TWI453819B - SOI wafer manufacturing method and SOI wafer - Google Patents

SOI wafer manufacturing method and SOI wafer Download PDF

Info

Publication number
TWI453819B
TWI453819B TW098126227A TW98126227A TWI453819B TW I453819 B TWI453819 B TW I453819B TW 098126227 A TW098126227 A TW 098126227A TW 98126227 A TW98126227 A TW 98126227A TW I453819 B TWI453819 B TW I453819B
Authority
TW
Taiwan
Prior art keywords
layer
soi
wafer
soi wafer
thickness
Prior art date
Application number
TW098126227A
Other languages
English (en)
Other versions
TW201025444A (en
Original Assignee
Shinetsu Handotai Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinetsu Handotai Kk filed Critical Shinetsu Handotai Kk
Publication of TW201025444A publication Critical patent/TW201025444A/zh
Application granted granted Critical
Publication of TWI453819B publication Critical patent/TWI453819B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76251Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
    • H01L21/76254Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques with separation/delamination along an ion implanted layer, e.g. Smart-cut, Unibond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Recrystallisation Techniques (AREA)

Description

SOI晶圓的製造方法及SOI晶圓
本發明是有關於一種在成為基板之SOI晶圓的SOI層上,使矽磊晶層成長而將SOI層增厚而成之SOI晶圓及其製造方法。
作為製造SOI晶圓的方法,通常已知道晶圓貼合法及SIMOX(Separation by Implantation of oxygen;植入氧分離)法。晶圓貼合法,例如是將2片矽晶圓經由氧化膜且未使用黏著劑而結合,並藉由熱處理(1000~1200℃)提高結合強度後,藉由磨削、研磨或蝕刻等來將其中一方的晶圓薄膜化之方法,本手法的優點是SOI層的結晶性或埋入氧化膜(BOX層)等的信賴性是與通常的矽晶圓同等,又,缺點是SOI層的膜厚度均勻性有其界限(頂多為±0.3微米左右),以及因為使用2片矽晶圓來製造1片SOI晶圓,致使成本高。
又,專利文獻1提案揭示一種貼合方法亦即離子植入剝離法(亦稱為SMART CUT(註冊商標)法)。該方法是在2片矽晶圓的至少一方形成氧化膜,並在另一方的晶圓的一主面植入氫離子、或稀有氣體離子的至少一種類,而在晶圓內部形成離子植入層後,將離子植入後的面與另一方的矽晶圓的一主面,經由氧化膜使其密接,隨後,施加300℃~600℃或其以上的溫度之熱處理,並以離子植入層為界來進行剝離的方法,具有能夠容易地製造出具有±10奈米以下的SOI層膜厚度均勻性之薄膜SOI晶圓的優越性、及複數次再利用剝離後的接合晶圓來謀求降低成本的優越性。
另一方面,SIMOX法,是藉由在矽晶圓的內部植入高濃度的氧離子而形成氧離子植入層,隨後,在1300℃左右的高溫進行退火處理,在矽晶圓中形成埋入氧化膜(BOX層),並將其表面側的層作為SOI層來使用的方法。雖然SIMOX法的製法簡便,但是因為由氧離子植入層所形成的BOX層是僅限於極表層,無法在晶圓的較深位置形成,欲增加表層元件區域的厚度是困難的。又,所形成的BOX層無法成為緻密的結構,將SOI晶圓使用作為元件製造用晶圓時,會有難以得到最大優點亦即完全的絕緣耐壓這樣的缺點。
且說,SOI層的膜厚度為數微米至數十微米之厚膜SOI晶圓,是作為雙載子元件或功率元件非常有用的晶圓,但是已知製造低成本且高品質的SOI晶圓,即便使用上述藉由磨削、研磨之貼合法及SMART CUT法亦是困難的。其理由是藉由磨削、研磨之貼合法時,必須以將覆氧化膜矽晶圓與裸晶圓貼合且在1100℃以上進行結合熱處理,並且進行磨削及研磨處理而成為需要的SOI層厚度之方式來製造,其製程複雜而且欲使SOI層的膜厚度均勻性良好是非常困難的,另一方面,SMART CUT法的情況,SOI層的厚度是取決於能離子植入的深度(亦即離子植入裝置的加速電壓),通常的植入裝置的情況,最大的加速電壓為200keV左右,最多只能夠得到2微米左右的厚度之SOI層。
[先前技術文獻] [專利文獻]
[專利文獻1]日本特開平5-211128號公報
[專利文獻2]日本特開2007-194539號公報
因此,本發明是鑒於如此的問題點而開發出來,其目的是提供一種生產性良好且低成本,而且滑移差排等較少之高品質的SOI晶圓及其製造方法,該SOI晶圓是使磊晶層成長而將SOI層增厚而成。
為了達成上述目的,本發明提供一種SOI晶圓的製造方法,是在BOX層上具有SOI層之SOI晶圓的SOI層上,使磊晶層成長而將SOI層增厚之SOI晶圓的製造方法,其特徵在於:使用SOI晶圓來使磊晶成長,該使前述磊晶層成長之SOI晶圓,在800~1300奈米的紅外線波長區域中的紅外線反射率為20%以上、40%以下。
如此,若是在800~1300奈米的紅外線波長區域中的紅外線反射率為20%以上、40%以下之SOI晶圓時,則具有與經拋光矽晶圓相同程度的紅外線反射率。當在此種SOI晶圓的SOI層上使磊晶層成長時,能夠直接應用經拋光矽晶圓在磊晶成長時的燈加熱功率平衡等的無滑移條件。因此,不必進行用以找出無滑移條件的測試,能夠大幅度地削減時間。又,若是如上述的SOI晶圓時,因為磊晶成長時的層厚度變化所引起的紅外線反射率的變化是非常少,所以從磊晶成長開始至結束,能夠在無滑移的最佳條件下進行磊晶成長。
因此,能夠低成本且生產性良好地製造出一種形成有無滑移的磊晶層之高品質的厚膜SOI晶圓。
此時,較佳是將使前述磊晶層成長之SOI晶圓的BOX層的厚度,設為30奈米以下或((340的正整數倍)±20)奈米。
若是具有此種厚度的BOX層之SOI晶圓時,不管SOI層的厚度如何,在800~1300奈米的紅外線波長區域中的紅外線反射率為20%以上、40%以下。因此,實施本發明時,因為只要調整SOI晶圓的BOX層的厚度即可,而且磊晶成長時的由於SOI層厚度的變化所引起的反射率變動亦較少,能夠生產性良好地製造出無滑移且厚膜的SOI晶圓。
此時,較佳是以如下方式來製作出使前述磊晶層成長之SOI晶圓:從接合晶圓的表面離子植入氫離子、稀有氣體離子的至少一種類,而在晶圓內部形成離子植入層,並將前述接合晶圓的植入有離子側的表面與基體晶圓的表面,經由氧化膜使其密接,隨後,以前述離子植入層為界,將接合晶圓分離成薄膜狀。
若是藉由此種離子植入法而製作出來的SOI晶圓時,因為具有膜厚度均勻性高的SOI層,在該SOI層使磊晶層成長時,能夠作出更高品質的厚膜SOI晶圓。
此時,較佳是將前述磊晶層,使用一種將照射在前述SOI晶圓上的紅外線燈的發光波長限定於800~1300奈米之單片式燈加熱裝置,來使其成長。
利用將紅外線燈的發光波長設在上述範圍內,因為能夠使對波長的反射率之影響變為較小,能夠在更接近無滑移的設定條件的狀態下,使磊晶層成長。
此時,較佳是將前述磊晶層,使其厚度成長成比1微米更厚。
如此,即便使比較厚的磊晶層成長時,若是本發明的製造方法,因為SOI層的層厚度變化所引起的紅外線反射率的變化幾乎沒有,且即便長期間保持高溫,從磊晶成長開始至結束,亦能夠以無滑移的最佳條件來使磊晶層進行成長,所以是較佳的。
又,本發明提供一種SOI晶圓,是由基體晶圓(由單晶矽所構成)、在該基體晶圓上的BOX層及在該BOX層上的SOI層所構成,其特徵在於:前述BOX層的厚度為30奈米以下、或((340的正整數倍)±20)奈米,且前述SOI層是由前述BOX層上的單晶矽層及在該單晶矽層上成長而成的磊晶層所構成。
若是此種厚度的BOX層之SOI晶圓,因為在800~1300奈米的紅外線波長區域中的紅外線反射率為20%以上、40%以下,所以在單晶矽層上形成磊晶層時,紅外線反射率是幾乎沒有變化,且顯示與經拋光矽晶圓相同程度的反射率,所以能夠直接應用經拋光矽晶圓的無滑移條件並能夠確實且生產性良好地使無滑移的磊晶層成長,而成為一種高品質且低成本的SOI晶圓。
若是本發明,當在SOI晶圓的SOI層上使磊晶層成長而將SOI層增厚時,能夠生產性良好地製造出一種滑移差排等較少之高品質的厚膜SOI晶圓。
先前,在成為基板的SOI晶圓的SOI層上,例如使用單片式燈加熱型的磊晶成長裝置,且在高溫進行磊晶成長時,會有在晶圓中容易產生滑移差排致使品質變差之問題。
針對該問題,有一種方法(專利文獻2),其是以磊晶成長前的SOI層表面的反射率為30%以上、80%以下的方式來進行磊晶成長,以及各自調整BOX層及SOI層的厚度來使反射率在該範圍內。但是,即便使用具有該範圍的反射率之SOI晶圓,發現欲找出不產生滑移差排(無滑移)的條件、以及進行無滑移的磊晶成長,會有成為非常困難的情況。
被認為該理由是:因磊晶成長而SOI層變厚,同時紅外線反射率亦產生變化,原本在即將磊晶成長時是最佳的磊晶成長條件,會變為不是最佳條件,而容易產生滑移差排之緣故。特別是成長的磊晶層大於1微米而達到數微米至十數微米時,在磊晶成長時的高溫所保持的時間增加,致使滑移差排更容易產生。
被認為:這是因為在磊晶成長時,若紅外線反射率產生變化,則無法對晶圓表面(或是承受器背面)正確地測定溫度,燈的功率變為不安定,結果,實際成長溫度的均勻性變差,致使產生滑移差排。
相對於此,本發明人,對SOI晶圓的BOX層厚度及SOI層厚度,模擬紅外線反射率並研討後之結果,發現:具有特定的紅外線反射率之SOI晶圓,是與在元件製造時所使用之通常的經拋光矽晶圓相同程度,且其上面的SOI層厚度,不會影響紅外線反射率。而且,發現若是具有特定的BOX層厚度之SOI晶圓,則具有上述的紅外線反射率,而完成了本發明。
亦即,藉由使用一種具有該特定的BOX層厚度之SOI晶圓,能夠應用與經拋光矽晶圓同樣的磊晶成長條件(燈加熱功率平衡),對SOI晶圓進行磊晶成長時,能夠大幅地削減為了找出無滑移條件的測試時間,且能夠進行無滑移的磊晶成長,並可製造出低成本且良好品質的SOI晶圓。
又,進行磊晶成長時,若使用透射特定波長的濾光器而將照射SOI晶圓上的紅外線的發光波長限定於800~1300奈米時,因為能夠降低模擬時未考慮到的波長之影響,能夠得到更接近模擬結果之結果。
以下,更詳細地說明本發明者的研討結果。
首先,第5圖是顯示在單片式燈加熱型的磊晶成長裝置中所使用的鹵素燈的光譜特性。得知雖然發光是分布在紅外線的廣闊區域範圍,但是其尖峰波長是在1000奈米附近。
第1圖是模擬經拋光矽晶圓、SOI晶圓A(SOI層:70奈米、BOX層:145奈米)、SOI晶圓B(SOI層:50奈米、BOX層:10奈米)的紅外線反射率後的結果。從該圖,得知SOI晶圓的紅外線反射率是依存於SOI層及BOX層的厚度而產生重大變化,以及如SOI晶圓B,亦有具有與經拋光矽晶圓相同程度的反射率者。
第6圖是將SOI層厚度及BOX層厚度設作參數,並模擬對鹵素燈的尖峰波長亦即1000奈米的波長之SOI晶圓的反射率之結果。
得知:SOI晶圓的反射率是對應SOI層及BOX層的厚度而周期性地變化,以及如SOI晶圓A般,BOX層的厚度為145奈米的情況,其SOI層厚度為70奈米時具有80%左右的高反射率,但是SOI層的厚度為140奈米時,變為10%以下左右,因SOI層的厚度不同,其反射率會產生重大變化。又,如SOI晶圓B,得知BOX層厚度為10奈米的SOI晶圓,其SOI層的厚度即便變化,反射率亦顯示在30%至40%之大致一定的值,而且與經拋光矽晶圓的反射率相同程度。而且,如SOI晶圓B,得知:SOI晶圓 的厚度即便變化,大致一定的反射率之BOX層,其厚度是周期性地存在,下次周期的厚度是在340奈米附近。
(實驗例)
為了確認模擬的結果,使用各自直徑為300毫米的經拋光矽晶圓、SOI晶圓A(SOI層:70奈米、BOX層:145奈米)、SOI晶圓B(SOI層:50奈米、BOX層:10奈米),並藉由單片式燈加熱型的磊晶成長裝置(Centura:APPLIED MATERIALS公司製)進行1100℃、900秒的H2 退火(H2 氣體100%氣氛下)。滑移的產生狀況是藉由晶圓應力測定裝置SIRD(Scanning InfraRed Depolarization;掃描紅外光消偏振)的滑移強調圖顯示來評價。
首先,對經拋光矽晶圓,求取在H2 退火後成為無滑移之燈加熱功率平衡(晶圓上下、晶圓內外)條件。以該條件將SOI晶圓A、B進行H2 退火之結果是如第7圖所示。與經拋光矽晶圓的反射率大致相同程度之SOI晶圓B,雖然與經拋光矽晶圓大致同樣地無滑移,但是SOI晶圓A是在晶圓周邊部便被觀察到滑移。
另一方面,對SOI晶圓A求取成為無滑移的條件,並將其應用在SOI晶圓B的結果,是一併如第7圖所示。得知SOI晶圓B是在晶圓周邊、中心附近顯著地產生滑移。
如此,得知SOI晶圓是依據SOI層及BOX層的厚度,其無滑移條件不同,以及SOI晶圓B能夠應用經拋光矽晶圓的無滑移條件。這能夠藉由如第1圖所示之紅外線反 射率的不同來作說明。亦即,可認為:經拋光矽晶圓與SOI晶圓B是大致相同反射率,而因為SOI晶圓A是與該等晶片有顯著不同的反射率,所以其無滑移條件不同。
因此,如SOI晶圓B,針對包含在單片式燈加熱型的磊晶成長裝置所使用的鹵素燈的尖峰波長區域之由800奈米至1300奈米的波長區域,若是具有與經拋光矽晶圓大致相同的反射率(20%以上、40%以下左右)之SOI晶圓時,則在磊晶成長時、或是在即將磊晶成長前的用以除去自然氧化膜之氫退火時,發現藉由設定成與經拋光矽晶圓能夠得到無滑移的熱處理條件同一的熱處理條件,能夠對SOI晶圓進行無滑移的熱處理,而完成了本發明。
以下,參照圖示而具體地說明本發明的實施形態,但是本發明未限定於這些實施形態。
第2圖是本發明的製造方法的實施態樣的一個例子之流程圖。第3圖是本發明的SOI晶圓的一個例子之概略圖。
在本發明的製造方法中,作為使矽磊晶層成長之基板,首先製造出一種在800~1300奈米的紅外線波長區域之紅外線反射率為20%以上、40%以下之SOI晶圓。
首先,在第2圖的步驟(a)中,準備2片矽鏡面晶圓,並配合元件的規格,準備一種成為支撐基板之基體晶圓10及成為SOI層之接合晶圓11。
隨後,在第2圖的步驟(b)中,將其中至少一方的晶圓,在此是例如接合晶圓11,進行熱氧化而在其表面形成氧化膜12。該氧化膜的形成亦能夠採用CVD等的方法。
此時,較佳是以欲製造的SOI晶圓的BOX層的厚度為30奈米以下、或((340的正整數倍)±20)奈米的方式,來調整氧化膜12的厚度。
若是具有此種BOX層的厚度之SOI晶圓時,不管SOI層厚度如何,會成為一種SOI晶圓,其在800~1300奈米的紅外線波長區域中的紅外線反射率,為20%以上、40%以下,所以能夠容易地製造出滿足本發明的必要條件之SOI晶圓。
因為所形成的氧化膜,將成為隨後欲製造的SOI晶圓的BOX層,只有在其中一方的晶圓形成氧化膜的情況,其厚度是形成與上述厚度相同,而在兩晶圓形成的情況,是以兩晶圓的氧化膜厚度的總和之值,成為上述厚度的方式來形成。另外,將BOX層設為30奈米以下的厚度的情況,其下限值沒有特別限定,但是為了確保充分的絕緣性,以設為5奈米以上為佳。
隨後,在第2圖的步驟(c)中,是對接合晶圓11的一面,植入氫離子、稀有氣體(He、Ne等)離子中的至少一種類之離子,在離子的平均進入深度,形成與表面平行的離子植入層13。
隨後,在第2圖的步驟(d)中,是將離子植入後的接合晶圓11的氫離子植入面及基體晶圓10,經由氧化膜12使其疊合並密接。藉由在常溫的潔淨氣氛下使2片晶圓的表面之間接觸,不必使用黏著劑等,便能將兩片晶圓黏著。但是為了更牢固地使其黏著,亦可以使用黏著劑等。
隨後,在第2圖的步驟(e)中,是藉由以離子植入層13為界而將接合晶圓11剝離,來製造SOI晶圓16。例如在惰性氣體氣氛下以約300~600℃的溫度施行熱處理時,由於結晶的再配列及氣泡的凝聚而使接合晶圓11以離子植入層13為界而剝離,能夠作成SOI晶圓16。另外,亦有藉由提高形成剝離用的離子植入層13時之離子植入量、或對疊合面預先進行電漿處理將表面活化,而能夠省略剝離熱處理之情形。
如此,在第2圖的步驟中,製造出成為一種使磊晶層成長的基板之SOI晶圓的步驟,是使用離子植入剝離法,但是SOI晶圓的製作,並未限定於離子植入剝離法,亦可藉由任何方法來製造。例如亦可在將氧離子植入矽晶圓後,使用熱處理方法(SIMOX法)。又,貼合後,藉由磨削等方式進行薄膜化來製造SOI晶圓的情況,也能應用本發明。
但是,若依據離子植入剝離法,因為SOI層的膜厚度均勻性非常高,利用在後步驟中使磊晶層成長於該SOI層上,能夠製成具有更高品質的厚膜SOI層之SOI晶圓。
隨後,在第2圖的步驟中的剝離步驟後,能夠在步驟(f)中進行結合熱處理步驟。該步驟是因為利用前述步驟(d)、(e)的密接步驟及剝離熱處理步驟所密接而成的晶圓之間的結合力,當直接使用在元件步驟中有較弱的情形時,亦可對SOI晶圓16施行高溫的熱處理作為結合熱處理,來使其成為結合強度充分者。該熱處理是例如可在惰性氣體氣氛下,以1000~1200℃,在30分鐘至2小時的範圍內進行。
經由以上的步驟(a)~(f),來製造出一種SOI晶圓16,其在800~1300奈米的紅外線波長區域中的紅外線反射率為20%以上、40%以下。
隨後,在第2圖的步驟(g)中,在成為基板之SOI晶圓16的SOI層17上,使磊晶層14成長,來將SOI層17增加厚度至需要的厚度。磊晶成長後的磊晶層14,是與磊晶成長前的SOI層17成為整體而形成磊晶成長後的SOI晶圓16的SOI層17。又,亦可在使該磊晶成長之前,在磊晶成長裝置內,對SOI晶圓施行氫退火而將SOI層17表面的自然氧化膜除去後,才使磊晶成長。
使此種磊晶層成長而將SOI層增厚之SOI晶圓的製造方法,因為隨著磊晶成長,SOI層的層厚度產生變化,紅外線反射率亦產生變化,以原來最佳條件來進行磊晶成長是困難的,但是,若依據本發明的製造方法,因為使用一種在800~1300奈米的紅外線波長區域中的紅外線反射率為20%以上、40%以下之SOI晶圓,即便SOI層的厚度變化,紅外線反射率亦不會變化,而且能夠正確地測定溫度。藉此,最初設定為無滑移條件之磊晶成長條件,從成長開始至結束都是適合狀態,因而能夠進行溫度調整精確度良好的磊晶成長。
又,若是如上述的紅外線反射率時,因為是與經拋光矽晶圓相同程度的反射率,所以能夠直接應用經拋光矽晶圓的無滑移條件的磊晶成長條件,不必因為SOI層或BOX層等的不同而每次調查無滑移條件,能夠大幅度地削減該測試時間。而且,經拋光矽晶圓的無滑移條件,亦能夠應用於磊晶成長前的氫退火條件。
依據上述,若是本發明的製造方法時,能夠生產性良好且低成本地製造出一種具有無滑移且高品質的厚SOI層之SOI晶圓。
該磊晶成長,能夠使用例如第4圖所示之單片式燈加熱型的磊晶成長裝置來進行。
第4圖之磊晶成長裝置,是先在承受器上載置要使磊晶成長的SOI晶圓,並在石英處理室內導入製程氣體,且使用鹵化金屬燈(紅外線燈)將晶圓加熱至磊晶成長溫度,而且使用高溫計來測定該被加熱的晶圓(或是承受器的背面)之溫度,一邊維持在設定溫度一邊使磊晶成長。
此時,較佳是使用一種單片式燈加熱裝置,其將照射在SOI晶圓16上的紅外線燈的發光波長限定於800~1300奈米,來使磊晶層14成長。
利用將紅外線燈的發光波長限定於上述範圍內,因為能夠降低對波長的反射率的影響,能夠以更接近所設定的磊晶成長條件來進行磊晶成長。
又,磊晶層14的膜厚度,能夠通過氣體的流量、反應溫度、反應時間來調節,以使其厚度比1微米更厚,例如較佳是成長2微米至5微米或是其以上。
形成此種膜厚較大的磊晶層,即便被保持在高溫中的時間增加,若依據本發明的製造方法時,因為能夠自成長開始至結束以最佳條件使磊晶成長,所以能夠進行無滑移之良好的磊晶成長。
依據如以上的製造方法,能夠製造出一種SOI晶圓16,是由如第3圖所示的基體晶圓10(由單晶矽所構成)、在基體晶圓10上的BOX層15及在BOX層15上的SOI層17所構成之SOI晶圓16,其特徵在於:BOX層15的厚度為30奈米以下、或((340的正整數倍)±20)奈米,SOI層17是由在BOX層15上的單晶矽層18、及在單晶矽層18上所成長的磊晶層14所構成。
若是此種厚度的BOX層之SOI晶圓時,因為在800~1300奈米的紅外線波長區域中的紅外線反射率為20%以上、40%以下,所以在單晶矽層上形成磊晶層時,紅外線反射率幾乎無變化,且顯示與經拋光矽晶圓相同程度的反射率,所以能夠將經拋光矽晶圓的無滑移條件直接應用而確實且生產性良好地使無滑移的磊晶層成長,而成為一種高品質且低成本的SOI晶圓。
以下,顯示本發明的實施例來更具體地說明本發明,但是本發明未限定於這些實施例。
(實施例)
首先,藉由離子植入剝離法,準備4片在800~1300奈米的紅外線波長區域中的紅外線反射率為20%以上、40%以下之SOI晶圓C(SOI層:70奈米、BOX層:340奈米)、SOI晶圓D(SOI層:50奈米、BOX層:30奈米)、SOI晶圓E(SOI層:70奈米、BOX層:360奈米)、SOI晶圓F(SOI層:70奈米、BOX層:320奈米),來作為磊晶成長用SOI晶圓。
隨後,利用單片式燈加熱型的磊晶成長裝置(Centura),在SOI層上進行5微米的矽磊晶成長。矽磊晶成長,是在1100℃、減壓106.6hPa、H2 :40slm、SiH2 Cl2 :450sccm的條件下進行,且是未導入硼、磷等的不純物之無摻雜磊晶。
而且,加熱燈的功率平衡,是針對通常的經拋光矽晶圓來決定最佳條件(在H2 退火後無滑移之條件),且磊晶成長是在維持該平衡狀態下進行。又,磊晶成長後的滑移產生狀況,是藉由晶圓應力測定裝置SIRD(Scanning InfraRed Depolarization)的滑移強調圖顯示來評價。
(比較例)
準備一種經模擬能夠確認紅外線反射率是因SOI厚度而重大變化之SOI晶圓A(SOI層:70奈米、BOX層:145奈米)來作為磊晶成長用SOI晶圓,並利用單片式燈加熱型的磊晶成長裝置(Centura),在SOI層上進行5微米的矽磊晶成長。
磊晶成長條件是與實施例1同一條件,但是,加熱燈的功率平衡,是對於SOI晶圓A來決定最佳條件(在H2 退火後無滑移之條件),且磊晶成長是在維持該平衡狀態下進行。又,磊晶成長後的滑移產生狀況,是藉由晶圓應力測定裝置SIRD(Scanning InfraRed Depolarization)的滑移強調圖顯示來評價。
第8圖是顯示SOI晶圓A與SOI晶圓C的H2 退火後之滑移產生狀況、及在SOI層上磊晶成長5微米後之滑移產生狀況之圖。SOI晶圓A(比較例),即便在即將磊晶成長前的H2 退火時,是不會產生滑移的條件,但是如第6圖所示,若SOI層厚度變化時,因為反射率亦周期性地變化之緣故,無法順利地控制溫度,致使在5微米的磊晶成長後產生滑移。另一方面,SOI晶圓C(實施例),由於即便SOI層厚度發生變化,其反射率亦變動不大,所以能夠適當地控制溫度,而能夠進行無滑移之良好的磊晶成長。
又,對於SOI晶圓D、E、F(實施例),亦與SOI晶圓C同樣地,能夠進行無滑移之良好的磊晶成長。
而且,本發明並未限定於上述實施形態。上述實施形態是例示性,凡是具有與本發明之申請專利範圍所記載之技術思想實質上相同構成、且達成相同作用效果者,無論如何都包含在本發明的技術範圍內。
10...基體晶圓
11...接合晶圓
12...氧化膜
13...離子植入層
14...磊晶層
15...BOX層
16...SOI晶圓
17...SOI層
18...單晶矽層
第1圖是顯示經拋光矽晶圓與SOI晶圓的反射率之圖。
第2圖是本發明的製造方法的實施態樣的一個例子之流程圖。
第3圖是本發明的SOI晶圓的一個例子之概略圖。
第4圖是單片式燈加熱磊晶成長裝置之概略圖。
第5圖是顯示鹵素燈的光譜特性之圖。
第6圖是顯示SOI層及BOX層的厚度與反射率的關係之圖。
第7圖是顯示由於鹵素燈的功率平衡所引起的滑移產生狀況之圖。
第8圖是顯示退火後與磊晶成長5微米後之滑移產生狀況之圖。

Claims (3)

  1. 一種SOI晶圓的製造方法,是在BOX層上具有SOI層之SOI晶圓的SOI層上,使磊晶層成長而將SOI層增厚之SOI晶圓的製造方法,其特徵在於:使前述磊晶層成長之SOI晶圓的BOX層的厚度為30奈米以下、或((340的正整數倍)±20)奈米,並且,使用SOI晶圓來使前述磊晶層之厚度磊晶成長成比1微米更厚,該使前述磊晶層成長之SOI晶圓,在800~1300奈米的紅外線波長區域中的紅外線反射率為20%以上、40%以下。
  2. 如申請專利範圍第1項所述之SOI晶圓的製造方法,其中以如下方式來製作出使前述磊晶層成長之SOI晶圓:從接合晶圓的表面植入氫離子、稀有氣體離子的至少一種類,而在晶圓內部形成離子植入層,並將前述接合晶圓的植入有離子側的表面與基體晶圓的表面,經由氧化膜使其密接,隨後,以前述離子植入層為界,將接合晶圓分離成薄膜狀。
  3. 如申請專利範圍第1或2項所述之SOI晶圓的製造方法,其中使用單片式燈加熱裝置來使前述磊晶層成長,該單片式燈加熱裝置是經將照射在前述SOI晶圓上的紅外線燈的發光波長限定於800~1300奈米。
TW098126227A 2008-08-28 2009-08-04 SOI wafer manufacturing method and SOI wafer TWI453819B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008219981A JP4666189B2 (ja) 2008-08-28 2008-08-28 Soiウェーハの製造方法

Publications (2)

Publication Number Publication Date
TW201025444A TW201025444A (en) 2010-07-01
TWI453819B true TWI453819B (zh) 2014-09-21

Family

ID=41721000

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098126227A TWI453819B (zh) 2008-08-28 2009-08-04 SOI wafer manufacturing method and SOI wafer

Country Status (7)

Country Link
US (1) US8497187B2 (zh)
EP (1) EP2320450B1 (zh)
JP (1) JP4666189B2 (zh)
KR (1) KR101573812B1 (zh)
CN (1) CN102119435B (zh)
TW (1) TWI453819B (zh)
WO (1) WO2010023816A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI751570B (zh) * 2020-06-02 2022-01-01 合晶科技股份有限公司 半導體基板及其形成方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5447111B2 (ja) * 2010-04-07 2014-03-19 信越半導体株式会社 Soiウェーハの熱処理温度を求める方法及びランプ加熱型の気相成長装置における反応炉の温度管理方法
WO2011125305A1 (ja) * 2010-04-08 2011-10-13 信越半導体株式会社 シリコンエピタキシャルウエーハ、シリコンエピタキシャルウエーハの製造方法、及び半導体素子又は集積回路の製造方法
JP6086031B2 (ja) * 2013-05-29 2017-03-01 信越半導体株式会社 貼り合わせウェーハの製造方法
JP6824115B2 (ja) 2017-06-19 2021-02-03 ルネサスエレクトロニクス株式会社 半導体装置の製造方法
CN107265399A (zh) * 2017-07-03 2017-10-20 上海先进半导体制造股份有限公司 硅片密封腔体的制作方法
CN113764433A (zh) * 2020-06-02 2021-12-07 合晶科技股份有限公司 半导体基板及其形成方法
FR3119849B1 (fr) * 2021-02-12 2024-01-12 Soitec Silicon On Insulator Méthode de configuration pour ajuster les conditions de température d’un procédé d’épitaxie

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1604280A (zh) * 2003-10-01 2005-04-06 株式会社电装 半导体器件、切割半导体器件的切割设备及其切割方法
WO2007083587A1 (ja) * 2006-01-23 2007-07-26 Shin-Etsu Handotai Co., Ltd. Soiウエーハの製造方法およびsoiウエーハ
TW200809972A (en) * 2006-05-25 2008-02-16 Sumco Corp Method of producing semiconductor substrate

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2681472B1 (fr) 1991-09-18 1993-10-29 Commissariat Energie Atomique Procede de fabrication de films minces de materiau semiconducteur.
JP2000349266A (ja) * 1999-03-26 2000-12-15 Canon Inc 半導体部材の製造方法、半導体基体の利用方法、半導体部材の製造システム、半導体部材の生産管理方法及び堆積膜形成装置の利用方法
JP2004247610A (ja) 2003-02-14 2004-09-02 Canon Inc 基板の製造方法
US7902042B2 (en) 2004-09-13 2011-03-08 Shin-Etsu Handotai Co., Ltd. Method of manufacturing SOI wafer and thus-manufactured SOI wafer
JP4587034B2 (ja) * 2005-03-16 2010-11-24 信越半導体株式会社 Soiウェーハの設計方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1604280A (zh) * 2003-10-01 2005-04-06 株式会社电装 半导体器件、切割半导体器件的切割设备及其切割方法
WO2007083587A1 (ja) * 2006-01-23 2007-07-26 Shin-Etsu Handotai Co., Ltd. Soiウエーハの製造方法およびsoiウエーハ
TW200809972A (en) * 2006-05-25 2008-02-16 Sumco Corp Method of producing semiconductor substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI751570B (zh) * 2020-06-02 2022-01-01 合晶科技股份有限公司 半導體基板及其形成方法

Also Published As

Publication number Publication date
JP4666189B2 (ja) 2011-04-06
US8497187B2 (en) 2013-07-30
KR20110047201A (ko) 2011-05-06
JP2010056311A (ja) 2010-03-11
EP2320450B1 (en) 2013-08-28
EP2320450A1 (en) 2011-05-11
WO2010023816A1 (ja) 2010-03-04
CN102119435A (zh) 2011-07-06
CN102119435B (zh) 2014-06-18
KR101573812B1 (ko) 2015-12-02
US20110117727A1 (en) 2011-05-19
EP2320450A4 (en) 2011-09-28
TW201025444A (en) 2010-07-01

Similar Documents

Publication Publication Date Title
TWI453819B (zh) SOI wafer manufacturing method and SOI wafer
JP5168788B2 (ja) Soiウエーハの製造方法
TWI693640B (zh) 使半導體表面平整之製造方法
US8501589B2 (en) Method in the microelectronics fields of forming a monocrystalline layer
JP2004247610A (ja) 基板の製造方法
JPH10275905A (ja) シリコンウェーハの製造方法およびシリコンウェーハ
US20170025306A1 (en) Methods for preparing layered semiconductor structures and related bonded structures
TW201724178A (zh) SiC複合基板之製造方法
US20140051235A1 (en) Method for producing single crystal sic substrate and single crystal sic substrate produced by the same
JP5310004B2 (ja) 貼り合わせウェーハの製造方法
JP7024668B2 (ja) Soiウェーハ及びその製造方法
JP2000226299A (ja) 単結晶炭化珪素薄膜の製造方法および単結晶炭化珪素薄膜
WO2010073448A1 (ja) 貼り合わせウェーハの製造方法
JP2007242972A (ja) Soiウェーハの製造方法
TWI750389B (zh) 絕緣體上半導體結構的製造方法
JP5031190B2 (ja) 歪みSi層を有する半導体ウェーハの製造方法
JP2007250676A (ja) 異種材料の積層基板の製造方法
JP2001085649A (ja) Soiウェーハおよびその製造方法
TW202331791A (zh) 用於製作在多晶碳化矽載體底材上包括單晶碳化矽薄層之複合結構之方法
JPH05152180A (ja) 半導体装置及び製造方法
JPS62174969A (ja) 半導体装置の製造方法
JP2012064802A (ja) 貼り合わせウェーハの製造方法
JPH02238663A (ja) 半導体装置の製造方法
JPH0828487B2 (ja) 半導体装置の製造方法