TWI477457B - A method for producing granules and a method for producing a glass product - Google Patents

A method for producing granules and a method for producing a glass product Download PDF

Info

Publication number
TWI477457B
TWI477457B TW099128928A TW99128928A TWI477457B TW I477457 B TWI477457 B TW I477457B TW 099128928 A TW099128928 A TW 099128928A TW 99128928 A TW99128928 A TW 99128928A TW I477457 B TWI477457 B TW I477457B
Authority
TW
Taiwan
Prior art keywords
raw material
glass
mass
boric acid
material slurry
Prior art date
Application number
TW099128928A
Other languages
English (en)
Other versions
TW201125826A (en
Inventor
Nobuhiro Shinohara
Hitoshi Onoda
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Publication of TW201125826A publication Critical patent/TW201125826A/zh
Application granted granted Critical
Publication of TWI477457B publication Critical patent/TWI477457B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • C03C1/02Pretreated ingredients
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • C03C1/02Pretreated ingredients
    • C03C1/026Pelletisation or prereacting of powdered raw materials
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B1/00Preparing the batches
    • C03B1/02Compacting the glass batches, e.g. pelletising
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B3/00Charging the melting furnaces
    • C03B3/02Charging the melting furnaces combined with preheating, premelting or pretreating the glass-making ingredients, pellets or cullet
    • C03B3/026Charging the melting furnaces combined with preheating, premelting or pretreating the glass-making ingredients, pellets or cullet by charging the ingredients into a flame, through a burner or equivalent heating means used to heat the melting furnace
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Glass Compositions (AREA)
  • Glass Melting And Manufacturing (AREA)

Description

造粒體的製造方法及玻璃製品的製造方法 發明領域
本發明係有關於一種造粒體的製造方法及玻璃製品的製造方法,特別是有關於一種適合使用於藉由氣中熔融法製造玻璃之具有優良強度的造粒體的製造方法及玻璃製品的製造方法。
發明背景
通常,玻璃製品係藉由使用玻璃熔融爐來將玻璃原料製成熔融玻璃,隨後將熔融玻璃成形為預定形狀並固化來製造。但是,為了使用玻璃熔融爐來得到均勻的熔融玻璃,有必要經過非常長期間保持熔融狀態,而無法避免龐大的能量消耗。
為了解決該問題,提案有一種使用被稱為氣中熔融法的技術之玻璃製品的製造方法(例如,參照專利文獻照1、非專利文獻1),其係將由玻璃原料的混合物所構成的微細粒子(造粒體)在高溫的氣環境中加熱熔融而成為熔融玻璃粒子,隨後將熔融玻璃粒子集聚而形成液體相(玻璃熔液)之方法。
使用氣中熔融法製造玻璃製品時,通常係使用空氣搬運造粒體的方法,來將造粒體供給至使由玻璃原料混合物所構成的造粒體熔融之氣中加熱裝置。
又,在氣中熔融法所使用的造粒體,已知能夠使用噴霧乾燥造粒法等來製造(例如專利文獻1)。
而且,作為粒子的製造方法,已知一種方法(例如參照專利文獻2),係將漿體以液滴的形式供給至加熱環境中,來得到一次粒子的聚集體,並將該聚集體熔融且同時球形化並使其固化而得到二次粒子。
先行技術文獻
專利文獻1:特開2007-297239號公報
專利文獻2:特開2007-99555號公報
非專利文獻1:伊勢田徹、「NEDO先導研究“藉由氣中熔融法之革新性省能源玻璃熔融技術”的研究成果」新穎玻璃(NEW GLASS)第23卷、第4期、2008年、第42-45頁
但是,先前技術在使用氣中熔融法製造玻璃製品時,在氣中加熱裝置之高溫的氣相環境中使用空氣流等的氣流搬運由玻璃原料混合物所構成的造粒體時,有造粒體的一部分崩塌而產生許多微粉之缺點。因為微粉在氣中加熱裝置內、或在氣流搬運造粒體的氣流搬運裝置內容易飛揚飄散,所以容易被排出至氣中加熱裝置外。因此,含有大量的微粉之造粒體被供給至氣中加熱裝置時,藉由氣中熔融法所得到的熔融玻璃之組成將會變動,致使熔融玻璃的組成變為不均勻。其結果,藉由將熔融玻璃成形固化而得到的玻璃製品之玻璃組成亦變為不均勻。
為了解決前述課題,本發明係以提供一種玻璃原料的造粒體之製造方法作為目的,該造粒體具有優良的強度且即便在氣中加熱裝置進行氣流搬運亦不容易生成微粉,適合使用於藉由氣中熔融法製造玻璃。
又,本發明係以提供一種由組成均勻的高品質玻璃所構成之玻璃製品的製造方法作為目的。
為了解決上述課題,本發明者重複專心研討。其結果,發現在使用氣中熔融法製造含氧化硼作為成分之玻璃時,藉由使含硼酸之預定玻璃原料分散在水等能夠溶解硼酸之液狀介質中,來調製使硼酸之至少一部分溶解於液狀介質中而成之原料漿體,再使用噴霧乾燥造粒法除去包含於原料漿體中的液狀介質來製造玻璃原料的造粒體,能夠提升造粒體的強度。
又,本發明者等進一步重複研究,發現藉由使原料漿體中所含有的硼酸之含量相對於原料漿體的固體成分為5~30質量%的範圍,同時將原料漿體的pH設為6.6以上,來調製硼酸在液狀介質中充分溶解狀態之原料漿體,能夠得到即便在氣中加熱裝置中進行氣流搬運亦不容易生成微粉、用於藉由氣中熔融法製造玻璃時具有充分強度的造粒體,而想出本發明。
亦即,為了達成上述目的,本發明係採用以下的構成。
本發明的玻璃原料造粒體之製造方法,其特徵在於具備有:調製原料漿體之步驟,該原料漿體係含有含硼酸的玻璃原料及硼酸可溶性液狀介質之原料漿體,相對於原料漿體的固體成分,原料漿體中的硼酸量為5~30質量%,且原料漿體中的pH為6.6以上;及藉由噴霧乾燥造粒法從前述原料漿體製造玻璃原料造粒體之步驟。
又,本發明的玻璃原料造粒體之製造方法,其特徵在於具備有:調製原料漿體之步驟,該原料漿體係含有含硼酸的玻璃原料、pH調整劑及硼酸可溶性液狀介質之原料漿體,相對於原料漿體的固體成分,原料漿體中的硼酸量為5~30質量%,且原料漿體中的pH為7以上;及藉由噴霧乾燥造粒法從前述原料漿體製造玻璃原料造粒體之步驟。
而且,本發明的玻璃製品之製造方法,其特徵為含有:將藉由前述製造方法所製造的玻璃原料造粒體加熱而成為熔融玻璃之步驟;及將前述熔融玻璃成形固化之步驟。
藉由本發明的製造方法所得到之玻璃原料造粒體係即便進行氣流搬運亦不容易生成微粉,使用於藉由氣中熔融法製造玻璃時具有充分的強度。推定該效果係藉由以下所表示之硼酸作為結合劑之功能而得到者。亦即在本發明之造粒體的製造方法中,由於原料漿體係含有特定量的硼酸者且原料漿體的pH為6.6以上,因此在調製原料漿體時硼酸能夠充分地溶解於原料漿體的液狀介質中。藉由在製造造粒體之步驟中將液狀介質除去,在原料漿體的液狀介質中所溶解的硼酸從塗料體的內側被送出至表面而在造粒體的表面析出。如此進行而在造粒體表面析出的硼酸係藉由乾燥而固化,推定係作為結合劑而發揮作用。
又,本發明的玻璃製品之製造方法,係含有以下步驟之方法:將藉由本發明的造粒體之製造方法所製造的造粒體加熱而成為熔融玻璃之步驟;及將前述熔融玻璃成形固化之步驟;因為使用具有充分強度者作為造粒體,即便將進行氣流搬運,微粉亦不容易生成,能夠得到均勻的組成之熔融玻璃,且能夠得到玻璃組成均勻的高品質玻璃製品。而製造熔融玻璃之步驟,即便在利用西門子爐(Simens furnace)型之迄今的玻璃熔融爐之熔融方法中,相較於通常利用比較大尺寸的玻璃原料亦即所謂玻璃批(glass batch)的情況,利用藉由本發明的製造方法所得到的造粒體時,從熔融效率良好且省能源的觀點來看亦能夠得到效果,應用於氣中熔融法時能夠得到更高的效果。
圖式簡單說明
第1圖係實施例3、比較例1及比較例2的造粒體及玻璃粒子之照片。
第2圖係實施例1的造粒體之顯微鏡照片。
第3圖係比較例1的造粒體之顯微鏡照片。
第4圖係表示原料漿體的攪拌時間與原料漿體的pH的關係之圖表。
用以實施發明之形態
以下,詳細地說明本發明的玻璃原料造粒體之製造方法及玻璃製品之製造方法。
<玻璃及玻璃原料>
使用本發明的製造方法所製造的玻璃原料造粒體(以下有時簡稱為造粒體)係硼矽酸玻璃製造用的玻璃原料造粒體,其係以製造由含有硼成分的組成之玻璃(硼矽酸玻璃)所構成的玻璃製品為目的之玻璃原料造粒體。
在本發明,所謂玻璃係指氧化物系玻璃,氧化物系玻璃中的各成分係以氧化物表示,且各成分的質量比率係以氧化物換算來表示。硼矽酸玻璃係將氧化矽設作主成分且含有硼成分之氧化物系玻璃。硼矽酸玻璃中的硼成分係氧化硼(三氧化二硼(B2 O3 )等的硼氧化物之總稱),以下以B2 O3 表示,玻璃中的氧化硼之質量比率係以B2 O3 換算來表示。玻璃中的主成分係同樣地以SiO2 、Al2 O3 、MgO、CaO、SrO、BaO、Na2 O等的氧化物來表示,且其質量比率係以氧化物換算來表示。在本發明之硼矽酸玻璃,係指以上述氧化物換算計含有1質量%以上的氧化硼之將氧化矽設作主成分的氧化物系玻璃。
在製造玻璃原料造粒體所使用的玻璃原料,係含有如上述之氧化物或藉由熱分解等而能夠成為如上述的氧化物之化合物者,就該種能夠成為上述氧化物之化合物而言,有氫氧化物、碳酸鹽、硝酸鹽、鹵化物等。在玻璃中作為能夠成為氧化硼之原料,有硼酸、氧化硼、硬硼酸鈣石(colemanite)[CaB3 O4 (OH)3 ‧H2 O]等。
玻璃原料宜為經調整後可構成為一種使用氧化物基準的質量百分率表示時氧化硼含量為1~30質量%之硼矽酸玻璃的玻璃原料,更宜為氧化硼含量為2~20質量%者。在本實施形態,係使用含有硼酸作為玻璃原料者來製造氧化硼含量為上述範圍的硼矽酸玻璃。
硼酸係原硼酸(H3 BO3 )等的硼的含氧酸之總稱,但是在本發明係指原硼酸(H3 BO3 )。硼酸係水溶性,特別是能夠容易地溶解於溫水。氧化硼係慢慢地與水反應而成為硼酸並溶解於水。硬硼酸鈣石係對水等的溶解性低,在本發明不能成為硼酸來源。
使用水作為在製造玻璃原料造粒體所使用之後述的原料漿體之液狀介質時,作為原料漿體的硼酸來源(原料漿體中的硼酸量係相對於原料漿體的固體成分為5~30質量),亦可使用氧化硼。亦即,原料漿體中的氧化硼溶解於水而變化成為硼酸時,能夠含有來自氧化硼的硼酸作為原料漿體中的硼酸。
又,在原料漿體中,除了硼酸或來自氧化硼的硼酸以外,亦可含有硬硼酸鈣石等不溶解於液狀介質之硼化合物。但是硬硼酸鈣石等不溶解於液狀介質之硼化合物不能成為原料漿體中的硼酸來源。亦即,原料漿體中的硼酸量係除去硬硼酸鈣石等不溶解於液狀介質的硼化合物後之含量。但是,硬硼酸鈣石等不溶解於液狀介質的硼化合物係成為硼矽酸玻璃的氧化硼來源。因此,在製造氧化硼含量高的硼矽酸玻璃時,以在原料漿體中含有硬硼酸鈣石為佳。
用以製造硼矽酸玻璃所使用的玻璃原料中的硼成分量(以氧化物換算計之量),通常必須含有較目標硼矽酸玻璃中的氧化硼更多的含量。這是因為氧化硼容易從熔融玻璃揮發之緣故。因此,為了製造含有目標氧化硼含量的硼矽酸玻璃,玻璃原料中的硼成分量係考慮氧化硼的揮發分而進行調整。又,氧化矽等通常的金屬氧化物很少從熔融玻璃揮發少,玻璃原料中的成分量(以氧化物換算計之量)與所得到硼矽酸玻璃中的成分量(以氧化物換算計之量)係大致相等。
在本發明,作為目標之硼矽酸玻璃係以鹼成分(鈉或鉀等鹼金屬的氧化物)少或是實質上不含有鹼成分(亦即無鹼的)的硼矽酸玻璃為佳。作為此種硼矽酸玻璃,使用氧化物基準的質量百分率表示時以下述組成(1)的硼矽酸玻璃為佳。惟,下述R係表示鹼金屬。而且,亦可少量含有下述以外的金屬氧化物、非金屬氧化物(硫氧化物等)、鹵素等。
SiO2 :40~85質量%、Al2 O3 :1~22質量%、B2 O3 :2~20質量%、MgO:0~8質量%、CaO:0~14.5質量%、SrO:0~24質量%、BaO:0~30質量%、R2 O:0~10質量%…(1)。
更佳的硼矽酸玻璃係在上述組成(1),鹼成分(R2 O)含有比率為0.1質量%以下的無鹼玻璃。
製造玻璃原料造粒體所使用的玻璃原料係以成為上述組成(1)的硼矽酸玻璃之方式調整為佳。作為此種玻璃原料的組成(以下亦稱為玻璃母組成),係除了氧化硼來源以外,使用氧化物換算大致為目標硼矽酸玻璃的組成比率之金屬氧化物來源的原料混合物。氧化硼來源係設為比目標硼矽酸玻璃的氧化硼含量多出考慮到揮發份量程度的量。例如作為用於製造無鹼的硼矽酸玻璃之玻璃母組成原料,可舉出下述的金屬氧化物來源及其組成比率的原料混合物等。
SiO2 :40~60質量%、Al2 O3 :5~20質量%、H3 BO3 :5~30質量%、CaB3 O4 (OH)3 ‧H2 O(硬硼酸鈣石):0~15質量%、Mg(OH)2 :0~5質量%、CaCO3 :0~10質量%、SrCO3 :0~15質量%、SrCl2 ‧6H2 O:0~5質量%、BaCO3 :0~30質量%。
<玻璃原料造粒體>
本發明之玻璃原料造粒體能夠使用作為用以利用通常的西門子爐型玻璃熔融爐之玻璃熔融法或氣中熔融法來製造玻璃製品之原料。在氣中熔融法中,在高溫的氣相環境中使玻璃原料造粒體熔融成為熔融玻璃粒子,並將在該氣相環境中所生成的熔融玻璃粒子集聚在爐底而作為玻璃熔液。貯存在玻璃熔融爐底之玻璃熔液係以熔融玻璃形式被從玻璃熔融爐取出,隨後係與通常製造玻璃製品時同樣,將熔融玻璃成形並固化而作為玻璃製品。
熔融玻璃粒子的玻璃組成係與熔融玻璃的玻璃組成大致相等,又,熔融玻璃的玻璃組成係與將熔融玻璃成形固化而成為目標玻璃製品的玻璃組成大致相等。所謂熔融玻璃粒子或熔融玻璃的玻璃組成係與玻璃製品的玻璃組成大致相等,係意味著因為氧化硼等揮發性成分從熔融狀態的玻璃(熔融玻璃粒子、爐底的玻璃熔液、從玻璃熔融爐取出的熔融玻璃等)揮發之故,致使熔融狀態的玻璃之玻璃組成與從該熔融玻璃得到的玻璃製品之玻璃組成不能夠完全相同。
各個玻璃原料造粒體在高溫的氣相環境中熔融而生成的各個熔融玻璃粒子係以具有大致相等的玻璃組成為佳,藉由各個熔融玻璃粒子係具有大致相等的玻璃組成,將使其聚集體亦即玻璃熔液的玻璃組成均勻化之必要性降低。假設各個熔融玻璃粒子的玻璃組成不同時,其聚集體亦即玻璃熔液的玻璃組成係當初為不均勻者,就必須花費時間或能源用以將玻璃熔液均勻化。為了使各個熔融玻璃粒子成為大致相等的玻璃組成,各個玻璃原料造粒體的玻璃母組成(原料漿體的組成)亦是以相互為均勻的組成為佳。
玻璃原料造粒體的平均粒徑為30~1000μm的範圍內,以50~450μm的範圍為較佳,以70~400μm的範圍內為更佳。玻璃原料造粒體的平均粒徑為30μm以上時,因為不僅是能夠減少氣中熔融時往煙道之飛散等,且由於減少每單位重量的表面積之故,能夠減少熔融時所產生之硼酸從表面揮發,因而較佳。又,玻璃原料造粒體的平均粒徑為1000μm以下時,由於玻璃化係充分地進行至造粒體內部,因而較佳。為了將造粒體在更短時間製成熔融玻璃粒子,以400μm以下為佳,以200μm以下為更佳。玻璃原料造粒體的平均粒徑可視玻璃原料漿體的組成或黏度等條件、噴霧乾燥造粒法的條件等而調整。
又,在本發明,所謂玻璃原料造粒體或玻璃原料粒子等的粒子之平均粒徑,係指使用下述的測定方法測定所得到的平均粒徑。
在玻璃原料粒子的情況中,平均粒徑係設為在使用濕式的雷射繞射散射法所測定的粒徑分布曲線中之50%直徑(亦稱為D50或中值粒徑。將粉體從某一粒徑分開為二時,較大側與較小側為等量時之直徑)。而在玻璃原料造粒體的情況中,係設為在使用乾式的雷射繞射散射法所測定的粒徑分布曲線中之50%直徑。
在過去使用了以所謂玻璃批(glass batch)或碎玻璃(glass cullet)為原料之一般的玻璃熔融爐之玻璃熔融法中,將使用本發明的製造方法所得到的玻璃原料造粒體取代玻璃批投入玻璃熔融爐即可。如本發明的玻璃造粒體般,不容易產生微粉且強度強的玻璃原料造粒體,其效果即使在使用於通常的玻璃熔融法時,亦受到認可。
<玻璃原料造粒體之製造方法>
本發明的玻璃原料造粒體之製造方法係具備:調製原料漿體之步驟;及藉由噴霧乾燥造粒法從原料漿體製造玻璃原料造粒體之步驟。
原料漿體係上述之含有含硼酸的玻璃原料、視需要之pH調整劑及硼酸可溶性液狀介質(以下有時略記為液狀介質)。
以使用水作為液狀介質為佳。作為液狀介質,係除了水以外,能夠使用甲醇、乙醇等的醇,又,亦可使用水與此種醇之混合介質。作為水以外的液狀介質,以硼酸溶解性比水高的液狀介質為佳。以下的說明主要係針對使用水作為硼酸可溶性液狀介質之情況進行說明,但是液狀介質係未限於水。
原料漿體能夠藉由使含硼酸的玻璃原料與視需要之pH調整劑分散於液狀介質而得到。在玻璃原料中所含有硼酸係其一部分或全部能夠溶解於液狀介質。又,硼酸以外的玻璃原料之一部分或全部係溶解於液狀介質亦可(亦即,可使用水溶性化合物作為玻璃原料),不溶解亦可。通常,主要的玻璃原料係水不溶性。
混合液狀介質及含硼酸的玻璃原料後,宜繼續進行短時間的攪拌等的混合操作。一般認為在繼續進行該混合操作之期間,硼酸將溶解於液狀介質。又,通常在繼續該混合操作之期間,漿體的pH會上升。而且,藉由使用具有將粉碎玻璃原料粒子之作用的混合機構混合機構(例如球磨機等的粉碎機構)來作為混合機構,可提高硼酸溶解速度,並可使玻璃原料成為更微細的粒子。
繼續混合操作的時間係只要能夠得到pH為6.6以上的原料漿體,沒有特別限定,但以30分鐘以上為佳,以1小時以上為更佳。一般認為藉由繼續進行混合操作1小時以上,充分量的硼酸將溶解於液狀介質。又,液狀介質及含硼酸之玻璃原料剛混合所得漿體之pH小於6.6時,宜繼續混合操作至pH為6.6以上為止而得到原料漿體。繼續混合操作的時間之上限,沒有特別限定,但由於時間太長時不經濟,因此繼續混合操作的時間以24小時較為適當,以12小時以下為佳。
使用pH調整劑時,所得到的原料漿體之pH以7以上為佳,以8~12為更佳。此時的pH係從混合液狀介質及含硼酸的玻璃原料後的時點起至繼續混合操作1小時的時點之值。硼酸的溶解度係依存於原料漿體的pH。藉由將原料漿體的pH設為7以上,能夠得到充分高的溶解度。又,使原料漿體的pH上升至8以上時,因為硼酸的溶解度變為更高,因而為佳。又,一般認為即便使用氧化硼作為硼酸來源時,當原料漿體的pH為6.6以上時,將與水反應更迅速而變化成為硼酸且溶解於原料漿體。
原料漿體的pH以12以下為佳,以10以下為更佳。藉由將原料漿體的pH設為12以下,將不容易產生下述缺點:可使用的pH調整劑之種類變少、或原料漿體的處理性降低等的不良,因而較佳。原料漿體的pH以8~10為特佳。
而且,在pH7以上的原料漿體中,雖然也會考慮到硼酸受到中和,但是只要中和鹽溶解,便不會對本發明的作用效果之發揮造成阻礙。又,本發明之原料漿體中的硼酸量之算出,係例如即便硼酸被中和而以中和鹽的形式存在,只要中和鹽溶解,亦視為硼酸而計算。
作為pH調整劑,係只要能夠使原料漿體的pH為7以上者,任何物均可使用而沒有特別限定,但宜視使用造粒體所得到的玻璃之種類等來決定。又,pH調整劑的量能夠按照玻璃原料或玻璃母組成的種類、玻璃原料的量、硼酸的量、液狀介質的種類及量、pH調整劑的種類等而適當地決定。
製造含鹼金屬氧化物之硼矽酸玻璃時,能夠使用鹼性鹼金屬化合物作為pH調整劑。作為鹼性鹼金屬化合物,係以能夠作為玻璃原料使用者為佳。此種鹼性鹼金屬化合物能夠視為玻璃原料的鹼金屬來源的一部分或全部。作為能夠作為玻璃原料使用之鹼性鹼金屬化合物,可舉出例如氫氧化鈉等的鹼金屬氫氧化物、碳酸鈉等的鹼金屬碳酸鹽等。
製造無鹼的硼矽酸玻璃時,使用鹼金屬化合物作為pH調整劑係困難的。製造無鹼的硼矽酸玻璃時,以使用不含有金屬原子的鹼性氮化合物作為pH調整劑為佳。使用揮發性高的化合物作為鹼性氮化合物時,鹼性氮化合物不會殘留於玻璃原料造粒體。又,使用揮發性低者作為鹼性氮化合物,鹼性氮化合物殘留在玻璃原料造粒體時,鹼性氮化合物會在造粒體熔融時分解且消失。作為能夠使用作為pH調整劑之鹼性鹼金屬化合物,以氨或水溶性的胺化合物為佳。作為水溶性的胺化合物,以水溶性的烷醇胺或N-烷基烷醇胺等為佳,具體而言,可舉出一乙醇胺、二乙醇胺、三乙醇胺等。
另一方面,不使用pH調整劑亦可調製pH為6.6以上的原料漿體。如前述,即便液狀介質及含硼酸的玻璃原料剛混合後所得漿體的pH為小於6.6,亦可繼續混合操作至pH為6.6以上來得到原料漿體。
剛混合液狀介質及含硼酸的玻璃原料後,所得漿體的pH係通常為5.5~6.5。但是,在繼續混合液狀介質及含硼酸的玻璃原料之混合操作的期間,漿體的pH上升。一般認為這是因為硼酸以外的玻璃原料與硼酸反應而將硼酸中和之緣故。作為硼矽酸玻璃的原料之一部分,通常,能夠使用鹼金屬化合物或鹼土類金屬化合物作為硼矽酸玻璃的原料之一部分,且即便是無鹼的硼矽酸玻璃,亦可使用一般鹼土類金屬化合物作為原料。一般認為該等金屬化合物之中,氫氧化物或碳酸鹽等的鹼性化合物在繼續漿體的混合操作期間,會慢慢地與硼酸反應而將硼酸中和,藉此,漿體的pH上升。一般認為伴隨著該pH的上升,硼酸對水性介質的溶解量亦上升。因此,即便未使用pH調整劑時,藉由將混合液狀介質與含硼酸的玻璃原料之混合操作繼續至漿體的pH為6.6以上為止,能夠得到pH為6.6以上的原料漿體。又,不使用pH調整劑時,所得到的原料漿體之pH係通常為9以下。
至漿體的pH成為6.6以上之時間,係依照硼酸量、硼酸以外的玻璃原料之種類或組成(例如上述鹼性化合物的種類或量)、混合操作條件等而變化。又,不使用pH調整劑,亦能夠得到pH為7以上的原料漿體。至漿體的pH成為6.6以上之時間太長時,以使用pH調整劑為佳。又,有必要以短時間進行混合操作時,亦以使用pH調整劑為佳。
不使用pH調整劑時,只要原料漿體的pH成為6.6以上,混合液狀介質與含硼酸的玻璃原料並繼續攪拌之時間以30分鐘以上為佳,以1小時以上為更佳。用以使pH成為6.6以上之漿體的混合操作時間係受到硼酸量、玻璃原料的種類、各玻璃原料的粒子尺寸的影響,為了將原料漿體之pH調整為6.6以上之預定值,繼續混合操作之時間以2小時以上為佳,以4小時以上為更佳。認為藉由繼續混合操作1小時以上、較佳是2小時以上,充分量的硼酸將溶解於液狀介質。考慮玻璃原料造粒體的生產性時,繼續混合操作之時間以12小時以下為佳。
在原料漿體所含有的玻璃原料係由硼矽酸玻璃的玻璃母組成之玻璃原料所構成。相對於原料漿體的固體成分,原料漿體中的硼酸量係5~30質量%。所謂固體成分係指從原料漿體除去液狀介質或其他揮發性成分(在噴霧乾燥造粒時揮發而消失之成分)後之成分。固體成分係構成造粒體之成分,幾乎是由玻璃母組成的玻璃原料所構成。一般認為使用高沸點的pH調整劑時,亦會殘留在造粒體中,但是其量係少量。而且,如前述,亦有能夠使用作為玻璃原料之pH調整劑之情況,此種pH調整劑係視為玻璃原料。
相對於原料漿體的固體成分,硼酸的含量為5質量%以上時,因為能夠充分地得到硼酸作為結合劑之功能且能夠得到具有充分的強度之造粒體,在氣相環境中氣體搬運造粒體時,能夠充分地抑制微粉的生成。又,相對於原料漿體的固體成分,硼酸的含量為30質量%以下時,因硼酸的含量太多導致使用造粒體所製造的玻璃之組成的自由度受到限制之疑慮減少,因而為佳。
原料漿體中的硼酸不必全量溶解於液狀介質,例如在硼酸量多的原料漿體中,亦可存在有未溶解於液狀介質的硼酸。相對於固體成分,原料漿體中的硼酸量有必要至少5質量%,小於5質量%時,無法發揮本發明之作用效果。因此,一般認為有必要至少溶解5質量%份量的硼酸。
如後述,一般認為在噴霧乾燥造粒法多半的情況係原料漿體被加熱,在粒子化過程中之粒子表面經加熱的液狀介質將揮發。又,相較於冷水,硼酸對於溫水之溶解性非常高。因此,認為即便在原料漿體中存在有未溶解的硼酸,在從原料漿體製造造粒體之步驟,未溶解的硼酸會重新溶解於從粒子化過程中的粒子內部移動至表面之高溫的液狀介質,並與已溶解於原料漿體中的硼酸一同移動至粒子表面而析出。
在原料漿體中所含有的液狀介質之量(質量)係使用後述之噴霧乾燥造粒法製造造粒體即可,而沒有特別限制。以原料漿體的固體成分(大致相當於總玻璃原料)與液狀介質之比率(固體成分(質量):液狀介質(質量))為1:2~1:0.5的範圍之量為佳。固體成分與液狀介質的比率在上述範圍內時,能夠藉由噴霧乾燥造粒法來製造玻璃原料造粒體,固體成分的量越多時,藉由噴霧乾燥造粒法所得到的玻璃原料造粒體之粒徑變為越大,且原料漿體的黏度變為越高。因此,固體成分與液狀介質的比率係以在上述範圍內且所製造的玻璃原料造粒體之平均粒徑在期望的範圍,而且原料漿體的黏度係以藉由噴霧乾燥造粒法能夠容易且效率良好地製造玻璃原料造粒體的範圍內之方式來適當地決定為佳。
玻璃原料的一部分係不溶於液狀介質時,相較於玻璃原料造粒體的平均粒徑,原料漿體中的玻璃原料之平均粒徑太大時,所得到的各個玻璃原料造粒體之組成會有互相變為不均勻之疑慮。又,原料漿體中的玻璃原料之粒子太大時,造粒體的玻璃化需要許多時間和能源,會有在氣相環境中難以作為熔融玻璃粒子之可能性。因此,玻璃原料含有不溶於液狀介質者時,宜採用預先將玻璃原料微粒子化,或是在調製原料漿體時採用將玻璃原料粒子微細化之手段。例如,在調製原料漿體之步驟,宜將構成原料漿體的成分在混合後或是混合中使用球磨機等將玻璃原料粒子微細化。玻璃原料的一部分係不溶於液狀介質時,調製原料漿體後之原料漿體中的一部分不溶於液狀介質時,原料漿體調製後之原料漿體中的玻璃原料的平均粒徑以50μm以下為佳,以30μm以下為更佳,以20μm以下為特佳。
原料漿體調製後之原料漿體中的玻璃原料的平均粒徑,係以玻璃原料造粒體的平均粒徑之1/100~1/3為佳,以1/50~1/5為更佳,以1/30~1/8為更佳。即便使用此種玻璃原料時,亦宜在調製原料漿體前進行將玻璃原料粒子微粒子化之步驟。
在原料漿體中,係除了含硼酸的玻璃原料、視需要添加的pH調整劑、液狀介質以外,可視需要適量含有分散劑,該分散劑係用以使玻璃原料粒子安定地分散於液狀介質中,及使原料漿體的黏度安定化。作為分散劑,可適合使用例如聚羧酸銨鹽的40質量%水溶液亦即「CELUNA D305」(商品名:中京油脂股份公司製)、「A-6114」(商品名:東亞合成股份公司製)等。此外,在原料漿體中,可適當地含有黏度調整劑、界面活性劑等的添加劑。相對於原料漿體,該等添加劑的添加量以總量計係以3質量%以下為佳,以2質量%以下為更佳。又,該等添加劑宜為至玻璃原料造粒體的熔融時為止會揮發或分解而揮發,且不會對玻璃組成造成影響者。
而且,作為使玻璃原料造粒體的強度提升之添加劑,亦能夠使原料漿體中含有膠體二氧化矽。因為膠體二氧化矽係作為玻璃原料造粒體的結合劑而發揮功能者,例如藉由將玻璃原料所含有的氧化矽的一部分設為膠體二氧化矽,能夠更進一步提升造粒體的強度。由於即便增加膠體二氧化矽的添加量強度提升效果亦將飽和之故,考慮經濟性時,相對於原料漿體的固體成分,膠體二氧化矽的量以10質量%以下為佳,以5質量%以下為更佳。
原料漿體係藉由使用適當的手段將玻璃原料、視需要添加的pH調整劑、液狀介質混合來調製。在調製原料漿體時,為了使溶解性成分溶解於液狀介質且使不溶性成分均勻地分散在液狀介質,宜使用高速攪拌機等攪拌效率高的混合機構攪拌適當的時間。又,在調製原料漿體時,在攪拌的同時使用能夠將玻璃原料中的不溶解性玻璃原料粉碎之球磨機等的粉碎機構亦佳。特別是,宜在收容有由氧化鋁等所構成的球之球磨機容器中,加入玻璃原料、視需要之pH調整劑與液狀介質並混合,且以適當的時間邊粉碎玻璃原料邊攪拌為特佳。該原料漿體的攪拌係如前述,使原料漿體的pH增加時具有增加硼酸的溶解度之效果。預料這是因為攪拌致使玻璃原料中的鹼成分亦即CaCO3 或SrCO3 等溶出至溶劑中的緣故。因而,該效果係以使用能夠將玻璃原料中玻璃原料粉碎之球磨機等進行攪拌為佳。
在原料漿體中所含有的之硼酸係一部分或全部溶解於液狀介質中,其在調製原料漿體的步驟之任何階段溶解均可。例如可以將原料漿體的材料亦即含有硼酸的玻璃原料、pH調整劑、液狀介質全部加入球磨機的容器,並使玻璃原料中的不溶解性玻璃原料分散於液狀介質中,同時使溶解性的玻璃原料及硼酸的一部分或全部溶解於液狀介質中。此時,因為能夠同時使玻璃原料分散於液狀介質中且使硼酸溶解於液狀介質中,而能夠效率良好地調製原料漿體。
或者,亦可以將原料漿體的材料亦即玻璃原料之除了硼酸以外的原料、與液狀介質加入球磨機的容器,並混合預定時間來使原料中的不溶解性的玻璃原料分散於液狀介質中,且在使原料漿體的pH增加後,投入硼酸並混合預定時間來使硼酸效率良好地溶解。此時,因為未利用pH調整劑而使原料漿體的pH增加,硼酸能夠充分地溶解,所以能夠效率良好地調製原料漿體。又,此時因為只要攪拌時間長,亦具有將不溶解性玻璃原料粉碎等之效果,即便增大玻璃原料中的各成分之粒徑,亦能夠調製原料漿體。此時,因為準備粒徑小的玻璃原料之費用係其粒徑越小時越高,從原料成本方面而言亦具有效果。
隨後,藉由噴霧乾燥造粒法將在原料漿體所含有的液狀介質等揮發性成分除去來製造玻璃原料造粒體。噴霧乾燥造粒法係將原料漿體噴霧而粒子化,並使液狀介質等從原料漿體粒子蒸發(氣化)而除去,來形成由原料漿體的固體成分所構成的粒子之方法。作為噴霧乾燥造粒法,能夠使用周知或眾所周知的方法。在噴霧乾燥造粒法中,能夠使用供給熱風之方法,且噴霧乾燥裝置的熱風入口溫度或出口溫度沒有特別限制,因為能夠將玻璃原料造粒體充分地乾燥,以將熱風入口溫度設為200℃以上、出口溫度設為100℃以上來造粒為佳。作為從原料漿體製造玻璃原料造粒體之方法,噴霧乾燥造粒法係大量生產性優良且能夠高精確度地控制造粒體的粒徑之方法,且能夠將原料漿體所含有的玻璃原料之混合狀態比較良好地保持且能夠製造均勻玻璃母組成的造粒體之方法。
<玻璃製品的製造方法>
本實施形態的玻璃製品之製造方法係將藉由上述製造方法所製造的玻璃原料粒子加熱而成為熔融玻璃,並將熔融玻璃成形固化而成為玻璃製品。
在將玻璃原料粒子加熱而成為熔融玻璃時,即便利用西門子型的玻璃熔融爐之通常的熔融方法亦具有效果,以應用氣中熔融法為佳。以下,說明使用氣中熔融法之情況。
使用氣中熔融法來製造玻璃時,作為將玻璃原料造粒體導入氣中加熱裝置的高溫氣相環境中之方法,使用以空氣等的氣流進行搬運之氣流搬運方法係便利且容易使用,因而較佳。但是,搬運方法不被此限定,亦可以使用其他搬運法。因為使用本發明的製造方法所得到的玻璃原料造粒體係具有高強度者,氣流搬運係當然不用說,即便使用其他方法搬運時破壞亦少,因而較佳。對此,因為使用迄今的製造方法所製造的玻璃原料造粒體係強度低,不僅氣流搬運,即使是其他的方法,多半的情況,在搬運粒子時由於粒子彼此之間或粒子與搬運路徑內壁的碰撞,致使粒子遭到破壞。
在高溫的氣相環境中使玻璃原料造粒體熔融而成為熔融玻璃粒子(熔融的造粒體)之方法係沒有特別限制,可舉出使用電漿弧(plasma arc)或氧燃燒火焰等將玻璃原料造粒體加熱的氣中加熱裝置之方法等。又,將熔融玻璃粒子集聚而成為玻璃熔液,通常係採用在設置於氣相環境下部之耐熱容器接收在氣相環境中因由自體重量而落下的熔融玻璃粒子並集聚而成為玻璃熔液之方法。而且,作為將從玻璃熔液取出的熔融玻璃成形固化而成為玻璃製品之方法,能夠使用浮法(float)或下拉法(down draw)等製造板狀玻璃製品之方法、熔融紡絲法等製造纖維狀玻璃製品之方法、模具成形法等製造各種形狀的玻璃製品之方法等。
實施例 「實驗例1」
使用具備容量為10升之容器(該容器收容有10kg由氧化鋁所構成之直徑20mm的球)的球磨機,如下所示,來調製原料漿體並且製造造粒體。
首先,藉由將表1及表2所表示的組成之玻璃原料、表1及表2所表示之pH調整劑、作為液狀溶劑之水,以表1及表2所表示的比率(玻璃原料:水)加入球磨機的容器,並攪拌1小時,來調製如表1及表2所表示的pH之實施例1~12、比較例1~4的原料漿體。而且,實施例1~2、4~5、8~12及比較例1~2係經調配後可使溶解後的玻璃組成之目標值以氧化物基準計為SiO2 :60質量%、Al2 O3 :17質量%、Ba2 O3 :8質量%、MgO:3質量%、CaO:4質量%、SrO:7.6質量%、BaO:0.065質量%、Fe2 O3 :0.055質量%。又,實施例6~7及比較例4係經調配後可使溶解後的玻璃組成之目標值以氧化物基準計為SiO2 :50質量%、Al2 O3 :10質量%、Ba2 O3 :15質量%、BaO:25質量%的方式調配。在實施例1~2、4~12,溶解後的玻璃組成大致如目標。
又,表1及表2所表示之玻璃原料(原料1)的平均粒徑係如表3所表示。在表1及表2所表示之玻璃原料之中,具有溶解性的原料亦即氯化鍶及硼酸係使用乾式雷射繞射-散射式粒徑-粒度分布測定裝置(MICROTRAC MT3300:商品名、日機裝股份公司製)來測定平均粒徑。其他的原料係使用濕式雷射繞射-散射式粒徑分布測定裝置(LA950-V2:商品名、堀場製作所股份公司製)來測定平均粒徑。又,實施例5的SiO2 (膠體二氧化矽)的平均粒徑為0.02μm。
[表3]
隨後,使用表1及表2所表示之條件A或條件B並藉由噴霧乾燥造粒法除去在實施例1~12、比較例1~4的原料漿體所含有的溶劑,來製造實施例1~實施例12、比較例1~4的造粒體。表1及表2所表示之條件A、條件B係如以下所表示。
條件A:噴霧乾燥器乾燥室徑 Φ 2000mm(大川原化工機(股)製)
超微磨粉機轉數 10000rpm
入口溫度250℃、出口溫度130℃
漿體供給量 15~20kg/hr
條件B:噴霧乾燥器乾燥室徑 Φ 2600mm((股)PRECI製)
超微磨粉機轉數 12000rpm
入口溫度 300℃、出口溫度120℃
漿體供給量 20~25kg/hr
將如此進行而得到之實施例1~12、比較例1~4的造粒體各自的強度使用以下所表示的評價方法進行評價。
亦即,使玻璃原料造粒體彼此之間碰撞,並藉由測定造粒體的粒徑分布變化來評價造粒體的破壞(崩塌)的程度。更詳細地,首先,使用利用雷射繞射-散射法測定粒徑分布之粒徑分布測定裝置(前述的MICROTRAC MT3300),並藉由對即將進入粒徑分布測定裝置的測定室之造粒體,吹入壓縮空氣壓0 psi(0kPa)或50psi(345kPa)的壓縮空氣,來測定在壓縮空氣壓0 psi(0kPa)的粒徑分布及在壓縮空氣壓50psi(345kPa)的粒徑分布。隨後,使用在壓縮空氣壓0 psi(0kPa)的粒徑分布及在壓縮空氣壓50psi(345kPa)的粒徑分布,來算出在粒徑0.972~322.8μm的範圍之兩者的相關係數,其結果,係如表1及表2所表示。又,求取各粒徑分布時之取樣數,係對應粒徑0.972~322.8μm之標準篩的孔眼開度之區分且加上對應孔眼開度的各區分的上下限值之平均孔眼開度的值而成之68點。具體上,係對於累積百分率對所得到的2個粒徑分布之數據,利用微軟公司EXCEL2002SP3的內建函數亦即CORREL函數來算出兩者的相關係數。
又,作為實施例1~12、比較例1~4的造粒體之平均粒徑,係使用粒徑分布測定裝置(MICROTRAC MT3300)且以壓縮空氣壓0 psi(0kPa)所測定的50%直徑(平均粒徑(D50))。結果係如表1及表2所表示。
表1及表2所表示的相關函數越接近1,表示在壓縮空氣壓0 psi(0kPa)的粒徑分布與在壓縮空氣壓50 psi(345kPa)的粒徑分布之類似性程度越高,壓縮空氣壓0 psi(0kPa)的粒徑分布與在壓縮空氣壓50 psi(345kPa)的粒徑分布的差異,推定係起因於吹入壓縮空氣所產生造粒體的崩塌。因此,相關函數越接近1,即便吹入50 psi(345kPa)的壓縮空氣,造粒體亦不容易產生崩塌,而可以將造粒體的強度評價為優良。
如表1及表2所表示,相較於在玻璃原料所含有硼酸的含量為小於5質量%之比較例1及比較例2的造粒體,或是原料漿體的pH小於7之比較例3及比較例4的造粒體,實施例1~12的造粒體的相關函數係接近1,得知係強度優良。
「實驗例2」
將與實驗例1同樣地進行而製造的實施例3、比較例1及比較例2的造粒體,空氣搬運至氣中加熱裝置的氣相環境中,並在氣相環境中使用氧燃燒器加熱而成為熔融玻璃粒子,隨後,藉由使該液狀的熔融玻璃粒子固化,來得到實施例3、比較例1及比較例2的玻璃粒子。熔融條件係燃燒器熱量38kW且以將造粒體放入氧燃燒器的火焰之投入速度亦即供料量為50~60g/min來實施。推定此時的熔融玻璃之溫度為約1700~1900℃。
如此進行而得到之實施例3、比較例1及比較例2的造粒體及玻璃粒子的照片係如第1圖所表示。
如第1圖所表示,在實施例3的玻璃粒子係不含有微粉,而在比較例1及比較例2的玻璃粒子係含有微粉。
因此,得知實施例3的造粒體係即便空氣搬運亦不生成微粉而具有充分強度。又,得知比較例1及比較例2的造粒體,因為強度不充分,藉由空氣搬運會生成微粉。
「實驗例3」
觀察與實驗例1同樣地進行而製造之實施例1及比較例1的造粒體之表面。其結果係如第2圖及3圖所表示。第2圖係實施例1的造粒體之顯微鏡照片,第3圖係比較例1的造粒體之顯微鏡照片。
又,使用奧格電子分光法(Auger electron spectroscopy)對與實驗例1同樣地進行而製造之實施例1及比較例1的造粒體之表面進行元素分析,藉以測定表面的元素量。其結果係如表4所表示。在此,各成分的元素量比係原子百分率(atomic%)。
如表4所表示,相較於比較例1的造粒體之表面,在實施例1的造粒體之表面含有許多B。推定這是因為在實施例1中,在用以得到造粒體的原料漿體中所溶解的硼酸,係藉由在製造造粒體的步驟中將溶劑除去而從造粒體的內側被送出至表面且析出於造粒體的表面之故。
又,如第2圖及3圖所表示,相較於比較例1的造粒體之表面,實施例1的造粒體之表面係表面的微細凹凸少且能夠觀察到表面被玻璃狀的物質所被覆之情形。推定這是因為在造粒體表面所析出的硼酸係包圍造粒體而作為結合劑發揮功能之故。
「實驗例4」
使用具備容量為1升的容器(該容器收容有1kg由氧化鋁所構成之直徑10mm的球)之球磨機,如下所示,來調製原料漿體並且測定漿體pH。在該實驗中,作為玻璃原料,係使用不同於表3所表示的平均粒徑者(原料1)之表5所表示的平均粒徑者(原料2)。平均粒徑用與原料1同樣的方法測定。而且,在以下表6的實驗(實施例及比較例)中係未利用pH調整劑。
將表6的實施例13所表示組成的玻璃原料及作為液狀溶劑之水,以表6的實施例13所表示之比率(玻璃原料:水)加入球磨機的容器並攪拌15小時。在過程中10分鐘後、1小時後、2小時後、3小時後、4小時後、5小時後、10小時後、15小時後,進行漿體的取樣並測定pH的變化。結果如第4圖(Case I)所表示。又,該Case I的原料係利用表3所表示的原料系(原料1)之情形。
同樣地,將表6的實施例14所表示組成的玻璃原料及作為液狀溶劑之水,以1:1.2的比率(玻璃原料:水)加入球磨機的容器並混合粉碎15小時。在過程中10分鐘後、1小時後、2小時後、3小時後、4小時後、6小時後、15小時後,進行漿體的取樣並測定pH的變化。結果如第4圖(Case II)所表示。又,該Case II的原料係利用表5所表示的原料系(原料2)之情形。
判斷剛混合後(過程中10分鐘後)的漿體之pH為5.7(Case II)~6.0(Case I),但是藉由2小時以上的球磨,任一者的情況,漿體的pH都比6.6高。認為伴隨著球磨,即便不特別添加pH調整劑,屬鹼成分之CaCO3 或SrCO3 將溶出至水中而pH上升。
「實驗例5」
使用具備容量為20m3 的容器(該容器係以成為容積的約50%之方式收容有由矽石構成之直徑為50~70mm的卵石)之球磨機,如以下所表示,來調製原料漿體並且測定漿體pH。
藉由使用在表6的實施例13及14所表示的玻璃原料系(各自為原料1、原料2),並將表6所表示的組成之玻璃原料、作為液狀溶劑之水,以表6所表示的比率(玻璃原料:水)加入球磨機的容器,而且各自粉碎混合8小時及12小時,來調製如表6所表示的pH之實施例13及14的原料漿體。而且,在使用玻璃原料2之實施例14中,原料漿體調製後的原料漿體中的玻璃原料之平均粒徑為15μm。該測定係使用堀場製作所股份公司的LA950-V2進行。又,實施例13係以玻璃組成之目標值使用氧化物基準為SiO2 :60質量%、Al2 O3 :17質量%、Ba2 O3 :8質量%、MgO:3質量%、CaO:4質量%、SrO:7.6質量%的方式,又,實施例14係經調配以使溶解後的玻璃組成之目標值以氧化物基準計為SiO2 :58質量%、Al2 O3 :17質量%、Ba2 O3 :9質量%、MgO:3質量%、CaO:4質量%、SrO:8質量%。在實施例13及14,溶解後的玻璃組成係大致如目標。
隨後,使用表6所表示的條件C並藉由噴霧乾燥造粒法,除去在實施例13及14的原料漿體所含有的溶劑,來製造實施例13及14的造粒體。表5所表示的條件C係如以下所表示。
條件C:噴霧乾燥器乾燥室徑 Φ 7000mm(MAEDA MATERIAL(股)製)
加壓噴嘴方式 噴嘴系 Φ 2mm×7條
入口溫度 500℃、出口溫度 200℃
而且,在實施例13及14中,相關係數的算出方法係採用與實施例1~12等不同的方法。亦即,對於實施例13及14,係在粒徑0.972~995.6μm的範圍算出相關係數。其他的條件係與其他的記載例同樣。此時,求取各粒徑分布時之取樣數,係對應粒徑0.972~995.6μm之標準篩的孔眼開度之區分且加上對應孔眼開度的各區分的上下限值之平均孔眼開度的值而成之81點。如此,改變相關係數的測定之理由係如以下所述。由於在噴霧條件A或B的情況下係平均孔徑為70~100μm左右,300μm以上的顆粒係非常少量之故,若能取得在1~300μm的範圍之相關係數便已足夠。另一方面,噴霧條件C的情況係顆粒徑大而且係使用1mm的篩進行篩分而成者,一般認為取得在1~997μm的範圍之相關係數係反映實際上顆粒的特性。
「實驗例6」
改變實施例13的平均顆粒粒徑,並將噴霧乾燥條件C變為噴霧乾燥A來進行造粒。該造粒的結果係如表6的實施例15所表示。又,針對實施例15,將使球磨機之粉碎時間為1小時左右者,表示於表6的比較例6。實施例15的漿體中的玻璃原料之平均粒徑為13 μm,而比較例6的玻璃原料之平均粒徑為35μm。從該等結果,得知藉由不同的噴霧乾燥條件,或藉由增長粉碎時間,Ph將成為6.7以上且相關係數充分地變大。而且,在實施例14、15及比較例6中,雖然玻璃原料:水係各自為1:2、1:1.5、及1:1而有若干不同,但是該程度的差異時,對造粒體的強度影響小。
「實驗例7」
將實施例15的玻璃原料系(原料2)變更為表5的原料1而進行造粒。該造粒的結果係如表6的實施例16所表示。又,針對實施例16,將使球磨機之粉碎時間為1小時左右者,表示於表6的比較例5。從該等結果,得知藉由不同的噴霧乾燥條件,或藉由增長粉碎時間,pH成為7.8以上且相關係數充分地變大。而且,在實施例15、16及比較例5中,雖然玻璃原料:水係各自為1:1.5、1:1、及1:1,實施例15時有若干不同,但是該程度的差異時,對造粒體的強度影響小。
「實驗例8」
將實施例13的粉碎時間8小時,變更為表6的4小時而進行造粒。該造粒的結果係如表6的實施例17所表示。從該造粒的結果,如第4圖所表示,得知藉由增長粉碎時間,pH能夠上升,4小時則pH成為8.1以上且相關係數亦充分地變大。而且,在實施例13及17,雖然玻璃原料:水係各自為1:1.5、及1:1,兩者有若干不同,但是該程度的差異時,對造粒體的強度影響小。
產業之可利用性
使用本發明所製造的造粒體,能夠使用作為用以藉由氣中熔融法等製造熔融玻璃之玻璃原料。所得到的熔融玻璃係藉由漂浮槽(float bath)、熔融成形機、軋平(roll out)成形機、吹氣成形機、加壓成形機等的成形手段來成形各種形狀的玻璃製品。
又,將2009年8月28日申請之日本特許出願2009-198477號說明書、申請專利範圍、圖式及摘要的全部內容引用於此,並且採用作為本發明的說明書之揭示。
第1圖係實施例3、比較例1及比較例2的造粒體及玻璃粒子之照片。
第2圖係實施例1的造粒體之顯微鏡照片。
第3圖係比較例1的造粒體之顯微鏡照片。
第4圖係表示原料漿體的攪拌時間與原料漿體的pH的關係之圖表。

Claims (14)

  1. 一種硼矽酸玻璃製造用的玻璃原料造粒體之製造方法,其具備:調製原料漿體之步驟,該原料漿體係含有含硼酸的玻璃原料及硼酸可溶性液狀介質之原料漿體,相對於原料漿體的固體成分,原料漿體中的硼酸量為5~30質量%,且原料漿體中的pH為6.6以上;及藉由噴霧乾燥造粒法從前述原料漿體製造玻璃原料造粒體之步驟,其中前述玻璃原料係經調整後可構成一種在以氧化物基準的質量百分率表示時為下述組成(1)的硼矽酸玻璃(其中,下述R係表示鹼金屬)的玻璃原料,SiO2 :40~85質量%、Al2 O3 :1~22質量%、Ba2 O3 :2~20質量%、MgO:0~8質量%、CaO:0~14.5質量%、SrO:0~24質量%、BaO:0~30質量%、R2 O:0~10質量%…(1)。
  2. 如申請專利範圍第1項所述之製造方法,其中原料漿體進一步含有pH調整劑。
  3. 如申請專利範圍第1或2項所述之製造方法,其中原料漿體的pH為7以上。
  4. 如申請專利範圍第1項所述之製造方法,其中在硼酸可溶性液狀介質中使硼酸與玻璃原料接觸直至原料漿體的pH成為6.6以上而調製原料漿體。
  5. 如申請專利範圍第4項所述之製造方法,其中玻璃原料 的一部分係選自鹼金屬及鹼土類金屬之金屬的氫氧化物或碳酸鹽。
  6. 如申請專利範圍第1或2項所述之製造方法,其中將含硼酸的玻璃原料與硼酸可溶性液狀介質混合而調製原料漿體之機構係球磨機。
  7. 如申請專利範圍第1或2項所述之製造方法,其中前述玻璃原料造粒體的平均粒徑為30~1000μm。
  8. 如申請專利範圍第1或2項所述之製造方法,其中前述硼酸可溶性液狀介質係水。
  9. 如申請專利範圍第1或2項所述之製造方法,其中原料漿體的pH為8~12。
  10. 如申請專利範圍第1或2項所述之製造方法,其中前述玻璃原料係經調整後可構成一種在以氧化物基準的質量百分率表示時氧化硼含量為1~30質量%之硼矽酸玻璃的玻璃原料。
  11. 如申請專利範圍第1項所述之製造方法,其中R2 O為0.1質量%以下。
  12. 一種玻璃製品之製造方法,其特徵為包含以下步驟:將藉由如申請專利範圍第1至11項中任一項之製造方法所製造的玻璃原料造粒體加熱而成為熔融玻璃之步驟;及將前述熔融玻璃成形固化之步驟。
  13. 一種玻璃製品之製造方法,其特徵在於如申請專利範圍 第12項之使玻璃原料造粒體成為熔融玻璃之步驟包含:使前述玻璃原料造粒體在氣相環境中熔融而成為熔融玻璃粒子之步驟;及將前述熔融玻璃粒子集聚而成為玻璃熔液之步驟。
  14. 如申請專利範圍第13項之玻璃製品之製造方法,其中使用氣流搬運前述玻璃原料造粒體並導入至前述氣相環境中。
TW099128928A 2009-08-28 2010-08-27 A method for producing granules and a method for producing a glass product TWI477457B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009198477 2009-08-28

Publications (2)

Publication Number Publication Date
TW201125826A TW201125826A (en) 2011-08-01
TWI477457B true TWI477457B (zh) 2015-03-21

Family

ID=43628013

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099128928A TWI477457B (zh) 2009-08-28 2010-08-27 A method for producing granules and a method for producing a glass product

Country Status (7)

Country Link
US (1) US20120144863A1 (zh)
EP (1) EP2471756A4 (zh)
JP (1) JP5454580B2 (zh)
KR (1) KR20120048584A (zh)
CN (1) CN102482140A (zh)
TW (1) TWI477457B (zh)
WO (1) WO2011024913A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012039327A1 (ja) * 2010-09-24 2012-03-29 旭硝子株式会社 ガラス原料造粒体の製造方法およびガラス製品の製造方法
CN103562147A (zh) * 2011-05-25 2014-02-05 旭硝子株式会社 造粒体的制造方法、熔融玻璃的制造方法及玻璃物品的制造方法
JP5954319B2 (ja) 2011-05-25 2016-07-20 旭硝子株式会社 造粒体の製造方法、溶融ガラスの製造方法およびガラス物品の製造方法
WO2012161273A1 (ja) * 2011-05-25 2012-11-29 旭硝子株式会社 造粒体およびその製造方法、溶融ガラスの製造方法、ならびにガラス物品の製造方法
TWI548601B (zh) * 2011-07-19 2016-09-11 Asahi Glass Co Ltd Manufacturing method of molten glass and manufacturing method of glass product
AR089208A1 (es) * 2011-12-19 2014-08-06 Quarzwerke Gmbh Procedimiento para triturar fibras de vidrio a partir de desechos de fibra de vidrio, uso de un aditivo y mezcla que contiene fibra de vidrio
KR102060944B1 (ko) 2012-02-28 2019-12-31 에이지씨 가부시키가이샤 조립체 및 그 제조 방법
JP6044133B2 (ja) * 2012-06-29 2016-12-14 日本電気硝子株式会社 ガラスの製造方法
US9102560B2 (en) * 2013-01-17 2015-08-11 Sibelco Asia Pte. Ltd. Charging load for making TFT glass and method of making same
JP6056716B2 (ja) * 2013-09-05 2017-01-11 旭硝子株式会社 造粒体、その製造方法およびガラス物品の製造方法
WO2015119209A1 (ja) 2014-02-06 2015-08-13 旭硝子株式会社 造粒体の製造方法およびガラス物品の製造方法
TW201641452A (zh) * 2015-03-20 2016-12-01 康寧公司 用以減少玻璃熔融物中附聚物的方法與系統
JP6365599B2 (ja) * 2016-06-29 2018-08-01 トヨタ自動車株式会社 電極用湿潤造粒体の製造装置および製造方法
CN110255895B (zh) * 2019-07-16 2021-04-13 湖南旗滨医药材料科技有限公司 含碱硼硅酸盐玻璃及其制备方法
US11912608B2 (en) 2019-10-01 2024-02-27 Owens-Brockway Glass Container Inc. Glass manufacturing

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4063916A (en) * 1975-11-13 1977-12-20 Sovitec S.A. Process of making glass beads from liquid medium feedstock
US20080096018A1 (en) * 2005-12-08 2008-04-24 James Hardie International Finance B.V. Engineered low-density heterogeneous microparticles and methods and formulations for producing the microparticles

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2970924A (en) * 1959-05-29 1961-02-07 Joseph C Fox Glass batch preparation
US3443973A (en) * 1964-11-24 1969-05-13 Du Pont Composite vitreous enamels and their preparation
US3838998A (en) * 1971-01-07 1974-10-01 R Carson Process for forming hollow glass micro-spheres from admixed high and low temperature glass formers
US4119422A (en) * 1977-08-18 1978-10-10 Pittsburgh Corning Corporation Pulverulent borosilicate composition and a method of making a cellular borosilicate body therefrom
US4340642A (en) * 1980-06-20 1982-07-20 Pq Corporation Surface modified hollow microspheres
US4654068A (en) * 1981-07-30 1987-03-31 Ppg Industries, Inc. Apparatus and method for ablating liquefaction of materials
GB8515744D0 (en) * 1985-06-21 1985-07-24 Glaverbel Vitreous beads
US5238881A (en) * 1988-11-09 1993-08-24 Engelhard Corporation Stable color dispersions, their preparation and use in ceramic glazes
DE69309515T2 (de) * 1992-01-24 1997-11-06 Sumitomo Electric Industries Siliziumnitridpulver und Verfahren zu dessen Herstellung
US6591634B1 (en) * 1994-02-25 2003-07-15 Toshinori Morizane Method for production of metal oxide glass film at a low temperature
JPH07277768A (ja) * 1994-04-08 1995-10-24 Nippon Electric Glass Co Ltd 中空ガラス球の製造方法
US6077341A (en) * 1997-09-30 2000-06-20 Asahi Glass Company, Ltd. Silica-metal oxide particulate composite and method for producing silica agglomerates to be used for the composite
US6360562B1 (en) * 1998-02-24 2002-03-26 Superior Micropowders Llc Methods for producing glass powders
US7030165B2 (en) * 1999-05-26 2006-04-18 Showa Denko Kabushiki Kaisha Perovskite titanium-type composite oxide particle and production process thereof
EP1172341A4 (en) * 1999-06-30 2003-06-04 Asahi Glass Co Ltd FINE HOLLOW GLASS SPHERES AND PROCESS FOR PREPARING THE SAME
US6705117B2 (en) * 1999-08-16 2004-03-16 The Boc Group, Inc. Method of heating a glass melting furnace using a roof mounted, staged combustion oxygen-fuel burner
EP1088789A3 (en) * 1999-09-28 2002-03-27 Heraeus Quarzglas GmbH & Co. KG Porous silica granule, its method of production and its use in a method for producing quartz glass
EP1132349A1 (en) * 2000-03-10 2001-09-12 Corning Incorporated Erbium-doped multicomponent glasses manufactured by the sol-gel method
US7732358B2 (en) * 2000-09-20 2010-06-08 Goodrich Corporation Inorganic matrix compositions and composites incorporating the matrix composition
US6638623B2 (en) * 2001-12-18 2003-10-28 International Business Machines Corporation pH adjustment of a strengthening melt for use in strengthening glass substrates
US7455798B2 (en) * 2002-08-23 2008-11-25 James Hardie International Finance B.V. Methods for producing low density products
NZ538497A (en) * 2002-08-23 2007-03-30 James Hardie Int Finance Bv Synthetic hollow microspheres
US20060142413A1 (en) * 2003-02-25 2006-06-29 Jose Zimmer Antimicrobial active borosilicate glass
JP2005313154A (ja) * 2004-03-29 2005-11-10 Sanyo Electric Co Ltd 高濃度微粒子濃縮物、高濃度微粒子濃縮物の製造方法、粉体および粉体製造方法
US7937969B2 (en) * 2004-08-26 2011-05-10 Carty William M Selective batching for boron-containing glasses
JP5012026B2 (ja) * 2004-11-08 2012-08-29 旭硝子株式会社 CeO2微粒子の製造方法
US20080255291A1 (en) * 2005-09-08 2008-10-16 Imerys Kaolin, Inc. Large Particle, High Mineral Purity Calcined Kaolins And Methods Of Preparing And Using Same
JP2007099555A (ja) 2005-10-03 2007-04-19 Pentax Corp 粒子の製造方法、粒子および吸着装置
JP5380671B2 (ja) 2006-04-28 2014-01-08 国立大学法人東京工業大学 ガラスの原料溶解方法および溶解装置ならびにガラス製造装置
EP2014621A4 (en) * 2006-05-01 2010-09-01 Asahi Glass Co Ltd METHOD FOR PRODUCING GLASS
KR100951618B1 (ko) 2008-02-19 2010-04-09 한국과학기술원 광주파수 발생기를 이용한 절대거리 측정방법 및 시스템
US20100129455A1 (en) * 2008-10-15 2010-05-27 National Institute Of Advanced Industrial Science And Technology Nanoparticle-dispersed fine glass beads having a cavity therein, and method of producing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4063916A (en) * 1975-11-13 1977-12-20 Sovitec S.A. Process of making glass beads from liquid medium feedstock
US20080096018A1 (en) * 2005-12-08 2008-04-24 James Hardie International Finance B.V. Engineered low-density heterogeneous microparticles and methods and formulations for producing the microparticles

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Oct-2004 *
PQ Europe產品目錄 *

Also Published As

Publication number Publication date
EP2471756A4 (en) 2015-05-27
CN102482140A (zh) 2012-05-30
TW201125826A (en) 2011-08-01
EP2471756A1 (en) 2012-07-04
WO2011024913A1 (ja) 2011-03-03
JP5454580B2 (ja) 2014-03-26
US20120144863A1 (en) 2012-06-14
JPWO2011024913A1 (ja) 2013-01-31
KR20120048584A (ko) 2012-05-15

Similar Documents

Publication Publication Date Title
TWI477457B (zh) A method for producing granules and a method for producing a glass product
TWI482744B (zh) A method for producing a glass raw material granule and a method for producing the same
WO2012161275A1 (ja) 造粒体の製造方法、溶融ガラスの製造方法、ならびにガラス物品の製造方法
JP5920342B2 (ja) 造粒体およびその製造方法、溶融ガラスの製造方法、ならびにガラス物品の製造方法
CN103648991B (zh) 熔融玻璃的制造方法和玻璃制品的制造方法
US20170174545A1 (en) Method for producing glass raw material granules, method for producing molten glass, and method for producing glass article
KR19990067324A (ko) 최소한 부분적으로 용융된 입자 및 불꽃 용융에 의해서 이를제조하는 방법
CN104797537B (zh) 无碱玻璃的制造方法
US10035726B2 (en) Granules, method for their production, and method for producing glass product
JP6056716B2 (ja) 造粒体、その製造方法およびガラス物品の製造方法
TW202225095A (zh) 球狀粒子材料之製造方法
KR102517491B1 (ko) 유리 원료 조립체의 제조 방법, 용융 유리의 제조 방법, 및 유리 물품의 제조 방법
JP2001335313A (ja) 微細球状シリカの製造方法
JP2006096599A (ja) 球状溶融シリカ粉末の製造方法

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees