用混合有磷酸、醋酸及硝酸的溶液等。此外,也可以使用ITO-07N(由日本關東化學株式會社製造)。另外,也可以藉由利用ICP(Inductively Coupled Plasma:感應耦合電漿)蝕刻法的乾蝕刻進行蝕刻加工。例如,可以藉由ICP蝕刻法對IGZO膜進行蝕刻(蝕刻條件:蝕刻氣體(BCl3:Cl2=60sccm:20sccm),電源功率為450W,偏置功率為100W,壓力為1.9Pa),而將其加工為島狀。 In addition, the etching of the oxide semiconductor film may employ one or both of dry etching and wet etching. For example, as an etchant for wet etching of an oxide semiconductor film, a solution in which phosphoric acid, acetic acid, and nitric acid are mixed can be used. Further, ITO-07N (manufactured by Kanto Chemical Co., Ltd., Japan) can also be used. Alternatively, the etching may be performed by dry etching using an ICP (Inductively Coupled Plasma) etching method. For example, the IGZO film can be etched by ICP etching (etching conditions: etching gas (BCl 3 : Cl 2 = 60 sccm: 20 sccm), power supply power is 450 W, bias power is 100 W, pressure is 1.9 Pa), and It is processed into an island shape.

另外,也可以對氧化物半導體膜403進行用來去除過剩的氫(包括水或羥基)(脫水化或脫氫化)的加熱處理。將加熱處理的溫度設定為300℃以上且700℃以下,或者設定為低於基板的應變點。可以在減壓下或氮氛圍下 等進行加熱處理。例如,將基板引入到加熱處理裝置之一的電爐中,在氮氛圍下以450℃對氧化物半導體膜403進行1小時的加熱處理。 Further, the oxide semiconductor film 403 may be subjected to a heat treatment for removing excess hydrogen (including water or a hydroxyl group) (dehydration or dehydrogenation). The temperature of the heat treatment is set to 300 ° C or more and 700 ° C or less, or set to be lower than the strain point of the substrate. Can be under reduced pressure or under nitrogen Wait for heat treatment. For example, the substrate is introduced into an electric furnace of one of the heat treatment apparatuses, and the oxide semiconductor film 403 is heat-treated at 450 ° C for 1 hour in a nitrogen atmosphere.

另外,加熱處理裝置不侷限於電爐而也可以使用利用電阻發熱體等發熱體所產生的熱傳導或熱輻射對被處理物進行加熱的裝置。例如,可以使用GRTA(Gas Rapid Thermal Anneal:氣體快速熱退火)裝置、LRTA(Lamp Rapid Thermal Anneal:燈快速熱退火)裝置等RTA(Rapid Thermal Anneal:快速熱退火)裝置。LRTA裝置是藉由利用從鹵素燈、金屬鹵化物燈、氙弧燈、碳弧燈、高壓鈉燈或者高壓汞燈等的燈發射的光(電磁波)的輻射來加熱被處理物的裝置。GRTA裝置是使用高溫氣體進行加熱處理的裝置。作為高溫的氣體,使用氬等稀有氣體或氮等不因加熱處理而與被處理物產生反應的惰性氣體。 Further, the heat treatment device is not limited to the electric furnace, and a device that heats the object to be processed by heat conduction or heat radiation generated by a heat generating body such as a resistance heating body may be used. For example, an RTA (Rapid Thermal Anneal) device such as a GRTA (Gas Rapid Thermal Anneal) device or an LRTA (Lamp Rapid Thermal Anneal) device can be used. The LRTA device is a device that heats a workpiece by using radiation (electromagnetic wave) emitted from a lamp such as a halogen lamp, a metal halide lamp, a xenon arc lamp, a carbon arc lamp, a high pressure sodium lamp, or a high pressure mercury lamp. The GRTA device is a device that performs heat treatment using a high temperature gas. As the high-temperature gas, a rare gas such as argon or an inert gas such as nitrogen which does not react with the object to be treated by heat treatment is used.

例如,作為加熱處理,也可以進行如下GRTA,即將基板放入加熱為650℃至700℃的高溫的惰性氣體中,在加熱幾分鐘之後,將基板從惰性氣體中取出。 For example, as the heat treatment, the GRTA may be placed in an inert gas heated to a high temperature of 650 ° C to 700 ° C, and after heating for a few minutes, the substrate is taken out from the inert gas.

另外,在加熱處理中,氮或諸如氦、氖、氬等稀有氣體較佳不包含水、氫等。或者,較佳將引入到熱處理裝置中的氮或諸如氦、氖、氬等稀有氣體的純度設定為6N(99.9999%)以上,更佳地設定為7N(99.99999%)以上(即,將雜質濃度設定為1ppm以下,較佳為設定為0.1ppm以下)。 Further, in the heat treatment, nitrogen or a rare gas such as helium, neon or argon preferably does not contain water, hydrogen or the like. Alternatively, it is preferable to set the purity of nitrogen or a rare gas such as helium, neon or argon introduced into the heat treatment apparatus to 6 N (99.9999%) or more, more preferably 7 N (99.999999%) or more (that is, to set the impurity concentration). It is set to 1 ppm or less, preferably set to 0.1 ppm or less.

此外,也可以在藉由加熱處理加熱氧化物半導體膜 403之後,對相同的爐中引入高純度的氧氣體、高純度的一氧化二氮氣體或超乾燥空氣(使用CRDS(cavity ring-down laser spectroscopy:光腔衰蕩光譜法)方式的露點儀進行測量時的水分量為20ppm(露點換算為-55℃)以下,較佳為1ppm以下,更佳為10ppb以下的空氣)。氧氣體或一氧化二氮氣體較佳不包含水、氫等。或者,較佳將引入到熱處理裝置中的氧氣體或一氧化二氮氣體的純度設定為6N以上,較佳為設定為7N以上(即,將氧氣體或一氧化二氮氣體中的雜質濃度設定為1ppm以下,較佳為設定為0.1ppm以下)。藉由利用氧氣體或一氧化二氮氣體的作用來供應在利用脫水化處理或脫氫化處理進行雜質排除製程同時減少的構成氧化物半導體的主要成分材料的氧,可以使氧化物半導體膜403高度純化及I型(本質)化。 In addition, it is also possible to heat the oxide semiconductor film by heat treatment. After 403, high-purity oxygen gas, high-purity nitrous oxide gas or ultra-dry air (using a CRDS (cavity ring-down laser spectroscopy) dew point meter) is introduced into the same furnace. The moisture content at the time of measurement is 20 ppm (the dew point is converted to -55 ° C) or less, preferably 1 ppm or less, more preferably 10 ppb or less. The oxygen gas or the nitrous oxide gas preferably does not contain water, hydrogen or the like. Alternatively, the purity of the oxygen gas or the nitrous oxide gas introduced into the heat treatment apparatus is preferably set to 6 N or more, preferably 7 N or more (that is, the impurity concentration in the oxygen gas or the nitrous oxide gas is set. It is 1 ppm or less, preferably set to 0.1 ppm or less. The oxide semiconductor film 403 can be made highly high by supplying oxygen of a main component material constituting the oxide semiconductor which is simultaneously reduced by the dehydration treatment or the dehydrogenation treatment by the action of the oxygen gas or the nitrous oxide gas. Purification and type I (essential).

此外,既可以在形成膜狀氧化物半導體膜之後進行用於脫水化或脫氫化的加熱處理,又可以在形成島狀氧化物半導體膜403之後進行用於脫水化或脫氫化的加熱處理。 Further, the heat treatment for dehydration or dehydrogenation may be performed after the formation of the film-like oxide semiconductor film, or the heat treatment for dehydration or dehydrogenation may be performed after the formation of the island-shaped oxide semiconductor film 403.

另外,既可以多次進行用於脫水化或脫氫化的加熱處理,又可以將其兼作其他加熱處理。 Further, the heat treatment for dehydration or dehydrogenation may be carried out a plurality of times, or it may be used as another heat treatment.

藉由在作為氧化物半導體膜403將膜狀氧化物半導體膜加工為島狀之前,即在膜狀氧化物半導體膜覆蓋氧化物絕緣膜436的狀態下進行用於脫水化或脫氫化的加熱處理,可以防止因加熱處理而釋放包含在氧化物絕緣膜436中的氧,所以是較佳的。 The heat treatment for dehydration or dehydrogenation is performed in a state where the film-like oxide semiconductor film is processed into an island shape as the oxide semiconductor film 403, that is, in a state where the film-like oxide semiconductor film covers the oxide insulating film 436. It is preferable to prevent the oxygen contained in the oxide insulating film 436 from being released by the heat treatment.

此外,也可以在進行了脫水化處理或脫氫化處理的氧化物半導體膜403中引入氧(至少包含氧自由基、氧原子和氧離子中的任一種)而對膜中供應氧。 Further, oxygen may be introduced into the oxide semiconductor film 403 subjected to the dehydration treatment or the dehydrogenation treatment (at least one of an oxygen radical, an oxygen atom, and an oxygen ion) to supply oxygen to the film.

此外,由於脫水化處理或脫氫化處理,有可能構成氧化物半導體的主要成分材料的氧同時脫離而減少。在氧化物半導體膜中,脫離氧的部分存在有氧缺損,而起因於該氧缺損會產生導致電晶體的電特性變動的施體能階。 Further, due to the dehydration treatment or the dehydrogenation treatment, oxygen which is a main component material constituting the oxide semiconductor may be simultaneously desorbed and reduced. In the oxide semiconductor film, oxygen depletion occurs in a portion where oxygen is removed, and a donor energy level due to fluctuation in electrical characteristics of the transistor occurs due to the oxygen deficiency.

藉由對進行了脫水化處理或脫氫化處理的氧化物半導體膜403引入氧而將氧供應到膜中,可以使氧化物半導體膜403高度純化且I型(本質)化。具有高度純化且I型(本質)化的氧化物半導體膜403的電晶體的電特性變動被抑制,所以該電晶體在電性上穩定。 The oxide semiconductor film 403 can be highly purified and type I (essentially) by introducing oxygen into the oxide semiconductor film 403 subjected to the dehydration treatment or the dehydrogenation treatment to supply oxygen. The variation in electrical characteristics of the transistor having the highly purified and type I (essentially) oxide semiconductor film 403 is suppressed, so that the transistor is electrically stable.

作為氧的引入方法,可以使用離子植入法、離子摻雜法、電漿浸沒式離子植入法、電漿處理等。 As a method of introducing oxygen, an ion implantation method, an ion doping method, a plasma immersion ion implantation method, a plasma treatment, or the like can be used.

當對氧化物半導體膜403引入氧時,既可以對氧化物半導體膜403直接引入氧,又可以透過閘極絕緣膜402或絕緣膜407等其他膜對氧化物半導體膜403引入氧。當透過其他膜引入氧時,使用離子植入法、離子摻雜法、電漿浸沒式離子植入法等即可,但是當對被露出的氧化物半導體膜403直接引入氧時,也可以使用電漿處理等。 When oxygen is introduced into the oxide semiconductor film 403, oxygen can be directly introduced into the oxide semiconductor film 403, and oxygen can be introduced into the oxide semiconductor film 403 through another film such as the gate insulating film 402 or the insulating film 407. When oxygen is introduced through another film, an ion implantation method, an ion doping method, a plasma immersion ion implantation method, or the like may be used, but when oxygen is directly introduced into the exposed oxide semiconductor film 403, it may be used. Plasma treatment, etc.

較佳在進行脫水化處理或脫氫化處理之後對氧化物半導體膜403引入氧,但是沒有特別的限制。此外,也可以多次對進行了上述脫水化處理或脫氫化處理的氧化物半導體膜403引入氧。 It is preferable to introduce oxygen into the oxide semiconductor film 403 after the dehydration treatment or the dehydrogenation treatment, but there is no particular limitation. Further, oxygen may be introduced into the oxide semiconductor film 403 subjected to the above dehydration treatment or dehydrogenation treatment a plurality of times.

接著,形成覆蓋氧化物半導體膜403的閘極絕緣膜442(參照圖2B)。 Next, a gate insulating film 442 covering the oxide semiconductor film 403 is formed (see FIG. 2B).

此外,為了提高閘極絕緣膜442的覆蓋性,也可以對氧化物半導體膜403的表面也進行上述平坦化處理。尤其是,當作為閘極絕緣膜442使用厚度薄的絕緣膜時,氧化物半導體膜403的表面較佳為具有良好的平坦性。 Further, in order to improve the coverage of the gate insulating film 442, the above-described planarization treatment may be performed on the surface of the oxide semiconductor film 403. In particular, when a thin insulating film is used as the gate insulating film 442, the surface of the oxide semiconductor film 403 preferably has good flatness.

將閘極絕緣膜442的厚度設定為1nm以上且20nm以下,可以適當地利用濺射法、MBE法、CVD法、脈衝雷射沉積法、ALD法等。此外,閘極絕緣膜442也可以使用在以大致垂直於濺射靶材表面的方式設置有多個基板表面的狀態下進行成膜的濺射裝置形成。 The thickness of the gate insulating film 442 is set to 1 nm or more and 20 nm or less, and a sputtering method, an MBE method, a CVD method, a pulsed laser deposition method, an ALD method, or the like can be suitably used. Further, the gate insulating film 442 may be formed using a sputtering apparatus that performs film formation in a state in which a plurality of substrate surfaces are provided substantially perpendicular to the surface of the sputtering target.

作為閘極絕緣膜442的材料,可以使用氧化矽膜、氧化鎵膜、氧化鋁膜、氮化矽膜、氧氮化矽膜、氧氮化鋁膜或氮氧化矽膜。閘極絕緣膜442中的接觸於氧化物半導體膜403的部分較佳為包含氧。尤其是,閘極絕緣膜442較佳在其膜中(塊體中)存在至少超過化學計量的量的氧,例如,當作為閘極絕緣膜442使用氧化矽膜時,使用SiO2+α(注意,α>0)的膜。在本實施方式中,作為閘極絕緣膜442,使用SiO2+α(注意,α>0)的氧化矽膜。藉由將該氧化矽膜用作閘極絕緣膜442,可以將氧供應到氧化物半導體膜403,而使其特性良好。並且,閘極絕緣膜442較佳為考慮所製造的電晶體的大小及閘極絕緣膜442的臺階覆蓋性而形成。 As a material of the gate insulating film 442, a hafnium oxide film, a gallium oxide film, an aluminum oxide film, a tantalum nitride film, a hafnium oxynitride film, an aluminum oxynitride film, or a hafnium oxynitride film can be used. The portion of the gate insulating film 442 that is in contact with the oxide semiconductor film 403 preferably contains oxygen. In particular, the gate insulating film 442 preferably has at least a stoichiometric amount of oxygen in its film (in the bulk), for example, when a yttrium oxide film is used as the gate insulating film 442, SiO 2+α is used ( Note that the film of α>0). In the present embodiment, as the gate insulating film 442, a yttrium oxide film of SiO 2+α (note that α>0) is used. By using the yttrium oxide film as the gate insulating film 442, oxygen can be supplied to the oxide semiconductor film 403 with good characteristics. Further, the gate insulating film 442 is preferably formed in consideration of the size of the transistor to be fabricated and the step coverage of the gate insulating film 442.

此外,藉由作為閘極絕緣膜442的材料使用氧化鉿、 氧化釔、矽酸鉿(HfSixOy(x>0,y>0))、添加有氮的矽酸鉿(HfSiOxNy(x>0、y>0))、鋁酸鉿(HfAlxOy(x>0、y>0))以及氧化鑭等high-k材料,可以降低閘極漏電流。而且,閘極絕緣膜442既可以是單層結構,又可以是疊層結構。 Further, ruthenium oxide, ruthenium oxide, ruthenium ruthenate (HfSi x O y (x>0, y>0)), and lanthanum ruthenate (HfSiO x N y added with nitrogen) are used as the material of the gate insulating film 442. (x> 0, y> 0 )), hafnium aluminate (HfAl x O y (x> 0, y> 0)) , and lanthanum oxide, high-k materials, can reduce gate leakage. Further, the gate insulating film 442 may have a single layer structure or a stacked structure.

接著,在閘極絕緣膜442上形成導電膜及絕緣膜的疊層,對該導電膜及該絕緣膜進行蝕刻,形成閘極電極層401及絕緣膜413的疊層(參照圖2C)。 Next, a laminate of a conductive film and an insulating film is formed on the gate insulating film 442, and the conductive film and the insulating film are etched to form a stack of the gate electrode layer 401 and the insulating film 413 (see FIG. 2C).

閘極電極層401的材料可以使用鉬、鈦、鉭、鎢、鋁、銅、鉻、釹、鈧等金屬材料或以它們為主要成分的合金材料形成。此外,作為閘極電極層401,可以使用以摻雜有磷等雜質元素的多晶矽膜為代表的半導體膜、鎳矽化物等矽化物膜。閘極電極層401既可以是單層結構,又可以是疊層結構。 The material of the gate electrode layer 401 can be formed using a metal material such as molybdenum, titanium, tantalum, tungsten, aluminum, copper, chromium, niobium or tantalum or an alloy material containing them as a main component. In addition, as the gate electrode layer 401, a semiconductor film such as a polycrystalline germanium film doped with an impurity element such as phosphorus or a vaporized film such as a nickel telluride can be used. The gate electrode layer 401 may be a single layer structure or a stacked structure.

另外,閘極電極層401的材料也可以使用氧化銦氧化錫、包含氧化鎢的銦氧化物、包含氧化鎢的銦鋅氧化物、包含氧化鈦的銦氧化物、包含氧化鈦的銦錫氧化物、氧化銦氧化鋅、添加有氧化矽的銦錫氧化物等導電材料。此外,也可以採用上述導電材料和上述金屬材料的疊層結構。 Further, the material of the gate electrode layer 401 may also be indium tin oxide, indium oxide containing tungsten oxide, indium zinc oxide containing tungsten oxide, indium oxide containing titanium oxide, indium tin oxide containing titanium oxide. A conductive material such as indium oxide zinc oxide or indium tin oxide added with cerium oxide. Further, a laminated structure of the above conductive material and the above metal material may also be employed.

此外,作為與閘極絕緣膜442接觸的閘極電極層401的一層可以使用包含氮的金屬氧化物膜,明確地說,可以使用包含氮的In-Ga-Zn-O膜、包含氮的In-Sn-O膜、包含氮的In-Ga-O膜、包含氮的In-Zn-O膜、包含氮的Sn-O膜、包含氮的In-O膜以及金屬氮化膜(InN、SnN等)。 這些膜具有5eV(電子伏特)以上的功函數,較佳為具有5.5eV(電子伏特)以上的功函數。當將這些膜用作閘極電極層時,可以使電晶體的電特性的臨界電壓成為正值,而能夠實現所謂的常關閉型(normally off)的切換元件。 Further, as a layer of the gate electrode layer 401 which is in contact with the gate insulating film 442, a metal oxide film containing nitrogen can be used, and specifically, an In-Ga-Zn-O film containing nitrogen and In containing nitrogen can be used. -Sn-O film, In-Ga-O film containing nitrogen, In-Zn-O film containing nitrogen, Sn-O film containing nitrogen, In-O film containing nitrogen, and metal nitride film (InN, SnN Wait). These films have a work function of 5 eV (electron volts) or more, preferably a work function of 5.5 eV (electron volts) or more. When these films are used as the gate electrode layer, the threshold voltage of the electrical characteristics of the transistor can be made positive, and a so-called normally off switching element can be realized.

作為絕緣膜413,典型地可以使用氧化矽膜、氧氮化矽膜、氧化鋁膜、氧氮化鋁膜、氮化矽膜、氮化鋁膜、氮氧化矽膜、氮氧化鋁膜等無機絕緣膜。絕緣膜413可以利用電漿CVD法或濺射法等形成。 As the insulating film 413, an inorganic layer such as a hafnium oxide film, a hafnium oxynitride film, an aluminum oxide film, an aluminum oxynitride film, a tantalum nitride film, an aluminum nitride film, a hafnium oxynitride film, or an aluminum nitride oxide film can be typically used. Insulating film. The insulating film 413 can be formed by a plasma CVD method, a sputtering method, or the like.

接著,以閘極電極層401及絕緣膜413為掩模將摻雜劑421引入到氧化物半導體膜403中,形成低電阻區404a、404b(參照圖2D)。 Next, the dopant 421 is introduced into the oxide semiconductor film 403 using the gate electrode layer 401 and the insulating film 413 as a mask to form low-resistance regions 404a and 404b (see FIG. 2D).

摻雜劑421是改變氧化物半導體膜403的導電率的雜質。作為摻雜劑421,可以使用選自15族元素(典型的是磷(P)、砷(As)及銻(Sb))、硼(B)、鋁(Al)、氮(N)、氬(Ar)、氦(He)、氖(Ne)、銦(In)、氟(F)、氯(Cl)、鈦(Ti)和鋅(Zn)中的一種以上的元素。 The dopant 421 is an impurity that changes the conductivity of the oxide semiconductor film 403. As the dopant 421, those selected from Group 15 elements (typically phosphorus (P), arsenic (As), and antimony (Sb)), boron (B), aluminum (Al), nitrogen (N), and argon (which may be used) One or more elements of Ar), ruthenium (He), iridium (Ne), indium (In), fluorine (F), chlorine (Cl), titanium (Ti), and zinc (Zn).

也可以利用注入法將摻雜劑421透過其他膜(例如閘極絕緣膜442)引入到氧化物半導體膜403中。作為摻雜劑421的引入方法,可以利用離子植入法、離子摻雜法、電漿浸沒式離子植入法等。此時,較佳為使用摻雜劑421的單體的離子或者氟化物、氯化物的離子。 The dopant 421 may also be introduced into the oxide semiconductor film 403 through another film (for example, the gate insulating film 442) by an implantation method. As a method of introducing the dopant 421, an ion implantation method, an ion doping method, a plasma immersion ion implantation method, or the like can be used. In this case, it is preferred to use ions of a monomer of the dopant 421 or ions of a fluoride or a chloride.

摻雜劑421的引入製程可以適當地設定加速電壓、劑 量等的注入條件或者使摻雜劑421透過的膜的厚度而控制。在本實施方式中,作為摻雜劑421使用磷,利用離子植入法進行磷離子的注入。另外,可以將摻雜劑421的劑量設定為1×1013ions/cm2以上且5×1016ions/cm2以下。 The introduction process of the dopant 421 can be appropriately controlled by setting the implantation conditions of the acceleration voltage, the dose, and the like, or the thickness of the film through which the dopant 421 is transmitted. In the present embodiment, phosphorus is used as the dopant 421, and phosphorus ions are implanted by ion implantation. Further, the dose of the dopant 421 can be set to 1 × 10 13 ions / cm 2 or more and 5 × 10 16 ions / cm 2 or less.

低電阻區中的摻雜劑421的濃度較佳為5×1018/cm3以上且1×1022/cm3以下。 The concentration of the dopant 421 in the low resistance region is preferably 5 × 10 18 /cm 3 or more and 1 × 10 22 /cm 3 or less.

也可以在引入摻雜劑421的同時加熱基板400。 It is also possible to heat the substrate 400 while introducing the dopant 421.

另外,也可以進行多次將摻雜劑421引入到氧化物半導體膜403中的處理,並且,也可以使用多種摻雜劑。 In addition, a process of introducing the dopant 421 into the oxide semiconductor film 403 may be performed a plurality of times, and various dopants may also be used.

此外,也可以在進行摻雜劑421的引入處理之後進行加熱處理。作為加熱條件,較佳為採用如下條件:溫度為300℃以上且700℃以下,較佳為300℃以上且450℃以下;在氧氛圍下;進行1小時。另外,也可以在氮氛圍下、減壓下、大氣(超乾燥空氣)下進行加熱處理。 Further, heat treatment may be performed after the introduction treatment of the dopant 421 is performed. As the heating conditions, it is preferred to use a temperature of 300 ° C or more and 700 ° C or less, preferably 300 ° C or more and 450 ° C or less; and under an oxygen atmosphere; for 1 hour. Further, the heat treatment may be carried out under a nitrogen atmosphere, under reduced pressure, or under air (ultra-dry air).

在本實施方式中,藉由離子植入法將磷(P)離子植入到氧化物半導體膜403中。另外,作為磷(P)離子的注入條件,採用如下條件:加速電壓為30kV;劑量為1.0×1015ions/cm2In the present embodiment, phosphorus (P) ions are implanted into the oxide semiconductor film 403 by ion implantation. Further, as the implantation condition of the phosphorus (P) ions, the following conditions were employed: the acceleration voltage was 30 kV; and the dose was 1.0 × 10 15 ions/cm 2 .

當氧化物半導體膜403是CAAC-OS膜時,有時由摻雜劑421的引入導致CAAC-OS膜的一部分的非晶化。在此情況下,藉由在引入摻雜劑421之後進行加熱處理,可以恢復氧化物半導體膜403的結晶性。 When the oxide semiconductor film 403 is a CAAC-OS film, the introduction of the dopant 421 sometimes causes amorphization of a part of the CAAC-OS film. In this case, the crystallinity of the oxide semiconductor film 403 can be recovered by performing heat treatment after the introduction of the dopant 421.

由此,形成隔著通道形成區409設置低電阻區404a、404b的氧化物半導體膜403。 Thereby, the oxide semiconductor film 403 in which the low-resistance regions 404a, 404b are provided via the channel formation region 409 is formed.

接著,在閘極電極層401及絕緣膜413上形成絕緣膜,對該絕緣膜進行蝕刻形成側壁絕緣層412a、412b。再者,以閘極電極層401及側壁絕緣層412a、412b為掩模對閘極絕緣膜442進行蝕刻,形成閘極絕緣膜402(參照圖3A)。 Next, an insulating film is formed on the gate electrode layer 401 and the insulating film 413, and the insulating film is etched to form sidewall insulating layers 412a and 412b. Further, the gate insulating film 442 is etched using the gate electrode layer 401 and the sidewall insulating layers 412a and 412b as a mask to form a gate insulating film 402 (see FIG. 3A).

側壁絕緣層412a、412b可以使用與絕緣膜413相同的材料及方法形成。在本實施方式中,使用藉由CVD法形成的氧氮化矽膜。 The sidewall insulating layers 412a, 412b can be formed using the same material and method as the insulating film 413. In the present embodiment, a hafnium oxynitride film formed by a CVD method is used.

接著,在氧化物半導體膜403、閘極絕緣膜402、閘極電極層401、側壁絕緣層412a、412b及絕緣膜413上形成用作源極電極層及汲極電極層(包括使用與它們相同的層形成的佈線)的導電膜。 Next, a source electrode layer and a drain electrode layer are formed on the oxide semiconductor film 403, the gate insulating film 402, the gate electrode layer 401, the sidewall insulating layers 412a and 412b, and the insulating film 413 (including use of the same The conductive film formed by the wiring of the layer).

作為導電膜,使用能夠承受後面的加熱處理的材料。作為用於源極電極層及汲極電極層的導電膜,例如可以使用含有選自Al、Cr、Cu、Ta、Ti、Mo、W中的元素的金屬膜或以上述元素為成分的金屬氮化物膜(氮化鈦膜、氮化鉬膜、氮化鎢膜)等。此外,還可以採用在Al、Cu等金屬膜的下側和上側中的一者或兩者層疊Ti、Mo、W等高熔點金屬膜或它們的金屬氮化物膜(氮化鈦膜、氮化鉬膜、氮化鎢膜)的結構。另外,作為用於源極電極層及汲極電極層的導電膜,也可以使用導電金屬氧化物。作為導電金屬氧化物,可以使用氧化銦(In2O3)、氧化錫(SnO2)、氧化鋅(ZnO)、氧化銦氧化錫(In2O3-SnO2)、氧化銦氧化鋅(In2O3-ZnO)或使它們的金屬氧化物材料包含氧化 矽的材料。 As the conductive film, a material capable of withstanding the subsequent heat treatment is used. As the conductive film for the source electrode layer and the gate electrode layer, for example, a metal film containing an element selected from the group consisting of Al, Cr, Cu, Ta, Ti, Mo, and W or a metal nitrogen containing the above element as a component can be used. a compound film (titanium nitride film, molybdenum nitride film, tungsten nitride film) or the like. Further, a high melting point metal film such as Ti, Mo, or W or a metal nitride film thereof (titanium nitride film, nitriding) may be laminated on one or both of the lower side and the upper side of the metal film such as Al or Cu. Structure of molybdenum film, tungsten nitride film). Further, as the conductive film used for the source electrode layer and the gate electrode layer, a conductive metal oxide can also be used. As the conductive metal oxide, indium oxide (In 2 O 3 ), tin oxide (SnO 2 ), zinc oxide (ZnO), indium tin oxide (In 2 O 3 -SnO 2 ), indium oxide zinc oxide (In 2 O 3 -ZnO) or a material in which their metal oxide material contains cerium oxide.

藉由光微影製程在導電膜上形成光阻掩罩,並且選擇性地進行蝕刻來形成島狀導電膜445,然後去除光阻掩罩。另外,在該蝕刻製程中,不去除閘極電極層401上的導電膜445。 A photoresist mask is formed on the conductive film by a photolithography process, and etching is selectively performed to form an island-shaped conductive film 445, and then the photoresist mask is removed. In addition, in the etching process, the conductive film 445 on the gate electrode layer 401 is not removed.

在作為導電膜使用厚度為30nm的鎢膜的情況下,該導電膜的蝕刻例如可以藉由乾蝕刻法對鎢膜進行蝕刻(蝕刻條件:蝕刻氣體(CF4:Cl2:O2=55sccm:45sccm:55sccm),電源功率為3000W,偏置功率為140W,壓力為0.67Pa),形成島狀鎢膜。 In the case where a tungsten film having a thickness of 30 nm is used as the conductive film, the etching of the conductive film can be performed, for example, by dry etching (etching conditions: etching gas (CF 4 :Cl 2 :O 2 =55 sccm: 45 sccm: 55 sccm), power supply of 3000 W, bias power of 140 W, and pressure of 0.67 Pa), forming an island-shaped tungsten film.

在島狀導電膜445上層疊用作層間絕緣膜415的絕緣膜446(參照圖3B)。 An insulating film 446 serving as the interlayer insulating film 415 is laminated on the island-shaped conductive film 445 (refer to FIG. 3B).

絕緣膜446可以使用與絕緣膜413相同的材料及方法形成。絕緣膜446以能夠使電晶體440a所產生的凹凸平坦化的厚度形成。在本實施方式中,藉由CVD法形成300nm的氧氮化矽膜。 The insulating film 446 can be formed using the same material and method as the insulating film 413. The insulating film 446 is formed to have a thickness capable of flattening the unevenness generated by the transistor 440a. In the present embodiment, a 300 nm yttrium oxynitride film is formed by a CVD method.

接著,藉由化學機械拋光法對絕緣膜446及導電膜445進行拋光處理,以使絕緣膜413露出的方式去除絕緣膜446及導電膜445的一部分。 Next, the insulating film 446 and the conductive film 445 are subjected to a polishing treatment by a chemical mechanical polishing method to remove a part of the insulating film 446 and the conductive film 445 so that the insulating film 413 is exposed.

藉由該拋光處理將絕緣膜446加工為層間絕緣膜415,去除閘極電極層401上的導電膜445,形成源極電極層405a及汲極電極層405b。 The insulating film 446 is processed into the interlayer insulating film 415 by the polishing process, and the conductive film 445 on the gate electrode layer 401 is removed to form the source electrode layer 405a and the gate electrode layer 405b.

在本實施方式中,當去除絕緣膜446及導電膜445時利用化學機械拋光法,但是也可以利用其他切削(研磨、 拋光)方法。另外,在去除閘極電極層401上的導電膜445的製程中,除了化學機械拋光法等切削(研磨、拋光)方法之外,還可以組合蝕刻(乾蝕刻、濕蝕刻)法或電漿處理等。例如,也可以在利用化學機械拋光法的去除製程之後進行乾蝕刻法或電漿處理(反濺射等),實現處理表面的平坦性的提高。當將切削(研磨、拋光)方法組合蝕刻法、電漿處理等時,對製程順序沒有特別的限制,可以根據絕緣膜446及導電膜445的材料、厚度及表面的凹凸狀態適當地設定。 In the present embodiment, the chemical mechanical polishing method is used when the insulating film 446 and the conductive film 445 are removed, but other cutting (grinding, grinding, Polishing) method. In addition, in the process of removing the conductive film 445 on the gate electrode layer 401, in addition to the cutting (polishing, polishing) method such as chemical mechanical polishing, combined etching (dry etching, wet etching) or plasma processing may be combined. Wait. For example, dry etching or plasma processing (reverse sputtering, etc.) may be performed after the removal process by the chemical mechanical polishing method to improve the flatness of the treated surface. When the cutting (polishing, polishing) method is combined with an etching method, a plasma treatment, or the like, the order of the process is not particularly limited, and may be appropriately set depending on the material, the thickness of the insulating film 446 and the conductive film 445, and the unevenness of the surface.

另外,在本實施方式中,源極電極層405a、汲極電極層405b以與設置在閘極電極層401側面的側壁絕緣層412a、412b的側面接觸的方式設置,並覆蓋到側壁絕緣層412a、412b的側面中的比其上端部稍微低的位置。源極電極層405a、汲極電極層405b的形狀根據去除導電膜445的拋光處理的條件不同,如本實施方式所示,有時成為與側壁絕緣層412a、412b、絕緣膜413的經過拋光處理的表面相比在厚度方向上退後的形狀。但是,根據拋光處理的條件,有時源極電極層405a、汲極電極層405b的上端部的高度與側壁絕緣層412a、412b的上端部的高度大致一致。 Further, in the present embodiment, the source electrode layer 405a and the drain electrode layer 405b are provided in contact with the side faces of the side wall insulating layers 412a and 412b provided on the side faces of the gate electrode layer 401, and cover the sidewall insulating layer 412a. The position of the side surface of 412b is slightly lower than the upper end portion thereof. The shape of the source electrode layer 405a and the drain electrode layer 405b differs depending on the conditions of the polishing process for removing the conductive film 445, and as described in the present embodiment, the sidewall insulating layers 412a and 412b and the insulating film 413 may be polished. The surface is retracted from the shape in the thickness direction. However, depending on the conditions of the polishing process, the heights of the upper end portions of the source electrode layer 405a and the drain electrode layer 405b may substantially coincide with the heights of the upper end portions of the sidewall insulating layers 412a and 412b.

藉由上述製程,製造本實施方式的電晶體440a(參照圖3C)。 The transistor 440a of the present embodiment is manufactured by the above process (see FIG. 3C).

在電晶體440a中,藉由在製程中利用化學機械拋光處理去除設置在閘極電極層401、絕緣膜413及側壁絕緣 層412a、412b上的導電膜445而分離導電膜445,來形成源極電極層405a及汲極電極層405b。 In the transistor 440a, the gate electrode layer 401, the insulating film 413, and the sidewall insulation are removed by chemical mechanical polishing treatment in the process. The conductive film 445 is separated from the conductive film 445 on the layers 412a and 412b to form the source electrode layer 405a and the drain electrode layer 405b.

另外,源極電極層405a及汲極電極層405b以與露出的氧化物半導體膜403上面及側壁絕緣層412a或側壁絕緣層412b接觸的方式設置。因此,源極電極層405a或汲極電極層405b接觸於氧化物半導體膜403的區域(接觸區域)與閘極電極層401之間的距離(最短距離)為側壁絕緣層412a、412b的通道長度方向上的寬度,不但可以實現進一步的微型化,而且可以在製程中進一步以沒有偏差的方式控制。 Further, the source electrode layer 405a and the drain electrode layer 405b are provided in contact with the exposed oxide semiconductor film 403 and the sidewall insulating layer 412a or the sidewall insulating layer 412b. Therefore, the distance (the shortest distance) between the region (contact region) where the source electrode layer 405a or the drain electrode layer 405b contacts the oxide semiconductor film 403 and the gate electrode layer 401 is the channel length of the sidewall insulating layers 412a, 412b. The width in the direction can not only achieve further miniaturization, but can be further controlled in the process without deviation.

如此,因為可以縮短源極電極層405a或汲極電極層405b接觸於氧化物半導體膜403的區域(接觸區域)與閘極電極層401之間的距離,所以源極電極層405a或汲極電極層405b接觸於氧化物半導體膜403的區域(接觸區域)與閘極電極層401之間的電阻得到降低,可以提高電晶體440a的導通特性。 Thus, since the distance between the region (contact region) where the source electrode layer 405a or the drain electrode layer 405b is in contact with the oxide semiconductor film 403 and the gate electrode layer 401 can be shortened, the source electrode layer 405a or the drain electrode The electric resistance between the region (contact region) where the layer 405b is in contact with the oxide semiconductor film 403 and the gate electrode layer 401 is lowered, and the conduction characteristics of the transistor 440a can be improved.

另外,因為在形成源極電極層405a及汲極電極層405b的製程中的去除閘極電極層401上的導電膜445的製程中不利用使用光阻掩罩的蝕刻製程,所以可以準確地進行精密的加工。因此,在半導體裝置的製程中,可以以高良率製造形狀和特性的偏差少的具有微型的結構的電晶體440a。 In addition, since the etching process using the photoresist mask is not used in the process of removing the conductive film 445 on the gate electrode layer 401 in the process of forming the source electrode layer 405a and the gate electrode layer 405b, it can be accurately performed. Precision machining. Therefore, in the manufacturing process of the semiconductor device, the transistor 440a having a micro structure having a small variation in shape and characteristics can be manufactured at a high yield.

另外,也可以在形成源極電極層405a及汲極電極層405b的製程中的去除閘極電極層401上的導電膜445的製 程中,去除絕緣膜413的一部分或整個絕緣膜413。圖4C示出去除整個絕緣膜413並使閘極電極層401露出的電晶體440c的例子。另外,閘極電極層401的上方的一部分也可以被去除。如電晶體440c那樣的使閘極電極層401露出的結構可以應用於在電晶體440c上層疊其他佈線或半導體元件的積體電路。 Alternatively, the conductive film 445 on the gate electrode layer 401 can be removed in the process of forming the source electrode layer 405a and the drain electrode layer 405b. In the process, a part of the insulating film 413 or the entire insulating film 413 is removed. 4C shows an example of a transistor 440c that removes the entire insulating film 413 and exposes the gate electrode layer 401. In addition, a portion above the gate electrode layer 401 may also be removed. The structure in which the gate electrode layer 401 is exposed as in the transistor 440c can be applied to an integrated circuit in which other wirings or semiconductor elements are stacked on the transistor 440c.

也可以在電晶體440a上設置用作保護絕緣膜的緻密性高的無機絕緣膜(典型的是氧化鋁膜)。 It is also possible to provide a highly dense inorganic insulating film (typically an aluminum oxide film) serving as a protective insulating film on the transistor 440a.

在本實施方式中,以與絕緣膜413、源極電極層405a、汲極電極層405b、側壁絕緣層412a、412b及層間絕緣膜415上接觸的方式形成絕緣膜407(參照圖3D)。 In the present embodiment, the insulating film 407 is formed in contact with the insulating film 413, the source electrode layer 405a, the gate electrode layer 405b, the sidewall insulating layers 412a and 412b, and the interlayer insulating film 415 (see FIG. 3D).

另外,也可以在源極電極層405a及汲極電極層405b與層間絕緣膜415之間設置用作保護絕緣膜的緻密性高的無機絕緣膜(典型的是氧化鋁膜)。 Further, an inorganic insulating film (typically an aluminum oxide film) having high density as a protective insulating film may be provided between the source electrode layer 405a and the drain electrode layer 405b and the interlayer insulating film 415.

圖4B示出在源極電極層405a及汲極電極層405b與層間絕緣膜415之間設置絕緣膜410的電晶體440b的例子。在電晶體440b中,藉由在形成源極電極層405a及汲極電極層405b的製程中使用的切削(研磨、拋光)製程,絕緣膜410的上面也經過平坦化處理。 4B shows an example of a transistor 440b in which an insulating film 410 is provided between the source electrode layer 405a and the gate electrode layer 405b and the interlayer insulating film 415. In the transistor 440b, the upper surface of the insulating film 410 is also subjected to a planarization process by a cutting (polishing, polishing) process used in the process of forming the source electrode layer 405a and the gate electrode layer 405b.

絕緣膜407、410可以具有單層結構或疊層結構,較佳至少包含氧化鋁膜。 The insulating films 407, 410 may have a single layer structure or a stacked structure, and preferably contain at least an aluminum oxide film.

絕緣膜407、410可以利用電漿CVD法、濺射法或蒸鍍法等形成。 The insulating films 407 and 410 can be formed by a plasma CVD method, a sputtering method, a vapor deposition method, or the like.

作為絕緣膜407、410,除了氧化鋁膜以外,典型地可 以使用氧化矽膜、氧氮化矽膜、氧氮化鋁膜或氧化鎵膜等無機絕緣膜等。另外,也可以使用氧化鉿膜、氧化鎂膜、氧化鋯膜、氧化鑭膜、氧化鋇膜或金屬氮化物膜(例如,氮化鋁膜)。 As the insulating films 407 and 410, in addition to the aluminum oxide film, it is typically An inorganic insulating film such as a hafnium oxide film, a hafnium oxynitride film, an aluminum oxynitride film or a gallium oxide film is used. Further, a hafnium oxide film, a magnesium oxide film, a zirconium oxide film, a hafnium oxide film, a hafnium oxide film or a metal nitride film (for example, an aluminum nitride film) may also be used.

在本實施方式中,作為絕緣膜407、410藉由濺射法形成氧化鋁膜。藉由將氧化鋁膜的膜密度設定為高密度(膜密度為3.2g/cm3以上,較佳為3.6g/cm3以上),可以對電晶體440a、440b賦予穩定的電特性。藉由盧瑟福背散射分析(RBS:Rutherford Backscattering Spectrometry)或X射線反射(XRR:X-Ray Reflectometry)可以測量膜密度。 In the present embodiment, an aluminum oxide film is formed as a insulating film 407, 410 by a sputtering method. By setting the film density of the aluminum oxide film to a high density (having a film density of 3.2 g/cm 3 or more, preferably 3.6 g/cm 3 or more), it is possible to impart stable electrical characteristics to the transistors 440a and 440b. The film density can be measured by Rutherford Backscattering Spectrometry (RBS) or X-ray Reflectometry (XRR: X-Ray Reflectometry).

可以用於設置在氧化物半導體膜403上的絕緣膜407、410的氧化鋁膜具有高遮斷效果(阻擋效果),即不使氫、水分等雜質和氧的兩者透過膜的效果。 The aluminum oxide film which can be used for the insulating films 407 and 410 provided on the oxide semiconductor film 403 has a high blocking effect (barrier effect), that is, an effect of not allowing both impurities such as hydrogen and moisture and oxygen to pass through the film.

因此,氧化鋁膜用作保護膜,即防止在製程中及製造之後成為變動原因的氫、水分等雜質混入到氧化物半導體膜403,並防止從氧化物半導體膜403釋放作為構成氧化物半導體的主要成分材料的氧。 Therefore, the aluminum oxide film is used as a protective film, that is, impurities such as hydrogen and moisture which are caused by variations in the process and after the production are prevented from being mixed into the oxide semiconductor film 403, and are prevented from being released from the oxide semiconductor film 403 as an oxide semiconductor. The main component of the material is oxygen.

絕緣膜407、410較佳適當地利用不使水、氫等雜質混入到絕緣膜407、410中的方法(較佳的是濺射法等)來形成。 The insulating films 407 and 410 are preferably formed by a method (preferably, a sputtering method or the like) in which impurities such as water or hydrogen are not mixed into the insulating films 407 and 410.

與形成氧化物半導體膜時同樣,為了去除殘留在絕緣膜407、410的沉積室內的水分,較佳為使用吸附型的真空泵(低溫泵等)。當在使用低溫泵排氣的沉積室中形成 絕緣膜407、410時,可以降低絕緣膜407、410所包含的雜質的濃度。此外,作為用來去除殘留在絕緣膜407、410的沉積室內的水分的排氣單元,也可以採用配備有冷阱的渦輪分子泵。 Similarly to the case of forming the oxide semiconductor film, in order to remove moisture remaining in the deposition chamber of the insulating films 407 and 410, it is preferable to use an adsorption type vacuum pump (such as a cryopump). When formed in a deposition chamber using a cryopump exhaust In the case of the insulating films 407 and 410, the concentration of impurities contained in the insulating films 407 and 410 can be lowered. Further, as the exhaust unit for removing moisture remaining in the deposition chambers of the insulating films 407, 410, a turbo molecular pump equipped with a cold trap may be employed.

作為當形成絕緣膜407、410時使用的濺射氣體,較佳為使用去除了氫、水、羥基或氫化物等雜質的高純度氣體。 As the sputtering gas used when forming the insulating films 407 and 410, it is preferable to use a high-purity gas from which impurities such as hydrogen, water, a hydroxyl group or a hydride are removed.

另外,為了降低起因於電晶體的表面凹凸,也可以形成平坦化絕緣膜。作為平坦化絕緣膜,可以使用聚醯亞胺樹脂、丙烯酸樹脂、苯並環丁烯類樹脂等有機材料。此外,除了上述有機材料之外,還可以使用低介電常數材料(low-k材料)等。另外,也可以藉由層疊多個由這些材料形成的絕緣膜,形成平坦化絕緣膜。 Further, in order to reduce surface unevenness caused by the transistor, a planarization insulating film may be formed. As the planarization insulating film, an organic material such as a polyimide resin, an acrylic resin, or a benzocyclobutene resin can be used. Further, in addition to the above organic materials, a low dielectric constant material (low-k material) or the like can be used. Further, a planarization insulating film may be formed by laminating a plurality of insulating films formed of these materials.

另外,圖4A示出:在層間絕緣膜415及絕緣膜407中形成到達源極電極層405a及汲極電極層405b的開口,在開口中形成佈線層435a、435b的例子。可以使用佈線層435a、435b使電晶體440a與其他電晶體或元件連接來構成各種電路。 In addition, FIG. 4A shows an example in which the openings reaching the source electrode layer 405a and the drain electrode layer 405b are formed in the interlayer insulating film 415 and the insulating film 407, and the wiring layers 435a and 435b are formed in the openings. The wiring 435a, 435b can be used to connect the transistor 440a to other transistors or elements to form various circuits.

佈線層435a、佈線層435b可以藉由使用與閘極電極層401、源極電極層405a或汲極電極層405b相同的材料及方法形成,例如可以使用含有選自Al、Cr、Cu、Ta、Ti、Mo、W中的元素的金屬膜或以上述元素為成分的金屬氮化物膜(氮化鈦膜、氮化鉬膜、氮化鎢膜)等。此外,還可以採用在Al、Cu等金屬膜的下側和上側中的一者或 兩者層疊Ti、Mo、W等高熔點金屬膜或它們的金屬氮化物膜(氮化鈦膜、氮化鉬膜、氮化鎢膜)的結構。另外,作為用於佈線層435a、佈線層435b的導電膜,也可以使用導電金屬氧化物。作為導電金屬氧化物,可以使用氧化銦(In2O3)、氧化錫(SnO2)、氧化鋅(ZnO)、氧化銦氧化錫(In2O3-SnO2)、氧化銦氧化鋅(In2O3-ZnO)或使它們的金屬氧化物材料包含氧化矽的材料。 The wiring layer 435a and the wiring layer 435b may be formed by using the same material and method as the gate electrode layer 401, the source electrode layer 405a, or the gate electrode layer 405b, and for example, may be selected from the group consisting of Al, Cr, Cu, Ta, A metal film of an element in Ti, Mo, or W, or a metal nitride film (titanium nitride film, molybdenum nitride film, tungsten nitride film) containing the above elements as a component. Further, a high melting point metal film such as Ti, Mo, or W or a metal nitride film thereof (titanium nitride film, nitriding) may be laminated on one or both of the lower side and the upper side of the metal film such as Al or Cu. Structure of molybdenum film, tungsten nitride film). Further, as the conductive film used for the wiring layer 435a and the wiring layer 435b, a conductive metal oxide can also be used. As the conductive metal oxide, indium oxide (In 2 O 3 ), tin oxide (SnO 2 ), zinc oxide (ZnO), indium tin oxide (In 2 O 3 -SnO 2 ), indium oxide zinc oxide (In 2 O 3 -ZnO) or a material in which their metal oxide material contains cerium oxide.

例如,作為佈線層435a、佈線層435b,可以使用鉬膜的單層、氮化鉭膜和銅膜的疊層或氮化鉭膜和鎢膜的疊層等。 For example, as the wiring layer 435a and the wiring layer 435b, a single layer of a molybdenum film, a laminate of a tantalum nitride film and a copper film, a laminate of a tantalum nitride film and a tungsten film, or the like can be used.

如上所述,在半導體裝置的製程中,可以以高良率提供形狀和特性的偏差少的具有微型的結構的導通特性高的電晶體440a、440b、440c。 As described above, in the manufacturing process of the semiconductor device, the transistors 440a, 440b, and 440c having high micro-conductivity with high conductivity can be provided with high variation in shape and characteristics.

由此,能夠提供實現了微型化且賦予高電特性的半導體裝置以及該半導體裝置的製造方法。 Thereby, it is possible to provide a semiconductor device which realizes miniaturization and imparts high electric characteristics, and a method of manufacturing the semiconductor device.

實施方式2 Embodiment 2

在本實施方式中,參照圖式說明如下半導體裝置的一個例子,該半導體裝置使用本說明書所示的電晶體,即使在沒有電力供應的情況下也能夠保持儲存資料,並且對寫入次數也沒有限制。 In the present embodiment, an example of a semiconductor device that uses the transistor shown in the present specification to hold data stored without power supply and has no write number is described with reference to the drawings. limit.

圖5A至圖5C是半導體裝置的結構的一個例子。圖5A示出半導體裝置的剖面圖,圖5B示出半導體裝置的平面圖,圖5C示出半導體裝置的電路圖。在此,圖5A相當 於沿著圖5B中的C1-C2及D1-D2的剖面。 5A to 5C are examples of the structure of a semiconductor device. 5A is a cross-sectional view of the semiconductor device, FIG. 5B is a plan view of the semiconductor device, and FIG. 5C is a circuit diagram of the semiconductor device. Here, Figure 5A is quite A section along C1-C2 and D1-D2 in Fig. 5B.

圖5A及圖5B所示的半導體裝置在其下部具有使用第一半導體材料的電晶體160,並在其上部具有使用第二半導體材料的電晶體162。電晶體162是應用實施方式1所示的電晶體440a的結構的例子。 The semiconductor device shown in FIGS. 5A and 5B has a transistor 160 using a first semiconductor material at its lower portion and a transistor 162 using a second semiconductor material at its upper portion. The transistor 162 is an example of a configuration in which the transistor 440a shown in Embodiment 1 is applied.

這裏,第一半導體材料和第二半導體材料較佳為具有不同能隙的材料。例如,可以將氧化物半導體以外的半導體材料(矽等)用於第一半導體材料,並且將氧化物半導體用於第二半導體材料。使用氧化物半導體以外的材料的電晶體容易進行高速工作。另一方面,使用氧化物半導體的電晶體利用其特性而可以長時間地保持電荷。 Here, the first semiconductor material and the second semiconductor material are preferably materials having different energy gaps. For example, a semiconductor material other than an oxide semiconductor (germanium or the like) may be used for the first semiconductor material, and an oxide semiconductor may be used for the second semiconductor material. A transistor using a material other than an oxide semiconductor is easy to operate at a high speed. On the other hand, a transistor using an oxide semiconductor can retain a charge for a long time by utilizing its characteristics.

另外,雖然對上述電晶體都為n通道型電晶體的情況進行說明,但是當然可以使用p通道型電晶體。此外,除了為了保持資訊將氧化物半導體用於實施方式1所示那樣的電晶體162之外,用於半導體裝置的材料或半導體裝置的結構等的半導體裝置的具體結構不需要侷限於在此所示的結構。 Further, although the case where the above-described transistors are all n-channel type transistors will be described, it is of course possible to use a p-channel type transistor. Further, the specific structure of the semiconductor device used for the material of the semiconductor device or the structure of the semiconductor device or the like is not necessarily limited to this, except that the oxide semiconductor is used for the transistor 162 as shown in Embodiment 1 in order to maintain information. The structure shown.

圖5A中的電晶體160包括:設置在包含半導體材料(例如,矽等)的基板185中的通道形成區116;以夾著通道形成區116的方式設置的雜質區120;接觸於雜質區120的金屬間化合物區124;設置在通道形成區116上的閘極絕緣膜108;以及設置在閘極絕緣膜108上的閘極電極110。注意,雖然有時在圖式中不明顯地具有源極電極或汲極電極,但是為了方便起見有時將這種狀態也稱為電 晶體。此外,在此情況下,為了說明電晶體的連接關係,有時將源極區或汲極區也稱為源極電極或汲極電極。也就是說,在本說明書中,源極電極可能包括源極區。 The transistor 160 in FIG. 5A includes: a channel formation region 116 disposed in a substrate 185 including a semiconductor material (eg, germanium, etc.); an impurity region 120 disposed in a manner sandwiching the channel formation region 116; and contacting the impurity region 120 The intermetallic compound region 124; the gate insulating film 108 disposed on the channel forming region 116; and the gate electrode 110 disposed on the gate insulating film 108. Note that although the source electrode or the drain electrode is sometimes not apparent in the drawings, this state is sometimes referred to as electricity for convenience. Crystal. Further, in this case, in order to explain the connection relationship of the transistors, the source region or the drain region is sometimes referred to as a source electrode or a drain electrode. That is, in the present specification, the source electrode may include a source region.

在基板185上以圍繞電晶體160的方式設置有元件隔離絕緣層106,並且以覆蓋電晶體160的方式設置有絕緣層128及絕緣層130。另外,在電晶體160中,側壁絕緣層也可以設置在閘極電極110的側面,雜質區120也可以包含雜質濃度不同的區域。 An element isolation insulating layer 106 is provided on the substrate 185 so as to surround the transistor 160, and an insulating layer 128 and an insulating layer 130 are provided to cover the transistor 160. Further, in the transistor 160, the sidewall insulating layer may be provided on the side surface of the gate electrode 110, and the impurity region 120 may also include a region having a different impurity concentration.

使用單晶半導體基板的電晶體160能夠進行高速工作。因此,藉由將該電晶體用作讀出用電晶體,可以高速地進行資訊的讀出。以覆蓋電晶體160的方式形成兩層絕緣膜。作為形成電晶體162及電容元件164之前的處理,對該兩層絕緣膜進行CMP處理來形成平坦化的絕緣層128及絕緣層130,同時使閘極電極110的上面露出。 The transistor 160 using a single crystal semiconductor substrate can perform high speed operation. Therefore, by using the transistor as a readout transistor, information can be read at high speed. Two insulating films are formed in such a manner as to cover the transistor 160. As a process before forming the transistor 162 and the capacitor 164, the two insulating films are subjected to CMP treatment to form the planarized insulating layer 128 and the insulating layer 130, and the upper surface of the gate electrode 110 is exposed.

作為絕緣層128、絕緣層130,典型地可以使用氧化矽膜、氧氮化矽膜、氧化鋁膜、氧氮化鋁膜、氮化矽膜、氮化鋁膜、氮氧化矽膜、氮氧化鋁膜等無機絕緣膜。絕緣層128、絕緣層130可以利用電漿CVD法或濺射法等形成。 As the insulating layer 128 and the insulating layer 130, a hafnium oxide film, a hafnium oxynitride film, an aluminum oxide film, an aluminum oxynitride film, a tantalum nitride film, an aluminum nitride film, a hafnium oxynitride film, or an oxynitride can be typically used. An inorganic insulating film such as an aluminum film. The insulating layer 128 and the insulating layer 130 can be formed by a plasma CVD method, a sputtering method, or the like.

另外,可以使用聚醯亞胺樹脂、丙烯酸樹脂、苯並環丁烯類樹脂等有機材料。此外,除了上述有機材料以外,也可以使用低介電常數材料(low-k材料)等。在使用有機材料時,也可以利用旋塗法、印刷法等濕處理形成絕緣層128、絕緣層130。 Further, an organic material such as a polyimide resin, an acrylic resin or a benzocyclobutene resin can be used. Further, in addition to the above organic materials, a low dielectric constant material (low-k material) or the like can also be used. When an organic material is used, the insulating layer 128 and the insulating layer 130 may be formed by a wet process such as a spin coating method or a printing method.

另外,在本實施方式中,作為絕緣層128使用氮化矽膜,作為絕緣層130使用氧化矽膜。 Further, in the present embodiment, a tantalum nitride film is used as the insulating layer 128, and a hafnium oxide film is used as the insulating layer 130.

較佳的是,對絕緣層130表面的形成有氧化物半導體膜144的區域進行平坦化處理。在本實施方式中,在藉由拋光處理(例如CMP處理)充分平坦化的(較佳的是,絕緣層130表面的平均面粗糙度為0.15nm以下)絕緣層130上形成氧化物半導體膜144。 Preferably, the region on the surface of the insulating layer 130 on which the oxide semiconductor film 144 is formed is planarized. In the present embodiment, the oxide semiconductor film 144 is formed on the insulating layer 130 by being sufficiently planarized by a polishing process (for example, CMP process) (preferably, the average surface roughness of the surface of the insulating layer 130 is 0.15 nm or less). .

圖5A所示的電晶體162是將氧化物半導體用於通道形成區的電晶體。在此,包括在電晶體162中的氧化物半導體膜144較佳為被高度純化的氧化物半導體膜。藉由使用被高度純化的氧化物半導體,可以得到具有極為優異的截止特性的電晶體162。 The transistor 162 shown in Fig. 5A is a transistor in which an oxide semiconductor is used for the channel formation region. Here, the oxide semiconductor film 144 included in the transistor 162 is preferably a highly purified oxide semiconductor film. By using a highly purified oxide semiconductor, a transistor 162 having extremely excellent cut-off characteristics can be obtained.

因為電晶體162的截止電流小,所以藉由使用這種電晶體能夠長期保持儲存資料。換言之,因為可以形成不需要更新工作或更新工作的頻率極低的半導體記憶體裝置,所以可以充分降低耗電量。 Since the off current of the transistor 162 is small, the storage of data can be maintained for a long period of time by using such a transistor. In other words, since it is possible to form a semiconductor memory device having an extremely low frequency that does not require an update operation or an update operation, power consumption can be sufficiently reduced.

在電晶體162的製程中,利用藉由化學機械拋光處理去除設置在閘極電極148、絕緣膜137及側壁絕緣層136a、136b上的導電膜的製程,形成用作源極電極層及汲極電極層的電極層142a、142b。 In the process of the transistor 162, a process for removing the conductive film provided on the gate electrode 148, the insulating film 137, and the sidewall insulating layers 136a, 136b by a chemical mechanical polishing process is used to form a source electrode layer and a drain electrode. Electrode layers 142a, 142b of the electrode layer.

因此,因為在電晶體162中可以縮短用作源極電極層或汲極電極層的電極層142a、142b接觸於氧化物半導體膜144的區域(接觸區域)與閘極電極148之間的距離,所以電極層142a、142b接觸於氧化物半導體膜144的區 域(接觸區域)與閘極電極148之間的電阻得到降低,從而可以提高電晶體162的導通特性。 Therefore, since the distance between the region (contact region) where the electrode layers 142a, 142b serving as the source electrode layer or the gate electrode layer are in contact with the oxide semiconductor film 144 and the gate electrode 148 can be shortened in the transistor 162, Therefore, the electrode layers 142a, 142b are in contact with the region of the oxide semiconductor film 144. The electric resistance between the domain (contact region) and the gate electrode 148 is lowered, so that the conduction characteristics of the transistor 162 can be improved.

因為在形成電極層142a、142b的製程中的去除閘極電極148上的導電膜的製程中不利用使用光阻掩罩的蝕刻製程,所以可以準確地進行精密的加工。因此,在半導體裝置的製程中,可以以高良率製造形狀和特性的偏差少的具有微型的結構的電晶體。 Since the etching process using the photoresist mask is not utilized in the process of removing the conductive film on the gate electrode 148 in the process of forming the electrode layers 142a, 142b, precise processing can be accurately performed. Therefore, in the process of the semiconductor device, it is possible to manufacture a transistor having a micro structure having a small variation in shape and characteristics at a high yield.

在電晶體162上設置有單層或疊層的層間絕緣膜135、絕緣膜150。在本實施方式中,作為絕緣膜150使用氧化鋁膜。藉由將氧化鋁膜的膜密度設定為高密度(膜密度為3.2g/cm3以上,較佳為3.6g/cm3以上),可以對電晶體162賦予穩定的電特性。 A single layer or a laminated interlayer insulating film 135 and an insulating film 150 are provided on the transistor 162. In the present embodiment, an aluminum oxide film is used as the insulating film 150. By setting the film density of the aluminum oxide film to a high density (film density of 3.2 g/cm 3 or more, preferably 3.6 g/cm 3 or more), it is possible to impart stable electrical characteristics to the transistor 162.

另外,在隔著層間絕緣膜135及絕緣膜150與電晶體162的電極層142a重疊的區域設置有導電層153,並由電極層142a、層間絕緣膜135、絕緣膜150、導電層153構成電容元件164。換言之,電晶體162的電極層142a用作電容元件164中的一方的電極,導電層153用作電容元件164中的另一方的電極。另外,當不需要電容時,也可以採用不設置電容元件164的結構。另外,電容元件164也可以另行設置在電晶體162的上方。 Further, a conductive layer 153 is provided in a region overlapping the electrode layer 142a of the transistor 162 via the interlayer insulating film 135 and the insulating film 150, and the capacitor layer 142a, the interlayer insulating film 135, the insulating film 150, and the conductive layer 153 constitute a capacitor. Element 164. In other words, the electrode layer 142a of the transistor 162 serves as an electrode of one of the capacitance elements 164, and the conductive layer 153 serves as the other electrode of the capacitance element 164. In addition, when a capacitor is not required, a configuration in which the capacitor element 164 is not provided may be employed. In addition, the capacitor element 164 may be separately disposed above the transistor 162.

在電晶體162及電容元件164上設置有絕緣膜152。而且,在絕緣膜152上設置有電晶體162、用來連接其他電晶體的佈線156。雖然在圖5A中未圖示,但是佈線156藉由形成在設置於絕緣膜150、絕緣膜152及閘極絕緣膜 146等中的開口中的電極與電極層142b電連接。在此,較佳的是,該電極至少以與電晶體162的氧化物半導體膜144的一部分重疊的方式設置。 An insulating film 152 is provided on the transistor 162 and the capacitor 164. Further, a transistor 162 and a wiring 156 for connecting other transistors are provided on the insulating film 152. Although not shown in FIG. 5A, the wiring 156 is formed on the insulating film 150, the insulating film 152, and the gate insulating film. The electrode in the opening in 146 or the like is electrically connected to the electrode layer 142b. Here, it is preferable that the electrode is provided at least in such a manner as to overlap with a part of the oxide semiconductor film 144 of the transistor 162.

在圖5A及圖5B中,較佳的是,電晶體160和電晶體162以至少其一部分重疊的方式設置,並且電晶體160的源極區或汲極區和氧化物半導體膜144的一部分重疊的方式設置。另外,以與電晶體160的至少一部分重疊的方式設置有電晶體162及電容元件164。例如,電容元件164的導電層153與電晶體160的閘極電極110以至少一部分重疊的方式設置。藉由採用這種平面佈局,可以降低半導體裝置所占的面積,從而可以實現高集體化。 In FIGS. 5A and 5B, it is preferable that the transistor 160 and the transistor 162 are disposed in such a manner that at least a part thereof overlap, and a source region or a drain region of the transistor 160 overlaps with a portion of the oxide semiconductor film 144. Way to set. Further, a transistor 162 and a capacitor 164 are provided so as to overlap at least a portion of the transistor 160. For example, the conductive layer 153 of the capacitive element 164 and the gate electrode 110 of the transistor 160 are disposed in such a manner as to overlap at least partially. By adopting such a planar layout, the area occupied by the semiconductor device can be reduced, and high collectivization can be realized.

另外,電極層142b與佈線156的電連接既可以藉由使電極層142b與佈線156直接接觸而實現,又可以藉由在電極層142b與佈線156之間的絕緣膜中設置電極,藉由該電極而實現電連接。另外,介於兩者之間的電極也可以是多個。 In addition, the electrical connection between the electrode layer 142b and the wiring 156 can be achieved by directly contacting the electrode layer 142b with the wiring 156, or by providing an electrode in the insulating film between the electrode layer 142b and the wiring 156. The electrodes are electrically connected. In addition, there may be a plurality of electrodes in between.

接著,圖5C示出對應於圖5A及圖5B的電路結構的一個例子。 Next, Fig. 5C shows an example of the circuit configuration corresponding to Figs. 5A and 5B.

在圖5C中,第一佈線(1st Line)與電晶體160的源極電極電連接,第二佈線(2nd Line)與電晶體160的汲極電極電連接。另外,第三佈線(3rd Line)與電晶體162的源極電極和汲極電極中的一方電連接,第四佈線(4th Line)與電晶體162的閘極電極電連接。並且,電晶體160的閘極電極以及電晶體162的源極電極和汲極電 極中的另一方與電容元件164的電極中的一方電連接,第五佈線(5th Line)與電容元件164的電極中的另一方電連接。 In FIG. 5C, the first wiring (1st Line) is electrically connected to the source electrode of the transistor 160, and the second wiring (2nd Line) is electrically connected to the drain electrode of the transistor 160. Further, the third wiring (3rd line) is electrically connected to one of the source electrode and the drain electrode of the transistor 162, and the fourth wiring (4th line) is electrically connected to the gate electrode of the transistor 162. And, the gate electrode of the transistor 160 and the source electrode and the gate electrode of the transistor 162 The other of the poles is electrically connected to one of the electrodes of the capacitive element 164, and the fifth wiring (5th Line) is electrically connected to the other of the electrodes of the capacitive element 164.

在圖5C所示的半導體裝置中,藉由有效地利用能夠保持電晶體160的閘極電極的電位的特徵,可以如以下所示那樣進行資訊的寫入、保持以及讀出。 In the semiconductor device shown in FIG. 5C, by effectively utilizing the feature of the potential of the gate electrode capable of holding the transistor 160, information can be written, held, and read as described below.

對資訊的寫入及保持進行說明。首先,將第四佈線的電位設定為使電晶體162成為導通狀態的電位,使電晶體162成為導通狀態。由此,對電晶體160的閘極電極和電容元件164施加第三佈線的電位。也就是說,對電晶體160的閘極電極施加規定的電荷(寫入)。這裏,施加賦予兩種不同電位電平的電荷(以下,稱為Low電平電荷、High電平電荷)中的任一種。然後,藉由將第四佈線的電位設定為使電晶體162成為截止狀態的電位,使電晶體162成為截止狀態,保持對電晶體160的閘極電極施加的電荷(保持)。 Explain the writing and maintenance of information. First, the potential of the fourth wiring is set to a potential at which the transistor 162 is turned on, and the transistor 162 is turned on. Thereby, the potential of the third wiring is applied to the gate electrode of the transistor 160 and the capacitance element 164. That is, a predetermined charge (writing) is applied to the gate electrode of the transistor 160. Here, any one of electric charges (hereinafter, referred to as Low level charge and High level charge) imparting two different potential levels is applied. Then, by setting the potential of the fourth wiring to a potential at which the transistor 162 is turned off, the transistor 162 is turned off, and the charge applied to the gate electrode of the transistor 160 is held (held).

因為電晶體162的截止電流極小,所以電晶體160的閘極電極的電荷被長時間地保持。 Since the off current of the transistor 162 is extremely small, the charge of the gate electrode of the transistor 160 is maintained for a long time.

接著,對資訊的讀出進行說明。當在對第一佈線施加規定的電位(恆電位)的狀態下,對第五佈線施加適當的電位(讀出電位)時,第二佈線根據保持在電晶體160的閘極電極的電荷量具有不同的電位。這是因為如下緣故:一般而言,在電晶體160為n通道型的情況下,對電晶體160的閘極電極施加High電平電荷時的外觀上的閾值 Vth_H低於對電晶體160的閘極電極施加Low電平電荷時的外觀上的閾值Vth_L。在此,外觀上的臨界電壓是指為了使電晶體160成為“導通狀態”所需要的第五佈線的電位。因此,藉由將第五佈線的電位設定為Vth_H和Vth_L之間的電位V0,可以辨別施加到電晶體160的閘極電極的電荷。例如,在寫入中,當被供應High電平電荷時,如果第五佈線的電位為V0(>Vth_H),則電晶體160成為“導通狀態”。當被供應Low電平電荷時,即使第五佈線的電位為V0(<Vth_L),電晶體160也維持“截止狀態”。因此,根據第二佈線的電位可以讀出所保持的資訊。 Next, the reading of the information will be described. When an appropriate potential (readout potential) is applied to the fifth wiring in a state where a predetermined potential (constant potential) is applied to the first wiring, the second wiring has a charge amount according to the gate electrode held in the transistor 160. Different potentials. This is because, in general, in the case where the transistor 160 is of the n-channel type, the appearance threshold Vth_H when the high-level charge is applied to the gate electrode of the transistor 160 is lower than that of the transistor 160. The appearance threshold Vth_L when the gate electrode is applied with a low level charge. Here, the threshold voltage in appearance refers to the potential of the fifth wiring required to make the transistor 160 "on". Therefore, by setting the potential of the fifth wiring to the potential V 0 between V th — H and V th — L , the electric charge applied to the gate electrode of the transistor 160 can be discriminated. For example, in writing, when the High level charge is supplied, if the potential of the fifth wiring is V 0 (>V th — H ), the transistor 160 becomes “on state”. When the Low level charge is supplied, the transistor 160 maintains the "off state" even if the potential of the fifth wiring is V 0 (<V th_L ). Therefore, the held information can be read out based on the potential of the second wiring.

注意,當將記憶單元配置為陣列狀時,需要唯讀出所希望的記憶單元的資訊。在不讀出資訊的記憶單元的情況下,對第五佈線施加不管閘極電極的狀態如何都使電晶體160成為“截止狀態”的電位,也就是小於Vth_H的電位,即可。或者,將不管閘極電極的狀態如何都使電晶體160成為“導通狀態”的電位,也就是大於Vth_L的電位施加到第五佈線即可。 Note that when the memory cells are arranged in an array, it is necessary to read only the information of the desired memory cells. In the case of a memory cell that does not read information, a potential that causes the transistor 160 to be "off state" regardless of the state of the gate electrode, that is, a potential smaller than Vth_H , may be applied to the fifth wiring. Alternatively, the potential of the transistor 160 to be "on" may be made regardless of the state of the gate electrode, that is, a potential greater than Vth_L may be applied to the fifth wiring.

另外,圖19A和圖19B示出半導體裝置的結構的其他一個例子。圖19A是半導體裝置的平面圖,圖19B是半導體裝置的剖面圖。在此,圖19B相當於沿著圖19A的D3-D4線的剖面。另外,為了明確起見,在圖19A中省略圖19B所示的半導體裝置的構成要素的一部分。 In addition, FIG. 19A and FIG. 19B show another example of the structure of the semiconductor device. 19A is a plan view of a semiconductor device, and FIG. 19B is a cross-sectional view of the semiconductor device. Here, FIG. 19B corresponds to a cross section taken along line D3-D4 of FIG. 19A. In addition, for the sake of clarity, a part of the constituent elements of the semiconductor device shown in FIG. 19B is omitted in FIG. 19A.

在圖19A和圖19B中,電容元件164由閘極電極 110、氧化物半導體膜144、絕緣膜173及導電層174構成。導電層174利用與閘極電極148相同的製程製造,其上面被絕緣膜176覆蓋,其側面被側壁絕緣層175a、175b覆蓋。 In FIGS. 19A and 19B, the capacitive element 164 is composed of a gate electrode 110. The oxide semiconductor film 144, the insulating film 173, and the conductive layer 174 are formed. The conductive layer 174 is fabricated by the same process as the gate electrode 148, the upper surface of which is covered by the insulating film 176, and the side faces thereof are covered by the sidewall insulating layers 175a, 175b.

電晶體162的電極層142b在形成於層間絕緣膜135、絕緣膜150中的到達電極層142b的開口中與佈線156電連接。另外,以與氧化物半導體膜144的下方接觸的方式設置有導電層172,藉由該導電層172電晶體160與電晶體162電連接。 The electrode layer 142b of the transistor 162 is electrically connected to the wiring 156 in an opening formed in the interlayer insulating film 135 and the insulating film 150 reaching the electrode layer 142b. Further, a conductive layer 172 is provided in contact with the underside of the oxide semiconductor film 144, and the transistor 160 is electrically connected to the transistor 162 by the conductive layer 172.

如圖19A和圖19B所示,藉由以使電晶體160、電晶體162、電容元件164重疊的方式稠密層疊它們,可以降低半導體裝置所占的面積,從而可以實現高集體化。 As shown in FIG. 19A and FIG. 19B, by densely laminating the transistor 160, the transistor 162, and the capacitor 164, the area occupied by the semiconductor device can be reduced, and high collectivization can be realized.

在本實施方式所示的半導體裝置中,藉由應用將氧化物半導體用於其通道形成區的截止電流極小的電晶體,可以極為長期保持儲存資料。就是說,因為不需要進行更新工作,或者,可以將更新工作的頻率降低到極低,所以可以充分降低耗電量。另外,即使在沒有電力供給的情況(但是,較佳電位是固定的)下,也可以長期保持儲存資料。 In the semiconductor device shown in the present embodiment, by using an oxide semiconductor for a transistor having a very small off-state current in the channel formation region, it is possible to maintain the stored data for a long period of time. That is to say, since the update work is not required, or the frequency of the update work can be reduced to an extremely low level, the power consumption can be sufficiently reduced. In addition, even in the case where there is no power supply (however, the preferred potential is fixed), the stored data can be kept for a long time.

另外,在本實施方式所示的半導體裝置中,資訊的寫入不需要高電壓,而且也沒有元件劣化的問題。例如,不像習知的非揮發性記憶體的情況那樣,不需要對浮動閘極注入電子或從浮動閘極抽出電子,所以根本不會產生閘極絕緣膜的劣化等的問題。就是說,在根據所公開的發明的 半導體裝置中,對作為習知的非揮發性記憶體所存在的問題的能夠重寫的次數沒有限制,而使可靠性得到顯著提高。再者,根據電晶體的導通狀態或截止狀態而進行資訊寫入,而也可以容易實現高速工作。 Further, in the semiconductor device described in the present embodiment, writing of information does not require a high voltage, and there is no problem that the element is deteriorated. For example, unlike the case of the conventional non-volatile memory, there is no need to inject electrons into the floating gate or extract electrons from the floating gate, so that there is no problem such as deterioration of the gate insulating film. That is, in accordance with the disclosed invention In the semiconductor device, the number of times that can be rewritten as a problem of the conventional non-volatile memory is not limited, and the reliability is remarkably improved. Further, information writing is performed according to the on state or the off state of the transistor, and high speed operation can be easily realized.

如上所述,能夠提供實現了微型化及高集體化且賦予高電特性的半導體裝置以及該半導體裝置的製造方法。 As described above, it is possible to provide a semiconductor device that realizes miniaturization and high collectivization and imparts high electric characteristics, and a method of manufacturing the semiconductor device.

以上,本實施方式所示的結構、方法等可以與其他實施方式所示的結構、方法等適當地組合而使用。 As described above, the configuration, the method, and the like described in the present embodiment can be used in combination with any of the structures, methods, and the like described in the other embodiments.

實施方式3 Embodiment 3

在本實施方式中,關於使用實施方式1或實施方式2所示的電晶體的半導體裝置,參照圖6A至圖7B對與實施方式2所示的結構不同的結構進行說明。該半導體裝置即使在沒有電力供應的情況下也能夠保持儲存資料,並且對寫入次數也沒有限制。 In the present embodiment, a structure different from the configuration shown in the second embodiment will be described with reference to FIGS. 6A to 7B with respect to the semiconductor device using the transistor described in the first embodiment or the second embodiment. The semiconductor device is capable of holding stored data even in the absence of power supply, and there is no limitation on the number of writes.

圖6A示出半導體裝置的電路結構的一個例子,圖6B是示出半導體裝置的一個例子的示意圖。首先對圖6A所示的半導體裝置進行說明,接著對圖6B所示的半導體裝置進行說明。 FIG. 6A shows an example of a circuit configuration of a semiconductor device, and FIG. 6B is a schematic view showing an example of a semiconductor device. First, the semiconductor device shown in FIG. 6A will be described, and then the semiconductor device shown in FIG. 6B will be described.

在圖6A所示的半導體裝置中,位元線BL與電晶體162的源極電極和汲極電極中的一方電連接,字線WL與電晶體162的閘極電極電連接,並且電晶體162的源極電極和汲極電極中的另一方與電容元件254的第一端子電連接。 In the semiconductor device shown in FIG. 6A, the bit line BL is electrically connected to one of the source electrode and the drain electrode of the transistor 162, the word line WL is electrically connected to the gate electrode of the transistor 162, and the transistor 162 The other of the source electrode and the drain electrode is electrically connected to the first terminal of the capacitive element 254.

接著,說明對圖6A所示的半導體裝置(記憶單元250)進行資訊的寫入及保持的情況。 Next, a case where information is written and held to the semiconductor device (memory unit 250) shown in FIG. 6A will be described.

首先,藉由將字線WL的電位設定為使電晶體162成為導通狀態的電位,來使電晶體162成為導通狀態。由此,將位元線BL的電位施加到電容元件254的第一端子(寫入)。然後,藉由將字線WL的電位設定為使電晶體162成為截止狀態的電位,來使電晶體162成為截止狀態,由此儲存電容元件254的第一端子的電位(保持)。 First, the transistor 162 is turned on by setting the potential of the word line WL to a potential at which the transistor 162 is turned on. Thereby, the potential of the bit line BL is applied to the first terminal (write) of the capacitive element 254. Then, by setting the potential of the word line WL to a potential at which the transistor 162 is turned off, the transistor 162 is turned off, whereby the potential of the first terminal of the capacitor 254 is stored (held).

使用氧化物半導體的電晶體162具有截止電流極小的特徵。因此,藉由使電晶體162成為截止狀態,可以在極長時間儲存電容元件254的第一端子的電位(或累積在電容元件254中的電荷)。 The transistor 162 using an oxide semiconductor has a feature that the off current is extremely small. Therefore, by causing the transistor 162 to be in an off state, the potential of the first terminal of the capacitive element 254 (or the charge accumulated in the capacitive element 254) can be stored for a very long time.

接著,對資訊的讀出進行說明。當電晶體162成為導通狀態時,處於浮動狀態的位元線BL與電容元件254的第一端子導通,於是,在位元線BL與電容元件254之間電荷被再次分配。其結果,位元線BL的電位發生變化。位元線BL的電位的變化量根據電容元件254的第一端子的電位(或累積在電容元件254中的電荷)而取不同的值。 Next, the reading of the information will be described. When the transistor 162 is turned on, the bit line BL in the floating state is electrically connected to the first terminal of the capacitor 254, and thus the charge is redistributed between the bit line BL and the capacitor 254. As a result, the potential of the bit line BL changes. The amount of change in the potential of the bit line BL takes a different value depending on the potential of the first terminal of the capacitive element 254 (or the charge accumulated in the capacitive element 254).

例如,當以V表示電容元件254的第一端子的電位,以C表示電容元件254的電容,以CB表示位元線BL所具有的電容成分(以下也稱為位元線電容),並且以VB0表示電荷被再次分配之前的位元線BL的電位時,電荷被再次分配之後的位元線BL的電位成為(CB*VB0+C*V)/ (CB+C)。因此,作為記憶單元250的狀態,當電容元件254的第一端子的電位為V1和V0(V1>V0)的兩個狀態時,保持電位V1時的位元線BL的電位(=(CB*VB0+C*V1)/(CB+C))高於保持電位V0時的位元線BL的電位(=(CB*VB0+C*V0)/(CB+C))。 For example, when the potential of the first terminal of the capacitive element 254 is denoted by V, the capacitance of the capacitive element 254 is denoted by C, and the capacitance component (hereinafter also referred to as a bit line capacitance) of the bit line BL is denoted by CB, and VB0 represents the potential of the bit line BL before the charge is redistributed, and the potential of the bit line BL after the charge is redistributed becomes (CB*VB0+C*V)/ (CB+C). Therefore, as the state of the memory cell 250, when the potential of the first terminal of the capacitive element 254 is in two states of V1 and V0 (V1 > V0), the potential of the bit line BL when the potential V1 is held (= (CB*) VB0+C*V1)/(CB+C)) is higher than the potential of the bit line BL when the potential V0 is held (=(CB*VB0+C*V0)/(CB+C)).

並且,藉由比較位元線BL的電位與指定的電位,可以讀出資訊。 Also, information can be read by comparing the potential of the bit line BL with the specified potential.

如此,圖6A所示的半導體裝置可以利用電晶體162的截止電流極小的特徵長時間保持累積在電容元件254中的電荷。換言之,因為不需要進行更新工作,或者,可以使更新工作的頻率極低,所以可以充分降低耗電量。另外,即使在沒有電力供給的情況下也可以長期保持儲存資料。 As such, the semiconductor device shown in FIG. 6A can maintain the electric charge accumulated in the capacitance element 254 for a long time by utilizing the characteristic that the off current of the transistor 162 is extremely small. In other words, since the update work is not required, or the frequency of the update work can be made extremely low, the power consumption can be sufficiently reduced. In addition, the stored data can be kept for a long period of time even in the absence of power supply.

接著對圖6B所示的半導體裝置進行說明。 Next, the semiconductor device shown in FIG. 6B will be described.

圖6B所示的半導體裝置在其上部作為儲存電路具有記憶單元陣列251a及251b,該記憶單元陣列251a及251b具有多個圖6A所示的記憶單元250。此外,圖6B所示的半導體裝置在其下部具有用來使記憶單元陣列251(記憶單元陣列251a及251b)工作的週邊電路253。另外,週邊電路253與記憶單元陣列251電連接。 The semiconductor device shown in FIG. 6B has a memory cell array 251a and 251b as a memory circuit at its upper portion, and the memory cell arrays 251a and 251b have a plurality of memory cells 250 shown in FIG. 6A. Further, the semiconductor device shown in FIG. 6B has a peripheral circuit 253 at its lower portion for operating the memory cell array 251 (memory cell arrays 251a and 251b). In addition, the peripheral circuit 253 is electrically connected to the memory cell array 251.

藉由採用圖6B所示的結構,可以將週邊電路253設置在記憶單元陣列251(記憶單元陣列251a及251b)的正下方,從而可以實現半導體裝置的小型化。 By adopting the configuration shown in FIG. 6B, the peripheral circuit 253 can be disposed directly under the memory cell array 251 (memory cell arrays 251a and 251b), so that the miniaturization of the semiconductor device can be realized.

作為設置在週邊電路253中的電晶體,更佳地使用與 電晶體162不同的半導體材料。例如,可以使用矽、鍺、矽鍺、碳化矽或砷化鎵等,較佳為使用單晶半導體。另外,還可以使用有機半導體材料。使用這種半導體材料的電晶體能夠進行充分的高速工作。從而,藉由利用該電晶體,能夠順利實現被要求高速工作的各種電路(邏輯電路、驅動電路等)。 As the transistor provided in the peripheral circuit 253, it is more preferably used and The transistor 162 is a different semiconductor material. For example, ruthenium, osmium, iridium, ruthenium carbide or gallium arsenide or the like can be used, and a single crystal semiconductor is preferably used. In addition, organic semiconductor materials can also be used. A transistor using such a semiconductor material can perform sufficient high speed operation. Therefore, by using the transistor, various circuits (logic circuits, drive circuits, and the like) that are required to operate at high speed can be smoothly realized.

另外,圖6B所示的半導體裝置例示層疊有兩個記憶單元陣列251(記憶單元陣列251a、記憶單元陣列251b)的結構,但是所層疊的記憶單元陣列的個數不侷限於此。也可以採用層疊有三個以上的記憶單元陣列的結構。 In addition, the semiconductor device shown in FIG. 6B exemplifies a configuration in which two memory cell arrays 251 (memory cell array 251a and memory cell array 251b) are stacked, but the number of stacked memory cell arrays is not limited thereto. A structure in which three or more memory cell arrays are stacked may also be employed.

接著,參照圖7A和圖7B對圖6A所示的記憶單元250的具體結構進行說明。 Next, a specific structure of the memory unit 250 shown in FIG. 6A will be described with reference to FIGS. 7A and 7B.

圖7A和圖7B示出記憶單元250的結構的一個例子。圖7A示出記憶單元250的剖面圖,圖7B示出記憶單元250的平面圖。在此,圖7A相當於沿著圖7B中的F1-F2及G1-G2的剖面。 7A and 7B show an example of the structure of the memory unit 250. FIG. 7A shows a cross-sectional view of the memory unit 250, and FIG. 7B shows a plan view of the memory unit 250. Here, FIG. 7A corresponds to a cross section along F1-F2 and G1-G2 in FIG. 7B.

圖7A及圖7B所示的電晶體162可以採用與實施方式1或實施方式2所示的結構相同的結構。 The transistor 162 shown in FIGS. 7A and 7B can have the same configuration as that shown in the first embodiment or the second embodiment.

在設置在絕緣膜180上的電晶體162上設置有單層或疊層的絕緣膜256。另外,在隔著絕緣膜256與電晶體162的電極層142a重疊的區域設置有導電層262,並由電極層142a、層間絕緣膜135、絕緣膜256、導電層262構成電容元件254。換言之,電晶體162的電極層142a用作電容元件254的一方的電極,導電層262用作電容元件 254的另一方的電極。 A single layer or a laminated insulating film 256 is provided on the transistor 162 provided on the insulating film 180. Further, a conductive layer 262 is provided in a region overlapping the electrode layer 142a of the transistor 162 via the insulating film 256, and the capacitor element 254 is composed of the electrode layer 142a, the interlayer insulating film 135, the insulating film 256, and the conductive layer 262. In other words, the electrode layer 142a of the transistor 162 serves as one electrode of the capacitive element 254, and the conductive layer 262 functions as a capacitive element The other electrode of 254.

在電晶體162及電容元件254上設置有絕緣膜258。而且,在絕緣膜258上設置有記憶單元250、用來連接所相鄰的記憶單元250的佈線260。雖然未圖示,但是佈線260藉由形成在絕緣膜256及絕緣膜258等中的開口,與電晶體162的電極層142b電連接。但是,也可以在開口中設置其他導電層,並藉由該其他導電層使佈線260與電極層142b電連接。另外,佈線260相當於圖6A的電路圖中的位元線BL。 An insulating film 258 is provided on the transistor 162 and the capacitor element 254. Further, a memory unit 250 and a wiring 260 for connecting the adjacent memory cells 250 are provided on the insulating film 258. Although not shown, the wiring 260 is electrically connected to the electrode layer 142b of the transistor 162 by an opening formed in the insulating film 256, the insulating film 258, or the like. However, it is also possible to provide another conductive layer in the opening, and electrically connect the wiring 260 and the electrode layer 142b by the other conductive layer. In addition, the wiring 260 corresponds to the bit line BL in the circuit diagram of FIG. 6A.

在圖7A及圖7B中,電晶體162的電極層142b也可以用作包括在所相鄰的記憶單元中的電晶體的源極電極。藉由採用這種平面佈局,可以減小半導體裝置的所占的面積,從而可以實現高集體化。 In FIGS. 7A and 7B, the electrode layer 142b of the transistor 162 can also be used as a source electrode of a transistor included in an adjacent memory cell. By adopting such a planar layout, the area occupied by the semiconductor device can be reduced, and high collectivization can be realized.

藉由採用圖7A所示的平面佈局,可以降低半導體裝置的所占的面積,從而可以實現高集體化。 By adopting the planar layout shown in FIG. 7A, the area occupied by the semiconductor device can be reduced, and high collectivization can be realized.

另外,圖20A和圖20B示出半導體裝置的結構的其他一個例子。 In addition, FIG. 20A and FIG. 20B show another example of the structure of the semiconductor device.

圖20A是半導體裝置的平面圖,圖20B是半導體裝置的剖面圖。在此,圖20B相當於沿著圖20A的F5-F6線的剖面。另外,為了明確起見,在圖20A中省略圖20B所示的半導體裝置的構成要素的一部分。 20A is a plan view of a semiconductor device, and FIG. 20B is a cross-sectional view of the semiconductor device. Here, FIG. 20B corresponds to a cross section taken along line F5-F6 of FIG. 20A. In addition, for the sake of clarity, a part of the components of the semiconductor device shown in FIG. 20B is omitted in FIG. 20A.

在圖20A和圖20B中,電容元件254由導電層192、絕緣膜193、導電膜194構成,並形成在絕緣膜196中。另外,絕緣膜193較佳為使用介電常數高的絕緣材料。電 容元件254藉由在形成在層間絕緣膜135、絕緣膜150及絕緣膜195中的到達電晶體162的電極層142a的開口中設置的導電層191與電晶體162電連接。 In FIGS. 20A and 20B, the capacitance element 254 is composed of a conductive layer 192, an insulating film 193, and a conductive film 194, and is formed in the insulating film 196. Further, the insulating film 193 is preferably made of an insulating material having a high dielectric constant. Electricity The capacitance element 254 is electrically connected to the transistor 162 by a conductive layer 191 provided in an opening of the electrode layer 142a reaching the transistor 162 formed in the interlayer insulating film 135, the insulating film 150, and the insulating film 195.

如圖20A和圖20B所示,藉由以使電晶體162與電容元件254彼此重疊的方式稠密層疊它們,可以降低半導體裝置所占的面積,從而可以實現高集體化。 As shown in FIG. 20A and FIG. 20B, by densely laminating the transistor 162 and the capacitor element 254 so as to overlap each other, the area occupied by the semiconductor device can be reduced, and high collectivization can be realized.

如上所述,在上部層疊形成的多個記憶單元由使用氧化物半導體的電晶體形成。由於使用氧化物半導體的電晶體的截止電流小,因此藉由使用這種電晶體,能夠長期保持儲存資料。換言之,可以使更新工作的頻率極低,所以可以充分降低耗電量。 As described above, the plurality of memory cells formed in the upper layer are formed of a transistor using an oxide semiconductor. Since the off-state current of the transistor using the oxide semiconductor is small, the storage of the data can be maintained for a long period of time by using such a transistor. In other words, the frequency of the update operation can be made extremely low, so that the power consumption can be sufficiently reduced.

如上所述,藉由將利用使用氧化物半導體以外的材料的電晶體(換言之,能夠進行充分高速的工作的電晶體)的週邊電路以及利用使用氧化物半導體的電晶體(作更廣義解釋,其截止電流充分小的電晶體)的儲存電路設置為一體,能夠實現具有新穎特徵的半導體裝置。另外,藉由採用週邊電路和儲存電路的疊層結構,可以實現半導體裝置的集體化。 As described above, a peripheral circuit using a transistor using a material other than an oxide semiconductor (in other words, a transistor capable of performing a sufficiently high-speed operation) and a transistor using an oxide semiconductor (for a broader explanation, The storage circuit of the transistor having a sufficiently small off current is integrated, and a semiconductor device having novel features can be realized. In addition, the collectiveization of the semiconductor device can be realized by using a laminated structure of the peripheral circuit and the storage circuit.

如上所述,能夠提供實現了微型化及高集體化且賦予高電特性的半導體裝置以及該半導體裝置的製造方法。 As described above, it is possible to provide a semiconductor device that realizes miniaturization and high collectivization and imparts high electric characteristics, and a method of manufacturing the semiconductor device.

本實施方式可以與其他實施方式所記載的結構適當地組合而實施。 This embodiment can be implemented in appropriate combination with the structures described in the other embodiments.

實施方式4 Embodiment 4

在本實施方式中,參照圖8A至圖11對將上述實施方式所示的半導體裝置應用於行動電話、智慧手機、電子書閱讀器等移動設備的例子進行說明。 In the present embodiment, an example in which the semiconductor device described in the above embodiment is applied to a mobile device such as a mobile phone, a smart phone, or an e-book reader will be described with reference to FIGS. 8A to 11 .

在行動電話、智慧手機、電子書閱讀器等移動設備中,為了暫時儲存影像資料而使用SRAM或DRAM。使用SRAM或DRAM是因為快閃記憶體應答速度慢而不適於處理影像。另一方面,當將SRAM或DRAM用於影像資料的暫時儲存時,有如下特徵。 In mobile devices such as mobile phones, smart phones, and e-book readers, SRAM or DRAM is used to temporarily store image data. The use of SRAM or DRAM is due to the slow response speed of flash memory and is not suitable for processing images. On the other hand, when SRAM or DRAM is used for temporary storage of image data, the following features are obtained.

如圖8A所示,在一般的SRAM中,一個記憶單元由電晶體801至電晶體806的六個電晶體構成,並且該電晶體801至電晶體806被X解碼器807和Y解碼器808驅動。電晶體803和電晶體805以及電晶體804和電晶體806構成反相器,該反相器能夠實現高速驅動。然而,由於一個記憶單元由六個電晶體構成,所以有記憶單元面積大的缺點。在將設計規則的最小尺寸設定為F的情況下,SRAM的記憶單元面積一般為100至150F2。因此,SRAM的每個比特位的單價是各種記憶體中最高的。 As shown in FIG. 8A, in a general SRAM, one memory cell is composed of six transistors of a transistor 801 to a transistor 806, and the transistor 801 to the transistor 806 are driven by an X decoder 807 and a Y decoder 808. . The transistor 803 and the transistor 805 and the transistor 804 and the transistor 806 constitute an inverter which enables high speed driving. However, since one memory cell is composed of six transistors, there is a disadvantage that the memory cell area is large. In the case where the minimum size of the design rule is set to F, the memory cell area of the SRAM is generally 100 to 150 F 2 . Therefore, the unit price of each bit of the SRAM is the highest among the various memories.

另一方面,在DRAM中,如圖8B所示,記憶單元由電晶體811和儲存電容器812構成,並且該電晶體811和儲存電容器812被X解碼器813和Y解碼器814驅動。由於一個單元由一個電晶體和一個電容構成,所以其面積小。DRAM的儲存面積一般為10F2以下。注意,DRAM需要一直進行更新工作,因此即使在不進行改寫的情況下也消耗電力。 On the other hand, in the DRAM, as shown in FIG. 8B, the memory unit is constituted by the transistor 811 and the storage capacitor 812, and the transistor 811 and the storage capacitor 812 are driven by the X decoder 813 and the Y decoder 814. Since a unit is composed of a transistor and a capacitor, its area is small. The storage area of DRAM is generally 10F 2 or less. Note that the DRAM needs to be updated all the time, so power is consumed even without rewriting.

相對於此,上述實施方式所說明的半導體裝置的記憶單元面積為10F2左右,並且不需要頻繁的更新工作。從而,能夠縮小記憶單元面積,還能夠降低耗電量。 On the other hand, the memory cell area of the semiconductor device of the embodiment described above is about 10F 2, and does not require frequent updating. Thereby, the memory cell area can be reduced, and power consumption can also be reduced.

圖9示出移動設備的方塊圖。圖9所示的移動設備具有:RF電路901;類比基帶電路902;數字基帶電路903;電池904;電源電路905;應用處理器906;快閃記憶體910;顯示器控制器911;儲存電路912;顯示器913;觸控感應器919;聲頻電路917;以及鍵盤918等。顯示器913具有:顯示部914;源極驅動器915;以及閘極驅動器916。應用處理器906具有:CPU(Central Processing Unit:中央處理器)907;DSP(Digital Signal Processor:數位信號處理器)908;以及介面909(IF909)。儲存電路912一般由SRAM或DRAM構成,藉由將上述實施方式所說明的半導體裝置用於該部分,能夠以高速進行資訊的寫入和讀出,能夠長期間保持儲存資料,還能夠充分降低耗電量。 Figure 9 shows a block diagram of a mobile device. The mobile device shown in FIG. 9 has an RF circuit 901, an analog baseband circuit 902, a digital baseband circuit 903, a battery 904, a power supply circuit 905, an application processor 906, a flash memory 910, a display controller 911, and a storage circuit 912. A display 913; a touch sensor 919; an audio circuit 917; and a keyboard 918 and the like. The display 913 has a display portion 914, a source driver 915, and a gate driver 916. The application processor 906 has a CPU (Central Processing Unit) 907, a DSP (Digital Signal Processor) 908, and an interface 909 (IF 909). The storage circuit 912 is generally composed of an SRAM or a DRAM. By using the semiconductor device described in the above embodiments for the portion, information can be written and read at a high speed, and data can be stored for a long period of time, and the memory can be sufficiently reduced. Electricity.

圖10示出將上述實施方式所說明的半導體裝置用於顯示器的儲存電路950的例子。圖10所示的儲存電路950具有:記憶體952;記憶體953;開關954;開關955;以及記憶體控制器951。另外,儲存電路950連接於:用來讀出並控制從信號線輸入的影像資料(輸入影像資料)和儲存在記憶體952及記憶體953中的資料(儲存影像資料)的顯示器控制器956;以及根據來自顯示器控制器956的信號來進行顯示的顯示器957。 FIG. 10 shows an example in which the semiconductor device described in the above embodiment is used for the storage circuit 950 of the display. The storage circuit 950 shown in FIG. 10 has a memory 952, a memory 953, a switch 954, a switch 955, and a memory controller 951. In addition, the storage circuit 950 is connected to: a display controller 956 for reading and controlling image data (input image data) input from the signal line and data (storing image data) stored in the memory 952 and the memory 953; And a display 957 that displays in accordance with signals from display controller 956.

首先,藉由應用處理器(未圖示)形成一個影像資料(輸入影像資料A)。該輸入影像資料A藉由開關954被儲存在記憶體952中。然後,將儲存在記憶體952中的影像資料(儲存影像資料A)藉由開關955及顯示器控制器956發送到顯示器957而進行顯示。 First, an image data (input image data A) is formed by an application processor (not shown). The input image data A is stored in the memory 952 by the switch 954. Then, the image data (storage image data A) stored in the memory 952 is transmitted to the display 957 by the switch 955 and the display controller 956 for display.

在輸入影像資料A沒有變化時,儲存影像資料A一般以30至60Hz左右的週期從記憶體952藉由開關955由顯示器控制器956讀出。 When there is no change in the input image data A, the stored image data A is generally read from the memory 952 by the display controller 956 via the switch 955 at a cycle of about 30 to 60 Hz.

另外,例如在使用者進行了改寫畫面的操作時(即在輸入影像資料A有變化時),應用處理器形成新的影像資料(輸入影像資料B)。該輸入影像資料B藉由開關954被儲存在記憶體953中。在該期間儲存影像資料A也繼續定期性地藉由開關955從記憶體952被讀出。當在記憶體953中儲存完新的影像(儲存影像資料B)時,由顯示器957的下一個圖框開始讀出儲存影像資料B,並且將該儲存影像資料B藉由開關955及顯示器控制器956發送到顯示器957而進行顯示。該讀出一直持續直到下一個新的影像資料儲存到記憶體952中。 Further, for example, when the user performs an operation of rewriting the screen (that is, when the input image data A changes), the application processor forms new image data (input image data B). The input image data B is stored in the memory 953 by the switch 954. During this period, the stored image data A is also continuously read from the memory 952 by the switch 955. When a new image (storing image data B) is stored in the memory 953, the stored image data B is read from the next frame of the display 957, and the stored image data B is controlled by the switch 955 and the display controller. 956 is sent to display 957 for display. The reading continues until the next new image data is stored in the memory 952.

如上所述,藉由由記憶體952及記憶體953交替進行影像資料的寫入和影像資料的讀出,來進行顯示器957的顯示。另外,記憶體952、記憶體953不侷限於兩個不同的記憶體,也可以將一個記憶體分割而使用。藉由將上述實施方式所說明的半導體裝置用於記憶體952及記憶體953,能夠以高速進行資訊的寫入和讀出,能夠長期間保 持儲存資料,還能夠充分降低耗電量。 As described above, the display of the display 957 is performed by alternately writing the image data and reading the image data by the memory 952 and the memory 953. Further, the memory 952 and the memory 953 are not limited to two different memories, and one memory may be divided and used. By using the semiconductor device described in the above embodiment in the memory 952 and the memory 953, it is possible to write and read information at high speed, and it is possible to protect the data for a long period of time. With stored data, you can also fully reduce power consumption.

圖11示出電子書閱讀器的方塊圖。圖11所示的電子書閱讀器具有:電池1001;電源電路1002;微處理器1003;快閃記憶體1004;聲頻電路1005;鍵盤1006;儲存電路1007;觸摸屏1008;顯示器1009;以及顯示器控制器1010。 Figure 11 shows a block diagram of an e-book reader. The e-book reader shown in FIG. 11 has: battery 1001; power supply circuit 1002; microprocessor 1003; flash memory 1004; audio circuit 1005; keyboard 1006; storage circuit 1007; touch screen 1008; display 1009; 1010.

在此,可以將上述實施方式所說明的半導體裝置用於圖11的儲存電路1007。儲存電路1007具有暫時保持書籍內容的功能。作為該功能的例子,例如有使用者使用高亮功能的情況等。使用者在看電子書閱讀器時,有時需要對某個部分做標記。該標記功能被稱為高亮功能,即藉由改變顯示顏色;劃下劃線;將文字改為粗體字;改變文字的字體等,來使該部分與周圍不一樣而突出表示。高亮功能就是將使用者所指定的部分的資訊儲存而保持的功能。當將該資訊長期保持時,也可以將該資訊拷貝到快閃記憶體1004。即使在此情況下,藉由採用上述實施方式所說明的半導體裝置,也能夠以高速進行資訊的寫入和讀出,能夠長期間保持儲存資料,還能夠充分降低耗電量。 Here, the semiconductor device described in the above embodiment can be used for the storage circuit 1007 of FIG. The storage circuit 1007 has a function of temporarily holding the contents of the book. As an example of this function, for example, there is a case where a user uses a highlight function. When users look at e-book readers, they sometimes need to mark a part. This marking function is called highlighting, that is, by changing the display color; underlining; changing the text to bold; changing the font of the text, etc., so that the part is not the same as the surrounding and highlighted. The highlight function is a function of storing and retaining information of a part designated by the user. When the information is held for a long time, the information can also be copied to the flash memory 1004. Even in this case, by using the semiconductor device described in the above embodiment, information can be written and read at a high speed, data can be stored for a long period of time, and power consumption can be sufficiently reduced.

如上所述,本實施方式所示的移動設備安裝有根據上述實施方式的半導體裝置。因此,能夠實現以高速進行資訊的讀出、長期間保持儲存資料且充分降低耗電量的移動設備。 As described above, the mobile device shown in the present embodiment is mounted with the semiconductor device according to the above embodiment. Therefore, it is possible to realize a mobile device that reads information at a high speed, stores data for a long period of time, and sufficiently reduces power consumption.

本實施方式所示的結構及方法等可以與其他實施方式所記載的結構及方法等適當地組合而實施。 The structure, method, and the like described in the present embodiment can be implemented in appropriate combination with the structures, methods, and the like described in the other embodiments.

實施方式5 Embodiment 5

藉由使用上述實施方式所例示的電晶體可以製造具有顯示功能的半導體裝置(也稱為顯示裝置)。此外,藉由將包括電晶體的驅動電路的一部分或整個部分與像素部一體地形成在相同的基板上,可以形成系統整合型面板(system-on-panel)。 A semiconductor device (also referred to as a display device) having a display function can be manufactured by using the transistor exemplified in the above embodiment. Further, a system-on-panel can be formed by integrally forming a part or the entire portion of the driving circuit including the transistor on the same substrate as the pixel portion.

在圖12A中,以圍繞設置在第一基板4001上的像素部4002的方式設置密封材料4005,使用第二基板4006進行密封。在圖12A中,在第一基板4001上的與由密封材料4005圍繞的區域不同的區域中安裝有使用單晶半導體膜或多晶半導體膜形成在另行準備的基板上的掃描線驅動電路4004、信號線驅動電路4003。此外,供應到另行形成的信號線驅動電路4003、掃描線驅動電路4004或者像素部4002的各種信號及電位從FPC(Flexible printed circuit:撓性印刷電路)4018a、4018b供應。 In FIG. 12A, the sealing material 4005 is provided so as to surround the pixel portion 4002 provided on the first substrate 4001, and the sealing is performed using the second substrate 4006. In FIG. 12A, a scanning line driving circuit 4004 formed on a separately prepared substrate using a single crystal semiconductor film or a polycrystalline semiconductor film is mounted in a region different from a region surrounded by the sealing material 4005 on the first substrate 4001, Signal line driver circuit 4003. Further, various signals and potentials supplied to the separately formed signal line driver circuit 4003, scanning line driver circuit 4004, or pixel portion 4002 are supplied from FPC (Flexible Print Circuit) 4018a, 4018b.

在圖12B和圖12C中,以圍繞設置在第一基板4001上的像素部4002和掃描線驅動電路4004的方式設置有密封材料4005。此外,在像素部4002和掃描線驅動電路4004上設置有第二基板4006。因此,像素部4002、掃描線驅動電路4004與顯示元件一起由第一基板4001、密封材料4005以及第二基板4006密封。在圖12B和圖12C中,在第一基板4001上的與由密封材料4005圍繞的區域不同的區域中安裝有使用單晶半導體膜或多晶半導體膜形 成在另行準備的基板上的信號線驅動電路4003。在圖12B和圖12C中,供應到另行形成的信號線驅動電路4003、掃描線驅動電路4004或者像素部4002的各種信號及電位從FPC4018供應。 In FIGS. 12B and 12C, a sealing material 4005 is provided in such a manner as to surround the pixel portion 4002 and the scanning line driving circuit 4004 provided on the first substrate 4001. Further, a second substrate 4006 is provided on the pixel portion 4002 and the scanning line driving circuit 4004. Therefore, the pixel portion 4002 and the scanning line driving circuit 4004 are sealed together with the display element by the first substrate 4001, the sealing material 4005, and the second substrate 4006. In FIGS. 12B and 12C, a single crystal semiconductor film or a polycrystalline semiconductor film shape is mounted in a region on the first substrate 4001 different from a region surrounded by the sealing material 4005. The signal line driver circuit 4003 is formed on a separately prepared substrate. In FIGS. 12B and 12C, various signals and potentials supplied to the separately formed signal line driver circuit 4003, scanning line driver circuit 4004, or pixel portion 4002 are supplied from the FPC 4018.

此外,圖12B和圖12C示出另行形成信號線驅動電路4003並且將該信號線驅動電路4003安裝到第一基板4001的實例,但是不侷限於該結構。既可以另行形成掃描線驅動電路並進行安裝,又可以僅另行形成信號線驅動電路的一部分或者掃描線驅動電路的一部分並進行安裝。 Further, FIGS. 12B and 12C illustrate an example in which the signal line driver circuit 4003 is separately formed and the signal line driver circuit 4003 is mounted to the first substrate 4001, but is not limited to this structure. The scanning line driving circuit may be separately formed and mounted, or a part of the signal line driving circuit or a part of the scanning line driving circuit may be separately formed and mounted.

另外,對另行形成的驅動電路的連接方法沒有特別的限制,而可以採用COG(Chip On Glass,玻璃上晶片)方法、打線接合方法或者TAB(Tape Automated Bonding,卷帶式自動接合)方法等。圖12A是藉由COG方法安裝信號線驅動電路4003、掃描線驅動電路4004的例子,圖12B是藉由COG方法安裝信號線驅動電路4003的例子,而圖12C是藉由TAB方法安裝信號線驅動電路4003的例子。 Further, the connection method of the separately formed drive circuit is not particularly limited, and a COG (Chip On Glass) method, a wire bonding method, a TAB (Tape Automated Bonding) method, or the like can be used. 12A is an example in which the signal line driver circuit 4003 and the scanning line driver circuit 4004 are mounted by the COG method, FIG. 12B is an example in which the signal line driver circuit 4003 is mounted by the COG method, and FIG. 12C is a signal line driver mounted by the TAB method. An example of circuit 4003.

此外,顯示裝置包括密封有顯示元件的面板(顯示面板、發光面板)和在該面板中安裝有包括控制器的IC等的模組。 Further, the display device includes a panel (display panel, light-emitting panel) sealed with display elements, and a module in which an IC or the like including a controller is mounted.

注意,本說明書中的顯示裝置是指影像顯示裝置、顯示裝置或光源(包括照明設備)。另外,顯示裝置還包括:安裝有諸如FPC、TAB膠帶或TCP的連接器的模組;在TAB膠帶或TCP的端部設置有印刷線路板的模組;或 者藉由COG方式將IC(積體電路)直接安裝到顯示元件的模組。 Note that the display device in this specification refers to an image display device, a display device, or a light source (including a lighting device). In addition, the display device further includes: a module mounted with a connector such as FPC, TAB tape or TCP; a module provided with a printed wiring board at the end of the TAB tape or TCP; or The IC (integrated circuit) is directly mounted to the module of the display element by the COG method.

此外,設置在第一基板上的像素部及掃描線驅動電路具有多個電晶體,可以應用上述實施方式所例示的電晶體。 Further, the pixel portion and the scanning line driving circuit provided on the first substrate have a plurality of transistors, and the transistor illustrated in the above embodiment can be applied.

作為設置在顯示裝置中的顯示元件,可以使用液晶元件(也稱為液晶顯示元件)、發光元件(也稱為發光顯示元件)。發光元件將由電流或電壓控制亮度的元件包括在其範疇內,明確而言,包括無機EL(Electro Luminescence,電致發光)、有機EL等。此外,也可以應用電子墨水等由於電作用而改變對比度的顯示媒介。 As the display element provided in the display device, a liquid crystal element (also referred to as a liquid crystal display element) or a light-emitting element (also referred to as a light-emitting display element) can be used. The light-emitting element includes an element whose luminance is controlled by current or voltage, and specifically includes inorganic EL (Electro Luminescence), organic EL, and the like. Further, it is also possible to apply a display medium such as electronic ink that changes the contrast due to electrical action.

參照圖12A至圖12C及圖13A和圖13B對半導體裝置的一個方式進行說明。圖13A和圖13B相當於沿著圖12B的線M-N的剖面圖。 One mode of the semiconductor device will be described with reference to FIGS. 12A to 12C and FIGS. 13A and 13B. 13A and 13B correspond to a cross-sectional view taken along line M-N of Fig. 12B.

如圖12A至圖12C及圖13A和圖13B所示,半導體裝置包括連接端子電極4015及端子電極4016,連接端子電極4015及端子電極4016藉由各向異性導電膜4019電連接到FPC4018所具有的端子。 As shown in FIGS. 12A to 12C and FIGS. 13A and 13B, the semiconductor device includes a connection terminal electrode 4015 and a terminal electrode 4016. The connection terminal electrode 4015 and the terminal electrode 4016 are electrically connected to the FPC 4018 by an anisotropic conductive film 4019. Terminal.

連接端子電極4015由與第一電極層4030相同的導電膜形成,並且,端子電極4016由與電晶體4010、4011的源極電極層及汲極電極層相同的導電膜形成。 The connection terminal electrode 4015 is formed of the same conductive film as the first electrode layer 4030, and the terminal electrode 4016 is formed of the same conductive film as the source electrode layer and the gate electrode layer of the transistors 4010 and 4011.

此外,設置在第一基板4001上的像素部4002、掃描線驅動電路4004具有多個電晶體,在圖12A至圖12C及圖13A和圖13B中例示像素部4002所包括的電晶體 4010、掃描線驅動電路4004所包括的電晶體4011。在圖13A中,在電晶體4010、4011上設置有層間絕緣膜4020、絕緣膜4024,設置有絕緣膜4021。另外,絕緣膜4023是用作基底膜的絕緣膜。另外,在與電晶體4010、4011重疊的區域設置有遮光膜4050。 Further, the pixel portion 4002 disposed on the first substrate 4001, the scanning line driving circuit 4004 has a plurality of transistors, and the transistors included in the pixel portion 4002 are illustrated in FIGS. 12A to 12C and FIGS. 13A and 13B. 4010. A transistor 4011 included in the scan line driver circuit 4004. In FIG. 13A, an interlayer insulating film 4020 and an insulating film 4024 are provided on the transistors 4010 and 4011, and an insulating film 4021 is provided. In addition, the insulating film 4023 is an insulating film used as a base film. Further, a light shielding film 4050 is provided in a region overlapping the transistors 4010 and 4011.

作為電晶體4010、4011,可以使用上述實施方式所示的電晶體。在本實施方式中示出使用具有與實施方式1所示的電晶體440a相同的結構的電晶體的例子。 As the transistors 4010 and 4011, the transistor described in the above embodiment can be used. In the present embodiment, an example of using a transistor having the same structure as that of the transistor 440a shown in Embodiment 1 is shown.

在電晶體4010、4011中,在製程中藉由對設置在閘極電極層、絕緣膜及側壁絕緣層上的導電膜進行化學機械拋光處理而去除,分離導電膜,形成源極電極層及汲極電極層。 In the transistors 4010 and 4011, in the process, the conductive film provided on the gate electrode layer, the insulating film and the sidewall insulating layer is removed by chemical mechanical polishing, and the conductive film is separated to form a source electrode layer and a germanium electrode. Electrode layer.

因此,因為可以縮短源極電極層或汲極電極層接觸於氧化物半導體膜的區域(接觸區域)與閘極電極層之間的距離,所以源極電極層或汲極電極層接觸於氧化物半導體膜的區域(接觸區域)與閘極電極層之間的電阻得到降低,可以提高電晶體4010、4011的導通特性。 Therefore, since the distance between the region (contact region) where the source electrode layer or the gate electrode layer is in contact with the oxide semiconductor film and the gate electrode layer can be shortened, the source electrode layer or the gate electrode layer is in contact with the oxide The electric resistance between the region (contact region) of the semiconductor film and the gate electrode layer is lowered, and the conduction characteristics of the transistors 4010 and 4011 can be improved.

因為在形成源極電極層及汲極電極層的製程中的去除閘極電極層上的導電膜的製程中不利用使用光阻掩罩的蝕刻製程,所以可以準確地進行精密的加工。因此,在半導體裝置的製程中,可以以高良率製造形狀和特性的偏差少的具有微型的結構的電晶體4010、4011。 Since the etching process using the photoresist mask is not used in the process of removing the conductive film on the gate electrode layer in the process of forming the source electrode layer and the gate electrode layer, precise processing can be accurately performed. Therefore, in the process of the semiconductor device, the transistors 4010 and 4011 having a micro structure with little variation in shape and characteristics can be manufactured with high yield.

因此,作為圖12A至圖12C及圖13A和圖13B所示的本實施方式的半導體裝置,可以提供可靠性高的半導體 裝置。 Therefore, as the semiconductor device of the present embodiment shown in FIGS. 12A to 12C and FIGS. 13A and 13B, a highly reliable semiconductor can be provided. Device.

此外,也可以在與驅動電路用電晶體4011的氧化物半導體膜的通道形成區重疊的位置還設置導電層。藉由將導電層設置在與氧化物半導體膜的通道形成區重疊的位置,可以進一步降低偏壓-熱壓力試驗(BT試驗)前後的電晶體4011的臨界電壓的變化量。此外,導電層的電位既可以與電晶體4011的閘極電極層的電位相同,又可以不同,並且,還可以用作第二閘極電極層。此外,導電層的電位也可以為GND、0V或者浮動狀態。 Further, a conductive layer may be further provided at a position overlapping with the channel formation region of the oxide semiconductor film of the driver circuit transistor 4011. By providing the conductive layer at a position overlapping the channel formation region of the oxide semiconductor film, the amount of change in the threshold voltage of the transistor 4011 before and after the bias-heat stress test (BT test) can be further reduced. Further, the potential of the conductive layer may be the same as or different from the potential of the gate electrode layer of the transistor 4011, and may also be used as the second gate electrode layer. In addition, the potential of the conductive layer can also be GND, 0V or floating.

此外,該導電層還具有遮蔽外部的電場,即不使外部的電場作用到內部(包括電晶體的電路部)的功能(尤其是,遮蔽靜電的靜電遮蔽功能)。利用導電層的遮蔽功能,可以防止由於靜電等外部的電場的影響而使電晶體的電特性變動。 Further, the conductive layer also has an electric field that shields the outside, that is, a function that does not cause an external electric field to act inside (including a circuit portion of the transistor) (in particular, an electrostatic shielding function that shields static electricity). By the shielding function of the conductive layer, it is possible to prevent the electrical characteristics of the transistor from fluctuating due to the influence of an external electric field such as static electricity.

設置在像素部4002中的電晶體4010電連接到顯示元件,而構成顯示面板。顯示元件只要能夠進行顯示就沒有特別的限制,而可以使用各種各樣的顯示元件。 The transistor 4010 provided in the pixel portion 4002 is electrically connected to the display element to constitute a display panel. The display element is not particularly limited as long as it can be displayed, and various display elements can be used.

圖13A示出作為顯示元件使用液晶元件的液晶顯示裝置的例子。在圖13A中,作為顯示元件的液晶元件4013包括第一電極層4030、第二電極層4031以及液晶層4008。另外,以夾持液晶層4008的方式設置有用作配向膜的絕緣膜4032、4033。第二電極層4031設置在第二基板4006一側,第一電極層4030和第二電極層4031夾著液晶層4008而層疊。 Fig. 13A shows an example of a liquid crystal display device using a liquid crystal element as a display element. In FIG. 13A, a liquid crystal element 4013 as a display element includes a first electrode layer 4030, a second electrode layer 4031, and a liquid crystal layer 4008. Further, insulating films 4032 and 4033 serving as alignment films are provided to sandwich the liquid crystal layer 4008. The second electrode layer 4031 is disposed on the side of the second substrate 4006, and the first electrode layer 4030 and the second electrode layer 4031 are laminated with the liquid crystal layer 4008 interposed therebetween.

此外,間隔物4035是藉由對絕緣膜選擇性地進行蝕刻而獲得的柱狀間隔物,並且它是為控制液晶層4008的膜厚(液晶盒間隙(cell gap))而設置的。另外,也可以使用球狀間隔物。 Further, the spacer 4035 is a column spacer obtained by selectively etching the insulating film, and it is provided to control the film thickness (cell gap) of the liquid crystal layer 4008. In addition, a spherical spacer can also be used.

當作為顯示元件使用液晶元件時,可以使用熱致液晶、低分子液晶、高分子液晶、高分子分散型液晶、鐵電液晶、反鐵電液晶等。上述液晶材料(液晶組成物)根據條件而呈現膽固醇相、近晶相、立方相、手徵向列相、均質相等。 When a liquid crystal element is used as the display element, a thermotropic liquid crystal, a low molecular liquid crystal, a polymer liquid crystal, a polymer dispersed liquid crystal, a ferroelectric liquid crystal, an antiferroelectric liquid crystal, or the like can be used. The liquid crystal material (liquid crystal composition) exhibits a cholesterol phase, a smectic phase, a cubic phase, a chiral nematic phase, and homogeneous in accordance with conditions.

另外,也可以作為液晶層4008使用不使用配向膜的呈現藍相的液晶組成物。此時,液晶層4008與第一電極層4030及第二電極層4031接觸。藍相是液晶相的一種,是指當使膽固醇相液晶的溫度上升時即將從膽固醇相轉變到均質相之前出現的相。藍相可以使用混合液晶及手性試劑的液晶組成物呈現。此外,為了擴大呈現藍相的溫度範圍,對呈現藍相的液晶組成物添加聚合性單體及聚合引發劑等,進行高分子穩定化的處理來可以形成液晶層。由於呈現藍相的液晶組成物的回應時間短,並且其具有光學各向同性,所以不需要配向處理,且視角依賴性小。另外,由於不需要設置配向膜而不需要摩擦處理,因此可以防止由於摩擦處理而引起的靜電破壞,並可以降低製程中的液晶顯示裝置的故障、破損。從而,可以提高液晶顯示裝置的生產率。在使用氧化物半導體膜的電晶體中,電晶體的電特性因靜電的影響而有可能顯著地變動而越出設計範 圍。因此,將呈現藍相的液晶組成物用於具有使用氧化物半導體膜的電晶體的液晶顯示裝置是更有效的。 Further, as the liquid crystal layer 4008, a liquid crystal composition exhibiting a blue phase without using an alignment film may be used. At this time, the liquid crystal layer 4008 is in contact with the first electrode layer 4030 and the second electrode layer 4031. The blue phase is a kind of liquid crystal phase, and refers to a phase which occurs immediately before the temperature of the liquid crystal of the cholesterol phase rises from the cholesterol phase to the homogeneous phase. The blue phase can be exhibited using a liquid crystal composition in which a liquid crystal and a chiral agent are mixed. In addition, in order to increase the temperature range in which the blue phase is exhibited, a polymerizable monomer, a polymerization initiator, or the like is added to the liquid crystal composition exhibiting a blue phase, and a polymer stabilization treatment is performed to form a liquid crystal layer. Since the liquid crystal composition exhibiting a blue phase has a short response time and is optically isotropic, alignment processing is not required, and viewing angle dependence is small. In addition, since it is not necessary to provide an alignment film and no rubbing treatment is required, it is possible to prevent electrostatic breakdown due to the rubbing treatment, and it is possible to reduce malfunction or breakage of the liquid crystal display device in the process. Thereby, the productivity of the liquid crystal display device can be improved. In a transistor using an oxide semiconductor film, the electrical characteristics of the transistor may be significantly changed due to the influence of static electricity. Wai. Therefore, it is more effective to use a liquid crystal composition exhibiting a blue phase for a liquid crystal display device having a transistor using an oxide semiconductor film.

此外,液晶材料的固有電阻為1×109Ω.cm以上,較佳為1×1011Ω.cm以上,更佳為1×1012Ω.cm以上。另外,本說明書中的固有電阻的值為在20℃測量的值。 In addition, the inherent resistance of the liquid crystal material is 1 × 10 9 Ω. Above cm, preferably 1 x 10 11 Ω. More than cm, more preferably 1 × 10 12 Ω. More than cm. In addition, the value of the intrinsic resistance in this specification is a value measured at 20 degreeC.

考慮到配置在像素部中的電晶體的汲極電流等而設定設置在液晶顯示裝置中的儲存電容器的大小使得能夠在所定的期間中保持電荷。可以考慮到電晶體的截止電流等設定儲存電容器的大小。 The size of the storage capacitor provided in the liquid crystal display device is set in consideration of the drain current or the like of the transistor disposed in the pixel portion so that the electric charge can be held for a predetermined period. The size of the storage capacitor can be set in consideration of the off current of the transistor or the like.

在本實施方式中使用的使用氧化物半導體膜的電晶體可以降低截止狀態下的電流值(截止電流值)。因此,可以延長影像信號等電信號的保持時間,在電源的導通狀態下也可以延長寫入間隔。因此,可以降低更新工作的頻率,所以可以達到抑制耗電量的效果。 The transistor using the oxide semiconductor film used in the present embodiment can reduce the current value (off current value) in the off state. Therefore, the holding time of the electric signal such as the image signal can be prolonged, and the writing interval can be extended even when the power source is turned on. Therefore, the frequency of the update work can be reduced, so that the effect of suppressing the power consumption can be achieved.

此外,在本實施方式中使用的使用氧化物半導體膜的電晶體可以得到較高的場效應遷移率,所以能夠進行高速驅動。例如,藉由將這種能夠進行高速驅動的電晶體用於液晶顯示裝置,可以在同一基板上形成像素部的開關電晶體及用於驅動電路部的驅動電晶體。也就是說,因為作為驅動電路不需要另行使用由矽晶片等形成的半導體裝置,所以可以縮減半導體裝置的部件數。另外,在像素部中也藉由使用能夠進行高速驅動的電晶體,可以提供高品質的影像。 Further, the transistor using the oxide semiconductor film used in the present embodiment can obtain high field-effect mobility, so that high-speed driving can be performed. For example, by using such a transistor capable of high-speed driving for a liquid crystal display device, a switching transistor of a pixel portion and a driving transistor for driving a circuit portion can be formed on the same substrate. In other words, since it is not necessary to separately use a semiconductor device formed of a germanium wafer or the like as the driving circuit, the number of components of the semiconductor device can be reduced. Further, in the pixel portion, a high-quality image can be provided by using a transistor capable of high-speed driving.

液晶顯示裝置可以採用TN(Twisted Nematic,扭曲 向列)模式、IPS(In-Plane-Switching,平面內轉換)模式、FFS(Fringe Field Switching,邊緣電場轉換)模式、ASM(Axially Symmetric aligned Micro-cell,軸對稱排列微單元)模式、OCB(Optical Compensated Birefringence,光學補償彎曲)模式、FLC(Ferroelectric Liquid Crystal,鐵電性液晶)模式、AFLC(Anti Ferroelectric Liquid Crystal,反鐵電性液晶)模式等。 The liquid crystal display device can adopt TN (Twisted Nematic) Nematic mode, IPS (In-Plane-Switching) mode, FFS (Fringe Field Switching) mode, ASM (Axially Symmetric aligned Micro-cell) mode, OCB ( Optical Compensated Birefringence mode, FLC (Ferroelectric Liquid Crystal) mode, AFLC (Anti Ferroelectric Liquid Crystal) mode, and the like.

此外,也可以使用常黑型液晶顯示裝置,例如採用垂直配向(VA)模式的透過型液晶顯示裝置。作為垂直配向模式,列舉幾個例子,例如可以使用MVA(Multi-Domain Vertical Alignment:多象限垂直配向)模式、PVA(Patterned Vertical Alignment:垂直配向構型)模式、ASV(Advanced Super View)模式等。另外,也可以用於VA型液晶顯示裝置。VA型液晶顯示裝置是控制液晶顯示面板的液晶分子的排列的一種方式。VA型液晶顯示裝置是在不被施加電壓時液晶分子朝向垂直於面板的方向的方式。此外,也可以使用將像素(pixel)分成幾個區域(子像素)且使分子分別倒向不同方向的被稱為多疇化或多域設計的方法。 Further, a normally black liquid crystal display device such as a transmissive liquid crystal display device in a vertical alignment (VA) mode may be used. As the vertical alignment mode, for example, an MVA (Multi-Domain Vertical Alignment) mode, a PVA (Patterned Vertical Alignment) mode, an ASV (Advanced Super View) mode, or the like can be used. In addition, it can also be used for a VA liquid crystal display device. The VA type liquid crystal display device is one way of controlling the arrangement of liquid crystal molecules of the liquid crystal display panel. The VA type liquid crystal display device is a mode in which liquid crystal molecules are directed in a direction perpendicular to the panel when no voltage is applied. Further, a method called a multi-domain or multi-domain design in which a pixel is divided into several regions (sub-pixels) and molecules are respectively inverted in different directions can also be used.

此外,在顯示裝置中,適當地設置黑矩陣(遮光層)、偏振構件、相位差構件、抗反射構件等的光學構件(光學基板)等。例如,也可以使用利用偏振基板以及相位差基板的圓偏振。此外,作為光源,也可以使用背光、側光燈等。 Further, in the display device, an optical member (optical substrate) or the like of a black matrix (light shielding layer), a polarizing member, a phase difference member, an antireflection member, or the like is appropriately provided. For example, circular polarization using a polarizing substrate and a phase difference substrate can also be used. Further, as the light source, a backlight, a sidelight, or the like can also be used.

此外,作為像素部中的顯示方式,可以採用逐行掃描方式或隔行掃描方式等。此外,作為當進行彩色顯示時在像素中控制的顏色因素,不侷限於RGB(R表示紅色,G表示綠色,B表示藍色)這三種顏色。例如,也可以採用RGBW(W表示白色)或對RGB追加黃色(yellow)、青色(cyan)、洋紅色(magenta)等中的一種顏色以上的顏色。另外,也可以按每個顏色因素的點使其顯示區的大小不同。但是,所公開的發明不侷限於彩色顯示的顯示裝置,而也可以應用於單色顯示的顯示裝置。 Further, as the display method in the pixel portion, a progressive scanning method, an interlaced scanning method, or the like can be employed. Further, as a color factor controlled in the pixel when color display is performed, it is not limited to three colors of RGB (R represents red, G represents green, and B represents blue). For example, RGBW (W indicates white) or RGB may be added to one of yellow (yellow), cyan (myan), magenta (magenta) or the like. In addition, the size of the display area may be different depending on the point of each color factor. However, the disclosed invention is not limited to a display device for color display, but can also be applied to a display device for monochrome display.

此外,作為顯示裝置所包括的顯示元件,可以應用利用電致發光的發光元件。利用電致發光的發光元件根據發光材料是有機化合物還是無機化合物被區分,一般地,前者被稱為有機EL元件,而後者被稱為無機EL元件。 Further, as the display element included in the display device, a light-emitting element utilizing electroluminescence can be applied. The light-emitting element utilizing electroluminescence is distinguished according to whether the light-emitting material is an organic compound or an inorganic compound. Generally, the former is referred to as an organic EL element, and the latter is referred to as an inorganic EL element.

在有機EL元件中,藉由對發光元件施加電壓,電子及電洞分別從一對電極注入到包括具有發光性的有機化合物的層,以使電流流過。並且,藉由這些載子(電子及電洞)重新結合,具有發光性的有機化合物形成激發態,當從該激發態回到基態時發光。由於這種機制,這種發光元件被稱為電流激發型發光元件。 In the organic EL element, by applying a voltage to the light-emitting element, electrons and holes are respectively injected from a pair of electrodes to a layer including an organic compound having luminescence so that a current flows. Further, by recombination of these carriers (electrons and holes), the organic compound having luminescence forms an excited state, and emits light when returning from the excited state to the ground state. Due to this mechanism, such a light-emitting element is called a current-excitation type light-emitting element.

無機EL元件根據其元件結構而分類為分散型無機EL元件和薄膜型無機EL元件。分散型無機EL元件具有發光層,其中發光材料的粒子分散在黏合劑中,並且其發光機制是利用施體能階和受體能階的施體-受體重新結合型發光。薄膜型無機EL元件具有一種結構,其中,發光層 夾在介電層之間,並且該夾著發光層的介電層由電極夾住,其發光機制是利用金屬離子的內殼層電子躍遷的定域型發光(localized type light emission)。另外,這裏作為發光元件使用有機EL元件進行說明。 The inorganic EL elements are classified into a dispersion type inorganic EL element and a thin film type inorganic EL element according to their element structures. The dispersion-type inorganic EL element has a light-emitting layer in which particles of the light-emitting material are dispersed in a binder, and a light-emitting mechanism thereof is a donor-acceptor recombination type light emission using a donor energy level and a receptor energy level. The thin film type inorganic EL element has a structure in which a light emitting layer Sandwiched between the dielectric layers, and the dielectric layer sandwiching the light-emitting layer is sandwiched by the electrodes, and the light-emitting mechanism is a localized type light emission utilizing the electronic transition of the inner shell of the metal ions. In addition, here, the description will be made using an organic EL element as a light-emitting element.

為了取出發光,使發光元件的一對電極中的至少一個具有透光性即可。並且,在基板上形成電晶體及發光元件,作為發光元件,有:從與基板相反一側的表面取出發光的頂部發射;從基板一側的表面取出發光的底部發射;以及從基板一側及與基板相反一側的表面取出發光的雙面發射結構的發光元件,可以應用上述任一種發射結構的發光元件。 In order to take out the light emission, at least one of the pair of electrodes of the light-emitting element may be made translucent. Further, a transistor and a light-emitting element are formed on the substrate, and the light-emitting element includes: a top emission that emits light from a surface opposite to the substrate; and a bottom emission that emits light from a surface on the substrate side; and The light-emitting element of the light-emitting double-sided emission structure is taken out from the surface on the side opposite to the substrate, and the light-emitting element of any of the above-described emission structures can be applied.

圖13B示出作為顯示元件使用發光元件的發光裝置(發光面板)的例子。作為顯示元件的發光元件4513電連接到設置在像素部4002中的電晶體4010。另外,發光元件4513的結構是第一電極層4030、電致發光層4511、第二電極層4031的疊層結構,但是,不侷限於所示結構。根據從發光元件4513取出的光的方向等,可以適當地改變發光元件4513的結構。 Fig. 13B shows an example of a light-emitting device (light-emitting panel) using a light-emitting element as a display element. The light emitting element 4513 as a display element is electrically connected to the transistor 4010 provided in the pixel portion 4002. Further, the structure of the light-emitting element 4513 is a laminated structure of the first electrode layer 4030, the electroluminescent layer 4511, and the second electrode layer 4031, but is not limited to the illustrated structure. The structure of the light-emitting element 4513 can be appropriately changed in accordance with the direction of light taken out from the light-emitting element 4513 and the like.

分隔壁4510使用有機絕緣材料或無機絕緣材料形成。尤其是,較佳為使用感光樹脂材料,在第一電極層4030上形成開口部,並且將該開口部的側壁形成為具有連續曲率的傾斜面。 The partition wall 4510 is formed using an organic insulating material or an inorganic insulating material. In particular, it is preferable to form an opening portion on the first electrode layer 4030 using a photosensitive resin material, and to form a side wall of the opening portion as an inclined surface having a continuous curvature.

電致發光層4511可以使用一個層構成,也可以使用多個層的疊層構成。 The electroluminescent layer 4511 may be formed using one layer or a laminate of a plurality of layers.

為了防止氧、氫、水分、二氧化碳等侵入到發光元件4513中,也可以在第二電極層4031及分隔壁4510上形成保護膜。作為保護膜,可以形成氮化矽膜、氮氧化矽膜、DLC膜等。此外,在由第一基板4001、第二基板4006以及密封材料4005密封的空間中設置有填充材料4514並被密封。如此,為了不暴露於外部氣體,較佳為使用氣密性高且脫氣少的保護薄膜(黏合薄膜、紫外線固化樹脂薄膜等)、覆蓋材料進行封裝(封入)。 In order to prevent oxygen, hydrogen, moisture, carbon dioxide, or the like from entering the light-emitting element 4513, a protective film may be formed on the second electrode layer 4031 and the partition wall 4510. As the protective film, a tantalum nitride film, a hafnium oxynitride film, a DLC film, or the like can be formed. Further, a filling material 4514 is provided in a space sealed by the first substrate 4001, the second substrate 4006, and the sealing material 4005 and sealed. In order to prevent exposure to external air, it is preferable to use a protective film (adhesive film, ultraviolet curable resin film, or the like) having a high airtightness and low deaeration, and a covering material to be encapsulated (sealed).

作為填充材料4514,除了氮或氬等惰性氣體以外,也可以使用紫外線固化樹脂、熱固性樹脂,可以使用PVC(聚氯乙烯)、丙烯酸樹脂、聚醯亞胺樹脂、環氧樹脂、矽酮樹脂、PVB(聚乙烯醇縮丁醛)或EVA(乙烯-醋酸乙烯酯)。例如,作為填充材料使用氮,即可。 As the filler 4514, in addition to an inert gas such as nitrogen or argon, an ultraviolet curable resin or a thermosetting resin may be used, and PVC (polyvinyl chloride), an acrylic resin, a polyimide resin, an epoxy resin, an anthrone resin, or the like may be used. PVB (polyvinyl butyral) or EVA (ethylene vinyl acetate). For example, nitrogen may be used as the filler.

另外,如果需要,則也可以在發光元件的射出表面上適當地設置諸如偏光板、或者圓偏光板(包括橢圓偏光板)、相位差板(λ/4板,λ/2板)、濾色片等的光學薄膜。此外,也可以在偏光板或者圓偏光板上設置防反射膜。例如,可以進行抗眩光處理,該處理是利用表面的凹凸來擴散反射光而可以降低眩光的處理。 In addition, if necessary, it is also possible to appropriately set such as a polarizing plate, or a circularly polarizing plate (including an elliptically polarizing plate), a phase difference plate (λ/4 plate, λ/2 plate), and a color filter on the emitting surface of the light emitting element. An optical film such as a sheet. Further, an anti-reflection film may be provided on the polarizing plate or the circular polarizing plate. For example, anti-glare treatment can be performed, which is a treatment that reduces the glare by diffusing the reflected light by the unevenness of the surface.

此外,作為顯示裝置,也可以提供驅動電子墨水的電子紙。電子紙也稱為電泳顯示裝置(電泳顯示器),並具有如下優勢:與紙同樣的易讀性;其耗電量比其他顯示裝置的耗電量低;形狀薄且輕。 Further, as the display device, electronic paper that drives electronic ink can also be provided. Electronic paper is also called an electrophoretic display device (electrophoretic display) and has the following advantages: the same legibility as paper; its power consumption is lower than that of other display devices; its shape is thin and light.

作為電泳顯示裝置,可以想到各種各樣的形式,但是 它是包括具有正電荷的第一粒子和具有負電荷的第二粒子的多個微膠囊分散在溶劑或溶質中,並且,藉由對微膠囊施加電場,使微膠囊中的粒子彼此移動到相對方向,以只顯示集合在一側的粒子的顏色的裝置。另外,第一粒子或第二粒子包括染料,當沒有電場時不移動。此外,第一粒子的顏色和第二粒子的顏色不同(包括無色)。 As an electrophoretic display device, various forms are conceivable, but It is a plurality of microcapsules including a first particle having a positive charge and a second particle having a negative charge dispersed in a solvent or a solute, and by applying an electric field to the microcapsule, the particles in the microcapsule are moved to each other to a relative Direction, to display only the color of the particles collected on one side. Additionally, the first or second particles comprise a dye that does not move when there is no electric field. Further, the color of the first particle is different from the color of the second particle (including colorless).

這樣,電泳顯示裝置是利用介電常數高的物質移動到高電場區域,即所謂的介電泳效應(dielectrophoretic effect)的顯示器。 Thus, the electrophoretic display device is a display that uses a substance having a high dielectric constant to move to a high electric field region, a so-called dielectrophoretic effect.

分散有上述微囊的溶劑被稱為電子墨水,並且該電子墨水可以印刷到玻璃、塑膠、布、紙等的表面上。另外,還可以藉由使用濾色片、具有色素的粒子來進行彩色顯示。 The solvent in which the above microcapsules are dispersed is referred to as electronic ink, and the electronic ink can be printed on the surface of glass, plastic, cloth, paper, or the like. Further, color display can also be performed by using a color filter or a particle having a pigment.

此外,作為微囊中的第一粒子及第二粒子,使用選自導電材料、絕緣材料、半導體材料、磁性材料、液晶材料、鐵電性材料、電致發光材料、電致變色材料、磁泳材料中的一種材料或這些材料的複合材料即可。 Further, as the first particle and the second particle in the microcapsule, a material selected from the group consisting of a conductive material, an insulating material, a semiconductor material, a magnetic material, a liquid crystal material, a ferroelectric material, an electroluminescent material, an electrochromic material, and a magnetophore A material in the material or a composite material of these materials.

此外,作為電子紙,也可以應用使用旋轉球(twisting ball)顯示方式的顯示裝置。旋轉球顯示方式是如下方法,即將分別塗為白色和黑色的球形粒子配置在作為用於顯示元件的電極層的第一電極層與第二電極層之間,使第一電極層與第二電極層之間產生電位差來控制球形粒子的方向,以進行顯示。 Further, as the electronic paper, a display device using a twisting ball display method can also be applied. The rotating ball display manner is a method in which spherical particles respectively coated with white and black are disposed between the first electrode layer and the second electrode layer as electrode layers for display elements, and the first electrode layer and the second electrode are disposed. A potential difference is generated between the layers to control the direction of the spherical particles for display.

另外,在圖12A至圖12C及圖13A和圖13B中,作 為第一基板4001、第二基板4006,除了玻璃基板以外,也可以使用撓性的基板。例如,可以使用具有透光性的塑膠基板等。作為塑膠,可以使用FRP(Fiberglass-Reinforced Plastics;玻璃纖維強化塑膠)板、PVF(聚氟乙烯)薄膜、聚酯薄膜或丙烯酸樹脂薄膜。此外,若不需要透光性,則也可以使用鋁或不鏽鋼等的金屬基板(金屬薄膜)。例如,也可以使用具有由PVF薄膜或聚酯薄膜夾住鋁箔的結構的薄片。 In addition, in FIGS. 12A to 12C and FIGS. 13A and 13B, As the first substrate 4001 and the second substrate 4006, a flexible substrate may be used in addition to the glass substrate. For example, a plastic substrate having light transmissivity or the like can be used. As the plastic, FRP (Fiberglass-Reinforced Plastics), PVF (polyvinyl fluoride) film, polyester film or acrylic film can be used. Further, a metal substrate (metal thin film) such as aluminum or stainless steel may be used if translucency is not required. For example, a sheet having a structure in which an aluminum foil is sandwiched by a PVF film or a polyester film can also be used.

層間絕緣膜4020、絕緣膜4024可以使用氧化物絕緣膜,藉由電漿CVD法或濺射法等並使用氧化矽、氧氮化矽、氧化鋁、氧氮化鋁、氧化鉿、氧化鎵或這些材料的混合材料來形成。另外,也可以在上述氧化物絕緣膜上層疊氮化物絕緣膜,氮化物絕緣膜可以使用氮化矽、氮氧化矽、氮化鋁、氮氧化鋁或這些材料的混合材料來形成。 The interlayer insulating film 4020 and the insulating film 4024 may be an oxide insulating film by a plasma CVD method, a sputtering method, or the like, and using yttrium oxide, yttrium oxynitride, aluminum oxide, aluminum oxynitride, lanthanum oxide, gallium oxide or A mixture of these materials is formed. Further, a nitride insulating film may be laminated on the oxide insulating film, and the nitride insulating film may be formed using tantalum nitride, hafnium oxynitride, aluminum nitride, aluminum oxynitride or a mixed material of these materials.

在本實施方式中,作為絕緣膜4024使用氧化鋁膜。絕緣膜4024可以藉由濺射法或電漿CVD法形成。 In the present embodiment, an aluminum oxide film is used as the insulating film 4024. The insulating film 4024 can be formed by a sputtering method or a plasma CVD method.

在氧化物半導體膜上作為絕緣膜4024設置的氧化鋁膜具有高遮斷效果(阻擋效果),即不使氫、水分等雜質及氧這兩者透過膜的效果。 The aluminum oxide film provided as the insulating film 4024 on the oxide semiconductor film has a high blocking effect (blocking effect), that is, an effect of not allowing both impurities such as hydrogen and moisture and oxygen to pass through the film.

因此,氧化鋁膜用作保護膜,而防止在製程中及製造之後成為變動的主要原因的氫、水分等雜質混入到氧化物半導體膜,並防止從氧化物半導體膜釋放作為構成氧化物半導體的主要成分材料的氧。 Therefore, the aluminum oxide film is used as a protective film, and impurities such as hydrogen and moisture which are a cause of variation in the process and after the production are prevented from being mixed into the oxide semiconductor film, and are prevented from being released from the oxide semiconductor film as an oxide semiconductor. The main component of the material is oxygen.

另外,作為用作平坦化絕緣膜的絕緣膜4021,可以使 用丙烯酸樹脂、聚醯亞胺樹脂、苯並環丁烯類樹脂、聚醯胺樹脂、環氧樹脂等具有耐熱性的有機材料。此外,除了上述有機材料以外,也可以使用低介電常數材料(low-k材料)、矽氧烷類樹脂、PSG(磷矽玻璃)、BPSG(硼磷矽玻璃)等。另外,也可以藉由層疊多個由這些材料形成的絕緣膜來形成絕緣膜。 In addition, as the insulating film 4021 used as the planarization insulating film, it can be made An organic material having heat resistance such as an acrylic resin, a polyimide resin, a benzocyclobutene resin, a polyamide resin, or an epoxy resin. Further, in addition to the above organic materials, a low dielectric constant material (low-k material), a siloxane oxide resin, PSG (phosphorus phosphide), BPSG (boron bismuth glass), or the like may be used. Further, the insulating film may be formed by laminating a plurality of insulating films formed of these materials.

對絕緣膜4021的形成方法沒有特別的限制,可以根據其材料利用濺射法、SOG法、旋塗法、浸漬法、噴塗法、液滴噴射法(噴墨法等)、印刷法(絲網印刷、膠版印刷等)、刮刀、輥塗機、幕式塗布機、刮刀式塗布機等來形成絕緣膜4021。 The method for forming the insulating film 4021 is not particularly limited, and may be a sputtering method, a SOG method, a spin coating method, a dipping method, a spray coating method, a droplet discharge method (inkjet method, etc.), or a printing method depending on the material thereof. The insulating film 4021 is formed by printing, offset printing, etc., a doctor blade, a roll coater, a curtain coater, a knife coater, or the like.

顯示裝置藉由使來自光源或顯示元件的光透過來進行顯示。因此,設置在光透過的像素部中的基板、絕緣膜、導電膜等薄膜全都對可見光的波長區域的光具有透光性。 The display device performs display by transmitting light from a light source or a display element. Therefore, all of the thin films such as the substrate, the insulating film, and the conductive film provided in the pixel portion through which the light passes are translucent to the light in the wavelength region of visible light.

關於對顯示元件施加電壓的第一電極層及第二電極層(也稱為像素電極層、共用電極層、反電極層等),可以根據取出光的方向、設置電極層的地方以及電極層的圖案結構選擇透光性、反射性。 The first electrode layer and the second electrode layer (also referred to as a pixel electrode layer, a common electrode layer, a counter electrode layer, and the like) for applying a voltage to the display element may be based on a direction in which the light is extracted, a place where the electrode layer is provided, and an electrode layer. The pattern structure is selected to be light transmissive and reflective.

作為第一電極層4030、第二電極層4031,可以使用含有氧化鎢的銦氧化物、含有氧化鎢的銦鋅氧化物、含有氧化鈦的銦氧化物、含有氧化鈦的銦錫氧化物、銦錫氧化物、銦鋅氧化物、添加有氧化矽的銦錫氧化物、石墨烯等具有透光性的導電材料。 As the first electrode layer 4030 and the second electrode layer 4031, indium oxide containing tungsten oxide, indium zinc oxide containing tungsten oxide, indium oxide containing titanium oxide, indium tin oxide containing titanium oxide, or indium can be used. A light-transmitting conductive material such as tin oxide, indium zinc oxide, indium tin oxide added with cerium oxide, or graphene.

此外,第一電極層4030、第二電極層4031可以使用 鎢(W)、鉬(Mo)、鋯(Zr)、鉿(Hf)、釩(V)、鈮(Nb)、鉭(Ta)、鉻(Cr)、鈷(Co)、鎳(Ni)、鈦(Ti)、鉑(Pt)、鋁(Al)、銅(Cu)、銀(Ag)等金屬、其合金或其金屬氮化物中的一種或多種來形成。 In addition, the first electrode layer 4030 and the second electrode layer 4031 can be used. Tungsten (W), molybdenum (Mo), zirconium (Zr), hafnium (Hf), vanadium (V), niobium (Nb), tantalum (Ta), chromium (Cr), cobalt (Co), nickel (Ni), One or more of a metal such as titanium (Ti), platinum (Pt), aluminum (Al), copper (Cu), or silver (Ag), an alloy thereof, or a metal nitride thereof.

此外,第一電極層4030、第二電極層4031可以使用包括導電高分子(也稱為導電聚合體)的導電組成物來形成。作為導電高分子,可以使用所謂的π電子共軛類導電高分子。例如,可以舉出聚苯胺或其衍生物、聚吡咯或其衍生物、聚噻吩或其衍生物、或者由苯胺、吡咯和噻吩中的兩種以上構成的共聚物或其衍生物等。 Further, the first electrode layer 4030 and the second electrode layer 4031 may be formed using a conductive composition including a conductive polymer (also referred to as a conductive polymer). As the conductive polymer, a so-called π-electron conjugated conductive polymer can be used. For example, polyaniline or a derivative thereof, polypyrrole or a derivative thereof, polythiophene or a derivative thereof, or a copolymer composed of two or more of aniline, pyrrole and thiophene or a derivative thereof can be given.

此外,由於電晶體容易被靜電等破壞,所以較佳為設置用來保護驅動電路的保護電路。保護電路較佳為使用非線性元件構成。 Further, since the transistor is easily broken by static electricity or the like, it is preferable to provide a protection circuit for protecting the drive circuit. The protection circuit is preferably constructed using a non-linear element.

如上所述,藉由應用上述實施方式所示的電晶體,可以提供具有各種各樣的功能的半導體裝置。 As described above, by applying the transistor shown in the above embodiment, it is possible to provide a semiconductor device having various functions.

本實施方式可以與其他實施方式所記載的結構適當地組合而實施。 This embodiment can be implemented in appropriate combination with the structures described in the other embodiments.

實施方式6 Embodiment 6

藉由使用實施方式1所例示的電晶體,可以製造具有讀取目標物的資訊的影像感測器功能的半導體裝置。 By using the transistor exemplified in the first embodiment, it is possible to manufacture a semiconductor device having an image sensor function for reading information of a target.

圖14A示出具有影像感測器功能的半導體裝置的一個例子。圖14A是光電感測器的等效電路,而圖14B是示出 光電感測器的一部分的剖面圖。 FIG. 14A shows an example of a semiconductor device having an image sensor function. Fig. 14A is an equivalent circuit of the photo-inductor, and Fig. 14B is a view A cross-sectional view of a portion of a photoinductor.

光電二極體602的一個電極電連接到光電二極體重設信號線658,而光電二極體602的另一個電極電連接到電晶體640的閘極。電晶體640的源極和汲極中的一個電連接到光電感測器參考信號線672,而電晶體640的源極和汲極中的另一個電連接到電晶體656的源極和汲極中的一個。電晶體656的閘極電連接到閘極信號線659,電晶體656的源極和汲極中的另一個電連接到光電感測器輸出信號線671。 One electrode of the photodiode 602 is electrically connected to the photodiode weight setting signal line 658, and the other electrode of the photodiode 602 is electrically connected to the gate of the transistor 640. One of the source and drain of transistor 640 is electrically coupled to photoinductor reference signal line 672, while the other of the source and drain of transistor 640 is electrically coupled to the source and drain of transistor 656. one of the. The gate of transistor 656 is electrically coupled to gate signal line 659, and the other of the source and drain of transistor 656 is electrically coupled to photoinductor output signal line 671.

注意,在本說明書的電路圖中,為了使使用氧化物半導體膜的電晶體一目了然,將使用氧化物半導體膜的電晶體的符號表示為“OS”。在圖14A中,電晶體640和電晶體656可以應用上述實施方式所示的電晶體,是使用氧化物半導體膜的電晶體。在本實施方式中示出應用具有與實施方式1所示的電晶體440a同樣的結構的電晶體的例子。 Note that in the circuit diagram of the present specification, in order to make the transistor using the oxide semiconductor film clear at a glance, the symbol of the transistor using the oxide semiconductor film is represented as "OS". In FIG. 14A, the transistor 640 and the transistor 656 can be applied to the transistor shown in the above embodiment, which is a transistor using an oxide semiconductor film. In the present embodiment, an example in which a transistor having the same configuration as that of the transistor 440a shown in the first embodiment is applied is shown.

圖14B是示出光電感測器中的光電二極體602和電晶體640的剖面圖,其中在具有絕緣表面的基板601(TFT基板)上設置有用作感測器的光電二極體602和電晶體640。藉由使用黏合層608,在光電二極體602和電晶體640上設置有基板613。 14B is a cross-sectional view showing the photodiode 602 and the transistor 640 in the photo-inductor, in which a photodiode 602 serving as a sensor is disposed on a substrate 601 (TFT substrate) having an insulating surface, and Transistor 640. A substrate 613 is provided on the photodiode 602 and the transistor 640 by using the adhesive layer 608.

在設置在絕緣膜631上的電晶體640上設置有層間絕緣膜632、絕緣膜633以及層間絕緣膜634。光電二極體602設置在絕緣膜633上,並且光電二極體602具有如下 結構:在形成於絕緣膜633上的電極層641a、641b和設置在層間絕緣膜634上的電極層642之間從絕緣膜633一側按順序層疊有第一半導體膜606a、第二半導體膜606b及第三半導體膜606c。 An interlayer insulating film 632, an insulating film 633, and an interlayer insulating film 634 are provided on the transistor 640 provided on the insulating film 631. The photodiode 602 is disposed on the insulating film 633, and the photodiode 602 has the following The first semiconductor film 606a and the second semiconductor film 606b are laminated in this order from the side of the insulating film 633 between the electrode layers 641a and 641b formed on the insulating film 633 and the electrode layer 642 provided on the interlayer insulating film 634. And a third semiconductor film 606c.

另外,在與電晶體640重疊的區域設置有遮光膜650。 Further, a light shielding film 650 is provided in a region overlapping the transistor 640.

電極層641b與形成在層間絕緣膜634中的導電層643電連接,並且電極層642隔著電極層641a與導電層645電連接。導電層645與電晶體640的閘極電極層電連接,並且光電二極體602與電晶體640電連接。 The electrode layer 641b is electrically connected to the conductive layer 643 formed in the interlayer insulating film 634, and the electrode layer 642 is electrically connected to the conductive layer 645 via the electrode layer 641a. The conductive layer 645 is electrically connected to the gate electrode layer of the transistor 640, and the photodiode 602 is electrically connected to the transistor 640.

在此,例示一種pin型光電二極體,其中層疊用作第一半導體膜606a的具有p型導電型的半導體膜、用作第二半導體膜606b的高電阻的半導體膜(I型半導體膜)、用作第三半導體膜606c的具有n型導電型的半導體膜。 Here, a pin type photodiode in which a semiconductor film having a p-type conductivity type used as the first semiconductor film 606a and a high resistance semiconductor film (type I semiconductor film) serving as the second semiconductor film 606b are laminated is exemplified. A semiconductor film having an n-type conductivity as the third semiconductor film 606c.

第一半導體膜606a是p型半導體膜,而可以由包含賦予p型的雜質元素的非晶矽膜形成。使用包含屬於週期表中的第13族的雜質元素(例如,硼(B))的半導體材料氣體藉由電漿CVD法來形成第一半導體膜606a。作為半導體材料氣體,可以使用矽烷(SiH4)。另外,可以使用Si2H6、SiH2Cl2、SiHCl3、SiCl4、SiF4等。另外,也可以使用如下方法:在形成不包含雜質元素的非晶矽膜之後,使用擴散法或離子植入法將雜質元素引入到該非晶矽膜。較佳在使用離子植入法等引入雜質元素之後進行加熱等來使雜質元素擴散。在此情況下,作為形成非晶矽膜的 方法,可以使用LPCVD法、氣相生長法或濺射法等。較佳將第一半導體膜606a的厚度設定為10nm以上且50nm以下。 The first semiconductor film 606a is a p-type semiconductor film, and may be formed of an amorphous germanium film containing an impurity element imparting p-type. The first semiconductor film 606a is formed by a plasma CVD method using a semiconductor material gas containing an impurity element belonging to Group 13 of the periodic table (for example, boron (B)). As the semiconductor material gas, decane (SiH 4 ) can be used. Further, Si 2 H 6 , SiH 2 Cl 2 , SiHCl 3 , SiCl 4 , SiF 4 or the like can be used. In addition, a method of introducing an impurity element into the amorphous germanium film by a diffusion method or an ion implantation method after forming an amorphous germanium film containing no impurity element may also be used. It is preferable to carry out heating or the like after introducing an impurity element by ion implantation or the like to diffuse the impurity element. In this case, as a method of forming the amorphous germanium film, an LPCVD method, a vapor phase growth method, a sputtering method, or the like can be used. The thickness of the first semiconductor film 606a is preferably set to 10 nm or more and 50 nm or less.

第二半導體膜606b是I型半導體膜(本質半導體膜),而可以由非晶矽膜形成。為了形成第二半導體膜606b,藉由電漿CVD法使用半導體材料氣體來形成非晶矽膜。作為半導體材料氣體,可以使用矽烷(SiH4)。或者,也可以使用Si2H6、SiH2Cl2、SiHCl3、SiCl4或SiF4等。也可以藉由LPCVD法、氣相生長法、濺射法等形成第二半導體膜606b。較佳將第二半導體膜606b的厚度設定為200nm以上且1000nm以下。 The second semiconductor film 606b is an I-type semiconductor film (essential semiconductor film), and may be formed of an amorphous germanium film. In order to form the second semiconductor film 606b, an amorphous germanium film is formed by a plasma CVD method using a semiconductor material gas. As the semiconductor material gas, decane (SiH 4 ) can be used. Alternatively, Si 2 H 6 , SiH 2 Cl 2 , SiHCl 3 , SiCl 4 or SiF 4 may also be used. The second semiconductor film 606b may be formed by an LPCVD method, a vapor phase growth method, a sputtering method, or the like. The thickness of the second semiconductor film 606b is preferably set to 200 nm or more and 1000 nm or less.

第三半導體膜606c是n型半導體膜,而可以由包含賦予n型的雜質元素的非晶矽膜形成。使用包含屬於週期表中的第15族的雜質元素(例如,磷(P))的半導體材料氣體藉由電漿CVD法形成第三半導體膜606c。作為半導體材料氣體,可以使用矽烷(SiH4)。或者,也可以使用Si2H6、SiH2Cl2、SiHCl3、SiCl4或SiF4等。另外,也可以使用如下方法:在形成不包含雜質元素的非晶矽膜之後,使用擴散法或離子植入法將雜質元素引入到該非晶矽膜。較佳在使用離子植入法等引入雜質元素之後進行加熱等來使雜質元素擴散。在此情況下,作為形成非晶矽膜的方法,可以使用LPCVD法、氣相生長法或濺射法等。較佳將第三半導體膜606c的厚度設定為20nm以上且200nm以下。 The third semiconductor film 606c is an n-type semiconductor film, and may be formed of an amorphous germanium film containing an impurity element imparting an n-type. The third semiconductor film 606c is formed by a plasma CVD method using a semiconductor material gas containing an impurity element (for example, phosphorus (P)) belonging to Group 15 of the periodic table. As the semiconductor material gas, decane (SiH 4 ) can be used. Alternatively, Si 2 H 6 , SiH 2 Cl 2 , SiHCl 3 , SiCl 4 or SiF 4 may also be used. In addition, a method of introducing an impurity element into the amorphous germanium film by a diffusion method or an ion implantation method after forming an amorphous germanium film containing no impurity element may also be used. It is preferable to carry out heating or the like after introducing an impurity element by ion implantation or the like to diffuse the impurity element. In this case, as a method of forming the amorphous germanium film, an LPCVD method, a vapor phase growth method, a sputtering method, or the like can be used. The thickness of the third semiconductor film 606c is preferably set to 20 nm or more and 200 nm or less.

此外,第一半導體膜606a、第二半導體膜606b以及第三半導體膜606c也可以不使用非晶半導體形成,而使用多晶半導體或微晶半導體(Semi Amorphous Semiconductor:SAS)形成。 Further, the first semiconductor film 606a, the second semiconductor film 606b, and the third semiconductor film 606c may be formed using a polycrystalline semiconductor or a semi-crystalline semiconductor (SAS) without using an amorphous semiconductor.

在考慮吉布斯自由能時,微晶半導體屬於介於非晶和單晶之間的中間亞穩態。即,微晶半導體處於自由能穩定的第三態,且具有短程有序和晶格畸變。此外,柱狀或針狀晶體在相對於基板表面的法線方向上生長。作為微晶半導體的典型例子的微晶矽,其拉曼光譜向表示單晶矽的520cm-1的低波數一側偏移。亦即,微晶矽的拉曼光譜的峰值位於表示單晶矽的520cm-1和表示非晶矽的480cm-1之間。另外,包含至少1at.%或其以上的氫或鹵素,以終結懸空鍵。還有,藉由包含氦、氬、氪、氖等稀有氣體元素來進一步促進晶格畸變,提高穩定性而得到優良的微晶半導體膜。 When considering Gibbs free energy, microcrystalline semiconductors belong to the intermediate metastable state between amorphous and single crystal. That is, the microcrystalline semiconductor is in a third state in which the free energy is stable, and has short-range order and lattice distortion. Further, the columnar or needle crystals grow in a normal direction with respect to the surface of the substrate. As a typical example of the microcrystalline semiconductor, the Raman spectrum shifts to the low wave number side of 520 cm -1 which represents the single crystal germanium. That is, the peak of the Raman spectrum of the microcrystalline germanium is between 520 cm -1 representing a single crystal germanium and 480 cm -1 representing an amorphous germanium. In addition, at least 1 at.% or more of hydrogen or halogen is included to terminate the dangling bonds. Further, by including a rare gas element such as helium, argon, neon or xenon, the lattice distortion is further promoted, and the stability is improved to obtain an excellent microcrystalline semiconductor film.

該微晶半導體膜可以藉由頻率為幾十MHz至幾百MHz的高頻電漿CVD法或頻率為1GHz以上的微波電漿CVD設備形成。典型地,可以使用氫稀釋SiH4、Si2H6、SiH2Cl2、SiHCl3、SiCl4、SiF4等的含矽的化合物來形成該微晶半導體膜。此外,除了含矽的化合物(例如氫化矽)和氫之外,也可以使用選自氦、氬、氪、氖中的一種或多種稀有氣體元素進行稀釋來形成微晶半導體膜。在上述情況下,將氫的流量比設定為含矽的化合物(例如氫化矽)的5倍以上且200倍以下,較佳為設定為50倍以上 且150倍以下,更佳地設定為100倍。再者,也可以在含矽的氣體中混入CH4、C2H6等的碳化物氣體、GeH4、GeF4等的鍺化氣體、F2等。 The microcrystalline semiconductor film can be formed by a high frequency plasma CVD method having a frequency of several tens of MHz to several hundreds of MHz or a microwave plasma CVD apparatus having a frequency of 1 GHz or more. Typically, the microcrystalline semiconductor film can be formed by diluting a ruthenium-containing compound such as SiH 4 , Si 2 H 6 , SiH 2 Cl 2 , SiHCl 3 , SiCl 4 , SiF 4 or the like with hydrogen. Further, in addition to the ruthenium-containing compound (for example, ruthenium hydride) and hydrogen, it may be diluted with one or more rare gas elements selected from the group consisting of ruthenium, argon, osmium, and iridium to form a microcrystalline semiconductor film. In the above case, the flow rate ratio of hydrogen is set to be 5 times or more and 200 times or less, preferably 50 times or more and 150 times or less, more preferably 100 times or less, of the compound containing ruthenium (for example, ruthenium hydride). . Further, a carbide gas such as CH 4 or C 2 H 6 , a deuterated gas such as GeH 4 or GeF 4 , F 2 or the like may be mixed into the gas containing ruthenium.

此外,由於光電效應生成的電洞的遷移率低於電子的遷移率,因此當p型半導體膜側的表面用作光接收面時,pin型光電二極體具有較好的特性。這裏示出將光電二極體602從形成有pin型光電二極體的基板601的面接收的光轉換為電信號的例子。此外,來自其導電型與用作光接收面的半導體膜一側相反的半導體膜一側的光是干擾光,因此,電極層較佳為使用具有遮光性的導電膜。另外,也可以將n型半導體膜側的表面用作光接收面。 Further, since the mobility of the hole generated by the photoelectric effect is lower than the mobility of electrons, the pin type photodiode has better characteristics when the surface on the side of the p-type semiconductor film is used as a light receiving surface. Here, an example in which the photodiode 602 is converted into an electric signal from the surface of the substrate 601 on which the pin-type photodiode is formed is shown. Further, since the light from the side of the semiconductor film whose conductivity type is opposite to the side of the semiconductor film serving as the light receiving surface is interference light, it is preferable to use a conductive film having a light blocking property as the electrode layer. Further, the surface on the side of the n-type semiconductor film may be used as a light receiving surface.

藉由使用絕緣材料且根據材料使用濺射法、電漿CVD法、SOG法、旋塗法、浸漬法、噴塗法、液滴噴射法(噴墨法等)、印刷法(絲網印刷、膠版印刷等)、刮刀、輥塗機、幕式塗布機、刮刀式塗布機等,來可以形成絕緣膜631、層間絕緣膜632、絕緣膜633。 By using an insulating material and using a sputtering method, a plasma CVD method, a SOG method, a spin coating method, a dipping method, a spray method, a droplet discharge method (inkjet method, etc.), a printing method (screen printing, offset printing) depending on the material. An insulating film 631, an interlayer insulating film 632, and an insulating film 633 can be formed by printing, etc., a doctor blade, a roll coater, a curtain coater, a knife coater or the like.

在本實施方式中,作為絕緣膜633使用氧化鋁膜。絕緣膜633可以藉由濺射法或電漿CVD法形成。 In the present embodiment, an aluminum oxide film is used as the insulating film 633. The insulating film 633 can be formed by a sputtering method or a plasma CVD method.

在氧化物半導體膜上作為絕緣膜633設置的氧化鋁膜具有高遮斷效果(阻擋效果),即不使氫、水分等雜質及氧的兩者透過膜的效果。 The aluminum oxide film provided as the insulating film 633 on the oxide semiconductor film has a high blocking effect (barrier effect), that is, an effect of not allowing both impurities such as hydrogen and moisture and oxygen to pass through the film.

因此,氧化鋁膜用作保護膜,而防止在製程中及製造之後成為變動原因的氫、水分等雜質混入到氧化物半導體膜,並防止從氧化物半導體膜釋放作為構成氧化物半導體 的主要成分材料的氧。 Therefore, the aluminum oxide film is used as a protective film, and impurities such as hydrogen and moisture which are caused by variations in the process and after the production are prevented from being mixed into the oxide semiconductor film, and are prevented from being released from the oxide semiconductor film as the constituent oxide semiconductor. The main ingredient of the material is oxygen.

在本實施方式中,電晶體640在製程中藉由對設置在閘極電極層、絕緣膜及側壁絕緣層上的導電膜進行化學機械拋光處理而去除,分離導電膜,形成源極電極層及汲極電極層。 In the present embodiment, the transistor 640 is removed by chemical mechanical polishing treatment on the conductive film provided on the gate electrode layer, the insulating film and the sidewall insulating layer in the process, and the conductive film is separated to form a source electrode layer and Bipolar electrode layer.

因此,因為可以縮短源極電極層或汲極電極層接觸於氧化物半導體膜的區域(接觸區域)與閘極電極層之間的距離,所以源極電極層或汲極電極層接觸於氧化物半導體膜的區域(接觸區域)與閘極電極層之間的電阻得到降低,可以提高電晶體640的導通特性。 Therefore, since the distance between the region (contact region) where the source electrode layer or the gate electrode layer is in contact with the oxide semiconductor film and the gate electrode layer can be shortened, the source electrode layer or the gate electrode layer is in contact with the oxide The electric resistance between the region (contact region) of the semiconductor film and the gate electrode layer is lowered, and the conduction characteristics of the transistor 640 can be improved.

因為在形成源極電極層及汲極電極層的製程中的去除閘極電極層上的導電膜的製程中不利用使用光阻掩罩的蝕刻製程,所以可以準確地進行精密的加工。因此,在半導體裝置的製程中,可以以高良率製造形狀和特性的偏差少的具有微型的結構的電晶體640。 Since the etching process using the photoresist mask is not used in the process of removing the conductive film on the gate electrode layer in the process of forming the source electrode layer and the gate electrode layer, precise processing can be accurately performed. Therefore, in the manufacturing process of the semiconductor device, the transistor 640 having a micro structure having a small variation in shape and characteristics can be manufactured at a high yield.

作為絕緣膜631、層間絕緣膜632、絕緣膜633,可以使用無機絕緣材料。例如,可以使用諸如氧化矽膜、氧氮化矽膜、氧化鋁膜或氧氮化鋁膜等氧化物絕緣膜或者諸如氮化矽膜、氮氧化矽膜、氮化鋁膜或氮氧化鋁膜等氮化物絕緣膜的單層或疊層。 As the insulating film 631, the interlayer insulating film 632, and the insulating film 633, an inorganic insulating material can be used. For example, an oxide insulating film such as a hafnium oxide film, a hafnium oxynitride film, an aluminum oxide film or an aluminum oxynitride film, or an antimony nitride film, a hafnium oxynitride film, an aluminum nitride film or an aluminum nitride oxide film can be used. A single layer or a laminate of a nitride insulating film.

另外,作為層間絕緣膜634,較佳為採用用作減少表面凹凸的平坦化絕緣膜的絕緣膜。作為層間絕緣膜634,例如可以使用聚醯亞胺樹脂、丙烯酸樹脂、苯並環丁烯類樹脂、聚醯胺或環氧樹脂等具有耐熱性的有機絕緣材料。 除了上述有機絕緣材料之外,也可以使用低介電常數材料(low-k材料)、矽氧烷類樹脂、PSG(磷矽玻璃)、BPSG(硼磷矽玻璃)等的單層或疊層。 Further, as the interlayer insulating film 634, an insulating film which is used as a planarizing insulating film for reducing surface unevenness is preferably used. As the interlayer insulating film 634, for example, a heat-resistant organic insulating material such as a polyimide resin, an acrylic resin, a benzocyclobutene resin, a polyamide or an epoxy resin can be used. In addition to the above organic insulating material, a single layer or a laminate of a low dielectric constant material (low-k material), a siloxane oxide resin, PSG (phosphorus phosphide), BPSG (boron bismuth glass), or the like may be used. .

藉由檢測入射到光電二極體602的光622,可以讀取檢測目標的資訊。另外,在讀取檢測目標的資訊時,可以使用背光等的光源。 By detecting the light 622 incident on the photodiode 602, the information of the detection target can be read. Further, when reading the information of the detection target, a light source such as a backlight can be used.

如上所述,能夠提供實現了微型化及高集體化且賦予高電特性的半導體裝置以及該半導體裝置的製造方法。 As described above, it is possible to provide a semiconductor device that realizes miniaturization and high collectivization and imparts high electric characteristics, and a method of manufacturing the semiconductor device.

本實施方式可以與其他實施方式所記載的結構適當地組合而實施。 This embodiment can be implemented in appropriate combination with the structures described in the other embodiments.

實施方式7 Embodiment 7

在本實施方式中,對本發明的一個方式的電子裝置進行說明。明確而言,參照圖15A至圖15F對安裝有具有上述實施方式所示的電晶體的顯示面板或發光面板的電子裝置進行說明。 In the present embodiment, an electronic device according to one embodiment of the present invention will be described. Specifically, an electronic device in which a display panel or a light-emitting panel having the transistor described in the above embodiment is mounted will be described with reference to FIGS. 15A to 15F.

作為採用半導體裝置的電子裝置,可以例如舉出電視機(也稱為電視機或電視接收機)、用於電腦等的顯示器、數位相機、數位攝像機、數位相框、行動電話機(也稱為行動電話、行動電話裝置)、可攜式遊戲機、可攜式資訊終端、音頻再生裝置、彈子機等大型遊戲機等。圖15A至圖15F示出這些電子裝置的具體例子。 As an electronic device using a semiconductor device, for example, a television (also referred to as a television or a television receiver), a display for a computer or the like, a digital camera, a digital camera, a digital photo frame, and a mobile phone (also referred to as a mobile phone) can be cited. , mobile phone devices), portable game consoles, portable information terminals, audio reproduction devices, marble machines and other large game consoles. Specific examples of these electronic devices are shown in Figs. 15A to 15F.

圖15A示出電視機的一個例子。在電視機7100中,外殼7101組裝有顯示部7103。由顯示部7103能夠顯示影 像,並可以將顯示面板用於顯示部7103。此外,在此示出利用支架7105支撐外殼7101的結構。 Fig. 15A shows an example of a television set. In the television set 7100, the housing 7101 is assembled with a display portion 7103. Display by the display unit 7103 For example, a display panel can be used for the display portion 7103. Further, the structure in which the outer casing 7101 is supported by the bracket 7105 is shown here.

可以藉由利用外殼7101所具備的操作開關、另外提供的遙控器7110進行電視機7100的操作。藉由利用遙控器7110所具備的操作鍵7109,可以進行頻道及音量的操作,並且可以對在顯示部7103上顯示的影像進行操作。此外,也可以採用在遙控器7110中設置顯示從該遙控器7110輸出的資訊的顯示部7107的結構。 The operation of the television set 7100 can be performed by using an operation switch provided in the casing 7101 and a separately provided remote controller 7110. By using the operation keys 7109 provided in the remote controller 7110, the operation of the channel and the volume can be performed, and the image displayed on the display unit 7103 can be operated. Further, a configuration in which the display unit 7107 that displays information output from the remote controller 7110 is provided in the remote controller 7110 may be employed.

另外,電視機7100採用具備接收機、數據機等的結構。可以藉由接收機接收一般的電視廣播。再者,藉由數據機連接到有線或無線方式的通信網路,能夠進行單向(從發送者到接收者)或雙向(在發送者和接收者之間或在接收者之間等)的資訊通信。 Further, the television set 7100 is configured to include a receiver, a data machine, and the like. A general television broadcast can be received by the receiver. Furthermore, by connecting the data machine to a wired or wireless communication network, it is possible to perform one-way (from sender to receiver) or two-way (between sender and receiver or between receivers, etc.). Information communication.

圖15B示出電腦,該電腦包括主體7201、外殼7202、顯示部7203、鍵盤7204、外部連接埠7205、指向裝置7206等。另外,該電腦是藉由將顯示面板用於其顯示部7203來製造的。 Fig. 15B shows a computer including a main body 7201, a casing 7202, a display portion 7203, a keyboard 7204, an external connection port 7205, a pointing device 7206, and the like. In addition, the computer is manufactured by using a display panel for its display portion 7203.

圖15C示出可攜式遊戲機,該可攜式遊戲機由外殼7301和外殼7302的兩個外殼構成,並且藉由連接部分7303可以開閉地連接。外殼7301組裝有顯示部7304,並且外殼7302組裝有顯示部7305。此外,圖15C所示的可攜式遊戲機還具備揚聲器部分7306、儲存介質插入部分7307、LED燈7308、輸入單元(操作鍵7309、連接端子7310、感測器7311(包括測量如下因素的功能:力量、位 移、位置、速度、加速度、角速度、轉動數、距離、光、液、磁、溫度、化學物質、聲音、時間、硬度、電場、電流、電壓、電力、輻射線、流量、濕度、斜率、振動、氣味或紅外線)、麥克風7312)等。當然,可攜式遊戲機的結構不侷限於上述結構,只要在顯示部7304及顯示部7305中的兩者或一方中使用顯示面板即可,而可以採用適當地設置有其他附屬設備的結構。圖15C所示的可攜式遊戲機具有如下功能:讀出儲存在儲存介質中的程式或資料並將其顯示在顯示部上;以及藉由與其他可攜式遊戲機進行無線通信而實現資訊共用。另外,圖15C所示的可攜式遊戲機的功能不侷限於此,可以具有各種各樣的功能。 Fig. 15C shows a portable game machine which is constituted by two outer casings of a casing 7301 and a casing 7302, and is openably and closably connected by a connecting portion 7303. The housing 7301 is assembled with a display portion 7304, and the housing 7302 is assembled with a display portion 7305. In addition, the portable game machine shown in FIG. 15C further includes a speaker portion 7306, a storage medium insertion portion 7307, an LED lamp 7308, an input unit (operation key 7309, connection terminal 7310, and sensor 7311 (including functions for measuring the following factors). : strength, position Shift, position, velocity, acceleration, angular velocity, number of revolutions, distance, light, liquid, magnetism, temperature, chemical, sound, time, hardness, electric field, current, voltage, power, radiation, flow, humidity, slope, vibration , smell or infrared), microphone 7312), etc. Needless to say, the configuration of the portable game machine is not limited to the above configuration, and a display panel may be used in either or both of the display unit 7304 and the display unit 7305, and a configuration in which other accessory devices are appropriately provided may be employed. The portable game machine shown in FIG. 15C has the functions of reading out a program or data stored in a storage medium and displaying it on the display unit, and realizing information by wirelessly communicating with other portable game machines. Share. In addition, the function of the portable game machine shown in FIG. 15C is not limited thereto, and may have various functions.

圖15D示出行動電話機的一個例子。行動電話機7400除了具備組裝在外殼7401中的顯示部7402以外,還具備操作按鈕7403、外部連接埠7404、揚聲器7405、麥克風7406等。另外,該行動電話機7400是藉由將顯示面板用於其顯示部7402來製造的。 Fig. 15D shows an example of a mobile phone. The mobile phone 7400 includes an operation button 7403, an external connection 埠 7404, a speaker 7405, a microphone 7406, and the like in addition to the display unit 7402 incorporated in the casing 7401. Further, the mobile phone 7400 is manufactured by using a display panel for its display portion 7402.

圖15D所示的行動電話機7400也可以用手指等觸摸顯示部7402來輸入資訊。另外,能夠用手指等觸摸顯示部7402來進行打電話或製作電子郵件等的操作。 The mobile phone 7400 shown in FIG. 15D can also input information by touching the display portion 7402 with a finger or the like. Further, the display unit 7402 can be touched with a finger or the like to perform an operation such as making a call or making an e-mail.

顯示部7402主要有三種螢幕模式。第一是以影像的顯示為主的顯示模式,第二是以文字等的資訊的的輸入為主的輸入模式,第三是混合顯示模式和輸入模式的兩個模式的顯示+輸入模式。 The display portion 7402 has three main screen modes. The first is a display mode in which the display of the image is dominant, the second is an input mode in which the input of information such as characters is dominant, and the third is a display + input mode in two modes of the mixed display mode and the input mode.

例如,在打電話或編寫電子郵件的情況下,可以採用 將顯示部7402主要用於輸入文字的文字輸入模式而輸入在螢幕上顯示的文字。在此情況下,較佳在顯示部7402的螢幕的大多部分中顯示鍵盤或號碼按鈕。 For example, in the case of a phone call or an email, you can use The display unit 7402 is mainly used to input a character input mode of a character and input a character displayed on the screen. In this case, it is preferable to display a keyboard or a number button in most portions of the screen of the display portion 7402.

此外,藉由在行動電話機7400內部設置具有陀螺儀和加速度感測器等檢測傾斜度的感測器的檢測裝置,可以判斷行動電話機7400的方向(縱或橫)而自動進行顯示部7402的螢幕顯示的切換。 Further, by providing a detecting device having a sensor for detecting the inclination such as a gyroscope and an acceleration sensor inside the mobile phone 7400, it is possible to determine the direction (vertical or horizontal) of the mobile phone 7400 and automatically perform the screen of the display portion 7402. The switching of the display.

此外,藉由觸摸顯示部7402或對外殼7401的操作按鈕7403進行操作,來進行螢幕模式的切換。或者,也可以根據顯示在顯示部7402上的影像的種類切換螢幕模式。例如,當顯示在顯示部上的影像信號為動態影像的資料時,將螢幕模式切換成顯示模式,而當顯示在顯示部上的影像信號為文字資料時,將螢幕模式切換成輸入模式。 Further, switching of the screen mode is performed by touching the display portion 7402 or operating the operation button 7403 of the casing 7401. Alternatively, the screen mode may be switched in accordance with the type of the image displayed on the display portion 7402. For example, when the image signal displayed on the display unit is the data of the motion picture, the screen mode is switched to the display mode, and when the image signal displayed on the display unit is the text material, the screen mode is switched to the input mode.

此外,當在輸入模式下藉由檢測出顯示部7402的光感測器所檢測的信號而得知在一定期間內沒有顯示部7402的觸摸操作輸入時,也可以進行控制以將螢幕模式從輸入模式切換成顯示模式。 Further, when the touch operation input of the display portion 7402 is not detected for a certain period of time by detecting the signal detected by the photo sensor of the display portion 7402 in the input mode, control can be performed to input the screen mode from the input. The mode is switched to the display mode.

也可以將顯示部7402用作影像感測器。例如,藉由用手掌或手指觸摸顯示部7402,來拍攝掌紋、指紋等,能夠進行個人識別。此外,藉由在顯示部中使用發射近紅外光的背光或發射近紅外光的感測用光源,也能夠拍攝手指靜脈、手掌靜脈等。 The display portion 7402 can also be used as an image sensor. For example, by touching the display portion 7402 with the palm or the finger, a palm print, a fingerprint, or the like is photographed, and personal identification can be performed. Further, by using a backlight that emits near-infrared light or a light source for sensing that emits near-infrared light in the display portion, it is also possible to take a finger vein, a palm vein, or the like.

圖15E示出平板狀的電腦的一個例子。平板狀的電腦7450具備由鉸鏈7454連接的外殼7451L和外殼7451R。 另外,除了操作按鈕7453、左側揚聲器7455L及右側揚聲器7455R之外,在電腦7450的側面還具備未圖示的外部連接埠7456。此外,藉由以設置在外殼7451L上的顯示部7452L和設置在外殼7451R上的顯示部7452R彼此相對的方式折疊鉸鏈7454,可以由外殼保護顯示部。 Fig. 15E shows an example of a flat computer. The flat computer 7450 includes a housing 7451L and a housing 7451R that are connected by a hinge 7544. Further, in addition to the operation button 7453, the left speaker 7455L, and the right speaker 7455R, an external connection 埠7456 (not shown) is provided on the side surface of the computer 7450. Further, by folding the hinge 7544 so that the display portion 7452L provided on the outer casing 7451L and the display portion 7452R provided on the outer casing 7451R are opposed to each other, the display portion can be protected by the outer casing.

顯示部7452L和顯示部7452R不但可以顯示影像,而且可以藉由用手指等觸摸它們來輸入資訊。例如,可以藉由用手指觸摸而選擇表示安裝結束的程式的圖示來啟動程式。或者,可以藉由改變接觸於所顯示的影像的兩個部分的手指的間隔來放大或縮小影像。或者,可以藉由移動接觸於所顯示的影像的一個部分的手指來移動影像。另外,也可以藉由使它們顯示鍵盤的影像且用手指觸摸而選擇所顯示的文字或記號,來輸入資訊。 The display portion 7452L and the display portion 7452R can display not only images but also information by touching them with a finger or the like. For example, the program can be launched by selecting an icon indicating the end of the installation by touching with a finger. Alternatively, the image may be enlarged or reduced by changing the spacing of the fingers that are in contact with the two portions of the displayed image. Alternatively, the image can be moved by moving a finger that is in contact with a portion of the displayed image. Alternatively, information may be input by causing them to display an image of the keyboard and touching with a finger to select the displayed character or symbol.

另外,也可以將陀螺儀、加速度感測器、GPS(Global Positioning System)接收器、指紋感測器、攝像機安裝在電腦7450中。例如,藉由設置具有陀螺儀、加速度感測器等檢測傾斜度的感測器的檢測裝置,判斷電腦7450的方向(縱向或橫向),而可以自動切換所顯示的影像的方向。 In addition, a gyroscope, an acceleration sensor, a GPS (Global Positioning System) receiver, a fingerprint sensor, and a camera may be installed in the computer 7450. For example, by setting a detecting device having a sensor that detects a tilt such as a gyroscope, an acceleration sensor, or the like, the direction (longitudinal or lateral direction) of the computer 7450 is determined, and the direction of the displayed image can be automatically switched.

另外,電腦7450可以與網路連接。電腦7450不但可以顯示網際網路上的資訊,而且可以用作遙控與網路連接的其他裝置的終端。 In addition, the computer 7450 can be connected to the network. The computer 7450 can not only display information on the Internet, but also can be used as a terminal for remote control and other devices connected to the network.

圖15F示出照明設備的一個例子。在照明設備7500中,本發明的一個方式的發光面板7503a至7503d組裝在 外殼7501中而作為光源。照明設備7500可以安裝在天花板上或牆上等。 Fig. 15F shows an example of a lighting device. In the lighting device 7500, the light-emitting panels 7503a to 7503d of one embodiment of the present invention are assembled in It is used as a light source in the outer casing 7501. The lighting device 7500 can be mounted on a ceiling or a wall or the like.

另外,因為本發明的一個方式的發光裝置包括薄膜狀的發光面板,所以藉由將其貼在具有曲面的基體上,可以實現具有曲面的半導體裝置。此外,藉由將該發光面板配置在具有曲面的外殼中,可以實現具有曲面的電子裝置或照明設備。 Further, since the light-emitting device of one embodiment of the present invention includes a film-shaped light-emitting panel, it is possible to realize a semiconductor device having a curved surface by attaching it to a substrate having a curved surface. Further, by arranging the light-emitting panel in a housing having a curved surface, an electronic device or a lighting device having a curved surface can be realized.

本實施方式可以與其他實施方式所記載的結構適當地組合而實施。 This embodiment can be implemented in appropriate combination with the structures described in the other embodiments.

實施例1 Example 1

在本實施例中,製造實施方式1所示的電晶體,並進行該電晶體的剖面觀察。 In the present embodiment, the transistor shown in Embodiment 1 was produced, and the cross-sectional observation of the transistor was performed.

作為電晶體,製造具有與圖1A和圖1B所示的電晶體440a相同的結構的實施例電晶體1。以下示出實施例電晶體1的製造方法。 As the transistor, the embodiment transistor 1 having the same structure as the transistor 440a shown in Figs. 1A and 1B was fabricated. A method of manufacturing the transistor 1 of the embodiment is shown below.

作為絕緣膜11,藉由濺射法在矽基板10上形成厚度為100mm的氧化矽膜(成膜條件:氧(氧為50sccm)氛圍下,壓力為0.4Pa,電源功率(電源輸出)為5.0kW,矽基板與靶材之間的距離為60mm,基板溫度為100℃)。 As the insulating film 11, a yttrium oxide film having a thickness of 100 mm was formed on the ruthenium substrate 10 by a sputtering method (film formation conditions: oxygen (oxygen is 50 sccm) atmosphere, pressure was 0.4 Pa, and power supply power (power output) was 5.0. kW, the distance between the substrate and the target is 60 mm, and the substrate temperature is 100 ° C).

作為氧化物半導體膜12,藉由使用In:Ga:Zn=3:1:2[原子數比]的氧化物靶材的濺射法,在氧化矽膜上形成厚度為20nm的IGZO膜。作為成膜條件,採用如下條件:氬及氧(氬:氧=30sccm:15sccm)氛圍下,壓力 為0.4Pa,電源功率為0.5kW,基板溫度為200℃。 As the oxide semiconductor film 12, an IGZO film having a thickness of 20 nm was formed on the hafnium oxide film by a sputtering method using an oxide target of In:Ga:Zn=3:1:2 [atomic ratio]. As a film formation condition, the following conditions were employed: an atmosphere of argon and oxygen (argon: oxygen = 30 sccm: 15 sccm), pressure It is 0.4 Pa, the power supply is 0.5 kW, and the substrate temperature is 200 °C.

接著,作為閘極絕緣膜,藉由CVD法在IGZO膜上形成厚度為20nm的氧氮化矽膜(成膜條件:SiH4:N2O=1sccm:800sccm,壓力為40Pa,RF電源功率(電源輸出)為150W,電源頻率為60MHz,基板溫度為400℃)。 Next, as a gate insulating film, a yttrium oxynitride film having a thickness of 20 nm was formed on the IGZO film by a CVD method (film formation conditions: SiH 4 : N 2 O = 1 sccm: 800 sccm, pressure: 40 Pa, RF power supply ( The power output is 150W, the power frequency is 60MHz, and the substrate temperature is 400°C.

藉由濺射法,在閘極絕緣膜上形成厚度為100nm的鎢膜(成膜條件:氬(100sccm)氛圍下,壓力為0.2Pa,電源功率為1kW),藉由CVD法在鎢膜上層疊厚度為200nm的氧氮化矽膜(成膜條件:SiH4:N2O=27sccm:1000sccm,壓力為133.3Pa,RF電源功率為60W,電源頻率為13.56MHz,基板溫度為325℃)。 A tungsten film having a thickness of 100 nm was formed on the gate insulating film by a sputtering method (film formation conditions: a pressure of 0.2 Pa under an atmosphere of argon (100 sccm), a power of 1 kW), and a tungsten film was formed by a CVD method. A yttrium oxynitride film having a thickness of 200 nm was laminated (film formation conditions: SiH 4 : N 2 O = 27 sccm: 1000 sccm, pressure 133.3 Pa, RF power supply 60 W, power supply frequency 13.56 MHz, substrate temperature 325 ° C).

藉由乾蝕刻法對氧氮化矽膜進行蝕刻(蝕刻條件:蝕刻氣體(CHF3:He:CH4=22.5sccm:127.5sccm:5sccm),ICP電源功率為475W,偏置功率為300W,壓力為3.5Pa)形成絕緣膜15。 The yttrium oxynitride film is etched by dry etching (etching conditions: etching gas (CHF 3 : He: CH 4 = 22.5 sccm: 127.5 sccm: 5 sccm), ICP power supply is 475 W, bias power is 300 W, pressure The insulating film 15 is formed to be 3.5 Pa.

接著,藉由乾蝕刻法對鎢膜進行蝕刻(蝕刻條件:蝕刻氣體(CF4:Cl2:O2=25sccm:25sccm:10sccm),ICP電源功率為500W,偏置功率為100W,壓力為1.0Pa,基板溫度為70℃)形成閘極電極層14。 Next, the tungsten film was etched by dry etching (etching conditions: etching gas (CF 4 : Cl 2 : O 2 = 25 sccm: 25 sccm: 10 sccm), ICP power supply was 500 W, bias power was 100 W, and pressure was 1.0. Pa, the substrate temperature is 70 ° C) to form the gate electrode layer 14.

作為絕緣膜,藉由CVD法在閘極電極層14及絕緣膜15上形成70nm的氧氮化矽膜(成膜條件:SiH4:N2O=1sccm:800sccm,壓力為40Pa,RF電源功率(電源輸出)為150W,電源頻率為60MHz,基板溫度為400 ℃),藉由乾蝕刻法對該氧氮化矽膜進行蝕刻(蝕刻條件:蝕刻氣體(CHF3:He=56sccm:144sccm),ICP電源功率為25W,偏置功率為425W,壓力為7.5Pa,基板溫度為70℃),形成側壁絕緣層16a、16b。以閘極電極層14及側壁絕緣層16a、16b為掩模對閘極絕緣膜進行蝕刻,形成閘極絕緣膜13。 As the insulating film, a 70 nm yttrium oxynitride film was formed on the gate electrode layer 14 and the insulating film 15 by a CVD method (film formation conditions: SiH 4 : N 2 O = 1 sccm: 800 sccm, pressure: 40 Pa, RF power supply) (power supply output is 150 W, power supply frequency is 60 MHz, substrate temperature is 400 ° C), and the yttrium oxynitride film is etched by dry etching (etching conditions: etching gas (CHF 3 : He = 56 sccm: 144 sccm), The ICP power supply was 25 W, the bias power was 425 W, the pressure was 7.5 Pa, and the substrate temperature was 70 ° C. The sidewall insulating layers 16a, 16b were formed. The gate insulating film is etched by using the gate electrode layer 14 and the sidewall insulating layers 16a and 16b as a mask to form the gate insulating film 13.

藉由濺射法,在氧化物半導體膜12、閘極絕緣膜13、側壁絕緣層16a、16b、絕緣膜15上形成厚度為30nm的鎢膜(成膜條件:氬(80sccm)氛圍下,壓力為0.8Pa,電源功率為1kW,基板溫度為230℃)。 A tungsten film having a thickness of 30 nm is formed on the oxide semiconductor film 12, the gate insulating film 13, the sidewall insulating layers 16a and 16b, and the insulating film 15 by a sputtering method (film formation conditions: argon (80 sccm) atmosphere, pressure It is 0.8 Pa, the power supply is 1 kW, and the substrate temperature is 230 ° C).

再者,藉由CVD法在鎢膜上形成厚度為500nm的氧氮化矽膜(成膜條件:SiH4:N2O=27sccm:1000sccm,壓力為133.3Pa,RF電源功率為60W,電源頻率為13.56MHz,基板溫度為325℃)。 Further, a yttrium oxynitride film having a thickness of 500 nm was formed on the tungsten film by a CVD method (film formation conditions: SiH 4 : N 2 O = 27 sccm: 1000 sccm, pressure 133.3 Pa, RF power supply 60 W, power supply frequency) It is 13.56 MHz and the substrate temperature is 325 ° C).

接著,藉由化學機械拋光法對氧氮化矽膜及鎢膜進行拋光處理(拋光條件:硬質聚氨酯拋光布,鹼性矽基漿料,漿料溫度為室溫,拋光壓力為0.08MPa,拋光時旋轉數(桌台/主軸)為50rpm/50rpm,拋光時間為2分鐘),以使絕緣膜15露出的方式去除閘極電極層14上的氧氮化矽膜及鎢膜。 Next, the yttrium oxynitride film and the tungsten film are polished by a chemical mechanical polishing method (polishing conditions: rigid polyurethane polishing cloth, alkaline cerium-based slurry, slurry temperature at room temperature, polishing pressure of 0.08 MPa, polishing) The number of rotations (table/spindle) was 50 rpm/50 rpm, and the polishing time was 2 minutes), and the yttrium oxynitride film and the tungsten film on the gate electrode layer 14 were removed in such a manner that the insulating film 15 was exposed.

藉由該拋光處理將氧氮化矽膜加工為絕緣膜18,分離鎢膜,形成源極電極層17a及汲極電極層17b。 The yttrium oxynitride film is processed into the insulating film 18 by the polishing treatment, and the tungsten film is separated to form the source electrode layer 17a and the gate electrode layer 17b.

藉由上述製程製造實施例電晶體1。 The embodiment transistor 1 was fabricated by the above process.

切掉實施例電晶體1的邊緣部分,使用掃描透射電子 顯微鏡(STEM:Scanning Transmission Electron Microscopy),進行實施例電晶體1的剖面觀察。在本實施例中,作為STEM使用“超薄薄膜評價系統HD-2300”(由株式會社日立高新技術製造)。圖16示出電晶體的剖面STEM影像。 Cutting off the edge portion of the embodiment transistor 1 using scanning transmission electrons A cross-sectional observation of the transistor 1 of the example was carried out by a microscope (STEM: Scanning Transmission Electron Microscopy). In the present embodiment, the "ultra-thin film evaluation system HD-2300" (manufactured by Hitachi High-Tech Co., Ltd.) was used as the STEM. Figure 16 shows a cross-sectional STEM image of a transistor.

圖16是實施例電晶體1的通道長度方向上的剖面STEM影像,確認到:藉由拋光處理,源極電極層17a、汲極電極層17b被分離。源極電極層17a、汲極電極層17b以與設置在閘極電極層14側面的側壁絕緣層16a、16b的側面接觸的方式設置,在本實施例中,覆蓋到側壁絕緣層16a、16b的側面中的比其上端部稍微低的位置。源極電極層17a、汲極電極層17b的形狀根據分離導電膜的拋光處理的條件不同,如本實施例所示,有時成為與側壁絕緣層16a、16b、絕緣膜15的經過拋光處理的表面相比在厚度方向上退後的形狀。 Fig. 16 is a cross-sectional STEM image of the transistor 1 of the embodiment in the longitudinal direction of the channel, and it was confirmed that the source electrode layer 17a and the gate electrode layer 17b were separated by the polishing treatment. The source electrode layer 17a and the drain electrode layer 17b are provided in contact with the side faces of the sidewall insulating layers 16a, 16b provided on the side faces of the gate electrode layer 14, and in the present embodiment, cover the sidewall insulating layers 16a, 16b. A position in the side that is slightly lower than the upper end. The shape of the source electrode layer 17a and the drain electrode layer 17b is different depending on the conditions of the polishing process of the separation conductive film, and as shown in this embodiment, it may be polished with the sidewall insulating layers 16a and 16b and the insulating film 15. The shape of the surface is retracted in the thickness direction.

另外,在圖16中,呈現梯形的閘極電極層14的下底的寬度大約為382nm,上底的寬度大約為364nm,側壁絕緣層16a、16b的通道長度方向上的寬度大約為51.6nm,設置在閘極電極層14上的絕緣膜15的厚度大約為44.1nm,從絕緣膜18的與氧化物半導體膜12接觸的源極電極層17a、汲極電極層17b到表面的厚度大約為139.8nm。 In addition, in FIG. 16, the width of the lower bottom of the trapezoidal gate electrode layer 14 is about 382 nm, the width of the upper base is about 364 nm, and the width of the sidewall insulating layers 16a, 16b in the channel length direction is about 51.6 nm. The thickness of the insulating film 15 provided on the gate electrode layer 14 is about 44.1 nm, and the thickness from the source electrode layer 17a and the gate electrode layer 17b of the insulating film 18 in contact with the oxide semiconductor film 12 to the surface is about 139.8. Nm.

在本實施例電晶體1中,藉由對設置在閘極電極層14、絕緣膜15及側壁絕緣層16a、16b上的導電膜進行化 學機械拋光處理而去除,分離導電膜,來形成源極電極層17a、汲極電極層17b。 In the transistor 1 of the present embodiment, the conductive film provided on the gate electrode layer 14, the insulating film 15, and the sidewall insulating layers 16a, 16b is formed. The mechanical polishing treatment is removed to separate the conductive film to form the source electrode layer 17a and the drain electrode layer 17b.

因此,因為可以縮短源極電極層17a或汲極電極層17b接觸於氧化物半導體膜12的區域(接觸區域)與閘極電極層14之間的距離,所以源極電極層17a或汲極電極層17b接觸於氧化物半導體膜12的區域(接觸區域)與閘極電極層14之間的電阻得到降低,可以提高電晶體的導通特性。 Therefore, since the distance between the region (contact region) where the source electrode layer 17a or the gate electrode layer 17b contacts the oxide semiconductor film 12 and the gate electrode layer 14 can be shortened, the source electrode layer 17a or the drain electrode The electric resistance between the region (contact region) where the layer 17b is in contact with the oxide semiconductor film 12 and the gate electrode layer 14 is lowered, and the conduction characteristics of the transistor can be improved.

因為在形成源極電極層17a及汲極電極層17b的製程中的去除閘極電極層14上的導電膜的製程中不利用使用光阻掩罩的蝕刻製程,所以可以準確地進行精密的加工。因此,在半導體裝置的製程中,可以以高良率製造形狀和特性的偏差少的具有微型的結構的電晶體。 Since the etching process using the photoresist mask is not used in the process of removing the conductive film on the gate electrode layer 14 in the process of forming the source electrode layer 17a and the gate electrode layer 17b, precise processing can be accurately performed. . Therefore, in the process of the semiconductor device, it is possible to manufacture a transistor having a micro structure having a small variation in shape and characteristics at a high yield.

以上,如本實施例所示,可以以高良率提供即使具有微型的結構也具有高電特性的電晶體。另外,在包括該電晶體的半導體裝置中也可以實現高性能化、高可靠性化及高生產化。 As described above, as shown in the present embodiment, a transistor having high electrical characteristics even with a micro structure can be provided at a high yield. Further, in the semiconductor device including the transistor, high performance, high reliability, and high productivity can be achieved.

實施例2 Example 2

在本實施例中,製造本說明書所公開的半導體裝置的一個方式的電晶體,並進行電特性的評價。 In the present embodiment, a transistor of one embodiment of the semiconductor device disclosed in the present specification is fabricated and evaluated for electrical characteristics.

作為電晶體,製造具有與圖17所示的電晶體340相同的結構的實施例電晶體2。以下示出實施例電晶體2的製造方法。 As the transistor, an embodiment transistor 2 having the same structure as that of the transistor 340 shown in Fig. 17 was fabricated. A method of manufacturing the transistor 2 of the embodiment is shown below.

作為絕緣膜336,藉由濺射法在矽基板300上形成厚度為300nm的氧化矽膜(成膜條件:氧(氧為50sccm)氛圍下,壓力為0.4Pa,電源功率(電源輸出)為1.5kW,矽基板與靶材之間的距離為60mm,基板溫度為100℃)。 As the insulating film 336, a yttrium oxide film having a thickness of 300 nm was formed on the ruthenium substrate 300 by a sputtering method (film formation conditions: oxygen (oxygen is 50 sccm) atmosphere, pressure was 0.4 Pa, and power supply power (power output) was 1.5. kW, the distance between the substrate and the target is 60 mm, and the substrate temperature is 100 ° C).

藉由化學機械拋光法對絕緣膜336表面進行拋光處理(拋光壓力為0.08MPa,拋光時間為0.5分鐘)。 The surface of the insulating film 336 was subjected to a polishing treatment by a chemical mechanical polishing method (polishing pressure was 0.08 MPa, polishing time was 0.5 minutes).

作為氧化物半導體膜,藉由使用In:Ga:Zn=3:1:2[原子數比]的氧化物靶材的濺射法,在經過拋光處理的絕緣膜336上形成厚度為10nm的IGZO膜。作為成膜條件,採用如下條件:氬及氧(氬:氧=30sccm:15sccm)氛圍下,壓力為0.4Pa,電源功率為0.5kW,基板溫度為200℃。 As the oxide semiconductor film, IGZO having a thickness of 10 nm is formed on the polished insulating film 336 by a sputtering method using an oxide target of In:Ga:Zn=3:1:2 [atomic ratio] membrane. As the film formation conditions, the following conditions were employed: an atmosphere of argon and oxygen (argon: oxygen = 30 sccm: 15 sccm), a pressure of 0.4 Pa, a power supply of 0.5 kW, and a substrate temperature of 200 °C.

藉由乾蝕刻法對氧化物半導體膜進行蝕刻(蝕刻條件:蝕刻氣體(BCl3:Cl2=60sccm:20sccm),ICP電源功率為450W,偏置功率為100W,壓力為1.9Pa)形成島狀氧化物半導體膜303。 The oxide semiconductor film is etched by dry etching (etching conditions: etching gas (BCl 3 : Cl 2 = 60 sccm: 20 sccm), ICP power supply 450 W, bias power 100 W, pressure 1.9 Pa) to form an island shape Oxide semiconductor film 303.

接著,作為閘極絕緣膜,藉由CVD法在島狀氧化物半導體膜303上形成厚度為20nm的氧氮化矽膜(成膜條件:SiH4:N2O=1sccm:800sccm,壓力為40Pa,RF電源功率(電源輸出)為150W,電源頻率為60MHz,基板溫度為400℃)。 Next, as a gate insulating film, a hafnium oxynitride film having a thickness of 20 nm was formed on the island-shaped oxide semiconductor film 303 by a CVD method (film formation conditions: SiH 4 : N 2 O = 1 sccm: 800 sccm, pressure: 40 Pa) The RF power (power output) is 150W, the power frequency is 60MHz, and the substrate temperature is 400°C.

藉由濺射法,在閘極絕緣膜上形成厚度為30nm的氮化鉭膜(成膜條件:氬及氮(氬:氮=50sccm:10sccm)氛圍下,壓力為0.6Pa,電源功率為1kW)和厚度為 135nm的鎢膜(成膜條件:氬(100sccm)氛圍下,壓力為2.0Pa,電源功率為4kW)的疊層。 A tantalum nitride film having a thickness of 30 nm was formed on the gate insulating film by a sputtering method (film formation conditions: argon and nitrogen (argon: nitrogen = 50 sccm: 10 sccm), a pressure of 0.6 Pa, and a power supply of 1 kW. And thickness is A laminate of a 135 nm tungsten film (film formation conditions: a pressure of 2.0 Pa under a argon (100 sccm) atmosphere, and a power supply of 4 kW).

接著,藉由CVD法在鎢膜上層疊厚度為200nm的氧氮化矽膜(成膜條件:SiH4:N2O=27sccm:1000sccm,壓力為133.3Pa,RF電源功率為60W,電源頻率為13.56MHz,基板溫度為325℃)。 Next, a yttrium oxynitride film having a thickness of 200 nm was laminated on the tungsten film by a CVD method (film formation conditions: SiH 4 : N 2 O = 27 sccm: 1000 sccm, pressure 133.3 Pa, RF power supply 60 W, power supply frequency was 13.56MHz, substrate temperature is 325 ° C).

藉由乾蝕刻法對氧氮化矽膜進行蝕刻(蝕刻條件:蝕刻氣體(CHF3:He:CH4=22.5sccm:127.5sccm:5sccm),ICP電源功率為475W,偏置功率為300W,壓力為3.5Pa)形成絕緣膜313。 The yttrium oxynitride film is etched by dry etching (etching conditions: etching gas (CHF 3 : He: CH 4 = 22.5 sccm: 127.5 sccm: 5 sccm), ICP power supply is 475 W, bias power is 300 W, pressure An insulating film 313 is formed at 3.5 Pa.

藉由乾蝕刻法對氮化鉭膜及鎢膜進行蝕刻(第一蝕刻條件:蝕刻氣體(CF4:Cl2:O2=25sccm:25sccm:10sccm),ICP電源功率為500W,偏置功率為100W,壓力為1.0Pa),(第二蝕刻條件:蝕刻氣體(Cl2=100sccm),電源功率為2kW,偏置功率為50W,壓力為1.0Pa),(第三蝕刻條件:蝕刻氣體(Cl2=100sccm),電源功率為1kW,偏置功率為25W,壓力為2.0Pa),形成閘極電極層301。 The tantalum nitride film and the tungsten film are etched by dry etching (first etching condition: etching gas (CF 4 : Cl 2 : O 2 = 25 sccm: 25 sccm: 10 sccm), ICP power supply is 500 W, and the bias power is 100W, pressure is 1.0Pa), (second etching condition: etching gas (Cl 2 = 100sccm), power supply power is 2kW, bias power is 50W, pressure is 1.0Pa), (third etching condition: etching gas (Cl 2 = 100 sccm), the power supply was 1 kW, the bias power was 25 W, and the pressure was 2.0 Pa), and the gate electrode layer 301 was formed.

以閘極電極層301為掩模,藉由離子植入法將磷(P)離子植入到氧化物半導體膜303中,形成低電阻區304a、低電阻區304b。另外,作為磷(P)離子的注入條件,採用如下條件:加速電壓為25kV,劑量為1.0×1015ions/cm2Phosphorus (P) ions are implanted into the oxide semiconductor film 303 by ion implantation using the gate electrode layer 301 as a mask to form a low resistance region 304a and a low resistance region 304b. Further, as the implantation condition of the phosphorus (P) ions, the following conditions were employed: the acceleration voltage was 25 kV, and the dose was 1.0 × 10 15 ions/cm 2 .

作為絕緣膜,藉由CVD法在閘極電極層301及絕緣 膜313上形成90nm的氧氮化矽膜(成膜條件:SiH4:N2O=1sccm:800sccm,壓力為40Pa,RF電源功率(電源輸出)為150W,電源頻率為60MHz,基板溫度為400℃),藉由乾蝕刻法對該氧氮化矽膜進行蝕刻,形成側壁絕緣層312a、312b。以閘極電極層301及側壁絕緣層312a、312b為掩模對閘極絕緣膜進行蝕刻,形成閘極絕緣膜302。另外,作為當形成側壁絕緣層312a、312b及閘極絕緣膜302時使用的蝕刻條件,採用如下條件:蝕刻氣體(CHF3:He=30sccm:120sccm),電源功率為3kW,偏置功率為200W,壓力為2.0Pa,基板溫度為-10℃)。 As the insulating film, a 90 nm yttrium oxynitride film was formed on the gate electrode layer 301 and the insulating film 313 by a CVD method (film formation conditions: SiH 4 : N 2 O = 1 sccm: 800 sccm, pressure: 40 Pa, RF power supply) The power output frequency was 150 W, the power supply frequency was 60 MHz, and the substrate temperature was 400 ° C. The yttrium oxynitride film was etched by dry etching to form sidewall insulating layers 312a and 312b. The gate insulating film is etched by using the gate electrode layer 301 and the sidewall insulating layers 312a and 312b as a mask to form a gate insulating film 302. Further, as the etching conditions used when the sidewall insulating layers 312a and 312b and the gate insulating film 302 are formed, the following conditions are employed: etching gas (CHF 3 : He = 30 sccm: 120 sccm), power supply power of 3 kW, and bias power of 200 W. The pressure is 2.0 Pa and the substrate temperature is -10 ° C).

藉由濺射法,在氧化物半導體膜303、閘極電極層301、側壁絕緣層312a、312b、絕緣膜313上形成厚度為30nm的鎢膜(成膜條件:氬(80sccm)氛圍下,壓力為0.8Pa,電源功率為1kW,基板溫度為230℃)。 A tungsten film having a thickness of 30 nm is formed on the oxide semiconductor film 303, the gate electrode layer 301, the sidewall insulating layers 312a and 312b, and the insulating film 313 by a sputtering method (film formation conditions: argon (80 sccm) atmosphere, pressure It is 0.8 Pa, the power supply is 1 kW, and the substrate temperature is 230 ° C).

接著,藉由乾蝕刻法對鎢膜進行蝕刻(蝕刻條件:蝕刻氣體(CF4:Cl2:O2=55sccm:45sccm:55sccm),電源功率為3kW,偏置功率為140W,壓力為0.67Pa)形成島狀鎢膜。 Next, the tungsten film was etched by dry etching (etching conditions: etching gas (CF 4 : Cl 2 : O 2 = 55 sccm: 45 sccm: 55 sccm), power supply power was 3 kW, bias power was 140 W, and pressure was 0.67 Pa. ) An island-shaped tungsten film is formed.

接著,作為絕緣膜,藉由濺射法在氧化物半導體膜303、閘極電極層301、側壁絕緣層312a、312b、絕緣膜313、鎢膜上形成厚度為70nm的氧化鋁膜(成膜條件:氬及氧(氬:氧=25sccm:25sccm)氛圍下,壓力為0.4Pa,電源功率為2.5kW,矽基板與靶材之間的距離為60mm,基板溫度為250℃)。 Next, as the insulating film, an aluminum oxide film having a thickness of 70 nm is formed on the oxide semiconductor film 303, the gate electrode layer 301, the sidewall insulating layers 312a and 312b, the insulating film 313, and the tungsten film by a sputtering method (film formation conditions). : Argon and oxygen (argon: oxygen = 25 sccm: 25 sccm), the pressure was 0.4 Pa, the power supply was 2.5 kW, the distance between the ruthenium substrate and the target was 60 mm, and the substrate temperature was 250 ° C).

再者,藉由CVD法在氧化鋁膜上形成厚度為430nm的氧氮化矽膜(成膜條件:SiH4:N2O=27sccm:1000sccm,壓力為133.3Pa,RF電源功率為60W,電源頻率為13.56MHz,基板溫度為325℃)。 Further, a cerium oxynitride film having a thickness of 430 nm was formed on the aluminum oxide film by a CVD method (film formation conditions: SiH 4 : N 2 O = 27 sccm: 1000 sccm, pressure 133.3 Pa, RF power supply 60 W, power supply) The frequency is 13.56 MHz and the substrate temperature is 325 ° C).

接著,藉由化學機械拋光法對氧氮化矽膜、氧化鋁膜及鎢膜進行拋光處理(拋光條件:硬質聚氨酯拋光布,鹼性矽基漿料,漿料溫度為室溫,拋光壓力為0.08MPa,拋光時旋轉數(桌台/主軸)為51rpm/50rpm),以使絕緣膜313露出的方式去除閘極電極層301上的氧氮化矽膜、氧化鋁膜及鎢膜。 Next, the yttrium oxynitride film, the aluminum oxide film, and the tungsten film are polished by a chemical mechanical polishing method (polishing conditions: a rigid polyurethane polishing cloth, an alkaline cerium-based slurry, a slurry temperature of room temperature, and a polishing pressure of 0.08 MPa, the number of revolutions (table/spindle) at the time of polishing was 51 rpm/50 rpm), and the yttrium oxynitride film, the aluminum oxide film, and the tungsten film on the gate electrode layer 301 were removed so that the insulating film 313 was exposed.

藉由該拋光處理將氧氮化矽膜加工為絕緣膜315,將氧化鋁膜加工為絕緣膜310,分離鎢膜,形成源極電極層305a及汲極電極層305b。 The yttrium oxynitride film is processed into the insulating film 315 by the polishing treatment, the aluminum oxide film is processed into the insulating film 310, and the tungsten film is separated to form the source electrode layer 305a and the gate electrode layer 305b.

作為絕緣膜307,藉由CVD法在閘極電極層301、絕緣膜313、源極電極層305a、汲極電極層305b、絕緣膜310、絕緣膜315上形成厚度為400nm的氧氮化矽膜(成膜條件:SiH4:N2O=27sccm:1000sccm,壓力為133.3Pa,RF電源功率為60W,電源頻率為13.56MHz,基板溫度為325℃)。 As the insulating film 307, a yttrium oxynitride film having a thickness of 400 nm is formed on the gate electrode layer 301, the insulating film 313, the source electrode layer 305a, the gate electrode layer 305b, the insulating film 310, and the insulating film 315 by a CVD method. (Film formation conditions: SiH 4 : N 2 O = 27 sccm: 1000 sccm, pressure 133.3 Pa, RF power supply 60 W, power supply frequency 13.56 MHz, substrate temperature 325 ° C).

在絕緣膜307、絕緣膜315及絕緣膜310中形成到達源極電極層305a、汲極電極層305b的開口(第一蝕刻條件:蝕刻氣體(CHF3:He=7.5sccm:142.5sccm),ICP電源功率為475W,偏置功率為300W,壓力為5.5Pa,時間為192秒鐘,第二蝕刻條件:蝕刻氣體(CHF3:He=7.5sccm: 142.5sccm),ICP電源功率為475W,偏置功率為150W,壓力為5.5Pa,時間為78秒鐘)。 An opening reaching the source electrode layer 305a and the drain electrode layer 305b is formed in the insulating film 307, the insulating film 315, and the insulating film 310 (first etching condition: etching gas (CHF 3 : He = 7.5 sccm: 142.5 sccm), ICP The power supply is 475W, the bias power is 300W, the pressure is 5.5Pa, and the time is 192 seconds. The second etching condition is: etching gas (CHF 3 : He = 7.5sccm: 142.5sccm), ICP power is 475W, bias The power is 150W, the pressure is 5.5Pa, and the time is 78 seconds).

藉由濺射法,在開口中層疊厚度為50nm的鈦膜(成膜條件:氬(20sccm)氛圍下,壓力為0.1Pa,電源功率為12kW)、厚度為100nm的鋁膜(成膜條件:氬(50sccm)氛圍下,壓力為0.4Pa,電源功率為1kW)、厚度為50nm的鈦膜(成膜條件:氬(20sccm)氛圍下,壓力為0.1Pa,電源功率為12kW)。 An aluminum film having a thickness of 50 nm (film formation conditions: a pressure of 0.1 Pa in a argon (20 sccm atmosphere), a power supply of 12 kW) and a thickness of 100 nm was laminated in the opening by a sputtering method (film formation conditions: A titanium film having a thickness of 50 Å under a argon (50 sccm) atmosphere, a pressure of 0.4 kPa, a power supply of 1 kW) (film formation conditions: a pressure of 0.1 Pa in an atmosphere of argon (20 sccm), and a power supply of 12 kW).

對鈦膜、鋁膜及鈦膜的疊層進行蝕刻(蝕刻條件:蝕刻氣體(BCl3:Cl2=60sccm:20sccm),ICP電源功率為450W,偏置功率為100W,壓力為1.9Pa),形成佈線層335a、335b。 The laminate of the titanium film, the aluminum film, and the titanium film is etched (etching conditions: etching gas (BCl 3 : Cl 2 = 60 sccm: 20 sccm), ICP power supply is 450 W, bias power is 100 W, pressure is 1.9 Pa), Wiring layers 335a, 335b are formed.

藉由上述製程,作為實施例電晶體2製造電晶體340。 The transistor 340 is fabricated as the embodiment transistor 2 by the above process.

另外,在實施例電晶體2中,將通道寬度(W)設定為10μm,將閘極電極層301與源極電極層305a或汲極電極層305b接觸於氧化物半導體膜303的開口之間的距離設定為0.07μm。 Further, in the embodiment transistor 2, the channel width (W) is set to 10 μm, and the gate electrode layer 301 and the source electrode layer 305a or the gate electrode layer 305b are in contact with the opening of the oxide semiconductor film 303. The distance is set to 0.07 μm.

對實施例電晶體2進行電特性的評價。 The electrical characteristics of the embodiment transistor 2 were evaluated.

圖18示出實施例電晶體2的汲極電壓(Vd)為1V時的閘極電壓(Vg)-汲極電流(Id)特性以及汲極電壓(Vd)為0.1V時的閘極電壓(Vg)-汲極電流(Id)特性。另外,圖18的電特性是實施例電晶體2中的通道長度(L)為0.35μm時的電特性,並在閘極電壓為-4V至 +4V的範圍進行測量。 Fig. 18 is a view showing a gate voltage (Vg) - drain current (Id) characteristic when the gate voltage (Vd) of the transistor 2 of the embodiment 2 is 1 V and a gate voltage when the gate voltage (Vd) is 0.1 V ( Vg) - Deuterium current (Id) characteristics. In addition, the electrical characteristics of FIG. 18 are electrical characteristics when the channel length (L) in the transistor 2 of the embodiment is 0.35 μm, and the gate voltage is -4 V to The range of +4V is measured.

如圖18所示,實施例電晶體2表示作為切換元件的電特性,在汲極電壓(Vd)為1V,閘極電壓為2.7V的情況下,實施例電晶體2的導通電流值為45.1μA,臨界電壓(Vth)為-0.27V,亞閾值係數(S值)為73.8mV/dec.,另外,在汲極電壓(Vd)為0.1V的情況下,實施例電晶體2的場效應遷移率為3.0cm2/Vs。此外,上述導通電流值、臨界電壓(Vth)、亞閾值係數(S值)、場效應遷移率為測量資料中的中值。 As shown in FIG. 18, the embodiment transistor 2 represents an electrical characteristic as a switching element. In the case where the gate voltage (Vd) is 1 V and the gate voltage is 2.7 V, the on-state current value of the embodiment transistor 2 is 45.1. μA, the threshold voltage (Vth) is -0.27 V, the subthreshold coefficient (S value) is 73.8 mV/dec., and in the case where the drain voltage (Vd) is 0.1 V, the field effect of the embodiment transistor 2 is The mobility was 3.0 cm 2 /Vs. Further, the above-described on-current value, threshold voltage (Vth), sub-threshold coefficient (S value), and field-effect mobility are median values in the measurement data.

另外,關於實施例電晶體2的電特性,評價進行100個點測量時的面內偏差。 Further, regarding the electrical characteristics of the transistor 2 of the example, the in-plane variation at the time of performing 100 point measurement was evaluated.

圖21示出汲極電壓為1V且閘極電壓為2.7V時的導通電流的正態概率圖表。當將導通電流的偏差表示為3σ時,在通道長度為0.35μm的情況下,3σ為16.5μA,3σ除以中值的百分率為36.3%,在通道長度為0.55μm的情況下,3σ為11.8μA,3σ除以中值的百分率為36.0%,在通道長度為1μm的情況下,3σ為6.4μA,3σ除以中值的百分率為30.0%。 Fig. 21 is a graph showing the normal probability of the on current when the drain voltage is 1 V and the gate voltage is 2.7 V. When the deviation of the on-current is expressed as 3σ, in the case where the channel length is 0.35 μm, 3σ is 16.5 μA, the percentage of 3σ divided by the median is 36.3%, and in the case of channel length 0.55 μm, 3σ is 11.8. The percentage of μA, 3σ divided by the median was 36.0%, and in the case of a channel length of 1 μm, 3σ was 6.4 μA, and the percentage of 3σ divided by the median was 30.0%.

圖22示出汲極電壓為1V時的臨界電壓的正態概率圖表。當將臨界電壓的偏差表示為3σ時,在通道長度為0.35μm的情況下,3σ為0.22V,在通道長度為0.55μm的情況下,3σ為0.26V,在通道長度為1μm的情況下,3σ為0.12V。 Fig. 22 is a graph showing a normal probability of a threshold voltage when the drain voltage is 1V. When the deviation of the threshold voltage is expressed as 3σ, in the case where the channel length is 0.35 μm, 3σ is 0.22 V, and in the case where the channel length is 0.55 μm, 3σ is 0.26 V, and in the case where the channel length is 1 μm, 3σ is 0.12V.

由圖21及圖22的結果可知:關於在導通電流和臨界 電壓的兩者,圖表的斜率大,並偏差小。 From the results of Fig. 21 and Fig. 22, it is known that the on current and the threshold are For both voltages, the slope of the graph is large and the deviation is small.

如上所述,可以確認到:本實施例的電晶體即使具有通道長度為0.35μm的微型的結構也表示作為切換元件的充分的電特性,且其電特性的偏差也小。 As described above, it was confirmed that the transistor of the present embodiment has a sufficiently small electrical characteristic as a switching element even if it has a micro-channel structure having a channel length of 0.35 μm, and the variation in electrical characteristics is small.

以上,如本實施例所示,可以以高良率提供即使具有微型的結構也具有高電特性的電晶體。另外,在包括該電晶體的半導體裝置中也能夠實現高性能化、高可靠性化及高生產化。 As described above, as shown in the present embodiment, a transistor having high electrical characteristics even with a micro structure can be provided at a high yield. Further, in the semiconductor device including the transistor, high performance, high reliability, and high productivity can be achieved.

10‧‧‧矽基板 10‧‧‧矽 substrate

11‧‧‧絕緣膜 11‧‧‧Insulation film

12‧‧‧氧化物半導體膜 12‧‧‧Oxide semiconductor film

13‧‧‧閘極絕緣膜 13‧‧‧Gate insulation film

14‧‧‧閘極電極層 14‧‧‧ gate electrode layer

15‧‧‧絕緣膜 15‧‧‧Insulation film

16a‧‧‧側壁絕緣層 16a‧‧‧Sidewall insulation

16b‧‧‧側壁絕緣層 16b‧‧‧Sidewall insulation

17a‧‧‧源極電極層 17a‧‧‧Source electrode layer

17b‧‧‧汲極電極層 17b‧‧‧汲 electrode layer

18‧‧‧絕緣膜 18‧‧‧Insulation film

106‧‧‧元件隔離絕緣層 106‧‧‧ Component isolation insulation

108‧‧‧閘極絕緣膜 108‧‧‧gate insulating film

110‧‧‧閘極電極 110‧‧‧gate electrode

116‧‧‧通道形成區 116‧‧‧Channel formation area

120‧‧‧雜質區 120‧‧‧ impurity area

124‧‧‧金屬間化合物區 124‧‧‧Intermetallic compound zone

128‧‧‧絕緣層 128‧‧‧Insulation

130‧‧‧絕緣層 130‧‧‧Insulation

135‧‧‧層間絕緣膜 135‧‧‧Interlayer insulating film

136a‧‧‧側壁絕緣層 136a‧‧‧Sidewall insulation

136b‧‧‧側壁絕緣層 136b‧‧‧ sidewall insulation

137‧‧‧絕緣膜 137‧‧‧Insulation film

140‧‧‧電晶體 140‧‧‧Optoelectronics

142a‧‧‧電極層 142a‧‧‧electrode layer

142b‧‧‧電極層 142b‧‧‧electrode layer

144‧‧‧氧化物半導體膜 144‧‧‧Oxide semiconductor film

146‧‧‧閘極絕緣膜 146‧‧‧gate insulating film

148‧‧‧閘極電極 148‧‧‧gate electrode

150‧‧‧絕緣膜 150‧‧‧Insulation film

152‧‧‧絕緣膜 152‧‧‧Insulation film

153‧‧‧導電層 153‧‧‧ Conductive layer

156‧‧‧佈線 156‧‧‧ wiring

160‧‧‧電晶體 160‧‧‧Optoelectronics

162‧‧‧電晶體 162‧‧‧Optoelectronics

164‧‧‧電容元件 164‧‧‧Capacitive components

172‧‧‧導電層 172‧‧‧ Conductive layer

173‧‧‧絕緣膜 173‧‧‧Insulation film

174‧‧‧導電層 174‧‧‧ Conductive layer

175a‧‧‧側壁絕緣層 175a‧‧‧Sidewall insulation

175b‧‧‧側壁絕緣層 175b‧‧‧ sidewall insulation

176‧‧‧絕緣膜 176‧‧‧Insulation film

180‧‧‧絕緣層 180‧‧‧Insulation

185‧‧‧基板 185‧‧‧Substrate

191‧‧‧導電層 191‧‧‧ Conductive layer

192‧‧‧導電層 192‧‧‧ Conductive layer

193‧‧‧絕緣膜 193‧‧‧Insulation film

195‧‧‧絕緣膜 195‧‧‧Insulation film

196‧‧‧絕緣膜 196‧‧‧Insulation film

197‧‧‧導電層 197‧‧‧ Conductive layer

250‧‧‧記憶單元 250‧‧‧ memory unit

251‧‧‧記憶單元陣列 251‧‧‧Memory Cell Array

251a‧‧‧記憶單元陣列 251a‧‧‧Memory Cell Array

251b‧‧‧記憶單元陣列 251b‧‧‧Memory Cell Array

253‧‧‧週邊電路 253‧‧‧ peripheral circuits

254‧‧‧電容元件 254‧‧‧Capacitive components

256‧‧‧絕緣膜 256‧‧‧Insulation film

258‧‧‧絕緣膜 258‧‧‧Insulation film

260‧‧‧佈線 260‧‧‧ wiring

262‧‧‧導電層 262‧‧‧ Conductive layer

300‧‧‧矽基板 300‧‧‧矽 substrate

301‧‧‧閘極電極層 301‧‧ ‧ gate electrode layer

302‧‧‧閘極絕緣膜 302‧‧‧gate insulating film

303‧‧‧氧化物半導體膜 303‧‧‧Oxide semiconductor film

305a‧‧‧源極電極層 305a‧‧‧Source electrode layer

305b‧‧‧汲極電極層 305b‧‧‧汲 electrode layer

307‧‧‧絕緣膜 307‧‧‧Insulation film

310‧‧‧絕緣膜 310‧‧‧Insulation film

312a‧‧‧側壁絕緣層 312a‧‧‧Sidewall insulation

312b‧‧‧側壁絕緣層 312b‧‧‧Sidewall insulation

313‧‧‧絕緣膜 313‧‧‧Insulation film

315‧‧‧絕緣膜 315‧‧‧Insulation film

335a‧‧‧佈線層 335a‧‧‧ wiring layer

335b‧‧‧佈線層 335b‧‧‧ wiring layer

336‧‧‧絕緣膜 336‧‧‧Insulation film

340‧‧‧電晶體 340‧‧‧Optoelectronics

400‧‧‧基板 400‧‧‧Substrate

401‧‧‧閘極電極層 401‧‧‧ gate electrode layer

402‧‧‧閘極絕緣膜 402‧‧‧gate insulating film

403‧‧‧氧化物半導體膜 403‧‧‧Oxide semiconductor film

404a‧‧‧低電阻區 404a‧‧‧Low resistance zone

404b‧‧‧低電阻區 404b‧‧‧low resistance zone

405a‧‧‧源極電極層 405a‧‧‧Source electrode layer

405b‧‧‧汲極電極層 405b‧‧‧汲 electrode layer

407‧‧‧絕緣膜 407‧‧‧Insulation film

409‧‧‧通道形成區 409‧‧‧Channel formation area

410‧‧‧絕緣膜 410‧‧‧Insulation film

412a‧‧‧側壁絕緣層 412a‧‧‧Sidewall insulation

412b‧‧‧側壁絕緣層 412b‧‧‧ sidewall insulation

413‧‧‧絕緣膜 413‧‧‧Insulation film

415‧‧‧層間絕緣膜 415‧‧‧Interlayer insulating film

421‧‧‧摻雜劑 421‧‧‧Dopants

435a‧‧‧佈線層 435a‧‧‧ wiring layer

435b‧‧‧佈線層 435b‧‧‧ wiring layer

436‧‧‧氧化物絕緣膜 436‧‧‧Oxide insulating film

440a‧‧‧電晶體 440a‧‧‧Optoelectronics

440b‧‧‧電晶體 440b‧‧‧Optoelectronics

440c‧‧‧電晶體 440c‧‧‧Optoelectronics

442‧‧‧閘極絕緣膜 442‧‧‧gate insulating film

445‧‧‧導電膜 445‧‧‧Electrical film

446‧‧‧絕緣膜 446‧‧‧Insulation film

491‧‧‧氧化物半導體膜 491‧‧‧Oxide semiconductor film

601‧‧‧基板 601‧‧‧Substrate

602‧‧‧光電二極體 602‧‧‧Photoelectric diode

606a‧‧‧半導體膜 606a‧‧‧Semiconductor film

606b‧‧‧半導體膜 606b‧‧‧Semiconductor film

606c‧‧‧半導體膜 606c‧‧‧Semiconductor film

608‧‧‧黏合層 608‧‧‧ adhesive layer

613‧‧‧基板 613‧‧‧Substrate

631‧‧‧絕緣膜 631‧‧‧Insulation film

632‧‧‧層間絕緣膜 632‧‧‧Interlayer insulating film

633‧‧‧絕緣膜 633‧‧‧Insulation film

634‧‧‧層間絕緣膜 634‧‧‧Interlayer insulating film

640‧‧‧電晶體 640‧‧‧Optoelectronics

641a‧‧‧電極層 641a‧‧‧electrode layer

641b‧‧‧電極層 641b‧‧‧electrode layer

642‧‧‧電極層 642‧‧‧electrode layer

643‧‧‧導電層 643‧‧‧ Conductive layer

645‧‧‧導電層 645‧‧‧ Conductive layer

650‧‧‧遮光膜 650‧‧‧Shade film

656‧‧‧電晶體 656‧‧‧Optoelectronics

658‧‧‧光電二極體重設信號線 658‧‧‧Photoelectric pole weight setting signal line

659‧‧‧閘極信號線 659‧‧‧gate signal line

671‧‧‧光電感測器輸出信號線 671‧‧‧Photoelectric detector output signal line

672‧‧‧光電感測器參考信號線 672‧‧‧Photoelectric detector reference signal line

801‧‧‧電晶體 801‧‧‧Optoelectronics

803‧‧‧電晶體 803‧‧‧Optoelectronics

804‧‧‧電晶體 804‧‧‧Optoelectronics

805‧‧‧電晶體 805‧‧‧Optoelectronics

806‧‧‧電晶體 806‧‧‧Optoelectronics

807‧‧‧X解碼器 807‧‧‧X decoder

808‧‧‧Y解碼器 808‧‧‧Y decoder

811‧‧‧電晶體 811‧‧‧Optoelectronics

812‧‧‧儲存電容器 812‧‧‧Storage capacitor

813‧‧‧X解碼器 813‧‧‧X decoder

814‧‧‧Y解碼器 814‧‧‧Y decoder

901‧‧‧RF電路 901‧‧‧RF circuit

902‧‧‧類比基帶電路 902‧‧‧ analog baseband circuit

903‧‧‧數字基帶電路 903‧‧‧Digital baseband circuit

904‧‧‧電池 904‧‧‧Battery

905‧‧‧電源電路 905‧‧‧Power circuit

906‧‧‧應用處理器 906‧‧‧Application Processor

907‧‧‧CPU 907‧‧‧CPU

908‧‧‧DSP 908‧‧‧DSP

909‧‧‧介面 909‧‧ interface

910‧‧‧快閃記憶體 910‧‧‧Flash memory

911‧‧‧顯示器控制器 911‧‧‧ display controller

912‧‧‧儲存電路 912‧‧‧Storage circuit

913‧‧‧顯示器 913‧‧‧ display

914‧‧‧顯示部 914‧‧‧Display Department

915‧‧‧源極驅動器 915‧‧‧Source Driver

916‧‧‧閘極驅動器 916‧‧‧gate driver

917‧‧‧聲頻電路 917‧‧‧Voice Circuit

918‧‧‧鍵盤 918‧‧‧ keyboard

919‧‧‧觸控感應器 919‧‧‧Touch sensor

950‧‧‧儲存電路 950‧‧‧Storage circuit

951‧‧‧記憶體控制器 951‧‧‧ memory controller

952‧‧‧記憶體 952‧‧‧ memory

953‧‧‧記憶體 953‧‧‧ memory

954‧‧‧開關 954‧‧‧ switch

955‧‧‧開關 955‧‧‧ switch

956‧‧‧顯示器控制器 956‧‧‧Display Controller

957‧‧‧顯示器 957‧‧‧ display

1001‧‧‧電池 1001‧‧‧Battery

1002‧‧‧電源電路 1002‧‧‧Power circuit

1003‧‧‧微處理器 1003‧‧‧Microprocessor

1004‧‧‧快閃記憶體 1004‧‧‧Flash memory

1005‧‧‧聲頻電路 1005‧‧‧Voice Circuit

1006‧‧‧鍵盤 1006‧‧‧ keyboard

1007‧‧‧儲存電路 1007‧‧‧Storage circuit

1008‧‧‧觸摸屏 1008‧‧‧ touch screen

1009‧‧‧顯示器 1009‧‧‧ display

1010‧‧‧顯示器控制器 1010‧‧‧Display Controller

4001‧‧‧基板 4001‧‧‧Substrate

4002‧‧‧像素部 4002‧‧‧Pixel Department

4003‧‧‧信號線驅動電路 4003‧‧‧Signal line driver circuit

4004‧‧‧掃描線驅動電路 4004‧‧‧Scan line driver circuit

4005‧‧‧密封材料 4005‧‧‧ Sealing material

4006‧‧‧基板 4006‧‧‧Substrate

4008‧‧‧液晶層 4008‧‧‧Liquid layer

4010‧‧‧電晶體 4010‧‧‧Optoelectronics

4011‧‧‧電晶體 4011‧‧‧Optoelectronics

4013‧‧‧液晶元件 4013‧‧‧Liquid crystal components

4015‧‧‧連接端子電極 4015‧‧‧Connecting terminal electrode

4016‧‧‧端子電極 4016‧‧‧Terminal electrode

4018‧‧‧FPC 4018‧‧‧FPC

4019‧‧‧各向異性導電膜 4019‧‧‧ Anisotropic conductive film

4020‧‧‧層間絕緣膜 4020‧‧‧Interlayer insulating film

4021‧‧‧絕緣膜 4021‧‧‧Insulation film

4023‧‧‧絕緣膜 4023‧‧‧Insulation film

4024‧‧‧絕緣膜 4024‧‧‧Insulation film

4030‧‧‧電極層 4030‧‧‧electrode layer

4031‧‧‧電極層 4031‧‧‧electrode layer

4032‧‧‧絕緣膜 4032‧‧‧Insulation film

4033‧‧‧絕緣膜 4033‧‧‧Insulation film

4035‧‧‧間隔物 4035‧‧‧ spacers

4050‧‧‧遮光膜 4050‧‧‧Shade film

4510‧‧‧分隔壁 4510‧‧‧ partition wall

4511‧‧‧電致發光層 4511‧‧‧Electroluminescent layer

4513‧‧‧發光元件 4513‧‧‧Lighting elements

4514‧‧‧填充材料 4514‧‧‧Filling materials

7100‧‧‧電視機 7100‧‧‧TV

7101‧‧‧外殼 7101‧‧‧Shell

7103‧‧‧顯示部 7103‧‧‧Display Department

7105‧‧‧支架 7105‧‧‧ bracket

7107‧‧‧顯示部 7107‧‧‧Display Department

7109‧‧‧操作鍵 7109‧‧‧ operation keys

7110‧‧‧遙控器 7110‧‧‧Remote control

7201‧‧‧主體 7201‧‧‧ Subject

7202‧‧‧外殼 7202‧‧‧ Shell

7203‧‧‧顯示部 7203‧‧‧Display Department

7204‧‧‧鍵盤 7204‧‧‧ keyboard

7205‧‧‧外部連接埠 7205‧‧‧External connection埠

7206‧‧‧指向裝置 7206‧‧‧ pointing device

7301‧‧‧外殼 7301‧‧‧Shell

7302‧‧‧外殼 7302‧‧‧Shell

7303‧‧‧連接部分 7303‧‧‧Connected section

7304‧‧‧顯示部 7304‧‧‧Display Department

7305‧‧‧顯示部 7305‧‧‧Display Department

7306‧‧‧揚聲器部分 7306‧‧‧Speaker section

7307‧‧‧儲存介質插入部分 7307‧‧‧Storage media insertion section

7308‧‧‧LED燈 7308‧‧‧LED lights

7309‧‧‧操作鍵 7309‧‧‧ operation keys

7310‧‧‧連接端子 7310‧‧‧Connecting terminal

7311‧‧‧感測器 7311‧‧‧Sensor

7312‧‧‧麥克風 7312‧‧‧Microphone

7400‧‧‧行動電話機 7400‧‧‧Mobile Phone

7401‧‧‧外殼 7401‧‧‧ Shell

7402‧‧‧顯示部 7402‧‧‧Display Department

7403‧‧‧操作按鈕 7403‧‧‧ operation button

7404‧‧‧外部連接埠 7404‧‧‧External connection埠

7405‧‧‧揚聲器 7405‧‧‧Speakers

7406‧‧‧麥克風 7406‧‧‧Microphone

7450‧‧‧電腦 7450‧‧‧ computer

7451L‧‧‧外殼 7451L‧‧‧Shell

7451R‧‧‧外殼 7451R‧‧‧Shell

7452L‧‧‧顯示部 7452L‧‧‧Display Department

7452R‧‧‧顯示部 7452R‧‧‧Display Department

7453‧‧‧操作按鈕 7453‧‧‧ operation buttons

7454‧‧‧鉸鏈 7454‧‧‧Hinges

7455L‧‧‧左側揚聲器 7455L‧‧‧left speaker

7455R‧‧‧右側揚聲器 7455R‧‧‧right speaker

7456‧‧‧外部連接埠 7456‧‧‧External connection埠

7500‧‧‧照明設備 7500‧‧‧Lighting equipment

7501‧‧‧外殼 7501‧‧‧Shell

7503a‧‧‧發光面板 7503a‧‧‧Lighting panel

7503d‧‧‧發光面板 7503d‧‧‧Lighting panel

在圖式中:圖1A和圖1B是說明半導體裝置的一個方式的平面圖及剖面圖;圖2A至圖2D是說明半導體裝置的製造方法的一個方式的剖面圖;圖3A至圖3D是說明半導體裝置的製造方法的一個方式的剖面圖;圖4A至圖4C是說明半導體裝置的一個方式的剖面圖;圖5A至圖5C是示出半導體裝置的一個方式的剖面圖、平面圖及電路圖;圖6A和圖6B是示出半導體裝置的一個方式的電路圖及透視圖;圖7A和圖7B是示出半導體裝置的一個方式的剖面圖 及平面圖;圖8A和圖8B是示出半導體裝置的一個方式的電路圖;圖9是示出半導體裝置的一個方式的方塊圖;圖10是示出半導體裝置的一個方式的方塊圖;圖11是示出半導體裝置的一個方式的方塊圖;圖12A至圖12C是說明半導體裝置的一個方式的平面圖;圖13A和圖13B是說明半導體裝置的一個方式的剖面圖;圖14A和圖14B是說明半導體裝置的一個方式的電路圖及剖面圖;圖15A至圖15F是示出電子裝置的圖;圖16是示出實施例電晶體1的剖面STEM影像的圖;圖17是示出實施例電晶體2的結構的圖;圖18是示出實施例電晶體2的電特性的圖;圖19A和圖19B是說明半導體裝置的一個方式的平面圖及剖面圖;圖20A和圖20B是說明半導體裝置的一個方式的平面圖及剖面圖;圖21是示出實施例電晶體2中的導通電流的正態概率圖表的圖;圖22是示出實施例電晶體2中的臨界電壓的正態概 率圖表的圖。 1A and 1B are plan and cross-sectional views illustrating one mode of a semiconductor device; FIGS. 2A to 2D are cross-sectional views illustrating one mode of a method of fabricating a semiconductor device; and FIGS. 3A to 3D are diagrams illustrating a semiconductor FIG. 4A to FIG. 4C are cross-sectional views illustrating one embodiment of a semiconductor device; and FIGS. 5A to 5C are cross-sectional views, plan views, and circuit diagrams showing one mode of the semiconductor device; FIG. And FIG. 6B is a circuit diagram and a perspective view showing one mode of the semiconductor device; FIGS. 7A and 7B are cross-sectional views showing one mode of the semiconductor device. And FIG. 8A and FIG. 8B are circuit diagrams showing one mode of the semiconductor device; FIG. 9 is a block diagram showing one mode of the semiconductor device; FIG. 10 is a block diagram showing one mode of the semiconductor device; A block diagram showing one mode of a semiconductor device; FIGS. 12A to 12C are plan views illustrating one mode of the semiconductor device; FIGS. 13A and 13B are cross-sectional views illustrating one mode of the semiconductor device; and FIGS. 14A and 14B are diagrams illustrating a semiconductor FIG. 15A to FIG. 15F are diagrams showing an electronic device; FIG. 16 is a view showing a cross-sectional STEM image of the transistor 1 of the embodiment; and FIG. 17 is a view showing the transistor 2 of the embodiment. Figure 18 is a plan view showing an electrical characteristic of the transistor 2 of the embodiment; Figures 19A and 19B are plan and cross-sectional views illustrating one mode of the semiconductor device; and Figures 20A and 20B are diagrams illustrating a semiconductor device. A plan view and a cross-sectional view of the mode; FIG. 21 is a view showing a normal probability diagram of the on current in the transistor 2 of the embodiment; and FIG. 22 is a normal diagram showing the threshold voltage in the transistor 2 of the embodiment. Rate chart.

400‧‧‧基板 400‧‧‧Substrate

401‧‧‧閘極電極層 401‧‧‧ gate electrode layer

402‧‧‧閘極絕緣膜 402‧‧‧gate insulating film

403‧‧‧氧化物半導體膜 403‧‧‧Oxide semiconductor film

404a‧‧‧低電阻區 404a‧‧‧Low resistance zone

404b‧‧‧低電阻區 404b‧‧‧low resistance zone

405a‧‧‧源極電極層 405a‧‧‧Source electrode layer

405b‧‧‧汲極電極層 405b‧‧‧汲 electrode layer

407‧‧‧絕緣膜 407‧‧‧Insulation film

409‧‧‧通道形成區 409‧‧‧Channel formation area

412a‧‧‧側壁絕緣層 412a‧‧‧Sidewall insulation

412b‧‧‧側壁絕緣層 412b‧‧‧ sidewall insulation

413‧‧‧絕緣膜 413‧‧‧Insulation film

415‧‧‧層間絕緣膜 415‧‧‧Interlayer insulating film

436‧‧‧氧化物絕緣膜 436‧‧‧Oxide insulating film

440a‧‧‧電晶體 440a‧‧‧Optoelectronics

Claims (18)

一種半導體裝置,包括:氧化物絕緣膜上的包括通道形成區的氧化物半導體膜;該氧化物半導體膜上的閘極絕緣膜;該閘極絕緣膜上的閘極電極層;該閘極電極層上的第一絕緣膜;覆蓋該閘極電極層的側面及該第一絕緣膜的側面的側壁絕緣層;與該氧化物半導體膜、該閘極絕緣膜的側面及該側壁絕緣層的側面接觸的源極電極層及汲極電極層;該源極電極層及該汲極電極層上的層間絕緣膜;以及在該第一絕緣膜、該源極電極層、該汲極電極層、該側壁絕緣層及該層間絕緣膜上接觸於它們的第二絕緣膜,其中,該源極電極層的上面及該汲極電極層的上面低於該第一絕緣膜的上面、該側壁絕緣層的上面及該層間絕緣膜的上面,其中,該源極電極層的該上面及該汲極電極層的該上面高於該閘極電極層的上面,以及其中,該氧化物半導體膜包括包含摻雜劑的區域,該區域不與該閘極電極層重疊且包括重疊於該閘極絕緣膜的區域。 A semiconductor device comprising: an oxide semiconductor film including a channel formation region on an oxide insulating film; a gate insulating film on the oxide semiconductor film; a gate electrode layer on the gate insulating film; the gate electrode a first insulating film on the layer; a sidewall insulating layer covering a side surface of the gate electrode layer and a side surface of the first insulating film; and a side surface of the oxide semiconductor film, the gate insulating film, and a side surface of the sidewall insulating layer a source electrode layer and a drain electrode layer contacting the source electrode layer and an interlayer insulating film on the gate electrode layer; and the first insulating film, the source electrode layer, the drain electrode layer, and the a sidewall insulating layer and a second insulating film contacting the interlayer insulating film thereon, wherein an upper surface of the source electrode layer and an upper surface of the drain electrode layer are lower than an upper surface of the first insulating film, and the sidewall insulating layer Above and above the interlayer insulating film, wherein the upper surface of the source electrode layer and the upper surface of the gate electrode layer are higher than the upper surface of the gate electrode layer, and wherein the oxide semiconductor film comprises doping Agent Domain, the region is not the gate electrode layer and to overlap and include the overlapping region of the gate insulating film. 根據申請專利範圍第1項之半導體裝置,其中該第二絕緣膜包括氧化鋁膜。 A semiconductor device according to claim 1, wherein the second insulating film comprises an aluminum oxide film. 根據申請專利範圍第1項之半導體裝置,還包括該源極電極層與該層間絕緣膜之間及該汲極電極層與該層間絕緣膜之間的氧化鋁膜。 The semiconductor device according to claim 1, further comprising an aluminum oxide film between the source electrode layer and the interlayer insulating film and between the gate electrode layer and the interlayer insulating film. 根據申請專利範圍第1項之半導體裝置,其中該層間絕緣膜不與該通道形成區重疊。 The semiconductor device according to claim 1, wherein the interlayer insulating film does not overlap with the channel formation region. 根據申請專利範圍第1項之半導體裝置,其中該層間絕緣膜的該上面的第一區域與該氧化物半導體膜重疊,其中該層間絕緣膜的該上面的第二區域不與該氧化物半導體膜重疊,以及其中該第一區域及該第二區域的該層間絕緣膜的該上面是平坦的表面。 The semiconductor device of claim 1, wherein the upper first region of the interlayer insulating film overlaps the oxide semiconductor film, wherein the upper second region of the interlayer insulating film does not overlap the oxide semiconductor film The overlapping, and the upper surface of the interlayer insulating film of the first region and the second region are flat surfaces. 根據申請專利範圍第1項之半導體裝置,其中該第一絕緣膜的該上面、該側壁絕緣層的該上面、和該層間絕緣膜的該上面互相對齊。 The semiconductor device according to claim 1, wherein the upper surface of the first insulating film, the upper surface of the sidewall insulating layer, and the upper surface of the interlayer insulating film are aligned with each other. 一種半導體裝置的製造方法,包括如下步驟:形成氧化物絕緣膜;在該氧化物絕緣膜上形成氧化物半導體膜;在該氧化物半導體膜上形成閘極絕緣膜;在該閘極絕緣膜上形成與該氧化物半導體膜重疊的閘極電極層及第一絕緣膜;以該閘極電極層及該第一絕緣膜為掩模,將摻雜劑選擇性地引入到該氧化物半導體膜中;在該閘極絕緣膜上形成覆蓋該閘極電極層的側面及該 第一絕緣膜的側面的側壁絕緣層;在該氧化物半導體膜、該閘極絕緣膜、該閘極電極層、該第一絕緣膜及該側壁絕緣層上形成導電膜;在該導電膜上形成層間絕緣膜;以及藉由化學機械拋光法去除該層間絕緣膜及該導電膜,以便使該閘極電極層上的該第一絕緣膜露出而形成源極電極層及汲極電極層。 A method of fabricating a semiconductor device, comprising the steps of: forming an oxide insulating film; forming an oxide semiconductor film on the oxide insulating film; forming a gate insulating film on the oxide semiconductor film; and forming the gate insulating film on the gate insulating film Forming a gate electrode layer and a first insulating film overlapping the oxide semiconductor film; and selectively introducing a dopant into the oxide semiconductor film by using the gate electrode layer and the first insulating film as a mask Forming a side covering the gate electrode layer on the gate insulating film and a sidewall insulating layer on a side surface of the first insulating film; forming a conductive film on the oxide semiconductor film, the gate insulating film, the gate electrode layer, the first insulating film, and the sidewall insulating layer; on the conductive film Forming an interlayer insulating film; and removing the interlayer insulating film and the conductive film by chemical mechanical polishing to expose the first insulating film on the gate electrode layer to form a source electrode layer and a drain electrode layer. 根據申請專利範圍第7項之半導體裝置的製造方法,還包括如下步驟:在該第一絕緣膜、該源極電極層、該汲極電極層、該側壁絕緣層及該層間絕緣膜上形成接觸於它們的第二絕緣膜。 The method of manufacturing a semiconductor device according to claim 7, further comprising the step of forming a contact on the first insulating film, the source electrode layer, the gate electrode layer, the sidewall insulating layer, and the interlayer insulating film Their second insulating film. 根據申請專利範圍第7項之半導體裝置的製造方法,其中該源極電極層的上面和該汲極電極層的上面低於該第一絕緣膜的上面、該側壁絕緣層的上面、和該層間絕緣膜的上面。 The method of manufacturing a semiconductor device according to claim 7, wherein an upper surface of the source electrode layer and an upper surface of the gate electrode layer are lower than an upper surface of the first insulating film, an upper surface of the sidewall insulating layer, and the interlayer The top of the insulating film. 根據申請專利範圍第7或9項之半導體裝置的製造方法,其中該第一絕緣膜的該上面、該側壁絕緣層的該上面、和該層間絕緣膜的該上面互相對齊。 The method of manufacturing a semiconductor device according to claim 7 or 9, wherein the upper surface of the first insulating film, the upper surface of the sidewall insulating layer, and the upper surface of the interlayer insulating film are aligned with each other. 一種半導體裝置的製造方法,包括如下步驟:形成氧化物絕緣膜;在該氧化物絕緣膜上形成氧化物半導體膜;在該氧化物半導體膜上形成閘極絕緣膜;在該閘極絕緣膜上形成與該氧化物半導體膜重疊的閘 極電極層及第一絕緣膜;以該閘極電極層及該第一絕緣膜為掩模,將摻雜劑選擇性地引入到該氧化物半導體膜中;在該閘極絕緣膜上形成覆蓋該閘極電極層的側面及該第一絕緣膜的側面的側壁絕緣層;在該氧化物半導體膜、該閘極絕緣膜、該閘極電極層、該第一絕緣膜及該側壁絕緣層上形成導電膜;在該導電膜上形成層間絕緣膜;以及藉由化學機械拋光法去除該層間絕緣膜及該導電膜,以便使該閘極電極層露出而形成源極電極層及汲極電極層。 A method of fabricating a semiconductor device, comprising the steps of: forming an oxide insulating film; forming an oxide semiconductor film on the oxide insulating film; forming a gate insulating film on the oxide semiconductor film; and forming the gate insulating film on the gate insulating film Forming a gate overlapping the oxide semiconductor film a pole electrode layer and a first insulating film; using the gate electrode layer and the first insulating film as a mask, selectively introducing a dopant into the oxide semiconductor film; forming a cover on the gate insulating film a sidewall insulating layer on a side surface of the gate electrode layer and a side surface of the first insulating film; on the oxide semiconductor film, the gate insulating film, the gate electrode layer, the first insulating film, and the sidewall insulating layer Forming a conductive film; forming an interlayer insulating film on the conductive film; and removing the interlayer insulating film and the conductive film by chemical mechanical polishing to expose the gate electrode layer to form a source electrode layer and a drain electrode layer . 根據申請專利範圍第11項之半導體裝置的製造方法,還包括如下步驟:在該閘極電極層、該源極電極層、該汲極電極層、該側壁絕緣層及該層間絕緣膜上形成第二絕緣膜。 The method of manufacturing a semiconductor device according to claim 11, further comprising the steps of forming a first layer on the gate electrode layer, the source electrode layer, the gate electrode layer, the sidewall insulating layer, and the interlayer insulating film Two insulating film. 根據申請專利範圍第11項之半導體裝置的製造方法,其中該源極電極層的上面和該汲極電極層的上面低於該側壁絕緣層的上面和該層間絕緣膜的上面。 The method of manufacturing a semiconductor device according to claim 11, wherein an upper surface of the source electrode layer and an upper surface of the gate electrode layer are lower than an upper surface of the sidewall insulating layer and an upper surface of the interlayer insulating film. 根據申請專利範圍第11或13項之半導體裝置的製造方法,其中該側壁絕緣層的該上面和該層間絕緣膜的該上面互相對齊。 The method of manufacturing a semiconductor device according to claim 11 or 13, wherein the upper surface of the sidewall insulating layer and the upper surface of the interlayer insulating film are aligned with each other. 根據申請專利範圍第7或11項之半導體裝置的製造方法,還包括如下步驟:形成氧化鋁膜, 其中該氧化鋁膜設置在該導電膜和該層間絕緣膜之間。 The method of manufacturing a semiconductor device according to claim 7 or 11, further comprising the steps of: forming an aluminum oxide film, Wherein the aluminum oxide film is disposed between the conductive film and the interlayer insulating film. 根據申請專利範圍第7或11項之半導體裝置的製造方法,其中在形成該氧化物半導體膜之前,對該氧化物絕緣膜的表面進行平坦化處理。 The method of manufacturing a semiconductor device according to claim 7 or 11, wherein the surface of the oxide insulating film is planarized before the oxide semiconductor film is formed. 根據申請專利範圍第7或11項之半導體裝置的製造方法,其中在形成該側壁絕緣層之前,將氧引入到該氧化物絕緣膜中。 The method of manufacturing a semiconductor device according to claim 7 or 11, wherein oxygen is introduced into the oxide insulating film before the sidewall insulating layer is formed. 根據申請專利範圍第8或12項之半導體裝置的製造方法,其中該第二絕緣膜包括氧化鋁膜。 The method of manufacturing a semiconductor device according to claim 8 or 12, wherein the second insulating film comprises an aluminum oxide film.
TW101133490A 2011-09-23 2012-09-13 Semiconductor device and method for manufacturing the same TWI545764B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011208229 2011-09-23
JP2011225519 2011-10-13

Publications (2)

Publication Number Publication Date
TW201318172A TW201318172A (en) 2013-05-01
TWI545764B true TWI545764B (en) 2016-08-11

Family

ID=47910265

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101133490A TWI545764B (en) 2011-09-23 2012-09-13 Semiconductor device and method for manufacturing the same

Country Status (4)

Country Link
US (1) US9431545B2 (en)
JP (1) JP6077806B2 (en)
KR (1) KR102128117B1 (en)
TW (1) TWI545764B (en)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10014068B2 (en) 2011-10-07 2018-07-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP5912394B2 (en) 2011-10-13 2016-04-27 株式会社半導体エネルギー研究所 Semiconductor device
US9117916B2 (en) * 2011-10-13 2015-08-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising oxide semiconductor film
US8637864B2 (en) 2011-10-13 2014-01-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
KR20140086954A (en) * 2011-10-28 2014-07-08 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and manufacturing method thereof
TWI669760B (en) * 2011-11-30 2019-08-21 日商半導體能源研究所股份有限公司 Method for manufacturing semiconductor device
US9076871B2 (en) 2011-11-30 2015-07-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
JP6053490B2 (en) 2011-12-23 2016-12-27 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
US9099560B2 (en) 2012-01-20 2015-08-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9040981B2 (en) 2012-01-20 2015-05-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP6220526B2 (en) 2012-02-29 2017-10-25 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
US20140084367A1 (en) * 2012-09-27 2014-03-27 Silicon Storage Technology, Inc. Extended Source-Drain MOS Transistors And Method Of Formation
KR102479472B1 (en) 2013-04-15 2022-12-19 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting device
TWI644434B (en) * 2013-04-29 2018-12-11 日商半導體能源研究所股份有限公司 Semiconductor device and manufacturing method thereof
US9882058B2 (en) * 2013-05-03 2018-01-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP6345023B2 (en) * 2013-08-07 2018-06-20 株式会社半導体エネルギー研究所 Semiconductor device and manufacturing method thereof
WO2015060133A1 (en) * 2013-10-22 2015-04-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9577110B2 (en) 2013-12-27 2017-02-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including an oxide semiconductor and the display device including the semiconductor device
WO2015097595A1 (en) 2013-12-27 2015-07-02 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device
JP6499006B2 (en) * 2015-05-07 2019-04-10 株式会社半導体エネルギー研究所 Imaging device
KR20240014632A (en) 2015-05-22 2024-02-01 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and display device including the semiconductor device
JP2017152656A (en) * 2016-02-26 2017-08-31 Tianma Japan株式会社 Image sensor and manufacturing method thereof
CN109314133B (en) * 2016-06-30 2022-04-29 英特尔公司 Integrated circuit die with back-end transistor
KR20180062305A (en) * 2016-11-30 2018-06-08 한국과학기술원 Protective layer for enhancing sensitivity of capacitive fingerprint sensor
US11031403B2 (en) 2017-04-28 2021-06-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method of semiconductor device
KR102502646B1 (en) * 2018-06-27 2023-02-24 삼성디스플레이 주식회사 Display panel and fabricating method of the same
CN109638021B (en) * 2018-12-11 2020-09-08 深圳市华星光电技术有限公司 Manufacturing method of flexible TFT substrate and manufacturing method of flexible OLED panel
US11289475B2 (en) 2019-01-25 2022-03-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method of semiconductor device
WO2020157600A1 (en) 2019-01-29 2020-08-06 株式会社半導体エネルギー研究所 Imaging device and electronic device
TWI685087B (en) * 2019-05-02 2020-02-11 華邦電子股份有限公司 Semiconductor structures and methods for fabricating the same
US11101179B2 (en) 2019-07-11 2021-08-24 Winbond Electronics Corp. Semiconductor structure with protection portions and method for forming the same

Family Cites Families (165)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60198861A (en) 1984-03-23 1985-10-08 Fujitsu Ltd Thin film transistor
JPH0244256B2 (en) 1987-01-28 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho INGAZN2O5DESHIMESARERUROTSUHOSHOKEINOSOJOKOZOOJUSURUKAGOBUTSUOYOBISONOSEIZOHO
JPH0244258B2 (en) 1987-02-24 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho INGAZN3O6DESHIMESARERUROTSUHOSHOKEINOSOJOKOZOOJUSURUKAGOBUTSUOYOBISONOSEIZOHO
JPS63210023A (en) 1987-02-24 1988-08-31 Natl Inst For Res In Inorg Mater Compound having laminar structure of hexagonal crystal system expressed by ingazn4o7 and its production
JPH0244260B2 (en) 1987-02-24 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho INGAZN5O8DESHIMESARERUROTSUHOSHOKEINOSOJOKOZOOJUSURUKAGOBUTSUOYOBISONOSEIZOHO
JPH0244262B2 (en) 1987-02-27 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho INGAZN6O9DESHIMESARERUROTSUHOSHOKEINOSOJOKOZOOJUSURUKAGOBUTSUOYOBISONOSEIZOHO
JPH0244263B2 (en) 1987-04-22 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho INGAZN7O10DESHIMESARERUROTSUHOSHOKEINOSOJOKOZOOJUSURUKAGOBUTSUOYOBISONOSEIZOHO
JP2717237B2 (en) * 1991-05-16 1998-02-18 株式会社 半導体エネルギー研究所 Insulated gate semiconductor device and method of manufacturing the same
JPH05251705A (en) 1992-03-04 1993-09-28 Fuji Xerox Co Ltd Thin-film transistor
JP3484726B2 (en) * 1992-07-16 2004-01-06 富士通株式会社 Semiconductor device and manufacturing method thereof
JP3298974B2 (en) 1993-03-23 2002-07-08 電子科学株式会社 Thermal desorption gas analyzer
JP3479375B2 (en) 1995-03-27 2003-12-15 科学技術振興事業団 Metal oxide semiconductor device in which a pn junction is formed with a thin film transistor made of a metal oxide semiconductor such as cuprous oxide, and methods for manufacturing the same
US6281562B1 (en) * 1995-07-27 2001-08-28 Matsushita Electric Industrial Co., Ltd. Semiconductor device which reduces the minimum distance requirements between active areas
JPH11505377A (en) 1995-08-03 1999-05-18 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ Semiconductor device
JP3625598B2 (en) 1995-12-30 2005-03-02 三星電子株式会社 Manufacturing method of liquid crystal display device
JP4204649B2 (en) 1996-02-05 2009-01-07 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
JP4112690B2 (en) 1997-06-30 2008-07-02 株式会社東芝 Manufacturing method of semiconductor device
JP4170454B2 (en) 1998-07-24 2008-10-22 Hoya株式会社 Article having transparent conductive oxide thin film and method for producing the same
JP2000150861A (en) 1998-11-16 2000-05-30 Tdk Corp Oxide thin film
JP3276930B2 (en) 1998-11-17 2002-04-22 科学技術振興事業団 Transistor and semiconductor device
TW460731B (en) 1999-09-03 2001-10-21 Ind Tech Res Inst Electrode structure and production method of wide viewing angle LCD
JP4089858B2 (en) 2000-09-01 2008-05-28 国立大学法人東北大学 Semiconductor device
KR20020038482A (en) 2000-11-15 2002-05-23 모리시타 요이찌 Thin film transistor array, method for producing the same, and display panel using the same
JP3997731B2 (en) 2001-03-19 2007-10-24 富士ゼロックス株式会社 Method for forming a crystalline semiconductor thin film on a substrate
JP2002289859A (en) 2001-03-23 2002-10-04 Minolta Co Ltd Thin-film transistor
JP4090716B2 (en) 2001-09-10 2008-05-28 雅司 川崎 Thin film transistor and matrix display device
JP3925839B2 (en) 2001-09-10 2007-06-06 シャープ株式会社 Semiconductor memory device and test method thereof
EP1443130B1 (en) 2001-11-05 2011-09-28 Japan Science and Technology Agency Natural superlattice homologous single crystal thin film, method for preparation thereof, and device using said single crystal thin film
JP4164562B2 (en) 2002-09-11 2008-10-15 独立行政法人科学技術振興機構 Transparent thin film field effect transistor using homologous thin film as active layer
JP4083486B2 (en) 2002-02-21 2008-04-30 独立行政法人科学技術振興機構 Method for producing LnCuO (S, Se, Te) single crystal thin film
CN1445821A (en) 2002-03-15 2003-10-01 三洋电机株式会社 Forming method of ZnO film and ZnO semiconductor layer, semiconductor element and manufacturing method thereof
JP3933591B2 (en) 2002-03-26 2007-06-20 淳二 城戸 Organic electroluminescent device
US7339187B2 (en) 2002-05-21 2008-03-04 State Of Oregon Acting By And Through The Oregon State Board Of Higher Education On Behalf Of Oregon State University Transistor structures
JP2004022625A (en) 2002-06-13 2004-01-22 Murata Mfg Co Ltd Manufacturing method of semiconductor device and its manufacturing method
US7105868B2 (en) 2002-06-24 2006-09-12 Cermet, Inc. High-electron mobility transistor with zinc oxide
US7067843B2 (en) 2002-10-11 2006-06-27 E. I. Du Pont De Nemours And Company Transparent oxide semiconductor thin film transistors
JP4166105B2 (en) 2003-03-06 2008-10-15 シャープ株式会社 Semiconductor device and manufacturing method thereof
JP2004273732A (en) 2003-03-07 2004-09-30 Sharp Corp Active matrix substrate and its producing process
JP4342826B2 (en) 2003-04-23 2009-10-14 株式会社半導体エネルギー研究所 Manufacturing method of semiconductor element
JP4108633B2 (en) 2003-06-20 2008-06-25 シャープ株式会社 THIN FILM TRANSISTOR, MANUFACTURING METHOD THEREOF, AND ELECTRONIC DEVICE
US7262463B2 (en) 2003-07-25 2007-08-28 Hewlett-Packard Development Company, L.P. Transistor including a deposited channel region having a doped portion
US7282782B2 (en) 2004-03-12 2007-10-16 Hewlett-Packard Development Company, L.P. Combined binary oxide semiconductor device
WO2005088726A1 (en) 2004-03-12 2005-09-22 Japan Science And Technology Agency Amorphous oxide and thin film transistor
US7145174B2 (en) 2004-03-12 2006-12-05 Hewlett-Packard Development Company, Lp. Semiconductor device
US7297977B2 (en) 2004-03-12 2007-11-20 Hewlett-Packard Development Company, L.P. Semiconductor device
US7211825B2 (en) 2004-06-14 2007-05-01 Yi-Chi Shih Indium oxide-based thin film transistors and circuits
US7378286B2 (en) * 2004-08-20 2008-05-27 Sharp Laboratories Of America, Inc. Semiconductive metal oxide thin film ferroelectric memory transistor
JP2006100760A (en) 2004-09-02 2006-04-13 Casio Comput Co Ltd Thin-film transistor and its manufacturing method
US7285501B2 (en) 2004-09-17 2007-10-23 Hewlett-Packard Development Company, L.P. Method of forming a solution processed device
US7298084B2 (en) 2004-11-02 2007-11-20 3M Innovative Properties Company Methods and displays utilizing integrated zinc oxide row and column drivers in conjunction with organic light emitting diodes
US7791072B2 (en) 2004-11-10 2010-09-07 Canon Kabushiki Kaisha Display
US7453065B2 (en) 2004-11-10 2008-11-18 Canon Kabushiki Kaisha Sensor and image pickup device
US7829444B2 (en) 2004-11-10 2010-11-09 Canon Kabushiki Kaisha Field effect transistor manufacturing method
JP5126729B2 (en) 2004-11-10 2013-01-23 キヤノン株式会社 Image display device
CN101057333B (en) 2004-11-10 2011-11-16 佳能株式会社 Light emitting device
US7863611B2 (en) 2004-11-10 2011-01-04 Canon Kabushiki Kaisha Integrated circuits utilizing amorphous oxides
EP2455975B1 (en) 2004-11-10 2015-10-28 Canon Kabushiki Kaisha Field effect transistor with amorphous oxide
JP5118812B2 (en) 2004-11-10 2013-01-16 キヤノン株式会社 Field effect transistor
US7579224B2 (en) 2005-01-21 2009-08-25 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a thin film semiconductor device
TWI412138B (en) 2005-01-28 2013-10-11 Semiconductor Energy Lab Semiconductor device, electronic device, and method of manufacturing semiconductor device
US7608531B2 (en) 2005-01-28 2009-10-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, electronic device, and method of manufacturing semiconductor device
US7858451B2 (en) 2005-02-03 2010-12-28 Semiconductor Energy Laboratory Co., Ltd. Electronic device, semiconductor device and manufacturing method thereof
US7948171B2 (en) 2005-02-18 2011-05-24 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US20060197092A1 (en) 2005-03-03 2006-09-07 Randy Hoffman System and method for forming conductive material on a substrate
US8681077B2 (en) 2005-03-18 2014-03-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, and display device, driving method and electronic apparatus thereof
US7544967B2 (en) 2005-03-28 2009-06-09 Massachusetts Institute Of Technology Low voltage flexible organic/transparent transistor for selective gas sensing, photodetecting and CMOS device applications
US7645478B2 (en) 2005-03-31 2010-01-12 3M Innovative Properties Company Methods of making displays
US8300031B2 (en) 2005-04-20 2012-10-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising transistor having gate and drain connected through a current-voltage conversion element
JP2006344804A (en) * 2005-06-09 2006-12-21 Seiko Epson Corp Semiconductor device and method of manufacturing semiconductor device
JP2006344849A (en) 2005-06-10 2006-12-21 Casio Comput Co Ltd Thin film transistor
US7402506B2 (en) 2005-06-16 2008-07-22 Eastman Kodak Company Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby
US7691666B2 (en) 2005-06-16 2010-04-06 Eastman Kodak Company Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby
US7507618B2 (en) 2005-06-27 2009-03-24 3M Innovative Properties Company Method for making electronic devices using metal oxide nanoparticles
KR100711890B1 (en) 2005-07-28 2007-04-25 삼성에스디아이 주식회사 Organic Light Emitting Display and Fabrication Method for the same
JP2007059128A (en) 2005-08-23 2007-03-08 Canon Inc Organic electroluminescent display device and manufacturing method thereof
JP4870404B2 (en) * 2005-09-02 2012-02-08 財団法人高知県産業振興センター Thin film transistor manufacturing method
JP2007073705A (en) 2005-09-06 2007-03-22 Canon Inc Oxide-semiconductor channel film transistor and its method of manufacturing same
JP5116225B2 (en) 2005-09-06 2013-01-09 キヤノン株式会社 Manufacturing method of oxide semiconductor device
JP4850457B2 (en) 2005-09-06 2012-01-11 キヤノン株式会社 Thin film transistor and thin film diode
JP4280736B2 (en) 2005-09-06 2009-06-17 キヤノン株式会社 Semiconductor element
JP2007081249A (en) * 2005-09-15 2007-03-29 Matsushita Electric Ind Co Ltd Semiconductor device and method for manufacturing the same
EP1998375A3 (en) 2005-09-29 2012-01-18 Semiconductor Energy Laboratory Co, Ltd. Semiconductor device having oxide semiconductor layer and manufacturing method
JP5078246B2 (en) 2005-09-29 2012-11-21 株式会社半導体エネルギー研究所 Semiconductor device and manufacturing method of semiconductor device
JP5037808B2 (en) 2005-10-20 2012-10-03 キヤノン株式会社 Field effect transistor using amorphous oxide, and display device using the transistor
KR101397571B1 (en) 2005-11-15 2014-05-22 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and manufacturing method thereof
TWI292281B (en) 2005-12-29 2008-01-01 Ind Tech Res Inst Pixel structure of active organic light emitting diode and method of fabricating the same
US7867636B2 (en) 2006-01-11 2011-01-11 Murata Manufacturing Co., Ltd. Transparent conductive film and method for manufacturing the same
JP4977478B2 (en) 2006-01-21 2012-07-18 三星電子株式会社 ZnO film and method of manufacturing TFT using the same
US7576394B2 (en) 2006-02-02 2009-08-18 Kochi Industrial Promotion Center Thin film transistor including low resistance conductive thin films and manufacturing method thereof
US7977169B2 (en) 2006-02-15 2011-07-12 Kochi Industrial Promotion Center Semiconductor device including active layer made of zinc oxide with controlled orientations and manufacturing method thereof
JP5110803B2 (en) 2006-03-17 2012-12-26 キヤノン株式会社 FIELD EFFECT TRANSISTOR USING OXIDE FILM FOR CHANNEL AND METHOD FOR MANUFACTURING THE SAME
KR20070101595A (en) 2006-04-11 2007-10-17 삼성전자주식회사 Zno thin film transistor
US20070252928A1 (en) 2006-04-28 2007-11-01 Toppan Printing Co., Ltd. Structure, transmission type liquid crystal display, reflection type display and manufacturing method thereof
US7875931B2 (en) * 2006-04-28 2011-01-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device with isolation using impurity
JP5028033B2 (en) 2006-06-13 2012-09-19 キヤノン株式会社 Oxide semiconductor film dry etching method
JP4999400B2 (en) 2006-08-09 2012-08-15 キヤノン株式会社 Oxide semiconductor film dry etching method
JP4609797B2 (en) 2006-08-09 2011-01-12 Nec液晶テクノロジー株式会社 Thin film device and manufacturing method thereof
JP4332545B2 (en) 2006-09-15 2009-09-16 キヤノン株式会社 Field effect transistor and manufacturing method thereof
JP5164357B2 (en) 2006-09-27 2013-03-21 キヤノン株式会社 Semiconductor device and manufacturing method of semiconductor device
JP4274219B2 (en) 2006-09-27 2009-06-03 セイコーエプソン株式会社 Electronic devices, organic electroluminescence devices, organic thin film semiconductor devices
US7622371B2 (en) 2006-10-10 2009-11-24 Hewlett-Packard Development Company, L.P. Fused nanocrystal thin film semiconductor and method
US7772021B2 (en) 2006-11-29 2010-08-10 Samsung Electronics Co., Ltd. Flat panel displays comprising a thin-film transistor having a semiconductive oxide in its channel and methods of fabricating the same for use in flat panel displays
JP2008140684A (en) 2006-12-04 2008-06-19 Toppan Printing Co Ltd Color el display, and its manufacturing method
KR101303578B1 (en) 2007-01-05 2013-09-09 삼성전자주식회사 Etching method of thin film
US8207063B2 (en) 2007-01-26 2012-06-26 Eastman Kodak Company Process for atomic layer deposition
KR100851215B1 (en) 2007-03-14 2008-08-07 삼성에스디아이 주식회사 Thin film transistor and organic light-emitting dislplay device having the thin film transistor
US7795613B2 (en) 2007-04-17 2010-09-14 Toppan Printing Co., Ltd. Structure with transistor
KR101325053B1 (en) 2007-04-18 2013-11-05 삼성디스플레이 주식회사 Thin film transistor substrate and manufacturing method thereof
KR20080094300A (en) 2007-04-19 2008-10-23 삼성전자주식회사 Thin film transistor and method of manufacturing the same and flat panel display comprising the same
KR101334181B1 (en) 2007-04-20 2013-11-28 삼성전자주식회사 Thin Film Transistor having selectively crystallized channel layer and method of manufacturing the same
US8274078B2 (en) 2007-04-25 2012-09-25 Canon Kabushiki Kaisha Metal oxynitride semiconductor containing zinc
US20080265416A1 (en) * 2007-04-27 2008-10-30 Shen-Nan Lee Metal line formation using advaced CMP slurry
KR101345376B1 (en) 2007-05-29 2013-12-24 삼성전자주식회사 Fabrication method of ZnO family Thin film transistor
US8047442B2 (en) * 2007-12-03 2011-11-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP5215158B2 (en) 2007-12-17 2013-06-19 富士フイルム株式会社 Inorganic crystalline alignment film, method for manufacturing the same, and semiconductor device
JP5467728B2 (en) 2008-03-14 2014-04-09 富士フイルム株式会社 Thin film field effect transistor and method of manufacturing the same
KR101399099B1 (en) * 2008-06-02 2014-05-26 삼성전자주식회사 Semiconductor devices including a contact structure and methods of forming the same
US8053253B2 (en) * 2008-06-06 2011-11-08 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
JP5083112B2 (en) * 2008-08-07 2012-11-28 ローム株式会社 Semiconductor device
JP4623179B2 (en) 2008-09-18 2011-02-02 ソニー株式会社 Thin film transistor and manufacturing method thereof
JP5430113B2 (en) 2008-10-08 2014-02-26 キヤノン株式会社 Field effect transistor and manufacturing method thereof
JP5451280B2 (en) 2008-10-09 2014-03-26 キヤノン株式会社 Wurtzite crystal growth substrate, manufacturing method thereof, and semiconductor device
KR20100075026A (en) * 2008-12-24 2010-07-02 삼성전자주식회사 Thin film transistor array substrate and method of fabricating the same
JP5403464B2 (en) * 2009-08-14 2014-01-29 Nltテクノロジー株式会社 Thin film device and manufacturing method thereof
JP5732740B2 (en) * 2009-09-30 2015-06-10 大日本印刷株式会社 Thin film transistor substrate for flexible device and flexible device
KR101996773B1 (en) 2009-10-21 2019-07-04 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
KR20180133548A (en) 2009-11-20 2018-12-14 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
KR101797253B1 (en) 2009-12-04 2017-11-13 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and manufacturing method thereof
EP2507822B1 (en) 2009-12-04 2016-08-31 Semiconductor Energy Laboratory Co. Ltd. Manufacturing method of semiconductor device
KR102010752B1 (en) 2009-12-04 2019-08-14 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device
WO2011074407A1 (en) * 2009-12-18 2011-06-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8441009B2 (en) * 2009-12-25 2013-05-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
CN105789204B (en) * 2009-12-25 2021-11-02 株式会社半导体能源研究所 Semiconductor device with a plurality of semiconductor chips
US8415731B2 (en) 2010-01-20 2013-04-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor storage device with integrated capacitor and having transistor overlapping sections
WO2011096264A1 (en) * 2010-02-05 2011-08-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of driving semiconductor device
KR102081035B1 (en) 2010-02-19 2020-02-24 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for manufacturing semiconductor device
KR20180001562A (en) 2010-02-26 2018-01-04 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for manufacturing semiconductor device
KR102420689B1 (en) 2010-02-26 2022-07-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
WO2011125806A1 (en) 2010-04-09 2011-10-13 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
US8207025B2 (en) 2010-04-09 2012-06-26 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
WO2011132591A1 (en) 2010-04-23 2011-10-27 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
KR101854421B1 (en) 2010-04-23 2018-05-03 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for manufacturing semiconductor device
CN102859705B (en) 2010-04-23 2015-12-09 株式会社半导体能源研究所 The manufacture method of semiconductor device and semiconductor device
KR101324760B1 (en) 2010-04-23 2013-11-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for manufacturing semiconductor device
KR20150088324A (en) 2010-04-23 2015-07-31 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for manufacturing semiconductor device
WO2011132625A1 (en) 2010-04-23 2011-10-27 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
WO2011135987A1 (en) 2010-04-28 2011-11-03 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
JP5917035B2 (en) 2010-07-26 2016-05-11 株式会社半導体エネルギー研究所 Semiconductor device
KR101842181B1 (en) 2010-08-04 2018-03-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
JP5739257B2 (en) 2010-08-05 2015-06-24 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
US8592879B2 (en) 2010-09-13 2013-11-26 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8569754B2 (en) 2010-11-05 2013-10-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
WO2012090799A1 (en) 2010-12-28 2012-07-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8941112B2 (en) 2010-12-28 2015-01-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
WO2012090973A1 (en) 2010-12-28 2012-07-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8829512B2 (en) 2010-12-28 2014-09-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
TWI787452B (en) 2011-01-26 2022-12-21 日商半導體能源研究所股份有限公司 Semiconductor device and manufacturing method thereof
US8946066B2 (en) 2011-05-11 2015-02-03 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device
US9397222B2 (en) 2011-05-13 2016-07-19 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
US9112036B2 (en) 2011-06-10 2015-08-18 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
JP6005401B2 (en) 2011-06-10 2016-10-12 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
TWI595565B (en) 2011-06-17 2017-08-11 半導體能源研究所股份有限公司 Semiconductor device and method for manufacturing the same
US8643008B2 (en) 2011-07-22 2014-02-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8841675B2 (en) 2011-09-23 2014-09-23 Semiconductor Energy Laboratory Co., Ltd. Minute transistor
US8637864B2 (en) * 2011-10-13 2014-01-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same

Also Published As

Publication number Publication date
US20130075732A1 (en) 2013-03-28
US9431545B2 (en) 2016-08-30
JP6077806B2 (en) 2017-02-08
TW201318172A (en) 2013-05-01
KR20130032836A (en) 2013-04-02
JP2013102131A (en) 2013-05-23
KR102128117B1 (en) 2020-06-29

Similar Documents

Publication Publication Date Title
TWI545764B (en) Semiconductor device and method for manufacturing the same
JP7418499B2 (en) Semiconductor equipment, electronic equipment
KR102256797B1 (en) Semiconductor device
CN107275411B (en) Semiconductor device and method for manufacturing semiconductor device
JP2020074417A (en) Semiconductor device
TWI615904B (en) Manufacturing method of semiconductor device
US9536994B2 (en) Method for manufacturing semiconductor device and semiconductor device
TWI578535B (en) Semiconductor device and manufacturing method thereof
TWI570925B (en) Semiconductor device and method for manufacturing semiconductor device
TW201717286A (en) Semiconductor device and method for manufacturing the same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees